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1. Introduction
Pregnancy is a complex period that requires
careful monitoring, expecially ante-partum, to
prevent potential complications. Among these,
diabetes represents one of the most significant
risks, with long-term detrimental effects on vari-
ous organs functionalities. Diabetes is defined as
a "metabolic disorder characterized by chronic
hyperglycemia resulting from defects in insulin
secretion, insulin action, or both". With dia-
betes the risk of complications increases for both
mother and fetus, underscoring the importance
of a careful monitoring during pregnancy [1].
Cardiotocography (CTG), as a non-invasive ex-
amination, is a primary tool for such monitor-
ing. By measuring fetal heart activity and uter-
ine contractions, it allows for the prompt iden-
tification of signs of fetal distress and enables
the implementation of necessary measures to en-
sure the well-being of the fetus and the mother.
Its computerized version (cCTG) provides nu-
merical parameters related to fetal conditions,
playing a critical role in evaluating fetal heart
rate (FHR) [2]. Among the risks associated with
diabetes in pregnancy, significant are those re-
lated to fetal weight. Specifically, the condi-
tion of "small for gestational age" (SGA) indi-

cates a fetal weight below the 10th percentile of
the general population, considering gestational
age, often associated with maternal metabolic
alterations that limit nutrient exchange with the
fetus. Conversely, "large for gestational age"
(LGA) refers to a population with fetal weight
above the 90th percentile of the general one, of-
ten correlated with high maternal glucose levels
that promote excessive fetal growth.

1.1. Aim of the work
This study aims to explore the relationship be-
tween cCTG parameters and fetal weight at
birth, specifically focusing on pregnant women
affected by diabetes. The main objective is
to train a machine learning classification algo-
rithm to discriminate fetal weight, divided into
three categories that are SGA, "normal for ges-
tational age" (NGA), and LGA, using parame-
ters calculated from the FHR signal, obtained
through cCTG, and maternal information de-
rived from her clinical history. This could serve
as a primary tool for clinicians in identifying
high-risk pregnancies in a delicate situation such
as pregnancies with diabetes. Additionally, the
study aims to evaluate, through an explainabil-
ity method, which variables are most relevant
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for this prediction and especially the interaction
of cCTG parameters with general physiological
indices already accessible to healthcare profes-
sionals, such as anamnestic data of the pregnant
woman and particularly the presence and type
of diabetes. The importance of variables derived
from maternal medical history is acknowledged;
nonetheless, this study aims to determine if in-
tegrating these factors with a set of quantitative
parameters from CTG analysis might represent
a step towards improving indicative assessment
of fetal health state. There is indeed a lack of lit-
erature on studies concerning variables capable
of distinguishing problematic classes within an
already pathological category such as diabetes.

2. Dataset and features selec-
tion

The data employed in this thesis were gath-
ered at the ObGyn Department of the Univer-
sity Hospital Federico II in Naples, Italy. The
derived dataset was obtained as a result of rou-
tine antepartum fetal monitoring examinations
[3]. cCTG records, lasting between 20 to 60 min-
utes, were obtained utilizing Philips Avalon fam-
ily monitors that generate FHR signal sampled
at 2Hz. Each tracing was categorized by medi-
cal professionals. From this database, only the
records belonging to diabetic pregnant women
for whom information on fetal weight at birth
was available were selected. The fetal weight
categories SGA, NGA, and LGA have been de-
fined using fetal growth charts based on esti-
mated fetal weight developed by World Health
Organization [4]. In particular, the week of de-
livery, which was provided in the notes made by
clinicians, was utilized to establish a posterior
threshold for comparing birth weights. This led
to the division of records into the three weight
categories, which also constitute the target of
the multiclass classification, according to the Ta-
ble 1.
Subsequently, the following information con-
cerning the maternal medical history was ex-
tracted from the database and used as part of
the features for the machine learning algorithms:
• Pregnancy_ID: a unique numerical code as-

signed to each pregnancy;
• Visit_ID: a unique sequential numerical

code associated to each recording;
• Gest_Week: an integer number represent-

Fetal weight
category Threshold N. of

recordings

SGA weight < Th.
SGA 237

NGA
Th. SGA <
weight < Th.

