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Abstract

Creeping landslides in naturally bonded soils need a careful study, due to the com-
plexity of this class of materials, characterized by a strain softening and viscous
behaviour. In particular, after crack propagation occurring locally in the material,
a progressive failure, leading to an unexpected slope collapse may occur.
In literature models for creeping landslides description exist, but they cannot re-
produce the landslide inception phase; for this reason a new model capable of
reproducing the onset of instability was developed in this thesis.
The reference point for the model development and calibration is a numerical model
integrating strain softening elastic-plastic and elastic-viscoplastic constitutive rela-
tionships under simple shear conditions. The equivalent model will be developed in
the elastoplastic case and then extended to the strain softening viscoplastic case,
considering a stress path deriving from water table level change.
Particular attention will be given to the role played by the structural hardening in
a constrained soil element. Its in�uence on the slope response will be remarked and
it will be introduced in the new model.
Finally, the in�uence of the soil parameters spatial variability will be studied.
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Introduction

Creeping landslides are characterized by slow downward movements and, in most
cases, their evolution is governed by seasonal phenomena (e.g. seasonal rainfalls,
snow melting...) periodically taking place. These perturbations are often the cause
of unexpected collapses.
The class of landslides analyzed in this thesis is typical of cemented materials, which
are characterized by interparticle bonds, conferring to the material both cohesion
and tensile strength.
Locally a loss of cohesion may verify in the material and, when the local failure
occurs, the stresses are transferrred to the surrounding portions of the domain,
that subsequently may reach failure. This chain of events, which is delayed in time
due to the viscoplastic nature of cemented materials, is called progressive failure
mechanism and may bring to an instability phenomenon characterized by strains
and displacements acceleration. This kind of catastrophic events may occur after
di�erent mechanical perturbations: one of the most typical, that will be subject of
this thesis, is the water table level change. The increase and decrease of the water
table level promotes in time the onset of material damage and cohesion degrada-
tion.
Some 1D rigid-viscoplastic models for creeping landslides description exist, but they
are capable only to describe the reactivation phase and not the landslide inception
phase.
The aim of this thesis is the development of a new 1D viscoplastic equivalent model
capable of reproducing the creeping landslide evolution, from the inception phase
to the reactivation phases. In the new 1D model the hypothesis of rigid-viscoplastic
model is removed: the new model is a strain hardening elastic-viscoplastic model
and the system will be studied at the REV scale.
The idea of this approach is providing a simple way of studying slope stability
problems deriving from creeping landslides in naturally bonded materials. In the
1D equivalent model the constitutive equations do not have to be integrated and
the number of static parameters needed for slope stability analyses is reduced.
The model is conceived and calibrated on the basis of numerical simulations, in
which both elastoplastic constitutive model and strain softening visoplastic consti-
tutive model are integrated under simple shear conditions (SSC).
All the analyses are based on a stress path deriving from water table level change.
The problem is studied by following two steps: the �rst step implies the use of
an elastoplastic constitutive law. For the sake of simplicity, the model has been
initially de�ned and calibrated by considering an elastic-perfectly plastic case.
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The second step is the extension of the 1D elastoplastic code to the strain soften-
ing viscoplastic case: the removal of consistency law, according to the viscoplastic
theory, makes possible also the study of softening regime.
As it was previously mentioned, the model is 1D, meaning that is capable of repro-
ducing the response of in�nite long slopes. In this case, along the slope direction,
the material properties and the material response do not change. Actually, along
the slope direction the material parameters are not homogeneous, so the in�uence of
their spatial variability will be shown, in order to understand the di�erence between
the response of the slope with the parameters mean values and the mean slope re-
sponse. To do so some analyses under simple shear conditions will be performed
with an elastic law, an elastic perfectly-plastic law, a strain softening elastoplastic
law and a strain softening viscoplastic law.
In Chapter1 an overview of i) cemented materials microstructural and mechanical
features and ii) of the constitutive models used to reproduce their behaviour is
provided. In particular the time-dependent behaviour of this class of materials is
remarked, highlighting the time evolution of microcracks.
In Chapter2 creeping landslides are described and the displacement trends char-
acterizing their evolution are reported. The process of shear band propagation
bringing to the slope collapse will be analyzed. Moreover, the already existing 1D
lumped models are described.
Chapter3 is devoted to the description of the elastoplastic slope response, with par-
ticular attention to structural hardening phenomenon. The SSC model is described
and the passages for 1D model construction, calibration and validation are shown.
All these passages are extended to the viscoplastic law and to the strain-softening
viscopalstic law in Chapter 4. In addition, in Chapter4, the comparison between
the 1D equivalent model object of this thesis and the already existing 1D lumped
model for creeping landslides description is shown.
In Chapter6 the in�uence of the parameters spatial variability is shown.
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Chapter 1

Bonded materials: relevance of

microstructure on the mechanical

behaviour

Cemented materials have many substantial microstructural di�erences with respect
to a unbonded assembly of grains forming a soil.
Cemented materials and soft rocks often have a more rigid structure than remoulded
soils: diagenetic bonds develop between grains, so that a material with a ma-
trix, a solid skeleton and relatively stable structure is formed. In general, these
bonds are formed naturally, through diagenesis or geological processes of temper-
ature/pressure increase. They a�ect the behaviour of such kind of soils in various
ways: they can be subjected to changes in time due to hydraulic, chemical or phys-
ical processes. Moreover, thanks to chemical bonds, soil acquires tensile strength.
Since bonds are often fragile in nature, they also develop a collapsable structure
that may give rise to unexpected instabilities.
The study of cemented materials microstructure is very important for the under-
standing of their behaviour, which does not only depend on the loading history
but also on the chemical processes. Chemical reactions are actually governing the
formation and destruction of the intergranular bonds, even in absence of perturba-
tions.
In this chapter, the main features of cemented materials bahaviour will be outlined.
Their degradation in time will be conceptually explained, referring to the constitu-
tive relationship proposed in [Nova et al., 2003], conceived for cemented materials,
considering the bonds as an internal variable evolving while the material is progres-
sively damaged. For sake of simplicity, it is assumed that degradation, whatever
its cause may be, a�ects internal variables and not other material properties, such
as elastic moduli or critical state line.
In this chapter cemented materials microstructure, modes of failure, damage phe-
nomenon and creep behaviour will be described.
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Bonded materials: relevance of microstructure on the mechanical behaviour

1.1 Intergranular bonds

Cemented materials are natural soils that possess a structure deriving from pro-
cesses taking place in their geological life. The term "structure" was �rstly intro-
duced in clays as being the combination of bonding and fabric. For a coarse-grained
soil, bonding can only take the form of interparticle cementing, since interparticle
forces are negligible.
Naturally cemented materials, such as calcarenites and silica sandstones, can be
also classi�ed as soft rock, because they have a solid structure, but less strength
with respect to an hard rock.
Calcareninte consists of a medium carbonate sand of biogenetic origin bonded by
calcium carbonate and represents a material with weak grains bonded by a quite
strong cement. The grains of these soft rocks are formed by dead calcareous or-
ganisms (shells, corals and other calcareous organic structures) accumulated at the
same marine environment. The cement precipitated from the saturated sea water
during or soon after deposition, preventing large strains from developing in the soil
under the increase of overburden stress: the result is a soil having low density and
open fabric.
As an example of silica sandstone, the one described in [Coop and Cuccovillo, 1997]
will be reported. It is a medium quartz sand bonded with ion oxide and is thus
characterized by strong grains bonded by relatively weak cement. This weak rock
was deposited in a shallow water marine environment, the cement is formed in the
later stages of the diagenesis, when the environmental conditions favoured the pre-
cipitation from the groundwater �owing through the sediments. Prior to the cement
deposition, high overburden pressure had caused a substantial increase in density
leading to the development of a well de�ned fabric that can be seen in the scanning
electron micrographs in Figure1.1. This fabric is characterized by the large area of
the intergranular contacts. The iron oxide appears white and, for the grains in con-
tact, the cement coating is likely to weld the grains together. [Dapples, E., 1972]
observed that iron oxide in silica sands provides only weak bonding because of its
poor adherence to the quartz grains.
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1.1 � Intergranular bonds

Figure 1.1: Scanning electron micrographs of the silica sandstone with di�erent
degrees of magni�cation

[Ciantia and Castellanza, 2016], through a microstructural analysis, individu-
ated the main kinds of intergranular bonds that could be found in a structured soil.
To individuate the microscopic bonds nature ([Ciantia and Di Prisco, 2016]) per-
formed a complete set of microinvestigations by means of X-ray micro-computer-
tomography (MTC) scanning electron microscope (SEM) analyses. In Figure1.2
a typical thin-section obtained from samples hardened with epoxy resin are pho-
tographed by means of an high resolution camera connected to an optical micro-
scope, while in Figure1.3 SEM images of 3D microstrucures of di�erent Calcarenites
are reported.

Figure 1.2: Typical thin-section obtained at an optical microscope where diagenetic
bonds (DG) and depositional bonds (DP) are clearly visible
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Bonded materials: relevance of microstructure on the mechanical behaviour

Figure 1.3: SEM images of 3D microstructure with di�erent magni�cations: (a-d)
Calcarenite from Gravina di Puglia,(e-h) Calcarenite from Gallipoli

By observing the material at the miscro scale two di�erent types of bonds be-
tween grains can be recognized:

1. diagenetic bonds (DG), identi�ed as the bonds formed during diagenesis. Dur-
ing the sedimentation process, the grain themselves are �lled with the same
calicite crystals forming DG. For this reason, at the polarized light microscope
these bonds usually appear totally similar to the grains (Figure1.2);

2. the second type of bonds, named depositional bonds (DP) is composed by less
densely packed material formed by small calcite micrograins.

Often a bond is the result of the superimposition of these two kinds of miscrostruc-
tures, as the surface of DG is usually covered by a layer of loosely packed micro-
crystals.
From what already observed comparing calcarenites and silica sandstones, emerges
that the behaviour of the material is strictly dependent on the mineralogy and on
the type of interparticle bonds. Nevertheless, for sake of simplicity, such a depen-
dence will be neglected in this thesis.

1.2 Local failure mechanisms

In cemented materials the fundamental microstructural variables are: porosity,
directional characteristics of the structure (i.e. inherent anisotropy) and bonds
stability. Di�erently from soils, cemented materials have their own shape, even if
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1.2 � Local failure mechanisms

con�ning pressure is not applied. Each microstructural evolution and the conse-
quent development of irreversible strains are necessarily linked to the intergranular
bonds damage.
Structured materials have three fundamental modes of failure:

� Tensile failure: this fragile mode of failure can be also called splitting mode,
as it is characterized by fractures development: during the process grains lose
contact and cannot contrast the evolution of instability (Figure1.4a);

� Shear failure: it develops when the state of stress bringing to instability
is characterized by a slightly larger con�ning pressure with respect to the
splitting mode. The shear mode is characterized by the developing of strain
localization which induces the formation of a shear band and the damage of
the material (Figure1.4b).
In Figure1.5 samples after triaxial compression tests on uncemented soils (a)
and arti�cially cemented sands (b) ([Amini and Hamidi, 2014]) can be seen
at three di�erent con�ning pressure (pc = 50, 100, 150kPa). All cemented
samples show barreling mode of failure without shear plane formation. In
cemented samples initially the mode of failure is a combination of barreling
shape and shear plane, but increasing the con�ning pressure, the shear band
is more evident and inclined with respect to the horizontal plane;

� Volumetric instability : in case of very porous materials, if the con�ning pres-
sure increases, the grains can damage and, to reach a new equilibrium con-
dition, a reduction of macro voids volume is necessary. This brings to an
unstable process characterized by a sharp decrease of void ratio associated
with the formation of a compaction band (Figure1.4c). An example of com-
paction band after a triaxial test on calcarenite can be seen in Figure1.6.

For the sake of simplicity, in this thesis only the case of an in�nite slope is consid-
ered and, therefore, only shear failure mode is considered.

Figure 1.4: Microstructural evolution for a) tensile mode of failure b) shear mode
of failure c) volumetric mode of failur
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Bonded materials: relevance of microstructure on the mechanical behaviour

Figure 1.5: Failure modes of tested samples. (a) Barreling mode in the uncemented
samples; (b) shear zone in the cemented samples

Figure 1.6: Sample with a compaction band after a triaxial test on calcarenite
([Lagioia and Nova, 1995b])

It can be experimentally shown that there is a relationship between con�ning
pressure, imposed stress path and the mode of failure and it will be shown later on.
It is possible to study experimentally the damage phenomenon recording during the
tests acoustic emissions associated to a generic loading path ([di Prisco, 2012b]).
These emissions are due to the progressive failure of bonds and to the release of
the accumulated elastic energy. Damage modi�es the material response: for in-
stance, referring to a uniaxial compression test (Figure1.7) it is evident that along
the loading-unloading paths, in the post peak phase, a progressive reduction of
material sti�ness veri�es.
During the loading process initial elastic deformation involves the stretching of
molecular bonds and frictional sliding between surfaces of any existing small cracks.
New cracks appear as the peak stress is approached and continue to open and grow
at the peak shear strength until they link together to form a major plane of failure.
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1.2 � Local failure mechanisms

The shear resistance abruptly decreases to a residual value determined by sliding
friction angle along the new failure plane.

Figure 1.7: (a) sketch of a uniaxial compression test (b) stress-strain curve for a
cyclic uniaxial compression test in displacement control conditions

The material damage can be also translated in a decrease in shear sti�ness
with strains. This aspect is shown in some monotonic triaxial tests performed in
[Sharma and Fahey, 2003]. G0 is the initial tangent sti�ness and the secant shear
modulus Gsec in a monotonic test is de�ned as the gradient of the straight line
passing through the origin and the point corresponding to a particular stress or
strain amplitude on the q − 3εs curve (Figure1.8a)), where q = (σ1 − σ3) is the
deviator stress and εs = 2/3(ε1 − ε3) is the deviatoric strain.
In Figure1.8b) the variation of Gsec with εs obtained from undrained triaxial tests
performed on cemented sands at p0 = 200, 600 kPa respectively can be seen. The
samples are consolidated below the isotropic yield stress, so no signi�cant breakage
of bonds during the consolidation phase occurs. The data show that there is a
threshold yield strain εs,yield, which separates the plateau of initial constant sti�-
ness from the start of substantial sti�ness degradation. As previously observed, a
decrease of sti�ness with shearing occurs. This decrease is also in�uenced by the
con�ning pressure: the sample consolidated at p′0 = 600kPa shows more gradual
degradation of sti�ness compared with the sample consolidated ad p′0 = 200kPa ,
although εy was about 0.0002 for both samples. This suggests that even for samples
consolidated below the yield stress, the consolidation pressure has an e�ect on the
mechanism of bond degradation and sti�ness degradation during shearing.
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Bonded materials: relevance of microstructure on the mechanical behaviour

Figure 1.8: a) Symbols and de�nitions for a monotonic test b) variation of Gsec

with deviatoric strain amplitude for cemented samples

1.2.1 Mathematical modelling of cemented material behaviour

To better understand the previously cited modes of failure, [Nova et al., 2003] con-
stitutive model for cemented materials is reported as a reference.
For the sake of simplicity, the material is assumed to be isotropic. The constitutive
relationship is elastic plastic and characterized by a strain hardening.
As suggested by [Nova, 1992],[Nova, 1986] the main di�erence between an intact
soft rock and a granular soil lies in that for soft rocks, contrary to soils, the initial
elastic domain is not related to the previous loading history (i.e preconsolidation)
but rather exists by itself and its size is linked to the strength of bonds.
The second hypothesis is that the additivity holds: strains are given by the sum of
an elastic reversible component and a plastic irreversible component

ε̇ = ε̇elij + ε̇plij . (1.1)

The elastic behaviour of the material is de�ned postulating that a strain energy
function ψ(εe) exists such that:

σij
(
εelij
)

=
∂ψ

∂εelij

(
εeij
)
, (1.2)

from which, by di�erentiation, the following law can be obtained.

σ̇ij = Dij,hk(ε
e
hk)[ε̇hk − ε̇

p
hk], (1.3)

where the elastic sti�ness De
ij,hk is given by:

De
ij,hk ≡

∂2ψ

∂εelij ⊗ ∂εelij
. (1.4)
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1.2 � Local failure mechanisms

The elastic moduli are assumed not to be a�ected by accumulated plastic strains
(which means by mechanical destructuration), by weathering or by non mechanical
actions. This is clearly another very strong assumption, introduced again for sake
of simplicity.
Irreversibility is introduced by requiring the state of the material, de�ned in terms
of the stress components σi and the set of internal variables qi,to belong to the set:

Eσ := {
(
σij, qi

)
|f
(
σij, qi

)
≤ 0}. (1.5)

where f is the yield (or loading) function. The internal variables qi, are assumed
to depend on the history of the material element, via the accumulated plastic
strain tensor εpij, and a set of scalar internal variables θi taking into account the
degradation caused by all the non-mechanical e�ects, like chemical degradation,
temperature. Neglecting for sake of simplicity the chemical actions, the internal
variable vector will be only a function of accumulated plastic strains:

qi = qi
(
εpij
)
. (1.6)

The evolution of internal variables is provided by the following generalized harden-
ing law

q̇ij =
∂qi
∂εpij

ε̇pij. (1.7)

According to the standard theory of plasticity, plastic strain rates are de�ned by
the following non-associative �ow rule:

ε̇pij = Λ̇
∂g

∂σij
, (1.8)

where g
(
σij, qi

)
is the plastic potential and Λ̇ ≥ 0 is the plastic multiplier. The

loading/unloading conditions are prescribed in terms of the so-called Kuhn Tucker
complementary conditions:

Λ̇ ≥ 0 f
(
σij, qi

)
≤ 0 Λ̇f

(
σij, qi

)
= 0, (1.9)

which imply that plastic loading can occur only for states on the yield surface(
f = 0

)
. In the plastic loading (i.e for Λ̇ = 0) the following consistency condition

holds:

ḟ
(
σij, qi

)
= 0. (1.10)

Combining Equation1.10 with the elastic constitutive Equation1.3 and the �ow rule
1.8, the following expression of plastic multiplier is obtained:

Λ̇ =
1

Kp

∂f

∂σij
De
ij,hkε̇ij, (1.11)
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Bonded materials: relevance of microstructure on the mechanical behaviour

where

Kp ≡
∂f

∂σij
De
ij,hk

∂g

∂σij
+H > 0 H ≡ −

(
∂f

∂qi

∂qi
∂εpij

)
∂g

∂σij
. (1.12)

In Equation1.12 H is the so-called hardening modulus, which can be either positive
(hardening regime) or negative (softening regime), whileKp must be always positive
by hypothesis, this apect will be better discussed in Appendix B. Imposing the
constraint of Kp positiveness a condition on the hardening modulus can be found:

H > − ∂f

∂σij
De
ij,hk

∂g

∂σij
= Hc, (1.13)

where Hc is the subcritical softening modulus, as de�ned by [Maier, 1966]. As also
outlined in Appendix B, when H = Hc the determinant of the compliance matrix
is zero, which implies the loss of uniqueness of the incremental response even under
full strain control.
The yield function and the plastic potential are isotropic, thus depends on three
invariants de�ned as:

p ≡ 1

3
tr(σij) q ≡

√
3

2
||sij|| S ≡ sin

(
3θ
)

=
√

6
tr(s3

ij)[
tr
(
s2
ij

)]3/2 , (1.14)

where p is the mean pressure, q is the stress deviator, proportional to the norm of
the deviatoric part of the stress tensor sij, and S is a trigonometric function of the
Lode angle θ.
The yield surface and the plastic potential of this model have the following expres-
sion: {

f = A
K1f/Cf
f B

−K2f/Cf
f p∗ − p∗cf = 0

g = A
K1g/Cg
g B

−K2g/Cg
g p∗ − p∗cf = 0

(1.15)

where, considering h = f or h = g
K1h =

mh

(
1−ah

)
2
(

1−mh
) [1 +

√
1− 4ah

(
1−mh

)
mh

(
1−ah

) ]
K2h =

mh

(
1−ah

)
2
(

1−mh
) [1−√1− 4ah

(
1−mh

)
mh

(
1−ah

) ] (1.16)

Ah ≡ 1 +
1

K1hMh(S)

q

p∗
(1.17)

Bh ≡ 1 +
1

K2hM2(S)

q

p∗
(1.18)
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Ch ≡
(
1−mh

)(
K1h −K2h

)
(1.19)

p∗ ≡ p+ pt p∗cf ≡ ps + pm + pt pt = kpm. (1.20)

The function Mh(S) appearing in Equations1.17 and 1.18 are given by
[Van Eekelen, 1980]:

Mh(S) = Mchc1h

(
1 + c2hS

)nh
(1.21)

c1h ≡
1

2nk

[
1 + (cMh)

1/nh
]nh (1.22)

c2h ≡
1− (cMh)

1/nh

1 + (cMh)1/nh
. (1.23)

In the above expressions k = pt/pm, the quantities ah,mh,Mch, cMh and nh are
material constants. In Equations 1.22 and 1.23. cMh represents the ratio between
Meh/Mch, between the values of the function Mh in triaxial extension (S = −1)
and compression (S = 1), respectively.
The yield function shape is shown in Figure1.9.
So the surface is de�ned in the triaxial plane with q-p variables, while there is
a dependence also on the Lode angle. This surface is not passing from the axes
origin as cemented materials have a certain amount of tensile resistance due to
the intergranular bonds. The scalar quantities pc, pm and pt represent the internal
(hardening) variables describing the e�ects of the previous (mechanical) loading
history. The hardening variable pc de�nes the size of the yield function that the
material would have in absence of intergranular bonds, so it plays the role of pre-
consolidation pressure, pt represents the increment in isotropic traction resistance
due to the bonds and pm is the increment in isotropic compression resistance. It is
reasonable to assume that pt and pm are related by the following expression:

pt =
pm
10
. (1.24)

The yield surface dimension is thus governed by the hardening variables pt and pc.
It is important to remark that owing to pt and pm:

1. the material is characterized by a non-negligible traction resistance;

2. the material is characterized by a certain shape (even for nil con�ning press-
suers);

3. initially the image point of the state of stress is expected to lie inside the yield
surface.
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Figure 1.9: Reference failure surface for cemented materials

At the microscopic level, there are many agents causing a progressive destruction
of intergranular bonds ([Castellanza, 2002]), such as weathering and the develop-
ment of irreversible strains. By collecting qualitatively all the information about
structured materials [Castellanza et al., 2002] show in the triaxial plane the failure
loci for di�erent degrees of weathering of granite (Figure1.10a) and it is possible to
conclude that the most relevant consequence of damage is the progressive reduction
of the size of the initial elastic domain (Figure1.10b).

