
Deep learning classi�cation of Big

Five personality traits from EEG

signals

Tesi di Laurea Magistrale in

Biomedical Engineering - Ingegneria Biomedica

Author: Veronika Guleva

Student ID: 943895
Advisor: Prof. Anna Maria Bianchi
Co-advisors: Alessandra Calcagno
Academic Year: 2021-2022





i

Abstract

Personality refers to a set of characteristics that in�uence the behavior and cognition of

di�erent individuals. Personality psychology has developed the Big Five model, which

identi�es �ve main attributes of personality, called traits, able to capture personality

di�erences among individuals. Nevertheless, the �ve personality traits are generally as-

sessed using self-report questionnaires which are particularly prone to bias. As a result,

the demand for an automatic and more objective personality assessment approach has

arisen.

In this context, the application of machine learning (ML) techniques to Electroencephalo-

graphy (EEG) could be a valid classi�cation approach. Indeed, several studies in literature

successfully applied ML to EEG for di�erent classi�cation purposes, such as subjective

emotion assessment. However, from the few existing studies that attempted to classify

personality from EEG signals, it emerged that the a priori selection of EEG features able

to di�erentiate di�erent traits is a major limitation. In this context, the use of deep

learning (DL) models that can automatically extract features could represent a promising

approach. To the best of our knowledge, no studies that apply DL to EEG for personality

classi�cation are present in literature.

The aim of this thesis is to develop a DL-based binary personality classi�cation method

starting from EEG data, with a focus on model validation and interpretation of the

extracted features. EEGNet, a state-of-the-art Convolutional Neural Network (CNN)

model speci�cally designed for EEG decoding, was adopted. Classi�cation was performed

on the AMIGOS public dataset, which provides personality data and EEG traces from 38

subjects acquired during the visualization of emotional videos.

Speci�cally, a binary classi�er for each of the �ve traits was implemented. To do this,

a binarization of the personality scores was performed to generate a class representing

low expression of the trait (class 0) and one for high expression of the trait (class 1).

Moreover, in order to assess the model's ability to handle raw, minimally pre-processed,

and fully pre-processed data, three di�erent levels of preprocessing were applied to the

EEG signals. The optimal EEGNet structure was assessed by means of a full validation of

its hyperparameters. In the end, a �ve-fold cross-validation training strategy was used to

assess classi�cation performance on all the three di�erently pre-processed datasets.
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Furthermore, the automatically extracted features were analyzed by directly visualizing

the learned �lters and hidden layer outputs in the frequency domain and by using Dee-

pLIFT, a novel algorithm that assigns a contribution value to each input channel based

on how much it a�ects the �nal prediction.

The best classi�cation performance was achieved by the models trained on the minimally

pre-processed data with an average accuracy and F1 scores > 0.89 for all �ve personality

traits, while some preliminary relevant features were identi�ed for three out of the �ve

traits.

Keywords: EEG classi�cation, personality classi�cation, big �ve, personality traits, deep

learning, convolutional neural network
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Abstract in lingua italiana

La personalità comprende quell'insieme di caratteristiche che in�uenzano la cognizione

e il comportamento di diversi individui. La psicologia della personalità ha sviluppato

il modello Big Five, che identi�ca cinque attributi principali della personalità, chiamati

tratti, in grado di cogliere le di�erenze di personalità tra gli individui. I cinque tratti

di personalità sono generalmente quanti�cati utilizzando questionari autocompilativi, i

quali, tuttavia, sono particolarmente soggetti a imprecisioni dovute all'autovalutazione.

Di conseguenza, è sorta l'esigenza di un approccio automatico e più oggettivo per la

valutazione della personalità.

In questo contesto, l'applicazione di tecniche di machine learning (ML) all'elettroence-

falogra�a (EEG) potrebbe essere un valido approccio di classi�cazione. E�ettivamente,

diversi studi in letteratura hanno applicato con successo il ML sull'EEG per diversi scopi

di classi�cazione, come ad esempio la valutazione delle emozioni soggettive.

Tuttavia, dai pochi studi esistenti che hanno tentato di classi�care la personalità dai

segnali EEG, è emerso che la selezione a priori delle caratteristiche EEG in grado di dif-

ferenziare i diversi tratti è una grande limitazione. In questo contesto, l'uso di modelli di

deep learning (DL) che possono estrarre automaticamente le feature potrebbe rappresen-

tare un approccio promettente. Per quanto ne sappiamo non sono presenti in letteratura

studi che applicano DL all'EEG per la classi�cazione della personalità.

Lo scopo di questa tesi è quello di sviluppare un metodo di classi�cazione binaria della

personalità basato sul DL a partire da dati EEG, riservando particolare attenzione alla

validazione del modello e all'interpretazione delle feature estratte. Il modello adottato

per la classi�cazione è EEGNet, una convolutional neural network (CNN) progettata

speci�camente per la decodi�ca di segnali EEG. La classi�cazione è stata svolta sul dataset

pubblico AMIGOS, il quale fornisce i dati della personalità e le tracce EEG di 38 soggetti

acquisiti durante la visione di video emozionali.

In particolare, è stato implementato un classi�catore binario per ciascuno dei cinque tratti.

Per fare ciò, è stata eseguita una binarizzazione dei valori di personalità per generare una

classe che rappresenta la bassa espressione del tratto (classe 0) e una per l'alta espressione

del tratto (classe 1).

Inoltre, per valutare la capacità del modello di gestire dati grezzi, dati minimamente pre-



processati e dati completamente pre-processati, tre diversi livelli di pre-processing sono

stati applicati ai segnali EEG. La struttura �nale di EEGNet utilizzata per la classi-

�cazione è stata determinata mediante l'ottimizzazione dei suoi iperparametri. In�ne,

la performance di classi�cazione del modello ottenuto sono state valutate tramite una

strategia di valutazione incrociata basata sulla suddivisione dei dati in cinque parti.

Inoltre, le feature estratte automaticamente dal classi�catore sono state analizzate visua-

lizzando direttamente i �ltri appresi e gli output degli strati nascosti nel dominio della

frequenza e utilizzando DeepLIFT, un algoritmo che assegna un valore di contribuzione a

ciascun canale di input in base a quanto questo in�uisce sulla classi�cazione �nale.

Le migliori prestazioni di classi�cazione sono state ottenute dai modelli allenati sui dati

minimamente pre-processati, con un'accuratezza e F1 score medi > 0,89 per tutti e cinque i

tratti della personalità, mentre a livello preliminare sono state identi�cate feature rilevanti

per tre dei cinque tratti.

Parole chiave: classi�cazione EEG, classi�cazione personalità, Big Five, tratti della

personalità, deep learning, convolutional neural network
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Introduction

The possibility to automatically assess personality, starting from the individual's phys-

iological signals, and in particular electroencephalographic (EEG) signals, has emerged

in recent years thanks to advances in classi�cation algorithms and neuroscienti�c stud-

ies on personality. Few studies aiming at classifying personality traits from EEG signals

have been conducted and the classi�cation methods used have relied on machine learning

models that require manually extracted signal features for training. However, selecting

the most representative features is a di�cult challenge, particularly in emerging appli-

cation areas such as personality classi�cation, where feature-wise investigative studies

are lacking. Deep learning is a promising alternative in this regard. Since deep learn-

ing models can generally extract features automatically, a priori feature selection is not

required.

The aim of this work is to develop a deep learning-based personality classi�cation method

starting from EEG data acquired in response to emotional video stimuli. The public

dataset AMIGOS [1] is used, which provides both EEG traces and personality data of 38

subjects. In this study, the problem of automatic personality assessment is formulated as a

binary classi�cation task, dividing personality trait scores into a high and a low class, each

representing respectively a high and low expression of the speci�c trait. The deep learning

approach is chosen with the aim of exploiting its automatic feature extraction capabilities

as well as its potential for handling raw data. Speci�cally, a convolutional neural network

model called EEGNet [2], designed for EEG decoding, is selected for this study. The model

is fully validated in its hyperparameters and structure to provide a comprehensive practical

assessment for the problem at hand. Di�erent levels of pre-processing of the EEG data are

tested to evaluate the model's performance on noisy signals. EEGNet models are trained

separately for each personality trait and their classi�cation performance is evaluated. A

�nal examination of the automatically extracted features is performed to assess both the

capability of the model to select relevant features, and the possible correlation of these

features with personality.
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1| Background

This �rst introductory chapter aims to provide a comprehensive theoretical background

of all necessary topics related to the overall work of the present thesis. In particular, a

theoretical framework of personality is presented, followed by a minimal background on

the EEG and its main features, and a comparison between machine learning and deep

learning classi�cation with a focus on EEG applications. Finally, a brief overview of

related works on EEG-based personality classi�cation, is presented.

1.1. Personality theory

Personality represents those characteristics that are unique to an individual and that

distinguish them from others at a cognitive and behavioral level. Indeed, a personal-

ity pro�le can be identi�ed based on how a person behaves, reacts to situations, and

processes emotions. Individual personality characteristics are usually described in every-

day language using a set of adjectives (e.g., extroverted/introverted, organized/scattered,

emotional/stoic) that are, however, not strictly de�ned. In this context, researchers in the

last century have tried to �nd the fundamental and independent principles of personality

and to develop a personality model that could describe them successfully. Di�erent ap-

proaches to the study and de�nition of personality have been developed in literature, and

among the more relevant, the psychoanalytic perspective and the trait perspective can be

cited [3]. The common core premise of these approaches is that personality is based on

innate biological characteristics that are molded throughout the life course by a variety of

factors, such as family, cultural background, and other experiences. The resulting pattern

that characterizes an individual's behavior, cognition, and emotions forms personality

[3].

The psychoanalytic approach was born in the early twentieth century and holds popularity

to this day. The central theme of the psychoanalytic personality theory is the unconscious,

a force that guides human thought and behavior. The most notable theory belonging to

this framework was conceived by Sigmund Freud, credited as the founder of psychoanal-

ysis. He identi�ed three structures of personality in: i) the Id, an unconscious primitive

force of biological drives; ii) the Ego, a rational side of personality, and iii) the Superego,
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representing the societal and cultural rules that a person follows both consciously and

unconsciously [4]. Another major exponent of the psychoanalytic approach to personal-

ity is Carl Jung, who identi�ed personality in the Self and believed that conscious and

unconscious forces coexist in a complementary way. His major contribution to personal-

ity theory consists in the de�nition of psychological types, which are based on the three

dimensions of personality he identi�ed (i.e., extroversion/introversion, thinking/feeling,

and sensation/intuition). Indeed, the most popular categorization of personality types

outside of the psychology �eld is the Myers-Briggs Type Indicator (MBTI), a psychomet-

ric test developed in the 1990s that tries to identify Jung's psychological types through a

self-report questionnaire. MBTI has been used in research to investigate how the di�erent

personality types approach studying, decision making or how they deal with stress, among

other things [5].

The main limitation of psychoanalytic theories of personality is their poor veri�ability.

A self-report questionnaire, for instance, appears inconclusive since psychoanalysis, by

de�nition, assumes that the core of personality resides in the unconscious, which can't be

accessed by the individual [4]. Moreover, the belief that personality exists on a continuum

and that most people fall in the middle of a de�ned variable, rules out the existence

of strongly de�ned distinct types. The MBTI test, for instance, classi�es individuals

in sixteen unique personality types based on four dichotomies. Empirical evidence has

however shown how this kind of classi�cation is not constant over time, making the test

mostly unreliable [6]. For this reason, the trait approach has gained more relevance and

credibility.

The trait approach to personality is distinguished by empirically identifying the unique

traits characterizing personality, validating them scienti�cally and developing a measure

scale. Several personality psychologists have studied and developed their own list of per-

sonality traits. The systematized and empirical approach to personality research was

aided by the advent of factor analysis, a statistical procedure that examines the correla-

tion between variables to determine a lower number of unobserved underlying variables,

called factors, that could describe their variability. The �rst psychologist to apply factor

analysis was Cattell (1945), who was able to identify 16 primary factors of personality

and developed a questionnaire aimed at directly measuring these traits, the Sixteen Per-

sonality Factors Questionnaire (16 PF). Following Cattell, several studies by Fiske (1949),

Tupes and Christal (1961), Norman (1963), among others, demonstrated that �ve factors

were enough to account for the variability of personality [7].Then, several studies by Gold-

berg (1981), Digman and Takemoto-Chock (1981), McCrae and Costa (1985) validated

the �ve-factor proposal and demonstrated its robustness. This consistent body of research

converged into the Five-Factor Model (FFM) [7�9], the most widely accepted model of
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personality today.

1.1.1. Five Factor Model

The �ve dimensions of the FFM [7�9], better known as the Big Five, are Extraversion,

Agreeableness, Conscientiousness, Neuroticism or Emotional Stability, and Openness.

These speci�c naming conventions became predominant with the publication of the NEO

Personality Inventory (NEO-PI) by McCrae and Costa in 1985 for the assessment of the

traits [7]. A revised inventory, NEO-PI-R, published in 1992, was translated in several

languages and remains one of the most widely used methods of assessment. Since then,

several other Big Five inventories have been published, such as the Big-Five Inventory

(BFI), or the Big Five Marker Scales (BFMS) [10]. Each inventory develops its own ques-

tionnaire for the assessment of the traits. In general, a Big Five questionnaire consists of

a series of questions, or adjectives or de�nitions, that are rated on a scale based on how

well they apply to the person self-reporting their answers.

The �ve dimensions of the FFM, despite having been conceived as independent traits, are

not entirely uncorrelated. Some traits have a shared variance which leads to higher order

traits. Speci�cally, it's been found that Agreeableness, Conscientiousness and Emotional

Stability co-vary, forming the higher order trait of Stability. While the co-variation of

Extraversion and Openness forms the trait of Plasticity [11].

Similarly, the Big Five traits have a lower-order hierarchy. Each trait, or dimension, has

several facets. Facets are lower-level traits that account for the variance of the higher-

order trait. There is no consensus on the number of facets for each Big Five trait, but

each facet has been shown to have a unique genetic contribution [11]. It's important to

note that each inventory (e.g., the NEO-PI-R, the BFMS, and others) de�nes their own

facets for the �ve dimensions but a general overlap and correlation is observed between

the di�erent questionnaires.

An intermediate-level layer exists between the Big Five traits and their facets. It was

found that two genetic factors were necessary to explain the shared genetic variance

between facets within each of the Big Five traits [11]. These middle-level factors, referred

to as aspects, were also de�ned with factor analysis, which con�rmed that each Big Five

trait comprises two separable and correlated aspects. The hierarchical structure of the

Big Five model is depicted in Figure 1.1. A description of each Big Five trait, and their

relative aspects, is reported below [11�13].
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STABILITY PLASTICITY

Agreeableness Conscientiousness Neuroticism Extraversion Openness

Politeness
Industriousness

Orderliness
Withdrawal

Volatility
Enthusiasm Openness

IntellectAssertiveness
Compassion

Metatraits

Big Five

Aspects

Facets

Figure 1.1: The hierarchical structure of the Big Five with its metatraits and its aspects

and facets subtraits.

