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Abstract

Data and information are the heart of the decision-making process. Infor-
mation needs require the adoption of innovative technologies and a deeper
approach to the object of investigation. The expansion of conversational in-
telligence over the last decade makes natural language systems a great tool,
allowing the user to use voice or text channels to extract and process data.

This Thesis proposes an approach for the design of an infrastructure aimed at
the extraction, processing, presentation and visualization of structured data,
in light of the developments of conversational agents, based on the simplicity
of use and on the inference capabilities of the model.

The approach exploits a series of elaborations, translations and modeling that
allow inexperienced business users to connect a relational database, interact
with the data and extract information and knowledge from the results by
dialogues. A great contribution to this process is given by large models that
represent an important new frontier of conversational intelligence.

More specifically, this Thesis focuses on the following contributions:

• A characterization of the information exploration platform, in terms of
functional and non-functional requirements and objectives;

• A methodology to connect data sources through minimal annotations,
explore them through large models, expose the results and manipulate
them in order to generate new knowledge thanks to data summarization
and data visualization, making possible a deeper exploration;

• An architecture for a framework that, by exploiting state-of-the-art
technologies, supports the distribution of a flexible and modular plat-
form for accessing and processing information;

• A prototype of the framework that integrates different technologies.

The Thesis exploits and reports studies on business users that compared the
performance and user satisfaction with regard to this proposal.





Sommario

I dati e l’informazione sono il cuore del processo decisionale. Le esigenze in-
formative richiedono l’adozione di tecnologie innovative ed un avvicinamento
dell’utente all’oggetto di indagine. L’espansione dell’ultimo decennio in ma-
teria di intelligenza conversazionale rende i sistemi a linguaggio naturale un
ottimo alleato, permettendo all’utente di utilizzare canali vocali o testuali per
estrarre e elaborare dati.

Questa Tesi propone un approccio per la progettazione di un’infrastruttura
finalizzata all’estrazione, elaborazione, presentazione e visualizzazione di dati
strutturati, alla luce degli sviluppi sugli agent conversazionali e ponendo come
fondamento la semplicità di utilizzo e le capacità inferenziali del modello.

L’approccio sfrutta un susseguirsi di elaborazioni, traduzioni e modellazioni
che consentono a utenti aziendali inesperti di collegare un database relazio-
nale, interagire con i dati ed estrarre informazioni e conoscenza dai risultati
tramite dialoghi. Un grande contributo a questo processo è dato dai lar-
ge models che rappresentano una nuova importante frontiera dell’intelligenza
conversazionale. Questo elaborato verte sui seguenti contributi:

• Una caratterizzazione della piattaforma per l’esplorazione dell’informa-
zione, in termini di requisiti e obiettivi funzionali e non funzionali;

• Una metodologia per collegare sorgenti di dati tramite annotazioni mi-
nimali, esplorarle tramite large models, esporre i risultati e manipolarli
al fine di generare nuova conoscenza grazie a data summarization e data
visualization, rendendo possibile una più profonda esplorazione;

• Un’architettura per un framework che, sfruttando tecnologie all’avan-
guardia, supporti la distribuzione di una piattaforma flessibile e modu-
lare di accesso all’informazione;

• Un prototipo del framework che integra diverse tecnologie.

La tesi sfrutta e riporta studi su utenti business valutando la loro soddisfa-
zione nei riguardi di tale proposta.
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1| Introduction

In today’s data-driven world, accessing and using data is becoming increas-
ingly important for the entire society, spanning a wide range of industries.

Retracing the history of information technologies, the centrality of unstruc-
tured information becomes clear: approximately 80% of digitized information
is expressed, accessed and held in an unstructured format [1]. With the ad-
vent of the Web, structured has shared the ground with semi-structured or
completely unstructured formats such as multimedia content. However, the
role of structured information is still cardinal today, being at the base of the
engines and systems that support entire sectors.

Nonetheless, the development of traditional methods of accessing and ana-
lyzing structured data has found it very difficult to abandon the technical
approach and has crystallized on highly structured tools, such as the by-now
standard relational database or SQL. Such methodologies require specialized
technical knowledge and can be time-consuming and error-prone, reducing
direct access to data to a very elitist practice. As a result, there is a growing
need for more intuitive and easy-to-use ways to access structured data that
don’t require training or specialized skills.

The now fertile ground of artificial intelligence technologies seems to have
paved the way for more natural and therefore "democratic" access to struc-
tured data. In this scenario, we are experiencing a sharp increase in the role
of chatbots, becoming prevalent across a wide range of activities.

This tremendous growth is due to the disruption in information exchange
induced by chatbots, lead by the simplified interaction between users and
applications using natural language. This trend makes conversational agents
one of the most promising technologies to transform software platforms into
conversational systems. Finally, the highlighted trend has a cross-cutting
impact that involves technical innovation and effort as well as a deep change
of meaning related to information-gathering methods.
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1.1. Scope framing

Today’s world is largely based on production and business processes. The
large use, consumption and generation of information derive in fact from
the landscape of companies and their productive activities. In analyzing
IT models and methods that can be useful and usable in today’s society, we
cannot fail to take into account the needs and desires of the productive sector.
Therefore, in this Thesis, we try to examine problems and solutions from the
perspective of business decision-makers, large consumers of both aggregate
and raw data, primary users and early adopters of these new technologies.

Furthermore, the focus of this Thesis is on the widespread relational approach.
However, recognizing the role of non-relational structures, efforts have been
made to at least include noSQL environments such as associative databases.

To better frame the problem scope, we propose a real user case: imagine
a logistics manager, interested in verifying the lead times between invoicing
and shipping, thus considering any status changes in printing and packaging.
The main entity of this extraction is the ASN or shipping document. To
extrapolate this data twice a day and to reduce costs, the IT manager chooses
to materialize and directly query the transactional database while maintaining
a relational approach. The manager’s knowledge about the database is scarce
and there is no technical expertise in the extrapolation and manipulation of
data. To date, access to this information is delegated to business intelligence
(BI) infrastructures and dashboards generated when necessary by specialized
technicians.

For simplicity, we can assume that the ASNs are documents and that the ship-
ping information is recorded in a specific table linked to a single document.
Generally, managers are not required to have extensive and precise knowledge
of every entity, but we can assume that each of them knows processes and
their key elements.

From interviews and practical experiences, the problem to be addressed can
be functionally divided as follows:

1. Allowing the system to connect to the data source and to join abstract
concepts - e.g. entities - to table structures. This step must be simple
and intuitive.
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2. Being able to translate a need Give me the delivery lead time of the
ASNs generated in the last 6 hours group by shipping airport into an
executable SQL query. This step requires acknowledging the entities in-
volved and requests and then translating the prompt into an executable
command on the data. Moreover, this request, like many different ones,
can be expressed in various ways by presenting different entities, values
and conversational objects.

The query could be (MSSQL):

SELECT
S . DepAirport as Airport ,
avg (S . Fl ightDate − D. InvoiceDate ) as Leadtime

FROM Document D LEFT JOIN ShippingDet S
ON S .DocNum = D. Id

WHERE
D. InvoiceDate >= GETDATE() − 21600

GROUP BY S . DepAirport
HAVING S . Fl ightDate IS NOT NULL

Understandably, this query cannot be written without deep knowledge
of tables, SQL and the logic expressed by the DBMS.

3. Extracting the data and presenting it. The data format must be under-
standable and consistent with the request. Referring to the presented
end user, the data should be summarized and explained.

4. Once extracted, the data must generate information and knowledge.
Thus, data transformation should not be delegated at a later time but
performed simultaneously with the request. The results must be inter-
pretable and this objective is achieved by including data summariza-
tion and data visualization.

The data should be visualized through graphs at the user’s request, but
new information must be generated through a descriptive and predictive
approach.

5. Allowing the user to move and pivot between different entities and re-
lated contexts, also autonomously manipulating the visualization based
on his/her needs.
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This quick example demonstrates the breadth of the problem under consid-
eration. However, unlike the previous works [2] [3] on which this Thesis is
based, the center of the scope appears shifted: indeed, if until now great
efforts were aimed at directly translating natural language into structured
queries, the introduction of some groundbreaking and outperforming prod-
ucts may discourage further developments in this direct field since they can
obtain better qualitative performances at a negligible cost.

This Thesis follows the assumption that conversational access to data is not
just about translating the natural text into commands, but it concerns the
entire infrastructure around it, generating a modular yet integrated data-
analysis environment. There is a need to encapsulate natural query language
(NQL) engines within platforms that facilitate data connection, but are also
capable of integrating wider natural language understanding (NLU), schema
pruning, data mining, data visualization and data summarization to
support information gathering and elaboration, suggesting insights as well as
supporting the decision-making process.

This is how conversational access to structured data comes into play. In this
Thesis, we refer extensively to NQL as a form of natural language process-
ing (NLP) that allows users to interact with structured data using natural
language queries, such as Show me all the customers who made a purchase
last month. However, conversational access to structured data goes one step
further, allowing users to dialogue with the system, asking also follow-up
questions about information extraction, manipulation, analysis and elabora-
tion.

Taking a user-centric viewpoint, simplifying the accessibility and analysis of
structured data for non-technical users has the potential to enhance produc-
tivity for end users, specifically business managers in this Thesis. It is not
debatable that this innovation may also have a social impact by democratiz-
ing access to information, making data extraction and consumption easier for
employees at all levels of an organization.

Nevertheless, despite the advantages mentioned above, there are still numer-
ous challenges involved in the successful implementation of conversational and
chat-based data gathering, ranging from developing precise and efficient al-
gorithms to ensuring stringent data privacy measures. Notwithstanding, one
of the key issues to overcome is the integration of these new technologies into
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user interfaces that are intuitive and facilitate seamless interaction with the
system. It is crucial to not only focus on providing functional access to in-
formation but also to foster innovation by extracting knowledge and insights
from data.

The future approach towards information would probably not only be a mat-
ter of extracting but also communicating, transferring and manipulating use-
ful data to transform it into knowledge and wisdom.

Indeed, the potential of conversational data access will be explored and the
practical capabilities of these presented technologies will be demonstrated,
also highlighting the challenges involved in effectively implementing these
technologies by reviewing the existing literature on conversational interfaces
and developing a prototype system that combines and bundles different tools.

This work aims to better understand the opportunities and challenges in-
volved in implementing a holistic conversational platform to access, commu-
nicate, manipulate and analyze structured data and provide further insights.

The felt importance of this new field can be decomposed into several reasons.

First, with organizations placing growing reliance on structured data for in-
formed decision-making and gaining a competitive edge, the need for intu-
itive and user-friendly approaches to access and analyze this data becomes
paramount. Indeed, traditional methods, such as SQL queries or data anal-
ysis through Excel, require specialized technical expertise and can be a long
error-prone process. Nonetheless, conversational access to data could provide
a more accessible and efficient way for non-technical users to interact with
data.

Second, the potential benefits of conversational access to structured data are
significant and organizationally relevant. By democratizing access to data and
making it easier for users - at all levels of an organization - to leverage data
in their activities, these technologies can increase productivity, by reducing
errors and helping organizations make more informed decisions.

Last but not least, conversational access is technologically important. The
development of efficient NLP algorithms, combined with intuitive user inter-
faces, can make the interaction with data analysis systems easier for users,
innovating but also disrupting the way we are used to collecting and managing
knowledge.
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Thus, research into these technologies can help drive innovation and advance
the state-of-the-art in natural language processing, conversational interfaces,
and data access systems more broadly.

1.2. Definitions

Chatbot
is a conversational software agent capable of natural language processing to
simulate human conversation, either through text-based or voice-based com-
munication.

Schema Annotation
is the process of characterizing tables, relations, and attributes of a database
conceptual model to produce a mapping between the data source and the
conversation interaction basis.

Data Visualization
is the process of representation of data in a visual form such as charts or
graphics, making access to information easier and precognitive.

Data Transformation
is the process of converting data from one format or type to another, to make
it more useful for a particular application.

Conversational Context
refers to the background information that is used to interpret and understand
a conversation. In a chatbot, the conversational context could be referred to
contextual information or previous messages.

Chat Interface
is a system that allows users to interact with a chatbot through text-based
communication.

NLP
acronym for Natural Language Processing, is the AI process of interpreting
and generating human language, which applications are often used in chatbots
to help them understand and respond to user requests.

Pretrained Model
is an AI model that has been trained on a large dataset and is available for use
without additional training, making them extremely scalable and extensible
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Data Summarization
is the process of reducing large datasets into smaller, more manageable sum-
maries or representations that retain the most important information, helping
readers to better access and merge information - e.g. trends, patterns, and
outliers in the data.

GPT Models Family
is a series of language models developed by OpenAI, which use deep learning
techniques to generate human-like text. These models have been trained on
massive datasets and are capable of a wide range of language tasks, including
language translation, text completion, and question answering.

LLMs
or Large Language Models, refer to a class of artificial intelligence models that
combine natural language processing techniques with logic-based reasoning to
enable machines to reason and infer based on natural language input.

LLM models are designed to understand natural language text in a more
structured and precise way than traditional machine learning models, which
enables them to perform more complex tasks such as answering complex ques-
tions, solving problems, and even generating new text.

3-Tier Architecture
is a model of IT infrastructure that separates the application layer - or busi-
ness logic layer - and the database layer. It is composed of a presentation tier
- also called client or front-end -, an application tier - also called the back-end
or application layer - and a database tier.

DBMS
Database Management System (DBMS) is a software application used to
populate and manage data in an organized and structured way.

SQL
acronym for Structured Query Language, is a programming language specif-
ically designed for managing and querying relational databases

API
acronym for Application Program Interface, is a set of protocols that specify
how software components should interact with each other.
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OLTP
or Online Transaction Processing is a type of database management system
that is optimized for handling large numbers of short transactions, such as
updating or deleting small amounts of data in real-time. These systems are
designed to ensure data consistency and employ ACID (Atomicity, Consis-
tency, Isolation, and Durability) properties, using a normalized data model,
and are optimized for read-and-write tasks.
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2| State of the art

In the era of technological innovation, the role of automation, interaction and
accessibility continues to drive the advancement of many IT sectors. In this
large and captivating landscape, chatbots and conversational agents represent
some of the crucial actors of this epochal change.

The field of conversational intelligence, specifically chatbots, has undergone
a significant disruption in recent years with the emergence of several conver-
sational models. This breakthrough has drastically changed the landscape of
the field, making it difficult to snapshot the current state of the art due to
the rapid evolution of research and the widespread adoption of pre-trained
models. The big bang disruption caused by GPT has led to the develop-
ment of more sophisticated and accurate chatbots, making it difficult to keep
track of the latest developments. Despite these challenges, this chapter aims
to provide an overview of the consolidated state of the art in conversational
intelligence as of March 2023.

At the end of 2022, the technological landscape was enriched with great tools,
thanks to the commitment of companies and organizations working to improve
the capabilities and functionality of these systems. Current developments in
the field focus on improving the performance of chatbots and NLP capabilities
to allow chatbots to understand more complex and nuanced input. Finally, a
further essential point of research is the development of user-friendly interfaces
to make chatbots more widely accessible in a variety of domains.

2.1. Conversational AI: technological landscape

The efforts made lately involve many organizations, but it owes part of its
explosive evolution to the existence of some private companies known for the
development of advanced conversational AI technologies, some of them highly
renowned:
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• OpenAI is a research organization that focuses on the development of
artificial intelligence and NLP technologies. Its Generative Pretrained
Transformer (GPT) model family is a prime example of advanced con-
versational intelligence and is capable of generating human-like text on
a wide range of topics and styles.

• Google is a leading developer of conversational intelligence technolo-
gies, including its Google Assistant platform, Google Bart and its Di-
alogflow chatbot development platform. These tools enable developers
to build intelligent chatbots and other conversational interfaces that can
understand and respond to natural language input.

• Microsoft is a global technology company that has developed a range of
conversational intelligence platforms and tools, including the Azure Bot
Service and the Language Understanding Service. Extremely tied up
with OpenAI in developing GPT models and their applications - e.g.
BingAI -, Microsoft has deserved an important mention in this area.
These tools enable developers to build intelligent chatbots and other
conversational interfaces that can understand and respond to natural
language input.

More generally, the state of the art in conversational bots is constantly evolv-
ing. the technological landscape is teeming with relevant projects and prod-
ucts such as BlenderBot, built and open-sourced by Facebook AI. “It is the
largest-ever open-domain chatbot and outperforms others in terms of engage-
ment and also feels more human, according to human evaluators”[4]. It is
the first chatbot to blend a diverse set of conversational skills — including
empathy, knowledge, and personality — in one system [4].

Another approach to building state-of-the-art conversational AI is through
transfer learning and using large-scale language models like OpenAI GPT3.
These techniques allow for the creation of powerful conversational AI within
hours. Thus, the constantly evolving state of the art in conversational bots is
pushing the development of more advanced and sophisticated conversational
AI tools that can offer more personalized and engaging interactions with users.

Contemporary conversational agents primarily rely on Natural Language Pro-
cessing (NLP) methods that combine linguistic analysis and artificial intelli-
gence. These approaches enable computers to comprehend and analyze hu-
man language, facilitating various subsequent tasks.
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NLP can be broadly divided into two components: Natural Language Un-
derstanding (NLU), which focuses on interpreting the user’s input, and Nat-
ural Language Generation (NLG), which involves generating appropriate re-
sponses [5].

In the realm of business, chatbots are increasingly utilized to automate cus-
tomer service tasks and enhance customer engagement. They can be pro-
grammed to recognize specific keywords or trained using machine learning to
provide more natural responses. As a result, chatbots can assist businesses
in generating sales, automating customer service processes, and executing
various tasks [6].

Also at the business level, wide is the usage of OpenAI GPT, which repre-
sents a state-of-the-art language processing AI model developed by OpenAI.
This model is capable of generating human-like text and has a wide range
of applications, including language translation, language modeling, and text
generation for applications such as chatbots, but also text completion and
analysis.

GPT works by processing input in natural language using a neural network.
It is trained on a sizable dataset of text, including books, articles, and other
textual content. The latest version of GPT is GPT-4 which is a large mul-
timodal model that accepts image and text inputs and emits text outputs.
"While it is less capable than humans in many real-world scenarios, it exhibits
human-level performance on various professional and academic benchmarks"
[7]

One key aspiration of AI is to develop natural and effective task-oriented
conversational systems that use a natural language interface to extract data
from structured sources, supporting people in accomplishing specific goals
and activities. These systems go beyond chitchat conversation and can be
used for tasks such as generating a sales report from a database or easing the
stress of trip planning [8].

Another example of such a system is the Grounded Open Dialogue Lan-
guage Model (GODEL), a task-oriented conversational system developed by
Microsoft Research. GODEL achieves new state-of-the-art performance in
language-driven data exploration by using techniques such as pre-training for
context representation in conversational semantic parsing.
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Another approach to conversational access to data is through Conversational
Text-to-SQL (CoSQL) tasks that map natural language utterances in a di-
alogue to SQL queries. State-of-the-art systems use large, pre-trained and
fine-tuned language models, such as the T5-family, in conjunction with con-
strained decoding [9].

Alongside conversational access to structured data, another important and
evolving topic is the automated conversation-based generation of dashboards,
that is to say, advanced visual extraction of data. One approach for the au-
tomated generation of engaging dashboards is presented by researchers at
Microsoft. "Their approach employs a decision model for visualizing Key
Performance Indicators (KPIs) that are developed based on dashboard de-
sign principles in the literature" [10]. The decision model is used to automat-
ically generate engaging dashboards for organizations, constituting a highly
appreciated tool.

Microsoft’s decision model takes into account various attributes of KPIs, such
as whether a KPI has a single value or a set of values, and the purpose of the
KPI - e.g., to reveal relationships between values. Based on these attributes,
the decision model determines how a KPI should be visualized using common
types of visualization elements such as tables and graphs.

2.2. Chatbots

Chatbots have come a long way in recent years and their evolution is deeply
linked with their development patterns and technologies. More specifically,
focusing on the technical aspects of conversational intelligence, design ap-
proaches can be broadly classified into two main categories: rule-based and
self-learning, even if more precise classifications exist and the field is living a
continuous evolution.

In a rule-based approach, the chatbot is designed to respond to user inputs
based on a set of predefined rules that may involve matching certain keywords
or phrases in the user’s input to a pre-determined response, thus, limiting its
serendipity and adaptability capabilities. For instance, a rule-based chatbot
might be programmed to respond to the keyword hello with the response

Hello! How can I help you?.
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Even if rule-based chatbots can be effective for certain use cases - e.g. task
completion -, their responses are limited to the rules set by their developers
and they cannot learn from new user inputs.