Figure 1.10: a) Failure loci in direct shear tests for di�erent dergess of weathering
of granite (after [Kimmance, 1988]); b) decay of uniaxial strength with respect
to weathering degree (after [Baynes and Dearman, 1978]); c) yield loci for rock at
di�erent degree of weathering (after [Castellanza et al., 2002])

The microscopic destructuring of bonds is translated with the evolution of scalar
variables pt, pc and pm, decreasing as plastic strains are accumulated. Under the
assumed hypothesis of material isotropy, the evolution of pc is associated with the
invariant of the plastic strain rates ε̇pv is the volumetric part of plastic deformation
and ε̇ps is the deviatoric part of plastic deformation, which re�ect the macroscopic
e�ects of irreversible fabric modi�cation. As in [Nova, 1977] it is assumed that the
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1.2 � Local failure mechanisms

following hardening law holds for pc:

ṗc = ρspc
(
ε̇pv + ξsε̇

p
s

)
, (1.25)

where ρs is the plastic logarithmic volumetric compliance and ξs is the dilatancy
d = ε̇pv

ε̇ps
at the critical state i.e. for H = 0.

This hardening law can predict either hardening response (ductile) or softening
response (fragile). The increment in plastic deviatoric strains ε̇ps is necessarily pos-
itive: it always gives a positive contribution to Equation1.25; the increment in
deviatoric deformation ε̇pv is positive on the right of the peak of the plastic po-
tential, giving a positive contribution bringing to hardening behaviour, while it is
negative on the left. In this case, thanks to this negative contribution, given by
the dilatancy developing on the left of the peak, Equation1.25 predicts a softening
behaviour and so a decrease in the variable pc.
The parameter pm accounts for the e�ects of the interparticle bonding. The degra-
dation of the bonds can occur for both mechanical and non-mechanical e�ects, like
grain rearrangement or chemical dissolution (hereafter disregarded). The following
evolution equation for the internal parameter pm is reported:

ṗm = −ρmpm
(
|ε̇pv|+ ξmε̇

p
s

)
, (1.26)

where ρm and ξm are material parameters controlling the rate of mechanical degra-
dation of bonding.
According to the previously done considerations on ε̇pv and ε̇

p
s and due to the minus

sign of Equation1.26, the variation of pm always predicts a softening behaviour.
The combination of the two hardening laws given by Equations 1.25 and 1.26 per-
mits to predict the previously cited modes of failure. For instance, under high
con�ning pressure, yielding occurs for a stress state such that ṗm < 0, ṗc > 0,
so the hardening modulus is positive. As a consequence, the degradation e�ect of
debonding is compensated by the hardening of the material. Despite this, it may
happen that the hardening of the material cannot compensate the degradation of
bonds: in this case volumetrc instability occurs (compaction bands). In contrast,
for low con�ning pressures, ṗm < 0 and ṗc < 0, so that H < 0: debonding and
softening both contribute to the loss of strength ([Lagioia and Nova, 1995a]).
This model is capable of reproducing the experimental evidence showing that it is
possible to de�ne three di�erent mechanical behaviours for three di�erent zones of
the yield surface (Figure1.11). Until the point representing the state of stress is
inside the surface, the material behaviour is assumed linear and reversible, once the
surface is reached, the structure of the material changes, according to the evolution
of internal variables pc, pt and pm. Zone A and C are respectively associated to
tensile and volumetric mode of failure, while zone B is related to the mode of failure
typical of the in�nite slope con�guration in cemented materials: shear failure.
If the stress path reaches the yield surface in zone B, strain localization and mate-
rial damage is observed, but a part of the contact forces released by the bonds is
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taken by the friction forces that directly develop between the grains. The hardening
modulus, depending on the variation of the internal variables ṗc and ṗm, is in this
zone in between positiveness and negativeness, as can be seen in Figure1.12, which
means that the behaviour may be either fragile or ductile. The higher the contact
pressure, the more the system response progressively passes from fragile to ductile.

Figure 1.11: Failure surface for a cemented material in which the various areas
corresponding to the di�erent failure modes are remarked

Figure 1.12: Ductile and fragile responses in terms of hardening modulus H
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1.2 � Local failure mechanisms

In zone B the shear failure is associated with the dilatancy development, this is
due to the fact that this phenomenon characterizes the material behaviour on the
left part of the zone B. Di�erently from tensile failure, shear failure is characterized
by the development of a �nite thickness process zone, in which the intergranular
bonds are completely damaged; when this occurs, the material in this zone behaves
as a granular material.
As an example of soil weathering with loading a specimen of soft rock in oedometric
conditions subjected to a given constant axial stress is considered
([Castellanza et al., 2002]). Until the stress state reaches the shrinking yield surface
(point A of Figure1.13) the behaviour of the material is elastic and no strain or
stress changes occur; when the shrinking yield locus touches the point A, the stress
state is forced to move towards an higher mean pressure and a lower deviator stress
level, since the stress state cannot lie outside the yield locus. This in turn implies an
increase of the radial stress. The process stops at point B in Figure1.13, when the
degradation is achieved ([Ciantia and Castellanza, 2016]). As shown in Figure1.13
b), the hardening parameter pc may increase during plastic loading, even if the size
of the elastic domain is decreasing, due to the occurrence of positive plastic volume
strains.

Figure 1.13: a) Evolution of the yield locus with weathering, the initial stress
state begin represented by point A; b) evolution of the hardening variables with
weathering

In Figure1.14 the predicted response in a displacement-controlled oedometric
compression test is shown (from [Nova et al., 2003]). It can be observed that, for a
certain value of the axial strain (point C in Figure1.14b), a rapid decrease of axial
stress occurs. As it is clearly shown by the evolution of the internal variables illus-
trated in Figure1.14c, this is due to the strong destructuration, with large increase
in pm, induced by plastic strains. As this e�ect prevails on the increase in pc asso-
ciated with plastic volumetric compaction (at C ε̇pij > 0), a large reduction in size
of the yield locus occurs after �rst yielding. Upon further deformation, the degra-
dation of the material becomes less and less fast, until, at a certain state (virtually
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when the original soft rock has been fully transformed to something equivalent to
an unbonded non-cohesive soil), bond degeneration-induced softening vanishes and
the vertical stress increases again due to volumetric hardening. From this point
onwards, as the external loading is increased, the material behaves as a virgin soil
with "locking" behaviour (i.e. stress increasing with stress) at a constant stress
ratio.
Clearly, if the test was run under axial load control, at the peak of σa (point C) a
sudden jump in the stress-strain response occurs and the point E in Figure1.14b is
reached with a "snap through"-type of instability (actually the strain jump associ-
ated to the snap will be even larger than those shown in the �gure, due to energy
balance requirements).

Figure 1.14: Predicted behaviour in a strain-controlled oedometric test on a bonded
material from [Nova et al., 2003]: (a) stress path in the q − p plane (point C cor-
responds to the maximum value of axial strain σa); (b) stress-strain response in
σa − εa plane;(c) evolution of internal variables
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1.3 � Creep

1.3 Creep

Cemented materials behaviour is characterized by a strong time dependence, due
to the fact that their bonds can undergo damage in time if subjected to constant
loading imposition.
As previously outlined, damage appears as particles debonding and crack propaga-
tion. According to fracture mechanics ([Atkinson, 1984]), under the assumption of
linear elastic solid, in a medium a plane crack propagates once a critical stress is
reached and it propagates at a speed approaching the one of sound.
Nevertheless, experimental evidences show that, in case of long-term loading, �s-
sures propagate, although very slowly, at a stress level lower than the critical one:
this phenomenon is called subcritical crack growth.
The fact that a level of stress bringing to failure can be reached for long-term load-
ing is an evidence that the cemented materials behaviour is time dependent and it
has to be studied in the framework of viscoplastic constitutive laws.

1.3.1 Creep: experimental evidence

To clarify the time dependent behaviour of cemented materials, a qualitative scheme
of a creep test is followed ([di Prisco, 2012b]). A rock sample is subjected to a creep
test along a standard triaxial compression stress path; the test is under load control
conditions: the loading steps ∆q are kept constant for time intervals equal to ∆t
(Figure1.15a); the results show that creep phenomenon can be characterized by
three di�erent phases (Figure1.15b):

1. For the �rst loading increments the behaviour is stable and strain accumula-
tion reduces in time (primary creep):
∂ε2

∂2t
< 0;

2. For a certain stress level a constant strain velocity for a relatively large time
span is observed (secondary creep)
∂ε2

∂2t
= 0;

3. The previous phase is precursory of a subsequent instability phase in which
acceleration of strains occurs (tertiary creep):
∂ε2

∂2t
> 0.
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Figure 1.15: a) Loading history for a creep test b)strain-time behaviour showing
the creep phases during a creep tes

In Figure1.16 the results of three creep tests on Darley Dale sandstone at di�erent
loading conditions from [Baud and Meredith, 1997] are reported.
The con�ning pressure (equal to 75MPa) was applied �rst, and after setting the
pore-�uid pressure (controlled at 45MPa), the samples were loaded at a constant
axial strain rate up to the desired level of axial stress. From that point, axial
stress was maintained constant while axial strain were monitored continuously.
The loading system was switched from strain-rate control to load control when the
desired level of axial stress was reached. During the creep phase, �uctuations in
the axial load were less than 1%.
Figure1.16 shows the three creep regimes previously described. The creep starts
with a primary phase during which the strain rate is initially high but decreases with
time. If the stress level is high enough (i.e. above 80% of peak stress), the primary
phase is followed by the main phase of secondary (steady-state) creep. Time-
dependent cracking plays the major role during this phase. Finally, all experiments
end with a period of tertiary creep characterized by an exponential increase in
strain rate leading to macroscopic failure.
The level of stress has a crucial e�ect on the creep rate and especially on the time-
to-failure; from 30 minutes at 90% of the peak stress (146MPa), to about four hours
at 85% (138MPa), and to almost a day at 80% (130MPa). In fact, the duration
of all three creep phases increases with decrease in stress level. For example, the
duration of the primary creep phase increases from only a few minutes for sample
a), to about 30 minutes for sample b), and almost 3 hours for sample c). The
primary creep rate decreases relatively rapidly to reach a stable value that marks
the onset of secondary creep.
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Figure 1.16: Strain against time for three experiments on Darley Dale sandstone:
creep test at 90% of peak stress, creep test at 80% of peak stress, creep test at 90%
of peak stress from[Baud and Meredith, 1997]

1.3.2 Constitutive modeling for creep

The elastoplastic constitutive model for cemented materials shown in the previ-
ous section is incremental: a strain variation is observed only after an e�ective
stress state variation. Actually, the material behaviour shown in Figure1.15 can-
not be reproduced with an incremental constitutive law. As a matter of facts, for
time-dependent materials an increase of strains is not necessarily associated to an
increase of e�ective stress and viceversa.
For this reason a di�erent constitutive model has to be introduced. In literature
various constitutive models have been proposed to simulate the time dependent
behaviour of soils; due to its simplicity and �exibility an elastic-viscoplastic model
(EVP) based on Perzyna's overstress theory will be here discussed ([Perzyna, 1963],
[Freitas et al., 2013]).
The basic assumption of EVP models is that the total strain rate ε̇ij is given by the
sum of an elastic/reversible component and a viscoplastic/irreversible component:

ε̇ij = ε̇elij + ε̇vpij , (1.27)

being the elastic stain increment ε̇elij instantaneous and thus time/rate independent
whereas the viscoplastic strain increment ε̇vpij time dependent and irreversible.
According to the original viscoplastic theory proposed by [Perzyna, 1963], the vis-
coplastic strain increment can be evaluated as:

ε̇vpij = η
〈

Φ
(
F
)〉 ∂fd
∂σ′ij

, (1.28)

where{〈
Φ
(
F
)〉

= Φ
(
F
)
if F > 0〈

Φ
(
F
)〉

= 0 if F ≤ 0
(1.29)
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η is the �uidity parameter representing the time response of the system and Φ is
called viscous nucleus and is a function of the overstress F, which is given by the
following equation:

F =
fd
fs
− 1, (1.30)

where fd is the dynamic loading surface (i.e the loading surface passing through the
current state of stress) and fs is the static loading surface, that de�nes the region of
time independent, pure elastic behaviour (i.e a a sort of yield surface), as sketched
in Figure1.17.

Figure 1.17: Schematic framework of EVP Perzyna's model

According to Equation1.29 and 1.30 the viscoplastic strain rate is a function of
the distance between the dynamic and the static loading surface. The individual
strain components are obtained from a plastic potential that is coincident with the
dynamic loading surface. The size of the static loading surface is given by the
hardening parameters that vary with the amount of viscoplastic strains.
The overstress theory di�ers from the plasticity theory as the former does not invoke
the consistency rule to derive the equation that govern the strain behaviour of the
soil element. Thus, di�erently from what happens in the elastoplastic case, the
current stress state can lie on, above or below the static loading surface. When
loading a soil element at a very high strain rate or if η is very small, overstress
theory based models will predict that the material response is identical or very
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close to pure elastic behaviour, as there is no time for delayed viscoplastic strains
to occur.
The overstress theory is able to predict the creep phenomenon, provided that the
stress state is outside the loading surface.
For sake of simplicity a simpler approach is used ([di Prisco, 2012a]): the overstress
F is substituted with the yield function f : so f will be considered as a scalar
measure of the probability of occurrence with time of irreversible strains. According
to this simpli�ed approach, Equation1.28 becomes:

ε̇vpij = ηΦ
(
f
) ∂g
∂σ′ij

(1.31)

where the plastic potential g de�nes the direction of the visco-plastic strain rate
tensor, while the yield function in�uences its modulus by means of the viscous
nucleus Φ. As the consistency rule is abolished, the value of f may be either
positive or negative, without any constraint, i.e, the stress state may be either
external or internal with respect to the yield locus.
The viscous nucleus Φ

(
f
)
may take a variety of mathematical forms, for example

the following simple bilinear form may be used (Figure1.18):{
Φ
(
f
)

= f if f > 0

Φ
(
f
)

= 0 if f = 0
(1.32)

The viscous nucleus is a positive function of f and, in particular, the following
holds:

dΦ

df
≥ 0 (1.33)

Figure 1.18: Graphic representation of the viscous nucleus Φ(f) of Equation1.32

Equations1.31 and 1.33 imply that, if the e�ective stress state is kept constant
and, for instance, the plastic potential is assumed to be dependent only on the
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e�ective stress state, in case of positive hardening (i.e when H > 0), f progressively
reduces in time and strain rates continuously decrease with time and a primary
creep phenomenon is expected.
To mathematically reproduce the creep behavior, as the incremental form is no
more admitted, the strain acceleration tensor is de�ned as follows:

ε̈vpij = ηΦ̇
(
f
)
+ηΦ

(
f
) ∂
∂t

(
∂g

∂σ′ij

)
, (1.34)

where

Φ̇ =
∂Φ

∂f

∂f

∂t
=
∂Φ

∂f

(
∂f

∂σ′ij
σ̇′ij −HΦ

(
f
))

(1.35)

andH even in the viscoplastic case is the hardening modulus de�ned in Equation1.12.
The attainment of primary, secondary or tertiary creep basically depends on the
hardening laws de�ning the variation of internal variables.
From Equations1.33, 1.35 and 1.12, σ̇′ij = 0, so the second term on the right of
Equation1.34 is zero. Equally Equation1.35 becomes:

Φ̇ = −∂Φ

∂f
HΦ

(
f
)
. (1.36)

The strain acceleration can be written as:

ε̈vpij = −ηdΦ

df
Φ
(
f
)
H (1.37)

as Φ
(
f
)
is a monotonic positive function (Φ(f) > 0, dΦ

df
> 0), the sign of ε̈vpij depends

on the sign of H:

� when H > 0, consequently, ε̈vpij < 0 and primary creep is reproduced;

� when H = 0, as a consequence, ε̈vpij = 0 and secondary creep phenomenon
(i.e. constant strain rate) can be reproduced. Secondary creep may be either
a transition between primary and tertiary creep or an unstable steady state
(i.e. when material evolution stopped) creep response (Figure1.19);

� when H < 0 tertiary creep can be reproduced, since in this case ε̈vpij > 0.
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Figure 1.19: Schematic representation of the unstable mechanical response of a
cemented material during a standard compression triaxal creep test (εa stands for
axial strain)
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Chapter 2

Creeping landslides

According to [Terzaghi, 1950] the term landslide refers to a rapid displacement of
a mass of rock, residual soil or sediments adjoining a slope, in which the center of
gravity of the moving mass advances in a downward and outward direction.
According to the scienti�c literature, there are two main classes of landslides de-
pending on their time evolution: fast landslides and creeping landslides. The �rst
group is related to soil movements with high velocity values occurring in a relatively
small time span most of which are produced by the force of gravity, the second refers
to landslides whose movement is slow, accumulating with time and with seasonal
reactivations if particular triggering factors occur and they are typically due to the
combined action of gravity force and various other agents. Referring to creeping
landslides, the rate of deformation can be initially very slow, some mm/yr, but,
in some rare unfavorable situations, as when a seasonal change of the water table
level occurs, there may be a strain increase of even an order of magnitude.
In general, landslides depend on a series of parameters such as geological, geo-
morphological, hydraulic and hydrogeologic and also on the mechanical properties
of the soils, so the transition from slow to fast movements in both inception and
propagation phases depends on a series of factors:

� geometrical factors;

� coupled thermo-mechanical processes associated with volumetric expansion of
water;

� hydro-mechanical processes associated with the e�ective stresses variation
with water table level change, consolidation, liquefaction..;

� strain softening ;

� strain rate softening ;

� viscous/rate dependent response;
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� segregation i.e. change in grain size distribution due to migration far from
the shear zone of coarse particles;

� grain crushing i.e. change in particle shape occurring when large strain rates
along the shear band arise.

Despite the complexity of the phenomenon implies considering a huge number of
variables and physical processes, in this thesis only the strain softening, the viscous
response, the geometrical factors and the water table level change in�uence will be
considered.
For creeping landslides it is very important the displacement monitoring in time,
because there are not suitable predicting models capable to give a simple and re-
liable information about displacement. Moreover, a careful monitoring is needed
because there are speci�c displacement trends which are a sort of instability index.
Failure often appears to occur without warning only because earlier movements
have passed unnoticed.
Thus one of the main aspects to take into account is the velocity and the dis-
placement trend of the moving mass, from which essentially depends the landslide
risk, so, to better predict a possible catastrophic event, it is important to study
displacement and displacement rate evolution in time.

2.1 Displacement trends for creeping landslides sta-

bility assessment

The landslide risk can be associated with the presence of three stages, characterized
by speci�c mechanical aspects:

1. failure stage:it is the �rst failure occurring in the slope and it starts with a
pre-failure stage in which, due to several causes, irreversible strains develop
in the slope:

� irreversible strains associated with changes in the stress �eld;

� deformations related to softening and destructuring of the involved ma-
terials, due to stress changes or weathering; generally, these phenomena
reduce both sti�ness and strength;

� viscous deformations;

� strains and displacements associated with the development of progressive
failure and to the corresponding distribution of stresses.

These mechanism of strain accumulation often displays as a formation of a
shear band. So the failure stage is in�uenced by the same factors controlling
the shear band formation: softening and destructuration, viscous phenomena
and progressive failure;
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2. post-failure stage: the moment in which soil stops moving and the energy
accumulated by the soil may dissipate.
In [Leroueil, 2001] the post failure stage is seen as an energy redistrubution
process: at the time of failure, some potential energy (Ep) becomes available
and what happens then depends on how this energy is redistributed. Part of
the potential energy will dissipate into friction (EF ), the rest will be dissipated
in breaking up, disgregating and remoulding the soil (ED) and for generating
movements (kinetic energy, EK). Over a time interval during the post-failure
stage the following relationship holds:

∆EP + ∆EF + ∆ED + ∆EK = 0 (2.1)

The shear strength and the available potential energy at failure are closely
related as can be noticed by Figure2.1. As post-failure movements progress,
the potential energy decreases, the di�erence with that available at failure
being progressively dissipated in the previously cited components.

Figure 2.1: Schematic representation of the potential energy after failure from
[D'Elia, B.,Picarelli, L., Leroueil, S., Vaunat, 1998]

The dissipation of the accumulated energy depends on the type of material:
in ductile materials most of the available potential energy is dissipated into
friction and kinetic energy and rates of movement are small, while in fragile
materials (in which a loss of strength occurs) the driving forces may become
unbalances and there may be the cause of a new acceleration of the soil mass.

3. reactivation stages : they can be de�ned as failure stages occurring after the
�rst failure of the slope. For landslides in which there is a movement along
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one or several pre-existing failure slip surfaces, the mobilized shear strength
corresponds to a residual condition. As the residual strength represents a
lower limit, the soil does not present any strain softening and the rates of
deformation are generally small.
Between the reactivations two di�erent kinds of landslides can be distin-
guished:

(a) active landslides, in which the rate of displacement varies with the sea-
sonal change in pore pressure. This is particularly true for translational
landslides, in which the driving forces do not signi�cantly change in time.
The rates of displacement are generally very small, varying between some
centimeters and some meters per year;

(b) occasionally reactivated landslides : may be associated with sudden and
fairly rapid displacements. According to [Hutchinson, 1987] and
[Morgenstern, 1990] the most common mechanisms that can produce
such movements are:

� rapid pore pressure increase;

� stress change due to excavation;

� rapid change in load distribution along the shear surface;

� increase in strength along the shear surface due to cementation or
chemical change that could give some brittleness to the soil at the
time of failure;

� seismic forces.

In Figure2.2 the sequence of the various phases in terms of displacement rate
in time is qualitatively sketched.

Figure 2.2: Schematic representation of the di�erent stages of slope movements
from [D'Elia, B.,Picarelli, L., Leroueil, S., Vaunat, 1998]
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[Scoppettuolo et al., 2020] studied a database of eighteen di�erent landslides to
understand the typical displacement trends. In literature graphs of cumulate dis-
placement in time can be found showing that landslides always exhibit a complex
response; despite this, all the diagrams allow recognizing that data tend to place
in recurrent ways: linear traits (linear behaviour) or curved pro�les, that can be
concave or convex, analogous to those described by [Singh, 1966] and [Emery, 1978]
to introduce primary, secondary and tertiary creep movements. So it is possible
to see that typical landslide evolution can be partitioned in ordered sequences as
those showed in Figure2.3, where an active landslide (a), an occasional reactivation
(b) and a phenomenon evolving towards a catastrophic stage (c) are qualitatively
shown. Actually, the slope of the trends still depends on several factors such as the
shape of shear surfaces, the materials composing the moving body and the materi-
als among the shear surface.
The linear behaviour called, according to the nomenclature proposed in
[Cascini et al., 2014], Trend I is characterized by a "stable" condition, for which
the internal and external forces acting on the landslides are balanced, given by a
constant velocity and zero acceleration.
If an instantaneous and transient loss of equilibrium occurs in which the external
forces overcome the internal stabilizing forces, an increase of the diagram slope (i.e.
of the landslide velocity) could be observed; as time passes the system leaves this
transient phase and returns to the initial equilibrium condition of Figure2.3a.This
concave phase can be called Trend II and the whole process can be considered rep-
resentative of an active landslides subjected to reactivations. An example could be
a rapid increase of pore water pressure due to intense rainfall followed by a slow
decrease of the groundwater level in time.
Also in Figure2.3b Trend II can be observed: in this case it has a di�erent con-
ceptual meaning as the process is characterized by data arranging on a convex
curve, representing an acceleration in the landslide movement. The alternation of
shapes physically indicates a perturbed state, caused by initially unbalanced force
�elds globally acting on the landslide, which evolves towards a new equilibrium
con�guration. The latter is reached if the acceleration of deformation becomes nil,
provided that no other perturbations take place. It can be also noticed that the
new equilibrium state reached after Trend III in Figure2.3b is di�erent from the
initial equilibrium con�guration: the slope velocity is greater, due to the fact that
the material has been damaged in time (for example it could have shown a softening
response). The convex curve, referring to [Cascini et al., 2014], can be called Trend
III. This kind of response is typical of occasional reactivation and the moderate
perturbations causing them are usually called occasional triggering factors. Trend
III also occurs when an increasing perturbation veri�es, but in this case it is not
associated with the system instability, because the increase in the slope velocity is
due to the perturbation increase.
The catastrophic collapse of the system is associated to the so called Trend IV:
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this is a phase characterized by data gathering along a convex curve and not
likely to reach a new stable state for the subsequent instants of time. If such a
trend is reached (Figure2.3c) largely unbalanced forces are present in the landslide.
[Leroueil et al., 1996] call this response as failure stage and it is typical of occa-
sionally reactivated landslides. For instance this is the case of the Vajont landslide,
caused by an occasional triggering factor of a particularly high intensity which was
the sudden lowering of water table level into the basin of Vajoint dam.