Extraversion encompasses traits related to sociability as well as to assertiveness and

warmth. Its two aspects are Assertiveness and Enthusiasm. Assertiveness encompasses

the facets related to the drive towards exciting and rewarding experiences, like gregari-

ousness, activity, and vivacity. Enthusiasm on the other hand is related to the enjoyment

of the experience, its main facet being the experience of positive emotions. Low scores of

this trait represent people that are more reserved, quiet, shy, and not expressive.

Agreeableness identi�es traits related to altruism and other prosocial traits. Its two

aspects are Compassion, which re�ects emotional attachment and concern for others, and

Politeness, which represents the suppression and avoidance of aggressive or norm-violating

impulses. Low scores of this trait represent people that are more cynical, egoistic, and

egocentric.

Conscientiousness re�ects the ability to inhibit impulsiveness and to follow strategies

and abstract goals successfully. This trait is highly linked to academic success, health,

and longevity because people who score highly are more likely to exhibit traits such as

self-discipline, duty, and competence. Its two aspects are Industriousness, which re�ects

the prioritization of nonimmediate goals, and Orderliness, which re�ects the avoidance

of entropy by following rules set by self or others. Low scores on this trait characterize

people who are impulsive and disorganized.

Neuroticism is linked to the tendency to experience negative emotions. Its two aspects

are Withdrawal and Volatility. Withdrawal consists in passive avoidance, which is the

tendency to inhibit behavior to avoid punishment and error, and is re�ected in the facets of

anxiety, depression, and self-consciousness. Volatility consists in active defensive responses

and is re�ected in the facets of anger, irritability, and impulsiveness. Some inventories,

such as the BFMS, use Emotional Stability instead of Neuroticism, as it is its direct

inverse. High scores in Neuroticism should re�ect low scores in Emotional Stability and

vice versa. An emotionally stable person is therefore someone who is calm, impassive,
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and self-assured.

Openness re�ects the tendency to e�ectively process abstract and perceptual information

and encompasses traits such as imagination, intellectual curiosity, and aesthetic interest.

Its two aspects are very distinct, with Intellect re�ecting cognitive engagement with ab-

stract information and ideas, and Openness to Experience re�ecting cognitive engagement

with sensory and perceptual information.

1.1.2. Neuroscience of personality

The Big Five model holds a primarily descriptive function and does not provide explana-

tions of the underlying causes of the �ve personality dimensions. The causal components

of personality are believed to have a largely biological basis that are not yet fully un-

derstood. Therefore, the study and identi�cation of the biological principles underlying

personality is an area of growing interest [12]. The premise of personality neuroscience

is that the core individual di�erences in cognition, emotion, or motivation depend on

consistent functional patterns in the brain [13]. The underlying systems are present in

every human brain, but what characterizes the expression of a trait are the parameters

varying from person to person [11]. The goal of personality neuroscience is therefore to

understand the brain systems and mechanisms associated with and the cause of person-

ality traits, and to identify related bio-markers able to capture di�erences in personality

among individuals.

For the investigation of brain structure and functioning, neuroscience relies on brain imag-

ing techniques. Neuroimaging techniques encompass methods such as magnetic resonance

imaging (MRI), that provides structural brain images, and functional MRI (fMRI) and

electroencephalography (EEG) that provide, instead, functional information, indicating,

for example, which brain regions are more or less active in speci�c conditions [13]. A

major issue in the neuroscience of personality �eld is the inconsistency in the �ndings to

date, which are due in large part to the very small number of samples in neuroimaging

research. In fact, brain imaging techniques are rather expensive, making the studies lim-

ited to few samples which lack statistical power and increase the number of false positive

cases [11].

Although there is still no consistent and well-supported evidence in neuroscience on per-

sonality, research in this �eld has increased in recent years and the quality of studies has

improved and some links to speci�c brain structure and function have found support.

In general, personality has been strongly associated to the frontal region, speci�cally the

prefrontal cortex (PFC), which is linked to cognitive functions such as attention, work-

ing memory and decision making, and to emotional, social, and perceptual processing
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[14]. Historically, this association was made following personality changes caused by trau-

matic brain injuries in the area [15]. Indeed, the di�erent types of acquired personality

disturbances can be intuitively linked to the Big Five traits. For instance, a social behav-

ioral disturbance due to damage in the orbitofrontal cortex that leads to disinhibition,

impulsivity, aggression, and sel�shness [16], can be connected to changes in the traits

of Extraversion (high) and Agreeableness (low). An executive function disturbance in

the ventrolateral and dorsolateral PFC that leads to impairments in organization, plan-

ning, and perseverance [16], can be linked to Conscientiousness (low). Other disturbances

that can be associated to speci�c personality traits are lack of empathy [16] (Agreeable-

ness, low), emotional dysregulation [15] (Emotional Stability, low), and hypo-emotionality

characterized by apathy and social withdrawal [15] (Extraversion, low).

The advent of neuroimaging techniques allowed neuroscientists to test some of these hy-

pothesized links between personality and brain areas. Research has proven the strong

correlation of all personality traits with the PFC. Speci�cally, correlations were found

between Extraversion and activity in the orbitofrontal cortex, Agreeableness and Consci-

entiousness and activity in the dorsolateral PFC, Emotional Stability and activity in the

medial prefrontal cortex [12], and between Openness and function of the PFC in general

[13].

Another area of interest is the amygdala, an a�ective region associated to Extraversion and

Emotional Stability, traits generally related to positive and negative emotions respectively

[12]. The temporal region involved in the interpretation of other individuals' actions

and intentions, is instead associated to Agreeableness [12] and to Emotional Stability

[17], traits that in�uence the way one perceives emotional expression. In Figure 1.2,

some brain regions whose structure (volume) was correlated to personality traits are

represented.
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Figure 1.2: Brain regions in which local volume was signi�cantly associated with (a)

Extraversion, (b) Conscientiousness, (c) Neuroticism, and (d) Agreeableness. Coordinates

indicate the locations of the brain slices [12].

1.2. Electroencephalography (EEG)

Electroencephalography (EEG) is the most widely used noninvasive technique for the

measurement of the electrical �elds produced by the brain. EEG picks up electrical

potential di�erences on the scalp using electrodes. The signal measured is the sum of tiny

excitatory post-synaptic potentials produced by pyramidal neurons in the cortical layers

of the brain [18]. Due to the speed of propagation of the electrical �elds, EEG has great

temporal resolution which allows the detection of events in the order of milliseconds.

However, EEG has low spatial resolution since electrodes placed on the scalp capture

electrical �elds that are smeared by the tissues between the sources and the sensors

[19].

The electrodes used to measure the EEG signal are noninvasive. They are placed on the
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scalp with a conductive bridge established between the electrodes and the skin surface.

The placement of the electrodes on the scalp, and their relative name, follows an interna-

tional convention that guarantees that methodology of acquisition is consistent. In Figure

1.3, the electrodes placements in the 10-10 system are depicted. The conventional names

for the electrodes represent an identifying letter based on the brain area they cover � F

for frontal lobe, C for central, P for parietal, T for temporal, and O for occipital. Even

numbered electrodes refer to placement on the right side of the head, while odd numbered

electrodes refer to those on the left. The number of electrodes used depends on the type

of headset used.

EEG has a wide frequency range that goes from 0.5 Hz to approximately 70 Hz but is

measurable up to 100 Hz. In this bandwidth �ve frequency ranges characteristic of brain

electrical activity can be identi�ed: i) the Delta band (0.5 - 4 Hz), associated to high

amplitude waves and most prominent during deep sleep, ii) the Theta band (4 - 8 Hz),

associated to drowsiness and memory formation and navigation, iii) the Alpha band (8

- 13 Hz), prominent in the occipital region during relaxed wakefulness phases, iv) the

Beta band (13 - 30 Hz), which is a low amplitude rhythm that characterizes various

mental states such as concentration, excitement, anxiety, and task engagement, and v)

the gamma band (30 - 100 Hz) generally associated to sensory perception and conscious

attention [19].

A critical step related to the analysis of EEG signals is related to the pre-processing phase,

which has the purpose of reducing the signal-to-noise ratio. Artifactual sources can be

instrumental, such as the power line noise or biological, such as muscle-electromyogram

activity, eye blinks, and eye movements [19]. Generally, the EEG processing pipeline is

complex and follows several steps aimed at cleaning the signal from artifacts, extract-

ing relevant features and eventually classifying them. Pre-processing usually includes

downsampling, bandpass �ltering to limit the band of the signal, removal of noisy chan-

nels, removal of ocular and muscular artifacts either manually or by using independent

component analysis [20], and re-referencing.

The pre-processing step is then followed by feature extraction. Generally, di�erent ap-

proaches can be undertaken: a frequency-based approach aimed at quantifying the relative

power of each frequency band, a time-based approach in case an event related response

is being investigated, or a time-frequency-based approach that relates the power in time

[18].
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Figure 1.3: Electrodes placement in the 10-10 system and their corresponding color-coded

brain area.

1.3. Deep Learning

Machine learning (ML) is a �eld that aims to develop algorithms able to learn from data

and experience. As such, it lends itself to solve the classi�cation problem requiring the

algorithm to learn a function that maps a vector to its prede�ned class label [21]. The

classi�cation task is usually approached through supervised learning which relies on a

labeled dataset. Speci�cally, each training example paired with its known classi�cation

label, is fed to the selected classi�cation model. The model's adjustable parameters,

called weights, are updated during the training of the learning algorithm. The updating

method is generally focused on the minimization of an objective error function based on

the prediction error (i.e., di�erence between the predicted label and the real label). The

minimization of the error function allows the model to learn the correct representation of

the data, and to predict new data reliably [21].

Several ML models can be used for classi�cation, such as K-nearest-neighbors [22] or

Support Vector Machines [23]. ML-based classi�cation has been successfully applied in

several �elds, for instance for brain-computer interface (BCI) classi�cation of EEG signals

[24]. The main characteristic of ML-based classi�cation (Figure 1.4A) is the feature

extraction stage, i.e., the extraction of representative features from the input training
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data. This stage depends on a priori knowledge of the type of data and the speci�c

application, needed to select the most useful features for the classi�cation. Selecting the

right features constitutes a challenge, especially for novel problems with little a priori

knowledge.

For this reason, the need for new automatic feature extraction techniques has emerged.

The models that can automatically extract features fall under the domain of Deep learning

(DL) (Figure 1.4B), a sub�eld of ML [21]. This new approach can potentially allow to learn

features on raw or minimally processed data, reducing the need for application-speci�c

processing and feature extraction strategies. Additionally, since the features learned

through DL methods are not dependent on a-priori knowledge and are not application-

speci�c, they might be more representative of the data and bring to better classi�cation

results. Just like for ML, several DL models exist, such as Convolutional Neural Net-

works [25], Recurrent Neural Networks [26], Autoencoders [27], Deep Belief Networks

[28], among others.

....

Classification OutputFeature extractionInput

Input Feature extraction + Classification

.....

Machine Learning

Deep Learning

Class
prediction

Output

Class
prediction

Figure 1.4: Machine learning vs. deep learning-based approach for a classi�cation task.

1.3.1. EEG Applications

DL methods have been successfully implemented in challenging image classi�cation prob-

lems where they have outperformed state-of-the-art ML methods relying on hand crafted

features, as well as in speech recognition, text classi�cation and other applications [29].

This success has led to the increasing interest in trying to apply the new �ndings in DL
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to EEG decoding. A recent review of DL-EEG applications [18] lists that DL has been

applied for the classi�cation of EEG data for sleep staging [30], visual evoked poten-

tials [2, 31], seizure detection [32], brain-computer interfaces (BCIs) [33], and emotion

recognition [34]. The absolute number of DL-EEG studies is still relatively small but

has exponentially increased in recent years re�ecting the growing interest in the �eld

[18].

Several DL models have been employed for EEG classi�cation tasks with their speci�c ar-

chitecture varying from study to study. Despite DL's main advantage being its automatic

feature learning capability, more than half of the DL-EEG classi�cation studies identi�ed

in [18] still used hand-crafted EEG features, mostly obtained in the frequency-domain.

For example, obtaining spectrograms, i.e., time series of topographically organized images

representing the voltage distributions across the �attened scalp surface, or the functional

connectivity maps from the raw signals, and feeding these high-level extracted features

to the network. The EEG signals pre-processing also varies, with most studies preferring

a full pre-processing rather than using raw data directly [18]. The studies that leveraged

the end-to-end learning (i.e., training feature extraction and classi�cation simultaneously)

capabilities of DL most often used CNN models [18, 30, 35]. In Figure 1.5, an example of

hand-crafted features, speci�cally functional connectivity features, used to train a convo-

lutional neural network for the classi�cation of brain disorders [36] is represented.

Convolution Pooling Healthy

Brain 
disorder

EEG time series Connectivity matrix Convolutional neural network

Figure 1.5: Example of DL-EEG application for the classi�cation of brain disorders by

means of connectivity features and convolutional neural network [36].

Despite the promising characteristics of DL methods, they are not always the best choice

for EEG-based classi�cation. One main limitation is related to the dataset dimension: DL

classi�ers, indeed, require a large amount of data to reach good performances, condition

not always satis�ed when dealing with EEG traces. Moreover, EEG signals, di�erently

from other kinds of inputs usually used in DL approaches (i.e., images, sound), are gener-

ally characterized by a low signal-to-noise ratio, characteristic that can a�ect classi�cation

performances [18]. Another fundamental limitation of DL models is the poor interpretabil-

ity of the extracted features. This presents a problem in applications where there is a

need to know the type of feature that contributes most to classi�cation.
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1.3.2. Convolutional Neural Networks

Convolutional neural networks (CNNs) are arti�cial neural networks that can learn local

non-linear features through convolutions and nonlinearities [25]. They represent higher-

level features as compositions of lower-level features, through multiple layers of processing.

CNNs are designed to take as input data in the form of arrays. Typically, the most

common type of data processed using CNNs are images, which are 2D arrays. Other data

that comes in the form of arrays are 1D signals and sequences like language, 2D audio

spectrograms and 3D videos and volumetric images [21]. The typical architecture of a

CNN is organized in sequential layers.