Self-learning - i.e. data-driven approaches - chatbots, on the other hand, use
machine learning algorithms to improve their performance over time, learning
from large amounts of data, such as transcripts of human conversations or
text corpora.

This class of chatbots can be further classified into Retrieval Based and Gen-
erative. Retrieval Based chatbots use a repository of predefined responses and
select the most appropriate response based on the user’s input. Generative
chatbots, on the other hand, generate responses from scratch using natural
language generation techniques.

GPT

Being one of the core parts of the proposed prototype and one of the most
important natural language models, it is worth describing the GPT model
family. More specifically, the GPT model family is a group of natural language
processing models that use deep neural networks to generate coherent and
fluent text.

These models are different from rule-based in several ways. Rule-based chat-
bots rely on predefined rules and scripts to respond to user queries. GPT
models and ChatGPT specifically, on the other hand, do not need any spe-
cific rule but can generate diverse and natural responses based on the input
text, relying on human feedback reinforcement learning (RLHF). Indeed, they
can entirely leverage deep learning techniques and transformer architecture
to produce text that closely resembles human writing.

They are trained on large amounts of unlabeled data, such as web pages,
books, and news articles, and then fine-tuned for specific tasks, such as ques-
tion answering, sentiment analysis, and language translation.

To generate output texts, GPT models use a technique called autoregressive
generation, which means they predict the next word or token based on the
previous ones [11]. The output texts can be controlled by using different pa-
rameters, such as temperature, top-k, and top-p, which affect the randomness
and diversity of the generated texts.
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From a development perspective, producing chatbots can be extremely chal-
lenging when starting from scratch. For this reason, several platforms and
tools have emerged over the past decade to help developers build chatbots
without coding, such as, for example, visual drag-and-drop bot editors, which
allow developers to create streams of conversations simply and intuitively.
Notwithstanding, many other developers generally prefer to use chatbot plat-
forms like Google Dialogflow [12], Amazon Lex [13], IBM Watson Assistant
[14], Wit.ai [15] and Microsoft Azure Bot Service [16], which provide tools
and resources to build and deploy more complex but efficient chatbots.

Despite this, the process of creating a chatbot usually involves several in-
tricate steps. In general, the procedures consist in identifying the chatbot’s
purpose and then determining the final interface of the product, for exam-
ple, web-distributed. Next, developers have to choose the chatbot platform
that best suits their needs and design the conversation flow in a chatbot ed-
itor. Developers must then test their chatbot to ensure it works correctly
before training it using machine learning techniques if applicable. Collect-
ing feedback from users is crucial to improve the chatbot’s performance, and
developers should monitor chatbot analytics to track its performance over
time.

2.2.1. Chat interface

As already said, when developing a chatbot, it is decisive to assess the com-
munication medium through which users will interact with the system.

One of the most adopted solutions is to develop a customized chat interface
that can be distributed locally or as a remote service, such as exploiting a web
page or a Progressive Web App (PWA). However, this choice requires some
extra effort from the developer, including introducing dedicated buttons to
improve the quality of the conversation.

Alternatively, some developers prefer to leverage existing chat platforms that
provide an API to control the messages sent and received by the online pro-
file. These platforms are always available and offer advanced communication
features, such as buttons, image exchange, and document sharing. By using
multiple platforms simultaneously, developers can communicate with their
APIs without changing the application logic.
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This choice becomes even more crucial considering the increasing request
for chat-based services delivered through virtual assistants such as Alexa or
Google Assistant, introducing a collateral issue about pure vocal agents.

Finally, presenting structured data within a chat requires considering several
factors to ensure the user can easily interact with the results and subsequen-
tially extract usable insights from them. Indeed, structured data can be
presented employing tables, lists, charts, and graphs, but considering that
the presentation must be optimized to provide a seamless user experience.
Nevertheless, commonly used visualization methods may be too complex to
display in a chat window or conversationally summarized.

Thus, it is not just a matter of accessibility but a complete and still-developing
revision of the interaction.

2.3. Data extraction and presentation

In the world of commercial companies, data retrieval is a crucial step in
collecting data from various sources for processing and analysis. In these
processes, extraction can be performed through several approaches, such as
web scraping, Extract-Transfer-Load (ETL) methods, or using APIs to fetch
data from external sources. Data are then processed to extract information to
be used to create dashboards and visualizations, providing real-time insights
into business performance.

When talking about operative data, most business information and knowledge
are integrated into comprehensive systems called Enterprise Resource Plan-
ning (ERP) systems. Such systems contain a large amount of data that can
be used to generate KPIs and dashboards. Many modern ERP systems come
with built-in reporting and analytics capabilities, making it easy for users to
generate KPIs and dashboards without needing technical skills. However, if
a user needs to create new extractions, it would be necessary to use SQL or
other tools to fetch data from the ERP system for analysis. Querying and
preparing the data is typically performed by a data analyst or other technical
staff member experienced in working with SQL and particular ERP systems.

Depending on the specific requirements of a company, software engineers and
DB managers can opt for data warehousing or operative data analysis as two
possible ways of managing information for analysis.
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A data warehouse is a centralized repository of historical data extracted,
transformed and loaded from various sources. Warehousing is generally used
when the company requires large analytical queries and reporting for decision-
making.

On the other hand, an operative data analysis on transactional databases is a
real-time or near-real-time analysis of operational data generated by business
processes. Contrarily to data warehousing, it commonly supports operational
tasks and performance monitoring for business optimization.

Once the data have been extracted, it is usually analyzed using Business Intel-
ligence (BI) tools to generate KPIs and dashboards. These tools allow users
to create interactive visualizations, providing real-time insight into business
performance. Generally speaking, BI tools are used in conjunction with ERP
systems exploiting specific extraction, materialization, and transfer method-
ologies.

Significant advancements have been made in the realm of data storytelling
and data visualization. Various techniques are available to present informa-
tion effectively, including the utilization of tools such as Tableau [17], which
enables the creation of interactive charts and graphs. By leveraging these
tools, users can easily manipulate data fields and design visual representa-
tions, providing valuable insights into company performance.

Up to March 2023, conversational access to data and the visualization of re-
sults have also improved. Data extraction languages have become less techni-
cal, such as the KQL used by the ElasticSearch-Kibana [18] duo, representing
a popular combination for searching and analyzing data. PowerBI [19], a Mi-
crosoft product specialized in BI, provides integrated conversational access,
enabling users to efficiently extract queries. However, there is still ample
room for research and experimentation in these fields and on the consequent
human-computer interaction.
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2.3.1. Traditional business data extraction
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Figure 2.1: A traditional business process of data extraction

Extracting business data from an ERP system can seem daunting to non-
expert users. To better understand how user-data interaction is traditionally
handled, it may be convenient to highlight a summarized yet common business
process, following Figure 2.1.

The process is typically initiated with SQL queries to retrieve the data from
the ERP database. Commonly data need to be transformed for analysis, a
task which can be automated by ETL tools (Extract, Transform, Load) and
then loaded into a data warehouse. However, it is not uncommon to directly
access operational resources to get a real-time perspective. In some cases,
reporting tools can allow users to access information employing DataObjects
- a higher level of abstraction over data schema -: this methodology eases the
data extraction, however, it may limit the user to a smaller set of entities and
operations.

Once extracted and elaborated, data can be visualized with dashboard and re-
porting tools providing an intuitive interface for non-technical users to create
interactive dashboards and reports. Users can customize charts and graphs
with drag-and-drop data fields, filters, and visualization types to gain insights
into business performance.

Alternatively, some ERP systems come with built-in reporting tools, which
can extract data directly from their system. These tools offer pre-built re-
ports, specifically designed for certain business processes, and can be adjusted
to meet specific needs. The reports can be generated on-demand or scheduled
and can be exported in various formats such as PDF and CSV.
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In conclusion, while extracting business data from an ERP system can present
complexities, leveraging specialized tools and technologies can make it acces-
sible even to non-expert users. Indeed, visualizing and analyzing business
data play a crucial role in making informed decisions, and integrated ERP
systems offer robust tools to facilitate this objective.

2.4. Related research approaches

Some recent studies have proposed novel approaches to tackle the problem of
conversational access to data and information, demonstrating a strong com-
mitment of the academic world to this topic. This Thesis finds its basis in
the article "Conversational Data Access"[2] and the Master Thesis "A con-
ceptual modeling approach for the rapid development of chatbots for conver-
sational data exploration"[3], which aim at defining a consolidated framework
for data-driven chatbots. This approach follows an intent-entity paradigm for
prompt-to-SQL translation, representing the starting point for this Thesis.

However, our proposal departs from a purely SQL-based approach and tries
to outline a comprehensive infrastructure that integrates conversational data
exploration with data analysis, data visualization, and dashboard creation.
It is also important to consider the development (prototyping) of data-driven
chatbots for accessing structured data. At the academic level, many efforts
are made in this area, such as "Rapid prototyping of chatbots for data explo-
ration"[20] which reports on the experience of defining a model-based tech-
nique for the automatic generation of chatbots for data exploration. This
technique has been integrated into a no-code platform called CODEX, which
offers visual notations to index relational data sources and connect them to
conversation flows for data exploration.

An essential aspect to consider is adopting a conversational approach when ex-
ploring data. A significant contribution in this field is Castaldo’s framework,
which provides a structured framework for designing chatbots specifically
tailored for data exploration. Distinct from conversational virtual assistants
like Amazon Alexa or Apple Siri, this class of chatbots utilizes structured
input to retrieve data from known data sources. The approach is grounded
in a conceptual representation of available data sources and employs model-
ing abstractions that enable designers to define the role played by key data
elements in handling user requests.
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Leveraging the resulting specifications, the framework generates a conversa-
tion flow to explore the content provided by the designated data sources.
However, unlike these works, the effort recounted in the following chapters
tries to generate architectures that, using innovative technologies of the last
year, can support agnostic access to data from a more global perspective, i.e.,
that combines data summarization, visualization, access, and presentation. In
addition, the main focus is on business end users: unlike SQL experts, man-
agers require fewer technicalities, more assistance, and less specific knowledge.
This means a greater degree of delegation to the proposed architecture, and
this is the challenge we face.

The research environment continues to work in this direction as well. Another
noteworthy attempt[21] is the production of CAT, a tool that can be used
to easily create conversational agents for transactional databases. The main
idea is that for a given OLTP database, CAT uses weak supervision to synthe-
size the training data needed to train a state-of-the-art conversational agent,
allowing users to interact with the OLTP database. Furthermore, CAT pro-
vides a ready-to-use integration of the resulting agent with the desired data
source.

As the main difference from existing conversational agents, the agents synthe-
sized by CAT are data-aware. This means that the agent decides which in-
formation to consider based on the current data distributions in the database,
which usually results in significantly more efficient dialogues than data-unaware
agents.

Again, unlike the proposed project, a supervised model is used to process in-
put to a conversational agent. This approach increases the accuracy of results
on a given OLTP but requires training phases and does not use inferential
power to determine data visualization and presentation, a crucial factor in a
modern data analysis system.

Finally, similarly to what is proposed in the paper [22], there is a field of
research that utilizes an instruction-based LLM as an NQL translator: GPT-
based CodexDB. This model is an SQL processing engine whose internals can
be customized through natural language instructions. CodexDB is based on
the GPT-3 Codex model from OpenAI, which translates text into code by
breaking down complex SQL queries into a series of simple processing steps,
described in natural language.
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The processing steps are enriched with user-provided instructions and database
property descriptions. Codex translates the resulting text into query process-
ing code. An initial prototype of CodexDB is capable of generating correct
code for most queries in the WikiSQL benchmark and can be further cus-
tomized.

This work, similarly to what is proposed, replaces machine learning-based
conversational models with pretrained structures, specifically with OpenAI’s
GPT-3.5 model introduced in 2023. Building on this starting point, this The-
sis aims to fully exploit the capabilities of GPT models in SQL translation
and textual reprocessing, paying more attention to the encapsulation of pro-
cesses, which allows for smoother access to information even for inexperienced
users.

2.5. Technologies used

The focus of this section is on the selection of technologies that were chosen
to create a system capable of meeting the requirements outlined in Chapter
3, while remaining consistent with the design patterns described in Chapter
4.

2.5.1. GPT-3.5

GPT-3.5 is a language model that was specifically trained by OpenAI for
generating natural text as an extension of the original GPT-3 language model,
which was primarily designed for natural language processing tasks.

In the code generation landscape, this outstanding model has quickly gained
popularity and outshined other text-to-code tools due to its remarkable ability
to understand natural language and generate high-quality code that closely
matches the user’s intent. This is achieved through its advanced deep learning
architecture, which allows it to process vast amounts of training data and
learn the patterns and syntax of different programming languages.

With regard to this Thesis, the choice to use this pre-trained LLM derives
from its exceptional performance and versatility, which have also contributed
to its overwhelming success, making it a game-changer in the field of genera-
tion of coded text.
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The use of GPT-3.5 for the text-to-query task is extremely innovative, relying
on very fast few-shot fine-tuning which makes it easily configurable. Its use
is mediated only by calling the REST APIs exposed by OpenAI, contextually
attaching everything needed to the model to generate useful answers in terms
of SQL queries. This implies having to pass to GPT-3.5 the span of the schema
affected by the request and obtained through schema pruning (Section 4.5.1),
the user prompt and, contextually, the information necessary to obtain a
specific SQL query for the DBMS concerned. This means communicating for
example which specific SQL dialect to use - e.g. MySQL, MSSQL, Oracle.

These considerations drive the choice of GPT-3.5, given also the developments
of the last year. Furthermore, similar assessments can also be extended to
future prompt-based models that are about to become a core training modal-
ity. This means that, in the future, the GPT engine can be replaced by other
prompt-based engines without altering the structure of the proposed plat-
form, making it extremely modular and interchangeable. Furthermore, it will
potentially be possible to choose to integrate other non-prompt-based NQL
engines directly into the appropriate module.

However, it should be noted that, being a third-party product, its integration
must take into account the economic impact and the relative dependence on
third parties. More specifically, each call to the GPT-3.5 model is economi-
cally evaluated based on the number of tokens requested which are assigned
a unit price in relation to the different models. Understandably, these fac-
tors become crucial when considering how to market, distribute and monetize
platforms that are highly dependent on external products.

2.5.2. Embedded NLU

NLU has become a critical component of many NLP applications, including
chatbots, search engines, and virtual assistants. One approach to NLU is
to use deep learning techniques to train models that can understand and
interpret natural language input. In this domain, a great role is played by
is sentence-embedding, which involves representing each sentence as a high-
dimensional vector. The SentenceTransformer library, based on transformer
models like BERT, has emerged as a popular choice for generating sentence
embeddings. Sentence embedding is an important key widely used to evaluate
user prompt topics and consequently prune the schema to be explored.
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To further enhance NLU capabilities, tools like Spacy and nlpaug have been
used. More specifically, Spacy is a library for advanced natural language pro-
cessing in Python, designed to help build NLP applications that can process
and understand large volumes of text. It provides pre-trained models for a va-
riety of NLP tasks, including named entity recognition (NER), part-of-speech
tagging (POS), and dependency parsing. This is used in combination with
SentenceTransformer to add additional layers of analysis to natural language
inputs.

In contrast, nlpaug is an NLP-focused data augmentation library. It offers a
straightforward and scalable approach to augmenting training data for NLP
models by generating synthetic data using diverse augmentation techniques.
This methodology effectively enhances the robustness and accuracy of NLU
models. By integrating nlpaug with SentenceTransformer and Spacy, a potent
NLU toolset is formed, which can be tailored to meet specific requirements.
This combination provides ample flexibility for customization and empowers
users with a comprehensive toolkit for NLU tasks.

By leveraging the capabilities of these powerful tools, developers can create
NLU models that can understand and interpret natural language input with
high accuracy and efficiency, leading to the creation of more effective chatbots,
virtual assistants, and other NLP applications that provide a better user
experience.

RASA NLU

In this work, some of the NLU tasks have been delegated to a model based
on RASA NLU, demonstrating the integration possibilities of the platform.
RASA NLU is a popular open-source framework for building conversational
AI chatbots. It includes powerful tools for natural language understanding
(NLU), such as intent classification and entity extraction.

More specifically, intents represent the user’s goal or purpose behind a mes-
sage. For example, if a user says I want to order a pizza, the intent is likely to
be order_pizza. The training of intent matcher in RASA has been performed
by defining each intent and providing examples of messages that should be
matched to that intent. These examples should cover the range of ways a user
can exploit to express the intent. RASA uses machine learning algorithms to
match new messages to the correct intent based on the examples provided.
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Another key advantage of RASA NLU is entity extraction, which is the pro-
cess of identifying and extracting specific pieces of information from a user’s
message, such as dates, times, and locations. To train the model, the entities
to be extracted have been declared and documented. For example, if you’re
building a flight booking chatbot, you might want to extract the departure
and arrival airports, the date of the flight, and the number of passengers.
During the training, the developer can define each entity and provide exam-
ples of messages that contain that entity. Similarly to the intent matcher,
RASA NLU uses machine learning algorithms to extract entities from new
messages based on the examples provided.

Overall, RASA NLU provides a powerful and flexible framework for building
chatbots that can understand and respond to natural language messages. By
simply coding the intent matcher and entity extractor, developers can train
the chatbot to accurately identify user intents and extract relevant informa-
tion, making the agent more useful and engaging for users. These considera-
tions make RASA NLU an important ally for the platform.

2.5.3. NodeJS, Angular and MySQL

During the planning phase of a 3-tier application development, it is crucial to
consider a diverse range of tools and technologies. Within the extensive selec-
tion available for the back-end layer, Node.js emerges as a prominent choice
being one of the most appreciated server-side JavaScript environments that
enable developers to build network applications that are both high-performing
and scalable. This well-known technology provides an extensive collection of
open-source modules and seamless integration capabilities with various tools
and services.

In the context of the front-end layer, due also to its increasing diffusion,
the primary tool of choice is Angular, a TypeScript-based framework specifi-
cally designed for constructing web applications. Additionally, Angular offers
comprehensive support for building scalable and maintainable applications,
further enhancing the development process.

In the realm of the database layer, MySQL emerges as a prevalent selection
owing to its user-friendly nature, scalability, and resilience. This relational
DBMS offers extensive support for various data types and incorporates es-
sential features such as transactions, indexing, and replication.
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These capabilities contribute to its appeal and position MySQL as a versatile
choice for managing data effectively. Together, this triptych provides a power-
ful and versatile toolkit for developing three-tier applications. Moreover, the
extensive community support and wealth of documentation available for each
tool make it easy to find help and support when needed. Thus, these tech-
nologies are an excellent choice for any developer looking to build complex
and dynamic applications.

Upon considering various tools and infrastructures, distinct advantages and
disadvantages come to the forefront. For instance, Node.js manifest a high
capacity to handle a substantial volume of requests concurrently, making it
well-suited for scalable applications, but it may not be the best choice for
CPU-intensive tasks.

Finally, the proposed prototype is capable of connecting and extracting data
from remote or local data sources which exploit MSSQL, Oracle, MySQL or
specific formats such as JSON and CSV.



27

3| Conversational data

access

"Incomplete requirement is one of the major factors of projects’ failure"[23]

With the ever-growing volume of data, there are numerous innovative ap-
proaches to information management. While attempts such as Kibana’s KQL
and ElasticSearch have been made to streamline the process, technological
readiness has only recently caught up with the demands.

Coherently, the market for human-computer interaction technologies has seen
a significant surge in consumer demand. As a result, the need for new meth-
ods of interacting with information has become increasingly important. The
impact of this trend is particularly evident among corporate executives, rep-
resenting some of the highest data consumers.

For this reason, it is essential to understand the needs of this demographic
to determine the requirements for an effective data querying and processing
framework.

The idea for this Thesis was conceived as a result of 14 interviews with indus-
try experts, demonstrating that there is a growing need for a more efficient
and effective method of accessing information. This need has arisen due to
the impact of Porter’s information intensity on all aspects of organizational
and operational life, creating a significant disparity between conventional ap-
proaches and technological capabilities.

