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1. Introduction
Controlling and manipulating light-matter cou-
pling is one of the most important branches of
research of quantum sciences and technologies.
The greatest achievement in this field is un-
doubtedly the study of the interaction between
a two-level quantum emitter and a single con-
fined bosonic mode [1]. In the cavity Quan-
tum Electrodynamics (QED) context one of the
most studied models for single photon interac-
tions (SPI) is the so called Jaynes-Cummings
(JC) model. It is based on two fundamental
approximations: the dipolar approximation and
the rotating wave approximation (RWA). The
former implies that the interaction between the
electromagnetic field and the qubit is dominated
only by the electric field of the wave; moreover
it is seen as uniform in space by the qubit. The
RWA implies that all the terms of the Hamil-
tonian operator rotating at high frequency are
neglected, since they tend to average to zero. In
this framework the number of excitations is con-
stant and the problem is analytically solvable.
The JC model is suitable for describing linear
coupling between the qubit and the mode in the
weak (coupling strength smaller than the sys-
tem losses) and in the strong (coupling strength
greater than the losses but smaller than the

mode frequency) regimes. Recent researches had
revealed the possibility of implementing two-
photon coupling by engineering superconduct-
ing atom-resonator systems [2] or by applying
analog quantum simulation schemes in trapped-
ions [3] or ultracold atoms. In order to properly
describe this phenomenon of two-photon inter-
action (TPI) it is needed to go beyond the JC
model. This is done in the two-photon quan-
tum Rabi model (QRM). It allows one to study
the nonlinear coupling between confined bosonic
modes and a two-level quantum emitter. Recent
studies in this direction has been done in the
context of cavity QED showing new and inter-
esting phenomena such as the appearance of dis-
tinct selection rules and a two-photon blockade
as a first-order process [2].
In this thesis work, for the first time, the TPI
is studied in the context of waveguide QED.
With the term waveguide QED we refer to a
very recent research field whose aim is to study
the interaction between quantum emitters and
a 1D-continuum of modes. Waveguide QED
experiments can be implemented for example
with superconducting artificial atoms coupled
to transmission-line resonators or with quantum
dots coupled to photonic-crystal waveguides. .
Different studies in waveguide QED context in-
volving SPI have been done showing phenomena
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that is impossible to observe in other contexts
such as the total reflection effect [4]. These new
possibilities have motivated us to develop a gen-
eral theory for TPI in the waveguide framework.
In this thesis work we have re-obtained the re-
sults relative to the SPI in waveguide QED con-
text. Furthermore, we proceeded to study the
TPI in the same context, with particular fo-
cus on input-output theory. Finally we applied
the fundamental results achieved to two cases of
interest: spontaneous emission and two-photon
scattering. This brief executive summary will
be organized as follows: in section 2 the general
theory of TPI in waveguide QED will be pre-
sented; in section 3 we will analyze the results
related to the two example situations mentioned
above; finally, in section 4 we summarize our re-
sults and discuss the research directions opened
by the present work.

2. General theory
The system that we considered is constituted by
a single two-level quantum emitter coupled to
the modes of a superconducting waveguide. The
Hamiltonian operator of such a system is given
by:

Ĥ = ω0σ̂
+σ̂− +

∑
µ=±

∫
ω(âµω)

†âµω dω+

+
∑

µ,µ′=±

∫∫
(gµµ

′

ωω′ )
∗σ̂+

âµωâ
µ′

ω′
√
2

dωdω′ + h.c

(1)

where the first and the second terms refer to
the energy of the emitter and of the supported
modes, while the others constitute the nonlin-
ear interaction operator. It is indeed propor-
tional to the square of the electric field opera-
tor and, since the interaction is nonlinear, the
coupling strength depends on the frequencies of
the two interacting photons. The indexes µ and
µ′ define the direction of propagation of each
mode along the waveguide: + means from left
to right;- means from right to left. We point out
here that to obtain the expression in Eq.1 the
RWA has been applied and the number of excita-
tions is conserved. In particular, to each atomic
transition correspond two field transitions (ab-
sorption/emission of two photons). Working in
the RWA allows us also to define the general
state of the system with the Wigner-Weisskopf