The fundamental layer of CNNs, is the convolutional layer, which maps its input to an

output through a convolution operator. This operation can be performed in one, two and

three dimensions (i.e., 1D, 2D, and 3D). As an example, supposing to have a 1D input

xn with N samples and the 1D convolution �lter hm of size M , then the output of the 1D

convolutional layer is given by Equation (1.1) [24].

y(n) =
M−1∑
i=0

hixn−1 ∀n = 0, . . . , N − 1 (1.1)

The output of convolutional layers is called feature map. Usually, by employing multiple

�lters in one convolutional layer, multiple feature maps, equal to the number of �lters,

are obtained. The convolutional layer is followed then by a linear or non-linear activation

layer, which control the values of the output, and possibly by pooling layers, which aggre-

gate a local patch of units into a single value by using an average or max operator [24]. For

classi�cation tasks CNNs are generally followed by a fully connected layer, which allows

to directly map the extracted features to an output, after the �attening of the feature

maps. An example of a CNN architecture is represented in Figure 1.6.

Convolution
+

Activation

Convolution
+

ActivationPoolingInput Flatten
Fully

connected

Feature maps

Figure 1.6: A basic CNN architecture for classi�cation.

CNNs are usually trained using a supervised learning strategy with the cost error function
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(Equation (1.2)) to be minimized.

ŵ = argmin
w

1

ℓ

∑
i

L(yi, fw(xi)) + Ω(w) (1.2)

where {xi, yi} are the training data, fw is the prediction function related to the CNN,

L(., .) is a loss function that measures any discrepancy between the true labels of xi and

the predicted labels fw(xi), and Ω is a regularization function for the weights w. The

most popular algorithm for the training of CNNs is stochastic gradient descent (SGD)

[24].

Design choices for EEG applications

CNNs are the most widely used DL models for EEG applications [18]. This can be at-

tributed to their capabilities of end-to-end learning and of exploiting hierarchical structure

on the data, as well as to their success and popularity in computer vision tasks [18]. CNN

design choices speci�cally built for EEG decoding, such as the input representation, dif-

ferent type of architectures and training strategies, have been investigated [18, 37].

The representation of the input EEG signal can take di�erent forms. For example, the

power spectra of the signal in time, the spectrogram, have been used as an input �image�

and then state-of-the-art CNN architectures from computer vision were directly employed

to try to decode �image� signal without any other adjustment. The optimal input repre-

sentation of EEG signals for CNNs, as stated in [37], is a 2D array with the number of

time steps as the width and the number of electrode channels as the height. This allows

to design the network with the proper layers, enabling the model to mimic the process of

extracting EEG features [18].

The layer design choices for the CNNs might force the model to process temporal and

spatial information separately. Convolutional layers can be set up such that they replicate

spatial �lters used to unmix the global spatial patterns or temporal �lters used to unmix

the local modulations in time [37]. As for the depth of the models, it can't be concluded

if deeper or shallower architectures perform better in EEG classi�cation tasks since the

performance is dependent on factors outside the architecture itself, such as the amount of

available training data, the hyperparameter tuning strategy and the computational power

[18].

Additional to the input and layer design choices, two di�erent training strategies were also

investigated [37]: trial-wise training, that uses whole trials as input with per-trial labels

as targets, and cropped training, that uses crops, that is, sliding windows within the trial

as input with per-crop labels as targets. The cropped training strategy naturally produces
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way more training samples for the network compared to the trial-wise one. Crops can

be of about 2 or 3 seconds, to a minimum of one crop per sample, which generates the

maximum possible number of samples. The cropping technique has the aim to force the

CNN into using features that are present in all crops of the trial, instead of using the

di�erences between single crops or the global temporal structure of the features in the

complete trial [37].

The aforementioned concepts were used in the design of EEGNet [2], a state-of-the-art

CNN-EEG model. In the �rst two convolutional layers of the model, the temporal and

spatial �ltering techniques usually applied to EEG signals, are mimicked, and applied

sequentially. EEGNet has been validated with comparable or better performance than

state-of-the-art approaches for brain-computer interface (BCI) paradigms. EEG features

of interest classi�ed for BCIs are either event related or oscillatory, such as visual-evoked

potentials, sensory motor rhythms, and movement-related cortical potentials [2]. As such,

EEGNet has not been tested on datasets in which the EEG features of interest are not

event related, or have no known speci�c frequency bands, as is the case for the classi�cation

of subject-based personality traits.

1.4. Personality classi�cation with EEG

Neuroscience has linked personality traits to brain function by means of brain imaging

techniques. Among brain imaging techniques, EEG is the most directly accessible measure

of electrical brain activity. Unlike other burdensome and costly neuroimaging acquisition

methods such as MRI and fMRI, EEG is rather inexpensive and portable, thanks to

the availability of new wearable devices. Due to these characteristics, it has become the

candidate technique for the development of an automatic personality assessment method.

Currently however, the studies that have tackled this task are few.

Individual di�erences in electrical brain activity can either be stable (i.e., situationally

independent) or appear in response to some stimuli (i.e., situationally dependent). To test

the feasibility of using EEG to measure personality, Korjus and colleagues [38] tried to clas-

sify each trait in two classes starting from resting-state EEG (i.e., situation-independent

condition). Speci�cally, they used power-based quantitative measures as predicting fea-

tures but did not obtain promising classi�cation results. The authors hypothesize that

personality may involve more situation-dependent brain activity [38] even though it must

be noted that more recent resting-state EEG-based personality studies [39�41] have found

correlations between personality traits and brain arousal or brain connectivity graph mea-

sures.

Indeed, most of the subsequent studies attempted to predict personality from EEG signals
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recorded in response to di�erent types of stimuli, rather than baseline recordings. The

majority of these studies [42�46] have focused on eliciting an a�ective response in the

subjects by displaying emotional videos extracted from movies, the same method usually

employed in emotion classi�cation research. This choice seems coherent with the fact

that some personality traits are intrinsically associated with the tendency to experience

positive or negative emotions [11]. The main hypothesis behind this kind of experimental

protocol is that the a�ective stimuli would produce a response in the recorded EEG signal

which can capture the situation-dependent characteristics of personality traits.

All the EEG-based personality classi�cation studies identi�ed [42�47] made use of hand-

crafted EEG features and ML methods for a binary classi�cation. Speci�cally, most

studies relied on frequency-based features, such as power spectral densities (PSDs) of the

characteristic EEG bands (Delta, Theta, Alpha, Beta, Gamma) [43�45, 47]. Others ex-

tracted statistics-based features [42] or connectivity-based features such as brain networks

[46]. The classi�cation was performed with classical ML models such as SVMs and kNNs

with varying performances. A couple of studies [43, 44] performed a regression instead,

i.e., assigning a continuous value to each trait instead of a class. Moreover, all studies

fully pre-processed the EEG data before extracting the features.

To the best of our knowledge, literature lacks studies on personality classi�cation from

EEG signals based on DL methods for end-to-end learning. Nevertheless, as seen in section

1.3.1, other studies demonstrated how DL applied on EEG signals can lead to promising

classi�cation results and, therefore, it could be reasonable to test its performances also

in the personality classi�cation �eld. Indeed, literature studies have shown how the neu-

rological bases of personality are still not completely understood, and the identi�cation

of meaningful EEG-based features able to discriminate di�erent traits is generally not

trivial. Therefore, the ability of DL of automatically extracting features, as well as the

possibility of using raw or minimally pre-processed EEG signals, could allow to overcome

these limitations.

1.5. Aim of thesis

It was seen how the need for an objective method for measuring personality stems from

the inherent subjectivity of self-report questionnaires currently used for assessment. The

core motivation behind the possibility of using neurophysiological signals for this task

lies in the neuroscienti�c studies linking personality to brain function. The fact that

there is still insu�cient well-supported evidence on the mechanisms underlying personality

makes the selection of EEG-based features for classi�cation di�cult. DL is a promising

alternative to a ML-based approach in this case as it can automatically extract the features
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necessary for classi�cation. DL models such as EEGNet have been successfully applied to

other types of EEG-based applications, mostly aimed at classifying event-related signal

components or oscillatory rhythms for BCI applications. To the best of our knowledge,

no known personality classi�cation studies have addressed the problem using DL models.

In addition to automatic feature extraction, DL also has the capability of handling raw

data, a feature that could greatly simplify EEG pre-processing pipelines.

The aim of the present thesis is twofold:

1. Develop an automatic personality classi�cation method using DL models.

This �rst objective is carried out by training CNN models separately for each trait,

with a binary classi�cation task. Each trait is classi�ed in a low or high expression

of the trait. The public AMIGOS dataset [1] is used as it collects both Big Five

personality data and EEG signals recorded in response to emotional video stimuli.

The model chosen for this task is EEGNet [2], a state-of-the-art CNN-EEG decoding

model. The optimal structure of the model is assessed by a full validation of its

hyperparameters. Three di�erent types of pre-processing are applied to the EEG

signals and tested to assess the ability of the model to handle noisy data. The

classi�cation performance is then evaluated using a cross-validation strategy.

2. Analyze the automatically extracted features and their relative contri-

bution to the prediction of each trait. This second objective is aimed at over-

coming the main limitation of DL applications, i.e., their poor interpretability. By

using visualization techniques or by simply looking at the outputs of hidden layers

in the trained models, the automatically extracted features can be investigated. In

this regard, the features extracted by the �rst convolutional layer, i.e., the learned

temporal �lters, are analyzed. A �rst level of analysis is made by deactivating com-

binations of �lters and evaluating the performance of the modi�ed model in order

to identify the features that contribute most to the prediction of personality. Then

these features are further analyzed with the aim of drawing parallels between the

features most relevant for the prediction of each of the �ve traits, and the �ndings

in personality neuroscience research.

The rest of this work is organized as follows:

� In Chapter 2, the AMIGOS dataset and the EEGNet model used are thoroughly de-

scribed. Then, the data processing and the hyperparameter tuning, model training

and evaluation strategies are presented. Finally, methods used for feature inter-

pretability, such as the visualization of �lters and algorithms used for assigning an

importance value to input features, are introduced.

� In Chapter 3, the results are presented divided in model validation, classi�cation,
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and feature interpretability sections. Speci�cally, in the model validation section

the results of the optimization of the hyperparameters and structure of the model

are presented. In the classi�cation section, the �nal performances of the trained

classi�ers are described and discussed. The feature interpretability section reports

some selected results regarding the learned �lters and hidden layer outputs, as well

as attribution maps assigning a prediction-contribution value to the input.

� In Chapter 4, the conclusions of this work are drawn, and the limitations and possible

feature developments are discussed.
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2.1. Dataset

For the present study, the public AMIGOS dataset was used. This dataset was acquired

for a research on a�ect, personality traits and mood on Individuals and GrOupS by means

of neuro-physiological signals [1]. A�ect was elicited with emotional clips extracted from

movies as stimuli, shown to the subjects both individually and in a group setting. The

group setting strategy was set up to mimic a real-life a�ective response, which is usually

experienced in a social context. Multiple neuro-physiological signals were acquired simul-

taneously during the visualization of emotional videos. Speci�cally, Electroencephalogra-

phy (EEG), Electrocardiogram (ECG) and Galvanic Skin Response (GSR) were recorded.

Moreover, frontal face and full body videos were acquired. The dataset also provides in-

formation about: i) participants' emotions, self-assessed by means of questionnaires, ii)

the levels of valence and arousal [48] attributable to each video, iii) participants' per-

sonality, assessed through the Big Five Marker Scales (BFMS) [10] questionnaire and,

iv) participants' mood, assessed by means of the Positive and Negative A�ect Schedules

(PANAS) questionnaire [49].

2.1.1. Experimental protocol

Forty healthy participants (male = 27, female = 13, aged 21-40 years, mean age = 28.3),

took part of two experimental settings. Both experiments elicited a�ect using emotional

videos as stimuli.

The �rst experiment, called the short videos experiment, was carried out in an individual

setting. Each participant watched 16 short videos of duration of less than 5 minutes,

presented in random order. Each trial started with a 5 second baseline acquisition pe-

riod during which a �xation cross was showed, followed by the visualization of a short

video. Finally, participants were asked to self-assess their a�ective state felt during the

video.

The second experiment, called thelong videos experiment, was carried out either in group

or in individual setting. Speci�cally, 17 participants watched 4 long videos, of duration
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greater than 14 minutes, individually, while 20 participants watched the videos in 5 groups

of 4 persons each. In order to maximize social interactions, individuals that already knew

each other were inserted in the same group. Videos were shown randomly, and each trial

consisted of initial self-assessment, followed by the display of two long videos, and a �nal

self-assessment.

Personality and mood related data was acquired after the long video experiment through

an online form implementing the BFMS [10] and PANAS [49] questionnaires, respec-

tively.

The videos selected as stimuli were chosen from movies aiming to elicit an emotional

response. They were annotated on the valance and arousal dimensions and classi�ed in

four classes corresponding to the four quadrants of the valence-arousal (VA) space [50]

(Figure 2.1): high valence-high arousal (HVHA), high valence-low arousal (HVLA), low

valance-high arousal (LVHA), and low valence-low arousal (LVLA).
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Figure 2.1: The four quadrants of the valence-arousal space and their associated emotions.

2.1.2. EEG signal

The EEG signals were recorded using the EPOC Neuroheadset (EMOTIV, U.S.A). This

wireless wearable sensor has 14 channels, an internal sampling rate of 2048 Hz downsam-

pled to 128 Hz, and a 14-bit resolution. The 14 EEG channels, positioned according to

the 10-10 system are: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4

(Figure 2.2).
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A B

Figure 2.2: A. Emotiv EPOC headset. B. Positions of the 14 electrodes according to the

10-10 system.

2.1.3. Emotion assessment

Self-assessment

Self-assessment of the subject's levels of valence, arousal, dominance, liking, familiarity,

and the basic emotions felt (i.e., neutral, disgust, happiness, surprise, anger, fear, and

sadness) was carried out both before the short and long videos experiments and right at

the end of the experimental protocol.

The levels of valence, arousal, and dominance were assessed using the Self-Assessment

Manikin (SAM) scale ranging from 1 to 9 [48]: the valence, representing the pleasantness

of a stimulus, ranged from �very negative� to �very positive� extremes; the arousal, repre-

senting the intensity of the provoked emotion, ranged from �very calm� to �very excited�;

and the dominance, representing the degree of control exerted by a stimulus, ranged from

�overwhelmed with emotions� to �in full control of emotions�. The liking and familiarity

were also assessed using a 1-9 scale. The participants were asked to select at least one or

as many basic emotions they felt before and after watching the videos.