Moreover, some of the assumptions and the considerations made during the
requirements elicitation come from direct observations of use cases during the
last 3 years - in a sort of spurious ethnography.
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User sample

In this study, we have focused on a sample of 14 middle managers from IT
and manufacturing organizations, who are highly educated and aged between
28 and 68 years, as reported in Table 3.1. All the subjects in the sample are
employees of large companies with more than 250 employees and more than
50 million € in revenues. Many of these figures are project managers, while
others are operational or logistics managers. They are primarily interested
in operational information used in corporate planning and control cycles.
A subset of these users also participated in the final evaluation study (see
Chapter 6).

Participation code Age Gender Role

P1 68 M Sales manager
P2 48 M Development team leader
P3 33 M Project manager
P4 38 M BU manager
P5 56 M BU manager
P6 28 F Logistics manager
P7 54 M IT manager
P8 59 M Sales manager
P9 62 M Project manager
P10 38 F Development team leader
P11 42 M Product owner
P12 55 F BU manager
P13 39 F Product owner
P14 32 M Senior developer

Table 3.1: Questionnaire participants

Study procedure

The study for requirements elicitation followed a traditional interview-based
approach. To deeply inspect the participants’ needs, 14 questions were de-
fined to their daily data consumption, technologies, and aspirations for data
analysis. The complete elicitation questionnaire is reported in Appendix A.
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Analysis

The data gathered through the interviews highlighted that, unlike top man-
agers, the study participants focus on structured data that are difficult to
aggregate, with high timeliness - e.g., real-time or near-real-time data. There-
fore, most of the tools they use access operational sources rather than data
warehouses.

Daily data volumes for this sample can reach more than 20GB, with a wide
range of technical expertise, from those with extensive IT backgrounds to
those who are non-experts but skilled in analyzing data.

To systematically extract requirements-relevant information, a thematic anal-
ysis was applied to the transcribed interviews. More precisely, thematic anal-
ysis is a technique employed to identify and examine patterns or themes
within qualitative data. This method proves valuable in extracting pertinent
information from requirement engineering documents, including interviews,
surveys, or user feedback.

By applying this approach, software engineers can gain insights into stake-
holders’ needs, preferences, and expectations, enabling them to prioritize and
validate system requirements effectively.

One tool that supports thematic analysis in software engineering requirements
elicitation is ELICA (Elicitation Aid Tool)[24]. ELICA is an automated tool
capable of dynamically extracting text snippets from elicitation documents.
These snippets contain information relevant to requirements, encompassing
aspects such as goals, features, constraints, and quality attributes.

In our study, the ELICA tool has been partially applied to extract requirements-
relevant tokens and keywords, by using a hand-made version using Python.
Initially, the interviews have been collected and reorganized. Once ready,
each answer has been processed by yake Python library to extract relevant
keywords and group them by synonyms.

Therefore, the result of the interviews appears as a dictionary of relevant
keywords with related frequency for each question. These outcomes allow for
the classification and extraction of only requirements-relevant information
reducing the noise of open answers. These results have been then analyzed
and summarized in the following main requirements.
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3.1. Main results

To outline the system’s main objectives, it is necessary to specify the expected
goals highlighted by the interview elicitation.

This proposal aims to offer a systematic method that enables the user to take
control over the access, extraction, and display of information, without the
need for technical or theoretical knowledge of the underlying infrastructure.
Throughout the entire Thesis, the main focus is on middle managers as key
users of our proposal.

The core elicitated requirement is the agnosticism towards the queried data
source and the user’s technical knowledge, meaning that users are not re-
quired to have an in-depth understanding of the application or connected
data source. Linked to this element, another key point is usability: the ex-
pected platform’s interactions must be designed to be simple, supportive and
intuitive.

One of the most valued features is the ability to process complex inferences
efficiently, reducing the prerequisites required of the user. The user does not
need to know the structure or nature of the data to visualize it, as the system is
expected to extract the data in the most appropriate format for visualization
and suggest further browsing and data summarization, thus delegating the
entire process to the application. This user-application interaction could be
called "inferential conversational access to information".

It is essential to note that the level of control given to the user must be ex-
tremely high. The user can ask for extractions that were never previously
designed and can configure the data visualization, but also navigate and in-
vestigate the information without the need for an expert’s intermediation.

In conclusion, the principal objective of this proposal, based on these elici-
tated results, is to create a product that enables complete control over data
access and visualization through natural language and/or voice conversations
while minimizing the need for user clicks or taps. The system must feature
an optimized schema design, precise data visualization, textual data presen-
tation, and a history management system that facilitates navigation across
different entities. Finally, leveraging these capabilities and following some of
the emerging desires, the proposal tries to include a potential use case for
integrating the chat component into a more commercial-oriented module.
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All these elicitated requirements are deeply investigated in the following sec-
tions.

3.1.1. Easy and agnostic schema annotation

The initial functional requirement for the platform is to establish connections
with various relational databases, whether local or remote, managing common
connection methodologies. Following this request, the prototype presented in
this Thesis is primarily designed to manage relational sources, however, a
connector for associative open data - i.e. data structures that store data in a
key-value pair format - has also been included.

Users expect the application to extract relations, entities, and attributes di-
rectly from the DBMS metadata. As the interviews revealed, the product
should also be resilient and implement inferences to reduce the steps and
actions required of users. To make the platform user-friendly, the user only
needs to provide some essential information about the nomenclature of enti-
ties and a few attributes. Indeed, the remaining activities are delegated to
the platform’s inferential capacity. This schema abstraction is necessary for
the chatbot’s navigation and helps to simplify the translation process from
text to query through pruning.

The design phase must be easy and visually supported: it is crucial to rep-
resent the schema of various sources using a graph, making careful choices
for massive database schemas, and allowing users to configure everything by
selecting the entities of interest and providing annotations for each of them.

3.1.2. Powerful and efficient text-to-query translation

Show me all the grades of students enrolled in 2022

The second crucial requirement of the platform is related to the generation
and execution of queries based on natural language prompts. The system
must identify the core topics of the request and use them to construct a
working query using the knowledge extracted from the design phase.

To achieve this requirement, different text-to-SQL engines are available, and
the current implementation utilizes OpenAI’s GPT-3.5, which can be fine-
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tuned for similar tasks, such as prompt-based queries or code commenting:
one of its best-known derivated products for development support is GitHub
Copilot [25].

To ensure precision, the system must be syntactically and logically correct.
This feature becomes increasingly challenging as the query grows larger. In
this Thesis, resilience to syntax errors and typos has been considered a non-
functional requirement.

For these reasons, query generation must be able to handle literals with suf-
ficient confidence level, for example using full-text or like where clauses.
Moreover, the system must be able to self-correct in case of errors, thus
increasing its dependability. Additionally, the system must prevent SQL in-
jections and malicious query generation by carefully filtering executed com-
mands.

Finally, the system must be efficient, returning results in acceptable response
times, even when querying large operative databases. To this extent, a schema
pruning step must be included to process queries with greater efficiency.

3.1.3. Precise and useful data presentation

The scope of this work extends beyond merely extracting data given natural
language requests: indeed, the presentation of the extracted information is
also of great importance.

As interviews confirmed, when processing operational data, it is necessary
to present the data in understandable formats that can be further processed
by humans to extract information and knowledge. Indeed, although tabular
formats are useful for detailed investigation and are typical of relational ex-
tractions, they are difficult to interpret and should be replaced by precognitive
visualization methods [26].

The system must reorganize the data to highlight the most relevant attributes:
this step can be partially determined by the structure of the entities, but
ultimately requires computation based on the nature of the data. These
relevant attributes must then be represented through easily understandable
and familiar graphs, as the success of data visualization depends on its ability
to quickly transmit a message without requiring significant interpretation
effort from the user.
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The system must also be integrable with virtual assistants - e.g. applying text-
to-speech (TTS) to natural language summary of tables - thus summarizing
individual extractions from a high-level perspective and diving into the details
of individual records as requested.

Finally, data mining processes are crucial for transforming data into infor-
mation, knowledge, and insights. Summarization and mining are required to
extract descriptive and predictive details and present them contextually with
the user’s requests.

Thus, we have reason to believe that this process, along with data visualiza-
tion and data mining, is a key requirement for the data agents of the next
future.

3.1.4. User manipulation of results

Count the grades per student through a bar chart

The visualization of results cannot be an end in itself but must be part of a
broader process of data navigation and access. This means giving the user the
ability to manipulate the presentation to adapt the results to their preferred
visualization. Navigation is fundamental for proper conversational access to
information, which should not be considered a static element, but a malleable
block.

To this extent, the chatbot must be able to correctly manage intents aimed at
reworking the visualization of graphs and tables. The user should be able to
reorder dimensions, filter, group and investigate displayed data. This relevant
requirement is linked to modifying the data visualization - e.g. "Show it using
a bar chart" - but also any further navigation and exploration.

In conclusion, the user must be able to move freely through the extracted
results and also use these results to "explore" related entities. Manipulating
the results is not just a matter of rearranging data visualization, but it is an
entire suite of mechanisms capable of providing complete freedom to navigate
and recombine the presentation of information.
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3.1.5. Wiseful conversation management

Context coherence is crucial to ensure effective communication and under-
standing between individuals engaged in a dynamic exchange of information.
Indeed, maintaining context across multiple requests is essential when using
a conversational approach as an interface between users and data.

Although a conversational approach can be highly effective in bridging users
and data, it is imperative to establish a system that retains a history of
previous requests and leverages that information to handle future inquiries
effectively. In other words, it is paramount to manage the history of messages,
which can be used intelligently to satisfy future prompts.

Furthermore, it can be necessary to guarantee that the results of any requests
can be persistently stored and re-accessed by the user. This requires storing
the query results along with the commands used to obtain them. This fea-
ture is important because the system is required to update the results if the
underlying data have changed over time, especially for dashboard interfaces
where refreshing is common. By ensuring that results and commands are
persistently stored, the platform can provide users with access to up-to-date
and fresh information.

3.1.6. Automatized exportation of results

Create a dashboard about students

Export this dashboard as a slideshow

In the business context, it is not uncommon for data and information to
be organized into summary panels, such as dashboards, and then further
summarized into downloadable reports or presentations. However, dashboard
generation requires a total change of approach, focusing on overcoming the
technical difficulties and obstacles that inhibit users from freely generating
and structuring their exports.

In this scenario, the concept of a conversation becomes more fluid and ex-
temporaneous, evolving into a facilitated way of writing commands. Notwith-
standing, the conversational approach to structuring individual indicators still
remains crucial and therefore must be incorporated into dashboards.
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In other words, conversational data environments should give users the abil-
ity to request entire dashboards through proposals and then configure each
indicator through dialogues.

Furthermore, interviews have highlighted the importance of being able to ex-
port results: users should not waste time configuring each report but should
rely on an automated export system. Therefore, it is the system’s responsi-
bility to imagine, generate and download reports on request.

Moreover, generating reports and dashboard exports does not mean simply
saving indicators in PDFs, but completely rethinking the visualization. In-
deed, static reports such as PDFs require different methodologies for present-
ing data. A simple example of this problem is the absence of result pagination
in PDFs or slides, implying a new way of visualizing large datasets. As it is
easy to understand, creating a slide presentation requires visualization meth-
ods that are very different from a PDF export. Timing, modes, texts, and
graphics need to be reconstructed. Great importance, in this case, is given to
serendipity: users should be able to completely rely on presentation proposals
and extract inspiration for subsequent modifications.
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The process of defining our objectives played a pivotal role in the development
of an infrastructure capable of meeting the escalating demand for data and
processed information. By comprehending the functional and non-functional
requirements, we were able to construct a modular platform that could flexibly
accommodate various data sources, prioritize the back-end logic, maintain a
streamlined design, and automate information access and processing. These
modeling choices were guided by our objectives and requirements, yet they
necessitated a careful balance with respect to their compatibility with the
underlying architectures of the platform and their responsiveness to rapid
evolution.

4.1. Declaration of intents

The primary objective of this proposal is to establish a reusable framework
for creating, managing, and organizing lite suites that can extract and process
structured data through conversation. The foundation of this development
lies in agnosticism towards data sources, simplicity of interaction, infer-
ential delegation to the platform, modularity, and reusability.

Indeed, the proposed approach prioritizes the definition of processes and
pipelines as an abstraction layer, regardless of the technologies employed.
The rapid pace of innovation in this field necessitates a modular and inter-
changeable infrastructure not tied up to a technology-specific approach.

Therefore, the focus is on defining the necessary and sufficient processes,
pipelines, and functionalities to fulfill the information needs of our key users
- middle managers in large corporations. Each component of the proposed
infrastructure is interchangeable with equivalent modules, respecting estab-
lished interface limits, thereby ensuring modularity and extensibility through
adapters.
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However, to develop a prototype, some technologies have been chosen, select-
ing them among the main technologies available at the time of writing.

In this section, we will examine the framework of the proposed platform and
its internal processes.

The architecture is primarily composed of three fundamental modules:

1. Designer: The Designer module is at the core of the connection be-
tween the data sources and the application, and it involves defining the
semantics of objects.

2. Chat: The Chat module is the central module for querying and conver-
sational access to data, and it is closely linked to the Designer module.

3. Dashboard: The Dashboard module is an extension of the Chat module,
which provides an interactive and expandable dashboard for accessing
data.

Since the Designer and Chat modules are both essential and interconnected,
they could be considered as a single and interdependent unit. The Dashboard
module takes advantage of the previous modules’ architecture to provide an-
other way of accessing data that is widely used in the professional world:
dashboards and panels. Therefore, it will be presented separately as an op-
tional add-on to the platform, highlighting the framework’s modularity and
extensibility.

4.2. User journey

Following our commitment to an agnostic and user-centric approach, we have
dedicated our efforts to create a seamless and straightforward user experience.
As previously mentioned, our proposed solution aims to assist non-technical
users who lack knowledge of the schema and querying techniques, as well as
visualization methods.

To accommodate this assumption, we have developed an extremely simplified,
user-friendly, and intuitive approach that extends to the configuration and
dashboarding phases: the end user does not necessarily require technical or
specialized knowledge of the underlying system. Additionally, the designer
and end user’s roles can overlap, allowing the same user to have full autonomy
in both the configuration phase and subsequent activities.
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Before utilizing the system, the user needs to identify and connect their own
data source for querying. This source can be either local or remote. Once the
connection configurations are provided, such as the database name, address,
and access credentials, the user can start annotating entities.

The annotation process is straightforward yet crucial. For each table of in-
terest, the user needs to insert an annotation in the form of a word or phrase
that describes the table’s content. The same applies to the columns within
each relevant table, where the user declares their respective attributes. This
process takes only a few minutes and focuses solely on tables and columns.
The user is not required to declare links and associations explicitly. The an-
notation process is simple and only necessitates an initial user collaboration
to assist the system in making subsequent inferences.

While not strictly mandatory, the user can provide general information about
the entire database. For instance, they may specify that

Each table contains an ID field

Once the desired database is annotated, the user saves their changes, and
the system encodes the information, preparing it in the required formats for
subsequent processes. These actions constitute what we refer to as the design
process.

Upon completing this initial procedure, users can immediately initiate a con-
versation with the chatbot, with the only limitation being their imagination.
After selecting the relevant database (which can include multiple sources), the
user can enter their requests in the chat interface. In response, they will re-
ceive tables, texts, images, and graphs. Optionally, the user can dictate their
requests verbally, which will be converted using speech-to-text technology.

Some responses may also contain clickable buttons that enable the user to
take shortcuts, such as navigating between different topics or sections. These
activities form part of the inquiry process, which, despite its simplicity
from the user’s perspective, represents the most complex pipeline from an
inferential standpoint.

Furthermore, we have provided the user with the ability to independently
create and save entire dashboards. To achieve this, the user selects their
desired database and requests dashboard proposals based on a specific topic.
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They can then use a textbox to type and configure the order, size, and title
of various indicators, as well as add or remove them at will, in a buttonless,
codeless and touchless manner.

Each indicator within the dashboard is essentially a separate chat session
where the user can interact with the bot instance, requesting specific visual or
content changes until the desired dashboard is achieved. Finally, our solution
offers the option to export the dashboard as a file, such as a slideshow. The
user can request this export via a text command, eliminating the need for a
traditional UI, and it completes the dashboard process.

These three processes - design, inquiry, and dashboard - represent the three
main activities of the system from the user’s perspective (Figure 4.1). Despite
being a complex and coordinated dance of automated tasks and user interac-
tions, as described in the following sections, our solution ensures a seamless
and user-friendly experience.

Design process

Source
configuration

Table
annotation

Skip
general

annotation

Column
annotation

General
annotation

Saving

Inquiry process

User
request

Response

No

Possible further
navigation

Automated
request

Yes

Dashboard process

User
request

Type

UI
modification

Dashboard
creation

Dashboard
extraction

Figure 4.1: The three main processes from the user perspective
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4.3. General structure

db

PK id int NOT NULL

name varchar(45) NOT NULL

server varchar(45) NOT NULL

type varchar(45) NOT NULL

port int

username varchar(45) NOT NULL

password varchar(45) NOT NULL

table

PK id int NOT NULL

db int NOT NULL

description varchar(300)

name varchar(45) NOT NULL

fullname varchar(45)

schema

PK id int NOT NULL

db int NOT NULL

encode blob

schemacol varchar(45)

connection

PK id int NOT NULL

db int NOT NULL

from varchar(30) NOT NULL

to varchar(30) NOT NULL

columns

PK id int NOT NULL

table int NOT NULL

name varchar(45) NOT NULL

description varchar(45)

log

PK id int NOT NULL

prompt tinytext NOT NULL

query longtext

db int NOT NULL

timestamp datetime NOT NULL

session varchar(45)

Figure 4.2: Metadata support database used by the system to collect schema
annotation

Our software architecture app is built upon the classic 3-tier paradigm, com-
prising a modular back-end, a semi-modular front-end, and a support database.
The app allows to create and configure a variety of connections in runtime,
forming a network of data sources that users can query.
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In this paradigm, connections can be directed towards both locally and re-
motely hosted data sources, making it not limited to just simple use cases.
The great advantage of this structure is that each new connection can be eas-
ily added and the access to additional data sources is instantaneous and can
be done in runtime, without requiring any kind of recompilation or specific
training of the entire platform.

The app’s database is designed to support all the metadata and abstractions
for the user-defined connections and schemas.

The back-end is coded using a combination of two different environments:

1. An engine that manages APIs and API calls, making it a flexible tool for
interfacing with various front-end paradigms (e.g., mobile, web, desktop
APIs).

2. An ensemble of modules that interface with data sources, extract and
process data, and transform it into information.

This dual-engine setup enables the back-end to efficiently manage complex
data processing tasks and interface with different front-end technologies, pro-
viding a scalable and adaptable solution for a wide range of software appli-
cations.

The first component of our back-end is highly modular and easily extendable
to meet the needs of different implementations, allowing for a flexible and
customizable back-end that can be tailored to specific project requirements.

The second component is a modular environment that is called to perform
data extraction, processing, and transformation tasks. Following this line of
reasoning, each subcomponent of this module can be modified or removed,
and new elements can be added to expand the functionality of the app, thus
meeting the modularity and extendibility technical requirements.

Collectively, these elements combine to create a robust and flexible system
capable of managing intricate data processing operations and seamlessly in-
tegrating with diverse front-end technologies.
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Back end

Controllers Services

AI and data
elaboration modules

Third-party services External
data

sources

Metadata
database

Front end

Figure 4.3: Back-end model

The explosion in popularity of pre-trained models such as the GPT family
has required a rethink of how text-to-query processes are handled. GPT has
positioned itself as a new baseline and disruptive technology. For this reason,
it was decided to incorporate this paradigm into the platform rather than
compete directly.

However, it is possible to replace this model with any other equivalent prompt-
based tool or other NQL models as long as they are suitably predisposed to
the interfaces proposed here.

For these reasons, the entire infrastructure uses GPT LLM both to transform
prompts into queries and enhance our NLP procedures.

Therefore, the proposed platform organizes the metadata and schema anno-
tations of the requested data sources, uses this information to drive a few-shot
fine-tuned [9] GPT model to generate the queries, executes them, processes
the results, and generates a text version of the results and graphical versions
of data visualization.

Finally, the back-end orchestrates the interaction between multiple inter-
changeable modules of data summarization, data visualization and entity nav-
igation by managing the conversation and historicizing requests. Moreover,
it manages possible add-ons, such as the automatic generation of interactive
data-based dashboards, slides, presentations and reports.
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4.4. Design process

The design process of the meta-schema is a crucial task of our pipeline.
Indeed, in order to operate, the framework requires knowledge about the
semantics of the entities. Thus, the design process plays a crucial role in
the platform. As mentioned earlier, considerable effort has been devoted to
expediting, modifying, simplifying, and optimizing conventional ways of an-
notating and designing data sources. This agnosticism makes the platform
more accessible to novice users who lack expertise in relational infrastruc-
tures and NLU requirements, which makes it challenging to interface with
conventional schema annotation and tagging methods.