ansatz. Its expression is the following:

|Φ(t)⟩ = Ce(t)σ̂
+ |0⟩+

+
∑

µ,µ′=±

∫∫
Cµµ′

ωω′(t)
(âµω)†(â

µ′

ω′ )†
√
2

dωdω′ |0⟩
(2)

where |0⟩ is the system ground state. The gen-
eral state of the system is expressed as the lin-
ear superposition of the possible output states
(|e⟩ |0ω, 0ω′⟩, |g⟩ |1ω, 1ω′⟩), each one weighted by
its own time-dependent amplitude probability
coefficient. In order to study the dynamics of
the system considered, it is necessary to find out
the explicit expressions of these amplitude prob-
abilities. The most direct way to solve this prob-
lem is to insert Eq.1 and Eq.2 inside the time-
dependent Scrhödinger equation (TDSE) and,
by exploiting the properties of hortonormality
of the possible output states, to obtain a sys-
tem of linear coupled differential equations for
the two unknowns seeked. This is indeed what
it has been done in this thesis work. The system
obtained is the following:

iĊe = ω0Ce(t) +
∑

µ,µ′=±

∫∫
dωdω′(gµµ

′

ωω′)
∗Cµµ′

ωω′(t)

iĊµµ′

ωω′(t) = (ω + ω′)Cµµ′

ωω′(t) + gµµ
′

ωω′Ce(t) (3)

We notice here that the system of differential
equations is bidimensional in the frequency do-
main. This particular dependence adds more
complexity to the problem, making it even more
difficult to solve. Before analyzing the solutions
obtained in this work, it is useful to introduce
the definitions of input and output fields of the
system. Their definitions are given by:

Ψµµ′∆
in (t) =

1√
2π

∫
Cµµ′

ω,∆(t0)e
−iω(t−t0) dω (4)

Ψµµ′∆
out (t) =

1√
2π

∫
Cµµ′

ω,∆(t1)e
−iω(t−t1) dω (5)

where ω = ω′ + ω and ∆ = ω′ − ω are a new
pair of variables obtained from the linear com-
bination of the original frequencies of the modes.
The input and the output fields are defined as
the Fourier Transform of the fields amplitude
probabilities evaluated in t0 (far before the in-
teraction event) and t1 (far after the interac-
tion event) respectively. Notice that they both
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depend on time and, differently from the one-
photon case, they also depend on the difference
of the frequencies. From the system in Eq.3 it is
possible to obtain a linear differential equation
in the only unknown Ce(t), together with the
input-output relation for the TPI, which links
the output field to the input one through the
nonlinear coupling with the quantum emitter.
The expressions of these two fundamental equa-
tions are the following:

Ċe(t) = −i(
γ

2
+ ω0)Ce(t)+

− i

2

∑
µ,µ′=±

∫ +∞

−∞

√
γµµ

′

∆ Ψµµ′∆
in (t) d∆

(6)

Ψµµ′∆
out (t) = Ψµµ′∆

in (t)− i

√
2γµµ

′

∆ Ce(t) (7)

where γ is the qubit total spontaneous emis-
sion rate defined as the integral in all the pos-
sible values of ∆ of the coupling strength and

γµµ
′

∆ = π
∣∣∣gµµ′

∆

∣∣∣2. In obtaining the fundamen-
tal equations above we have assumed that in a
band of frequencies around resonance the cou-
pling parameter does not depend on the sum
of the frequencies but only on the difference.
The TPI problem is self-consistent thanks to
Eq.6 and Eq.7: once the input field expression
is known, it is possible to solve the differential
equation to find Ce(t); by inserting its expres-
sion in the input-output relation it is possible
to obtain the output field and, with an inverse
Fourier Transform operation, one can compute
the output field amplitude probability, thus solv-
ing the problem.

3. Phenomenology
In this thesis work, after defining the general
theory of TPI, we applied it to the two cases of
interest of spontaneous emission and two-photon
scattering. In this section we will show the re-
sults related to those two situations.