Figure 2.3: (a) Main typical sequences of displacement trends for an active land-
slide, systematically reactivated by recurrent triggering factors, in between two
steady states;(b) a lanslide reactivated by an occasional event (e.g. earthquake) in
between steady state and Trend II followed by a steady state ;(c) and evolution to
failure from a steady state. Roman numbers indicate di�erent trend types present
in the sequences

For the sake of completensess, a more detailed analysis for Trend III and IV is
done in th following section and with the reference to the Vajont landslide.

2.1.1 Overview on some creeping landslides cases

In this section some cases of creeping landslides are reported. The common aspect
of all the following cases is that the displacements triggering factor is represented
by water.

La Clapière landslide

The La Clapière landslide ([Scoppettuolo et al., 2020]), located in the southern
French Alps, mobilizes a volume of approximately 55 × 106m3 in a gneissic rock
slope covered by a forest and shows a complicated sequence of active stages and
occasional reactivations related to the river level �owing at the toe and other trig-
gering factors ([Helmstetter et al., 2004]). It probably started to move before the
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beginning of the twentieth century, although the �rst changes in slope geometry
were highlighted only in the period 1950�1980, through an aerial photogrammetric
survey. A slope displacement survey started in 1982 with the aid of topographic
measurements suggested a correlation between slope displacements and river �ow
�uctuations and snow melting, possibly accompanied by heavy precipitation.
Figure2.4a provides a map of the landslide referring to a monitoring point whose

Figure 2.4: a) Satellite imagine of La Clapière landslide taken from a public repos-
itory (Google Earth, 2004) with the indication of the instability area and cross-
sectional plane ([Bouissou et al., 2012], [Bigot-Cormier et al., 2005]). b) Cross sec-
tion (modi�ed from [Bouissou et al., 2012]). For further detail, e.g. qualitative indi-
cation of monitoring stations, we refer to [Helmstetter et al., 2004]. c) La Clapière
landslide: monitoring data of cumulative displacements and river �ow with the
indication of a convex-concave sequence, in between the two vertical dashed lines.

cross section in represented in Figure2.4b.
In Figure2.4c the whole displacement data record is superimposed to the river �ow
record (representative of the triggering causes, not examining rainfall and snow
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melting data) to identify the activity stages. The resulting nine stages are neither
seasonal nor periodic and are usually longer than 1 year, in agreement with the
occurrence of triggering factors.

Vajont landslide

In 1963 the Vajont disaster provoked approximately 2000 casualties and caused the
total destruction of the downhill towns, in particular Longarone. Between 1950 and
1960 the Vajont stream was blocked by a concrete dam near the con�uence of the
Piave River in the Italian Alps. Following the �rst two �llings of the reservoir, the
new boundary conditions at the toe of the slope caused two accelerating stages of a
complex existing landslide in the reservoir level, the third fatal landslide reactivation
mobilized 270 × 106m3 of rock that, �ooding in the reservoir, generated a 220 −
m−high wave that overpassed the dam.

Figure 2.5: Cross section of Vajont landslide

42



2.1 � Displacement trends for creeping landslides stability assessment

Figure 2.6: Monitoring data of cumulative displacements and reservoir level for
Vajont landslide

In in Figure2.5 the Vajont landslide mechanism is sketched: it can be repre-
sented with two interacting wedges, the upper unstable and the lower resisting. In
Figure2.6 the evolution of displacement in time for a certain monitoring station
superimposed to the reservoir level can be seen; the available data show an alter-
nation of linear segments and convex-concave curves until July 1963; these changes
are related to the lowest and the highest values of the reservoir level, respectively,
that con�rm the phenomenon was an occasionally reactivated landslide.
Trend III and IV, despite being both characterized by strain acceleration, have to
be distinguished; they are present in case of occasional triggering factor, so not re-
lated to seasonal events: earthquakes, anthropic activities or speci�c variations of
boundary conditions, such as those related to the presence of a new water reservoir
at the toe of the slope. The di�erence between Trend III and IV is that the �rst one
is associated with occasional reactivation and the second with a �rst failure phase
and in both the velocity clearly increases. In Trend III, as can be seen in phase
number 4 and 5 of Figure2.6, a �rst acceleration of displacement is present because
of the increase in the perturbation, but after the triggering cause has ceased, the
landslide undergoes a Trend II deceleration process up to a constant value of ve-
locity, characterizing a new stable condition for the slope.
On the other hand, a landslide developing a Trend IV response tends to naturally
gain kinetic energy with increasing velocity until collapse occurs, as in phase 6 of
Figure2.6. There may be rare cases in which speci�c external condition slow down
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the landslide: this is in the case of phase 1 of the Vajont landslides that decelerated
on 1960 and 1962 just after lowering of water level of the reservoir (Figure2.6).
Actually, in the greatest part of cases, Trend IV is associated to the collapse of the
slope because of the great increase of kinetic energy of the system.
Instead of considering the displacement trends, another analysis could be done
focusing on the relationship between the change in perturbation and the system re-
sponse in terms of displacements: in Figure2.6 other zones are marked with capital
letters. In zone A, C and E, after an increase in perturbation, deformations tend
to accelerate; when the perturbation diminishes in intensity (zone B) deformations
slow down until they stop. Di�erently from what happens in zone B, in zone D,
when perturbation reduces, displacements initially tend to accelerate: this happens
because of the viscous response deriving from the previously applied load; after
this phase, displacements slow down as in the previous cases and a new equilibrium
con�guration is reached.
When an acceleration occurs after a decrease of the perturbation is an index that
the system is going to reach failure. Indeed, in zone F, after the water table level
is lowered, an unstable behaviour occurs, consisting in the inde�nite acceleration
of deformation due to the delayed in time slope response. So, when an unstable
con�guration is reached, all the kinetic energy accumulated during perturbations is
released causing a sudden catastrophic failure. All this considered, while the trends
in terms of displacement seem to be stable, an unexpected failure may occur due
to the time dependent response of the slope.
The instability phenomenon occurring in the slope is the result of a the propaga-
tion of cracks that take place locally in the material: this propagation phenomenon
is called progressive failure and in the following section its main features will be
outlined.

Capo Vallemaggia landslide

The Campo Vallemaggia landslide ([Bonzanigo et al., 2007]) is located in the crys-
talline Pennic nappes of the Canton Ticino, in the southern Swiss Alps, near the
Italian border. This deep-seated, creeping landslide is characterized by an immense
size. The slide mass reaches the depth of up 300m and incorporates approximately
800 million cubic meters of crystalline rock. The body of the slide mass is sub-
divided into several blocks by sub-vertical fault zones varying in thickness from
several meters to tens of meters, with sub-horizontal shear�slip surfaces developed
along lithological boundaries or zones of varying alteration. As a result, its move-
ments are complex and di�cult to describe.
Two small villages, Campo Vallemaggia and Cimalmotto, are situated on the slide
mass where surface displacements have been geodetically measured for over 100
years. Recorded observations in the villages go back 200 years. Based on these
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surveys, it could be resolved that the horizontal translation of the slide mass had
advanced approximately 30m between 1892 and 1995. These displacements were
of great concern in the two villages, as with each passing year of slope movement,
the villages moved closer and closer to a steep erosional front at the toe of the
slide mass (Figure2.7). Inspection of the displacement�time record showed that
accelerated movements were associated with periods of intense precipitation, often
provoking fear among the local population and authorities. Intervention to stabilize
the landslide has repeatedly been called for and emergency plans prepared in the
event evacuation was considered necessary.
Figure2.8 shows some monitoring data in terms of annual precipitation and slide
velocity; it also shows that slope accelerations are not necessarily proportional to
the amount of precipitation.

Figure 2.7: Areal view of the foot of the Campo Vallemaggia landslide and the two
villages located on it from[Bonzanigo et al., 2007]

Figure 2.8: Correlation between precipitation and landslides velocity for the period
1892 to 1995. Annual cumulative precipitations normalized to yearly average of
1825 mm/year recorded for that period. Slope velocities are based on geodetic
measurements.
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Sunjia Landslide

The Sunjia landslide ([Xiao et al., 2020]) occurred in Wanzhou County, in an area
considered one of the most landslide-prone in China.
Sunjia Town su�ered a 1.5 × 106m3 landslide on 4 April 2013. The source slope
of the landslide initiated in a low to middle elevation mountainous region with a
slope inclination of 5◦ and a slope angle of 20◦ � 35◦. Destabilized by abundant
rainfall, the Sunjia slope experienced progressive incipient failure one day prior
to the eventual landslide that slid downslope about 30 m toward the northeast
with catastrophic consequences for most of the infrastructure along its trajectory.
Thanks to the local government geohazard measurements and prevention, the res-
idents on the landslide path were given an early warning and evacuated before the
disaster. As a result no fatalities or injuries occurred on the slope, but the deposits
on the post-slide slope remain unstable and continue to pose a threat to people's
lives and public infrastructures further down the slope. In Figure2.9 some photos
showing the characteristics of the landslide deformation are reported.
In Figure2.10 the monthly rainfall of the zone are reported; in Figure2.11a the inves-
tigated landslide boundary with monitoring stations is reported and in Figure2.11b
the recorded displacements at the monitoring stations of the period 5 April - 31
August 2013 are reported.

Figure 2.9: Photographs showing the characteristics of landslide deformation at
the 2013 Sunjia landslide site from [Xiao et al., 2020]. a) The tensile groove; b) the
drum hill; c) the damaged rural road; d) the dilapidated houses. The red dashed
lines and arrows indicate the direction of surface displacements and the blue lines
indicate the speci�c microtopography.
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Figure 2.10: Bi-monthly rainfall in Wanzhou Country in 1964-2013, Three Georges
Reservoir region (data collected from the Wanzhou Geological Environmental Mon-
itorin Staion). The red star indicates the time when landslide occurred from
[Wang, 2015]
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Figure 2.11: a) An aerial image of the post-slide Sunjia slope provided by the
Nanjiang Hydrogeological Engineering Geological Team. The red squares point out
the locations of the monitoring stations, and the blue squares indicate the sites of
the photos shown in Figure2.9. b) Emergency monitoring at the surface of the 2013
Sunjia landslide in Wanzhou Contry from 5 April to 31 August 2013

2.2 Progressive failure mechanism

A possible triggering factor for creeping landslides acceleration is an increase in
precipitation; indeed often the instability veri�es when no precipitation increase is
observed or some time after the end of the perturbation: this may derive from the
progressive damage of the material.
Progressive failure mechanism is the result of crack accumulation in time: this
process appears as a shear band development and spatial evolution; it is not in-
stantaneous, but derives from (i) strain accumulation and progressive degradation
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occurring in the soil, (ii) spatial stresses redistribution, associated to material fail-
ure in other parts of the domain.
According to [Leroueil, 2001] the conditions necessary to the development of pro-
gressive failure are:

� brittleness of the soil: it generally takes place in overconsolidated clayley soils,
in geomaterials characterized by an high level of fragility and in structured
cemented granular materials, so in all the materials that present a softening
behaviour (Figure2.12). This process is related to the so called subcritical
crack growth, which is leading to breakage of either bonds or particles ('grain
crushing');

� non-uniformity in the distribution of shear stress;

� local shear stresses that exceed the peak strength of the soil;

� boundary conditions loading the slope.

Figure 2.12: Shear beaviour of a strain softening material

Brittleness is a characteristic of most natural soils in their overconsolidated range
and of weak rocks; also owing to the geometry of the problem, shear stresses are
generally not uniform in the slope and, in particular, along potential failure sur-
faces. As a result, progressive failure plays a major role in pre-failure phenomena.
The mechanism of progressive failure was recognised by [Terzaghi K., 1948] and
[Taylor, 1948] but only in the following it was understood and discussed in the con-
text of overconsolidated clays and soft rocks. In the following some aspects about
the mechanism in the cited materials are reported.
If the shear stress locally reaches the peak shear strength of the material, there is
local failure. If soil presents some strain softening behaviour, the failed soil ele-
ments will support a decreasing shear stress and strain increase. The part of the
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shear stress that is no longer supported by the failed elements is then transferred
to the neighbouring soil elements, which can fail in turn. The process continues
until an equilibrium between shear stresses and strains has been reached. At that
time, along a potential failure surface, part of it can exceed the peak, with possi-
bly some elements at large deformation or residual strength, whereas another part
of the potential surface has not reached the peak. If such equilibrium cannot be
obtained, the process will continue until failure conditions extend along the entire
failure surface.
Even if some equilibrium seems to exist at a given time, it can be modi�ed and the
process of progressive failure can resume or continue. The main factors leading to
this situation are:

� a change in the geometry of the problem (e.g erosion at the toe or loading at
the top of the slope);

� a decrease in normal e�ective stress and thus in the peak and residual strength
(e.g excavation during pore pressure equilibration or pore pressure increase
in general);

� a decrease in strength parameters (e.g lowering of the peak strength envelope
due to creep, fatigue or weathering).

[Bjerrum, 1973] particularly emphasized the importance of bonds and weathering
and of the possible release of stored energy in the process of progressive failure.
Brittleness is the major factor in the development of progressive failure and it has
been characterized by [Bishop, 1970] with the brittleness index IB:

IB =
τp − τr
τp

,% (2.2)

where τp and τr are the peak and residual strengths de�ned under the same e�ec-
tive normal stress. The value IB given by Equation2.2 denotes the only di�erence
which would be obtained in the factor of safety by making the assumption that the
whole of the rupture surface had reached the residual state at the moment at which
failure eventually took place, in place of the conventional assumption that the peak
strength operated over the whole surface.
However, as indicated by [Vaughan and Hamza, 1977] and [Chandler, 1984], the
brittleness index alone is not su�cient to characterize the susceptibility to progres-
sive failure: the rate at which the strength decreases from peak strength to ultimate
strength is also important. [D'Elia, B.,Picarelli, L., Leroueil, S., Vaunat, 1998] pro-
posed a generalized brittleness index, IGB, de�ned as follows:

IGB =
τp − τmob

τp
,% (2.3)
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where τmob is the mobilized shear stress at the considered strain or displacement.
IGB thus varies with strain or displacement from 0 at the peak, to a value equal
to IB at large displacements (Figure2.13). Moreover, in the context of slopes, the
index IGB must be associated with stress paths that are representative of those
followed in situ and must not be seen as a fundamental characteristic of soils.

Figure 2.13: Brittleness of soils

2.2.1 Progressive failure: weakened zone, shear zone and slip

surface

From what emerged from progressive failure remarks, it appears that the failure
or slip surface in a slope develop within a weakened zone. Observations, however,
show that there is an intermediate structure surrounding the slip surface, usually
called shear zone (Figure2.14).
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Figure 2.14: Weakened zone, shear zone and slip surface in the slope

According to Rankine theory, in case of zero dilatancy, shear surface form an
inclination of 45◦ + φ′/2 to the direction of the minor principal stress. When such
shear surfaces cannot develop, due to kinematic constraints, there is at �rst the
formation of a shear zone and then the development, within the shear zone, of a
slip surface that is kinematically possible. This is particularly the case in direct
shear tests and in many slopes.
[Riedel, 1929] was the �rst to describe such a process, which was observed during
a shear test on a clay specimen. According to Riedel's observations (Figure2.15b),
the mechanism of rupture is characterized by initial formation of single separate
shear surfaces, called Riedel shears (R), that are slightly inclined to the direction
of main shear, and by some conjugate discontinuities (Figure2.15b1). The another
set of discontinuities, the thrust shears (P), are formed at locations almost sym-
metrical to the R shears (Figure2.15b2). None of these minor shears allows for
signi�cant displacements ([Skempton et al., 1966]). Finally, the displacement dis-
continuities (D) are formed in the direction of the imposed shear (Figure2.15b3).
In the �nal stage, these latter link to form a unique principal displacement dis-
continuity. This process was con�rmed by laboratory experiments (Figure2.15a)
[Morgenstern, 1967], [Wilcox et al., 1981]). The described zone of discrete thick-
ness, including the system of minor shears and more or less disturbed lenses, is the
shear zone ([Skempton et al., 1966]).
Also in situ observations con�rm what already assessed: in Figure2.15c) the details
of a shear zone observed by [Morgenstern, 1967] in an old landslide that occurred
in London Clay can be seen.
So, as already indicated in Figure2.14, there are several "structures" associated

with progressive failure in slopes:

� a weakened zone in which soil has reached local failure and should be generally
destructured;
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Figure 2.15: a) Sequence of structures in specimens sheared normal to original
fabric ([Morgenstern, 1967]) b) Sketch showing three successive stages in the de-
velopment of slip surfaces in clay subjected to shear (from [Riedel, 1929] and
[Skempton et al., 1966]) c)details of shear zone in old landslide near Guildforn
([Morgenstern, 1967])

� a shear zone, surrounding the shear surface, with a thickness varying from a
few centimeters to a few decimeters and including shears and lenses of soil,
more or less disturbed, depending on the material and on the displacement
involved;

� the failure surface, along which there is localization and possible particle
orientation.

It is worth noting, however, that there is no evidence that weakened zones and
shear zones develop or can be observed in all cases.
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2.2.2 Puzrin interpretation of progressive failure mechanism

According to [Puzrin and Schmid, 2011] interpretation, at the microscopic scale,
the propagation with time of cracks causes a progressive spatial rearrangement of
the microstructure; more in detail this mechanism is based on the propagation of
an intensely sheared zone, which causes earth pressure increase in the compression
zone of the landslide, followed by visco plastic yielding of this soil zone (Figure2.16).
Strain localization and propagation of shear bands (few millimeter thick zones of
intense shearing, where shear strength decreases to residual value) take place in
materials that exhibit a softening behaviour. In these materials (Figure2.12), the
shear resistance τ ∗ on the sliding surface drops from the peak value τp to the resid-
ual value τr as the shear deformation reaches its critical value γr.
This progressive propagation of the shear band causes a delayed failure in cemented
material slopes and helped to explain the mechanism of catastrophic landslides that
sometimes can occur with no apparent signal.
When the shear strains of the landslide overcomes the critical value γr = δr/d,
where d is the sliding surface thickness, local value of shear resistance on the slid-
ing surface drops to the residual value, which implies the formation of a shear zone.
Creeping and yielding of the soil in the compression zone cause the tip of the shear
zone to move along the slip surface. This leads to the progressive propagation of the
shear zone and the drop of the shear strength along the slip surface to the residual
value τr, which has to be compensated by an increase of the e�ective earth pressure
in the compression zone. After this pressure reaches the yield stress py, the elastic
and viscous resistances decrease signi�canlty causing increase in the landslide dis-
placement rates.
This complex phenomenon is generally governed by the combination of many ac-
tions of stresses, water (both liquid and gaseous state) and chemical reactions
(weathering). Despite in cemented materials weathering and hydro-mechanical
coupling play an important role, the collapse of the system is here studied ne-
glecting these aspects and only considering the mechanical perturbation given by
water table level change and the strain softening behaviour will cause a cohesion
degradation with time and strains.
The main limit of Puzrin model is that an in�nite con�guration is assumed, as a
consequence all the derivatives of the static variables with respect to t direction
have to be nil: actually, despite this assumption, in the model the shear stress, the
shear strains and the displacement derivatives along t direction are not nil.

54



2.2 � Progressive failure mechanism

Figure 2.16: Conceptual model of shear band propagation of Puzrin model

2.2.3 Instability indicators prior to main landslides

Some indicators exists that sometimes can occur prior to a slope �rst-time failure.
[Terzaghi, 1950], referring to Goldau landslide (1806), reported 'that took villagers
by surprise, but the horses and cattle became restless several hours before the slide
and the bees deserted their hives '. [Tavenas et al., 1971] reported similar facts in
relation to Saint-Jean-Vianney landslide (1971), which occurred in extremely sensi-
tive clays. As indicated by witnesses, in the hours preceding the slide, dogs became
extremely nervous as during a thunderstorm and cows, though usually docile, re-
fused to go to their usual grazing land- which was, a few hours later, completely
washed away by the slide. All these events are due to the acoustic emissions com-
ing from the intense crack propagation, that show increasing activity as failure
approaches.
It thus appears that many slope failures are preceded by prefailure phenomena and
movements. As a consequence, as well indicated by [Terzaghi, 1950], 'if a landslide
comes as a surprise to the eyewitnesses, it would be more accurate to say that the
observers failed to detect the phenomena which preceded the slide'. Another conse-
quence is certainly that particular attention should be payed to precursory signs
of landslides, in particular in area subjected to high risk and in which preceding
remarkable movements have been registered.
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2.3 1D rigid-visco-plastic model for monitoring data

back analysis

As already remarked, monitoring data in time is fundamental for creeping landslide
risk analysis; in this section a 1D rigid-viscoplastic model to reproduce the creeping
landslide behaviour is proposed.
Very used for creeping landslides description is the 1D constitutive model developed
by [Secondi et al., 2013]. It is a 1D pseudo-dynamic, visco-plasic model used, for
example, to model the evolution in time of Bindo-Cortenova translational landslide
formed by conglomeratic rock blocks immersed in gravely sand matrix.
To use the 1D model and to have a good understanding of this behaviour, moni-
toring systems were set up: inclinometric records have been used to determine the
depth the thickness of the sliding zone. In particular, for the model description,
only piezometric data and optical targets displacements have been adopted.