To address this, the chosen approach has been to minimize the user effort
needed to activate the framework’s operations. Furthermore, the scope of
optional design activities that users can perform has also been reduced. The
platform can produce results even without specific annotations due to the
high level of inference of the text-to-query engines and the entire platform.

The platform has the capability to establish connections to various relational
data sources, utilizing a combination of local and remote connections via SSH
to access the databases. As a result, users are required to input just some
details for each source they want to connect to.

4.4.1. Tables annotation

The design process starts with the selection of the data source that requires
annotation. The designer component is built on the premise that the chosen
database is modeled correctly, with entities, attributes, and their connections
correctly defined. These logical definitions and links between entities must
correspond to the actual schema of the queried database. If this assumption is
respected, the interface accesses the metadata tables provided by the DBMS,
thereby reconstructing the schema of the requested data source.

Users can view the schema in its entirety, with connections between enti-
ties highlighted, or, for wide databases, analyze the schema in a segmented
manner.

Once the schema has been opened, the user will have to select the tables
of interest and enter a series of attributes that can describe the use and
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meaning of the table. Optionally, the user can also define a title for the table.
This phase is extremely important: everything that will not be noted will be
invisible during the interrogation phase and, therefore, cannot be visited. For
this reason, it is important to note not only the main tables but also composite
entities such as bridge tables, which are extremely useful for logically linking
different entities.

Finally, the designer can add some general notes about the data source which
may result helpful for text-to-SQL translations. An example could be:

In this database, the identity column is always called ’Id’ for each table

lesson

student

class

teachertimetable

grade

time of lectures

schedule

timetable

class

class

lesson

lesson
subject

course

teacher

teacher

professor

student

student

grade

mark

grade

evaluation

Figure 4.4: An example of schema tagging

In order to better understand the annotation methods, it should be remem-
bered that a relational schema is not only characterized by a multitude of
primary tables, but also by numerous support tables - such as bridge tables
- capable of transferring many-to-many relationships in the actual schema of
a database.

To facilitate access to complex data, it was decided to include not only the
materialized tables of a schema but also any views. This choice allows not
having to rely entirely on the interpretative power of the text-to-query model
in deducing connections and links between tables, but also being able to count
on persistent extractions developed by expert technicians.
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In fact, it should be remembered that, although performing, given the small
amount of knowledge required to operate on a database, the NQL model will
not be able to offer appreciable results in all conditions.

To optimize table annotation, the user should prefer to use specific keywords
that he/she believes will be used to refer to specific entities, thus avoiding
using phrases as an annotation. The annotation of the tables is a manda-
tory step that provides the platform with the minimum knowledge necessary
and sufficient to operate. However, as mentioned, other information may be
included to increase the effectiveness of future extractions.

4.4.2. Columns annotation

In addition to the annotations on the tables, the user can decide to provide
specific annotations on the columns to clarify the meaning of the attributes.
This operation is not mandatory: if the columns are not annotated, the
platform will use all the available attributes trying to make inferences on
them. If this operation occurs instead, the text-to-query model will consider
only the annotated columns, ignoring the rest.

4.4.3. Schema embedding

Once the annotation is completed, the user will have to save the changes
and start the training phase. Unlike what happens in other systems, the
training is runtime, i.e. it is managed directly by the platform as a function
and does not require any accessory skills from the user. The embedding
phase is performed by the platform as an autonomous sub-process without
interrupting or shutting down the application itself. This means that it is
possible to start embedding multiple data sources simultaneously on the same
application.

The training phase is crucial for consolidating the annotations and is based on
a process of feature extraction from the annotations. The chosen approach
is, therefore, to transform each annotation into a feature vector through a
word embedding model called SentenceTransformer. This model allows you
to convert sentences and words into feature vectors based on the semantics
of the words.
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Give me the number of students by country

Word
embedding

Word
embedding

Word
embedding

Word
embedding

Word
embedding

Word
embedding

Word
embedding

Word
embedding

Vectorize

[0.23, '0.56, ..., 0.99]

Figure 4.5: An example of word-wise embedding

For example, the words "tree" and "shrub" will be characterized by two dif-
ferent but similar feature vectors given the semantic proximity of the two
terms. This would not be true between the words "tree" and "cup". In
this case, the similarity can be expressed mathematically as inversely pro-
portional to the cosine distance between the two feature vectors considered:
the more two terms are semantically similar, the smaller the cosine distance
is. Before passing the annotations to the encoding phase, it was decided to
expand every single annotation through the synonymic search: this step al-
lows to strengthen of the semantic search in the inquiry process. When the
transformation process is complete, the schema will look like this:

{

"<table name >": [...< feature vector >]

}

This encoded representation is then saved persistently by the back-end. This
step facilitates and accelerates the semantic pruning of the schema, which
is fundamental in the following inquiry process. At each modification of the
schema annotations, it will be necessary to save the tagging and proceed with
a new encoding.

To summarize, the process of design of a data source follows these steps:

1. The first step is to connect to a database, which is mandatory.

2. Next, users can name the entities of interest and provide a series of
attributes that describe their content. Rather than complete sentences,
a series of tags will suffice.
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(a) Optionally, users can describe individual columns and exclude oth-
ers. If no columns are tagged, the framework will consider all
attributes relevant and autonomously manage incomplete schema
descriptions. Possible developments include auto-learning of rele-
vant columns.

3. Next there is the training: the annotations provided by the user are
encoded through a fine-tuned seq2seq model and then saved. This fa-
cilitates semantic mapping and speeds up the pruning phase. The result
is a persistent encoded schema that can be used to optimize the perfor-
mance of the app.

Image preprocessing

One subprocess that is particularly noteworthy is the image preprocessing
stage. The approach is designed to demonstrate the platform’s flexibility by
allowing users to include multimedia content in their search queries, primarily
images. If the images exist as Binary Large Objects (BLOBs) in the database,
users will be able to apply filters based on their content. To this extent,
tables containing BLOB columns will be materialized. Then, if these BLOB
attributes refer to images, each multimedia content will be converted into a
textual description or caption as part of a preprocessing step. A pre-trained
model is employed to perform this extraction task; once completed, the system
persistently saves the records of these tables to be ready and accessible when
needed.

These textual descriptions will be used to conduct semantic searches based
on similarity with user prompts in the future. When a user requests an
extraction on these tables, image descriptions will be included in the search
clauses, if possible.

Finally, this approach can be appropriate because the tables containing im-
ages are generally static - e.g. product catalogs - thus characterized by low
data frequency which makes them easily materializable without incurring data
obsolescence.
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4.5. Inquiry process
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Figure 4.6: The inquiry process

The inquiry process represents the main interaction between users and data
in the proposed solution. The inquiry is an extremely complex procedure that
finds its fulcrum in the prompt-to-code model of GPT-3.5-turbo, however, re-
quiring important computations upstream and downstream of the text-query
translation. Also, when we refer to the inquiry process, we must bear in
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mind that not all user requests are aimed at obtaining an extraction, but
some interactions may refer to more specific commands such as reassortment
of previous results, drill down or navigation to other entities.

To clarify better, the platform can manage three different query intents di-
rectly through the chat - an additional five in the dashboard component -
which can be summarized in Table 4.1.

Intent Example Purpose

Select query Give me all the students New extraction

Navigation Get the grades of the student named
"Francesco"

Navigate to other
entities

Data
visualization

Count the students per country using
a bar chart

Rearranging the
results

Table 4.1: Inquiry intents

Each of these intents is handled with a NLU cascading fallback process: un-
like what happens for the dashboard component, in the chat, an intent can
be matched only if the previous handler failed to satisfy the request. This
approach allows us to serialize and prioritize intents at the expense of tem-
poral performance. In the proposed solution, the first intent to be tested is
the data visualization, followed by navigate and finally select query.

For greater clarity, the three intents will be detailed in the following para-
graphs, starting from the most important one related to data extraction.
However, other intents are present and documented in the Dashboard pro-
cess (Section 4.6).

The intent for a new extraction is certainly central and allows the user to
access the data in a source given the metadata provided in the design phase.
Indeed, to initiate an extraction from one of the connected sources, the user
must have accurately configured the schema of the source in the design pro-
cess. The inquiry process is triggered from the front-end, particularly from
the chat page.

Following the cascade intent-matching, a new query intent is distinguished
by a significant deviation from the previous requests, as it is captured after
the fallbacks of the prior intents, indicating a dialog discontinuity.
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It is challenging to define a precise archetype for this intent as it relies heavily
on the user’s phrasing and the complexity of the request itself.

Some examples of new query intent can be:

I would like to have all students whose name begins with F

Which professor holds the subject with the best grade point average?

Are there any overlaps in this week’s timetable?

As can be seen, the sentence structure is very changeable and this plays
against an approach based entirely on intent identification.

4.5.1. Schema pruning

The first action, once such a request has been received, is called schema
pruning, i.e. ellipsis of entities useless to satisfy the request.

The reasons for this activity are different:

1. the first, of a fundamentally technical nature, derives from the need
to refine the search on specific entities by eliminating any noise that
would make this agnostic approach inefficient when applied to massive
databases.

2. the second, of a purely economic nature, derives from the use of the
pay-per-use APIs: the wider a prompt is, the higher the fee for this
request will be.

Therefore, reducing the span schema to work on allows you to minimize costs
and focus only on relevant entities. To this end, we proceed with a semantic
analysis of the user prompt to extract the main keywords of the request. This
procedure takes place by exploiting a keyword extraction process capable of
generating the list of main syntactic entities within the prompt.

Once this is done, feature vectors are generated for each of the keywords
extracted by means of the same word embedding mechanism introduced in
the design process. This allows, given a prompt, to obtain a list of numerical
vectors corresponding to the most relevant elements and objects within the
user phrase.
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At this point, the encoded schema obtained in the design phase is used to
associate a similarity value between the prompt and each table of the schema,
then propagating this similarity also to adjacent entities.

Therefore, for each table and for each prompt, proceed as follows:

1. extract keywords from the user prompt using single-document unsuper-
vised keyword extraction

2. given the encoded version of the annotations for each table, it is possible
to calculate the table-prompt semantic similarity. The final similarity
is computed by balancing two similarities.

ωi =
sim1 + 4sim2

5
(4.1)

where:

sim1: is the semantic similarity between the entire prompt sen-
tence and the table annotations

sim2: is the semantic similarity between the extracted prompt
keywords and the table annotations

3. given the connections (foreign keys or bridge tables), the table-prompt
similarity of each entity is propagated to the connected entities via a
breath-in exploration of the graph (schema topology). The weights are
propagated with progressive damping for each node (table) update given
the following formula:

ωi =
∑︂
j∈Ni

ωj · d0.08ij (4.2)

where:

ωi: is the semantic similarity of the node i (from the previous step)

dij: is the minimum path length (number of foreign key navigation)
between node i and j

Ni: are the neighbours of i defined as the tables connected with i

through a foreign key i→ j

Through point 2 it is possible to obtain a first set of the possible entities that
can be involved by the request.
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However, this is not enough to decide which schema span is useful for fulfilling
the request. Indeed, thanks to step 3, it is possible to include also adjacent
tables in the initially selected span. This procedure is fundamental if we
consider the relevance of bridge tables and the fact that they may not be
included if considering only the prompt-table similarity.

Indeed, take this example:

Give me the courses attended by the student "Francesco"

given the following schema:

Figure 4.7: The considered database schema

The keyword extraction given the prompt is the following:

[" courses", "student", "attended "]

Applying the semantic similarity step (Formula 4.1), we obtain this prompt-
table similarity:

{" lesson ": 0.4829 , "student ": 0.8703 , "timetable ":

0, "class": 0.4293 , "teacher ": 0, "grade ": 0}

Thus, through pure semantic analysis, the chosen entities would be student
and lesson.
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However, the many-to-many relationship subsisting between the two chosen
entities is codified through the bridge table grade (containing also data about
attendance) which must therefore necessarily be included.

To do this, the similarity weight of student and lesson must be propagated
to all neighboring entities (Formula 4.2). By doing so, the grade entity will
also be added.

{" lesson ": 0.6903 , "student ": 0.8812 , "timetable ":

0.1520 , "class": 0.5788 , "teacher ": 0.2311 , "

grade": 0.6947}

Figure 4.8: Prompt-table similarity heatmap

Once a mapping of all the entities with their relative similarity has been
obtained, the model proceeds by selecting only a span of the entities that
have prompt-similarity greater than 75% of the maximum value of similarity
obtained.

threshold (75% of maximum similarity) = 0.6609

selected relevant tables = [lesson , student , grade]

The output thus obtained can be processed for the prompt generation phase.
The overall procedure is formalized through Algorithm 4.1.
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Algorithm 4.1 Schema pruning
1: Prompt keyword extraction
2: encoding1 ← Full prompt encoding
3: encoding2 ← Keyword encoding
4: for all table in schema do
5: sim1 ← 1 - distance.cosine(attribute,encoding1)
6: sim2 ← 1 - distance.cosine(attribute,encoding2)
7: ωtable ← sim1+4sim2

5

8: end for
9: queue ← schema

10: while queue ̸= ∅ do
11: table ← queue.dequeue()
12: ωtable =

∑︁
table∈Ni ωj · d0.08ij

13: end while
14: threshold← 0.75 ·max{ω}
15: return argmax

table
{ω[ωi > threshold]}

4.5.2. Image filtering

After eliciting the requirements, it became clear that the conversational sys-
tem needed to be able to access unstructured and multimedia elements using
natural language. This would allow users to make inquiries related to content
such as images, video, and audio, such as

Find me a teacher whose profile picture has a lake in the background.

If the selected entity - the teacher in this example - is accompanied by an
image in BLOB format, the system should perform the search by accessing
the image content and applying a filter based on it.

To achieve this, the system materializes tables with BLOB columns during
the embedding phase of the Design process and elaborates the images to
extract a brief textual description (Section 4.4.3). While these materialized
results may not be up-to-date, they are generally static data, such as product
catalogs, making this choice justifiable. Later on, during the inquiry process,
before creating an SQL query, the generation module checks for the existence
of such materialization.
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If found, it is used as a knowledge base for a subsequent semantic search on
the textual description of the image.

To obtain the best result, prompts and descriptions are encoded via word
embedding with spacy NLP, and the prompt-description similarity is used to
rank the different results. If the similarity is greater than 0.75 (an arbitrary
threshold), the record is matched and returned as a result; otherwise, the
system proceeds with the generation of the GPT prompt and the creation of
the SQL query, as described in the next section.

Figure 4.9: Example of image search1

4.5.3. Prompt generation and query generation

Query generation is entrusted to a GPT model based on prompts. GPT-
3.5, like its successors, is a pre-trained model that can be refined through
prompt optimization thus obtaining a fine-tuned model, in this case, aimed at
text-to-SQL conversion. This methodology is called fine-tuning few shots [27]
and takes place through the generation of a prompt including requests and
specifications for the model.

In this work, we used few-shot fine-tuning [9] which is a technique used to
adapt a pre-trained machine-learning model to a new task using only a small
number of training examples. This is in contrast to traditional fine-tuning,
which typically requires a large amount of task-specific training data.

It is crucial to emphasize that the query generation process relies
solely on schema metadata, without utilizing any information about
the data contained in the source.

1Photo by Christopher Campbell on Unsplash
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As per the guidelines of OpenAI [28] regarding the use of instruction-based
LLM, the prompt for the model has been developed by using XML tags
to format commands. This method is used to prevent any possible prompt
injection, which could lead to the generation of harmful SQL queries.

In order to further reduce the likelihood of such injections, the prompt has
been designed to incorporate conditional prompting. This not only helps in
enhancing the model’s ability to generate accurate and useful responses but
also makes it possible for the same prompt to support high-quality chitchat
powered by GPT-3.5.

To increase the strength of the translation, the designer can insert general
notes about the database. These notes can be extremely helpful to generate
accurate translations fitted for the specific data source.

The resulting prompt is well-structured, efficient and capable of producing
reliable output, while also enabling the language model to engage in casual
conversations in a natural and engaging manner. Finally, to increase the
accuracy of SQL generation, the prompt includes a few examples of text-to-
SQL translations, following the literature.

In the context of NLP, few-shot fine-tuning can be used to adapt pre-trained
language models, such as GPT-3.5, to perform new tasks. This is achieved
by providing the model with a small number of examples or demonstrations
of the new task, along with a natural language prompt that describes the
task. The model then uses this information to learn how to perform the new
incoming activities.

For example, if we want a model that responds like a wise old man, we could
use a prompt like this:

# Answer me as if I were a wise old man , using a

rich vocabulary and many aphorisms and anecdotes.

# Reply according to this format: [OldMan:<reply >]

#

# User: How are you?

Given this characteristic of the GPT model used, we proceeded to define
a prompt template that optimizes results, is flexible to adapt, and reduces
exploration expenses.
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The template is organized into three sections: the first one defines the re-
sponse’s features, the second one displays the last processed queries, and the
third one exhibits the schema span obtained from previous pruning.

The schema is linearized and includes annotations to aid the model to generate
queries based on object semantics, trying to maintain a compact yet complete
format.

Additionally, foreign keys are included in the linearized form.

# Use LIKE and description or name columns.

# Schema is complete and no other column exists.

# Use alias for COUNT , MAX , SUM , MIN , AVG

# General information: <general information >

#

#

# [mysql|mssql|oracle] schema:

# <schema >

# foreign keys:

# <fks >

# last query: <last query >

#

# prompt: <prompt >

#

# SELECT

Where <schema> is codified as:

<table name>(<annotations>): <column1>|<column2>|...|

each per line (\n) while foreign keys (<fks>) are linearized following this
format:

<table name>.<col name> = <ref table name>.<ref col name>

GPT has a high-speed query processing capability, but the accuracy of its
output is heavily reliant on both the end user input and the design of the
prompt template, which can be adjusted as needed.
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SQL Injection and efficiency

The output generated cannot be directly executed, and the fine-tuned model
needs to undergo a filtering and processing phase. In order to prevent SQL
injection attacks, we exclude any commands that are not compliant with the
relational algebra principles of extraction and projection.

Additionally, to reduce the response time between the request and the display,
we implemented pagination, cutting the maximum results count to 15 records
per page. This is also motivated by the existence of resource-intensive queries.
Indeed, due to a lack of direct knowledge about the entities’ cardinality, some
SQL scripts may be extremely requiring and lead to performance issues.

Error management

Another important point is related to error management: solidity and re-
silience to errors are critical success factors for this type of service. Given
the information source agnosticism and the high level of inference required to
generate such results, some queries may suffer from typos, non-existent fields,
or worse, logical errors.

Error handling takes place according to three different cascading methods:

1. Using heuristics it is possible to correct typos and field names by search-
ing for such columns in the list of existing attributes. This allows the
system to diagnose but also fix some errors, subsequently proceeding to
execute the correct query.

2. If the error cannot be solved heuristically, the error code is forwarded
to GPT attaching it to the query, which will attempt to correct it. This
approach works well for relational algebra errors but tends to fail for
logical errors.

3. If the error persists, the prompt is re-sent for a new run of GPT. Of
course, this can also happen at the request of the user.

Through this downstream control, it is possible to ensure high self-healing
by increasing the dependability of the entire platform. Another important
factor of prompt-based models is the possibility of maintaining a historical
context and processing it. This functionality is highly used in this platform
both to interpret user messages that can be linked to previous extractions
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and to self-correct errors deriving from the model itself. A deeper analysis of
error management is reported in Section 4.5.7.

4.5.4. Navigation

Navigation allows users to move through the schema and extract information
without needing a global view of the entire database. Navigation can be
initiated through direct prompts or by utilizing hints generated with each
extraction, which are displayed as button chips alongside the search results.

For instance, returning to the previous example, connections between lesson
and class could potentially connect the user to the entire schema graph.
These suggestions are made possible by an inferential system based solely
on the infrastructure of foreign key constraints. During the design phase,
the user is not required to declare any connections as they are automatically
deduced from the logical structure of the database.

To achieve this, the module considers the tables used for the extraction and
search, along with the columns present, and determines possible foreign keys
that can be exploited to navigate through the database. To accomplish this,
tables are extracted back from the query using Regular Expressions (RegEx)
up to aliases, while foreign keys are extracted from the information schema
tables.

