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1. Introduction
The task of modeling sound propagation behav-
ior in acoustical spaces has garnered increasing
interest in recent years due to the rising popular-
ity of virtual reality, leading to the development
of virtual acoustics [5]. Throughout this work,
our focus will be extensively on numerical acous-
tics. Ray-based methods are the most com-
monly used modeling techniques for their effi-
ciency. However, wave-based techniques provide
a full transient solution that accurately accounts
for all wave phenomena, including diffraction.
However, they are computationally expensive
and suitable for simulating low frequencies only.
Recently, an Adaptive Rectangular Decomposi-
tion (ARD) technique was proposed, an efficient
and accurate wave-based simulation method.
ARD is used to precompute high-quality reverb
filters, which are often part of the auralization
pipeline in video game and simulation engines
[4].
The ARD method lacks of support for air ab-
sorption, which is critical in larger spaces, such
as cathedrals, where it becomes a significant fac-
tor. In our research, we will address this limita-
tion.

2. Methodology
2.1. Simulation of the wave equation

in the space-time domain
Following [1], we express the sound propagation
in a fluid by the viscous acoustic wave equation:

B2p

Bt2
` 2α

Bp

Bt
´ c2∆p “ f, (2.1)

where p “ pp
¯
x, tq denotes the pressure at the

point
¯
x P R3 at time t P R`, α is the ab-

sorption coefficient, c is the propagation speed,
and f “ fp

¯
x, tq denotes an external force at the

point
¯
x at time t. In order to derive the Fourier

method, we’ll consider the problem of wave
propagation in a bounded domain Ω with ar-
bitrary initial conditions and the homogeneous
Neumann boundary conditions, namely:
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B2p
Bt2

´ c2∆p “ f, t P R`,
¯
x P Ω,

pp
¯
x, 0q “ p0p

¯
xq,

¯
x P Ω,

Bp
Bt p

¯
x, 0q “ v0p

¯
xq,

¯
x P Ω,

Bpp
¯
x,tq

B
¯
n “ 0, t P R`,

¯
x P BΩ,

(2.2)

For the sake of presentation, we consider the
wave propagation problem in one dimension.
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We define a space-time grid with constant step
size in both space (dh) and time (dt), i.e.,

¯
xi “ i dh, tn “ n dt,

with i “ t0, . . . , Nx ´1u and n “ t0, . . . , Nt ´1u

where Nx, Nt ě 2, and we introduce the nota-
tion pp

¯
xi, t

nq “ pni for simplicity.
Employing a second order accurate centered
stencil to approximate the first and second time
derivative, and using a sixth order accurate one
to approximate the Laplacian operator, we ob-
tain the following second order FDTD p2, 6q

scheme:

¯
pn`1 “

2
¯
pn ´ p1 ´ α dtq

¯
pn´1 `

´

cdt
dh

¯2
rKs

¯
pn ` dt2

¯
fn

1 ` α dt
,

where
¯
p is the vector storing the pressure val-

ues at each space step,
¯
f is the vector storing

the force values at each space step, rKs is the
stiffness matrix defined as

rKs “
∆

»

—

—

—

—

—

—

—

–

. . .
A B C D C B A

A B C D C B A
A B C D C B A

. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

and A “ 1
90 , B “ ´ 3

20 , C “ 3
2 , D “ ´49

18 .
It can be proven that, employing a first order
representation of Eq. (2.2), we can obtain the
following first order FDTD p1, 6q scheme:

«

¯
vn`1

¯
pn`1

ff

“

»

–

rIsIˆI`c2 dt2

dh2 rKs

1`2dt α

c2 dt
dh2 rKs

1`2dt α

dtrIsIˆI rIsIˆI

fi

fl

«

¯
vn

¯
pn

ff

`

«

dt
¯
fn`1

¯
0I

ff

,

where
¯
v is the vector storing the pressure veloc-

ity (first time derivative of the pressure) values
at each space step.
The CFL condition of both FDTD schemes is

|λ| ă
3

?
85

34
“ 0.8135 . . . , (2.3)

where λ “
∆ c dt{dh is the Courant number.

These two FDTD schemes are dispersive, as
shown in Fig. 2.1. The amount of numerical
dispersion is reduced for low values of λ, trad-
ing off efficiency.

Figure 2.1: The snapshot on top depicts the wave packet
at t “ 0. The remaining snapshots depict the output of second
and first order FDTD at t “ 1 for different values of λ. The
wave speed c is set to 1, α “ 0, and the spatial step size is
dh “ 4e ´ 4. The ground truth solution is displayed using
dashed lines.