2.3.1 1D model formulation

Soils behaviour is rate dependent: the propagation of a stress due to a load in-
crement (such as the oscillation of water table level) induces a time-dependent
evolution in the soil micro-structure, strictly linked to the mechanical properties of
the continuum.
Hence, the stress distribution evolves, and may carry to a new non-equilibrated
stress con�guration. If a new equilibrium state is reached, the time interval needed
to reach this state can be interpreted as the time period during which plastic de-
formations occur.
In this model the limit equilibrium approach is used; it is based on the hypothesis
of rigid-visco-perfectly-plastic behaviour for the interface material, so no ductility
for the system is expected. The deformations start only after failure condition is
reached.
Bindo-Cortenova landslide is considered as a non-deformable mass on a stable-rigid
layer (Figure2.18).
The model has the aim to describe the displacement rate ẋ of the landslide. This
choice is linked to the inclinometric measures performed during the landslide
([Secondi et al., 2013]); these measures and shape of the unstable mass (Figure2.17)
suggest that the landslide is a rigid block translating on a discontinuity plane. Due
to the landslide translational nature, the problem is studied condensing all the non
linearities at the interface between the bedrock and the rigid block, so ẋ can be
de�ned as:
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Figure 2.17: a) Satellite imagine of Bindo-Cortenova landslide with the indica-
tion of the instability area and monitoring optical target B17 (simpli�ed from
[Secondi et al., 2011] ). �A� refers to slope failure occurring in November�December
2012 b) Schematic cross section (simpli�ed from[Crosta et al., 2006]). The corre-
sponding section plane is not reported in the satellite image due to lack of infor-
mation in the analyzed literature

ẋ = γ̇∆s, (2.4)

where ∆s is the shear band thickness, depending on the grain size.
The shear strain is evaluated according to Perzyna's viscoplastic theory; the total
strain is supposed to be the sum of an elastic part and a viscoplastic part:

ε̇ij = ε̇elij + ε̇vpij . (2.5)

Since (i) the elastic deformation can be neglected and (ii) a rate of angular defor-
mation γ̇ (a 1D model is considered) is assumed to be su�cient for describing the
slope mechanical response, Equation2.5 can be simpli�ed as follows:

γ̇ = γ̇vp. (2.6)
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Figure 2.18: Block schematization proposed for the 1D model

According to Perzyna, viscoplastic strains can be de�ned as:

γ̇vpij =
γ̃

p′
Φ(f)

∂g

∂σ′ij
, (2.7)

where f is the yield function, g the plastic potential, γ̃ a viscous constitutive param-
eter, p′ the isotropic pressure, σ′ij the e�ective stress tensor and Φ(f) the viscous
nucleus.
It is possible to model the system in a 1D con�guration because residual conditions
are considered for the slope (the shear band is assumed at a steady state), conse-
quently dilatancy is nil and no displacement normal to the sliding surface has to
be taken into account. For this reason Equation2.7 becomes:

γ̇vpij =
γ̃

p′
Φ(f) (2.8)

In Equation2.8 material hardening or softening are neglected (the material is as-
sumed to be at critical state). It means that the shape and the dimension of the
yield surface are constant during the irreversible visco-plastic deformation.
So Equation2.4 for displacement evaluation becomes:

ẋ =
γ̃

p′
Φ(f)∆s (2.9)

γ̃ represents the velocity through which the system evolves and reaches the asymp-
totic value of deformation.
The viscous nucleus Φ(f) directly governs the modulus of γ̇vp, thus no consistency
law is needed and the stress state can violate the condition f ≤ 0 and irreversible
deformations can accumulate for any value of f . In addition, visco-plastic defor-
mations can occur even without any e�ective stress increment.
An analytic expression for the viscous nucleus is needed: a simple formulation for
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the viscous nucleus is the bilinear form shown in Figure2.19: the deformative be-
haviour of the slope is di�erent if the stress state lies inside or outside the plastic
surface.This particular form of Φ takes into account of the possibility of accumu-
lating viscous deformations even for f < 0. In particular the viscous strain rate
will be lower in the case f ≤ 0. So two parameters γ̃1(f > 0) and γ̃2(f ≤ 0) must
be introduced:

Figure 2.19: Bilinear form of the viscous nucleus

{
Φ(f) = y′ + γ̃1f if f > 0

Φ(f) = y′ + γ̃2f if f ≤ 0
(2.10)

where γ̃ is replaced with γ̃1 (f > 0) and γ̃2 (f < 0) and y′ is a new constant
parameter identifying the velocity value in x-direction when f = 0.
The 1D yield function can be written as:

f = τ − τres (2.11)

where τ is the e�ective shear stress and τres is the yield threshold.
A Mohr Coulomb failure criterion is introduced. As the slope considered is char-
acterized by slow movements inducing irreversible deformations due to post-failure
conditions, a residual friction angle φ′res is used:

τres = σ′ntanφ
′
res, (2.12)

where σ′n is the e�ective force normal to the sliding plane divided by the total
contact area.
As dynamic and inertial forces e�ects must be taken into account, the e�ective
shear stress can be written as:

τ = τstat −m∗ẍ, (2.13)
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Creeping landslides

where τstat is the static term, given by the weight of the masses acting on the system
and m∗ẍ is the dynamic term, depending on the acceleration in the x-direction and
on the masses per unit area m∗.
The static force τstat is given by:

τstat = W ′[hw(t)
]
sinα + J, (2.14)

where W ′ is the submerged weight divided by the total contact area, J the seepage
force divided by the total contact area and hw(t) is the water table level varying
with time.
Substituting Equation2.9, 2.11 and 2.13 into Equation2.10 and introducing the
viscous parameters in the following expression:

{
y = y′∆s

ηi = p′

∆sγi
i = 1,2

(2.15)

The following equation of motion for the slope can be obtained (where i = 1 means
f > 0 and i = 2 means f ≤ 0):

m∗ẍ+ ηiẋ− ηiy =
(
τstat − τres

)
(2.16)

Equation2.16 is formed by the sum of a dynamic term, taking into account of the
slope acceleration, of a viscous term, in which the delayed strains is accounted
and a forcing term, deriving from external forces acting on the system . Substi-
tuting Equations2.14 and 2.12 in Equation2.16 and by means of a �nite di�erence
integration scheme, both for f > 0 and for f ≤ 0, it is possible to simulate the
displacement of the slope.
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2.3 � 1D rigid-visco-plastic model for monitoring data back analysis

Figure 2.20: Measured and predicted displacements obtained by using the 1D rigid-
visco-plastic model

In Figure2.20 a comparison between the predicted and measured displacement
at a point of the landslide called B17 can be seen.
As can be noticed, the model predictions �t quite well the monitored data.
A multi-block application of this model can be found in [Crosta et al., 2014], in
which La Saxe rockslide has been analyzed.
As it was previously mentioned, this simpli�ed 1D rigid-visco-plastic model works
under the hypothesis of no structural hardening or softening. Not considering these
aspects implies that the plastic resources of the system have already been exploited
and there is no possibility to take into account of a possible degradation of cohesion.
As a consequence, this model is not able to predict the triggering of a landslide but
only to foresee landslides reactivation.
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Chapter 3

Elastoplastic response of in�nite

slopes under simple shear conditions

In this chapter the mechanical response of an in�nite slope under simple shear
conditions will be described, with particular attention to structural hardening phe-
nomenon and the results of some numerical simulations will be shown.
The in�nite slope con�guration is sketched in Figure3.1. This con�guration is ana-
lyzed under mixed controlled conditions; moreover, along n direction, the problem
is incrementally uncoupled: each layer behaves as an in series system and can be
studied separately.
Due to the mixed control conditions, τnt and σ

′
nt are imposed. Two unknowns in

terms of stresses are present: due to the fact that the system is in�nite in t and y
direction, shear stresses in y direction cannot develop. So the e�ective stress tensor
for an in�nite slope con�guration is de�ned as:

Figure 3.1: Geometrical scheme of the in�nite slope
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Elastoplastic response of in�nite slopes under simple shear conditions

σ′ij =

σ′n τnt 0
τnt σ′t 0
0 0 σ′y

 (3.1)

In y direction the stresses are self balanced due to symmetry. Under the hypothesis
of constant material weight, the equilibrium equations under static conditions along
t and n direction can be written as:{

∂σ̇′n
∂n

+ ∂τ̇nt
∂t

+ ∂τ̇ny
∂y

= 0
∂τ̇tn
∂n

+
∂σ̇′t
∂t

+ ∂τ̇ty
∂y

= 0
(3.2)

The shear stress components τny and τty have to be nil and, being the geometry
of an in�nite extension in t direction, all the derivatives with respect to t must be
zero, due to the fact that the state of stress along each vertical is identical to the
one on the adjacent vertical. For these reasons, Equations3.2 become:{

∂σ̇′n
∂n

= 0
∂τ̇nt
∂n

= 0
(3.3)

Only two unknowns in terms of strains are present. For the compatibility condition,
all the strain components in y direction and the strain εt are nil. So the strain tensor
is de�ned as:

εij =

εn εnt 0
εnt 0 0
0 0 0

 (3.4)

Owing to the symmetry of the problem, the displacement component along y di-
rection uy is nil, so the displacement vector is de�ned as:

ui =

unut
0

 (3.5)

The stress, strain and displacement show that the slope loading conditions are the
so called simple shear conditions (SSC). In the static case, only the equilibrium
equations are enough to determine the stresses along n direction, while a redun-
dancy still exists in t and y direction.
In this chapter some simulations with a numerical model integrating the constitu-
tive equations under SSC will be performed (�3.3). To study the problem a strain
softening elastic plastic constitutive relationship is adopted. The constitutive law
is characterized by the following ingredients:

64



3.1 � Structural hardening under simple shear conditions

� An isotropic linear elastic law;

ε̇elij = Cel
ijhkσ̇

′
hk, (3.6)

where Cel
ijhk is the elastic compliance matrix and σ′ij is the e�ective stresses

tensor.
The elastic properties, the Young modulus and the Poisson's ratio are here-
after named E and ν, respectively.

� a yield function de�ned according to the Mohr Coulomb failure criterion:

f =
1

2

[√
4τ 2
nt +

(
σ′n − σ′t

)2 −
(
σ′n + σ′t

)
sinφ′ − 2c′cosφ′

]
, (3.7)

where φ′ is the material friction angle, whereas c′ is the cohesion, which is
also the hardening variable

� a plastic potential de�ned as follows:

g =
1

2

[√
4τ 2
nt +

(
σ′n − σ′t

)2 −
(
σ′n + σ′t

)
sinψ − 2c̄cosψ

]
, (3.8)

where ψ is the soil dilatancy angle assumed to be constant for the sake of
simplicity and c̄ is a dummy variable.

� an hardening law de�ned as:

ċ′ = −c′m
(
|ε̇irrn |+ |ε̇irrt |+ |γ̇irrtn |

)
, (3.9)

where the non dimensional parameterm de�nes the brittleness of the material
response.

As simple shear conditions have to be studied the presence of a "volumetric cap"
for the yield function was not taken into account.

3.1 Structural hardening under simple shear con-

ditions

In this chapter an elastic perfectly plastic constitutive model will be considered:
this implies that the parameter m of Equation3.9 is set equal zero.
The assumption of "virgin slope" is considered: it implies that the unique loading
process experienced by the stratum is just fresh deposition (i.e. gravity loading).
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Elastoplastic response of in�nite slopes under simple shear conditions

A deposition process on a plane inclined of an angle α is considered: during this
phase on that plane this static condition holds:

τnt = σ′ntanα. (3.10)

Writing a linear elastic isotropic law and the compatibility law:

ε̇t = ε̇n = 0 −→ −ν σ̇
′
n

E
+
σ̇′t
E
− ν

σ̇′y
E

= −ν σ̇
′
n

E
− ν σ̇

′
t

E
+
σ̇′y
E

= 0 (3.11)

the following is obtained

σ̇′t = σ̇′y =
ν

1− ν
σ̇′n. (3.12)

With the hypothesis that no plastic phenomenon occurred during the deposition
process, Equation3.12 can be integrated as follows:

σ′t =
ν

1− ν
σ′n. (3.13)

The yielding shear stress can be found imposing f = 0 and solving the following
equation with respect to τnt

f =
1

2

[√
4τ 2
nt +

(
σ′n − σ′t

)2 −
(
σ′n + σ′t

)
sinφ′ − 2c′cosφ′

]
= 0 (3.14)

Equation3.13 can be rewritten as:√(
σ′n − σ′t

)
+ 4τ 2

nt − 2c′cosφ

σ′n + σ′t
= sinφ′ (3.15)

subsitutiting Equation3.15 in Equation3.13 and taking into account of the balance
of momentum the following can be written:√(

σ′n − ν
1−νσ

′
n

)2

+ 4σ′2n tan
2α− 2c′cosφ′

σ′n + ν
1−νσ

′
n

=

√(
1− ν

1−ν

)2

+ 4tan2α− 2c′cosφ′

1 + ν
1−ν

= sinφ′,

(3.16)

so the angle for which the system yields can be found.

tanαy =
1

2

√
4ν
(
1− ν

)
− cos2φ′

1− ν
+

√√√√c′cosφ

[
c′cosφ

(
1− ν

)2
+ sinφ

]
. (3.17)
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3.1 � Structural hardening under simple shear conditions

If the slope angle is equal to αy the system yielding occurs, but, due to the system
redundancy, the failure is not reached. In case of not statically redundant system
and associated �ow rule αy would be equal to the material friction angle φ′. In case
of non associated �ow rule αy = φ′SSC .
For angles of deposition higher than αy the e�ective stress σ

′
t will not satisfy any-

more Equation3.15.
To study the structural hardening phenomenon a simple shear stress path (SS) is
taken in exam, starting from an initial condition in terms of stresses which is elastic,
but with α = αy: this implies that the loading path is elastic-plastic since its very
beginning.
For sake of simplicity a stress path characterized by σ̇′n = 0 will be considered;
later on (�3.2) a more generic case will be discussed.
In an elastic percfectly plastic case it is possible to write the consistency condition,
according to which plastic strain develop when f = ḟ = 0:

ḟ =
∂f

∂σ′ij
σ̇′ij = 0 (3.18)

in this particular case it becomes:

∂f

∂σ′n
σ̇′n +

∂f

∂σ′t
σ̇′t +

∂f

∂σ′y
σ̇′y + 2

∂f

∂τnt
τ̇nt = 0 (3.19)

a non associate �ow rule is assumed and plastic deformation are written as:

εpij = Λ̇
∂g

∂σ′ij
; (3.20)

combining compatibility equations with the �ow rule the following is obtained.{
ε̇t = −ν σ̇

′
n

E
+

σ̇′t
E
− ν σ̇

′
y

E
+ Λ̇ ∂g

∂σ′t
= 0

ε̇y = −ν σ̇′n
E
− ν σ̇

′
t

E
+

σ̇′y
E

= 0
(3.21)

In Equation3.21 the plastic strains along y direction are not present: this is due
to the fact that σ′y is the average e�ective stress and the Mohr Coulomb failure
criterion has the hypothesis of no in�uence of the intermediate stress, so the plastic
potential does not depend on σ′y (Equation3.8).
As previously assumed σ̇′n = 0, so Equation3.21 becomes:

σ̇′y = νσ̇′t, (3.22)

while from Equation3.18 and 3.21:

df =
∂f

∂σ′t
σ̇′t + 2

∂f

∂τ
τ̇ = 0→ σ̇′t = −

2∂f
∂τ
∂f
∂σ′t

τ̇ , (3.23)
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Λ̇ =
νσ̇′y − σ̇′t
E ∂g
∂σ′t

−→ Λ̇ =
2
(
1− ν2

)
∂f
∂τnt

E ∂g
∂σ′t

∂f
∂σ′t

τ̇nt. (3.24)

Substituting the denominator with the controllability modulus Hχ, whose meaning
will be better clari�ed in Appendix B, Equation3.24 can be rewritten as:

Λ̇ =
2 ∂f
∂τnt

Hχ

τ̇nt. (3.25)

The shear strain increment for this case can be written as:

γ̇nt =
τ̇nt
G
− Λ̇

∂g

∂τnt
=
τ̇nt
G
−

2 ∂f
∂τnt

Hχ

τ̇nt
∂g

∂τnt
. (3.26)

From integration of Equation3.26 the red curve of Figure3.2 is obtained. From
point A plastic strains start to develop and, despite the perfect elastoplasticity as-
sumption, the curve is characterized by a pseudo-hardening branch: this e�ect is
basically due to the static redundancy of the constrained soil element and it is thus
called "structural". This structural hardening is due to the increase in σ′t.

Figure 3.2: τnt-γnt curves showing the di�erence between the elastic perfectly plastic
constitutive law in the presence of structural hardening and the law without it

Equation3.26 with Equation3.23 completely describe the system response. In
particular, Equation3.26 could be interpreted as a 1D constitutive model relating
γnt and τnt, in which σ′t can be seen as an internal variable, whose evolution law is
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3.2 � Stress path dependence

de�ned by Equation3.23.
From Equation3.26 it is possible to notice that the system failure (loss of control-
lability) coincides with the nulli�cation of the denominator:

Hχ = 0. (3.27)

If Equation3.27 is satis�ed, the plastic multiplier is no longer de�ned and in�nite
irreversible strains will develop. This aspect is better described in AppendixB.
For this particular loading path, Equation3.27 implies that loss of controllability is
reached if one of the following conditions holds:

∂g

∂σ′t
= 0, (3.28)

∂f

∂σ′t
= 0. (3.29)

In particular, to �nd the maximum values of the shear stress and hyperstatic vari-
able τnt,max and σ

′
t,max, the following system of equations has to be solved:{

f = 0
∂g
∂σ′t

= 0
(3.30)

The following expressions for σ′t,max and τnt,max are obtained:

τnt,max =

(
c′cosφ′ + σ′nsinφ

′)cosψ
1− sinψ sinφ′

, (3.31)

σ′t,max = σ′n + 2tanψτnt,max. (3.32)

The presence of this structural hardening regime generates a di�erence between the
yielding shear stress and the maximum shear stress, that according to the standard
elastic-perfectly plastic law should coincide (black curve of Figure3.2).

3.2 Stress path dependence

As already outlined in the previous section, the γnt − τnt relationship described by
Equation3.26 can be interpreted as a 1D lumped model, whose internal variable is
the hyperstatic variable σ′t. In general, the evolution of γnt is expected to depend
on the imposed stress path.
In this section a more generic stress path, characterized by τ̇nt /= 0 and σ̇′n /= 0 is
discussed.
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Following the same steps of the previous section, writing the linear elastic isotropic
law and compatibility law the following is obtained:

ε̇ely = 0 =
σ̇′y
E
− ν σ̇

′
n

E
− ν σ̇

′
t

E
, (3.33)

σ̇′y = ν
(
σ̇′n + σ̇′y

)
. (3.34)

Imposing ε̇t = 0 and substituting Equation3.34:

ε̇elt =
σ̇′t
E
− ν σ̇

′
n

E
− ν2

E

(
σ̇′n + σ̇′y

)
, (3.35)

ε̇t = 0 −→ ε̇elt = −ε̇pt −→
σ̇′t
E

(
1− ν2

)
− ν
(
1 + ν

) σ̇′n
E

= −Λ̇
∂g

∂σ′t
(3.36)

the increment of the hyperstatic variable σ′t can be obtained:

σ̇′t = −Λ̇
∂g

∂σ′t

E(
1− ν2

) +
ν(

1− ν
) σ̇′n. (3.37)

Writing the consistency law, substituting the increment of σ′t in Equation3.36 and
dividing the terms multiplied by the stresses from those multiplied by the plastic
multiplier increment, the following expression is obtained:(

∂f

∂σ′n
+
∂f

∂σ′t

ν(
1− ν

))σ̇n +
∂f

∂τnt
τ̇nt = Λ̇

(
∂g

∂σ′t

∂f

∂σ′t

E(
1− ν2

)). (3.38)

It is thus possible to �nd an expression for the plastic multiplier:

Λ̇ =

(
∂f
∂σ′n

+ ∂f
∂σ′t

ν(
1−ν
))σ̇′n + ∂f

∂τnt
τ̇nt

Hχ

, (3.39)

so the complete costitutive law can be written as:

γ̇nt =
τ̇nt
G

+

(
∂f
∂σ′n

+ ∂f
∂σ′t

ν(
1−ν
))σ̇′n + ∂f

∂τnt
τ̇nt

Hχ

∂g

∂τnt
. (3.40)

As can be noticed from Equation3.40 and 3.37, both the total strain increment and
the internal variable increment depend on τ̇nt and σ̇′n . The ratio

τnt
σ′n

(i.e. the stress

path), governs the evolution of both γnt (Equation3.40) and σ′t (Equation3.37):
di�erent stress paths (Figure3.3) imply di�erent evolution of γnt and σ

′
t

Calling β the ratio σ′n
τnt

Equation3.40 can be rewritten as:

γ̇nt =
τ̇nt
G

+

(
∂f
∂σ′n

+ ∂f
∂σ′t

ν(
1−ν
))βτ̇nt + ∂f

∂τnt
τ̇nt

Hχ

∂g

∂τnt
. (3.41)
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3.2 � Stress path dependence

The constitutive law is thus dependent on the τnt and on the constant β represent-
ing the stress path ("incrementally non-linear").
From Equation3.40 it is possible to see that integrating this constitutive law taking
into account of σ′t is not very straightforward. So, even if it is possible to take
into account the structural hardening phenomenon through the hyperstatic vari-
able σ′t, an alternative, more feasible procedure has been chosen to simplify the
model, which is the introduction a 1D elastic plastic constitutive relationship. In
this relationship the role of static redundancy (evolution of σ′t) is introduced with
an hardening rule. This hardening rule is expected to depend on the stress path.

Figure 3.3: Some of all the possibile stress paths that could be studied

For sake of brevity, the only stress path discussed in this thesis is the evolution
of τnt−σ′n related to the water table level change, that can be due to intense rainfall
or to anthropic activity and it is the main triggering factor for landslide develop-
ment; it is characterized by a reduction in σ′n and an increase in τnt (Figure3.4).
The hydromechanical coupling is neglected: it is assumed that permeability is suf-
�ciently high in order not to have excess pore pressure development.
The stress path can be written as follows:

{
σ̇′n = −

(
γd − γ′

)
cos2αḣw

τ̇nt =
(
γsat − γd

)
cosαsinαḣw

(3.42)
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Figure 3.4: Stress path representing the water table level increase after an elastic
deposition process

From Equations3.42 a relationship between the increment of σ′n and τnt can be
found:σ̇′n = −

(
γd−γ′

)(
γsat−γd

)
tanα

τ̇nt

β = σ̇′nt
τ̇nt

(3.43)

The increment of σ′t is obtained substituting Equation3.43 in Equation3.37 and
writing the consistency law:

σ̇′t = −

[
∂f
∂σ′n

+ ∂f
∂σ′t

ν
1−ν

]
γ′−γd
γsat−γd

1
tanα

+ ∂f
∂τnt

Hχ

∂g

∂σ′t

E

1− ν2
βσ̇′n +

ν

1− ν
γ′ − γd
γsat − γd

βσ̇′n
tanα

.