External assessment

The recorded frontal videos of each participant during both experiments, were annotated

by three experts. All videos were split into 20 seconds clips resulting in 340 clips per

participant, for a total of 12580 clips. The annotators evaluated the clips in random

order, assigning a valence/arousal value on a continuous scale ranging from -1 (low va-

lence/arousal) to +1 (high valence/arousal).
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Big Five Marker Scale

Positive adjectives Negative adjectives

I. Extraversion

Extroverted Reserved
Warm-hearted Shy
Open Silent
Exuberant Introverted
Vivacious Closed o�

II. Agreeableness

Altruistic Egoistic
Agreeable Revengeful
Generous Cynical
Sympathetic Egocentric
Hospitable Suspicious

III. Conscientiousness

Precise Untidy
Orderly Inconstant
Diligent Imprecise
Methodical Careless
Conscientious Rash

IV. Emotional Stability

Self-assured Nervous
Serene Anxious
Calm Emotional
Impassive Susceptible
Jealous Touchy

V. Openness

Creative Super�cial
Imaginative Obtuse
Original
Ingenious
Poetic
Intuitive
Intelligent
Rebellious

Table 2.1: Big Five Marker Scale facets assigned to each personality trait. The left column

lists all the positive adjectives correlated with the given trait, while the right column lists

the adjectives negatively correlated with the trait.
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2.1.4. Personality assessment

The personality data was obtained through an online questionnaire �lled in by each par-

ticipant. The personality model used was the Big Five personality traits model while the

form used was the Big Five Marker Scale (BFMS) [10] questionnaire. Each participant

was asked to rate 50 descriptive adjectives with the prompt �I see myself as a

person�, assigning a value within a 7-point Likert scale, with 1 meaning they did not

identify with the given adjective, and 7 meaning they identi�ed strongly with the given

adjective. For each of the �ve personality traits (i.e., Extraversion, Agreeableness, Con-

scientiousness, Emotional Stability and Openness), ten descriptive adjectives are assigned

by the BFMS scale: 5 positive adjectives that characterize the given trait, and 5 negative

adjectives that do not characterize the given trait. The �nal score for each trait is ob-

tained by calculating the mean of all the adjectives' scores within the trait. Speci�cally,

the negative adjectives' scores are adjusted by inverting their values on the scale (e.g., a

negative adjective rated 7, becomes a 1 adjusted for the �nal score calculation, since it

contributes negatively to the overall trait score). In Table 2.1, the positive and negative

adjectives assigned to each trait by the BFMS questionnaire are reported.

The personality trait scores of the 38 subjects who �lled in the questionnaire were col-

lected. The mean, median and standard deviation (SD) values for each personality trait,

and their Spearman inter-correlations were calculated and are reported in Table 2.2. A sig-

ni�cant positive correlation was found between the traits Extraversion and Agreeableness

(0.42), Agreeableness and Conscientiousness (0.34), and Conscientiousness and Emotional

Stability (0.35). The distributions of the scores of each trait with their respective mean

and median values are plotted in Figure 2.3.

Mean Median SD (A) (C) (ES) (O)

Extraversion (E) 4.06 3.90 0.98 0.42 0.09 0.22 0.13
Agreeableness (A) 5.02 5.05 0.94 0.34 0.12 0.23
Conscientiousness (C) 4.88 5.00 0.94 0.35 -0.01
Emotional Stability (ES) 4.38 4.50 0.85 0.24
Openness (O) 4.86 4.90 0.66

Table 2.2: Mean, median, and SD of the �ve personality traits scores, and their Spearman

inter-correlation, for all 38 subjects. Signi�cant correlations (p-value < 0.05) are evidenced

in bold.
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Figure 2.3: Histograms of the scores of each personality trait with their respective mean

and median values.
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2.1.5. Mood assessment

Mood was assessed on the positive a�ect (PA) and negative a�ect (NA) schedules (PANAS)

model [49], using an online form. The questionnaire consisted of two 10-questions sets,

to assess the PA and NA respectively. Each participant rated their general feelings in

a 5-point intensity scale. The �nal score was obtained by calculating the mean of the

10-questions scores for the PA and NA respectively.

2.2. General processing and classi�cation pipeline

D2
D1

D3EEG
pre-processing

EEG
segmentationEEG

DATA

Personality
binarization

Split data

Model validation

3 s

PERSONALITY
DATA

threshold

(E)
(A)
(C)
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(O)

Label trace

EEG trace

N labeled
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N labeled
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0
0

1
1
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. . .
 .

. . .
 .

. . .
 .

1

EEGNet

. . .
 .

. . .
 .

. . .
 .

Model
optimization

Five-fold
cross-validation

TRAIN

VAL

TEST

Train

Evaluate

A

B

Figure 2.4: General pipeline for A. Data processing and B. Classi�cation task.

A binary classi�cation task is implemented as it's one of the simplest classi�cation formu-

lations for any predictive problem. To this end, from the data provided by the AMIGOS

dataset (Section 2.1), the personality trait scores and the recorded EEG signals for each
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participant were chosen. Speci�cally, only EEG data collected during the short videos

experiment was selected given that it was recorded in an individual setting and no other

interferences, such as social interactions, that represent an additional factor of analysis,

should be present. Additionally, out of the 40 subjects tested, 2 (subject 8 and 28) were

discarded due to missing personality data.

The general data processing and classi�cation pipeline is represented in Figure 2.4A and

Figure 2.4B, respectively. The given EEG and personality data were appropriately pro-

cessed as described in Section 2.3. The structure of the chosen model, EEGNet [2], is

described in Section 2.4. The model was optimized as described in Section 2.5 and trained

using a �ve-fold cross-validation strategy, as described in Section 2.6.

2.3. Data processing

2.3.1. EEG pre-processing

To test the classi�cation performances on di�erently pre-processed EEG data, three dif-

ferent datasets were generated (Figure 2.4A):

� Fully preprocessed dataset (D1) � A standard preprocessing pipeline was ap-

plied on EEG traces by means of the Matlab toolbox EEGLAB [51]. EEG data was

�rstly bandpass �ltered in the frequency range 0.1- 45 Hz. Then, after the removal

of noisy channels, independent component analysis (ICA) was performed in order

to identify and remove artifactual sources, such as eye blinks and muscular noise.

Finally, the removed channels were interpolated, and the signal was re-referenced to

the common average [52].

� Raw dataset (D2) � EEG signals were band-pass �ltered in the frequency range

0.1-45 Hz.

� Minimally preprocessed dataset (D3) � EEG data was bandpass �ltered be-

tween 4 and 45 Hz to remove the delta frequency range, which generally involves

most of the ocular artifacts.

Both dataset D2 and D3 were standardized by subtracting the mean and scaling to unit

variance, as it is common practice for ML and DL applications. All EEG related pro-

cessing, aside from the full preprocessing pipeline of D1, was carried out by means of

MNE-Python [53].
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2.3.2. EEG segmentation

Each EEG trial belonging to the three datasets refers to an EEG signal acquired during

the presentation of a single short video for a speci�c subject. To be able to train the

CNN model, all trials were segmented with sliding windows of 3 seconds length with no

overlap (Figure 2.4A). Each segmented window has therefore (14, 384) dimensions, where

14 is the number of channels and 384 is the number of samples, considering a sampling

rate of 128 Hz. This kind of cropped strategy has been found to be the most e�ective for

CNN-EEG applications as seen in section 1.3.2, since it allows to produce more training

samples and it forces the network to learn more generalized features instead of relying on

the di�erences between single-trials.

2.3.3. Personality binarization

To generate the binary labels for the classi�cation task, the mean value of the scores was

used as a separating threshold for each personality trait (Figure 2.3). Speci�cally, subjects

with personality scores below threshold were attributed to the class 0, representing a low

expression of the trait, while subjects presenting scores above threshold were associated to

the class 1, representing a high expression of the trait. Accordingly, each 3-second EEG

window was assigned a 0 or 1 label, depending on the participant the signal belonged

to, and the trait considered. In Table 2.3, the obtained counts, in terms of number of

participants, of the two classes for each trait are reported. Agreeableness is the only

perfectly balanced trait between the two binary classes, while the other traits present a

slight imbalance.

Class Personality Trait

Extraversion Agreeableness Conscientiousness Emotional Stability Openness

0 21 19 17 18 18
1 17 19 21 20 20

Table 2.3: Binary class counts for each personality trait.

2.4. EEGNet

EEGNet is a compact CNN architecture [2], whose structure is depicted in Figure 2.5.

Speci�cally, three blocks characterize the model. A �rst block implements temporal and

spatial �ltering of the input EEG traces through speci�c convolutional layers and �lters.

A second block is designed to optimally mix the previously extracted information, time
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coded, into feature maps. In the end, a third block implements the classi�cation stage of

the model.

A detailed description of EEGNet's architecture is reported in Table 2.4.

Temporal Convolution Depthwise Convolution Separable Convolution Flatten Dense

BLOCK 1 BLOCK 2 BLOCK 3

1@14 x 384 8@14 x 384 16@1 x 96 16@1 x 12
192

2

Nf = 8 Np = 8 N = 2D = 2

1 x L

C x 1

1 x M

...

Figure 2.5: High-level structure of EEGNet. Three blocks characterize the network: block

1 representing the temporal and spatial �ltering, block 2 representing the mixing of the

feature maps, and block 3 representing the classi�cation stage.

2.4.1. BLOCK 1

Block 1 (Figure 2.6) takes as an input a (C, S) vector, with C representing the number of

channels of the signal and S the number of time samples. For our data, each window has

respectively C = 14 channels and S = 384 samples (3 seconds window x 128 Hz sampling

rate). Then, this block is organized in the following way:

� A �rst 2D convolutional layer (Conv2D). Nf temporal �lters with size (1, L = 64)

are �tted. The size of the �lter is chosen equal to half the sampling rate of 128

Hz. The output of this layer has dimensions (14, 384, Nf ), i.e., Nf feature maps

representing the EEG windows obtained as output of the temporal �lters.

� A batch normalization layer (BatchNorm). The output of the previous layer is

standardized. This regularization is applied on a batch basis, i.e., the mean and

standard deviation used for the normalization are calculated on all the windows

de�ned by the batch size, and not on single inputs.

� A second convolutional layer (DepthWiseConv2D). Depthwise convolution �ts a

spatial �lter for each temporal feature map extracted in the previous layer, i.e.,

for each band extracted by the convolutional layer, the network now �ts D spatial

�lters. D is a depth parameter that speci�es the number of spatial �lters to be �tted

for each feature map. In total, the number of �lters for this layer are Nf (number

of feature maps) x D (number of spatial �lters per feature map). The size of the
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spatial �lters is (C = 14, 1), to cover all channels. The weights of the spatial �lters

are regularized with a maximum norm constraint of 1. Since the resulting feature

maps from this layer are only connected to their corresponding temporal feature

maps from the previous layer, DepthWise2D reduces the number of parameters to

be learned. The output of this layer reduces the number of channels C to 1, leading

to an output with dimension (1, 384, Nf ·D).

� A second batch normalization layer (BatchNorm).

� An activation layer (Activation). An exponential linear unit (ELU) function is

used to rescale the output of the previous layer. The ELU function (Equation 2.1)

performs an identity operation on the positive input values, and an exponential

operation on the negative input values.

ELU =

{
x if x > 0

ex − 1 if x < 0
(2.1)

� An average pooling layer (AveragePool2D) with size (1, 4). It reduces the number

of samples S by a factor of 4: (1, 96, Nf ·D).

� A dropout layer (Dropout). Dropout is used to reduce over�tting by randomly drop-

ping units during training. A unit corresponds to a neuron in the neural network.

However, in CNNs units are not de�ned and instead dropout consists in zeroing out

columns of weights in the �lters.

1 x 384 x 16

1 x 4

14 x 384 x 1 14 x 384 x 8 1 x 96 x 16

1 x L=64

C=14 x 1

Convolution

Pooling
Batch Normalization

2D

Nf = 8

Depth

Layers BLOCK 1

D = 2

ELU Activation

Dropout

Figure 2.6: Structure of Block 1, EEGNet.

2.4.2. BLOCK 2

Block 2 (Figure 2.7) takes as input the feature maps extracted by the depthwise convolu-

tion layer after their samples were reduced by a factor 4 through average pooling. Hence,

the input has shape (1, 384/4, Nf ·D). Block 2 is then organized as follows:

� A third convolutional layer (SeparableConv2D). Separable convolution performs �rst
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a depthwise convolution followed by a pointwise convolution. The depthwise convo-

lution acting on each input channel separately (in this case, the channels are NfD,

the output of the dropout layer) �ts �lters of size (1,M = 16). The depth parameter

in this case is the default of 1, thus one �lter is �tted for each feature map, for a

total of Np = Nf ·D �lters. The pointwise convolution mixes the output channels

by �tting Np(1, 1) �lters that iterate over every single point. The output of this

layer has dimensions (1, 96, Np). The number of output feature maps is equal to the

number of �tted pointwise �lters since every feature map represents a di�erent mix

of the previous feature maps extracted.

� A batch normalization layer (BatchNorm).

� An activation layer (Activation) with ELU activation function.

� An average pooling layer (AveragePool2D) with size (1, 8) is used to reduce the

number of samples S by a factor of 8: (1, 12, Np).

� A dropout (Dropout) layer.

� A �nal �atten (Flatten) layer. This layer reshapes the input by �attening its di-

mensions: from a (1, 12, Np) 3D tensor to a (1, Np) 1D vector.

1 x 96 x 16

1 x M=16

1 x 96 x 16 1 x 96 x 16

1 x 1

Convolution

Pooling

Batch Normalization Flatten

ELU Activation

Dropout

Depth

D = 1

Point

Layers BLOCK 2

Np = 16

1 x 8

1 x 12 x 16

Figure 2.7: Structure of Block 2, EEGNet.

2.4.3. BLOCK 3

Block 3 (Figure 2.8) is the �nal block which has the function of classi�cation. It takes as

input the �attened previous feature maps and is formed by a single layer:

� A dense layer (Dense) ends the model's structure. This layer connects the �attened

input to the N outputs, with N representing the number of classes in the classi�ca-

tion task. A Softmax activation function (Equation 2.2) is used on the N neurons

to calculate the probabilities of each class. The probabilities of all classes sum up

to 1.
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predictions = softmax (xi) =
exi∑N
j exj

(2.2)

Dense

Layers BLOCK 3

192

2

... Softmax
activation Predictions

Figure 2.8: Structure of Block 3, EEGNet.

2.5. Model validation

In order to �nd the optimal hyperparameters and the optimal structure of the EEGNet

model for the present classi�cation task, the EEG datasets D1, D2, and D3, and person-

ality dataset, were split into training, validation and test sets with a 70-15-15 proportion,

respectively (Figure 2.9). Five random strati�ed splits, one for each personality trait,

were implemented to keep a balanced representation of all the subjects within the sets,

i.e., to have for each subject, 70% of their trials into the train set, 15% in the validation

set and the remaining 15% of the trials into the test set.