LGA
407

LGA weight > Th.
LGA 165

Table 1: Summary table of the target. SGA=
small, NGA=normal, LGA= large for gesta-
tional age. Th=threshold

ing the gestational week of the pregnancy;
• Num_Pregnancy: an integer representing

how many pregnancies the woman has had
previously;

• Age: age of the mother;
• Diabetes’ type

A preprocessing phase of the FHR signal was
then carried out. In this phase, an outcome of
the cCTG consisting of a set of integer values
representing the quality of each sample of the
signal was used to determine good quality seg-
ments of the FHR signal and samples that in-
stead needed to be linearly interpolated. This is
due to missing values or physiologically implau-
sible ones. Baseline, accelerations, and deceler-
ations of the FHR signal were also calculated.
Following this, the actual processing phase of
the FHR signal was conducted, during which
the parameters listed in Table 2 were calculated,
representing the additional features employed in
this thesis (in addition to those related to ma-
ternal characteristics already mentioned). De-
tails about their definitions and implementation
can be found in [5]. Regarding the parameters
calculated in 1-minute and 3-minute windows,
these were considered only in segments of active
sleep (a phase of fetal behavioural state marked
by movement, accelerations of fetal beats, and
high heart rate variability) of the FHR, ignoring
those of quiet sleep (considered as associated to
fetal sleep). This is due to the fact that from lit-
erature is known that an instance of active sleep
serves as a sign of fetal health and stands as
one of the primary criteria utilized in the system
proposed to assess fetal normality by [6]. More-
over studies have already indicate fewer active
sleep periods in problematic fetuses with mark-
ers showing higher discrimination in active com-
pared to quiet sleep episodes.
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For the identification of the active sleep seg-
ments, a deep neural network with a 1D encoder-
decoder architecture developed in [7] was em-
ployed. Its usage also led to the addition of an-
other variable to the set representing the per-
centage of activity segments in the entire sig-
nal. In absence of activity segments, an arbi-
trary value of -1 was assigned to the parameters
that were supposed to be calculated in windows,
and an additional binary variable, d_par, was
then added to identify such samples.

Parameter’s
name Domain Windows’

length
Short Term

Variability (STV) T 1 min

Interval Index (II) T 1 min
Delta (∆) T 1 min

n_acc T Global
n_dec T Global

Very Low
Frequency (VLF) F 3 min

Low Frequency
(LF) F 3 min

Movement
Frequency (MF) F 3 min

High Frequency
(HF) F 3 min

Approximate
Entropy (ApEn) N-L Global

Sample Entropy
(SampEn) N-L Global

Multiscale entropy
(MSE) N-L Global

Sample
Asymmetry
(SampAsi)

N-L Global

Binary Lempel-Ziv
(LZC2) N-L Global/3 min

Ternary
Lempel-Ziv

(LZC3)
N-L Global/3 min

Acceleration
capacity (AC) N-L Global

Deceleration
capacity (DC) N-L Global

Deceleration
reserve (DR) N-L Global

Acceleration Phase
Rectified Slope

(APRS)
N-L Global

Deceleration Phase
Rectified Slope

(DPRS)
N-L Global

LFprsa N-L/F Global
MFprsa N-L/F Global
HFprsa N-L/F Global

Table 2: Parameters. T= time; F= Frequency;
N-L= Non Linear

3. Machine learning
The listed variables were used to train two multi-
class classification algorithms for predicting the
SGA, NGA, and LGA weight categories of dia-
betic pregnancies. These models are a multiclass
Logistic Regression and a Multilayer Perceptron
(MLP). The choice of these models stems from
the dual purpose of the work: prediction of the
weight classes and interpretability. To ensure
the second one, Logistic Regression was selected,
which provides insights through the coefficients
of the created function. As for predictive capa-
bility, reliance was placed on the known ability
of neural networks to learn highly challenging
tasks thanks to their great versatility.
Before training, the following data preparation
steps were performed:

1. Signals that were excessively corrupted
(more than 90% of invalid windows i.e.,
with more than 5% of interpolated samples)
were removed, using parameters calculated
within 1 and 3-minute windows as a ref-
erence. Subsequently, for all parameters,
an analysis was conducted to eliminate any
outliers, removing values outside the range
defined by the 25th and 75th percentiles.
This was done only for parameters with at
least 10 valid windows;