(3.44)

Substituting Equation3.43 in the constitutive law given by Equation3.40 the consti-
tive model is obtained. The direct relationship between τ̇nt and γ̇nt can be written
as follows:

γ̇nt =
βσ̇′n
G

+

[
∂f
∂σ′n

+ ∂f
∂σ′t

ν
1−ν

]
γ′−γd
γsat−γd

1
tanα

+ ∂f
∂τnt

Hχ

∂g

∂τnt
βσ̇′n. (3.45)

3.3 Numerical simulation

The introduction of softening is important to reproduce the phenomenon of ma-
terial damage typical of cemented materials. This particular material behaviour
cannot be analyzed through the elastoplastic constitutive model, due to the fact
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3.3 � Numerical simulation

that in mixed control conditions, if consistency law is valid, it is not possible to
proceed with loading after the peak. So this phenomenon will be analyzed only
in the framework of viscoplasticity (Chapter4): the removal of consistency law lets
the system to reach every load level, because the state of stress can lie also outside
the yield surface.
Despite this, for sake of simplicity, in this section the numerical solution under sim-
ple shear conditions completely integrating the constitutive law equations (hereafter
called SSC solution) will be analyzed: as a �rst step, an elastoplastic constitutive
law (Equation3.45) will be used to study the in�uence of structural hardening on
the system response, so the parameter m, governing the fragility of the material is
set equal to zero. The model equations that are integrated are those reported in
the previous section.
The study is focused on a reference case of a material element at a depth z = H.
The attention is focused on the case of water level change from 0 to H (Figure3.4),
implying the increase of τnt and a decrease in σ′n. As it was previously mentioned,
this stress path can be described by Equations3.42.
Where γd = 16kN/m3 is the dry unit weight of the material, γ′ = γsat − γw is
the e�ective unit weight, with γsat = 20kN/m3 the saturated unit weight and
γw = 10kN/m3 water unit weight.
In the table below the parameters used for a SSC simulation are shown.

H α E ν φ′ ψ c′

[m] [◦] [MPa] [−] [◦] [◦] [kPa]
5 15 130 0.3 30 30 24
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Figure 3.5: τnt − γnt curve resulting from the SSC simulation

In Figure3.5 the result of SSC simulation are reported in the τnt − γnt plane.
The τnt − γnt is characterized by an initial elastic branch, whose slope is the shear
modulus G and only elastic/reversible strains are accumulated; at a certain stress
level, identi�ed with the yield shear stress τy, irreversible strains start to develop
and the material behaviour becomes irreversible, so during an unloading process,
only the elastic part of deformation would be recovered. Due to the system static
redundancy, after τy is reached, the system accumulates irreversible strains with-
out collapsing,: in this range of stresses the structural hardening phenomenon takes
place. When the hyperstatic variable σ′t has reached its maximum value, the max-
imum shear stress τmax is reached and the loss of controllability of the system is
obtained.

Yielding stress τy evaluation

The yielding stress is the value of shear stress for which the yield function f is equal
to zero and corresponds to the starting of plastic deformation and of structural
hardening. To calculate it, it is necessary to solve a system of three equations and
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3.3 � Numerical simulation

three unknowns (i.e τy, σ
′
n,y, hw,y).

f = 1
2

[√
4τ 2
nt + (σ′n − σ′t)2 − (σ′n + σ′t)sinφ

′ − 2c′cosφ′
]

= 0

σ′n = −
(
γd − γ′

)
cosα2hw + γdcosα

2H

τnt =
(
γsat − γd

)
cosαsinαhw + γdcosαsinαH

(3.46)

The �rst equation represents the yielding condition, which corresponds to the an-
nulment of the yield function f and the other two equations represent the stress
path which is characterized by the dependency of stresses on the water table level:
σ′n = σ′n(hw) τnt = τnt(hw).
Through the solution of this system it is possible to �nd: τnt,y, σ

′
n,y and hwy repre-

senting the variables for which the elastic regime is abandoned.
Solving the system of Equations3.46 the following expression for τnt,y is obtained:

τnt,y =
−
[
−2be

d2
+ 2bsin2φ′

d2h2
+ 4c′sinφ′cosφ′

dh

]
+
√[
−2be

d2
+ 2bsin2φ′

d2h2
+ 4c′sinφ′cosφ′

dh

]2 − 4
[
4 + e

d2
− sin2φ′

d2h2

]
C∗

2
[
4 + e

d2
− sin2φ′

d2h2

]
(3.47)

where

C∗ =
b2e

d2
− b2

d2

sin2φ′

h2
− 4c2cos2φ′ − 4b

dh
csinφ′cosφ′ (3.48)

d = atanα (3.49)

e =

(
1− 2ν

)2(
1− ν

)2 (3.50)

h = 1− ν (3.51)

a =
γsat − γd
γd − γ′

(3.52)

b = Hcosαsinαγd

[(γsat − γd)(
γd − γ′

) + 1
]

(3.53)

Maximum allowable shear stress τmax evaluation

The maximum allowable shear stress is the maximum value of the stress that the
system is able to sustain; due to the redundancy of the system, this value is reached
after structural hardening has completely developed.
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This limit value is evaluated solving a system of four equations with four unknowns
(i.e τmax, σ

′
n,max,σ

′
t,max, hw,max).

f = 1
2

[√
4τ 2
nt + (σ′n − σ′t)2 − (σ′n + σ′t)sinφ

′ − 2c′cosφ′
]

= 0

∂g
∂σ′t

= −
(
σ′n−σ′t

)
√

4τ2nt+
(
σ′n−σ′t

)2 − sinψ
2

= 0

σ′n = −
(
γd − γ′

)
cosα2hw + γdcosα

2H

τnt =
(
γsat − γd

)
cosαsinαhw + γdcosαsinαH

(3.54)

The �rst equation corresponds to the annulment of the yield function, the second
equation represents the instability condition and the last two equations represent
the followed stress path. Setting the derivative of the plastic potential with respect
of σ′t equal zero means imposing the end of the evolution of the hyperstatic variable
σ′t, which corresponds to the end of the structural hardening and, consequently, to
the collapse of the system.
Solving the system of Equations3.54 the following expression for τnt,max is obtained:

τnt,max =
−B′∗ +

√
B′∗2 − 4A′∗C ′∗

2A′∗
(3.55)

Where

A
′∗ = 4 +

(
−1

d
−m

)2 −
(
−1

d
+m

)2
sin2φ′ (3.56)

B
′∗ = −4b

d

(
−1

d
+m

)
sin2φ′ − 4c′cosφ′sinφ′

(
−1

d
+m

)
(3.57)

C
′∗ = −4b2

d2
sin2φ′ − 4c′2cosφ′sinφ′

2b

d
(3.58)

m = −1

d
+

2sinψ√
4− sin2ψ

(3.59)

3.3.1 Parametric study

Some simulations have been performed to show the in�uence of various parameters
on the system response.
All the parameters are kept �xed and only one is changed, so that to study each
aspect separately. The �rst parameter which has been changed is the slope angle
α.
In the table below the �xed parameters used for the numerical simulation are shown.
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3.3 � Numerical simulation

H E ν φ′ ψ c′

[m] [MPa] [−] [◦] [◦] [kPa]
5 130 0.3 35 35 24

As can be seen in Figure3.6 increasing α an increase of the maximum stress al-
lowable for the system and of the stress value at which yielding takes place occurs.
Another interesting result regards the structural hardening: decreasing α, τnt− γnt
response is closer to the elastic-perfectly plastic behaviour without structural hard-
ening; if such tendency is observed, the yielding stress and the maximum shear
stress are nearly equal.

Figure 3.6: τnt-γnt curves changing the value of the slope angle α

Then the friction angle is changed keeping �xed all other parameters, which
are shown in the table below (α = 15◦). An example of associative �ow rule is
analyzed, so ψ = φ′ and the dilatancy angle is varying together with the friction
angle. The reference parameters are the same of the previous table.
As can be seen in Figure3.7 both the value of yielding shear stresses and maximum
shear stress donot vary a lot. This means that, if an associated �ow rule has been
chosen, there is no signi�cant change τy and τmax and also the structural hardening
regime is not in�uenced and this is due to the fact that the value of cohesion is high.
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Figure 3.7: τnt − γnt curves changing the value of the friction angle φ

Then the dilatancy angle is varied keeping �xed all the other parameters (the
parameters are the same of the table above with α = 15◦ ).
As can be seen in Figure3.8, the increase in dilatancy angle causes a slight increase
of the maximum allowable shear stress, while the yielding stress remains the same.
This happens because dilatancy starts to in�uence the system response only after
the yielding stress is reached because the �ow rule, and so the irreversible strain
accumulation, depends on this parameter. So, a less marked structural hardening
branch can be seen decreasing ψ.
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3.3 � Numerical simulation

Figure 3.8: τnt − γnt curves changing the value of the dilatancy angle ψ

Then the height of the layer is changed. In these simulations α = 20◦, c′ = 8kPa
In Figure3.9 the comparison of τnt-γnt curves obtained with di�erent values of H
can be seen. Similarly to what happens increasing the slope angle α, as H increases
the values of τy and τmax are higher. The structural hardening is not particularly
in�uenced because, as can be noticed, the initial slope of the elastoplastic branch
in the plane τnt − γnt is practically the same for each value of H.
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Figure 3.9: τnt − γnt curves changing the value of the height H

Then cohesion is changed maintaining constant all the other parameters. In
these simulations α = 20◦.
As shown in Figure3.10 increasing the cohesion the yielding stress and the maximum
shear stress increase. The higher c′ the lower is the initial slope of the elastoplastic
branch, so the less structural hardening is present. This aspect considered, for high
values of cohesion, the system shows a trend closer to elastic-perfectly-plastic case
without structural hardening.
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3.3 � Numerical simulation

Figure 3.10: τnt − γnt curves changing the value of cohesion

Then the Young Modulus E is changed. In these simulations α = 10◦.
As can be seen in Figure3.11, increasing E the slope of the elastic branch increases,
despite this there is no change in the yielding shear stress and maximum shear
stress. The structural hardening phenomenon is in�uenced by the material sti�ness
as increasing E, the initial elastoplastic sti�ness is higher and the maximum shear
stress is reached after a minor strain accumulation. In addition can be noticed that
the curves are omothetic.
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Figure 3.11: τnt − γnt curves changing the value of the Young modulus

Finally the poisson ration ν is changed. In these simulations α = 10◦.

Figure 3.12: τnt − γnt curves changing the value of the Poisson ratio
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3.4 � Lumped approach for changing water table levels

As can be seen in Figure3.12 ν does not in�uence the maximum shear stress,
but in�uences the yielding shear stress: increasing the Poisson ratio, the yielding
shear stress increases and the gap between τy and τmax decreases. So increasing ν
a minor range of stresses for structural hardening development is expected. The
chosen values for ν are upper and lower bounds values for the parameter, but its
variability is very low.

3.4 Lumped approach for changing water table lev-

els

In this section a 1D equivalent model aimed at reproducing the system response in
terms of τnt−γnt curves like those reported in the previous section will be described.
The objective of the 1D elastoplastic model is to reduce the number of unknowns
of the system and, consequently, to decrease the computational costs. The simpli-
�cation on the basis of this approach is that all the constitutive equations donot
have to be integrated.
Another important objective of the elastoplastic model is to reproduce the struc-
tural hardening phenomenon occurring in the in�nite slope con�guration with sim-
ple parameters. This aspect is really fundamental, because structural hardening
is related to the static redundancy of the system and taking into account of this
phenomenon means taking into account of all the plastic resources of the system.

3.4.1 Model governing equations

In this section the simple equations on the basis of the equivalent-1D model will be
discussed. The constitutive model is strain hardening elastic-plastic.
The additivity of deformations holds, so the total deformation is given by the sum
of an elastic part and a plastic part:

γ̇nt = γ̇elnt + γ̇plnt, (3.60)

where, according to standard elasticity theory:

γ̇elnt =
τ̇nt
G
, (3.61)

where G is the constant shear modulus of the material.
As the shear stress overcomes the yielding shear stress τy, plastic strains start to
develop; this happens when the value of yield function f is equal zero; the 1D yield
function can be written as:

f ∗ = τnt − τc. (3.62)
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τc is the yielding variable and describes the size of the yield surface when plastic
deformation occurs and it evolves until structural hardening is present. At the
beginning it is equal to the yielding shear stress τy and then increases with plastic
strains.
A hardening law has to be introduced to take into account the structural hardening
phenomenon:

τ̇c = Rp

(
1− τc

τmax

)
γ̇plnt, (3.63)

where Rp is the initial plastic sti�ness.
As is evident from Equation3.63 and Equation3.62, this model is characterized by
two parameters:

� the maximum allowable shear stress τmax;

� the plastic sti�ness Rp.

As was previously mentioned (�3.1), under simple shear conditions, even if the
material is characterized by an elastic-perfectly plastic behaviour, the system re-
sponse in characterized by a structural hardening, which cannot be captured by an
elastic-perfectly plastic 1D model. For this reason a strain hardening constitutive
relationship is adopted. Information about σ′t evolution (structural hardening) are
condensed in the model parameters Rp and τmax. The structural hardening is thus
taken into account in both the numerical model and 1D model, but there is sub-
stantial a di�erence in terms of the way it is considered. In the model integrating
the equations in SSC the structural hardening is given by the evolution of the hy-
perstatic variable σ′t and the constitutive model is elastic-perfectly plastic; in the
1D equivalent model, as σ′t is not considered and the model is very simpli�ed, the
hypothesis of EPP constitutive model has to be removed and the only way to take
into account of structural hardening is the use of an hardening model.
As an elastoplastic consititutive model is employed, the consistency law is valid and
it can be written as:

∂f

∂τnt
τ̇nt +

∂f

∂τc
τ̇c = 0 −→ τ̇nt = τ̇c, (3.64)

substituting the value of τ̇c in the consistency law the relationship between the
loading variable τnt and the plastic strain is obtained:

τ̇nt = Rp

(
1− τnt

τmax

)
γ̇plnt. (3.65)

Rewriting Equation3.60 the following is obtained:

γ̇nt =
τ̇nt
G

+ τ̇nt

( τmax
τmax − τnt

) 1

R p
. (3.66)
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3.4 � Lumped approach for changing water table levels

Rearranging Equation3.66, 1D constitutive law is obtained

γ̇nt =
Rp

(
τmax − τnt

)
+Gτmax

GRp

(
τmax − τnt

) τ̇nt. (3.67)

3.4.2 Parameter calibration

As already outlined the parameters of the model are the maximum shear stress
τmax and the plastic sti�ness Rp.
τmax is analytically evaluated with Equation3.55, while for the plastic sti�ness a
di�erent procedure has to be used.

Hardening parameter Rp

Given the τnt − γnt curve, the stress strain behaviour is characterized by a linear-
elastic branch, whose slope is given by the shear modulus and by an elastoplastic
branch, whose initial slope depends on the plastic sti�ness Rp.
Due to the fact that an analytical evaluation of this variable is not possible, it has
been found through a direct calibration procedure by calibrating the 1D curves on
the SSC solution curves.
Rp depends on geometry, cohesion, friction angle, dilatancy angle and depth, thus
it is not represented by a constant value, but by a function:

Rp = Rp

(
α, φ′, c′, ψ,H,G

)
(3.68)

the aim of this section is the evaluation of an expression able to reproduce the
variation of Rp with the cited parameters. To do so the in�uence of them on the
variable Rp has been studied.
To study the variation of Rp the parametric study reported above, by integrating
the constitutive model under simple shear conditions was performed. From this
analysis emerged that Rp:

� increases with G;

� is constant with H and φ′ (Figure3.9, 3.7);

� decreases with c′;

� increases with α;

� increases with dilatancy.
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As was previously mentioned, the curves of Figure3.11 are omothetic, therefore, Rp

linearly depends on G.
The variation of Rp with c∗∗ = c′/(γdHcosαsinα) is reported in Figure3.13: the
results are nearly superimposed, so a unique interpolation curve is assumed.
The variation of Rp with tanψ is reported in Figure3.14.

Figure 3.13: Evolution of parameter Rp varying the non-dimensional cohesion c∗∗
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3.4 � Lumped approach for changing water table levels

Figure 3.14: Evolution of parameter Rp varying the dilatancy angle ψ

To reproduce this variation, the following expression is proposed:

Rp = G
[
a1e
− c
∗∗a2
a1 + a3

](
b1 + b2tan(ψ)

)
(3.69)

Where the interpolating parameter values are reported in the table below.
The interpolating curve is shown in Figure3.15.

a1 a2 a3 b1 b2

1.46 0.9 0.22 0.9945 1.1099

Table 3.4.2
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Figure 3.15: Iterpolation curve desribing Rp evolution with non-dimensional cohe-
sion

By summarizing, the 1D equivalent model depends on a series of "micro" param-
eters, i.e parameters describing geometry, mechanical properties of the material and
"macro" parameters, which are τy, τmax, a1, a2, a3, b1, b2 that describe the system re-
sponse at a macro scale. The initial value or yielding variable and the maximum
shear stress are evaluated with Equations3.47,3.55 and the other 5 parameters are
calibrated once for all and are reported Table3.4.2.
As the "micro" parameters are concerned, in general they are expected to be very
heterogeneous along the slope: for sake of simplicity only their mean values have
been considered, but in Chapter6 their spatial variability will be analyzed, in order
to understand its in�uence on the slope response.

3.4.3 1D equivalent model validation

In this section the Simple Shear Condition solution results are compared with the
1D code results.
Hereafter some examples of such comparisons are proposed.
In the table below the elastic parameters kept constant during all the simulations
are shown.
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3.4 � Lumped approach for changing water table levels

E ν
[MPa] [−]
130 0.3

From the following �gures can be noticed that for all the case considered the 1D
model well �ts the SSC numerical solution.

Figure 3.16: Comparison of τnt − γnt curves for φ′ = ψ = 35◦,H = 5m, α = 15◦,
c′ = 24kPa
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Figure 3.17: Comparison of τnt − γnt curves for φ′ = ψ = 35◦,H = 5m, α = 10◦,
c′ = 24kPa

Figure 3.18: Comparison of τnt−γnt curves for φ′ = 35◦, ψ = 20◦,H = 5m, α = 15◦,
c′ = 24kPa
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3.4 � Lumped approach for changing water table levels

Figure 3.19: Comparison of τnt − γnt curves for φ′ = ψ = 35◦,H = 5m, α = 20◦,
c′ = 40kPa

Figure 3.20: Comparison of τnt − γnt curves for φ′ = ψ = 35◦,H = 5m, α = 20◦,
c′ = 56kPa
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Figure 3.21: Comparison of τnt− γnt curves for φ′ = 35◦ψ = 25◦,H = 5m, α = 20◦,
c′ = 32kPa
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Chapter 4

Viscoplastic constitutive model

As was previously mentioned, the cemented materials behaviour is essentially time
dependent and an elastic plastic model cannot reproduce this. For these reasons
viscoplastic 1D constitutive model has been introduced. Indeed, in the viscoplas-
tic case, the consistency rule is abandoned and the current stress state can lie on,
above or below the yield surface. For this reason also the description of cemented
materials strain-softening behaviour will be possible.
According to viscoplasticity the total strain is give by an elastic reversible compo-
nent and a viscoplastic irreversible time dependent component:

ε̇ij = ε̇elij + ε̇vpij (4.1)

Viscous strains are de�ned according to Perzyna's theory:

ε̇vpij = η < Φ(f) >
∂g

∂σ′ij
(4.2)

The yield function and the plastic potential and the hardening rule are the same
considered in the elastic plastic (Equation3.7,3.8, 3.62,3.67).
In this case a bilinear viscous nucleus has been chosen:{

Φ(f) = f f ≥ 0

Φ(f) = 0 f < 0
(4.3)

For the sake of clarity, �rstly (�4.1) the case relative to an elastic-perfectly vis-
coplastic (i.e. without softening) is considered and then (�4.2) also the case of a
strain softening material is discussed.
Analogously to what was done for the elastic-plastic case, before introducing the
new 1D model, the results obtained by integrating the constitutive relationships
are reported (�4.1 ).
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4.1 Viscoplastic constitutive model in ductile regime

In this chapter an elastic-viscoplastic constitutive model in ductile regime will be
analyzed, so no degradation of cohesion will be present.
Firstly the numerical simulations performed with the SSC code will be shown, then
the equivalent 1D model will be illustrated.

4.1.1 Creep-Numerical simulation

In the table below the parameters used for the numerical simulation in which the
constitutive relationship is integrated under simple shear conditions are listed. For
the sake of simplicity, in this section only the case with m = 0 is discussed..

α H E ν φ′ ψ c′ η
[◦] [m] [MPa] [−] [◦] [◦] [kPa] [1/(daykPa)]
25 5 130 0.3 35 35 24 4 · 10−4

The loading history which is adopted is an elastic deposition in a time span ∆t1 =
0.005days (since the deposition is elastic, the value of ∆t1 does not in�uences the
results), followed by an istantaneous water table level increase from 0 to Hslope;
this value is maintained constant for a time span ∆t2 (Figure4.1). This way the
system undergoes a pure creep phenomenon because irreversible strains increase
at constant e�ective stress (consolidation e�ects are disregarded, i.e. the system
consolidation rate is signi�cantly larger with respect to the perturbation rate).
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Figure 4.1: Water table path for creep simulation

Instability phenomenon under creep conditions occurs when the system does
not undergo a deceleration process, i.e when ε̈vpij ≥ 0: this is the case of secondary
and tertiary creep. According to what demonstrated in Section 1.2.2, in case of
no softening response (i.e with H ≥ 0), tertiary creep phenomenon cannot be
reproduced, so in this section instability characterized only by secondary creep is
expected.
In Figure4.2 the stress path and the complete strain-time response for the stable
case (a) and unstable case(b) can be seen.
In Figure4.3 can be seen a simulation characterized by a stable behaviour, appearing
as an horizontal plateau of strains. In In Figure4.4 is shown an unstable creep
example, characterized by a constant strain rate. This response is the so called
secondary creep regime. The parameters of the unstable case are the same of the
table above, except for the cohesion, which is imposed to be equal to c′ = 8kPa.
In both cases a primary creep response veri�es (that in the unstable case is just an
initial response), which is associated to structural hardening.
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Figure 4.2: a) Stress path imposed and strain accumulation in case of stable creep
b) stress path imposed and strain accumulation in case of unstable creep

Figure 4.3: Shear strains in time in case of stable creep at a di�erent time scale to
remark the initial strain accumulation
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4.1 � Viscoplastic constitutive model in ductile regime

Figure 4.4: Shear strains in time in case of unstable creep at a di�erent time scale
to remark the initial strain accumulation

4.1.2 Lumped viscoplastic model: ductile response - Gov-

erning equations under creep conditions

In this section the time dependence of cemented materials will be introduced, so the
development of the 1D elastic-viscoplastic model in ductile regime will be shown.
The parameters of the model are the maximum allowable shear stress τmax, the
elastoplastic sti�ness Rp (evaluated from Equation3.69) and the value of the viscous
parameter η .
As concerns the ductile regime the parameters τmax and Rp and the initial value of
hardening variable τy are the same as the elastoplastic case and a di�erent law is
used for the de�nition of the irreversible deformation.
As additivity holds, the total stain is given by the sum of an elastic component and
a viscoplastic component (4.4):

γ̇nt = γ̇elnt + γ̇vpnt . (4.4)

The yield function is again de�ned as:

f ∗ = τnt − τc, (4.5)

where τc is the yieldind variable previously de�ned.
In the viscoplastic case the parameter Rp alone cannot correctly describe the system
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behaviour: to take into account of the time dependence the introduction of non-
constant parameter η would be necessary. As this procedure is not straightforward,
the dependence on σ′t, interpreted as an internal variable, is introduced in the model.
The viscoplastic strains are de�ned as follows:

γ̇vpnt = η
f

f ∗
∂g

∂τnt
< f ∗ > dt. (4.6)

where f and g are the previously de�ned yield function and plastic potential (Equa-
tions 3.7, 3.8). As their expression depends on σ′t, f and dg/dτnt introduce in the
model the dependency on the internal variable.
The internal variable evolution rule is evaluated starting from the additivity of
strains and the compatibility:

ε̇t = 0 = ε̇elt + ε̇vpt (4.7)

ε̇t = ε̇elt + ε̇vpt . (4.8)

As an in�nite slope con�guration is assumed, the strains along t direction must to
be nil; so imposing the compatibility condition:

ε̇t = ε̇elt + ε̇vpt = 0→ ε̇vpt = −ε̇elt , (4.9)

considering the 1D geometry of the problem, the following is obtained:

ε̇y = 0, ε̇ely = 0, ε̇vpy = 0. (4.10)

From elasticity theory can be derived that

ε̇vpt = − σ̇
′
t

E
+ ν

σ̇′y
E
. (4.11)

As in creep conditions σ̇′n = 0, the following holds:

σ̇′y = νσ̇′t, (4.12)

combining Equation4.11 and 4.12 viscoplastic strains in t direction can be retrieved:

ε̇vpt =
−
(
1− ν2

)
σ̇t

E
, (4.13)

writing the de�nition of viscoplastic deformation in t direction and combining it
with Equation 4.13, the increment of the internal variable σ′t can be obtained

ε̇vpt = Φ(f)
∂g

∂σ′t
=
−
(
1− ν2

)
σ̇′t

E
. (4.14)
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By solving Equation4.14 with respect to σ′t the evolution of the internal variable is
obtained

σ̇′t = −Φ(f)
∂g

∂σ′t

E(
1− ν2

) . (4.15)

This increment permits to update the internal variable σ′t, that is used to calculate
the expressions of f and of ∂g

∂τnt
.