Speci�cally, the training set is the dataset on which the model is trained, and it's used to

update the weights of the model. The validation set, on the other hand, is used to optimize

the model's hyperparameters by unbiasedly assessing the performance of the model during

training. In fact, the model does not use the validation data to update its weights, but

just to assess the performance on unseen data and accordingly tune the hyperparameters

during an initial tuning phase. A model is considered to be learning optimally, with no

under�tting or over�tting, if the performance on the training set is close to the one on

the validation set. The test set, �nally, is used to evaluate the performance of the �nal

trained classi�er on new unseen data.
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For the hyperparameter tuning (Section 2.5.1) and structure optimization (Section 2.5.2)

tasks, the optimization was performed on the training set and tested on the validation

set, with the test set held as a holdout set for the actual classi�cation task.

ALL DATA

Data partitioning

Train Validation Test

15%15%75%

Figure 2.9: Strati�ed data partitioning applied on all three EEG datasets, and for all

personality traits.

2.5.1. Hyperparameter tuning

Hyperparameters are those parameters that are set before training begins and are thus

not learned automatically by the network. For this reason, choosing the best performing

hyperparameters is crucial. For this tuning phase, the standard EEGNet structure with

Nf = 8 temporal �lters and D = 2 spatial �lters, was initially kept as reference, while

the general hyperparameters of the model were tuned to �nd the best performing set of

con�gurations.

The tuning was implemented by means of Keras-Tuner [54] using the hyperband algorithm

[55]. This latter results much faster than other hyperparameter tuning algorithms thanks

to a training resource allocation strategy implemented by using the previously proposed

successive halving algorithm. Successive halving �rst randomly chooses a subsample of

parameter con�gurations from the search space, it then trains these con�gurations for a

uniformly allocated amount of time, evaluating the performance of the model on each set

of parameters, and, �nally, it discards the bottom half of worse performing sets. This

procedure is repeated by allocating exponentially more training resources to the top half

of the best performing parameter sets, training them, and discarding half of the sets

again, until convergence to a single optimal parameter set is reached. However, successive

halving requires that the number of starting con�gurations and the maximum training

resource time to be �xed in advance, and therefore allocates a proportional resource at

each iteration. The main issue with this approach is the need of knowing a priori the

amount of resources and con�gurations that should be considered.

The hyperband algorithm (Figure 2.10) solves the trade-o� problem by repeating the
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Figure 2.10: Hyperband algorithm scheme for one single bracket. The search space de�nes

the possible values for each hyperparameter (HP). A maximum number of possible con-

�gurations nmax, i.e., sets of hyperparameters, and of total resource time R are de�ned.

The successive halving loop consists in training the given sets of hyperparameters for the

allocated time ri and keeping only the n/κ best performing sets at each iteration. At each

iteration, the number of sets is reduced by a factor κ while the allocated resource training

time ri is increased. At the end, one optimal set of hyperparameters is left.

successive halving procedure for s times, called brackets. Each bracket has a di�erent

resource allocation and number of con�gurations proportion, aimed at considering the

limit cases (a) many con�gurations and small training time, and (b) few con�gurations

and high training time. Given the global training resources R, representing a maximum

allocated training time, and the proportion κ of con�gurations to be discarded in each

successive halving round, the number of brackets considered is (smax + 1) with smax =

logκ R. The algorithm loops through the brackets s = [smax, smax−1, . . . , 0], each bracket

being characterized by its own starting resource time rs = Rκ−s and number of starting

con�gurations ns = (smax + 1) · (κs/(s+ 1)). Successive halving operates in each bracket

by discarding the worst performing con�gurations and keeping the ni

κ
best performing

ones until one optimal con�guration is reached. The best performing parameter set in the
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last bracket is reported as the optimal one. A schematic representation of the algorithm

on a single bracket can be seen in Figure 2.10.

Hyperparameter Search space Sampling

Dropout
min = 0.1
max = 0.7

step=0.1

Dropout Type "Dropout", "SpatialDropout2D" choice

Learning rate
min = 10e− 3
max = 10e− 5

logarithmic

Batch size 16, 32, 64, 128, 256, 512 no sampling, grid search

Table 2.5: The search space and sampling method de�ned for each hyperparameter.

Speci�cally, in the Keras-Tuner implementation of the algorithm, the global resources R

are de�ned as the maximum number of epochs, with an epoch corresponding to one full

cycle through the training dataset. The maximum number of epochs chosen was R = 1000,

while the reduction factor for the successive halving loop was left to the default of κ = 3.

The objective chosen for the training was the maximization of validation accuracy. All

three datasets (i.e., D1, D2 and D3) were used for the tuning phase, while the personality

trait chosen was Agreeableness because of its perfectly balanced binary classes. The

hyperparameters were optimized on the training set and validated on the validation set.

The hyperparameters chosen for optimization and their search space are reported in Table

2.5 and were the following:

� Dropout rate. Dropout consists in randomly dropping units of the network during

training by setting the input of the units to 0, to reduce over�tting and improve

regularization [56]. In a CNN this corresponds to zeroing out random weights in

the �lters. The dropout rate represents the fraction of units to be dropped during

training. EEGNet default dropout rate is of 0.5. For the dropout search space,

values between 0 and 0.7, with a step of 0.1, were evaluated.

� Dropout type. It identi�es the choice between the two possible dropout layers

implemented by EEGNet: the classic �Dropout� and �SpatialDropout2D�. �Spatial-

Dropout2D�, unlike the regular dropout, drops entire feature maps at once, and not

just a subset of weights.

� Learning rate. It scales the magnitude of weight updates. For the learning rate

search space, values between 10e−3 and 10e−5 with log sampling were considered.

For the batch size, i.e., the number of samples (number of 3-second EEG windows) to

pass to the network at once, a grid search was performed after the hyperparameter tuning
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with the hyperband algorithm. Speci�cally, a grid search consists in looping through all

combinations de�ned by the search space and selecting the best performing one. It is

an exhaustive but time-consuming search algorithm, optimal for small search spaces.

For the batch size, a discrete search space of 16, 32, 128, 256, and 512 samples was

considered.

2.5.2. Structure optimization

To test the optimal structure of EEGNet on the training and validation sets, the hyper-

band algorithm was applied to the Nf temporal �lters and D spatial �lters parameters

after �xing the hyperparameters to the optimal values identi�ed with the procedure de-

scribed in Section 2.5.1. The search space of the �lters was de�ned as follows:

� Temporal �lters. Nf values ranging from 2 to 12.

� Spatial �lters. D values ranging from 1 to 8.

Afterwards, a simple grid search was performed by �xing the spatial �lters D = 2 and

testing the performance of the model by varying the temporal �lters Nf from 1 to 12.

This choice was made to compare the performance of the standard structure with other

similar structures by limiting the number of spatial �lters. This limitation is also useful

for constraining the number of trainable parameters, and thus training time, and to ease

subsequent interpretation of the learned features.

2.6. Training strategy

For the classi�cation task, the standard structure of EEGNet, with Nf = 8 and D = 2

�lters, was initially chosen and compiled with the optimal hyperparameters found as

described Section 2.5.1. The model was trained using the labeled EEG 3-second windows

as inputs while a cross-validation strategy for assessing the performance and for splitting

the dataset was performed. Speci�cally, a window-wise classi�cation was implemented.

The model classi�es single EEG windows, and its performance is evaluated based on how

well it can predict the class of the windows. For this approach, a �ve-fold cross-validation

training was used as explained in Section 2.6.1.

All models were trained on an NVIDIA GeForce RTX 2070 GPU in Tensor�ow [43] for

1000 epochs with an early stopping rule with patience of 20 epochs on the validation

loss. The model weights that produced the best validation accuracy were saved and those

weights were used to evaluate the models on the test set. Each EEGNet model was

�t using the Adam optimizer [57] with default parameters (i.e., �rst and second order

moments equal to 0.9 and to 0.999, respectively). This optimizer looks for the best model
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parameters by minimizing the categorical cross-entropy loss function (Equation 2.3) which

calculates the cross-entropy between the predicted classes y and the true target classes t.

For a binary classi�cation, it is equivalent to the binary cross-entropy loss:

Cross− entropy = L (y, t) = −
2∑

i=1

ti lnyi = −ti log (yi)− (1− ti) log (1− yi) (2.3)

2.6.1. Five-fold cross validation

For the window-wise classi�cation, EEGNet models were trained for each personality trait

and for each EEG dataset, using the optimal parameters found during the tuning phase.

The goal of this classi�cation strategy was to obtain a robust classi�er able to predict

single EEG windows.

ALL DATA

Data partitioning

Train

Train

k = 1

k = 2

k = 3

k = 4

k = 5

Validation Test

Test

Final
Model
Evaluation

validation train train train train

validationtrain train train train

validationtraintrain train train

validationtrain traintrain train

validationtrain train traintrain

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

15%15%75%

Figure 2.11: Five-fold cross-validation scheme.

For the �nal training, a �ve-fold strati�ed cross-validation strategy was employed. The

training and validation sets, obtained as explained in Section 2.5, were combined to form

the training set while the test set was kept aside for the �nal evaluation.
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Five-fold cross-validation is a training technique used to test the performance of a model

over all training data. It performs a more reliable evaluation of the model performance

since it uses all the available data for both training and testing without wasting informa-

tion. Instead of arbitrarily splitting the data into training, validation, and test sets, with

�ve-fold cross-validation the training data is split randomly into �ve equally sized subsets

with four subsets used for training, and the last holdout subset used for testing. This

procedure is repeated for �ve iterations, and in this way all the training set is used to train

and test the model. At the end of each iteration, the model is evaluated on the test set

with the metric of choice. At the end of training, every model will have �ve di�erent test

evaluation results whose average should be a good representation of the real performance

of the model over the whole range of training data.

Strati�ed �ve-fold cross-validation performs a strati�ed, instead of a random, split of the

data into the subsets. In this way, the target class ratio is maintained across all subsets

for all iterations. A representative scheme of �ve-fold cross-validation strategy is showed

in Figure 2.11.

2.6.2. Evaluation metrics

The performance of the models was evaluated in terms of accuracy (Acc) and F1 score

(F1) metrics. A classi�cation algorithm usually yields an error due to the discrepancy

between the predicted class and the real class. This error takes two forms: a false positive

(FP) case when a predicted positive class is in reality negative, and a false negative (FN)

case when a predicted negative class is in reality positive. True positives (TP) and true

negatives (TN) on the other hand represent correct predictions of the positive and negative

classes, respectively. A confusion matrix is an N x N matrix, where N is the number of

predicted classes, representing the FP, FN, TP, and TN counts and it's used to evaluate

the performance of a classi�cation model. The confusion matrix for a binary classi�cation

problem is pictured in Figure 2.12.

Starting from the confusion matrix, several metrics can be calculated. Accuracy represents

the proportion of correct classi�cations and is calculated as:

Acc =
TP + TN

TP + TN + FP + FN
(2.4)

Accuracy does not consider the prediction capabilities of the model for each class, but

lumps together all correct predictions. It can easily be seen how this can yield misleading

results when the dataset is unbalanced, i.e., when one of the two classes weighs more than

the other. For this reason, despite accuracy being the most used classi�cation performance
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Figure 2.12: Confusion matrix for binary classi�cation. The predicted classes counts and

the actual classes counts are represented respectively on the columns and rows of the

matrix.

metric, other metrics are usually preferred. To get a better understanding of the model's

performance over both classes, the F1 score metric is used:

F1 = 2 · precision · sensitivity
precision+ sensitivity

=
2TP

2TP + FP + FN
(2.5)

where precision (Equation 2.6) represents the fraction of positive samples (TP) correctly

classi�ed over all positive predictions (TP + FP), while sensitivity (or recall) (Equa-

tion 2.7) represents the fraction of positive samples (TP) correctly classi�ed over actual

positives (TP + FN):

precision =
TP

TP + FP
(2.6)

sensitivity =
TP

TP + FN
(2.7)

For the window-wise classi�cation, the metrics were obtained on the single window clas-

si�cations. Class 1 was used as the �positive label� class in all cases. Therefore, a window

classi�ed correctly as class 1, was considered a TP, a window classi�ed incorrectly as class

1, was considered an FP, and so on. The metrics were then calculated on all the predic-

tions of the hold-out test set as obtained in the �ve-fold cross-validation data partitioning

strategy (Figure 2.11).
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2.7. Feature interpretability

2.7.1. Visualization of learned �lters

The �lters learned by EEGNet, i.e., the weights assigned to each �lter kernel, can be

extracted and analyzed. For this analysis, the EEGNet structure with Nf = 4 temporal

�lters and D = 2 spatial ones was chosen for an easier interpretation of the extracted

features.

INPUT
input signal (C = 14, S = 384)

Nf TEMPORAL FILTERS
learned filters (1, L = 64)

Nf FEATURE MAPS
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Figure 2.13: Analysis of temporal �lters. A. The �rst convolutional layer of EEGNet:

the (C = 14, S = 384) input window, the Nf (pictured 8) temporal �lters with size (1,

L = 64) and one output feature map, speci�cally the one obtained from the convolution

of the input with �lter number 7. B. The frequency analysis of the input and output

signals. The PSD amplitude before and after �ltering and the topographic maps of the

four characteristic bands in the 4-45 Hz range (Theta, Alpha, Beta, Gamma) are displayed.

The amplitude response of �lter 7 is plotted in the time and frequency domain. In this

example, �lter 7 is a gamma high-pass �lter and the PSD of the output shows that all

frequencies below the cuto� of around 28 Hz, are �ltered out.



2| Materials and methods 43

Temporal �lters

For the Nf temporal �lters of the �rst convolutional layer, a frequency-based analysis was

carried out. Since the temporal �lters extract speci�c frequency bands from the signal,

the power spectral density (PSD) of the input and output of the layer was calculated and

represented both in terms of amplitude and as band speci�c (Theta, Alpha, Beta, and

Gamma bands) topographic maps over the scalp. Both the input and output have shape

(C = 14, S = 384) which lends itself to this speci�c type of channel-based topographic

analysis (note that the output maintains the shape of the input due to padding). The Nf

�lters with size (1, L = 64) were considered as �nite impulse response (FIR) �lters and

their amplitude response was plotted both in the time and frequency-domain. Speci�cally,

in the time domain, the �lter has a length of 0.5 seconds since its kernel size (L = 64) is

half that of the sampling frequency of 128 Hz, while in the frequency domain, the covered

range is limited to 45 Hz, as the last useful frequency due to the pre-processing bandpass

�ltering. An example analysis of the �rst convolutional layer and the learned temporal

�lters, is illustrated in Figure 2.13.