2.2. Simulation of the wave equation
in the Fourier-time domain

Consider the wave propagation problem (2.2)
in a 3D rectangular domain Ω of dimensions
Lx, Ly, Lz. Its mode shapes are

pmnpp
¯
xq “ cos

ˆ

mπ

Lx
x

˙

cos

ˆ

nπ

Ly
y

˙

cos

ˆ

pπ

Lz
z

˙

,

meaning that we can express pp
¯
x, tq as a triple

Cosine Series expansion in
¯
x as follows:

pp
¯
x, tq “

8
ÿ

m“1

8
ÿ

n“1

8
ÿ

p“1

Pmnpptq pmnpp
¯
xq,

where Pmnpptq are the triple Fourier cosine series
coefficients or the modal coefficients. Treating
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the force analogously, we derive the viscous wave
equation in the Fourier-time domain:

d2Pmnp

dt2
` 2α

dPmnp

dt
` ω2

mnpPmnp “ Fmnp,

which, for each tuple pm,n, pq, with m P

N`, n P N`, p P N`, represents the equation
of motion for a single degree-of-freedom system
(forced damped harmonic oscillator).
We want to select a discrete transform which
let us express the solution pp

¯
x, tq in the Fourier-

time domain. With the DFT, a windowed finite-
length data sequence is naturally extended by
periodic extension prior to transformation. The
extension process using a rectangular window
introduces discontinuities, which cause spectral
leakage or ripples in the frequency domain: this
can be addressed by using smoother windows,
which however produces a smearing effect worse
than in the case of rectangular window which
has a narrower main lobe. Instead, the real
valued DCT of a signal xn corresponds to the
DFT Yk of the even extension of xn. Further-
more, the DCT basis functions correspond to
the mode shapes of the wave equation with the
homogeneous Neumann boundary conditions, so
the DCT spectrum of pp

¯
x, tq decays to zero much

faster than the DFT spectrum [2].

Figure 2.2: Comparison of DFT and DCT. Top: Input
signal xrns and the symmetrically extended sequence x1rns.
Middle: Eight-point DFT (magnitude only) and the eight-
point DCT. Bottom: inverse DFT (magnitude only) and in-
verse DCT. Source: [2].

To represent the DCT coefficients Pmnpptq and
Fmnpptq, it’s convenient to introduce the global
index i defined as

i “
∆ p

LyLx

dh2
` n

Lx

dh
` m ` 1.

Then, we truncate the index sequence so that
i “ 1, 2, . . . , I with ωI ě ωmax, where ωmax is

the highest radian frequency we’re interested in.
Hence, we obtain the wave equation in the
Fourier-time (DCT-time) domain:

d2Pi

dt2
` 2α

dPi

dt
` ω2

i Pi “ Fi, i ě 1, (2.4)

where ωi can be expressed as

ωi “ ωmnp “ cπ

d

m2

L2
x

`
n2

L2
y

`
p2

L2
z

.

Eq. (2.2) and Eq. (2.4) are equivalent in the fre-
quency band r0, ωmaxs; we can go back and forth
between the two representation employing the
DCT and the inverse DCT.
It has been proven in [3] that, for α “ 0,
Eq. (2.4) is discretized in time by the following
scheme, which represents second order Fourier
method :
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Pn`1
1 “ 2Pn

1 ´ Pn´1
1 ` dt2Fn

1 ,

Pn`1
i “ 2Pn

i cospωidtq ´ Pn´1
i

`
2

ω2
i

Fn
i p1 ´ cospωidtqq, i ą 1,

for n “ 1, 2, . . . . Instead, for α ‰ 0, we must
use the following scheme to update the pressure:
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Pn`1
1 “ Pn

1 ` dt V n
1 ,

Pn`1
i “ Pi,e ` e´αdt

¨

„

pPn
i ´ Pi,eq

ˆ

cospωidtq `
α

ωi
sinpωidtq

˙

`
sinpωidtq

ωi
V n
i

ȷ

, i ě 1,

for n “ 1, 2, . . . , where Pi,e “ Fn
i {ω2

i , and Vi

represent the DCT coefficients of the pressure
velocity, which is updated through the following
scheme:
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%

V n`1
1 “

V n
1 ` dtFn

1

1 ` 2αdt
,

V n`1
i “ e´αdt

„

V n
i

ˆ

cospωidtq ´
α

ωi
sinpωidtq

˙

´

ˆ

ωi `
α2

ωi

˙

pPn
i ´ Pi,eq sinpωidtq

ȷ

, i ě 1,

for n “ 1, 2, . . . , where Pi,e “ Fn`1
i {ω2

i . These
two schemes represent the first order Fourier
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method.
The Fourier method, both in the second order
and in the first order case, is non dispersive, as
shown in Fig. 2.3 for the 1D case.

Figure 2.3: The snapshot on top depicts the wave packet
at t “ 0. The remaining snapshots depict the output of the
first order Fourier method at t “ 1 for λ “ 1. The wave speed
c is set to 1, α “ 0, and the spatial step size is dh “ 4e ´ 4.
The ground truth solution is displayed using dashed lines.