3.1. Spontaneous emission
For the particular system considered, the situa-
tion could be schematized as follows: the arti-
ficial atom initially in the ground state |g⟩ has
absorbed two incoming photons at certain fre-
quencies ωin1 and ωin2 in the waveguide; the
qubit now in the excited state |e⟩, emits two
photons at certain frequencies ω and ω′ after

a certain time t, usually of the order of the ex-
cited level lifetime. The first step that has to be
done for finding the two amplitude probability
coefficients is defining the initial conditions of
the system, i.e. the value of the qubit and of the
field coefficients at t0, with t0 the instant of time
when the emitter is in the state |e⟩. The initial
conditions related to this situation are simply:

Ce(t0) = 1 ; Cµµ′

ω,∆(t0) = 0 (8)

Since the field amplitude probability is null, it is
easy to verify that also the input field Ψµµ′∆

in (t)
is equal to zero. In this way the differential equa-
tion for the atom amplitude probability simpli-
fies and it is directly integrable. Inserting the
solution of Eq.6 in the input-output relation al-
lows us to compute the output field Ψµµ′∆

out (t) and
then the relative amplitude probability function.
The modulus square of the two time-dependent
coefficients are:

|Ce(t)|2 = e−γ(t−t0)H(t− t0) (9)

∣∣∣Cµµ′

ω,∆(t1)
∣∣∣2 = 1

π

γµµ
′

∆
γ2

4 + (ω0 − ω)2
(10)

where H(t − t0) is the Haeviside function cen-
tered in t = t0. The physical meaning of the
above expressions is the following: they give us
information about the probability of finding the
emitter or the field in excited state respectively.
For what concerns the atom probability distri-
bution represented by |Ce(t)|, it is exactly what
one could expect. Indeed, it is defined by a de-
creasing exponential in time with slope deter-
mined by the qubit total spontaneous emission
rate. This means that the probability of finding
the qubit in the state |e⟩ after a certain instant t,
grater than the initial one t0, decreases exponen-
tially as soon as we let the system evolve in time.
On the other hand, the probability distribution
regarding the output field does not depend on
time. This derives from the fact that through
the input-output relation what is retrieved is the
field amplitude probability coefficient evaluated
in t = t1, with t1 much larger than t0. In addi-
tion to that, as it can be seen from Eq.10, the
field probability distribution depends on the fre-
quencies sum ω and on the frequencies difference
∆ via the coupling parameter. This is indeed a
direct consequence of the bidimensionality of the
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system in Eq.3 in the frequency domain and it
will result in a much more complicated frequency
distribution for the coefficient considered. Be-
fore going on with the analyzes of the output
probability distribution, it is necessary at this
point to define properly the parameter γµµ

′

∆ . In-
deed, the expression of the modulus square of
Cµµ′

ω,∆(t1) computed above, is generic, i.e. it holds
for every possible profile of the coupling parame-
ter. However, to obtain the specific value for the
coupling parameter we must first study in de-
tails how the nonlinear superconducting waveg-
uide couples with the emitter. In the following
we will consider an arbitrary plausible shape for
the coupling parameter. Of course, once its ex-
act value will be computed, it would be possible
to repeat the following analyzes. In the continue
of this thesis work, we have chosen for the cou-
pling parameter in the TPI case the following
expression:

γµµ
′

∆ =
Γµµ′

0√
2πσ

e−
∆2

2σ2 (11)

It is defined as a normalized Gaussian function
in the variable ∆ with a full width at half max-
imum (FWHM) proportional to σ. Its maxi-
mum value, reached when ∆ = ω − ω′ = 0 is
given by the constant Γµµ′

0 , which in principle
depends on the particular direction of propaga-
tion of the two photons. However, we will con-
sider a symmetric waveguide, i.e. there will not
be any preferential direction of emission along
it. This means that it is possible to eliminate
the dependence on the indexes µ and µ′ from
the coupling parameter. The specific expression
for the modulus square of the output field am-
plitude probability is then:

∣∣Cω,∆(t1)
∣∣2 = 1√

2π3

Γ0e
− ∆2

2σ2

9Γ2
0

4 + (ω0 − ω)2
(12)

where γ = 3Γ0. To be more precise, the ex-
pression in Eq.12 is related to only one possible
combination of the indexes µ and µ′. To retrieve
the total probability distribution for the output
field it is necessary to add another multiplica-
tive factor of 3, but that would not change in
any case the frequencies dependence and it is
omitted here. As it could be seen from Eq.12,
the resonance condition in this TPI picture is

given by ω = ω′ = ω0/2. Indeed, the probabil-
ity of observing at the output of the waveguide
a pair of emitted frequencies is maximum when
these frequencies match, or are close to, this res-
onance condition. This is coherent with the fact
that the atom is more likely to emit photons
close to its own transition frequency ω0 and with
the fact that the spontaneous emission of a pair
of photons at a completely different sum of fre-
quencies with respect to that of the atom is prac-
tically impossible. The novelty related to con-
sidering TPI with respect to the single photon
ones, is that, since the problem is bidimensional,
we could have in principle different bandwidths
of emission probability for each direction. While
it is always true that the shape of the modulus
square along the direction ω will be Lorentzian
with FWHM proportional to γ, the shape on the
opposite direction ∆ is determined by the par-
ticular expression of γµµ

′

∆ . In this thesis work
it has been chosen with a Gaussian profile with
FWHM proportional to σ. However, by a prop-
erly design of the implementation of the system,
it is possible to tune it.

3.2. Two-photon scattering
The other case of interest investigated in this
thesis work is the two-photon scattering event.
With this term we refer to a particular situ-
ation in which the qubit, that is prepared in
its ground state |g⟩, interacts with an incom-
ing electromagnetic field in input in the state
|1ω1 , 1ω2⟩. As it has been done in the previ-
ous section for the spontaneous emission case,
in order to study the TPI in case of scattering,
it is necessary to define the initial conditions.
Regarding the qubit amplitude probability co-
efficient, we must impose that in the instant of
time in which the scattering event happens, i.e.
t0, the qubit is in its ground state |g⟩. On the
other hand, we must define the input field am-
plitude probability coefficient. For simplicity, in
this thesis work, the input fields will be taken
as monochromatic plane waves. These two in-
coming monochromatic fields will be centered in
two generic input frequencies labeled as ω1 and
ω2. However, since to derive Eq.7 and Eq.6 we
have performed a change of variables, these in-
put fields will be expressed as functions of the
frequency sum ω and the frequency difference
∆. The above considerations correspond to the
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following initial conditions:

Cµµ′

ω,∆(t0) =
δµ+δ

µ′

+

σ
√
π
e−

[ω−(ω1+ω2)]
2

4σ2 e−
[∆−(ω1−ω2)]

2

4σ2

Ce(t0) = 0 (13)

where the Kronecker delta functions simply
define the direction of propagation along the
waveguide of the input, which in this case has
been chosen from left to right for both the pho-
tons. The condition of monochromatic plane
wave is reached when the fields have a really nar-
row spectral profile (limit of small σ). At this
point there are three different possible situations
for what concerns the relative width between the
input fields in the waveguide and the coupling
parameter (which also for this two-photon scat-
tering case will be taken equal to that in Eq.11):
i) the width of the input fields matches the width
of the coupling parameter; ii) the width of the
input fields is narrower than that of the coupling
parameter; iii) the width of the coupling param-
eter is narrower than that of the input fields.
In this executive summary will be presented the
results in the case of spectral width matching.
However, in the thesis work the situation ii)
is also briefly analyzed. Unfortunately, due to
lack of time, the last case has to be studied yet.
From now on we will focus on the situation in
which the width of the input fields matches the
one of the coupling parameter. With the ini-
tial conditions in Eq.13 together with Eq.7 and
Eq.6, we could compute the exact expression for
the scattering coefficients in this TPI picture.
It is important to notice that there are three
different scattering situations that could be ob-
servable after the interaction with the quantum
emitter, each one defined by a specific choice
of the direction indexes: Reflection of two pho-
tons (µ = µ′ = −), Transmission of two photons
(µ = µ′ = +) and Splitting (µ ̸= µ′). With the
term Splitting we refer to the possibility of ob-
serving one photon reflected back and the other
transmitted after the interaction. Since we are
working with bosonic modes, it does not matter
where each photon goes, because the two alter-
natives represent the same situation.
The explicit expression of the scattering coeffi-