4.5.5. Data summarization

In some cases, raw data may not lend itself well to visualizations, making a
conversation-based approach confusing. Consider the use of a platform solely
through vocal means, such as virtual assistants, where presenting results in a
tabular or graphical format may be challenging to communicate effectively.

While it is possible to linearize tabular formats into sentences and present
them verbally, this approach may not be innovative, summarizing, or effec-
tive in capturing the essence of the data. To address this issue, a data nar-
ration feature is introduced that leverages statistical heuristics and inference
to express what data reveal.

To implement this feature, a small module is developed that also supports
displaying data in a textual format. Algorithm 4.2 outlines the process:
statistical analysis and attribute recognition are performed first, followed by
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collecting information on distributions and tabular characteristics. Finally,
natural language augmentation and paraphrasing are used to harmonize the
result, also exploiting LLMs.

Algorithm 4.2 Data narrative
1: Attribute types extraction
2: stat ← Statistical analysis on distributions
3: relevantColumns ← Relevant columns based on distribution
4: for all column of relevantColumns do
5: text ← text + description(column.data)
6: end for
7: text ← rephrase(text)
8: return text

4.5.6. Data visualization

Alongside the narration of data, the module also looks for potential graphi-
cal visualizations of the results. Graphic formats are considered essential to
complete data storytelling, which is optimally realized through the dashboard
component, where graphic and narrative formats are maximally fulfilled.

The platform is capable of producing various charts based entirely on a heuris-
tic approach, depending on the relevance of the attributes. The decision was
made to prioritize two-dimensional visualizations, as other methods may be
more challenging to comprehend and more susceptible to inferential errors.

Thus, the focus was on implementing graphs such as bar charts, pie charts,
line charts, heatmaps, and maps, relying therefore on pairs of dimensions.

The available views are summarized below, along with the respective condi-
tions for which each view is appropriate. A unique feature of the module is its
complete delegation of visualization to the front-end, provided it is capable
of executing and interpreting JS. The module does not return static images
or pure graphic schemes but instead delivers pure JS, which can be readily
injected to generate interactive graphics.

Below all the graphs currently supported are listed, along with the data type
combinations required for each chart type.
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Bar chart

A bar chart is employed to compare cate-
gorical data and it comprises rectangular
bars whose lengths are proportional to the
corresponding values they represent. For
example, a bar chart can show the sales of
different products in a month or a year.

• Categorical data + numerical/tem-
poral data

• Two numerical data
• Two categorical data
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Pie chart
A pie chart is utilized to illustrate the
relative proportions of various categories
within a whole. It features a circular area
divided into sectors, each representing the
percentage corresponding to a specific cat-
egory. For example, a pie chart can show
the market share of different smartphone
brands.

Elena
Francesco
Giorgio
Maristella
Nicola

category

• Categorical data + numerical/temporal data

• Two numerical data

Line/Area chart

A line chart is used to show trends or
changes in numeric data over time. It con-
sists of a series of points connected by lines
that represent the values of a variable at
different points in time. For example, a
line chart can show the stock price of a
company over several years.
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• Categorical data + numerical/temporal data

• Two numerical data
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Map chart

A map chart is used to show geographic
data or to compare data across regions.
It consists of a map with different areas
shaded or colored according to the values
they represent.
For example, a map chart can show the
population density or the GDP per capita
of different countries.

5

10

15

total_students

• Country data2+ numerical data

Heat map calendar

A heatmap calendar is used to show pat-
terns or variations in data over time on a
calendar. It consists of a grid of cells that
represent days, weeks, months, or years,
with colors indicating the values or fre-
quencies of a variable on each date.
For example, a heatmap calendar can show
the number of visitors or the revenue of a
website on each day of a year.

• Temporal data + numerical data

In addition to being able to access the data, the system must allow the user
to operate on these results by manipulating them according to his needs,
for example changing their view. To better investigate this intent, it was
decided to dwell on a few relevant requests that are very common in the data
processing phase.

Indeed, many of the requests are about grouping, decomposing and swapping
view sizes. To do this, the platform can recognize four main intents: grouping,
pivoting, filtering and changing the type of chart. The visual catalog for
such changes is reduced to the data visualization that accompanies the new
extracts but manages to satisfy many of the more common demands.

2An attribute is considered to be geospatial-related if containing ISO codes, alpha-3 or
complete country names and the system is completely autonomous in identifying this type
of data
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Here are some examples of user prompts that fall under this macro-intent:

Plot the results grouping by country

Count the grades per student

Show me a bar chart for these records

As already mentioned, in this case, we do not proceed with a new extraction,
but we work on the latest results obtained. To facilitate this process, the
back-end temporarily saves the results of the last query per session, so that it
is possible to alter these views by communicating the session GUID and the
user prompt.

This module can recognize not only the intent but also the entities useful
for these operations, whether they are parameters for filtering or columns for
pivoting or grouping.

To maintain linearity and continuity between on-demand user visualization
and automatic data visualization, the output of the process is identical, lever-
aging the front-end for the rendering burden for graphics. Finally, considering
what has already been said, the fallback of this intent is interpreted as an
entry point for "New query intent".

4.5.7. Query explanation and self-correction

From a first analysis, it emerged that there exist three possible macro out-
comes for a user inquiry.

Executable and successful query The first case derives from a correct
execution of the generated query which represents the construction of a
syntactically and lexically executable query. Thus, the commands are
correctly interpreted and produce at least one result - i.e. at least one
record exists.

Notwithstanding, little can be said about the command’s semantic-
logical correctness which instead derives from the interpretative and
understanding capabilities of the model. In this case, the results are
transmitted to the front-end, displayed, summarized and presented to
the user who will evaluate their logical consistency.
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Erroneous query In the second opposite case, the query is syntactically or
lexically incorrect. It can be caused by erroneous formation of the query
structure, or by lexical errors or misalignment concerning the database
schema or SQL dialect. The outcome is that no records can be presented
to the user.

Thus, to increase the system’s resilience, if the DBMS propagates a syn-
tactic or lexical error, the model modifies the query up to a maximum of
2 successive occurrences. For example, if the Unknown column "Name"

exception is thrown, the model will try to remove that column from the
query, maximizing the probability of extracting at least one record.

Within the proposed pipeline, this micro procedure has been called self-
correction and, unlike the other components, it does not make any
inferences but forcibly corrects the queries according to some specific
error codes. This operation can compromise the reliability of the results,
but, at the same time, it gives the user the possibility to visualize an
outcome and decide subsequent requests based on it.

Executable but ineffectual query The last case represents a hybrid con-
dition of the two above. If the query were syntactically correct, the
DBMS would not generate any errors. However, it is not uncommon
that the generated commands do not produce results due to misinter-
preted parameters or literals or logically incorrect query operations -
even if executable. For example, a misinterpreted filter can lead to no
results being found, while still generating an executable query.

On the user side, these last two cases give the same result on the front-
end side: No results found.

It was immediately clear how this type of system’s response was not verbose
enough, thus, not very useful. While wanting to mask technicalities to the
user, it was then decided to proceed with a query explanation.

This procedure takes the query as input and performs a natural language ex-
planation and comment. To this extent, the model uses again a GPT model
with a few-shot prompt that emulates the generation of code comments. This
more comprehensible and explanatory result is passed to the front-end, dis-
playing the command explanation and giving non-technical users the possi-
bility of understanding what the model has tried to do.
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For instance, comments include details about the parameters used and what
the query attempted to do. Therefore, the user will have the tools to under-
stand if the model has, for example, misinterpreted a literal parameter, or if
it has the wrong entity for the query. Consequently, the following requests
can be refined, indicating the correct steps to the model. Here is an example:

Figure 4.10: Example of query explanation

4.5.8. Summarized inquiry process

The inquiry process starts with the front-end sending a natural language re-
quest. The body of the request is composed by the prompt and the connection
ID to the requested data source.

1. Upon receiving the request, the model evaluates whether the message
refers to a previous data visualization (DV) request through a cascade
check: if it is not possible to understand a DV intent, the process con-
tinues to the next step.

Otherwise, in case a DV intent can be identified, the architecture ac-
cesses the temporary history of the last extraction and proceeds by
mapping the request to infer and create the best type of chart, identify-
ing the entities involved (columns/attributes) and the type of operation
requested (grouping, counting, average, etc.).

2. The request is processed using embedding to identify the most relevant
entities and topics in the request (e.g. "Orders" when the request refers
to sales extraction). These topics are encoded, and their encodings are
compared with the encoded schema. More specifically, for each entity in
the encoded schema (encoded tables), the similarity is calculated with
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the keywords extracted from the request. This likelihood is obtained
by computing the cosine distance between the feature vectors of the
encoded topic and the encoded table. Once this is done, each table has
a similarity value with respect to the request.

However, it is also necessary to consider how different connections (FK)
influence the need to include tables in the considered span: for example,
given a table B as a bridge between A and C, if A and C are relevant to
the user prompt, the table B must also be considered relevant. To do
this, the database graph is traversed using the declared FK - a prereq-
uisite is that the DB is correctly defined -, and the similarity weights
of each table are propagated to nearby entities, dampening them the
farther one gets from the considered table. A table-similarity dictionary
is returned, which is used to order the most relevant tables and select
the best ones.

3. Once the pruning is obtained, the prompt is created to be sent to a
prompt-based LLM - e.g. GPT. Through an API call, a SQL Query
is obtained. A query evaluation phase is carried out: the command
is parsed to avoid harmful code, and direct searches are replaced with
fuzzy searches. At this stage, images are considered if any.

4. The query is sent to the target data source in order to be executed. In
case of an error, the request is re-assigned, returning to step 3. This
allows for a first level of self-diagnosis and self-healing.

5. The results of the query, if available, is sent to the first component
of the back-end, which completes the response with post-processing.
Given the available fields extracted from the query and the topology of
the DB, all the entities that can be visited are identified.

6. Post-processing the data involves data visualization (DV), data summa-
rization (DS), or, in case of failed extraction, query explanation (QE).

(a) DV is done by selecting the most relevant columns based on sta-
tistical factors and creating a chart. The result is a scheme that
defines the main dimensions of the chart and its visualization.

(b) DS is done by studying the statistical characteristics of the result
table, identifying the most relevant dimensions, summarizing the
overall content of the table, and narrating the columns’ data.
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(c) QE is done by rephrasing the query into a human-understandable
text.

7. The results (raw records), the chart, the summarization, the linked
entities and information on pruning are combined into a single object
and forwarded to the front-end for visualization.

4.6. Dashboard process

While acknowledging a form of primacy of conversational access to data in
single extractions, in many cases it is faced with the need to monitor different
aspects and dimensions of the same topic. This truth is widely confirmed in
the interviews carried out with a sample of middle managers whose approach
to accessing information does not take place through single indicators, but
thanks to interactive panels. In other words, one of the most common ap-
proaches is to monitor different parameters (KPI) simultaneously capable of
disclosing more information on a given field of investigation, usually preferring
visual or purely textual extractions rather than tabular results.

The dominance of visualizations through dashboards is evident in many
working environments where the aggregation of information and relative com-
munication takes place preferably through visual and interactive reporting.

For the reasons mentioned above, it was decided to broaden the perspective
to include tools to support the generation of dashboards in an automated
and easy way, even for less expert users. Furthermore, this realization must
exploit the processes already consolidated in the solution to give relevance to
the entire reporting process.

The construction of dashboards is a very complex procedure that must take
into consideration multiple structural and cognitive aspects, with an impor-
tant and deep understanding of the topics, entities and relationships on which
the dashboards stand.

It is therefore undisputed that this intrinsic complexity is heightened by the
objective of giving users full autonomy in the generation of information in-
terfaces by exploiting natural language.

Imagine being able to directly request the development of a dashboard just
by describing the goal of your export.
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At that point it would be possible to request:

Generate a student dashboard at the university

and then modify it simply by writing:

Add me a pie chart about students’ provenience

Remove the penultimate chart

Increase the width of the first KPI

Finally, to complete the interaction, the user may require:

Export this dashboard as slides

and thus obtain a presentation in a completely automatic, conversational and
data-based way, exploiting the semantics of the extractions, the inferences on
the visualization modalities and NLP to generate a more human narrative.
Having set the objectives of this process, the problem was tackled by dividing
the procedure into 4 macro-activities which were then orchestrated at the
application level.

1. NLU, interpreting user prompts and extracting core entities from user
prompts. This operation is necessary and crucial for starting the sub-
sequent processes.

2. Dashboard proposition given the topic proposed by the user. This ac-
tivity requires the construction of some queries based on semantic in-
ferences and the knowledge deduced from the data source.

3. Query execution and visualization are the final and conclusive steps of
generating a dashboard. This activity is greatly facilitated by the reuse
of the inquiry and chat components previously introduced, thanks to
the low coupling imposed during the development phase.

4. Export and reporting are optional steps in the process that complete
a user experience based totally on technical delegation and a conversa-
tional approach. This step requires an in-depth understanding of the
topic and the best visualization method to present data in precognitive
and usable formats.
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4.6.1. NLU

The interpretation of requests remains the crucial step of the conversational
approach. For this component, it was decided to entirely generate a natural
language interpretation model.

This methodology makes it possible to exercise direct control over the defini-
tion and management of intent matching and entity extraction, both of which
are essential for carrying out the actions requested by the user. The model
can understand 5 different intents shown in Table 4.3

For each of these intents, it is possible to extract certain entities useful for
the creation of the interface. The entities and their uses are shown in Table
4.2

Intent Entity

Add/Remove/Modify Card index

Create Topic/Filters

Export Format

Table 4.2: Dashboard intents and entities

Intent Example Purpose

Add Add a card about students
average grades

Enlarge dashboard indicators

Remove Remove the third indicator Reduce dashboard indicators

Modify Enlarge/Reduce the last
card

Rearranging the results

Create Create me a dashboard
about grade

Generate a dashboard proposal

Export Export the dashboard as a
presentation

Generate a downloadable reporting

Table 4.3: Dashboard intents and examples
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The model runs in the background as a singleton service that can interact
through continuous messaging. This mode of interaction and execution allows
us to save resources by loading the model at the start of the back-end itself
and increasing the temporal performance. Moreover, multi-user handling
is achieved by exploding the computation into a pool of independent and
autonomous threads.

The module, therefore, returns the response regarding the intent and the
entities extracted for each request, forwarding them to the front-end which
will take care of executing the connected action. In case of a match with the
"Create" intent, the back-end takes charge of the request by transferring it
to the following Dashboard generation module.

4.6.2. Dashboard proposal generation

Frequently, users face challenges when attempting to organize and structure
complex and aggregated extractions. Defining elements and indicators that
can be useful for decoding such complex phenomena is an exceedingly difficult
task, requiring extensive knowledge of the entities and information essential
for comprehension.

Consequently, this Thesis proposes a reusable method for creating dashboards
by maximizing the use of the conversational interface. For these reasons, we
have incorporated a module capable of suggesting indicators that can be useful
for comprehending a phenomenon or a topic.

Thus, the system suggests various extractions related to the topic of interest,
starting from its definition and displaying the results. This tool does not aim
to replace human contribution, but it serves as an excellent source of ideas
for future improvements and extractions. In summary, this process allows
the user to produce reports investigating specific dimensions of the requested
topic while simultaneously overcoming writer’s block.

Unlike the single extract presented in Section 4.5, the generation of SQL
queries in the context of dashboards is characterized by greater degrees of
freedom. If in the chat component, the requests are specific, in the construc-
tion of a dashboard the scope is broad and ensures greater freedom for the
platform in proposing and building indicators.
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The approach chosen in this case is strongly guided by the study of the
relevance of potentially interesting fields and entities given a fairly generic
topic. The construction consists of the following steps:

1. Given the "topic" extracted by the NLU module, the potentially in-
volved entities are highlighted by reusing the schema pruning process
illustrated in 4.5.1. This implies a study of semantic similarity be-
tween topics and annotations of the schema introduced and elaborated
in the Designer component, exploiting the encoded form of the schema.
Downstream of the selection through pruning, the platform increases (or
decreases) the topic-entity similarity score based on the number of user
requests involving each specific entity. This passage, therefore, returns
a list of eligible entities that constitute the center of the research.

2. For each of these entities, the relevance of the attributes is deduced by
exploiting a statistical-semantic approach. The underlying assumption
is that the stronger the column’s relevance is, the higher its internal
variance will be and the less it will be related to the identity columns
of the entity. More formally, the relevance score for each attribute is
calculated as:

ωi =
|θi|

|Ai| ∗ σi ∗ 2
+ ωi,T +

ωi,d

2
(4.3)

where:

ωi: the relevance of attribute i of table T

θi = {aj}j∈Ai
, the set of unique values contained in attribute Ti

σi: the correlation between attribute Ti and T ’s identity attributes

ωi,T : the semantic similarity of Ti name and T table name

ωi,d: the semantic similarity of Ti name with possible descriptive
attribute names

3. Given the eligible entities and the relevant columns, the module pro-
ceeds with the construction of the queries starting from 18 templates
capable of exploiting inner joins (▷◁), grouping, statistical functions and
sortings. To increase serendipity, the templates are modified (augmenta-
tion) and chosen randomly: this prevents the proposals from becoming
excessively fossilized on the history of user requests.
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This procedure takes place by selecting different columns and tables,
testing the syntactic construction of each query for a maximum of 500
iterations or until the completion of 6 extractions.

Once the queries for the individual dashboard cards have been obtained,
the back-end sends this information to the front-end which is responsible for
displaying the results.

4.6.3. Query execution

The final step is to display the results. As already mentioned, we wanted
to reuse the components already introduced previously, thus exploiting the
developments regarding data visualization and data summarization. The
methodology used exploits an emulation of user prompts originating from the
front-end which requests the execution of a specific query from the back-end.

The processes that follow the execution of the query are instead shared with
the inquiry process already presented and focus on the search for a represen-
tative format (data visualization) and a summary of the results (data summa-
rization). Each query is executed in parallel and the results are displayed in a
separate chat component: this allows the user to select each single proposed
card and interact with the results according to the methods already exposed
for the Chat component. This choice is aimed at demonstrating the reusabil-
ity of the components and the inquiry processes, due to a design paradigm
aimed at reducing the coupling of the components themselves.

Below, in Figure 4.11, each white card is a single chat thread that can be
used to modify the visualization or the content for each indicator. Moreover,
by using the input field above, users can configure the positions, sizes and
titles of each card below.
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Figure 4.11: Autogenerated panel from "Create a dashboard about students
situation" request on a school database
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4.6.4. Export and reporting

After the chapter on accessing and representing information through dash-
boards, an innovative contribution has been introduced relating to the export
of the results obtained.

Exporting information requires not only preparing it for a pre-established
format but also understanding the audience and how to present the content
effectively. The slide export is a perfect example of this module, which is
strongly based on visual impact, message conciseness, and presentation mini-
malism, maximizing the precognitive effect on the reader. To achieve this, the
system re-runs all queries to be exported and re-elaborates the visualization
formats to favor a graphic representation over a tabular format for each ex-
traction. Similar to the data visualization process expressed in Section 4.5.6,
the module infers the best visualization methodology based on the type of
data and attribute relevance.

Moreover, for this type of export, the narration of data is crucial, requiring
the engine to generate a coherent and attractive narrative path of data sto-
rytelling. For this purpose, the module exploits a user-provided title for each
indicator and combines this information with the query in order to obtain a
complete description for each set of results.

Then, these descriptions are further refined: a paraphrasing fine-tuned GPT
model has been introduced to make titles and texts more natural. The contri-
bution of an NLP engine is essential in obtaining precise, syntactically correct
titles and subtitles suitable for different contexts where this extraction tool
is applied.

Finally, three templates - with six layout pages each - are used to structure
the skeleton of the presentation and increase the reusability.
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Figure 4.12: Dashboard pptx export example
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5| System Architecture and

Implementation

In this chapter, we will explore the implementation of our prototype conver-
sational data access platform, called Queric, describing its architecture and
the design choices we have made. At the same time, the tools we used to
develop the system are illustrated.

5.1. Framework Architecture

The architecture of this framework (Figure 5.1) is designed as a 3-tier applica-
tion, with the presentation, application and database tier. The presentation
tier consists of several components, including the designer component, single
chat component and dashboard component.

Each component exchanges data with the application tier, specifically with
the controllers, which act as the intermediary between the presentation and
the application level. The dashboard component reuses the chat module and
allows users to view their data in a visually appealing way.