2. To prevent bias in the classifier and avoid
it overfit on a limited number of patients,
the number of recordings has been limited
to a maximum of 10 per patient, selecting
the most recent ones;

3. The categorical variable expressing the type
of diabetes with a number is converted to
"dummy" variables that expresses the type
of diabetes (type 1, 2 and gestational)

4. For model training, the database was di-
vided into a training set and a test set with
a ratio of 80% and 20%, respectively, ensur-
ing that recordings belonging to the same
patient were placed in the same set. This
decision was made to prevent introducing
data leakage from training to test set in the
model testing phase;

5. Due to missing annotations during record-
ing, there are missing values in the se-
lected variables. To avoid losing informa-
tion, it was chosen to impute such infor-
mation based on a method that estimates
the missing values in each sample of the
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dataset by finding a defined number of near-
est neighbors and averaging them. In the
training set, this process identifies the near-
est neighbors, calculates the estimates, and
directly replaces the missing values. In
the test set, the information learned dur-
ing training is used to directly estimate the
missing values;

6. All numerical variables, except for those
cases where parameter values were set to -1,
were then standardized to ensure a common
scale of representation. Similar to the han-
dling of missing values, the operation differs
for the train set and test set in this case as
well;

7. The target variable is not evenly rep-
resented in the samples comprising the
database. So, it was used a combination
of an undersampling technique on the ma-
jority class and the oversampling technique
SMOTE on the others to reach the equality.
This last algorithm increases the number of
samples of a minority class by generating
synthetic data [8]. The combination of the
two methods depends on the characteristics
of the two models trained.

The training and testing process for both models
follows a standardized procedure. A stratified k-
fold cross-validation is used to divide the train-
ing set into a defined number of folds, while pre-
serving the class distribution in each fold. This
method helps to mitigate the risks of overfit-
ting and provides a more reliable performance
estimate. Notably, SMOTE is applied exclu-
sively to the training data to generate synthetic
samples. Afterward, the grid search technique
is utilized to explore the optimal hyperparame-
ters for both logistic regression and MLP mod-
els. Performance evaluation involves calculating
the cross-validation score, which represents the
best average performance achieved during cross-
validation, with balanced accuracy as the metric
of choice. Finally, the model with the most ef-
fective hyperparameter combination is selected,
and its performance on the test set is determined
accordingly.

4. Model performances
One primary objective of the work was to train
multiclass machine learning classification mod-
els capable of predicting the fetal weight class.

The Table 3 shows the results on the test set, in
terms of various metrics, of the Logistic Regres-
sion and MLP.

Metrics Logistic
Regression MLP

Balanced
accuracy 54.7% 52.6%

F1 score 51.5% 50%
Accuracy 50.2% 49.7%
Balanced
accuracy
majority
voting

55.1% 59.6%

Table 3: Results on test sets for the Logistic
Regression and MLP for the classification of the
3 classes

The results indicate substantial progress to-
wards the primary objective. Utilizing pre-
childbirth clinical data has proven effective in
predicting newborn weight categories, with de-
veloped models surpassing baseline thresholds in
three classes classification accuracy. Since mul-
tiple records were associated with the same pa-
tient in the database, majority voting was em-
ployed to ensure consistency in outcomes and as-
sess the impact of increased recordings on class
assignment accuracy. By grouping records for
each pregnancy and assigning the most frequent
outcome, both Logistic and MLP models show
improved balanced accuracy as demonstrated in
table 3. This indicates that an increased number
of records enhances the reliability of predictions.