∂g
∂τnt

is the derivative of the plastic potential (Equation3.8) with respect to the shear
stress τnt:

∂g

∂τnt
=

2τnt√
4τ 2
nt + (σ′n − σ′t)2

. (4.16)

The yielding variable increment is depending on viscoplastic deformations and on
Rp as follows:

τ̇c = Rp

(
1− τc

τmax

)
γ̇vpnt . (4.17)

4.1.3 1D equivalent model validation

In case of ductile regime, the viscous response is like an elastoplastic response in
which the characteristic time of the material tends to zero, so the only di�erence is
the delayed in time strain accumulation.
In this section some comparisons between the 1D equivalent model and the numer-
ical model will be shown.
With respect to the elastoplastic case only an additional micro parameter, η, is
present and, as regards the macro parameters Equations 3.69, 3.47 and 3.55 are
used.
The parameters used for the stable case are shown in the table below.

α H E ν φ′ ψ c′ η
[◦] [m] [MPa] [−] [◦] [◦] [kPa] [1/(daykPa)]
20 5 130 0.3 35 35 16 4 · 10−4

For the unstable case the same parameters are adopted except for φ′ = ψ = 30◦

and α = 30◦.
As is shown in Figures4.5 and 4.6 the new model can reproduce the results obtained
by integrating the constitutive relationship.
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Figure 4.5: Comparison between 1D and SSC solution in the stable case

Figure 4.6: Comparison between 1D and SSC solution for the unstable case

4.1.4 From viscoplastic to elastoplastic response

As already remarked, the viscoplastic constitutive law is the limit case of elastoplas-
tic law when the material characteristic time tends to zero, i.e. when the material
response is slower with respect to perturbation time. In this section the analogy
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between the elastoplastic case and the viscous case in case of ductile regime will be
demonstrated.
Assuming that the viscoplastic strain increase only when the state of stress is
outside the yield function (i.e. when f > 0), it is possible to demonstrate that
([Prisco and Imposimato, 1996]):

∫ +∞

0

dεvpij (t, dt) = δεplij (4.18)

Where δεplij is the plastic strain increment tensor corresponding to the limit viscous
strain increment.
The parameter η in�uences the strain rate and consequently the rapidity with which
the asymptotic strain value is reached. For instance if η → ∞ the limit value δεijpl
is reached.
All these aspects considered, a second type of loading path can be be imposed to
recover the elastic perfectly plastic case; instead of an instantaneous increase of the
water table level from 0 to H, a progressive increase in a time span ∆t2 can be
imposed.
In the strain-time curve a di�erent trend characterized by a convex shape can be
seen (Figure4.7).
Following this new loading path the elastoplastic τnt−γnt curve is retrieved (Figure4.8).

Figure 4.7: Stress path imposed and strain accumulation in case gradual load im-
position
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Figure 4.8: Comparison between 1D creep solution and elastic perfectly plastic
solution for α = 25◦, φ′ = ψ = 35◦,H = 5m and c′ = 16kPa

4.1.5 Water table level change - Numerical simulation

Despite being explicative for the creep phenomenon, the loading history of the pre-
vious section is not complete as regards the landslide inception phase. Strain rate
increase bringing to failure in creeping landslides usually takes place after seasonal
perturbations, as water table oscillations. In order to better catch the landslide
inception phase, a di�erent water table level �uctuation has been studied.
In this section a numerical simulation showing the response of the system after
water table change will be shown. The water table is linearly increased up to a
maximum level and then linearly decreased to zero. Typically the increase in water
table level is a quick process with respect to the water table decrease, so an asym-
metric water table level path has been used (Figure4.9).
The loading history in terms of water table (w.t.) level can be seen in Figure4.9;
the water table-time history is characterized by the following time instants:

� t0 is the time after deposition at which the perturbation starts;

� tp is the time span between the beginning of w.t. increase and the peak of
w.t.;

� tpf is the time span from the peak to the nulli�cation of w.t.; as already
outlined tpf >> tp has been chosen;

� tf is the �nal time tf = t0 + tp + tpf + t0f , where t0f is the �nal time span in
which the water table level is equal zero.
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Figure 4.9: Water table level path

In this section some numerical simulations in ductile regime for the case of water
table level change will be shown.
For the stable case the following parameters are used

α H E ν φ′ ψ c′ η
[◦] [m] [MPa] [−] [◦] [◦] [kPa] [1/day kPa]
30 5 130 0.3 35 35 24 8 · 10−4

In Figure4.10 the numerical results for the stable case can be seen: In this case
the response is dominated by the elastic material behaviour. When the perturba-
tion decreases, the accumulated irreversible strains decrease until the end of the
perturbation, when the strains remain on a constant value.
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Figure 4.10: Stress path and strain accumulation in case of stable response

In absence of softening, an unstable response can not be reproduced. The only
way to reproduce instability in case of water table level change without mechan-
ical properties degradation is to start the simulation from a slope angle equal to
α = αlim, for which the system is already unstable without the imposition of a
perturbation. For this reason, no unstable analysis for this case will be reported.

4.1.6 Lumped viscoplastic model: ductile response - Gov-

erning equations for water table level change

For the case of water table level change the yield function and the viscous strains are
again de�ned according to Equation4.5 and 4.6 respectively. In the same way, the
yielding variable evolution is de�ned according to Equation4.17. On the contrary,
a change in the evolution law of the internal variable σ′t is expected as it is stress
path dependent. With respect to the creep case, when change in the water table
occurs, σ̇′n /= 0.
Writing the compatibility equation along y direction and the elastic law:

ε̇ely = 0 =
σ′y
E
− ν

E

(
σ̇′t + σ̇′n

)
, (4.19)
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solving Equation4.19 with respect to σ̇′y:

σ̇′y = ν
(
σ̇′t + σ̇′n

)
, (4.20)

writing the elastic strains in t direction and the compatibility:

ε̇elt = −ε̇vpt = − σ̇
′
t

E
− ν

E

(
σ̇′y + σ̇′n

)
= Φ(f)

∂g

∂σ′t
(4.21)

substituting Equation4.20 and solving with respect to σ̇′t, the increment of the
internal variable is obtained:

σ̇′t = −Φ(f)
∂g

∂σ′t

E(
1− ν2

) +
σ̇′n(

1− ν
) . (4.22)

4.1.7 1D equivalent model validation

In this section the 1D equivalent model validation in ductile regime for the case of
water table level change will be shown. The parameters used for the stable case
are the same of the numerical simulation of the previous section.
As can be seen from Figure4.11, the 1D equivalent model is able to reproduce the
numerical results.

Figure 4.11: 1D equivalent model and SSC model comparison in case of stable
response
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4.2 Viscoplastic constitutive model with softening

behaviour

Cemented materials are characterized by a strain softening response because of
the fragile nature of their chemical bonds. In order to reproduce this behaviour a
viscoplastic constitutive law with softening regime has to be discussed.
Cohesion will be considered constant along the slope, but governed by the following
hardening law:

ċ′ = −c′m
(
|ε̇irrn |+ |ε̇irrt |+ |γ̇irrnt |

)
(4.23)

So c′ will decrease as irreversible strains increase.
m is a non dimensional parameter governing the decrease of cohesion, it indicates
how fast softening will occur: the greater is m the more the softening will be quick
and pronounced. In Figure4.12 the cohesion degradation curve from two creep
simulations can be seen; in case m = 100 a less marked reduction in cohesion is
observed.

Figure 4.12: Cohesion degradation curves for two di�erent values ofm for two creep
simulations in which α = 25◦, φ = ψ = 35◦, H = 5m, η = 4 · 10−41/(day kPa), c′ =
24kPa

What is expected from softening analyses is the attainment of instability of
the system during the perturbation decrease and so the achievement of tertiary
creep phenomenon due to progressive failure, that can be interpreted as the a fast
landslide inception phase.
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4.2.1 Creep - Numerical simulation

In this section some numerical simulations have been performed under creep con-
ditions with a strain softening response.
In Figure4.13 the stress path an the strains in time for the stable(a) and unstable
(b) case can be seen. The parameters used for the stable simulation, whose results
are shown in Figure4.14, are exactly the same used for creep simulation in duc-
tile regime in Section4.1.1 and the parameter m is set equal to 100. This choice
has been done in order to remark the in�uence of softening. Indeed, what can be
seen in the comparison between the case in which m = 0 and the case m = 100
of Figure4.15 is that in case of softening response, due to cohesion reduction, the
accumulated irreversible strain is higher.

Figure 4.13: a)Stress path and strain accumulation in case of stable response
b)Stress path and strain accumulation in case of unstable response
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Figure 4.14: Shear strains in time in case of stable creep at a di�erent time scale
to remark the initial strain accumulation

Figure 4.15: Comparison between the γnt − t curves in case of m = 0 and m = 100

For the unstable case the same parameters of the simulation performed in Sec-
tion 4.1.1 are used, the parameter m is again equal to 100.
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In Figure4.16 the results of the simulation can be seen and they are plotted in order
to magnify the tertiary creep phenomenon. Comparing it with Figure4.4 a di�erent
kind of instability can be observed: as remarked in Section 1.2.2, for a strain soft-
ening behaviour (i.e for H < 0) it is possible for the system to reach a tertiary creep
response, according to which ε̈vpnt > 0. Taking into account of cohesion reduction
in time it is thus possible to simulate the slope acceleration, di�erently from what
was obtained in the ductule regime, in which only a constant strain rate could be
observed.

Figure 4.16: Shear strains in time in case of unstable creep at a di�erent time scale
to remark the initial strain accumulation

4.2.2 Lumped viscoplastic model: fragile response - Govern-

ing equations for creep regime

The governing equations are the same described in the previous section for the creep
regime, with the addition of the cohesion evolution law: if the material exhibits a
softening behaviour, cohesion is no more constant and that there is a progressive
damage of the material.
The cohesion evolution law can be written as:

ċ′ = −mc′
(
|γ̇vpnt |+ |ε̇vpn |+ |ε̇

vp
t |
)
, (4.24)

where γ̇vpnt are the viscoplastic shear strains given by Equation4.6, ε̇vpt is given by
Equation4.13 and ε̇vpn is the increment of strains in the normal direction and it can
be written as:

ε̇vpn = η
f

f ∗
< f ∗ >

∂g

∂σ′n
dt (4.25)
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the increment of strains in the tangential direction ε̇vpt is de�ned as:

ε̇vpt = η
f

f ∗
< f ∗ >

∂g

∂σ′t
dt. (4.26)

The yield shear stress used in the model τy is the one previously de�ned by Equation3.46,
while the maximum shear stress τmax is obtained solving a system similar to Equation3.54
but with cohesion equal zero: it is the maximum allowable stress for the system
accounting for a total degradation of cohesion. Thus in this case only an additional
micro parameter is present (i.e. cohesion).

4.2.3 Equivalent model validation

In this section the 1D equivalent model validation in creep conditions for softening
regime will be shown. The parameters used for both the stable and unstable case
are the same used in the numerical simulation of the previous section.
As can be seen from Figure4.17 and 4.18 the model is able to reproduce the nu-
merical results and the tertiary creep condition.

Figure 4.17: 1D equivalent model and SSC model comparison in case of stable
response
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Figure 4.18: 1D equivalent model and SSC model comparison in case of unstable
response

4.3 Model Employment

In this section the 1D equivalent model will be employed to simulate a water table
level change with a strain softening-viscoplastic constitutive model. In addition
its results are compared with those coming from the 1D rigid-viscoplastic model
(analogous to the one proposed in [Secondi et al., 2013]).

4.3.1 Water table level change-Numerical simulation

In this section some numerical simulations for water table level change in strain
softening conditions will be shown.
The parameters used in the numerical simulation in the stable case are summarized
in the table below.

α H E ν φ′ ψ c′ m η
[◦] [m] [MPa] [−] [◦] [◦] [kPa] [−] [1/(day kPa)]
25 5 130 0.3 30 30 24 100 4 · 10−4

In this section also the displacement-time curves will be analyzed.
Given the height of the slope H, the maximum value of displacement on the slope
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surface has been evaluated as:

ut = H
∑
i=1,n

γnt,i, (4.27)

where n is the number of steps in the simulation.
The γnt−t numerical curve superimposed to the water table level path for the stable
case are shown in Figure4.19. As can be seen in Figure4.19 viscous strains increase
with the increase of water table level; this trend continues also for a part of the
unloading phase, but then a decrease of strains is observed because the system has
reached a new equilibrium condition. So the total strain arrives to a �nal plateau,
which shows the stable response of the system.
In Figure4.20 can be seen the cohesion degradation curve of the stable case. The
�nal value of cohesion is not so di�erent from its initial value.

Figure 4.19: γnt − t numerical curves for the stable case
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Figure 4.20: Cohesion degradation curve of stable case

In Figure4.21 the displacement trend in time and the water table path can be
seen. After the water table peak, displacement tends to decrease and to stabilize.
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Figure 4.21: Displacement-time trend for the stable case

For the unstable case the following parameters are used:

α H E ν φ′ ψ c′ m η
[◦] [m] [MPa] [−] [◦] [◦] [kPa] [−] [1/(day kPa)]
30 5 130 0.3 25 25 24 80 8 · 10−4

The Hw − t curve and the γnt− t numerical curves for the unstable case are shown
in Figure4.22.
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Figure 4.22: Hw − t curve and the γnt − t numerical curves for the unstable case

The water table level path is exactly the same of the previous case, but, due
to the di�erent parameters the γnt − t behaviour is di�erent: in particular, can be
observed that the curve is associated with two accelerating phases. The �rst one
is associated with an increase in the water table level, whereas the second one is
obtained after the end of the perturbation. This second acceleration, highlighting
an unstable system response, is due to the degradation of cohesion induced by the
accumulation of irreversible strains (Figure4.23).
This result can be also seen in the light of [Pisanò and Prisco, 2016] approach that
combines the controllability theory ([Nova, 1994]) and [Lyapunov, 1892] stability
criterion. According to this approach (better described in Appendix B), for elastic-
viscoplastic materials, it is possible to write a linear relationship between the vari-
ables describing the system response (hereafter called X, being under simple shear
conditions γ̇nt, ε̇n, σ̇′t and σ̇′n) and their time derivative (Ẋ):

Ẋ = AX+ F, (4.28)

where A is a matrix depending on the constitutive relationship and on controlled
variables and F is the forcing term related to controlled variables.
In case of generalized creep tests (i.e for F = 0), according to Lyapunov's theory,
for F = 0 a stable response is obtained (meaning that the system progressively de-
celerates) when all the eigenvalues of A are negative (so if A is negative de�ned).
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In this particular case (i.e for a stress path deriving from water table level change)
F /= 0 and therefore the same considerations are not valid. Indeed when the water
table is raised the forcing term F is greater than zero, while when it is lowered
F < 0. As the water table level increase is a quick process, the phase in which
F > 0 can be practically neglected. Given this assumption, only the case of F ≤ 0
is considered, so the instability (i.e Ẋ > 0) is necessarily associated with a change
in sign of (at least one) eigenvalue of A, implying that the material response is
unstable.
It is interesting to notice that, removing the hypothesis F = 0, the system can
accelerate even if the matrix A is negative de�ned: indeed, when F > 0 an accel-
eration can verify, but this is not due to system instability (because A < 0), but
to the forcing term that moves the system.

Figure 4.23: Cohesion degradation curve of unstable case

In Figure4.24 the displacement trend in time superimposed to the water table
path can be seen. Di�erently from the stable case, after the peak the displacement
shows a continuously increasing trend (the so called Trend IV of Section 2.1).
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Figure 4.24: Displacement-time trend for the unstable case

4.3.2 1D equivalent model and SSC model comparison

In Figure4.25 the comparison between the two models in the stable case is shown.
In Figure4.26 the comparison of the unstable case can be seen; in this case the
tertiary creep phenomenon can be observed and it is remarked by the change in
the γnt − t curve concavity in correspondence of the perturbation reduction. In
Figure4.26 the strain-time response superimposed to the water table path can be
seen.
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Figure 4.25: γnt − t curves of the two models and water table level path
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Figure 4.26: γnt− t curves of the two models superimposed to the water table level
path

4.3.3 1D viscoplastic model and 1D rigid-viscoplastic model

comparison

The new 1D lumped model is capable to describe the creeping landslide inception
phase, di�erently from the perfectly viscoplastic 1D model discussed in Section2.3.
Some analyses to compare the two models have been performed in order to show
the main di�erencies between the models.
The yield function and viscous deformation of the perfectly viscoplastic model are
the same described in Section2.3:

frvp = τnt − σntanφ′ − c
′

(4.29)

γ̇vprvp = η < frvp > dt = η

(
τnt − σntanφ′ − c′

)
+ |τnt − σntanφ′ − c′|
2

dt (4.30)

For the 1D rigid-viscoplastic model the same bilinear viscous nucleus used for the
1D viscoplastic model is adopted.
The cohesion in the 1D rigid-viscoplastic model is set constant and equal to the
initial value, while the viscoplastic model has a softening behaviour according to
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which cohesion is a decreasing function of strains, moreover in the 1D viscoplas-
tic model the evolution of σt is allowed, so structural hardening phenomenon is
present; on the contrary, the other model completely neglects this aspect because
of the implicit assumption that all the plastic resources of the system have already
been exploited.
In the stable case a greater accumulation of strains during loading of the 1D vis-
coplastic model is observed: this comes from the fact that both structural hardening
and cohesion degradation are possible for that system.
In the stable case (Figure4.27) the rigid-viscoplastic model is able to qualitatively
reproduce the response, but quantitatively it underestimates the strains of about an
order of magnitude. In the unstable case (Figure4.28) the rigid-viscoplastic model
does not work neither from a qualitative point of view.
A more adapt use of rigid-viscoplastic model is in the �eld of already developed
creeping landslides: once all the structural hardening of the system has developed
and the cohesion has stabilized on a constant value, it is reasonable and simpler to
use such a model.
The parameters for the stable case are summarized in the table below.

α H E ν φ′ ψ c′ m η
[◦] [m] [MPa] [−] [◦] [◦] [kPa] [−] [1/(day kPa)]
27 5 130 0.3 30 30 16 100 4 · 10−4
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Figure 4.27: 1D viscoplastic and rigid-viscoplastic model comparison in the case of
stable system

The parameters for the unstable case are summarized in the table below.

α H E ν φ′ ψ c′ m η
[◦] [m] [MPa] [−] [◦] [◦] [kPa] [−] [1/(day kPa)]
30 5 130 0.3 25 25 16 80 4 · 10−4
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Figure 4.28: 1D viscoplastic and rigid-viscoplastic model comparison in the case of
unstable system
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Chapter 5

Parameter variability: from the

REV to the slope scale

Despite the usual hypothesis of system homogeneity, natural soils are actually very
heterogeneous. They are naturally variable because of the way they are formed;
then they are then altered by the continuous process of the environment. After de-
position of initial formation, they are continuously modi�ed by the external stresses,
weathering and chemical reactions.
In [Phoon et al., 2006] three di�erent levels of soils heterogeneity are distinguished:

� stratigraphic heterogeneity: it is the result of large-scale geologic and geomor-
phological processes. This heterogeneity is usually addressed at site-scale;
stratigraphies may be extremely complex and heterogeneous;

� lithological heterogeneity: can be manifested, for instance, in the form of thin
soft/sti� layers embedded in a sti�er/softer medium or the inclusion of pockets
of di�erent lithology within a relatively uniform soil mass;

� inherent soil variability: it is the variation of properties from one spatial
location to another inside a soil mass which could be regarded as being sig-
ni�cantly homogeneous for geotechnical purpose.

For the nature of the studied materials, in this chapter the inherent soil variability
will be considered.
Until now the problem has been studied referring to the REV scale, so the material
point response has been considered and the employed "micro" parameters were as-
sumed to be representative for the whole slope. Moreover, both the 1D equivalent
model and the SSC model had the implicit assumption of no parameters variation
along the slope direction so the aim of this chapter is to understand whether the
mean parameters are representative of the mean slope response. To do so, a nu-
merical strain control condition is assumed: simple shear tests were performed.
Actually, a variability of parameters along the t direction exists and to study its
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in�uence on the system response a scale passage also in the t direction must be
done. A variability of parameters along t is assumed and in particular an in par-
allel system, whose mechanical properties change along the t direction, is assumed
(Figure5.1).
The assumption of parameters spatial variability along t implies the loss of symme-
try in this direction, so each point expected to reach failure in a di�erent moment
with respect to the others.
The system will be studied through four di�erent constitutive relationships and for
each of those a di�erent parameters variability is assumed. The following constitu-
tive laws are assumed:

1. elastic constitutive law: in this case only the spatial variation of the shear
modulus G will be considered;

2. elastic perfectly plastic constitutive law: in this case both spatial variation of
cohesion and shear sti�ness will be considered. In particular, the variation of
shear sti�ness will be directly related to cohesion;

3. strain softening elastic-plastic constitutive law: in this case a variation of G,
c′ and of the non dimensional parameter m is introduced;

4. strain softening elastic-viscoplastic constitutive law: in this case the viscous
coe�cient η varies in the simulations with also G, c′ and m.