Moving onto the application level, the tier consists of various Python modules
and NodeJS components. The Python modules are responsible for tasks, some
of which are schema pruning and query execution. These Python modules are
singleton and interchangeable, and they can exchange data with a NodeJS
component called Python Adapter. To ensure efficiency, the Python modules
use cached temporal results called Resources.

On the other hand, the NodeJS component consists of controllers, services
and connectors towards the target data sources and the internal metadata
database.
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Figure 5.1: Framework architecture

The NodeJS controllers exchange data with the front-end and use services to
implement business logic. The NodeJS services interact with Python Adapter
to access Python modules and database connectors in order to reach external
data sources but also to access metadata databases, which store annotations
and metadata about sources.

The metadata database is an internal MySQL database that stores all the
necessary information about data sources, such as data types, data ranges,
and data annotations.
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With this architecture, the framework is designed to be scalable and efficient,
providing a seamless experience when accessing and analyzing their data.

The technology and design patterns selected for the conversational-data-
access platform are an excellent fit for the project’s goals. Using NodeJS,
Angular, and MySQL creates a scalable, efficient, and reliable triptych. The
back-end, developed using NodeJS, excels at handling large amounts of data
and has a non-blocking event-driven architecture, therefore allowing for opti-
mal performance.

Looking at the front-end, Angular provides a flexible and powerful framework
for developing front-end components. Last but not least, MySQL, on the
other hand, offers a robust and secure relational database system that can
handle average volumes of data and enjoys widespread use and support.

Furthermore, the platform’s 3-tier architecture has a clear separation of con-
cerns among the presentation, application, and data tiers. This separation al-
lows for independent development and management of each tier. The presen-
tation tier comprises the designer component, single chat component, dash-
board component, and a potential external chat interface. These components
communicate with the application tier via the controllers. The application
tier contains Python modules and Node.js components, with Python modules
responsible for tasks such as schema pruning, query execution, data visual-
ization, summarization, tagging, and dashboard proposal.

The controllers exchange data with the front-end and use services; these ser-
vices interact with Python connectors to access Python modules but also
with database connectors to access external data sources or access the inter-
nal metadata DB.

The design patterns used in this platform, such as the Singleton pattern
and the Model-View-Controller (MVC) pattern, provide numerous benefits,
such as increased modularity, maintainability, and scalability. The Singleton
pattern ensures that each Python module is only instantiated once, improving
memory usage and performance. Undoubtedly, the use of this pattern enables
a clear separation of concerns between the application’s data, presentation,
and control logic, making it easier to develop and maintain each component
independently.
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Therefore, the technologies and design patterns used in this conversational-
data-access platform provide a robust, scalable, and efficient platform for
accessing and analyzing large volumes of data through natural language con-
versations.

The use of Node.js, Angular and MySQL, combined with a 3-level architecture
and well-established design patterns, makes the platform highly adaptable,
modular and easy to maintain: for these reasons, this union has been chosen
for our implementation.

Finally, looking at the interaction between the front-end and the back-end,
the client queries the application layer through REST API, whose structure
is exposed through the back-end Swagger.

The back-end system generates a JSON file that includes text messages, re-
sults, the executed query command, schema pruning information, specifica-
tions for displaying charts, a summary of the results, and additional infor-
mation that may be useful for the user. The interfaces between the Python
Adapter and the modular ecosystem of functional components in Python are
illustrated below and can be found in Appendix B.

5.1.1. Interfaces

As previously stated, the infrastructure is structured around a system of
interchangeable components that are modular and connected by common in-
terfaces. This design allows for easy reusability of the components as needed.
The network of interfaces plays a pivotal role in facilitating communication
between the front-end and back-end, as they expose REST APIs, thereby
orchestrating the first two levels of the 3-tier architecture. These interfaces
are documented in the appendices and exposed via Swagger.

In particular, the back-end leverages the interfaces exposed by the NodeJS
connector to access the local MySQL metadata. The interfaces are also cru-
cial in enabling interaction between the application back-end and Python
modules. To manage these interfaces, the Python Adapter was implemented,
whose primary function is to facilitate message exchange between different
components while optimizing computation.
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Python Adapter

The adapter is a crucial service in the back-end application, functioning as a
singleton that initializes when the application starts up. Its primary task is
to manage the interaction between NodeJS and various Python components.
To achieve this, the adapter opens a server socket that is accessed by NodeJS
acting as a client. This component is launched by the NodeJS back-end during
the startup.

More precisely, a socket server adapter is a software component that allows
different modules or applications to communicate with each other using sock-
ets [29]. Sockets provide a way for two or more processes to exchange data
over a network sharing dependencies and injections workloads. This method
of software design has been included in a lightweight format in order to speed
up the modules’ imports as well as increase the modularity by splitting the
infrastructure into C/S.

The NodeJS forwards requests through the call

python client.py <action> <argv>

which reaches the adapter at the socket port. argv represents the set of
possible parameters specific to each module/action. From there, the adapter
distributes the actions to the appropriate realizers, which implement the re-
quested functions, constituting a hybrid facade pattern. Each action corre-
sponds to a specific Python module that is injected into the singleton adapter
during loading. As long as the interface between the adapter and the module
is respected, these components can be freely replaced. The interfaces are doc-
umented in Figure 5.2 and in Appendix B. The singleton middleware service
is preferred for its ability to optimize the response time and throughput of
Python components. By sharing dependencies and processes among different
modules, latencies are significantly reduced, especially in the case of loading
massive Natural Language Datasets like en_core_web_lg.
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Figure 5.2: Adapter interfaces

5.2. Conversational infrastructure

Among the different modules introduced in the previous chapter, the most
relevant one is represented by the conversational engine, thus this section fo-
cuses on the architectural decisions that were made to determine the internal
structure of the chat and dashboard components.

To provide a clear description, we will refer to Figure 5.3, which illustrates
the organization of each module within the system. The architecture can be
divided into three macro components.
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5.2.1. Conversation manager

The conversational management module handles the reception and trans-
mission of messages from and to the end user. More precisely, there is a
direct correspondence between the conversation manager and the front-end.
It comprises two main components: the connectors component, which com-
municates with external chat interfaces, and the visual component blocks to
render chat and dashboards. Internally, the chat component displays the con-
versation and comprises internal modules for rendering graphs and messages.
In addition, the component has the ability to display specific button chips to
facilitate navigation. The chat component is also reused entirely in the dash-
board component, where it is combined with the management of card objects
that compose the panel’s layout. These elements use a set of NPM libraries
to optimize the rendering process, such as the pivot table or the DB schema
visualization components.

5.2.2. Application manager

The back-end application manager is the central module of the system, re-
sponsible for processing incoming messages, managing access to data sources,
and presenting the results in a correct format. Controllers receive and handle
API requests, relying on associated Services to handle response logic. These
services, in turn, call upon the Python modules which manage the core logic
of the system.

To maintain the conversational context, each chat session is marked by a
unique session GUID, and session history is temporarily stored as a resource
for later access during processing. Controllers also manage concurrency, cre-
ating new threads to handle requests until responses are sent.

The Python modules serve as the backbone of the infrastructure, enabling
GPT to interface with databases and metadata extracted during the design
phase. They include a schema tagger for schema design and annotation tasks,
schema pruning for tailoring schema based on requests, query executors for
creating and executing queries through database connectors, Data visualiz-
ers and Data summarizers for processing results, and a dashboard definer
for NLU management activities and dashboard generation, all supported by
various Python libraries.
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The dashboard generation component is the only part that relies on the native
RASA NLU engine for intent decomposition. The NLU module structure is
not depicted in Figure 5.3, but follows a standard RASA infrastructure.
Finally, the Utils unit is essential for managing the complexity and load of
the entire back-end, offering simple helper methods to assist in these tasks.

5.2.3. Data sources

The entire infrastructure relies on several connectors to remotely query data
sources but also to interact with the local database containing metadata.

The majority of the used connectors are based on over-SSH protocols. The
database connectors over SSH enable secure and encrypted communication
between the infrastructure and remote data sources. This is particularly
useful when accessing sensitive data, such as financial or personal information,
which requires strict security measures.

Similarly, the database connectors based on ODBC provide a standardized
way of accessing data stored in different types of databases, regardless of the
database’s vendor or location. This allows the infrastructure to access data
from multiple sources in a uniform way.

The local database containing metadata about each remote data source serves
as a catalog for the distributed data system. It stores information about the
remote data sources, such as their location, structure, and access credentials.
This metadata allows the infrastructure to identify and connect with the
remote data sources, as well as to query and retrieve data from them.

Moreover, we prioritize and guarantee the security of data by ensuring that
no information about the raw records from customer data sources
is transferred or used outside our application. This means that third-
party services like GPT never have access to data themselves, except for
schemas.

5.2.4. Resources

To improve system performance and maintain persistent annotations made
during the design phase, various resources are utilized. For instance, the
schema annotations for each data source are stored in a local database, and
categorized as either table or column annotations.
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To foster the performances of NLU processes, each annotated schema is en-
coded and locally saved in .dictionary files, accelerating the pruning phase.
The information about the relevance of tables’ attributes is stored persistently
as well in .relevance files.

Session history data are also saved locally, but in a temporary format, with
a user-configurable schedule for automatic cleaning. The files are saved in
binary format, except for the session history, which is stored in JSON format.

5.3. Implementation

As previously mentioned, the platform’s development is the result of the
integration of various technologies and design patterns.

On the front-end, the main development relies on Angular 14 framework,
which utilizes Typescript 4.7 along with HTML and SCSS. The infrastructure
uses different NPM libraries to enhance development and improve the results.
Unlike interpreted coded Web products, Angular’s results must be compiled
before publication. This technology allows the developer to distribute the
product as a website or mobile Progressive Web App (PWA). Additionally, the
front-end can be compiled and distributed as a library. For the infrastructural
back-end, a NodeJS 19 server framework is used, developed with Typescript
4.7 and Javascript, enabling easy deployment of the server with the same
front-end requirements. As with the front-end, the application layer uses
different NPM libraries and can be distributed as a library.

The logic back-end comprises various Python 3.10 scripts that realize in-
terchangeable modules that can be replaced as needs or technologies evolve.
To connect with the underlying data layer running on MySQL 15.1 DBMS,
these scripts use the mysql-connector library. For connecting with MSSQL
sources, pymssql is used. To perform NLU-related tasks, rasa_nlu, nlpaug,
sentence_transformers, nl4dv, and nltk are used to extract entities, match
intents, and compute similarities among topics. To graph different charts, the
application uses a combination of vega-lite and altair. For coding Pow-
erPoint presentations, python-pptx is imported.
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6| Evaluation

This chapter extensively analyses the technical and qualitative results ob-
tained through efficiency and effectiveness measures and user tests.

Unlike previous chapters, the entire experiment was conducted on a real, high-
dimensional operational ERP database, provided by the SYS-DAT Group
company1, which comprised 251 tables having between 8 and 139 fields each.
This context is considered an extreme yet common scenario in corporate en-
vironments, and the choice to test the platform in such conditions aimed to
ensure the evaluation’s realism. To conduct the tests, the Designer component
was tagged, reducing the scope of interest to the 17 most relevant entities of
the data source and a total of 196 columns. The schema is graphically shown
in Figure 6.1, omitting the columns.
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Customer order headers Customer order rows

Seasons

Lines

Colors

Color charts

ModelsProducts

Supplier order headers

Supplier order rows Collections

Shipping documents Shipping document rows

Warehouse rows
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Figure 6.1: Database schema for user tests

1https://www.sys-datgroup.com/
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6.1. Technical evaluation

Furthermore, several metrics analyses were carried out on the platform’s op-
erational performance, including latencies, response time, CPU time, and
resource occupation, to assess its temporal optimization. Even though the
timing of individual calls may seem of secondary importance, the study con-
firms that it is crucial for optimizing the system’s overall performance.

Moreover, it has been decided to test even further the system capabilities by
evaluating the effectiveness of the NLU process - more specifically the schema
pruning phase - and the temporal complexity of the most relevant pipeline
steps.

6.1.1. Algorithmic complexity

The proposed approach for pruning the schema and generating queries was
evaluated in terms of time complexity.

This step is necessary to evaluate the goodness of the prototype and the
proposed algorithms. Given the high reusability of the components, it was
decided to perform this temporal analysis only for the schema pruning and
dashboard creation process.

Schema pruning This algorithm performs keyword extraction with a tem-
poral complexity of O(N), where N is the number of tables in the schema.
After encoding the keywords, it iterates over all tables in the schema and
then for each attribute of the table, it calculates the cosine distance between
the attribute and the encoded keywords.

The resulting similarity score is stored for each table and attribute. Next, it
creates a queue of all tables in the schema and then, while the queue is not
empty, it dequeues a table and calculates its weighted sum similarity score
based on its neighbors. The algorithm then returns the table with the highest
similarity score greater than a certain threshold.

The total time complexity of the algorithm can be expressed as O(N2 +N +

N · m), or just O(N2), due to the nested for-loops iterating over all tables
and the average number of attributes per table (m).
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Dashboard creation The algorithm underlying the proposal of the dif-
ferent indicators given a request for a dashboard is based on the selection
of relevant and eligible attributes for extraction. The algorithm includes the
schema pruning process which reduces the span of interest only on the entities
really necessary for the extraction: for this reason, the complexity baseline is
greater than the time complexity of the schema pruning.

Subsequently, for each eligible table, it is recombined into a query given a
fixed number of possible template queries. Finally, for each extracted query,
we proceed to the projection (πM) by iterating on all the relevant columns of
the tables involved.

Therefore, being n the number of eligible tables, with n ≤ N , and m the aver-
age number of columns per table, the maximum complexity of the algorithm
is O(N · (1 +m) +N2 + n ·m), or just O(N2).

Both the algorithms suffer from quadratic dependence with the total number
of tables in the declared schema N , due to the necessity of selecting the
most interesting tables for each user request in order to narrow the span of
computation and increase the accuracy.

6.1.2. Response times

To evaluate the efficiency of the entire application, measurements were made
on the latencies of each process, in order to evaluate the expected baseline on
the temporal performance of the prototype. We evaluated the performance
of the developed prototype by computing metrics for the response time, CPU
time and the throughput of the main processes. The tests were performed
on a machine with 16GB of RAM, utilizing a 12th Generation Intel Core
i7-1255U processor running at a frequency of 1.70GHz.

For each component tested and each metric, 30 requests were made for which
the following data were collected.
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Figure 6.2: Response times

Process r(s) σr(s) Xr CPUr(s)

Schema embedding 12.77 2.13 0.07 11.26

Select query 14.56 6.58 0.06 9.78

Navigation 1.39 0.48 0.72 1.21

Data visualization 3.82 1.57 0.26 3.54

Dashboard creation 22.85 5.43 0.04 20.72

Dashboard export 20.69 3.39 0.05 20.28

Table 6.1: Analytical metrics
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As we can see, the fastest process is navigation between entities and extrac-
tions, with an average response time of 1.39s, while the slowest process is
dashboard creation, with an average response time of 22.85s due to parallel
data extractions. The standard deviation and throughput vary between pro-
cesses, with the select query process having the highest standard deviation of
6.58s and navigation having the highest throughput of 0.72 requests served
per second.

The CPU time for each process is also reported, with dashboard creation
and dashboard export having the highest CPU time of 20.72s and 20.28s,
respectively. These results are due to the complexity of the processes, which
requires a significant amount of resources to simultaneously generate multi-
ple interconnected indicators and combine the extracted information into a
slideshow. In order to decrease the response time, it is possible to incorporate
a parallelized approach to eliminate the sequential creation and execution of
queries. This strategy has the potential to streamline the process and signifi-
cantly reduce the overall response time. However, the main difference between
the CPU time and the actual response time is mainly due to the REST API
inter-exchange and the SQL query execution on the selected data source.

6.1.3. Effectiveness

To validate the proposed infrastructure, a technical analysis was carried out
on the NLU precision and accuracy. It should be highlighted that the effec-
tiveness of this process is highly dependent on the accuracy of the text-to-SQL
translation powered by GPT and on the schema pruning algorithm (Section
4.5.1). Schema pruning is a mandatory task for any process of transforming
natural prompts into SQL code that works on large databases, reducing the
span of entities on which to operate. For this reason, it is necessary to evalu-
ate the technical capacity of the schema pruning module through a validation
process of the results.

For this purpose, using the implemented prototype, we analyzed 290 user
prompts and the related selected tables, comparing them with the expected
entities needed to obtain an executable query. The average accuracy of the
system settles at 89.31%, with a recall of 90.20%, leading to an F1 score of
0.8975. However, the module’s average accuracy in prioritizing which tables
to use is 78.37%.
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These results demonstrate how the module can highlight most of the rele-
vant results to the activity. Furthermore, the high recall confirms that the
algorithm is capable of presenting more relevant results than superfluous en-
tities. This factor is crucial to avoid that, during the query generation, the
high number of entities generate noise in the translation, thus it improves the
global performance of the system.

However, the algorithm is less efficient in prioritizing the tables - therefore
giving ordinal importance to the entities considered relevant - but it is to be
considered a good result which is also mitigated by the inferential capacity
of the Query generation module (Section 4.5.3).

6.2. User study

Our research aims to define a new approach to enable easier access to infor-
mation. While a purely SQL-based approach and manual data visualization
have greater theoretical potential, the required timescales, skills, and knowl-
edge make this approach more complex.

To evaluate the efficiency and effectiveness of our proposed infrastructure
from the perspective of the final users, we designed a study that compared
the performance of a sample of testers while interacting with our prototype
(Queric) and then with Excel.

We identified a set of tasks that could be executed using both systems and
authorized participants to access and execute queries, choose display modes,
and group them into dashboards. The selected tasks would allow us to as-
sess the validity of the design choices underlying the main functions of our
prototype, in relation to navigating the data source, extracting information
conversationally, displaying data visually via verbal commands, and compos-
ing dashboards using natural text.

We then evaluated the time taken by the study participants to execute the
tasks and their satisfaction.

The evaluation study design was initially tested and refined by involving
several pilots that helped us highlight some issues and insights exploited in
the final executed user test.
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6.2.1. Pilot test

Conducting a pilot test for an evaluation procedure is crucial as it allows for
the identification and resolution of potential issues, ensuring a more refined
user testing process. Therefore, we conducted a pilot test with 6 participants
who are completely unexpert in this domain, composed of 3 females and 3
males.

The participants were introduced to the user interface and the final goal of the
application with a 3-minute presentation before starting the test. The test
then consisted of 10 tasks that required the participants to use natural lan-
guage queries to access and analyze data from a structured source. The tasks
varied in complexity and difficulty, ranging from simple queries to complex
aggregations and comparisons. We measured the success rate of each task, as
well as the time taken and the general satisfaction level of the participants.

The participants in the sample had an average age of 26.83 years, with a σ =

12.02. The age range varied from a minimum of 18 years to a maximum of 51
years. The test results indicated that participants successfully completed an
average of 8.5/10 tasks, partially succeeded in 0.3/10 tasks, and experienced
1.17/10 failed tasks.

Considering the sample size and the novelty of the application, these results
were encouraging and suggested that the prototype was usable and effective
for simple-medium tasks of conversational data access and analysis to struc-
tured sources.

Takeaways During the evaluation process, several noteworthy issues have
emerged, notably regarding the time invested in carrying out the entire set
of tasks. It was observed that the overall average execution time for all ten
tasks amounted to approximately 1 hour and 2 minutes. Recognizing the
need for optimization, we have taken the initiative to revise and refine the
task requirements. As a result, we have decided to reduce the number of
requested tasks, narrowing our focus to the 4 activities deemed most relevant
and essential.

Furthermore, in an effort to eliminate redundancy and improve task efficiency,
we have merged certain previously distinct and repetitive requests into a single
consolidated task. Indeed, some of the proposed activities were too simple,
thus highlighting the need for a more complex task definition.
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By implementing these adjustments, we aim to enhance both the usability
and effectiveness of the prototype based on the user test qualitative feedback,
while also taking into consideration the quantitative data related to execution
times and success rates.

6.2.2. Tests

Participants

We enrolled 12 participants in our study, consisting of 9 males and 3 females
who were employed as middle managers or IT project managers in medium
to large companies. The sample overview is reported in Table 6.2. The mean
age of the participants was 48.42 years (σ = 12.52, min = 28, max = 68).
More precisely, the sample is a subset of the user group introduced in Chapter
3.