2.3. Rectangular Domain Decompo-
sition

In the majority of Domain Decomposition
methodologies, the primary objective remains
the distribution and parallelization of workloads
across multiple processors. Our approach to
domain partitioning, which we call Rectangu-
lar Domain Decomposition (RDD), is motivated
not only by parallelization, but mostly by ob-
taining partitions with rectangular shapes, so
that we can exploit the efficiency and lack of
numerical dispersion of the Fourier method [4].

Figure 2.4: Non-overlapping partition of a 2D domain Ω
into two rectangular subdomains with a shared boundary Γ.

Consider the wave propagation problem 2.2 on
a domain Ω Ď R3, omitting the viscous dissipa-
tion term for simplicity. It is well known that p1
(corresponding to Ω1) and p2 (corresponding to
Ω2) must satisfy the wave equation within their
respective subdomains:

B2pi
Bt2

´ c2∆pi “ fi, (2.5)

where pi “ pip
¯
x, tq and fi “ fip

¯
x, tq, with t P

R`,
¯
x P Ωi, i “ 1, 2.

To understand how to merge the functions p1
and p2 to satisfy the global problem (2.2), we

compute the difference between Eq. (2.2) and
Eq. (2.5):

ˆ

B2

Bt2
´ c2∆G

˙

«

p1

p2

ff

´

ˆ

B2

Bt2
´ c2∆L

˙

«

p1

p2

ff

“ c2∆R

«

p1

p2

ff

,

where ∆G is the global Laplacian operator, ∆L

is the local Laplacian operator:

∆L “

«

∆ 0

0 ∆

ff

,

and ∆R is the residual operator. We include the
residual term in Eq. (2.5) as follows:

ˆ

B2

Bt2
´ c2∆L

˙

«

p1

p2

ff

“

«

f1

f2

ff

` c2∆R

«

p1

p2

ff

,

with t P R`,
¯
x P Ωi, i “ 1, 2.

If we discretize the residual operator ∆R using
a second order centered stencil (analogously to
the discretization of the Laplacian operator in
Subsec. 2.1), we obtain the residual matrix rCs,
defined as

rCs “
∆

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0

. . . ´A A

´A ´B B A

´A ´B ´C C B A

A B C ´C ´B ´A

A B ´B ´A

A ´A . . .
0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The residual term c2∆R p, then, becomes the
modified residual vector

¯
Rn, defined as

¯
Rn “

∆
´ c

dh

¯2
rCs

¯
pn.

The residual term can be enforced by embedding
it into the force [4], resulting in the pre-merge
interface handling method, or by correcting the
pressure p (or, in the first order case, the pres-
sure velocity v) after updating it with FDTD or
the Fourier method. In particular, we present
the RDD simulation algorithm (1). The inter-
face handling steps are conditionally stable: we
must satisfy Eq. (2.3).
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Algorithm 1 RDD Algorithm
1: Input: Initial conditions of pressure and pressure veloc-

ity, and geometry of the room.
2: Rectangular Decomposition: Decompose the domain

into rectangular subdomains Ωk. The subdomains data
structure stores, for each subdomain, the force, the pres-
sure, the pressure velocity, the residual, and the corrected
force, accessed through dot indexing (e.g., Ωk.

¯
pn).

3: Interfaces Inference: Determine the interfaces Γm be-
tween subdomains by examining their adjacency relation-
ships. The interfaces data structure stores, for each in-
terface, the reference to the two subdomains Ω1 and Ω2

associated with it, accessed through dot indexing.
4: Initialize: Set n “ 0.
5: repeat
6: for each subdomain Ωk in subdomains do
7: Update the pressure
8: Ωk.

¯
pn`1 Ð update_pressure()

9: end for
10: for each interface Γm in interfaces do
11: if interface handling method is post-merge and

simulation method is second order then
12: Correct the pressure
13: Γm.Ω1.

¯
pn`1 `“ dt2

1`dtα
Γm.Ω1.

¯
Rn

14: Γm.Ω2.
¯
pn`1 `“ dt2

1`dtα
Γm.Ω2.

¯
Rn

15: end if
16: end for
17: for each Ωk in subdomains do
18: Compute the residual
19: Ωk.

¯
Rn`1 Ð

`

c
dh

˘2
rCsΩk.

¯
pn`1

20: end for
21: for each Γm in interfaces do
22: if interface handling method is pre-merge then
23: Correct the force
24: Γm.Ω1.

¯
fn`1
R Ð Γm.Ω1.

¯
fn`1 ` Γm.Ω1.

¯
Rn`1

25: Γm.Ω2.
¯
fn`1
R Ð Γm.Ω2.

