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1. Introduction 

The energetic transition that we face involves to 

increase the use of the electrical network and so the 

use of tools which manage the power system as 

optimal power flow (OPF). OPF problem is a 

nonlinear, non-convex optimization problem that 

optimizes the operation of an electric power 

system by minimizing or maximizing an objective 

function within power flow equations constraints 

and operational limits. This problem is complex 

and computationally challenging. We investigated 

the use of machine learning techniques to solve it 

and speed up the process. We first investigated the 

OPF problem. Secondly, we defined artificial 

neural network (ANN). Third we made a review of 

the use of machine learning and more specifically 

deep learning to solve the OPF problem. Fourth we 

designed an ANN to solve the OPF problem. 

2. Optimal power flow 

The OPF problem was first presented in the 1960s 

by Carpentier [1] however it exists a wide range of 

applications, challenges, and requirements for 

OPF. The initial problem can be stated as 

min 𝑓(𝑥)  (1)  

Where x are the different variables of the power 

system that we want to include in the problem as 

active/reactive power, voltage magnitude/angle… 

and f(x) is the objective function to minimize.  

The problem is also subject to constraints: 

𝑔(𝑥) = 0   (2) 

ℎ(𝑥) ≤ 0   (3) 

where g(x) are the equalities constraints and h(x) 

are the inequalities constraints and x are the 

variables of the power system. x, f(x), g(x), h(x) 

vary respectively according to the states variables 

we want to include, the objective function we want 

to minimize, the equalities and inequalities we 

want to fulfill. f(x) can be the active generation cost 

[3], the non-supplied demand [4], the load 

curtailment costs [5], the active power losses [5], 

the tap changers and capacitor units [6]. The 

equalities g(x), and inequalities h(x) are related to 

the power flow equations and the operational 

limits. It exists an extensive number of possibilities 

to define x, f(x), g(x), h(x). This point explains that 

we can derive different types of OPFs. The 

solutions we decide to focus on are the AC OPF 

which respects the original power flow equations 



Executive summary Nicolas Pietri 

 

2 

and the AC network model, and DC OPF which is 

a linearized version of AC OPF. To solve the 

problem, there are several solving algorithms. The 

solutions obtained after solving the problem can be 

global, local or sub-optimal. 

3. Artificial neural networks 

As its name suggests, artificial neural networks are 

based on neural network, the output of a neuron 

can be computed with a forward propagation as  

𝑦 = 𝑓 (∑𝑥𝑖 ∗ 𝑤𝑖 + 𝑏

𝑛

𝑖=0

)                    (4) 

where y is the output, x a vector of inputs and w 

the weights associated with b a bias and f an 

activation function. The principle of neural 

network is the addition of layers connected to each 

other’s successively with several neurons in each 

layer and this is the increase of the number of 

layers and neurons which allows to solve higher 

complex problems such as OPF. According to the 

input x the neural network computes the output y, 

this output is then compared to the expected 

output and the weight and bias are then updated 

with backward propagation: 

𝑤𝑛+1 = 𝑤𝑛 − η
𝜕𝐽(𝑤)

𝜕𝑤
      (5) 

𝑏𝑛+1 = 𝑏𝑛 − η
𝜕𝐽(𝑤)

𝜕𝑤
 (6) 

With J(w) the loss error between the output 

predicted and the output expected, b the bias, w 

the weight, n the corresponding batch, η the 

learning rate. We can mention different activation 

function 𝑓, and loss error function J which implies 

a large scope of applications and ANN models.  

4. State of the art of machine 

learning applied to the 

solving of optimal power flow 

There are different kinds of use of machine 

learning to solve the optimal power flow problem. 

The most used method in the literature is the direct 

mapping of OPF variables to predict OPF solutions 

[7], [8], [9], [10]. Samples are generated for a set of 

OPF's input data, the OPF solution corresponding 

to each sample point is predicted. A learner is 

trained with the input data then obtains the OPF 

results (voltages, line flows, and power generation) 

as outputs. We chose this method as solution to 

solve the OPF problem however there exist other 

methods such as the predicting active constraints 

[11], [12], [13], [14], [15], [16]. It employs the sets of 

active constraints at optimality as the mapping 

output rather than the direct mapping of inputs to 

the optimal solution. Machine learning is also used 

to predict warm start points for the traditional 

solver [16], [29],[8] or used to solve stability 

constrained OPF [26],[27],[28]. We could also 

mention the use of machine learning, to learn the 

control policy for OPF [18], [19], [20], [21], [22], [23], 

[24],[25] or the mapping of binary decision variable 

[17].  