A demographic questionnaire submitted at the beginning of the study re-
vealed that the participants had an excellent level of experience in IT (x =
7.86, σ = 1.30, min = 5, max = 9), chatbot usage (x = 6.80, σ = 1.37, min
= 5, max = 9), and using SQL language (x = 7.40, σ = 1.12, min = 6, max
= 9). In terms of data analysis and visualization, the participants exhibited
a significant range of abilities, with a solid level of knowledge for analytical
tasks (x = 7.47, σ = 1.31, min = 5, max = 9) and a slightly weaker level for
visualizing information activities (x = 6.93, σ = 1.58, min = 3, max = 9).

The results demonstrate a highly heterogeneous dataset, with the Likert scale
used to assess skill levels, ranging from 1 to 10 (1 = very low, 10 = very
high). Overall, the sample is highly educated, with 5 individuals holding
master’s degrees, 4 with bachelor’s degrees, 2 with a Ph.D., and 3 high school
technicians.
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Participation code Age Gender Role

P1 68 M Sales manager

P2 48 M Development team leader

P3 33 M Project manager

P4 38 M BU manager

P5 56 M BU manager

P6 28 F Logistics manager

P7 54 M IT manager

P8 59 M Sales manager

P9 62 M Project manager

P10 38 F Development team leader

P11 42 M Product owner

P12 55 F BU manager

Table 6.2: Test participants

Tasks

The participants are required to use the system to complete 4 tasks reported
below (Table 6.3) to better and fully cover the functionalities exposed by the
prototype. The tasks must be performed in the Chat component.

Request Type

Extract some sales orders and visualize it 2

Try to extract the total sold per customer 1

Try to find the best-selling product for sale season estivo 1

Extract each day of the last year by reporting the daily total sold 2

Table 6.3: Tasks



98 6| Evaluation

Each task refers to a specific category of activity.

1. The first category involved two tasks that required the users to find
specific data items by applying selection, projection, join, and filtering
criteria.

2. The second category involved two tasks that asked the users to extract
the maximum inferential power from the application, guiding the pro-
totype to the expected result.

For each task, users had a maximum time of 3 minutes (180 seconds). In
accordance with the within-subjects design, each participant performed all
the 4 tasks using the prototype, followed by the same series of activities using
prepared raw extractions in Excel.

Procedure

The research was conducted remotely via web call and RDP (Remote Desk-
top) on a preconfigured virtual environment that blocked outgoing internet
requests using a firewall. The connection was limited to OpenAI hosts via a
whitelisted connection. The entire study was recorded and reported.

No facilitator was present during the study, and the application program was
not illustrated. However, each user was introduced to the database on which
they operated. Despite not having specific expertise in the scheme under
analysis, all users had good knowledge of the domain, which was a seasonal
commercial cycle.

In total, the study lasted for three days. During the study, each user con-
nected to the RDP, and the supervisor monitored their work to prevent ex-
ternal interference.

The participants had previously completed a demographic questionnaire in-
tegrated with a survey on technical-specific skills in the IT and analytical
fields. Then, each participant was invited to carry out the experimental tasks
independently for each system tested - firstly the Queric prototype and then
Excel. At the end of all the experimental activities with each system, the
participant completed an online questionnaire regarding the systems used.
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Data collection

Data collection is a relevant aspect of any research project, especially when
it comes to evaluating usability. In this context, usability pertains to the
degree to which a product or service can be utilized effectively, efficiently, and
satisfactorily by its designated users. [30]. To measure usability, researchers
need to collect data from users through various methods, such as surveys,
interviews, observations, experiments and tests.

The choice of data collection method depends on the research questions, the
type of data needed, and the resources available.

One of the challenges of data collection for usability is ensuring data quality
and data usability. Data quality refers to the accuracy, consistency, timeli-
ness and conformity of the data, while data usability refers to the degree to
which the data can contribute to actionable insights and reduce the risk of
misinterpretation or misuse.

It is therefore crucial to collect high-quality and usable data that can help
to evaluate usability in terms of effectiveness, efficiency and satisfaction,
following the software engineering standard ISO/IEC 9126 [31].

Effectiveness refers to the accuracy and completeness of users’ tasks, efficiency
refers to the resources expended by users to achieve their goals, and satisfac-
tion refers to users’ subjective feelings about their experience [30]. These
three dimensions of usability can provide valuable feedback for improving
products or services and enhancing user satisfaction.

One of the methods to evaluate the usability of a system or a product is to
conduct usability tests with potential users, measuring both quantitative and
qualitative aspects of user experience, such as task completion time, error
rate, user satisfaction, and user feedback. Two common tools for measuring
user satisfaction and perceived usability are the System Usability Scale (SUS)
and the NASA Task Load Index (NASA-TLX).

More precisely, the SUS [32] is a post-test questionnaire that consists of 10
items rated on a 5-point Likert scale. The SUS provides a global score of
system usability, ranging from 0 to 100, with higher scores indicating better
usability. The SUS is widely used and validated across different domains and
platforms.
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The NASA-TLX is a post-task questionnaire that assesses the mental, phys-
ical, and temporal demands of a task, as well as the effort, performance, and
frustration levels of the user. The NASA-TLX provides a multidimensional
measure of perceived workload, which can reflect the complexity and diffi-
culty of a task. The NASA-TLX is also widely used and validated in various
contexts, especially for mission-critical tasks [33].

Indeed, the combination of SUS, NASA-TLX, and qualitative data can pro-
vide a comprehensive evaluation of the usability of a system or product. SUS
and NASA-TLX can capture the overall impression and workload of the user,
while qualitative data can reveal the specific issues and opinions of the user.
Indeed, by triangulating these data sources, usability testers can identify the
system’s strengths and weaknesses, and suggest improvements for future it-
erations.

6.2.3. Analysis

To evaluate the effectiveness of our approach, we examined qualitative data
gathered from user tests, which includes feedback obtained through methods
such as LSA (Latent Semantic Analysis), and quantitative data regarding
execution times and success rates to provide a comprehensive evaluation of
the prototype’s usability and performance.

Usability analysis

The overall system has been tested and compared to one of the most efficient
and well-known applications for reporting - i.e. Excel. Thus, usability has
been evicted by comparing the time spent by users accomplishing the assigned
tasks on both systems and the satisfaction perceived. More specifically, fol-
lowing what was proposed in previous works [2] [3], we divided the analysis
into efficiency, effectiveness and satisfaction.

Efficiency The system’s efficiency, defined as the capability of performing a
task involving a lower quantity of resources, has been evaluated by considering
the time each user spent performing the activities.

The overall results are encouraging (Queric x = 124.58s, σ = 14.71, Excel
x = 146.06s, σ = 19.67) highlighting how, in the same amount of time, users
are able to generate correct results and refine them more naturally.
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The results are not statistically different as demonstrated by a compared
paired t-test (t = −2.281, p = 0.063).

xq(s) σq(s) xe(s) σe(s) T df p

Task 1 130.50 55.44 127.58 39.03 0.165 12 0.564

Task 2 103.92 64.52 134.17 47.41 -1.298 12 0.110

Task 3 125.67 45.48 150.83 35.30 -1.572 12 0.072

Task 4 138.25 55.57 171.67 17.60 -1.824 12 0.048

Table 6.4: Paired Sample single negative tail T-Test results on execution
times

Table 6.4 shows the user time performances divided by task and the results
of the paired sample single-tail t-test. As demonstrated by the p-value, Tasks
3 and 4 - the most difficult ones - are statistically different with good signifi-
cance. This condition is easily explainable due to the fact that constraining at
3 minutes the maximum amount of time per task, the usage of a completely-
graphic tool - i.e. Excel - may require greater timespans. However, it is clear
as, once one understood the task and the operation to perform, the usage of
Excel could asymptotically achieve higher performances. For the other two
tasks, this is not completely true, and, even if the performances award our
system, the difference is not statistically significant.

By analyzing the distributions of timing across the different participants, it
is clear as the sample considered is technically varied, manifesting different
performances. More specifically, we can appreciate a skewed bimodal dis-
tribution for tasks 1, 3 and 4, demonstrating an internal difference among
testers’ skills. To this extent, Figure 6.3 allows us to visually analyze the
distribution of data using the frequency of occurrences in 15 bins.
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Figure 6.3: Execution times distribution/frequencies and average values de-
fined over 15 intervals grouped by system and task

Effectiveness To assess the effectiveness of the system, we utilized a success
rate calculation which is commonly used to gauge how well systems aid in
accomplishing tasks. Our study involved categorizing each query performed
by participants as "Success" if the task was fully completed, "Partial success"
if some results were obtained but without respecting completely the assigned
task, and "Failure" if the task execution was incorrect. Thus, the success rate
was then computed as the percentage of users who were able to successfully
complete the tasks, weighing half the partially successful executions - i.e.
0.5 ·#partial.

Following this definition, Queric obtained a success rate of 73.95% over 48
tasks (Success = 30, Partial success = 11, Failure = 7), against a success
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rate of 64.58% (Success = 23, Partial success = 16, Failure = 9) for the tasks
executed with Excel. The detailed overview is reported below in Table 6.5.

By analyzing the results is clear that some tasks are balanced and the differ-
ence is not statistically significant as demonstrated by the Wilcoxon signed-
rank test (Z = -0.051, p = 0.4806).

Qualitatively, the longer the task is, the more effective the conversational ac-
cess appears in the same time span, allowing for a higher number of attempts.

Queric Excel

Success Partial Failure Success Partial Failure

Task 1 6 3 3 7 4 1

Task 2 8 2 2 7 2 3

Task 3 10 1 1 5 5 2

Task 4 6 5 1 4 5 3

Table 6.5: Results grouped by success

Task 1 Task 2 Task 3 Task 4
0

2

4
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8

10

12

Queric success
Queric partial

Excel success
Excel partial

Figure 6.4: Successful and partially successful tasks grouped by system

Satisfaction The analysis of satisfaction is crucial to understand how ef-
fective both systems are perceived by users. To this extent, the test involved
SUS and NASA-TLX questionnaires, leading to the following results.
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Satisfaction through Usability In order to support the usability analy-
sis, a SUS questionnaire has been submitted by each user at the end of the
practical execution for each system.

Focusing on the conversational system, it has demonstrated good usability
measured by means of an average SUS score of 70.19 (σ = 8.53), considering
the average assumed score of 69.5 as highlighted in [34]. However, even Excel
has received extremely positive satisfaction reviews, leading to an average SUS
score of 74.89 (σ = 7.84). We need to consider that Excel is a consolidated,
known and successful complete application whose fame clearly justifies its
performance.

As suggested in [3], the SUS questionnaire has been divided into three parts:
System Learnability (questions #4, #7, #14,#15), Results Quality (#21,
#22, #23, #25, #26) and System Usability (the remaining questions). The
Learnability has been quantified insufficient for Queric (x = 65.83, σ = 16.89)
and in line with the standards for Excel (x = 67.22, σ = 13.02). Considering
the Quality of the results, both systems are good, with Queric more capable
of impressing users (Queric x = 78.70, σ = 10.96; Excel x = 70.37, σ = 10.71).
Finally, the overall System Usability has been estimated as positive for both
systems, but with an outperforming result for Excel (Queric x = 72.89, σ =
8.15; Excel x = 78.40, σ = 9.09).

Satisfaction through Workload To test the workload experienced during
the test, the final questionnaire embedded the NASA-TLX points. The results
prove that the conversational approach is slightly more demanding (x = 54.89,
σ = 10.06) than Excel (x = 48.23, σ = 10.13). However, the t-test unveils
that the results are not statistically significant (t = -0.98, p = 0.342).



6| Evaluation 105

xq σq xe σe T df p

Mental Demand 49.83 18.76 51.00 16.22 -0.261 12 0.796

Temporal Demand 87.16 10.20 51.87 20.76 3.924 12 0.013

Performance 56.83 23.73 68.5 16.60 -1.315 12 0.205

Effort 51.00 16.60 38.75 20.48 0.564 12 0.581

Frustration 52.16 27.83 44.875 26.11 0.892 12 0.382

Physical Demand 32.33 24.68 34.375 20.61 -0.755 12 0.461

Table 6.6: Paired Sample single negative tail T-Test results on workloads
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Figure 6.5: Workload of both systems by category
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Figure 6.6: Top LSA Chi-squared Feature Selection

The results of the qualitative test comparing a conversational agent for ac-
cessing data to Excel are quite interesting. Users reported that Queric is
easy, flexible, and fast to use, which allows for a conversational approach to
accessing business data. User P4 shared that "it is easy and simple to interact
with, but also extremely satisfying in achieving what’s requested". This feed-
back indicates how the conversational interface has improved user experience
and engagement with the system.

As highlighted, the responses can appear unpredictable and unforeseeable,
resulting in a sensation of uncontrollability. This feedback suggests that there
may be room for improvement in the system’s natural language processing
capabilities.

User P1 suggested adapting the system to virtual assistants, stating that
"I see great use of the app integrated with virtual assistants". This feedback
highlights the need to consider user preferences and device compatibility when
designing conversational interfaces.

Users also suggested several improvements to the system to enhance its func-
tionalities, including the addition of more graphics and charts, allowing for
more conversational interactions, and understanding other languages than
English. One user recommended adding the radar chart, while another user
suggested making the access to business data more conversational.
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Additionally, user P12 proposed that the system should be able to understand
less detailed requests, as they mentioned, "to make yourself understood by the
bot, the formulation of requests must be detailed and a little too accurate".

The qualitative results demonstrate that our proposal has advantages over
traditional tools such as Excel, but there are still areas for improvement. De-
spite the limitations reported by users, the system’s flexibility, ease of use,
and speed make it an attractive option for scenarios such as sales analysis,
reporting, and drill-down of information. By taking user feedback into ac-
count and continuously improving the system’s functionalities, conversational
agents have the potential to revolutionize the way companies access and in-
teract with data.

LSA analysis To extract topics from the open answers provided by the
users, we used Latent Semantic Analysis (LSA), a technique that identifies
the relationships between words in a set of documents to highlight under-
lying topics. First, answers were preprocessed by removing stop words and
stemming the remaining words. Then, a term-document matrix is created,
where each row represents a word, and each column represents a document.
We then applied singular value decomposition (SVD) to reduce the matrix
dimensionality and identify the most important topics.

We can appreciate that unpredictability is a topic that is relevant to the open
answers. However, the analysis also demonstrates a great appreciation for
results and usability, which are also important topics in the feedback provided
by the users. This information is highlighted in Figure 6.6, where the most
relevant topics are shown in a visual representation. The results of our test
of the conversational agent for accessing data showed that many users were
impressed by the system’s automated chart creation, summarization, and
dashboard features. These functionalities seemed to spark a sense of wonder
among users who were delighted to see their data easily transformed into
visualizations and summaries.

Notwithstanding, we also noticed that some users experienced difficulties in
clearly communicating their requests to the system, highlighting the need for
continued development to improve the system’s ability to understand and
respond to user requests accurately. The positive reactions are encouraging
and suggest that it has the potential to be a valuable tool for users seeking
to access and analyze data conversationally and intuitively.
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Speed and easy interface One feedback supporting the topic of "Speed"
is, "Sometimes it gets stuck in some processes computing some requests, but
it can be resolved by cleaning the chat" (P8). This feedback highlights the
need for concise and summarized reports to improve the efficiency and speed
of the application, addressing potential processing issues that could cause
frustration.

Regarding "Easily Visible", a user mentioned, "Make the areas where you
can write more easily visible to the user" (P9). This feedback emphasizes
the significance of clear and prominently displayed user interface elements
facilitating easy interaction and input. By enhancing visibility, users can
readily locate and utilize the necessary features, leading to a more intuitive
and user-friendly experience.

Job damage against autonomy Looking at the extracted LSA scores,
two contrasting topics that emerged are "Fast User Autonomy" and "Devel-
oper Job Damage", highlighting the need for empowering users with fast and
autonomous capabilities while considering the potential risks and challenges
that developers may face.

One example supporting the importance of "Fast User Autonomy" is the
feedback stating, "Conversational BI and fast data search queries" (P1). This
feedback emphasizes the significance of enabling users to independently access
and interact with business data using conversational interfaces, leading to
quick and effective decision-making. Users highly value the ability to rapidly
retrieve information and gain insights without relying heavily on developer
assistance.

In contrast, the topic of "Developer Job Damage" is supported by feedbacks
expressing concerns such as "This could damage developers’ jobs" (P12).
These remarks acknowledge the potential challenges that AI and similar ad-
vancements pose to developers, as they may need to invest additional effort
in developing specialized skills to compete directly against the rise of au-
tomation. This feedback also reflects users’ anxiety and fear regarding the
potential impact of these competence-destroying innovations.

These contrasting topics reflect the importance of striking a balance between
empowering users with fast and autonomous capabilities while considering
the potential impact on developers.
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Therefore, we believe that ensuring user autonomy should be accompanied
by clear communication and effective request formulation to mitigate any
negative consequences that may arise for the developer’s job.

Small talk The feedback, "Making it even more conversational also in do-
ing small tasks, reaching the complete ’conversationality’" (P8), reflects the
desire for the chatbot or application to engage in casual conversation and
handle small tasks.

Socially speaking, small talk is an essential aspect of human communication
that serves to establish connections. When it comes to integrating small talk
into Queric, we see room to significantly enhance the overall user experience.
We believe that, by incorporating small talk capabilities, Queric can engage
users in casual and friendly conversations, allowing them to feel more at ease
while interacting with the tool. During and after the tests, several users have
expressed that having more verbose and relaxed responses, even including
some chitchat, would enhance their experience.

Integrating small talk into Queric goes beyond simply being a pleasant ad-
dition. It fosters a sense of naturalness and familiarity in the user interface,
creating an environment that feels more like a conversation with a friendly
companion rather than a robotic information retrieval system. This seamless
blend of small talk and information retrieval can make the interaction with
Queric more enjoyable and human-like.

Furthermore, users have indicated that breaking the flow of the conversation
with occasional small talk adds an element of surprise and variety, making
the interaction with Queric more dynamic and enjoyable.

Transparency and unpredictability In the realm of such automated
tools, there is a growing concern about transparency regarding the data and
retrieval operations that underlie chatbot systems like Queric. As reported
in previous sections, numerous users have expressed apprehension regarding
the unpredictability of the results generated by these tools.

This caution can be seen as a clear indication that users desire a more compre-
hensive understanding of the "back office" tasks performed by our prototype.

While users appreciate Queric’s ability to infer information, they also value
knowing precisely how the system functions and what specific steps it takes to
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produce the results presented to them. By providing users with a transparent
and detailed overview of the data and retrieval operations and reducing the
tool’s opacity, Queric can establish trust and address users’ concerns, allowing
them to make more informed decisions based on their understanding of the
tool’s processes. Transparency and trust in reporting tools not only meet
user needs but also promote accountability and responsible use of AI-driven
conversational tools.

6.3. Lessons learned

The experimental findings highlight intriguing insights regarding the perfor-
mance of Queric and Excel for different tasks. While the results indicate
that Queric exhibits greater efficiency for Task 4 and Excel for Task 1, it is
relevant to note that the observed differences between the two tools do not
reach statistical significance. However, the observed trends provide valuable
indications of relative strengths and weaknesses.

Notably, as the complexity of the tasks increases, Queric’s efficiency becomes
increasingly apparent. This observation can be attributed to the inherent
nature of Queric as a fully conversational tool, which does not require users
to navigate and interact with a graphical interface. Consequently, in Excel,
users may encounter longer completion times due to the additional cognitive
load involved in navigating through the large set of features.

On the other hand, Excel’s familiarity and reliance on spreadsheet-based cal-
culations make it a more suitable choice for Task 1, where numerical analysis
and manipulation are key components. Users accustomed to Excel’s interface
and functions may experience smoother navigation and quicker execution in
such rapid tasks; however, as the complexity of tasks increases, demanding
additional manipulation steps, it is noteworthy that Excel takes more time
to complete, while Queric does not encounter the same issue.

Moreover, the sequential execution of tasks, following a numerical order, offers
valuable insights into the learning effect experienced by users. The use of
Queric, a tool unfamiliar to participants before the experiment, leads to a
more pronounced learning effect in later tasks.
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As users become increasingly acquainted with the features and functional-
ities of Queric, their efficiency improves, reflecting the positive impact of
familiarity and experience on task performance. In contrast, Excel, a tool
that participants were already familiar with, does not generate a substantial
learning effect throughout the test.

It is worth noting that users have expressed great amazement at the auto-
mated extraction of charts and summaries when making data requests. Their
excitement has been evident in their remarks about the creation of dash-
boards and the automated generation of slideshows. Therefore, we consider
these elements to be vital and fortuitous factors that should be taken into ac-
count when developing conversational access to information. These elements
have not only captivated their attention but also provided immense value and
convenience in their data exploration and analysis tasks.