¯
fn`1 ` Γm.Ω2.

¯
Rn`1

26: end if
27: end for
28: for each Ωk in subdomains do
29: Update the velocity
30: Ωk.

¯
vn`1 Ð update_pressure_velocity()

31: end for
32: for each Γm in interfaces do
33: if interface handling method is post-merge and

simulation method is first order then
34: Correct the velocity
35: Γm.Ω1.

¯
vn`1 `“ dt

1`2dtα
Γm.Ω1.

¯
Rn`1

36: Γm.Ω2.
¯
vn`1 `“ dt

1`2dtα
Γm.Ω2.

¯
Rn`1

37: end if
38: end for
39: Increment n by 1.
40: until termination condition is met

2.4. Adaptive Rectangular Decompo-
sition

The Adaptive Rectangular Decomposition
(ARD) is an algorithm to solve the wave prop-
agation problem (2.2). It supports domains
of arbitrary shape thanks to RDD, and it
simulates both partially and fully absorbing
boundary conditions. In fact, we have two
types of partitions:

‚ Air partitions - Partitions where we model
sound propagation in air employing the

Fourier method (Subsec. 2.2).
‚ PML partitions - Partitions where we

model boundary absorption. We attenu-
ate incoming sound waves employing a Per-
fectly Matched Layer.

ARD consists of two primary stages:

‚ Preprocessing.
1. The input scene is voxelized into grid

cells at grid resolution dh.
2. The grid cells are grouped into rect-

angles corresponding to air partitions.
PML partitions are generated for each
boundary.

3. The interfaces between adjacent air-
air and air-PML partitions are cre-
ated.

‚ Simulation. We employ the RDD algorithm
1 to perform the simulation. In air parti-
tions we employ the Fourier method, either
the first (α ą 0) or the second order one
(α “ 0). For PML partitions, we can em-
ploy a FDTD scheme.

Our implementation of the ARD algorithm
is based on ARD simulator, a project
in C++ maintained by the user jinnsjj
and available at https://jinnsjj.github.io/
ARD-simulator/. We have made multiple no-
table contributions, namely, we have introduced
support for air damping by employing the first-
order Fourier method, and we have implemented
post-merge as an interface handling method.

3. Results
The interface handling algorithm is built on the
FDTD method, meaning that there’s no addi-
tional numerical error if we employ this simu-
lation method. Instead, employing the Fourier
method, the coupling is not perfect, which
leads to erroneous reflections at the interface,
as shown in Fig. 3.1 for different orders of accu-
racy. The amplitude of these reflections ranges
from 50 dB (for an accuracy order of 2) to 80 dB
(for an accuracy order of 8) below the amplitude
of the incoming wave packet. This highlights a
trade-off between computational efficiency and
the attenuation of spurious reflections.
We have conducted experiments using the ARD
simulator in a minimal hall of volume 7600 m3,
surface area of 760 m2, and partitioned into
three rectangles. We present snapshots of the
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(a) Order of accuracy 2.

(b) Order of accuracy 4.

(c) Order of accuracy 6.

(d) Order of accuracy 8.

Figure 3.1: Snapshots of a numerical simulation in one di-
mension using Rectangular Domain Decomposition: the sim-
ulation domain Ω is divided into two partitions, Ω1 “ r0, 5s

and Ω2 “ r5, 10s, and we use pre-merge with different orders
of accuracy. The simulation methods used are the second or-
der Fourier method for both partitions, with a grid spacing
of dh “ 0.01, a Courant number of λ “ 0.8. To emphasize
the errors, we show the pressure values at t “ 4 s expressed
in decibels.

simulation at different time points in Fig. 3.2.
The applied force is a Gaussian pulse with a
Gaussian spatial envelope.

(a) t “ 0.01 s. (b) t “ 0.03 s. (c) t “ 0.05 s.

(d) t “ 0.07 s. (e) t “ 0.09 s. (f) t “ 0.11 s.

Figure 3.2: Snapshots of ARD simulator at different time
instants of a test case. The propagation speed c0 is 343.5 m/s,
the grid spacing dh is 0.2, and the time step dt is 2e´4. There
is no air damping, the boundaries are partially absorbing, and
the interface handling method chosen is pre-merge.

4. Conclusions
In this study, we have introduced and improved
the Adaptive Rectangular Decomposition al-
gorithm. This approach surpasses traditional
methods for its efficiency and lack of numerical
dispersion, making it well-suited for simulating
acoustics in expansive environments and captur-
ing high-order reflections.
Future research can explore the integration of
geometric techniques with ARD to enhance
the efficiency of the simulations in the high-
frequency range.
Lastly, there is room for improvement in the
modeling of boundaries. Recent developments
in frequency dependent absorbing and diffusive
boundaries would offer a more complete simula-
tion framework.
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