Spatial �lters

For the spatial �lters, D spatial �lters for each Nfi feature map of size (C = 14, 1),

topographic maps were plotted to locate the electrodes characterizing the speci�c band

extracted by the Nfi temporal �lter. An example of the spatial topographies of two spatial

�lters characterizing the same Nfi feature map is shown in Figure 2.14.

Figure 2.14: Example of two spatial �lters associated to one temporal �lter.

2.7.2. Deactivation of learned �lters

To gather the importance for the prediction of each single temporal �lter, the performance

of the models was evaluated on the test set after deactivating each temporal �lter one by

one. Speci�cally, the models considered was the EEGNet-4,2 con�guration. The resulting
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performance is expected to be lower than the full model one. The deactivated �lters

that cause a higher decay in performance, are the ones carrying more information for the

classi�cation task, and are considered as relevant. Analyzing then the frequency response

of the more relevant temporal �lters, ideally it could be inferred which of the EEG bands

are more relevant for the classi�cation of each personality trait.

2.7.3. Attribution methods

Attribution algorithms aim at explaining how a neural network makes predictions by

assigning an attribution, that is, a relevance or contribution, value to each element of

the input [58]. Considering the input x with shape (14, 384), representing a 3-second

EEG segment, the trained network outputs yN (x) = [y1 (x) , y2 (x)] predictions, i.e., one

prediction for each binary class. The attribution algorithm determines the contribution

R = [R1, . . . , RCxS] that each input feature xi has on the output. If we imagine an image

with (14 × 384) pixels as the input, then each pixel will be assigned a contribution value

based on how much it in�uences the output prediction. In the same way, for our input

signal, (14 × 384) attribution values are assigned.

Rearranging the attribution values in the shape of the input, an attribution map is created,

and it can be best displayed as a heatmap. In Figure 2.15, an attribution map of the input

is represented. The attribution maps visually highlight which EEG channels contribute

positively (red color) or negatively (blue color) to the prediction.

Two main approaches to the attribution problem exist: a perturbation-based and a

backpropagation-based approach [58]. Perturbation-based methods make perturbations

to features of the input, by masking or removing them, and run a forward pass simulation

to observe the impact that perturbation has on the output. The di�erence between the

non-perturbed output and the perturbed output represents the attribution value of the in-

put features altered. Perturbation-based methods are however computationally expensive

since they require a new forward propagation for each perturbation. Backpropagation-

based methods compute the attributions for all input features in a single forward-backward

pass and are generally faster.

DeepLIFT [59] is a backpropagation-based attribution algorithm. It backpropagates attri-

butions from the output to every unit i until it reaches the input. Each unit i is assigned

an attribution that depends on the relative di�erence between that same unit activated at

the original network with input x and at the modi�ed network with reference input x̄ = 0.

The general rule for determining the input attributions R(x) (Equation 2.8) [58].

Ri (x) = (xi − x̄i) ·
∂gyN (x)

∂xi

, g =
f (z)− f(z̄)

z − z̄
(2.8)
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A

B

Figure 2.15: Attribution map visualization. A. Example of an attribution map of the

(14 channels, 384 samples) input obtained with the DeepLIFT algorithm. Red color

highlights the input channels that contribute positively to the prediction, while blue color

highlights the input channels that contribute negatively instead. B. The same attribution

map represented topographically on the scalp, averaged in time, and the corresponding

Emotiv EPOC electrode layout.

i.e., DeepLIFT is equivalent to a feature-wise product between the di�erence of the input

and reference input (xi − x̄i) and the partial derivative ∂gyN (x)
∂xi

. With g = f(z)−f(z̄)
z−z̄

being

the ratio between the di�erence in output and the di�erence in input at each nonlinearity

f(), for a network fed with the real input x and the reference input x̄.

For each EEGNet model, trained to classify a speci�c trait,the input attributions were

computed with the DeepLIFT algorithm implemented in the Deep Explain [58] framework

in Python. Characteristic attribution maps were then obtained and plotted as spatial to-

pographies, namely a general attribution map for the speci�c trait, obtained by averaging

the attribution maps over all subjects and in time. The obtained attribution maps were

then visually inspected to determine which channels contributed positively or negatively

to the prediction.
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3| Results and discussion

In this chapter, the results obtained are reported and discussed. For the classi�cation task

and the EEGNet model validation, the hyperparameter tuning results are presented in

section 3.1, the while the �ve-fold cross-validation classi�cation performance is reported in

section 3.2. The feature interpretation and visualization results are reported in section 3.3.

To refer concisely to the structure of EEGNet considered, the notation EEGNet−Nf ,D

will be used, where Nf is the number of temporal �lters and D is the number of spatial

�lters.

3.1. Model validation

3.1.1. Hyperparameter tuning

For the validation of the hyperparameters of the standard EEGNet-8,2 structure, all

models were trained using the Agreeableness labels as it's the only trait with balanced

class counts among the subjects.

Optimization of dropout, dropout type and learning rate

An initial tuning was performed on the hyperparameters dropout, dropout type, and

learning rate for all three datasets D1, D2, and D3. A total of 2072 hyperparameter

combinations, or trials, were tested by the tuning algorithm for each dataset and their

performance was evaluated by the validation set accuracy metric. The top 10 best per-

forming trials are reported in Table 3.1.

For the dropout parameter, its values were varied between 0.1 and 0.7, with a step of 0.1.

It can be noted that, for all datasets, the top 10 trials were obtained for low dropout

values in the range of 0.1-0.4, with 0.1 being the most frequently selected one. Indeed, by

expanding the number of trials considered and counting the number of selections made by

the tuning algorithm for each dropout value evaluated, the same pattern is observed. In

Figure 3.1, the counts of the dropout values selected in the top 100 best performing trials

are reported. The frequency of selection of 0.1 dropout value is almost the double of the

one observed for 0.2, 0.3, and 0.4. Dropout values of 0.5 and 0.6 are selected less than 10
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D1: Preprocessed

Dropout Dropout Type Learning Rate Accuracy

0.1 SpatialDropout2D 0.00034 0.7771
0.3 Dropout 0.00085 0.7751
0.3 Dropout 0.00052 0.7568
0.4 Dropout 0.00050 0.7568
0.1 Dropout 0.00022 0.7536
0.1 SpatialDropout2D 0.00072 0.7529
0.1 SpatialDropout2D 0.00035 0.7445
0.2 SpatialDropout2D 0.00023 0.7432
0.2 SpatialDropout2D 0.00056 0.7425
0.1 SpatialDropout2D 0.00031 0.7425

D2: Bandpass 1 - 45 Hz

Dropout Dropout Type Learning Rate Accuracy

0.1 Dropout 0.00029 0.9257
0.1 Dropout 0.00029 0.9195
0.3 Dropout 0.00049 0.9167
0.4 Dropout 0.00076 0.9127
0.2 Dropout 0.00081 0.9099
0.1 Dropout 0.00069 0.9099
0.1 Dropout 0.00058 0.9099
0.2 Dropout 0.00081 0.9071
0.1 Dropout 0.00069 0.9065
0.1 Dropout 0.00058 0.9048

D3: Bandpass 4 - 45 Hz

Dropout Dropout Type Learning Rate Accuracy

0.2 Dropout 0.00086 0.9606
0.1 Dropout 0.00044 0.9543
0.3 Dropout 0.00096 0.9465
0.1 Dropout 0.00100 0.9460
0.1 Dropout 0.00048 0.9450
0.1 Dropout 0.00075 0.9431
0.1 Dropout 0.00055 0.9416
0.2 Dropout 0.00034 0.9411
0.4 Dropout 0.00076 0.9411
0.4 Dropout 0.00076 0.9411

Table 3.1: Top 10 best performing hyperparameter trials on the datasets D1, D2, and D3

for dropout, dropout type, and learning rate.
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times, while the dropout value of 0.7 was never selected. As for the dropout-dependent

performance, in Figure 3.2 the average accuracy and the corresponding standard deviation

for all dropout values on all trials is shown. The highest average accuracy on all three

datasets is obtained for the dropout value of 0.1. The average accuracy decreases as the

dropout value increases, with an exception found for dataset D3, where the dropout value

of 0.3 has an average better performance than the dropout value of 0.2.

Figure 3.1: Dropout counts in the top 100 best performing trials on all datasets.

For the dropout type, it can be observed that for datasets D2 and D3, the standard

�Dropout� layer is selected unanimously, while for dataset D1, the �SpatialDropout2D�

layer is selected about half of the times. Indeed, in the top 100 best forming trials for D1,

the �Dropout� layer is selected 54 times and the �SpatialDropout2D� layer is selected 46

times.

Concerning the learning rate, it assumes several di�erent values over the trials, but always

in the order of 10e − 5. In the top 100 best performing trials, an average learning rate

of 0.00051 is obtained for dataset D1, 0.00050 for dataset D2, and 0.00069 for dataset

D3. The distributions of the learning rate selections made in the top 100 best performing

trials and their mean values is represented in the boxplot in Figure 3.3.

Finally, it can be noted that the accuracy performance on dataset D3 is higher than the

one on datasets D1 and D3 for all hyperparameter combinations (Figure 3.2).

The �nal hyperparameter con�guration chosen for EEGNet-8,2 is reported in Table 3.2.
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Figure 3.2: Average accuracy and standard deviation (black bars) for the di�erent dropout

rates for all 2072 trials.

Speci�cally for the dropout, a value of 0.1 was chosen since it resulted the best overall

value for all three datasets, in terms of model performances. Concerning the dropout

type, the �Dropout� layer was selected, since it was unanimously selected for dataset D2

and D3 and represented more than 50% of selections in the top 100 best trials for dataset

D1. For the learning rate, an average of 0.00057 is obtained for the top 100 trails over

all three datasets. Therefore, a learning rate of 0.0001 that maintains the same scale was

chosen for conventional reasons.

EEGNet-8,2

Dropout 0.1
Dropout Type Dropout
Learning Rate 0.0001

Table 3.2: Final hyperparameter con�guration selected for EEGNet-8,2.

Optimization of batch size

The batch size was optimized on D3 since it's the dataset returning the best accuracy

performance with the selected hyperparameters (Table 3.2) for EEGNet-8,2. A qualitative
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Figure 3.3: Distribution of the learning rate values chosen in the top 100 best performing

trials on all datasets and their respective means.

rather than quantitative evaluation was carried out by comparing the accuracy and loss

training and validation learning curves, for batch sizes of 16, 32, 64, 128, 256, and 512

sample windows, with the model trained for 1000 epochs (Figure 3.4).

Usually, low batch sizes are selected with low learning rates in order to get the best per-

formance out of model [60]. Here, having the learning rate already �xed at 0.0001, which

is relatively low, a lower batch size is expected to give a better classi�cation performance.

Indeed, as can be seen by the accuracy learning curves in Figure 3.4, batch sizes of 16,

32, and 64 present higher accuracy. However, from the same learning curves, both for the

accuracy and loss, it can be observed that the smaller batch sizes present also a rather

noisy behavior, while higher batch sizes of 128, 256, and 512 samples converge to a more

stable model. The higher batch sizes, presenting less noise in the training and validation,

have lower variance in classi�cation accuracy and loss compared to lower batch sizes.

This behavior is most likely due to the fact that the EEG signals in D3 are noisy, and the

sample windows are small. Therefore, if the model updates its weights on a low batch of

windows, it's most likely to pick up noise, while if it updates its weights on a high batch

of windows, the present noise gets canceled out thanks to the high sample size.

A batch size of 256 was chosen since it is both stable and achieves better accuracy than

the model trained with a batch size of 512. This choice is motivated by the fact that

both datasets D2 and D3 are composed of either raw or minimally pre-processed signals,

making the windows noisy and higher batch sizes more stable.
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Figure 3.4: Learning curves of the EEGNet-8,2 model trained with 16, 32, 64, 128, 256,

and 512 batch size on the Agreeableness trait of dataset D3.

3.1.2. Validation of EEGNet structures

Optimization of number of �lters

To evaluate the performance of the model, other EEGNet-Nf , D structures with Nf ̸= 8

temporal �lters and D ̸= 2 spatial �lters, were evaluated. In Table 3.3, the top 5 best
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performing trials from a hyperparameter search among Nf values ranging from 2 to 12

and D ranging from 1 to 8, while keeping a �xed dropout rate of 0.1, learning rate of

0.0001 and batch size of 256, are reported.

It can be observed that the best performing trials are obtained by using the highest

number of �lters available in the search space, i.e., Nf = 12 and D = 8, as evidenced in

bold in Table 3.3. This result is expected since increasing the number of �lters increases

the number of trainable parameters and thus, the complexity of the model and its ability

to �t the input data. However, increasing the number of parameters also increases the

computational cost and makes a possible interpretability of the extracted features more

di�cult. Therefore, a reasonable trade-o� between number of �lters/parameters and

performance should be identi�ed. In Table 3.4, a comparison among four di�erent EEGNet

structures, and their corresponding number of trainable parameters is reported.

D1 D2 D3

Nf D Accuracy Nf D Accuracy Nf D Accuracy

4 6 0.739 12 8 0.944 9 8 0.961
12 7 0.736 12 8 0.939 9 7 0.955
9 5 0.734 12 8 0.938 8 6 0.953
7 3 0.723 10 6 0.930 12 8 0.948
12 5 0.716 12 3 0.918 12 4 0.942

Table 3.3: Top 10 best performing hyperparameter trials on the datasets D1, D2, and D3

for the number of �lters Nf and D.

Structure # Parameters

EEGNet-4,2 794
EEGNet-8,2 1714
EEGNet-9,8 9956
EEGNet-12,8 15578

Table 3.4: Number of trainable parameters for EEGNet-4,2, EEGNet-8,2, EEGNet-9,8

and EEGNet-12,8 structures.

Optimization of number of temporal �lters

To evaluate the model performances in function of the number of temporal �lters by �xing

the number of spatial �lters D = 2, Nf was varied from 1 to 12, with the hyperparameters
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set as in Table 3.2. All models were trained on dataset D3 as it is the dataset returning

the best classi�cation performance. The number of spatial �lters is limited to 2 arbitrar-

ily, since it is both the optimal standard number of �lters for EEGNet, and it limits the

number of parameters a priori, easing the interpretability. In Figure 3.5, the performance

of each model is reported. It can be noted that for Nf values higher than 4 the perfor-

mance tends to improve as the number of temporal �lters is increased reaching almost

a plateau. Therefore, since the performance of EEGNet with number of temporal �lters

higher than 8 does not improve drastically, the standard EEGNet-8,2 model, on which

the hyperparameters were optimized, was chosen for the �nal classi�cation analysis.