Figure 1: 2D-colormap of the Reflection and Transmis-
sion scattering coefficients as a function of the two input
frequencies expressed in units of the atom characteris-
tic frequency ω0. The coupling parameter Γ0 is 0.01ω0,
while σ = 0.001ω0.

cients are the following:

R = S =
Γ2
0e

− (ω1−ω2)
2

2σ2

9Γ2
0

4 + (ω0 − (ω1 + ω2))2
(14)

T = 1− 2Γ2
0e

− (ω1−ω2)
2

2σ2

9Γ2
0

4 + (ω0 − (ω1 + ω2))2
(15)

As it can be seen from the previous equa-
tions, the Reflection and the Splitting coeffi-
cients share the same expression, which means
that the probability of having a reflection or a
splitting event after the interaction is the same.
In fig.1 are showed the 2D-colormap for the
Reflection (equal to the Splitting one) and for
the Transmission coefficient, function of the two
input frequencies. In the sum of frequencies
direction ω′, the scattering coefficients have a
Lorentzian linewidth with FWHM proportional
to Γ0, while in the frequency difference direction
∆′, they have the same profile as that of the
coupling parameter (Gaussian linewidth with
FWHM proportional to σ in this case). For the
particular choices that we have made through
this thesis work, the parameter Γ0 results to be
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greater than the parameter . Due to this reason
in the direction ∆′ the coefficients have a really
narrower profile with respect to the one in the
direction ω′. This is also coherent with the fact
that in the ω′ direction, what we observe in this
TPI case is the same profile that we would have
observed in the SPI situation if we had consid-
ered the qubit interacting with a single photon
with frequency Ω = ω1+ω2. Regarding the pro-
file in the ∆′ direction, it is so narrow in agree-
ment with the fact that the qubit is not capable
of interacting with two photons with very dif-
ferent frequencies. Ultimately, from Eq.14 and
Eq.15, at resonance (ω1 = ω2 = ω0/2), the max-
imum value achievable for the Reflection coef-
ficient is 4

9 , while for the Transmission one the
minimum is 1

9 . This means that, at least in this
framework, it is not possible to observe the to-
tal reflection phenomenon (achieved in SPI). In-
deed, the probability of transmission is always
greater than zero.

4. Conclusions
Let us now briefly summarize our results before
commenting on future perspectives. We were
able to obtain important results regarding the
general theory of TPI in waveguide QED sys-
tems. In particular, we succeeded in defining a
set of self-consistent equations (Eq.7 and Eq.6)
that could allow us to compute the amplitude
probability coefficients after the initial state of
the system has been defined. We have analyzed
two specific examples, spontaneous emission and
two-photon scattering, to show explicitly how
those results could be applied to cases of in-
terest. This work represents a first analysis of
two-photon couplings in the context of waveg-
uide QED. Our result paves the way towards the
exploration of a novel quantum phenomenology
and to possible applications in quantum tech-
nologies. Regarding the future perspectives of
this work, it could have in quantum computa-
tion a possible field of application. In the past
few decades quantum computing has been ob-
ject to the interest of many researches around
the world, which has lead to a rapid evolution of
its architectures and techniques of implementa-
tion. The origin of this incredible success has to
be found in the idea of the so called quantum
supremacy. There are many competing plat-
forms, which are in principle able to implement

quantum computers. Quantum information pro-
cessing with propagating photons is particularly
interesting also for quantum communication and
cryptography tasks. Atoms and artificial atoms
can be used to mediate the interaction between
photons. However, standard light-matter cou-
plings have some intrinsic limitation. For exam-
ple, achieving perfect fidelity in the implemen-
tation of controlled-phase gates is not possible
[5] using a single artificial atom. This funda-
mental limitation does not hold for TPI and so
our theory could lead to alternative solutions for
quantum information processing with propagat-
ing photons.
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