5. Understanding the model:
XAI application

Another focus of the work is on result inter-
pretation through Explainable Artificial Intelli-
gence (XAI) tools, emphasizing the importance
of providing comprehensible tools and additional
knowledge to healthcare professionals. The aim
was to improve the accuracy of predictions and
interventions in fetal weight anomalies to pro-
mote positive outcomes for maternal and fetal
health. XAI enables systems to explain deci-
sions understandably fostering model compre-
hension and transparency in AI-based solutions.
In this work, SHapley Additive exPlana-
tions (SHAP) has been employed [9]. This
is a method designed to add explainability ca-
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pacities to machine learning models that em-
ploys coalition game theory and Shapley values
to interpret the predictions, offering insights into
both feature importance and interaction effects
for enhanced interpretability [9]. For the over-
all interpretation of parameter contributions to
predictions, the SHAP summary plot was used.
In the case of the Logistic Regression model, this
was used in addition to (but also compared with)
the model’s coefficient plots. An example of such
global plots is shown in the Figure 1. These
plots for the various classes confirm the already
known importance of maternal characteristics in
the fetal state evaluation. The models are no-
tably impacted, in fact, by the types of di-
abetes, where type 1 and gestational diabetes
tend to result in smaller fetal weight, contrast-
ing with type 2 diabetes which leads to larger
fetal weight predictions. Additionally, type 2 di-
abetes is linked to both normal and large fetuses
in terms of predicted weight. Maternal age
tends to predict in particular larger fetuses, as
well as a high number of pregnancies.
At the same time, however, the importance of
parameters such as the low number of acceler-
ations in the FHR signal, common for the SGA
and LGA classes, is highlighted, which distin-
guishes them from the normal weight category.
Particularly relevant also seems to be the LZC
index and the MSE. A lower entropy, in the
time scales, is associated with the NGA, while a
higher entropy is associated with the SGA class.
Importance has also been given to frequency do-
main parameters VLF, LF, MF, and HF even
if these features did not show discriminant capa-
bilities.
Another type of SHAP plot, namely the water-
fall plot, was used to highlight the impact of
variables on classification of individual samples.
The graph was initially used to analyze samples

that were incorrectly classified. In this instance,
it was noted that parameters deemed globally
important also contribute significantly to errors.
This occurs when their behavior deviates from
the global contribution indicated in the sum-
mary plots. Moreover, the same type of plot
was also used to investigate those samples for
which parameters calculated in windows, in the
absence of activity segments in the FHR signal,
were assigned a value of -1. For such samples,
this plot shows how these parameters are indeed
considered most important for prediction pur-
poses as shown in the Figure 2 for a sample of a
SGA classes predicted by MLP model.

Figure 2: Example of parameters’ contribution
without activity segment in the FHR

Finally, another SHAP plot, namely the interac-
tion plot, was used to observe a possible change
in the most important variables depending on
the gestational week and how this relationship
influenced the models across different classes.

6. Conclusions
The study aimed to develop machine learning
classifiers to predict fetal weight classes (namely
SGA, NGA and LGA) in pregnancies compli-
cated by maternal diabetes. Results showed Lo-

Figure 1: Model coefficients and SHAP summary plots for the LGA class
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gistic Regression achieving 54.7% accuracy and
MLP model reaching 52.6%, further improved
with majority voting. Analyses using the SHAP
method underscored the significance of the com-
bination of variables, notably, maternal clinical
history and FHR parameters. It has been ob-
served that maternal factors such as type 2 dia-
betes can influence fetal weight prediction, lead-
ing to classifying the fetus as NGA or LGA,
likely due to the effect of hyperinsulinemia on
fetal growth. Additionally, an increase in accel-
erations in the FHR signal and a higher presence
of activity, indicating advanced development of
the fetal autonomic system, may be associated
with a lower risk of weight problems for the fe-
tus. Some variables instead have shown a differ-
ent impact than anticipated by previous stud-
ies (such as the entropy related ones as MSE,
which shows higher signal complexity values for
the small weight class compared to the normal
weight one), or less significant than expected
(for example the PRSA derived parameters).
This reinforces the idea that parameters effective
in distinguishing between healthy and diseased
groups may not be equally capable of differen-
tiation within a solely pathological group. A
challenge in this work concerned the textual for-
mat of clinical annotations in the database. This
has made it necessary to use less efficient and
precise methods of information selection, given
the variety of terms, abbreviations, and pres-
ence of errors, and it might have led to the loss
of relevant information. Nonetheless, integrat-
ing functional insights alongside maternal infor-
mation has been shown in this work to repre-
sent a first attempt to propose a methodology
that may lead to advancements in medical prac-
tice, albeit not ready for immediate clinical use
yet. It is acknowledged that the obtained re-
sults may appear weak in terms of discrimina-
tion capability. However, diabetes complications
during pregnancy present a challenging aspect
in fetal monitoring and pregnancy management.
The approach proposed entails a pipeline for a
multi-feature machine learning model with ex-
plainability characteristics, which could repre-
sent a step forward in a personalized pregnancy
medicine approach.
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