Figure 5.1: Sketch of in�nite slope with variable properties
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As the system is in parallel, the response of the whole slope in terms of stresses
will be the sum of the stress of each part, divided by the number of the elements
in which the system is subdivided.
As seen in [Alegre et al., 2001], cementation in�uences both cohesion and elastic
parameters of the material. In fact all the parameters that will be used in this
chapter are supposed to be dependent on the degree of cementation. For this
reason a unique coe�cient of variation has been chosen.
For each case two parallel analyses are performed:

1. an analysis in which the mean value of the parameters is used;

2. an analysis in which the parameters vary along t according to a Gaussian
distribution and the mean slope response is obtained by averaging all the
results.

5.1 Spatial variability of natural soils

To study the soil variability di�erent probability distribution models exist. Typ-
ically the probability distribution is site and parameter speci�c, so there is no
universally "best" distribution for soil properties. For this study a normal distri-
bution (Figure5.2) has been chosen. The normal (or Gaussian) distribution has a
probability density function given by:

fψ
(
ψ
)

=
1

σ
√

2π
exp

[
−1

2

(
ψ − µ
σ

)2
]
, (5.1)

where µ and σ are respectively the mean and the standard deviation of the variable
ψ. The normal distribution is de�ned in the range −∞ < ψ <∞ and is symmetric
around the mean value. As this distribution allows the presence of negative values,
a correction of the parameter is performed each time a negative value occurs from
the random variables distribution: is this case the parameter is set equal to zero.
Anyway, the probability to obtain negative values is very low and this correction
does not signi�cantly modify the results.
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Figure 5.2: Representation of Gaussian distribution

Typically in slope stability analysis a mean value for the parameters is used.
The standard deviation is a measure of how much each parameter is far from the
mean value. It is de�ned as:

σ =

√∑N
i=1(ψi − µ)2

N
(5.2)

The coe�cient of variation is obtained dividing the standard deviation for its mean
value. It provides a concise measure of the relative dispersion of data around the
central tendency estimator (µ).

COV =
σ

µ
(5.3)

From the Gaussian distributions some random values for each parameter are ob-
tained. Each set of random variables will be supposed to vary along the slope
direction.
In a slope in cemented materials, di�erent degrees of cementation may coexist. As
the �rst parameter directly related to cement content is cohesion, a coe�cient of
variation for it has been searched in literature.[Harr, 1985] proposed as an upper
bound limit for "low dispersion" in soil parameters a value of COV equal to 0.1.
Di�erent values are proposed in literature, in particular [Phoon et al., 1999], from
an exhaustive study of cone penetration tests and triaxial tests results, suggested
that the coe�cient of variation of the cohesion could vary from 0.1 to 0.55. Ac-
cording to this proposed range, a variation coe�cient for cohesion equal to 0.4 has
been chosen, in order to simulate a quite variable soil.

5.2 Cohesion and shear sti�ness distribution

Stability of slopes in cemented materials may be favoured by the presence of inter-
granular bonds between grains. These bonds are possible thanks to the presence
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of bonding agents that act as a cement for the particles. Nevertheless there may
be di�erent distributions of these agents that bring to di�erent degrees of cemen-
tation. So a change in the mechanical behaviour of cemented materials is expected
according to the di�erence in cement content.
As already outilned, a correlation between degree of cementation and other param-
eters exists. In particular, an increase in the degree of cementation provokes an
increase in cohesion and, subsequently, an increase in the shear sti�ness. Due to
this fact, the two parameters are necessarily correlated.
Starting from the triaxial tests on cemented materials performed on arti�cial ce-
mented soil samples by [Alegre et al., 2001] shown in AppendixA, it is possible to
extrapolate a relationship between cohesion a shear sti�ness G50 (EquationA.5).

5.3 Elastic law

For the elastic case the only parameter playing a role is the shear sti�ness G, as
the variability of the Poission ratio ν is very limited.
Some tests under SSC conditions are performed: the initial state of stress corre-
sponds to the one of a slope inclined of an angle α at a depth z = H.
Considering n springs the increment of shear stress in elastic regime of each spring
will be given by:

dτi = Gidγ, (5.4)

where dγ is the imposed shear strain increment.
The resultant force will be:

R =
∑
i=1,n

dτiLi, (5.5)

where L1, L2...Ln are the portions of the slope, characterized by shear sti�ness
G1, G2...Gn, on which the shear stress is acting.
Substituting Equation5.4 in Equation5.5:

R =
∑
i=1,n

GiLidγ (5.6)

the increment of equivalent stress giving the average response of the system is:

dτeq =
R∑

i=1,n Li
=

∑
i=1,nGiLidγ∑

i=1,n Li
= Geqdγ. (5.7)

The only variable following a Gaussian distribution is in this case the shear sti�ness
G; the various values of the shear sti�ness are de�ned as:

Gi = G0 + COVGGmeanrandi = G0 + ∆G, (5.8)
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where G0 is the shear sti�ness of the material without bonds, ∆G is the term related
to the presence of bonds in the material, depending on the Gaussian distribution
and randi is a random number generated by the code.
In the table below the parameters used for the analysis in elastic �eld are reported.
The value Gmean val is evaluated from EquationA.5 starting from an assumed mean
value of cohesion.

α H G0 Gmean val ν γnt,fin COVG
[◦] [m] [kPa] [kPa] [−] [kPa] [−]
10 5 10000 13000 0.25 0.005 0.4

As was expected, in case of elastic conditions the resulting equivalent τnt − γnt
curve is the same as the one evaluated using the mean value of G (Figure5.3).

Figure 5.3: τnt − γnt curves for equivalent shear sti�ness and mean shear sti�ness
in the elastic case

5.4 Elastic perfectly plastic law

As previously outlined, a relationship between cohesion and shear modulus exists
and it is de�ned by EquationA.5.
The values of cohesion de�ned according to the Gaussian distribution can be written
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as:

c′i = c′mean val + c′mean valCOVcrandi (5.9)

Al already remarked, an increase/decrease in cohesion (i.e. of cement content)
brings to a increment/decrement of shear sti�ness. As in the elastic case, the
random variable is the increment in elastic sti�ness due to the interparticle bonding:

∆Gi = ∆Gmean + ∆Gmean valCOV∆Grandi, (5.10)

where ∆Gmean is de�ned as:

∆Gmean = ac
′2
mean + bc′mean, (5.11)

so at each step, the shear sti�ness will be de�ned as:

Gi = G0 + ∆Gi. (5.12)

The Mohr Coulomb failure criterion is adopted and the yield function is expressed
as:

f = τnt −
(
σ′ntanφ

′ + c′
)
. (5.13)

Similarly to the elastic case, for this case and for the following, the equivalent stress
is evaluated as the mean of the stresses as:

τeq =
R

Ltot
=

∑
i=1,n τi

n
. (5.14)

In the table below the parameters used for the elastic-perfectly plastic analysis are
reported. The friction angle is maintained constant, because from [Alegre et al., 2001]
studied emerged that φ′ is not very in�uenced by cement content and thus it can
be approximately constant.
Due to the fact that cohesion and shear sti�ness are strictly related, is assumed
that COVc′ = COV∆G.

α H ν φ m c′mean val γnt,fin COV∆G COVc′
[◦] [m] [−] [◦] [−] [kPa] [−] [−] [−]
15 5 0.25 30 0 50 0.01 0.4 0.4

In Figure5.4 the resulting equivalent τnt − γnt curve and the one evaluated us-
ing the mean values of G and c′ are compared. From the curve can be stated that
the system response with mean values is di�erent from the mean system response.
In particular, as far as the average slope response is concerned, if the constitutive
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law is elastic-perfectly plastic, the system response is characterized by a pseudo-
hardening response, due to the fact that each point reaches failure in a di�erent
imposed strain values with respect to the others.

Figure 5.4: τnt − γnt curves for equivalent shear sti�ness and mean shear sti�ness
in the elastic-perfectly plastic case

5.5 Elastoplastic law with softening regime

In case softening regime is introduced, a reduction of cohesion with shear strains is
expected.
All the procedures describing the increment in sti�ness and the subsequent sti�ness
variation are the same for parameter E.
For softening regime a non dimensional parameter m∗ is introduced; according to
[di Prisco and Flessati, 2019] it is de�ned as:

m∗ = m
γdz

E
(5.15)

The parameter m is a sort of fragility index of the system and indicates how fast
the cohesion reduction will occur. For the study of parameters spatial evolution,
m∗ is assumed to be constant, implying a spacial variability of m depending on
the Young modulus E. The Young modulus is de�ned according starting from the
shear modulus G and m can be simply retrieved from Equation5.15.
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For this case and the following strain softening viscoplastic case the numerical
code integrating the equations in SSC will be used. The yield function and plastic
potential are again de�ned according to the Mohr Coulomb failure criterion with
Equations 3.7 and 3.8.
Two di�erent analyses varying the initial value of cohesion and m∗ are performed.
In the �rst analysis c′mean val = 30kPa,m∗ = 0.1 and in the second c′mean val =
50kPa,m∗ = 0.3
In the table below all the other parameters used for the elastoplastic analyses with
softening are reported.

α H ν φ γnt,fin COV∆E COVc′
[◦] [m] [−] [◦] [−] [−] [−]
20 5 0.25 30 0.05 0.4 0.4

In Figure5.5a the resulting equivalent τnt − γnt curve and the one evaluated us-
ing the mean values of E and c′ are compared. As can be noticed, there is not a
so marked di�erence between the mean response and the response with mean values.

Figure 5.5: τnt − γnt for equivalent system response and mean response in case of
softening regime a) c′mean val = 30kPa,m∗ = 0.1 b) c′mean val = 50kPa,m∗ = 0.3
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Figure 5.6: Magni�ed τnt − γnt to remark the pre-peak response in the case
c′mean val = 50kPa,m∗ = 0.3

Even in this case, in case of mean slope response, irreversible strains start earlier;
in addition, the mean slope response shows a more ductile behaviour due to the
parameters spatial variability (Figure5.6).
As can be seen from Figure5.6, the peak of the mean response preceds the one
of the equivalent response; in addition, a sort of pseudo-hardening regime seems
to verify in the equivalent case. This behaviour can be justi�ed with the spatial
variability of the yielding shear stress and with the subsequent spatial variation of
structural hardening phenomenon. Finally, the post peak branch of the equivalent
response is nearly equal to the mean post peak branch.

5.6 Strain softening viscoplastic law

At the microscale (i.e. at the grain scale) defects are present and evolve in time. At
the macro scale this is accounted for by introducing a viscous response, governed
by the parameter η. So, in general, η is a viscous parameter governing the time
response of the system. For high values of η the system response is very quick,
while for low values of η, the system response will be delayed in time.
All this considered, η is expected to depend on the degree of cementation: the
presence of defetcs is related to the damage in time of the bonds between grains,
which is directly related to cement content.
As already outlined, the bond strength is responsible of the increment of cohe-
sion and of material sti�ness, while the presence of defects modi�es the viscous
behaviour of the material.
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5.6 � Strain softening viscoplastic law

Being both cohesion and viscous coe�cient dependent on the degree of cementa-
tion, the same range of COV (i.e. the one proposed by [Phoon et al., 1999]) for all
the parameters is assumed.
In the table below the parameters used for the viscoplastic case with softening are
reported. In this �rst analysis the variation coe�cient of the viscous parameter is
mantained equal to the COV of cohesion and of sti�ness increment.

α H ν φ m∗ c′mean val ηmean val γnt,fin Tfin COV∆E COVc′ COVη
[◦] [m] [−] [◦] [−] [kPa] [ 1

kPas
] [−] [hours] [−] [−] [−]

20 5 0.25 30 0.1 30 4 · 10−7 0.05 1 0.4 0.4 0.4

In Figure5.7 the resulting equivalent τnt − γnt curve and the one evaluated us-
ing the mean values of E, c′ and η are compared.
What can be noticed is that, due to spatial variability, the maximum allowable
stress for the system is higher considering the equivalent response and the equiva-
lent response is quite di�erent because the softening branch is not present.
The parameters used in this viscoplastic analysis are the same used in the elasto-
plastic analysis taking into account of softening of Figure5.5 and from the two
τ −γnt curves can be noticed that the two systems behave in a completely di�erent
way. This is due to the fact that in the viscous case a delayed in time response is
expected.

Figure 5.7: τnt − γnt curves for equivalent system response and mean response in
case of viscoplastic constitutive law
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It is interesting to notice that if another analysis is performed with the same
parameters of the one in Figure5.7, but using an higher variation coe�cient for
η (so a greater variability for this parameters), the mean response of the system
may be completely di�erent from the one of the system with mean values. The
correlation coe�cient for η is set equal to 0.55, which is the limit value of the range
proposed by [Phoon et al., 1999] and corresponds to a great variability in space.
The response of in terms of τnt − γnt can be seen in Figure5.8. For the great vari-
ability of η, there are some points behaving in an elastic way and others behaving in
an viscoplastic way (Figure5.9) and the mean response may result as an hardening
behaviour instead of softening.
Considering the obtained results, in the elastoplastic case there is no signi�cant

Figure 5.8: τnt − γnt viscoplastic curves for equivalent system response and mean
response in case COVη = 0.55

change in the system response with spatial variability, but for the strain-softening
elastoplastic and strain-softening viscoplastic cases, to correctly study the system
response, it is not su�cient to use the parameters mean values, but it is necessary
to properly take into account their spatial variability.
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Figure 5.9: τnt − γnt viscoplastic curves used to obtain the mean response of the
system in case COVη = 0.55
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Conclusions

In this thesis the response of in�nite slopes in naturally bonded materials has been
analyzed. Among all the possible perturbations, only water table level change has
been studied, being a frequent triggering factor for creeping landslides.
The two main aspects to take into account in the problem are the static redundancy
of the in�nite slope con�guration and the progressive reduction in material strength
induced by the accumulation of irreversible strains. The �rst is fundamental to take
into account of all the plastic resources of the system and the second is necessary
to properly simulate cemented materials behaviour.
The introduced 1D strain softening elastic-viscoplastic equivalent model overcomes
the limits of other simpli�ed models present in literature, taking into account both
these aspects. It is essential to remark the importance of considering a strain-
softening-viscoplastic constitutive model, because only with mechanical properties
reduction the landslide inception phase and tertiary creep phenomenon can be prop-
erly reproduced.
The de�nition of the strain-softening-viscoplastic model passes through the devel-
opment of an elastoplastic constitutive model, that is subsequently extended to the
viscous case.
In the elastic plastic case, to introduce the structural hardening, a condensation
procedure of the hyperstatic variable into "macro" constitutive parameters is per-
formed; this method abruptly simpli�es the computational costs, by reducing the
number of static/kinematic variables (degrees of freedom) to be considered, but
implies the introduction of a strain hardening elastic plastic model, even if initially
an elastic perfectly plastic constitutive relationship is adopted to reproduce the
material mechanical behaviour.
As far as the simulations results are concerned, the equivalent strain hardening
elastoplastic model very satisfactorily reproduces the numerical solution obtained
by integrating all the constitutive equations under simple shear conditions.
In the viscoplastic case, a simple condensation procedure is no more su�cient to
reproduce the numerical behaviour. For this reason, an internal variable and its
evolution law have been introduced. In the framework of viscoplasticity it was also
possible to introduce the softening regime to describe the mechanical properties
degradation with strain accumulation. Considering both softening and structural
hardening, the model is capable of reproducing the �rst failure stage of creeping
landslides, characterized by strain acceleration even when the perturbation is reduc-
ing (i.e. the water table level is decreasing after a rapid increase). The performed
simulations very well reproduce the numerical results.
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The new model depends on micro parameters (geometry, material mechanical prop-
erties) and on macro parameters; the expression to calculate the values of the macro
parameters were provided. For the sake of brevity, a unique stress path (oscillation
in the water table level) has been studied, but the adopted procedure is totally gen-
eral and may be also be tailored to other di�erent stress paths. In bonded soils the
main aspect governing the mechanical behaviour is "degree of cementation": from
the literature emerged that elastic parameters, cohesion and viscous parameter are
particularly in�uenced by the degree of cementation and consequently, varying this
quantity, the mechanical response is expected to be di�erent.
Since along slopes, the "degree of cementation" is expected not to be constant, a
study about parameter spatial variability was performed, in order to understand its
main implications on the slope response. The in�nite slope response with di�erent
constitutive laws (elastic, elastic plastic and strain softening visco plastic) was ana-
lyzed under simple shear conditions. The results show that with a strain-softening
elastoplastic and strain-softening viscoplastic constitutive law the employment of
mean parameters could lead to a signi�cantly di�erent response with respect to the
mean slope response. So in these situations, it is recommended to properly take
into account the material properties spatial variability and to evaluate the average
slope response, as more representative of the real behaviour of an heterogeneous
soil.
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Appendix A

Cemented materials: in�uence of

cement content - Experiemental

characterization

In literature many studies to describe the in�uence of the cement content on the
mechanical behviour of cemented materials are present. In this section, particular
attention will be given to the one in [Alegre et al., 2001]. The authors studied the
in�uence of cement content on the mechanical behaviour of arti�cially cemented
sands subjected to an experimental program including uncon�ned compression tests
and drained triaxial compression tests.
From a mechanical point of view, cemented soils, weak rocks and similar bonded
materials constitute an intermediate class of geomaterials placed between classical
soil mechanics and rock mechanics.
In general can be assumed that, for a given range of stresses and for low cement
content, shear strength of naturally and arti�cially cemented sands can be repre-
sented by straight Mohr-Coulomb envelope de�ned by cohesion intercept c′, which
is a unique function of cementation, and the friction angle φ′, which seems not to
be signi�cantly a�ected by the cement content.
As to deformability, cemented soils are characterized by a very sti� behaviour be-
fore yielding, basically governed by cementation. The brittle behaviour changes to
a ductile soil response when the stress level changes from low to high.
In [Leroueil, 1990] is proposed a conceptual approach to describe the stress-strain
behaviour of soils with common bonded structure. The e�ects of structure on soil
behaviour are similar to the e�ects produced by overconsolidation in clays. These
e�ects are basically characterized by an initial sti� behaviour, followed by increas-
ingly plastic deformation as the soil approaches failure.
Following the same concept [Coop and Atkinson, 1994] described an idealized be-
haviour of cemented soils. They divided cemented materials idealized behaviour in
three di�erent classes (FigureA.1):
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� the �rst class (1) represents a behaviour occurring when the soil reaches its
yielding stress during isotropic compression; in this case shearing will produce
a behaviour similar to the one of the equivalent non-structured soil;

� the second class (2) represents a behaviour occurring for intermediate state
of stress, in which the bonds will be broken during shearing; the strength is
controlled by the frictional component of the equivalent non-structured soil
and the stress-strain curve shows a well de�ned yield point after an apparent
linear behaviour;

� the third class (3) describes a behaviour occurring when the soil is sheared
at low con�ning stresses with respect to the bond strength; a peak in stress-
strain curve occurs at small strains and for stresses outside the limit state
surface of equivalent non-structured soil (FigureA.2).

In this thesis the behaviour belonging to class 3 will be analyzed: so a strain soft-
ening material will be chosen.
In FigureA.2 the stress paths relative to the di�erent classes are shown. As for
class 3, when the loading path reaches a point which is above the critical state line,
the stress path must then return on that line. This passage can be de�ned as a
softening phenomenon and it is physically represented by a reduction of stresses.

Figure A.1: Stress-strains curves describing th idealized behaviour of of cemented
soils
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A.1 � Specimens preparation

Figure A.2: E�ective stress paths describing th idealized behaviour of of cemented
soils

A.1 Specimens preparation

In the experimental program specimens made of arti�cially cemented sands are cho-
sen to reduce the scatter frequently observed from natural soil specimens retrieved
in situ.
Specimens were prepared by mixing soil and water with the addition of portland
cement 1%, 3% and 5% by weight of dry soil weight. These soil-cement mixtures
are characterized as weakly to very strongly cemented soils. The degree of cemen-
tation is represented by the cement content added to the soil.
The specimens were compacted in layers into a 50−mm diameter, 100−mm high
cylindrical mold, to a dry unit weight of 17.5kN/m2 and at an optimum moisture
content of 15.8%.The molds were then wrappened in moisureproof bags and stored
in a humid room to cure for 7 days before testing. To approximate full saturation
in the uncon�ned compression test, the specimens were soaked in water during 24h
of curing, before being tested at a strain rate of 1.141%min.

A.2 The experimental program

Some triaxial compression tests at di�erent cement content and at di�erent initial
mean e�ective stress p′i are performed. The deviatoric stress versus axial strain and
thr volumetric versus axial strains are shown in Figure A.3 a) for the uncemented
specimens (i.e C = 0%) and FiguresA.3 b) and A.4 c),d) for the arti�cially cemented
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specimens (with C = 1,3,5% respectively).
From the analysis of FiguresA.3 and A.4 emerges that stress-strain behaviour of the
cemented soil can be described as initially sti�, apparently linear up to a well de�ned
yielding point, beyond which the soil su�ers increasingly plastic deformations until
failure. As the cement content increases, both peak strength and initial sti�ness
increase. Di�erently from the uncemented soil (FigureA.3a ), cemented specimens
show a marked brittle behaviour at failure with well de�ned shear bands being
formed. This brittle response increases with cement content. As for volumetric
response, the cemented specimens show an initial compression followed by a strong
dilation with the maximum dilation rate taking place right after the peak strength.
Subsequently dilation rate decreases as the soil approaches an ultimate condition.

Figure A.3: Stress-Strain-Volumetric response at di�erent initial mean stresses for
a) 0% cement content, b) 1% cement content
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Figure A.4: Stress-Strain-Volumetric response at di�erent initial mean stresses for
a) 3% cement content, b) 5% cement content

In FigureA.5 the principal stress di�erence versus axial strain and volumetric
strain versus axial strain curves for di�erent cement contents are shown. The initial
mean e�ective stress is kept constant (p′i = 60kN/m2). As previously outlined,
increasing the cement content the material behaviour passes from ductile to fragile
and the dilatancy phenomenon increases.
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Figure A.5: Stress-strain-volumetric response at di�erent cement contents for p′i =
60kN/m2

Given the cohesive-frictional nature of the cemented soil, the shear strength
can be expressed as a function of the internal friction angle and cohesion intercept.
From FigureA.6 can be seen that a well de�ned linear relationship between cement
content and intercept cohesion exists.
From results in literature ([Alegre et al., 2001]) emerges the friction angle varies
according to a non-de�ned pattern that does not allow to establish a clear correla-
tion between cement content and friction angle.
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Figure A.6: E�ect of cement content on uncon�ned compressive strength

From the experimental results emerges that a relationship between sti�ness and
cement content exists; as also cohesion variation is related to cement content, c′

and G are necessarily related. An expression relating G and c′ extrapolated from
experimental results will be hereafter reported.
From the stress-strain behaviour shown in FigureA.5 it is possible to estimate the
secant Young modulus at 50% of failure deviatoric load:

E50 =
0.5qf
εa,50

(A.1)

Given the volumetric-axial strain curve (FigureA.5) it is possible to determine the
radial deformation as follows:

ε50,r =
1

2

(
εa,50 − εvol,50

)
(A.2)

And from it to estimate the Poisson ratio:

ν50 = − εr,50

εa,50

(A.3)

So through the relationship between E50 and G50 coming from theory of elasticity,
it is possible to determine the shear modulus:

G50 =
E50

2
(
1 + ν50

) (A.4)

In FigureA.7 it is possible to see the curves coming from experimental data and
from interpolation. Through the interpolation it is possible to determine the fol-
lowing relationship between c′ and G50 (the subscript 50 will be hereafter omitted
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for sake of brevity):

G = G0 + bc′ + ac
′2 (A.5)

Where G0 is the secant shear modulus for c′ = 0kPa and a,b are two interpolation
constant parameters.
From EquationA.5 can be noticed that the relationship between G and c′ is not
linear. This expression can be written as the sum of an initial value of G and an
increment given by the related to the cementation:

G = G0 + ∆G (A.6)

Figure A.7: G− c′ curves from experimental data and interpolation
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Appendix B

The concept of instability

The concept of instability is founded on the mathematical criterion of stability for
elastoplastic constitutive laws elaborated by [Buscarnera et al., 2011] to give a new
interpretation to [Nova, 1994] controllability theory. In particular, this deals with
the loss of controllability of the incremental response in soil specimens subjected to
arbitrary ("mixed") loading programs; Nova remarked that the critical condition is
possible even in the hardening regime. The author thus gave an interpretation of
the [Hill, 1958] stability criterion assigning to it an alternative mechanical meaning.
The drawback of these �rst approaches is in the fact that they become less powerful
when the particular case of hardening regime is abandoned for a more general
initial and loading condition. For this reason [Buscarnera et al., 2011] tried to
give a more consistent theoretical reference capable of assessing the stability at a
given stress state in a more general and �exible manner. Restricting the speech
to rate-independent elastoplastic constitutive laws, the aim of the authors was
to establish a more explicit link with the notions of existence and uniqueness of
the material response, so that to introduce an alternative mathematical indices
of stability (de�ned as moduli of instability) and provide an easier application to
brittle materials.