Figure 3.5: EEGNet-Nf , 2 models performance in terms of F1 score.

3.2. Classi�cation

For the classi�cation, the results of the �ve-fold cross-validation on the test set for

EEGNet-8,2 with the optimized hyperparameters (Table 3.2), for each trait and for each

dataset D1, D2, and D3 are reported in Table 3.5. The performance was evaluated in

terms of accuracy, precision, sensitivity and F1 in each fold. The �nal score for each

metric was obtained by averaging the scores over the �ve folds.

As already observed from hyperparameter tuning results on the Agreeableness trait (Table

3.1), the highest performance is achieved on dataset D3 for all traits with an average

accuracy ranging from 0.89 to 0.92, while the lowest performance is found for dataset D1,
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with a much lower accuracy ranging from 0.75 to 0.79. Dataset D2 gives an intermediate

performance between the two instead, with accuracy ranging from 0.83 to 0.92 for the �ve

traits.

More speci�cally, the traits presenting the highest performance both in terms of average

accuracy and F1, are Agreeableness (Acc = 0.93, F1 = 0.93) and Extraversion (Acc

= 0.92, F1 = 0.91) for dataset D3. Those two traits also present the lowest standard

deviation among the �ve folds, as it can be seen in Figure 3.6. The other three traits

for dataset D3, present a slightly lower performance: Conscientiousness (Acc = 0.90, F1

= 0.91), Emotional Stability (Acc = 0.89, F1 = 0.90), and Openness (Acc = 0.89, F1 =

0.89).

Dataset D1, aside from having the lowest performance, also presents the highest standard

deviation between the folds (Figure 3.6). The best performing trait for D1, is Conscien-

tiousness (Acc = 0.79, F1 = 0.82) but it's still substantially lower than the performance

of the same trait for datasets D2 and D3.

Dataset D2 presents comparable performance to D3 for Agreeableness (Acc = 0.89, F1 =

0.91), Conscientiousness (Acc = 0.87, F1 = 0.89), and Emotional Stability (Acc = 0.89, F1

= 0.89), while it gives a lower performance for the traits Extraversion and Openness.

An example of accuracy and loss train and validation learning curves for the Agreeableness

trait on all three datasets, is pictured in Figure 3.7. Dataset D2, which is composed of raw

data, presents the most noise for its validation curve. On the contrary, dataset D1 presents

the smoothest curves and dataset D3 shows little noise as well. Since in dataset D3 the

Delta band is �ltered out, we can assume that most of the noise is concentrated in the 0.1

- 4 Hz range. Other studies have compared the performance of deep learning models on

EEG data with di�erent levels of pre-processing [61] and a similar result is found, i.e., the

deep learning model performs better on minimally pre-processed data. Studies applying

deep learning on minimally pre-processed EEG data for EEG-based classi�cation tasks,

have reported higher performance than state-of-the-art classi�cation [62�65].

The precision and sensitivity values are also reported in Table 3.5 to check for imbalance in

the predictions that the accuracy metric alone cannot catch. For instance, a low sensitivity

would indicate that the classi�cation is unable to detect high expressions of the given trait.

Both the precision and sensitivity scores are comparable, and their combined balanced

score, F1, is also comparable to the accuracy score.

Only one other study [46] used the same AMIGOS dataset for a personality trait binary

classi�cation task. The present study reports a higher overall classi�cation performance

for all the �ve traits - Extraversion (0.92 compared to 0.84), Agreeableness (0.93 compared

to 0.87), Conscientiousness (0.90 compared to 0.84), Emotional Stability (0.89 compared

to 0.84) and Openness (0.89 compared to 0.73). Moreover, in [46] low scores for sensitivity
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D1: Preprocessed

Trait Accuracy Precision Sensitivity F1

Extraversion 0.759 0.736 0.754 0.745
Agreeableness 0.755 0.774 0.749 0.761
Conscientiousness 0.791 0.810 0.831 0.820
Emotional Stability 0.783 0.815 0.784 0.799
Openness 0.771 0.797 0.771 0.784

D2: Bandpass 1 - 45 Hz

Trait Accuracy Precision Sensitivity F1

Extraversion 0.856 0.834 0.893 0.862
Agreeableness 0.891 0.880 0.939 0.908
Conscientiousness 0.865 0.888 0.886 0.887
Emotional Stability 0.886 0.918 0.859 0.887
Openness 0.834 0.890 0.802 0.844

D3: Bandpass 4 - 45 Hz

Trait Accuracy Precision Sensitivity F1

Extraversion 0.921 0.906 0.917 0.911
Agreeableness 0.930 0.917 0.948 0.932
Conscientiousness 0.897 0.905 0.908 0.906
Emotional Stability 0.892 0.905 0.887 0.895
Openness 0.889 0.888 0.899 0.893

Table 3.5: Five-fold cross-validation results for EEGNet-8,2. Average accuracy, precision,

sensitivity and F1 for each trait and each personality trait.

are reported for Conscientiousness and Openness, di�erently from what observed in the

present study.

3.3. Feature interpretability

In this paragraph some preliminary results related to the visualization of the learned fea-

tures are reported. In order to facilitate the interpretability of the analyzed learned �lters

and hidden layer outputs, a EEGNet-4,2 structure was considered since, as seen in Figure

3.5, its performance is comparable to EEGNet-8,2. Moreover, the model was trained on

dataset D3 since it is the dataset resulting in the highest classi�cation performance.
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Figure 3.6: Average �ve-fold cross-validation F1 and standard deviation (black bars) for

all �ve traits for each dataset.

Figure 3.7: Train and validation learning curves of the accuracy and loss for the three

datasets on the Agreeableness trait.

3.3.1. Performance with deactivated temporal �lters

In order to evaluate the relative importance of the four learned temporal �lters on the

classi�cation performances, three of them were deactivated at a time by setting their
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weights to zero, while keeping only one temporal �lter active. The resulting classi�cation

performances obtained on the test set for traits Extraversion, Agreeableness, and Emo-

tional Stability are reported in Table 3.6. The results for the remaining traits are reported

in Appendix A.1.

For the Extraversion trait, two temporal �lters give a relevant classi�cation result when

kept active on their own. Temporal �lter 1 (Extraversion-1) alone accounts for 0.67

accuracy and 0.66 F1 score, while temporal �lter 2 (Extraversion-2) accounts for 0.62

accuracy and 0.65 F1 score but has lower precision of 0.55. For the Agreeableness trait,

only one �lter, temporal �lter 4 (Agreeableness-4), accounts for a 0.66 accuracy and 0.71

F1 score. For the Emotional Stability trait, temporal �lter 2 (Emotional Stability-2)

accounts for 0.69 accuracy and 0.76 F1 score, but with very high sensitivity of 0.93. The

representation of the relevant �lters and their outputs is reported in section 3.3.2. For the

remaining traits (Appendix A.1), no single active temporal �lter gave any relevant result

(Table A.1). This result could be explained by the fact that all four �lters are somewhat

relevant for the prediction and a combination of two or more �lters is needed to gain

any relevant accuracy. It is likely that the model needs information for a wider range of

frequencies than the ones extracted by the single temporal learned �lters.

3.3.2. Visualization of relevant �lters and their outputs

The relevant �lters identi�ed in section 3.3.1 and their relative outputs, are described and

analyzed in this section.

Extraversion

The response amplitude in the time and frequency domain of the temporal �lters Extraversion-

1 and Extraversion-2 , and the PSD of their average output, averaged over the 14 channels

and divided by the two classes based on the inputs labels, are represented in Figure 3.8.

Extraversion-1 attenuates frequencies below 15 Hz, approximatively. Thus, it can be as-

sociated to a poorly selective high-pass �lter in the beta and the gamma frequency ranges.

The average PSD of the output of this �lter shows a slight di�erence between the outputs

of inputs labeled as class 0 and inputs labeled as class 1, in the 15 - 45 Hz range.

Extraversion-2 behaves as a low-pass �lter, preserving information in the theta and alpha

bands and attenuating the beta and gamma bands. The average output shows a slight

di�erence between the two classes in the theta-alpha range.

The two spatial �lters associated to both Extraversion-1 and Extraversion-2 are repre-

sented in Figure 3.9 and Figure 3.10, respectively. The spatial �lters localize the bands

extracted by the temporal �lters in speci�c areas of the brain based on the channels that
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Extraversion

Active �lter Accuracy Precision Sensitivity F1

All 0.898 0.895 0.874 0.884
1 0.673 0.614 0.708 0.658
2 0.617 0.548 0.792 0.648
3 0.444 0.444 1.000 0.615
4 0.556 0.000 0.000 0.000

Agreeableness

Active �lter Accuracy Precision Sensitivity F1

All 0.887 0.871 0.911 0.891
1 0.505 0.505 1.000 0.671
2 0.505 0.505 1.000 0.671
3 0.581 0.927 0.184 0.306
4 0.663 0.629 0.809 0.708

Emotional Stability

Active �lter Accuracy Precision Sensitivity F1

All 0.882 0.879 0.898 0.888
1 0.525 0.525 1.000 0.688
2 0.687 0.639 0.929 0.757
3 0.525 0.525 1.000 0.688
4 0.475 0.000 0.000 0.000

Table 3.6: Model performance on the traits Extraversion, Agreeableness, and Emotional

Stability by keeping one �lter active at a time. Relevant �lters highlighted in bold.

are �ltered out and on the ones that are preserved. Just like for the temporal �lters, the

learned �lters have an approximative behavior and for this reason it is not always possible

to isolate the bands, for the temporal �lters, or the channels and areas, for the spatial

�lters, making the interpretation di�cult.

The spatial �lters associated to Extraversion-1 localize the extracted beta and gamma

bands in the left occipatal area and right frontal one (spatial �lter 1) and in the area

identi�ed by channels F3, FC6 and P8 (spatial �lter 2). The spatial �lters associated to

Extraversion-2 localize the theta-alpha band in the right frontal, central and right parietal

area (spatial �lter 1) and in the central FC6 area (spatial �lter 2).

EEG-based studies have correlated Extraversion to increased posterior versus frontal delta

and theta activity at centerline electrode sites [66] which re�ects activity in the rostral

anterior cingulate cortex and is linked to dopaminergic function [13]. This �nding seems

in part re�ected by the �lter Extraversion-2 which extracts the theta band (Figure 3.8)
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and by spatial �lter 1 which localizes the extracted band in the central to frontal centerline

area (Figure 3.10).
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Figure 3.8: Temporal �lters Extraversion-1 and Extraversion-2 and their relative average

PSD output.
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Figure 3.9: Spatial �lters associated to Extraversion-1.
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Spatial filter 1 Spatial filter 2

Figure 3.10: Spatial �lters associated to Extraversion-2.

Agreeableness

The temporal �lter Agreeableness-4 and its average PSD output are represented in Figure

3.11.

Agreeableness-4 behaves as a notch �lter, attenuating frequencies in the high theta band

in the 6 - 7 Hz range, and as a low-pass �lter attenuating frequencies above 20 Hz in the

beta band. The output of the �lter does not show evident di�erences in PSD between

class 0 and class 1.

The two spatial �lters associated to Agreeableness-4 are represented in Figure 3.12. Spa-

tial �lter 1 localizes the extracted theta, alpha and beta band frequencies in the temporal

and occipital region. Spatial �lter 2 localizes the extracted band in the frontal F7 and F8

area and in the right occipital area.

Few studies on Agreeableness exist, but its facet of empathy has been correlated to EEG

theta and alpha band oscillations related to emotional processing and mirroring [67, 68].

This �nding appears to be re�ected by �lter Agreeableness-4 (Figure 3.12) which indeed

extracts the theta and alpha bands and results as the most relevant �lter found for the

Agreeableness trait prediction. Another association, as seen in Section 1.1.2, linking

Agreeableness to the temporal region, speci�cally the left temporal superior sulcus [12] is

supported by spatial �lter 1 (Figure 3.12) which �lters that speci�c region.
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Figure 3.11: Temporal �lters Agreeableness-4 and its relative average PSD output.
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Figure 3.12: Spatial �lters associated to Agreeableness-4.
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Emotional Stability

The temporal �lter Emotional Stability-2 and its average PSD output is represented in

Figure 3.13.

Emotional Stability-2, unlike the previous temporal �lters, does not extract speci�c fre-

quency ranges and preserves almost the full EEG spectrum. Indeed, out of the identi�ed

relevant �lters, Emotional Stability-2 accounts for the highest accuracy of 0.69 and F1

score of 0.76 and this is most likely due to the fact that classi�cation-relevant information

is carried by the full spectrum of frequencies, making a �lter that just attenuates but does

not �lter out any band, more relevant overall. The output of the �lter does not show any

relevant di�erence in PSD between class 0 and class 1.

The two spatial �lters associated to Emotional Stability-2 and their average outputs

are represented in Figure 3.14. Spatial �lter 1 is focused on the frontal region and left

temporal-parietal region, and �lters out the central and right temporal contributions.

Spatial �lter 2 localizes the extracted frequencies from the �lter in the left temporal-

parietal area.

Neuroticism, the polar opposite of Emotional Stability, as seen in Section 1.1.2 has been

linked to activity in the temporal-parietal region, during a recognition task of other peo-

ple's mental states [17]. The temporoparietal junction is associated indeed to emotional

functions and is implicated in the perception of emotional expressions, empathy, and

a�ective memories [17] which aligns with the negative emotionality associated with Neu-

roticism. In this study, a temporal-parietal spatial �ltering can be observed for both

spatial �lters associated to the most relevant �lter Emotional Stability-2, suggesting that

the trained model is able to localize and extract spatially coded information relevant for

the prediction of the trait.
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Figure 3.13: Temporal �lters Emotional Stability-2 and its relative average PSD output.

Spatial filter 1 Spatial filter 2

Figure 3.14: Spatial �lters associated to Emotional Stability-2.
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3.3.3. Attribution maps

The average attribution maps over all subjects for each trait are reported in Figure

3.15.

For Extraversion, the right prefrontal area, speci�cally channel F8, is identi�ed as having

the highest positive contribution for the prediction of the trait. For Agreeableness, the

right temporal area, channels T8 and FC6, have the highest positive contribution, while

the left frontal area has a lower but still positive contribution. For Conscientiousness,

the positive contributions areas aren't so clearly de�ned, with only the frontal AF4 area

having a high contribution, while the left temporal-parietal area and the right temporal

area have a lower positive contribution. Emotional Stability has positive contribution

areas corresponding to the right temporal-parietal region delimited by channels P8, F3

and FC5. The trait Openness has positive contribution identi�ed in the posterior frontal

area identi�ed by channels F3 and F4.