Considering the overwhelmingly positive reception and the evident impact
these features have had on user experience, it becomes imperative to recognize
them as vital and fortuitous factors in the realm of developing conversational
access to information.

Zooming out, a deeper analysis of the sample reveals its inherent hetero-
geneity (Chart 6.3), which suggests the presence of at least two distinct user
subgroups with varying abilities to execute the assigned tasks. The effective-
ness and efficiency of each tool can be influenced by factors such as prior
experience, cognitive abilities, and learning styles, highlighting the need for
tailored approaches to maximize user performance.

By understanding the diverse range of users and their specific requirements,
developers can fine-tune the functionality and design of conversational access
systems to ensure optimal outcomes for each individual. This user-centric ap-
proach, which takes into account the interplay between technical capabilities
and human characteristics, could pave the way for a truly transformative and
empowering information access platform.

Additionally, the lower efficiency observed with Queric may be attributed to
the challenges in expressing their intentions clearly and concisely in natural
language. While Queric’s interface allows for more intuitive interaction, the
ability to effectively communicate instructions and queries in a manner easily
decipherable by an artificial intelligence system proves to be a crucial factor.
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It highlights the significant role of prompt engineering in leveraging the po-
tential of language models - e.g. LLMs. Crafting well-designed prompts that
elicit precise and unambiguous responses becomes increasingly essential to
enhance the efficiency and accuracy of interactions with language models like
Queric.

In conclusion, the experimental findings reveal the nuanced dynamics between
Queric and Excel for different tasks. While Queric demonstrates higher effi-
ciency for more complex tasks, Excel remains a favorable choice for numer-
ical analysis. Understanding the impact of users’ familiarity, the sequential
progression of tasks, and the role of prompt engineering contributes to op-
timizing the utilization of these tools and ultimately enhancing overall task
performance.

The conducted test also enabled a direct comparison between the prototype
and one of its toughest competitors. According to the results, there are
no significant disparities in terms of usability, satisfaction, and effectiveness.
Numerous comparisons suggest that the prototype and its rival are on par
across multiple aspects, with Queric excelling in efficiency and serendipity
while Excel shines in matters of completeness and integration.

However, the use of conversational AI in business information can arise some
issues of security. Indeed, data security is of paramount importance when it
comes to extracting business operational data, necessitating strict measures
to ensure the protection and privacy of sensitive information. Limiting access
privileges and avoiding sharing data with external services helps maintain
control and confidentiality, safeguarding the integrity of the organization’s
valuable data assets.

These findings indicate that the prototype performs well, especially consider-
ing that experienced users of Excel, who heavily rely on information, consider
Queric a valid and captivating alternative. It can be attributed to the con-
versational approach, which, in a broad sense, ensures:

• The ability to infer information

• High-quality results and a lower level of technical complexity

• Natural, precognitive and human interactions

• A more democratic access and distribution to knowledge
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These considerations, supported by semantic analysis (LSA), provide great
optimism regarding the technical and commercial prospects of employing a
conversational approach to information. The ability to engage in natural
language conversations with intelligent systems, coupled with the capacity
to extract relevant insights and provide contextually appropriate responses,
can significantly enhance decision-making and problem-solving across a wide
range of domains.

The promising potential of this approach could unlock unprecedented levels of
convenience, productivity, and innovation in the realm of information access,
fueling optimism for its adoption, not only by enhancing the overall user
experience but also by opening up encouraging avenues for various commercial
applications, such as customer support, data analysis, and decision-making
assistance.
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7| Conclusions and future

developments

Conversational intelligence has gained significant traction in various domains
representing a crucial step forward in human-computer interaction and, when
applied to data analysis, allows users to extract insights from data by simply
conversing with the system, simplifying the analysis process and enhancing
the accuracy and speed of data analysis.

In this Thesis, we proposed an integrated and novel architecture and a paradigm
capable of exploiting conversational medium to access and elaborate struc-
tured data, extract insights, and generate comprehensive data-driven inter-
faces.

Initially, we identified the state-of-the-art in conversational intelligence evo-
lution and its application in data analysis. We have highlighted the lack of
a comprehensive and agnostic environment that allows natural language ac-
cess to structured data. To address this gap, we collected requirements from
business managers and end-users, with a focus on serendipity, simplicity of de-
sign, automation, and visualization of results. Based on these requirements,
we developed an infrastructure of different pipelines to support individual
data access and analysis and complex data presentation.

Our system provides an automated process for extracting the schema, sup-
porting the enlargement of the schema annotation, and pruning large schema.
We generate SQL queries and provide data summarization and visualization
based on the context. We also emphasized the inferential power of the appli-
cation, capable of generating automated dashboards and presentations based
on a simple topic. The system finally allows unexpert users to configure the
UI, through pure-conversational prompts and simple front-end tasks.
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To demonstrate the effectiveness of our proposed application, we developed
a prototype, described the technologies, and provided a detailed implemen-
tation of the product. The prototype can handle conversational commands,
including also features such as automated data extraction and presentation.

Aware of the continuous evolution in the field of conversational intelligence,
we have deemed it crucial to give space to one of the most efficient models
to date in the management of natural language, i.e. the GPT model. Its
ability to process unstructured idioms and highly formalized syntax (code)
is not negligible and for this reason it was decided to integrate it into the
development rather than compete directly with it.

In the end, we carried out a comparative study between our conversational
platform and Excel outcomes. The study encompassed both quantitative and
qualitative analyses of interactions, yielding positive findings regarding our
approach and revealing opportunities for further enhancements. The results
demonstrated that our proposed system offers a more user-friendly method for
data analysis, leading to reduced analysis time and improved result accuracy.

In conclusion, our proposed application provides a comprehensive and agnos-
tic environment for natural language access to structured data. The system
automates data extraction and simplifies the analysis and presentation pro-
cess, allowing for serendipity, simplicity of design, automation, and visual-
ization of results. Our comparative study demonstrates the effectiveness of
our approach and provides insights for future research. This system has sig-
nificant potential for enhancing data analysis in various domains and can be
further improved by integrating new technologies and features.

7.1. Limitations

While defining our framework, we made several structural and design choices
that significantly impacted the system limitations. One of the most signifi-
cant challenges of a conversational approach to information is data privacy
and access privileges. Undoubtedly, given the increasing amount of data be-
ing collected and stored, ensuring that only authorized personnel have access
to sensitive information is of utmost importance if considering a business sce-
nario. Therefore, it is crucial to ensure proper security protocols to safeguard
the data and authorized access to information.
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Another limitation that can hinder the effectiveness of a conversational access
system is the usage of BLOBs (Binary Large Objects). These large data files
can slow down the system and make it difficult to access large amounts of
data in a feasible time. Moreover, BLOBs require special handling, making it
challenging for conversational systems to access and process the data within
these files. The presented conversational system is unable to process images
as part of a query, nor can it provides image-based results. This limitation
can restrict the system’s ability to provide a complete and comprehensive
view of the data, especially when dealing with visual data such as images -
commonly used in modern ERPs.

Another significant factor to be considered is that conversational inquiries
require a try-and-error approach that can be time-consuming and frustrating.
NQL allows users to ask questions in a natural language format, but it can
be challenging for the system to interpret the user’s intent accurately.

The prompt-query-result system that we employed is prone to higher latencies
as the schema size and data volume increase. Whether in the form of results
or an error message, the user may have to wait several seconds before receiving
a response when requesting an output.

Moreover, our schema pruning approach, based on entity semantics, could
potentially reduce the system’s scalability. For large databases, this operation
can be particularly expensive and, when combined with the prompt-query-
result runtime process, can make it challenging to apply the system to big
data sets and schemas with high cardinality.

In our efforts to create a comprehensive system, we attempted to keep the
graphical interface minimal. Nevertheless, our tests uncovered potential com-
plications, especially for users who are accustomed to the extensive array of
capabilities provided by contemporary corporate information systems. The
lack of clarity regarding which operations are to be performed conversationally
and which require manual input can lead to significant confusion, representing
a relevant system’s limitation.

A final challenge is the difficulty of presenting data effectively and clearly.
This factor is especially evident when dealing with complex data sets, im-
pacting the overall application performance and serendipity.



118 7| Conclusions and future developments

7.2. Further development

Conversational agents have come a long way in recent years, thanks to ad-
vances in machine learning and natural language processing. With the de-
velopment of GPT-based applications such as PandasAI [35] - enabling con-
versational access to DataFrame - conversational agents now can query data
frames using natural language. We believe there is still much potential for
further development and improvement of these agents. Moreover, the emer-
gence of ChatGPT plugins [36], which are API services designed to disrupt
and enhance the capabilities of GPT models, presents a tremendous oppor-
tunity to revolutionize the impact of large language models. Through the
ability to fine-tune OpenAI’s models for specific functions, these plugins have
the potential to significantly expand the range of applications and possibilities
for LLMs, pushing the boundaries of their capabilities.

Focusing on our proposal, a key area for improvement is the immediate selec-
tion of resources. As previously mentioned, the application currently has the
capability to handle multiple outgoing connections to various data sources in-
dependently. However, a more integrated approach is necessary to ensure that
the agent selects the appropriate resources at the appropriate times. This in-
tegration involves combining multiple data sources and facilitating the rapid
and accurate processing and analysis of extensive datasets. Consequently, the
agent will be better equipped to deliver precise and relevant responses to user
queries.

Another area for improvement is automated and enhanced schema annotation
which involves annotating the schema of data sources with information that
can support entity selection and source pruning. As a result, the application
can enjoy improved performance in better understanding the user’s queries
and providing more accurate and relevant responses.

Furthermore, through the integration of external data mining modules, the
agent can extract a greater wealth of information from diverse sources, thereby
gaining a deeper comprehension of the user’s requirements and preferences.
This capability offers valuable descriptive and generative insights into vari-
ous observed phenomena, signifying a groundbreaking shift in how experts
can access and extract knowledge from structured sources. Additionally, this
advancement empowers the agent to offer more personalized and impactful
recommendations and suggestions.
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Moreover, deeper integration of open data and associative data sources, such
as ROLAP, can also lead to significant improvements in the agent’s capabil-
ities but it will require fusing more advanced techniques of accessing semi-
structured resources based on different paradigms. In previous chapters, we
have demonstrated how the application can access associative structures such
as JSON and, by combining them with new tools such as PandasAI for data
frames, can easily extend its capabilities to non-relational data sources as
well.

The requirements elicitation has highlighted the relevance of integrating voice
and virtual assistant features into a text-based conversational platform, un-
derlining the possibility of making data analysis more user-friendly. Con-
sequently, we have tried to introduce speech-to-text (STT) and, conversely,
text-to-speech (TTS) as a simple voice interface to expand the accessibil-
ity of our platform, obtaining good results. However, further developments
are required, for example focusing on advanced voice dictation techniques
[37]. Indeed, our efforts, mainly concentrated on a comprehensive system
definition, ran into some renowned STT problems, such as literal dictation of
precise parameters and names.

For these reasons, further efforts could concentrate on implementing a more
robust and adaptable voice interface. This approach is particularly beneficial
for individuals unfamiliar with traditional data analysis tools. By speaking
their queries and commands, users can make data analysis more intuitive and
accessible. This integration is expected to have a significant impact on the
future of data analysis by providing a more efficient and convenient way of
working with data.

The continuous development of prompt-based LLMs, exemplified by OpenAI’s
GPT, promises to significantly enhance the agent’s ability to interpret and
translate prompts into queries in the coming years. As these models evolve,
we anticipate a steady improvement in the accuracy and effectiveness of the
results, driven by a deeper understanding of the user’s intentions and context.
There are reasons to believe that this advancement in LLMs will contribute
to more precise and relevant responses, further improving the conversational
experience and utility of the agent.
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In conclusion, conversational agents have made significant strides in recent
years, also combined with automated and AI-mediated data analysis, but
there is still ample potential for further development and enhancement. By
improving on-the-fly resource selection, enhanced schema annotation and
deeper integration of open and associative data sources, conversational agents
can become even more powerful and effective tools for querying and interact-
ing with complex data sets.

With the potential to seamlessly access and interact with knowledge, these
agents hold the key to transforming how we engage with information. As we
venture forward, it is not only the technology that will evolve, but also our
own relationship with knowledge, as we embark on a journey of exploration
and discovery facilitated by the power of conversation.
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A| Appendix A

A.1. Elicitation questionnaire

Participant code:

1. How frequently do you use dashboard or tabulated data, charts and
pivots?

2. How data and information are necessary and crucial for your operations,
thus how much data-intensive is your job?

3. How do you feel if you’d be able to change, customize and create data
extractions and reports on your own?

4. How frequently do you use operational/transactional data?

5. Have you ever used a conversational interface to interact with data or
analytics systems? If so, can you describe your experience?

6. How important is it for you to be able to access data and analytics
insights through natural language queries?

7. Do you currently have any data analysts or scientists on your team? If
so, how do they typically interact with business users to gather require-
ments and deliver insights?

8. Can you describe your current process for accessing and analyzing data?
Are there any pain points or bottlenecks in this process?

9. How would you feel about a tool that allows business users to ask ques-
tions in natural language and receive insights without needing to know
SQL or other query languages?

10. Are there any specific features or capabilities you would like to see in a
conversational analytics tool?
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11. How would you see a conversational analytics tool fitting into your
team’s existing workflows and processes?

12. How would you measure the success of a conversational analytics tool
within your organization?

13. What are your expectations for the speed and accuracy of insights gen-
erated by a conversational analytics tool?

14. Are there any concerns you have about implementing a conversational
analytics tool, such as data security or governance issues?

A.2. Demographic questionnaire

Participant code:

Age:

Gender:

Male Female Other

□ □ □

Education:

High school Bachelor Master PhD Other

□ □ □ □ □

How do you evaluate your expertise with information technology?

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

How do you rate your expertise with the use of chatbots?

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □
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How do you rate your expertise with querying databases?

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

How do you rate your expertise with data analysis?

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

How do you rate your expertise with data visualization?

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

A.3. User test questionnaire

A.3.1. Usability

I think that I would like to use this system frequently.

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

I found the system unnecessarily complex.

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

I thought the system was easy to use.

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □
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I think that I would need the support of a technical person to be able to use
this system.

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

I found the various functions in this system were well integrated.

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

I thought there was too much inconsistency in this system.

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

I would imagine that most people would learn to use this system very quickly.

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

I found the system very cumbersome to use.

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

I felt very confident using the system.

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □
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I needed to learn a lot of things before I could get going with this system.

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

A.3.2. Cognitive effort

How mentally demanding were the tasks?

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

How physically demanding were the tasks?

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

How hurried or rushed was the pace of the tasks?

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

How successful were you in accomplishing what you were asked to do?

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

How hard did you have to work to accomplish your level of performance?

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □
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How insecure, discouraged, irritated, stressed and annoyed were you?

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

A.3.3. General questions

How easy was it to explore the database with this system, for example to
identify the information contained in it or to navigate among the various
tables?

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

How easy was it to find the requested information?

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

How easy was it to understand or remember the commands to use in order
to find the requested information?

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

How do you consider the way in which the commands are presented?

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

How do you consider the way in which results are visualized?
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Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

How do you consider the quality of charts?

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

How do you consider the way in which results are summarized?

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

How easy was it to interact with the chatbot?

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

How easy was the extraction of the dashboard?

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

How serendipitous do you consider the overall system?

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

How do you consider the quality of the export?

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □
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How likely are you to use this tool in your work activities?

Low 1 2 3 4 5 6 7 8 9 10 High

□ □ □ □ □ □ □ □ □ □

Which scenarios of use do you think are the most appropriate for the system
you used?

Do you have any ideas on how to improve the presentation of results (for
example through graphics)?

Do you have any ideas on how to enhance the functionalities of the system?

Main advantages of the system used.

Main disadvantages of the system used.
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A.4. Final Questionnaire

With respect to their UTILITY, order the systems you used (1 = the one you
consider most useful, 2 = the one you think is least useful):

Queric
1 2

□ □

Excel
1 2

□ □

With respect to their COMPLETENESS, order the systems you used:

Queric
1 2

□ □

Excel
1 2

□ □

With respect to their EASE OF USE, order the systems you used:

Queric
1 2

□ □

Excel
1 2

□ □

Overall, which system would you adopt in your activities?

Queric
1 2

□ □

Excel
1 2

□ □
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B.1. Inquiry process body response scheme
1 {

2 "pruning ": <associative object of entry table -

similarity >,

3 "results ": <array of extraction results >,

4 "pretext ": <message string elaborated by the

model >,

5 "summary ": <summary string of results >,

6 "chart": <object for Vega -lite -Altair chart

specification >,

7 "cached ": <boolean for cached results >,

8 "jumps": <array of associative objects of entry

table -column >

9 }

B.2. Python Adapter interfaces
1 {

2 "name": "Client plug",

3 "parameters ": [

4 {

5 "name": "action",

6 "type": "string"

7 },

8 {

9 "name": "<argv >",

10 "type": "string|number"

11 }
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12 ]

13 }

14

15 {

16 "name": "Adapter",

17 "parameters ": [

18 {

19 "name": "action",

20 "type": "string"

21 },

22 {

23 "name": "<argv >",

24 "type": "string|number"

25 }

26 ]

27 }

28

29 {

30 "name": "Schema tagging",

31 "parameters ": [

32 {

33 "name": "dbConnector",

34 "type": "mysql.connector"

35 }

36 ]

37 }

38

39 {

40 "name": "Schema fetching",

41 "parameters ": [

42 {

43 "name": "dbConnector",

44 "type": "mysql.connector"

45 },

46 {

47 "name": "needle",

48 "type": "string",
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49 "optional ": true

50 }

51 ]

52 }

53

54 {

55 "name": "Data visualization",

56 "parameters ": [

57 {

58 "name": "dbConnector",

59 "type": "mysql.connector"

60 },

61 {

62 "name": "prompt",

63 "type": "string"

64 },

65 {

66 "name": "sessionGUID",

67 "type": "long"

68 }

69 ]

70 }

71

72 {

73 "name": "Data summarization",

74 "parameters ": [

75 {

76 "name": "dbConnector",

77 "type": "mysql.connector"

78 },

79 {

80 "name": "keywords",

81 "type": "string []"

82 },

83 {

84 "name": "sessionGUID",

85 "type": "long"
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86 }

87 ]

88 }

89

90 {

91 "name": "Data creation",

92 "parameters ": [

93 {

94 "name": "dbConnector",

95 "type": "mysql.connector"

96 },

97 {

98 "name": "dbId",

99 "type": "number"

100 },

101 {

102 "name": "prompt",

103 "type": "string"

104 }

105 ]

106 }

107

108 {

109 "name": "Navigation",

110 "parameters ": [

111 {

112 "name": "dbConnector",

113 "type": "mysql.connector"

114 },

115 {

116 "name": "dbId",

117 "type": "number"

118 },

119 {

120 "name": "sessionGUID",

121 "type": "long"

122 },



B| Appendix B 139

123 {

124 "name": "connections",

125 "type": "string []"

126 }

127 ]

128 }

129

130 {

131 "name": "Intent matching",

132 "parameters ": [

133 {

134 "name": "dbConnector",

135 "type": "mysql.connector"

136 },

137 {

138 "name": "prompt",

139 "type": "string"

140 }

141 ]

142 }

143

144 {

145 "name": "Dashboard export",

146 "parameters ": [

147 {

148 "name": "dbConnector",

149 "type": "mysql.connector"

150 },

151 {

152 "name": "queries",

153 "type": "string []"

154 },

155 {

156 "name": "titles",

157 "type": "string []"

158 }

159 ]
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160 }

161

162 {

163 "name": "Insert intent",

164 "parameters ": [

165 {

166 "name": "dbConnector",

167 "type": "mysql.connector"

168 },

169 {

170 "name": "dbId",

171 "type": "number"

172 },

173 {

174 "name": "prompt",

175 "type": "string"

176 }

177 ]

178 }

179

180 {

181 "name": "Select intent",

182 "parameters ": [

183 {

184 "name": "dbConnector",

185 "type": "mysql.connector"

186 },

187 {

188 "name": "dbId",

189 "type": "number"

190 },

191 {

192 "name": "prompt",

193 "type": "string"

194 },

195 {

196 "name": "sessionGUID",
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197 "type": "long"

198 },

199 {

200 "name": "step",

201 "type": "number",

202 "optional ": true

203 }

204 ]

205 }
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