B.1 Material stability and its mathematical de�ni-

tion

Between all the various existing stability criterions, the reference one for this study
is [Hill, 1958] stability criterion, which is based on the second order work de�nition.
According to it, a su�cient condition for stability is that second order work is
positively de�ned. This can be written as:

dW 2 =
1

2
σ̇ij ε̇ij > 0,∀ε̇ij (B.1)
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Where σ̇ij is the stress tensor and ε̇ij is the corresponding strain rate tensor.
This criterion can describe di�use instabilities and shows the loss of uniqueness
of incremental response; according to this point of view a contribution was given
by [Maier and Hueckel, 1979]: they addressed the evaluation of material stability
and the admissibility of incremental stress path for materials characterized by non
associative �ow rule and strain softening. Starting from Hill's stability criterion
they evaluated the minimum value of the quadratic form associated to the second
order work dW 2

min and they evaluated the sign of this quantity that turned out to
be a quadratic function of the hardening modulus H. This last quantity can be
de�ned as:

H = −∂f̃
∂q

∂q

∂εp
∂g

∂σ
(B.2)

Where f is the yield function, q a vector collecting all the internal variables and g
the plastic potential. The tilde of equation above is used to indicate the transpose
in matrix notation.
Assuming an associated �ow rule, which means that f = g, the evolution of dW 2

MIN

as a function ofH in shown in FigureB.1; the stability in the sense of Hill's condition
is satis�ed when dW 2

MIN > 0, while the system is unstable if and only if dW 2
MIN ≤ 0.

For an associated �ow rule it is evident that the material stability is predicted when
H > 0 and the �rst point for which instability is reached is H = 0. The variabile Hc

Figure B.1: H − dW 2
MIN curve showing the stability criterion in the sense of Hill

for an associated �ow rule

is called critical hardening modulus and in this particular case it has the following
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expression

Hc = − ∂f̃
∂σ

De ∂g

∂σ
, (B.3)

where De is the elastic constitutive sti�ness matrix.

Figure B.2: H − dW 2
MIN curve showing the stability criterion in the sense of Hill

for a non associated �ow rule

For H < Hc a process of subcritical softening develops, characterized by the incep-
tion of snap-back process [Maier, 1966].
In FigureB.2 the second order work density varying with H in case of non asso-
ciative �ow rule is shown; two new quantities called H1 and H2 can be de�ned
as:

H1 =
1

2
Hc +

1

2

(
∂̃g

∂σ
De ∂g

∂σ

∂f̃

∂σ
De ∂f

∂σ

) 1
2

(B.4)

H2 =
1

2
Hc −

1

2

(
∂̃g

∂σ
De ∂g

∂σ

∂f̃

∂σ
De ∂f

∂σ

) 1
2

(B.5)

They are the values of hardening modulus for which dW 2
MIN = 0. As to the stability

in the sense of Hill, the non associativeness modi�es the range of hardening moduli
for which stability is obtained. The �rst point for which instability is reached is
H = H1 > 0 and symmetrically the last point for which the second order work
density vanishes is H = H2 < Hc ([Maier and Hueckel, 1979]); these two points, in
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case of associated �ow rule, degenerate in H1 = 0 and H2 = Hc.
The conceptual role played by dW 2

MIN in showed FigureB.1 and FigureB.2 is not
exhaustive, as two crucial aspects are not taken into account, which are the plastic
admissibility of the incremental loading and the role of control conditions.
As to the �rst, an incremental loading path is admissible if these plastic constraints
are satis�ed:

ḟ ≤ 0, Λ̇ ≥ 0, ḟ Λ̇ = 0, (B.6)

where Λ is the plastic multiplier which is obtained imposing the plastic consistency
condition. Can be demonstrated that the procedure used to calculate dW 2

MIN

in FiguresB.1 and B.2 does not enforce the all plastic admissibility constraints
in the region of negative hardening moduli and thus part of the information pro-
vided by dW 2

MIN is not consistent in with the framework of classical elastoplasticity
([Maier and Hueckel, 1979]). In particular, the positive value of dW 2

MIN , obtained
in the region in which H < 0, may lead to the misleading conclusion that stability
holds also for H < H2. The second aspect restricts the use of Hill's principle: if
it is accepted in its conventional form, the material stability would be seen as an
intrinsic characteristic of the material, but it cannot be considered so, as actually
both existence and uniqueness are a�ected by the choice of control parameters and
so by the initial state and by the type of external perturbation.

B.2 An alternative mathematical interpretation for

test controllability

The new approach for interpretation of instability proposed in [Buscarnera et al., 2011]
will be hereafter discussed. To introduce the dependency on control condition
of stability for elastic plastic materials, the controllability theory will be used
([Nova, 1994];[Imposimato and Nova, 1998]). According to this new approach a
loading program is considered controllable if and only if the predicted incremental
response exists and is unique. This new mathematical concept of test controllability
provides an anternative de�nition of stability, that is related to the test controlla-
bility.

B.2.1 Link between loss of controllability and de�nition of

the loss of de�nition of plastic multiplier

According to classical controllability theory ([Nova, 1994]), the study of the stabil-
ity of the system is done through the study of the determinant of the constitutive
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control matrix associated to a speci�c loading control. The drawback of this ap-
proach is that when the control matrix su�ers a discontinuous transition, i.e. a
plastic yielding or a change in control conditions, which are the major cause of
onset of instability, there are some di�culties in the use of the matrix determinant
to assess the material stability.
To overcome these limits and to remark the close link between notions of plastic
admissibility, existence and uniqueness, the new approach given by the authors is
hereafter analyzed.
A laboratory test on a solid specimen in stress control conditions is considered; ac-
cording to the kind of control, assuming a non singular elastic constitutive matrix,
the increment of strains can be obtained as:

ε̇ = D−1σ̇. (B.7)

Within an elastoplastic constitutive framework the singularity of constitutive ma-
trix coincides with the vanishing of the hardening modulus H and it represents the
attainment of failure in classical sense.
The alternative description of the same event is obtained considering the analyt-
ical form of the plastic multiplier obtained through the imposition of consistency
condition:

Λ̇ =
1

H

∂f̃

∂σ
σ̇. (B.8)

As in classical elastoplasticity, when H = 0 failure is reached through the singu-
larity of D, so in this case when H = 0, the plastic multiplier is no longer de�ned
and instability is reached. The loss of controllability in the light of this method
represents the possibility that, given a single loading control, arbitrary solutions in
terms of strains increments exist,bringing to the loss of uniqueness of the solution.
Equation B.8 however represents the plastic multiplier under stress control condi-
tion and not in a general loading program. Can be demonstrated that the expression
of the plastic multiplier is strictly dependent on the imposed loading conditions, as
shown also by the expression of Λ obtained under pure strain control conditions:

Λ̇ =
1

H −HC

∂f̃

∂σ
Deε̇, (B.9)

from EquationB.9 emerges that also under this control a particular condition for
which instability is reached exists:

H = HC (B.10)

When EquationB.10 is satis�ed the system is subjected to the so called snap-back
process associated with critical softening. Thus this test controllability theory is
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capable to describe this sub-critical softening response, which is equivalent to the
vanishing of matrix D, but moreover it o�ers an alternative theoretical support to
identify the onset of instabilities. This critical condition can be also identi�ed when
a certain scalar quantity called modulus of instability vanishes; it is de�ned as

HIN = H −HC (B.11)

This instability modulus plays a similar role of the hardening modulus in the case
of stress control condition: when it goes to zero the instability condition and loss
of uniqueness of the solution are reached. Critical values of the plastic harden-
ing modulus can be indeed associated with the loss of positiveness of second or-
der work ([Hueckel and Maier, 1977]; [Maier and Hueckel, 1979]) or to the onset of
shear strain localization ( [Bigoni and Hueckel, 1991]).
As previously mentioned the plastic multiplier Λ depends on the imposed loading
path, so each instability index has to be associated with a speci�c loading program.

B.2.2 Mixed stress-strain control conditions: de�nition of

the moduli of instability

Laboratory tests are often done in mixed stress strain control conditions, in partic-
ular these mixed constraints can often be the cause of instability and
[Imposimato and Nova, 1998] gave a mathematical interpretation for this issue.
The authors showed that a general loss of controllability may be studied observing
the evolution of certain minors of the constitutive sti�ness matrix. If a particular
set of control parameters is governed, control matrices may become singular and
potential instabilities can be activated even before classical failure. These insta-
bility modes are due to speci�c control conditions and they would not be induced
under di�erent constraints: so they are represent a proper form of latent instability.
As for the previous case a relation between loss of controllability and loss of de�-
nition of the plastic multiplier can be found also for mixed stress strains controls.
To reach this aim a particular strategy has to be followed to calculate the plastic
multiplier ([Buscarnera et al., 2011]). Considering the following partition of the
incremental constitutive law:[

σ̇α
σ̇β

]
=

[
Dαα Dαβ

Dβα Dββ

] [
ε̇α
ε̇β

]
(B.12)

Assuming to perform an incremental loading path under mixed stress-strain control
conditions, taking for instance σ̇α and ε̇β as control variables, being ε̇α and σ̇β the
corresponding response variables.
The consistency condition, expressed in terms of stress rates, takes the following
form:

∂f̃

∂σα
σ̇α +

∂f̃

∂σβ
σ̇β −HΛ̇ = 0 (B.13)
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introducing the elastic part of the incremental constitutive law[
σ̇α
σ̇β

]
=

[
De
αα De

αβ

De
βα De

ββ

] [
ε̇eα
ε̇eβ

]
(B.14)

using EquationB.14 it is possible to express stress and strain measures appearing
in the previous matrix partition as follows:

σ̇β = De
αβε̇

e
α +De

ββε̇
e
β (B.15)

ε̇eα =
(
De
αα

)−1
σ̇α −

(
De
αα

)−1
De
αβε̇

e
β (B.16)

in which De
αα has been assumed not singular. Combining Equation B.15 and B.16

the following expression of σ̇β is obtained:

σ̇β = De
βα

(
De
αα

)−1
σ̇α +

(
De
ββ −De

βα(De
αα)−1De

αβ

)
ε̇eβ (B.17)

as a consequence Equation B.13 becomes:

∂f̃

∂σα
σ̇α+

∂f̃

∂σβ
De
βα(De

αα)−1σ̇α+
∂f̃

∂σβ

(
De
ββ−De

βα(De
αα)−1De

βα

)
ε̇eβ−HΛ̇ = 0 (B.18)

if the trial stress increments (i.e. the stress increment that would be obtained for
the considered control conditions if the material was purely elastic) are used, a
simpler expression can be obtained. If the partition given by B.12 is considered,
being σ̇α and ε̇β the control variables, the trial stress is given by:[

σ̇trα
σ̇trβ

]
=

[
σ̇α

De
βα(De

αα)−1σ̇α +
(
De
ββ −De

βα(De
αα)−1De

αβ

)
ε̇β

]
(B.19)

if it is considered that ε̇eβ = ε̇β − ε̇pβ and ε̇pβ = Λ̇ ∂g
∂σβ

Equation B.18 leads to an

expression for the plastic multiplier Λ̇.

Λ̇ =
1

H −Hχ

∂f̃

∂σ
σ̇tr (B.20)

For a given set of control parameters, the value Hχ in EquationB.20 is given by the
following expression:

Hχ = − ∂f̃

∂σβ

(
De
ββ −De

βα(De
αα)−1De

αβ

) ∂g
∂σβ

(B.21)

which under pure strain control coincides with the critical hardening modulus HC .
Hχ represents a family of scalar quantities which, together with the hardening
modulus, control the inelastic response. Given the scalar nature of such quantities
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and their control dependency, they are de�ned as moduli of controllability.
An equivalent controllability modulus can be written in mixed conditions also in
terms of compliance matrix.
The elastic law can be rewritten as:[

ε̇eα
ε̇eβ

]
=

[
Ce
αα Ce

αβ

Ce
βα Ce

ββ

] [
σ̇α
σ̇β

]
(B.22)

This expression can be written with the assumption that Ce
ββ is not singular.

The consistency condition can thus be rearranged as:

∂f̃

∂σα
σ̇α +

∂f̃

∂σβ
Ce−1
ββ ε̇

e
β +

∂f̃

∂σβ
Ce−1
ββ C

e
βασ̇α −HΛ̇ = 0 (B.23)

From Equations B.22 and B.23 the same formal expression given in Equation B.19
is retreived, in which the correspondent mathematical form of Hχ is given by:

Hχ = − ∂f̃

∂σβ
Ce−1
ββ

∂g

∂σβ
(B.24)

These results show that the loss of controllability and the plastic multiplier loss of
de�nition are linked: loss of de�nition of the plastic multiplier veri�es when

HIN = H −Hχ ≤ 0 (B.25)

This mathematical variable is given by the di�erence between the hardening mod-
ulus H and the controllability modulus Hχ and can be de�ned as a generalized
instability modulus for that particular loading program.
Starting from EquationB.24 some comments regarding instability phenomena in
the hardening regime can be done. The instability modulus coincides with the
hardening modulus H in case of pure stress control conditions; in this case the test
can be controlled only if HIN = H is strictly positive and failure takes place when
H ≤ 0. So in this particular case the intuitive notions of hardening (H > 0) and
softening (H < 0) are directly linked with the possibility of controlling the material
response.
In a more general control conditions, for example in mixed stress strain control
conditions, the modulus of instability HIN does not coincide with the hardening
modulus, as it is characterized by the additional contribution Hχ. In this case,
when an associated �ow rule is adopted, Equations B.21 and B.24 are always char-
acterized by a non positive value of Hχ and softening is required to have HIN < 0.
On the contrary a non associated �ow rule, can produce situations in which Hχ

is positive and for this reason HIN can vanish even in the hardening regime (with
H = Hχ > 0) i.e. before classical failure.
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B.3 Elastic-viscoplastic materials

As well know, according to the theory proposed by [Perzyna, 1963] an elastic-
viscoplastic constitutive law can not be written in an incremetal form, so the
approach described in the section 'Elastic perfectly plastic materials' cannot be
used to describe the onset of instability in a elastic-viscoplastic material. For this
reason [Pisanò and Prisco, 2016] developed an approach based on the combina-
tion of the controllability theory ([Nova, 1994]) and Lyapunov's theory of stability
([Lyapunov, 1892]).
According to this approach, the total (ε̇), the elastic (ε̇el) and the irreversible vis-
coplastic (ε̇irr) strain rate vectors can be partitioned considering the controlled
strains and the measured strains.[

ε̇β
ε̇β

]
=

[
ε̇elα
ε̇elβ

]
+

[
ε̇irrα
ε̇irrβ

]
=

[
Cel
αα Cel

αβ

Cel
βα Cel

ββ

] [
σ̇′α
σ̇′β

]
+ Φ

[
∂g
∂σ′α
∂g
∂σ′

β

]
(B.26)

where Φ ≥ 0 is the non negative viscous nucleus.
To describe the relationship between the variables describing the system response
(X) and their time derivative (Ẋ) EquationB.26 is derived with respect to time.
The previously mentioned relationship is linear ([Pisanò and Prisco, 2016]) and can
be written as:

Ẋ = AX+ F, (B.27)

where F is a 'forcing' term related to the control variables and A is a matrix
depending on the constitutive relationship and controlled variables and is de�ned
as:

A =

[
Aαα Aαβ

0 Aββ

]
. (B.28)

If a generalised creep test is considered, for which σ̇α = σ̈α = ε̇β = ε̈β = 0,
which also imply F = 0, the terms of matrix A depend only on the constitutive
relationship and can be expressed as follows ( [Pisanò and Prisco, 2016]):

Aαα = −∂φ
∂f

(
H −Hχ

)
Iαα (B.29)

Aββ = −∂Φ

∂f

(
H −Hχ

)
Iββ − ΦCel−1

ββ

∂2g

∂σ′
β ⊗ ∂σ′

β

(B.30)

Aαβ = Φ

(
∂2g

∂σ′
α ⊗ ∂σ′

β

−Cel
αβC

el−1
ββ

∂2g

∂σ′
β ⊗ ∂σ′

β

)
(B.31)

where I is the identity matrix.
From Lyapunov's stability theory ([Lyapunov, 1892]), in case F = 0, if all the
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eigenvalues of A are negative, a stable response is obtained. According to
[Pisanò and Prisco, 2016], in case of a convex plastic potential in the stress space,
all the eigenvalues of the matrix are negative in case H > Hχ: which means that a
process is unstable if:

H −Hχ ≤ 0 (B.32)
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Appendix C

Theoretical instability under simple

shear conditions

In this chapter the local instability of an in�nite slope under simple shear conditions
will be discussed in the case of an elastoplastic material (Section C.1) and of an
elastic-viscoplastic material (Section C.2).

C.1 Local instability condition for an elastoplastic

material in simple shear conditions

The local response of an in�nite stratum of an homogeneous cemented material of
thickness H and slope α resting on a rigid bedrock will be hereafter theoretically
discussed.
The reference system shown in Figure3.1 is given by the vector n, normal to the
bedrock, the vector t, parallel to it and the vector y, which is the out of plane
vector.
A simple shear condition is here analyzed, so the vectors of controlled Y variables
and measured variables X are respectively:

Y =
[
σ̇′n τ̇nt ε̇t = 0 ε̇y = 0

]T
(C.1)

X =
[
ε̇n γ̇nt σ̇′t σ̇′y

]T
(C.2)

To describe the problem in the elastoplastic case, some ingredients are needed:

� an elastic constitutive law;

� a yield function, obeying the Mohr-Coulomb failure criterion, used to assess
the starting of plastic strains;

� a plastic potential, to describe the development of plastic deformation;
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Figure C.1: Geometry of in�nite slope con�guration

� a softening law, to describe the variation of cohesion with deformation.

The following expression of f has been used.

f =
1

2

[√
4τ 2
nt + (σ′n − σ′t)2 − (σ′n + σ′t)sinφ

′ − 2c′cosφ′
]

(C.3)

The plastic potential is de�ned as:

g =
1

2

[√
4τ 2
nt + (σ′n − σ′t)2 − (σ′n + σ′t)sinψ − 2c′cosψ

]
(C.4)

The softening law is de�ned as:

ċ′ = −c′m
(∣∣ε̇irrn ∣∣+

∣∣ε̇irrt ∣∣+
∣∣γ̇irrnt ∣∣) (C.5)

This law describes the decrease of cohesion as deformation increases; the non-
dimensional constitutive parameter m de�nes the brittleness of the material re-
sponse. The cohesion progressively nulli�es, starting from an initial value c′0 and
decreasing until c′ = 0: in this case the material has been completely destructured
and softening stops evolving.

C.1.1 Onset of shear band in simple shear conditions

Under simple shear condition the non dimensional controllability modulus previ-
ously described can be written in the following simpli�ed way:

Hχ = − ∂f
∂σ′t

E

1− ν2

∂g

∂σ′t
(C.6)
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C.2 � Local instability condition for an elastic viscoplastic material in simple shear conditions

In case of an elastic perfectly plastic material (i.e. m = 0 andH = 0), the instability
conditions occurs if:

∂f

∂σ′t

∂g

∂σ′t
≤ 0 (C.7)

C.2 Local instability condition for an elastic vis-

coplastic material in simple shear conditions

In this section the local response of an in�nite slope in case of elastic-viscoplastic
material will be theoretically discussed.
The elastic-viscoplastic constitutive relationship is characterized by:

� An isotropic linear elastic law

� A viscous nucleus de�ned as:

Φ(f) =

{
0 if f < 0
ηf if f ≥ 0

(C.8)

� A yield function, a plastic potential and a softening law equally de�ned as
Equations C.3 ,C.4, C.5

The theoretical condition for onset of instability is now discussed; considering a
generalized creep test with the assumption of simple shear conditions, EquationB.27
of Section B.3 becomes:

Ẋ =


ε̈n
γ̈nt
σ̈′t
σ̈′y

 =


A11 0 A13 0
0 A22 A23 0
0 0 A33 0
0 0 0 A44



ε̇n
γ̇nt
σ̇′t
σ̇′y

 = AX (C.9)

The terms of matrix A are hereafter reported

A11 = A22 = −∂Φ

∂f

(
H −Hχ

)
(C.10)

A33 = A44 = −∂Φ

∂f

(
H −Hχ

)
− Φ

E

1− ν2

∂2g

∂σ′t
(C.11)

A13 = Φ

(
∂2g

∂σ′n∂σ
′
t

− ν

1− ν
∂2g

∂σ
′2
t

)
(C.12)

A23 = Φ
∂2g

∂τnt∂σ′t
(C.13)
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Since in this case the matrix A is an upper triangular matrix, its eigenvalues are
the terms on the main diagonal:

λ1 = λ2 = A11 = A22 (C.14)

λ3 = λ4 = A33 = A44 = λ1 − Φ
E

1− ν2

∂2g

∂σ2
t

(C.15)

As E,Φ and ∂Φ
∂f

are positive, λ1 ≥ λ3, so the instability condition is given by:

λ1 ≥ 0 ⇐⇒ H −Hχ ≤ 0 (C.16)

In the elastoplastic case, loss of controllability in terms of γnt and εnt is simultaneous
(λ1 = λ2). But when λ1 nulli�es, λ3 is still negative. This suggests that the loss of
controllability in terms of strains anticipates the loss of controllability in terms of
stresses. This time lag depends on the η value. In fact, increasing η, the di�erence
between λ1 and λ3 value decreases. For η → ∞ the di�erence vanishes and all
the response variables become simultaneously unstable, as it is obtained in the
elasto-plastic case.
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