For all traits, a negative contribution of the occipital area (speci�cally channel O2) to

the classi�cation task is observed. This behavior could be related to the attempt of

the network to neglect a pronounced activity at the occipital lobe, which is though not

relevant for the classi�cation of personality traits [12]. Indeed, since the occipital lobe

is associated to the visual cortex [69] and EEG signals are acquired while the subjects

are intent in watching videos, it is reasonable that an enhanced activity in this area is

captured in the signal. However, it's likely that that activation does not have a correlation

with personality as a whole and thus the network learns to ignore the contribution given

by the occipital area for all traits. Other negative contributions are given by the left

frontal area for trait Emotional Stability and the frontal area for Openness.

The predictive contribution of the frontal PFC region for the traits Extraversion, Agree-

ableness and Conscientiousness (positive) and for Emotional Stability and Openness (neg-

ative) is in line with neuroscienti�c studies of personality as seen in Section 1.1.2. This

result suggests that electrical brain activity in the frontal region may be informative

enough for personality classi�cation and may lend itself to portable applications imple-

mented with wearable commercial EEG devices.

Other positive attribution regions are also in line with correlations found between brain

areas and personality traits. Temporoparietal junction is correlated to Emotional Stability

[17], as seen in Section 3.3.2, and the attribution map shows indeed a positive contribution

for that region. Openness has been associated to activity in the posterior medial frontal

cortex [13] and its attribution map shows a positive predictive for the posterior frontal

region at channels F3 and F4. Finally, the activity of subcortical regions might be picked

up by the EEG signal recording and it may be re�ected in the obtained attributions.
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For instance, the amygdala which has been associated with Extraversion and Emotional

Stability (Section 1.1.2). Activity in the amygdala has been associated to frontal EEG

asymmetry [70], suggesting that the EEG-based attributions found in the frontal region

are not exclusively caused by activity in the PFC.

Extraversion Agreeableness

Emotional Stability Openness

Conscientiousness

Figure 3.15: Average attribution maps for the �ve personality traits.
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developments

In this work, a deep learning-based binary classi�cation of personality traits starting from

EEG signals was developed. For this purpose, EEGNet, a state-of-the-art CNN-EEG

model, was adopted. Particular attention was focused on three aspects: i) the optimization

of the structure and parameters of the model, ii) the identi�cation of the best EEG pre-

processing pipeline in terms of �nal classi�cation performances and, iii) a preliminary

interpretation of the more relevant EEG-based features automatically extracted by the

network.

Concerning the structure of the model, the present study demonstrated that EEGNet

could achieve good classi�cation performances even by reducing the complexity of the

�rst convolutional layer, composed of a bank of temporal �lters. Speci�cally, it was

shown that with the number of �lters ranging from 4 to 12 the classi�cation performances

are comparable. This may constitute an advantage in terms of computational cost, since

decreasing the number of trainable parameters by reducing the number of �lters, also

lowers the training time. Moreover, a lower complexity of the model also facilitates the

interpretation of the automatically extracted features. In this work, the performances of

the network on three di�erently pre-processed datasets (i.e., D1, D2, and D3) were also

evaluated. Speci�cally, it was shown that the selected EEGNet model obtains its best

classi�cation scores on dataset D3, which was minimally preprocessed by the removal of

the Delta band by a band-pass �ltering and standardization. Comparable performances

were obtained on raw data (dataset D2), while a classi�cation accuracy decrease was

observed on full pre-processed data (dataset D1). Such result is in line with the studies

that have also tested the potential of DL models to directly learn from raw data [62�

65].

In terms of pure classi�cation performance, good results were obtained both in terms of

accuracy and F1 score. The best performing models were obtained on traits Agreeableness

and Extraversion, with test accuracies of 0.93 and 0.92, respectively. The models trained

on the other traits also report good performance with accuracy of 0.90 for Conscientious-

ness and 0.89 for Emotional Stability and Openness. The performance achieved is higher
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than most other attempts at classi�cation of personality traits from EEG signals found in

literature, all studies based on manual feature extraction strategies. Comparable studies

report best classi�cation accuracies in the range of 0.73 - 0.87 [46], 0.64 - 0.96 [47] and

0.66 - 0.74 [44] for most traits.

Another limitation could reside in the type of training employed. The training and test

datasets used for the �ve-fold cross-validation, as they were formulated in this work,

proportionally contain EEG traces from all subjects equally. This approach could in-

troduce a bias in classi�cation performances since the network is able to capture all the

subject-speci�c variability during training. In order to assure a higher generalizability of

the trained model, a leave-one-subject-out training strategy would be more suitable as it

completely excludes one subject at a time from the training.

Finally, a preliminary interpretation of the automatically extracted features is presented.

The feature interpretability, indeed, remains one of the main limitations in deep learning-

based applications. Speci�cally, in this work di�erent visualization techniques for the

learned temporal and spatial �lters of the �rst two blocks of EEGNet and their outputs

are adopted for each personality trait. Moreover, in order to study the relative importance

of the temporal �lters in the classi�cation task for each trait, di�erent combinations of

�lters were simultaneously deactivated, and the resulting performance was evaluated. This

approach allowed to isolate one or two most relevant temporal �lters for the classi�cation

of each trait.

Nevertheless, the interpretation of the obtained results remains di�cult. The learned tem-

poral �lters, for example, most times do not selectively preserve speci�c EEG frequency

bands. Therefore, the association between di�erent frequency traits and the relative power

of EEG traces in its standard rhythms is not trivial. Concerning spatial information, an

attribution-based visualization was adopted in order to highlight the most relevant EEG

electrodes for the classi�cation of each trait. Obtained results enhance the importance of

frontal regions and are in line with neuroscienti�c-based studies on personality.

In conclusion, a personality trait classi�er that outperforms other known applications

was developed by means of EEGNet. The model was further tested on di�erently pre-

processed EEG data, and it was shown that DL-based models trained on raw and min-

imally pre-processed signals perform better than models trained on fully pre-processed

ones, a �nding could simplify the time-consuming EEG pre-processing pipelines. The

structure and hyperparameters of the model were also analyzed in depth and limits and

consideration on EEGNet's performance were drawn. Finally, given the architecture of

the model, it was shown how the hidden layers and learned �lters can be analyzed for

feature interpretability purposes.

Despite these promising results, the adopted classi�cation approach presents some limi-
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tations, such as the binary classi�cation of personality. Although a binary classi�cation

approach reduces the level of complexity of the model, it does not take into account the

complexity of personality. Indeed, classi�ed traits represent a spectrum on which most

people fall in the middle. Therefore, for a more precise personality assessment it could

be more suitable to reformulate the problem as a multi-class classi�cation or a regression

task. Moreover, in this study the classi�ers were trained separately for each trait, not

taking into account the higher-level correlations between the traits, as they have been

identi�ed in the Big Five theory. Implementing a model that could classify all the �ve

traits at once could be helpful to gain more insight into the relationship between the

traits.

Concerning the interpretation of learned features, though EEGNet allows to isolate most

relevant �lters and areas for the classi�cation of the di�erent traits, a direct association

of speci�c EEG-based features to personality is not possible from our results. This lim-

itation is both due to the insu�cient well-supported evidence on the neurological bases

of personality, and to the fact that classi�cation is performed on windows extracted from

continuous EEG data. Therefore, no information about stimulus and expected response

are available. Moreover, the types of stimuli were not taken into consideration. This was

a conscious choice since the main focus of the present work was on classi�cation and on

testing the ability of EEGNet to classify data with di�erent levels of pre-processing and

recorded in response to di�erent types of stimuli. However, di�erentiating between the

stimuli, as they are classi�ed in the dataset on the arousal-valence scale, for example by

training on category-based subset of data and comparing the performance between cat-

egories, could be a valuable future step for understanding the features extracted by the

network for the various personality traits.

Among other possible future developments for the classi�cation, aside from adopting more

conservative training strategies as already mentioned, other DL models could be tested

using the obtained results as reference. As for the interpretability of the features, it may

be helpful to take into consideration other type of features that cannot be extracted from

EEGNet, such as connectivity-based features that have already been correlated in part to

personality traits. A �nal chapter containing the main conclusions of your research/study

and possible future developments of your work have to be inserted in this chapter.
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A| Appendix A

A.1. Deactivated temporal �lters for Conscientious-

ness and Openness

Conscientiousness

Active �lter Accuracy Precision Sensitivity F1

All 0.863 0.892 0.854 0.873
1 0.466 0.952 0.031 0.060
2 0.450 0.000 0.000 0.000
3 0.550 0.550 1.000 0.710
4 0.550 0.550 1.000 0.710

Openness

Active �lter Accuracy Precision Sensitivity F1

All 0.865 0.867 0.873 0.870
1 0.552 0.537 0.987 0.696
2 0.604 0.660 0.489 0.562
3 0.519 0.519 1.000 0.683
4 0.481 0.000 0.000 0.000

Table A.1: Model performance on the traits Conscientiousness and Openness by keeping

one �lter active at a time.





79

List of Figures

1.1 The hierarchical structure of the Big Five with its metatraits and its aspects

and facets subtraits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Brain region volume correlations with personality. . . . . . . . . . . . . . . 9

1.3 Electrodes placement in the 10-10 system and their corresponding color-

coded brain area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Machine learning vs. deep learning-based approach for a classi�cation task. 12

1.5 Example of DL-EEG application for the classi�cation of brain disorders by

means of connectivity features and convolutional neural network [36]. . . . 13

1.6 A basic CNN architecture for classi�cation. . . . . . . . . . . . . . . . . . . 14

2.1 The four quadrants of the valence-arousal space and their associated emo-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 A. Emotiv EPOC headset. B. Positions of the 14 electrodes according to

the 10-10 system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Histograms of the scores of each personality trait with their respective mean

and median values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 General pipeline for A. Data processing and B. Classi�cation task. . . . . . 27

2.5 High-level structure of EEGNet. . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Structure of Block 1, EEGNet. . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 Structure of Block 2, EEGNet. . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8 Structure of Block 3, EEGNet. . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.9 Strati�ed data partitioning applied on all three EEG datasets, and for all

personality traits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.10 Hyperband algorithm scheme. . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.11 Five-fold cross-validation scheme. . . . . . . . . . . . . . . . . . . . . . . . 39

2.12 Confusion matrix for binary classi�cation. . . . . . . . . . . . . . . . . . . 41

2.13 Analysis of temporal �lters. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.14 Example of two spatial �lters associated to one temporal �lter. . . . . . . . 43

2.15 Attribution map visualization. . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Dropout counts in the top 100 best performing trials on all datasets. . . . . 49



80 | List of Figures

3.2 Average accuracy and standard deviation (black bars) for the di�erent

dropout rates for all 2072 trials. . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Distribution of the learning rate values chosen in the top 100 best perform-

ing trials on all datasets and their respective means. . . . . . . . . . . . . . 51

3.4 Learning curves of the EEGNet-8,2 model trained with 16, 32, 64, 128, 256,

and 512 batch size on the Agreeableness trait of dataset D3. . . . . . . . . 52

3.5 EEGNet-Nf , 2 models performance in terms of F1 score. . . . . . . . . . . 54

3.6 Average �ve-fold cross-validation F1 and standard deviation (black bars)

for all �ve traits for each dataset. . . . . . . . . . . . . . . . . . . . . . . . 57

3.7 Train and validation learning curves of the accuracy and loss for the three

datasets on the Agreeableness trait. . . . . . . . . . . . . . . . . . . . . . . 57

3.8 Temporal �lters Extraversion-1 and Extraversion-2 and their relative aver-

age PSD output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.9 Spatial �lters associated to Extraversion-1. . . . . . . . . . . . . . . . . . . 60

3.10 Spatial �lters associated to Extraversion-2. . . . . . . . . . . . . . . . . . . 61

3.11 Temporal �lters Agreeableness-4 and its relative average PSD output. . . . 62

3.12 Spatial �lters associated to Agreeableness-4. . . . . . . . . . . . . . . . . . 62

3.13 Temporal �lters Emotional Stability-2 and its relative average PSD output. 64

3.14 Spatial �lters associated to Emotional Stability-2. . . . . . . . . . . . . . . 64

3.15 Average attribution maps for the �ve personality traits. . . . . . . . . . . . 66



81

List of Tables

2.1 Big Five Marker Scale facets. . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Personality trait scores statistics. . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Binary class counts for each personality trait. . . . . . . . . . . . . . . . . 29

2.4 EEGNet's detailed structure. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 The search space and sampling method de�ned for each hyperparameter. . 37

3.1 Top 10 best performing hyperparameter trials on the datasets D1, D2, and

D3 for dropout, dropout type, and learning rate. . . . . . . . . . . . . . . . 48

3.2 Final hyperparameter con�guration selected for EEGNet-8,2. . . . . . . . . 50

3.3 Top 10 best performing hyperparameter trials on the datasets D1, D2, and

D3 for the number of �lters Nf and D. . . . . . . . . . . . . . . . . . . . . 53

3.4 Number of trainable parameters for EEGNet-4,2, EEGNet-8,2, EEGNet-

9,8 and EEGNet-12,8 structures. . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Five-fold cross-validation results for EEGNet-8,2. Average accuracy, preci-

sion, sensitivity and F1 for each trait and each personality trait. . . . . . . 56

3.6 Model performance on the traits Extraversion, Agreeableness, and Emo-

tional Stability by keeping one �lter active at a time. Relevant �lters

highlighted in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.1 Model performance on the traits Conscientiousness and Openness by keep-

ing one �lter active at a time. . . . . . . . . . . . . . . . . . . . . . . . . . 77




	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Background
	Personality theory
	Five Factor Model
	Neuroscience of personality

	Electroencephalography (EEG)
	Deep Learning
	EEG Applications
	Convolutional Neural Networks

	Personality classification with EEG
	Aim of thesis

	Materials and methods
	Dataset
	Experimental protocol
	EEG signal
	Emotion assessment
	Personality assessment
	Mood assessment

	General processing and classification pipeline
	Data processing
	EEG pre-processing
	EEG segmentation
	Personality binarization

	EEGNet
	BLOCK 1
	BLOCK 2
	BLOCK 3

	Model validation
	Hyperparameter tuning
	Structure optimization

	Training strategy
	Five-fold cross validation
	Evaluation metrics

	Feature interpretability
	Visualization of learned filters
	Deactivation of learned filters
	Attribution methods


	Results and discussion
	Model validation
	Hyperparameter tuning
	Validation of EEGNet structures

	Classification
	Feature interpretability
	Performance with deactivated temporal filters
	Visualization of relevant filters and their outputs
	Attribution maps


	Conclusions and future developments
	Bibliography
	Appendix A
	Deactivated temporal filters for Conscientiousness and Openness

	List of Figures
	List of Tables