As we are focusing on the mapping of OPF 

variables we can highlight key points of this 

process. The goal as mentioned is to predict 

directly as output of the ANN. The state variables 

of the system as the active power and voltage 

magnitude of the generator according to a given 

input, generally the active and reactive power of 

the loads are defined for AC OPF [30], [31]. For the  

DC OPF the inputs will be the active power of the 

load and the outputs will be the active power of the 

generators [36]. It has to be noticed that according 

to the method, other variables could be predicted 

such as voltage angle and magnitude of the buses 

or lagrangian multipliers for instance [33]. To 

generate data, we start from a given load set point 

and we vary the load from a given range according 

to a probability density function. Such as the 

uniform distribution preferred compared to the 

normal law, as our neural network has to perform 

well for the whole range of load variation and not 

only around the nominal load set point [34]. We 

use samples between [(1−y)∗Pd ; (1+y)∗Pd ] with 

Pd the initial load active power set point and y 

following the uniform law: 

𝑦 = {
1 (𝑏 − 𝑎)  ⁄  𝑓𝑜𝑟 𝑎 ≤ 𝑥 ≤ 𝑏
 0       𝑓𝑜𝑟 𝑥 < 𝑎 𝑜𝑟 𝑥 > 𝑏 

 (7) 

With [a ; b] the interval where the probability 

density function is defined. The data is then 

normalized with standard core normalization or 

min-max feature. The latter approach is preferred 

as it allows to constrain the output by the 

additional use of a constrained output activation 

function as sigmoid function. The data is then 

process in the ANN. A wide range of ANN 

architecture are employed to solve OPF. It can be:  

-A unique hidden layer feedforward neural 

network [39] 

- A deep neural network constrained (as we used 

in our work) [36] 

-A convolutional neural network [35] 

-A graph neural network [32] 
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The benefit of deep neural network is the depth of 

the ANN, which allows a more optimal and 

accurate solution. It has to be noticed that 

dedicated activation function and loss functions 

are used in the literature in order to constrain the 

solution obtained, as, as mentioned before, OPF 

problem is a constrained optimization problem. As 

an example, we can mention that in some studies 

the output is constrained for the last layer with a 

sigmoid activation function [2], or also the use of 

penalty or barrier function which is added in the 

computation of the loss to take into account the 

constraints of the OPF problem while the model is 

training [2]. Lastly, post-processing step is done 

and metrics related to the performance of the ANN 

are computed. Post processing can include:  

-To compute remaining variables of the problem as 

the loading of the line, lagrangian variables for 

instance [38] 

-To ensure if the solution obtained is compliant 

with the constraints by using power flow [40]  

-To use outputs obtained by the ANN as a warm 

start if the solution obtained is not compliant [31] 

 -To derive worst-case scenario according to the 

solutions obtained [37]  

As different models have to be compared, metrics 

related to the performance of the neural network 

are computed. The first type of metric is related to 

the feasibility: it evaluates if the solution fulfills the 

constraints related to the OPF problem. The second 

type of metric is related to optimality: it evaluates 

if the solution is optimal according to the objective 

function we have to minimize/maximize (cost for 

instance) . The third type of metric is the accuracy 

of the solution obtained compared to the 

traditional solver and the last type of metric is 

related to the computational speed of the ANN to 

solve the OPF problem. 

5. Deep neural network 

solution developed to solve 

optimal power flow 

We built a deep neural network model to map the 

load input with the active power output of the 

generator. This work is inspired by the study [2] 

that we used as a reference to build our method. 

There are three main parts: initialization, training, 

and test. 

 

The initialization step,  

We first develop the dataset by using uniform 

distribution, [-10%;+10%] and [-60%;+60%] 

variation of the active power of the load to generate 

samples of the input data and we use a DC OPF 

solver to compute the associated output which is 

the active power output of the generators. Input 

and output data are normalized using standard 

score normalization then secondly min-max 

feature scaling is applied to the output data also. 

We also apply pre-processing to compute elements 

related to the power system as the maximum active 

power of the lines 

𝑃𝑚𝑎𝑥𝑖𝑗 = 𝐼𝑚𝑎𝑥𝑖𝑗𝑉𝑛𝑜𝑚√3        (8) 

B and A matrices are also computed, B matrix is 

used to recover the angle of the buses and A matrix 

to compute the DC power flow. A, is a matrix of 

size Nline × Nbus, where Nline is the number of 

lines in the power system and Nbus the number of 

buses in the power system. Each row in A 

corresponds to a line so a bus pair and each column 

corresponds to a bus. Thus, the elements, 𝑎𝑖 and  𝑎𝑗 

are the corresponding entries of the matrix A 

defined as: 

𝑎𝑖 =
1

𝑃𝑚𝑎𝑥𝑖𝑗 . 𝑥𝑖𝑗  
 , 𝑎𝑗 = −

1

𝑃𝑚𝑎𝑥𝑖𝑗 . 𝑥𝑖𝑗  
           (9) 

where xij is the reactance of the line between bus i 

and bus j and Pmaxij defined above. 

B matrix is an (𝑁𝑏𝑢𝑠 − 1) × (𝑁𝑏𝑢𝑠 − 1) admittance 

matrix derived from the admittance matrix Y by 

assuming that all voltages are 1pu, by neglecting 

shunt parameters of lines and transformers as well 

as resistances of lines and transformers. We can 

write the element of the B matrix as: 

𝐵𝑖𝑗 =

{
 

 
−𝑦𝑖𝑗  𝑓𝑜𝑟 𝑖 ≠ 𝑗

∑ 𝑦𝑖𝑗   𝑓𝑜𝑟 𝑖 = 𝑗

𝑁𝑏𝑢𝑠

𝑗=1,𝑗≠𝑖

                     (10) 

where yij is the admittance of the branch yij with 

yij > 0 if there is a branch connected between node 

i and node j, and yij =0 if no branch is connected 

between bus i and bus j. 

 

The training step, 

This step is dedicated to how we build the deep 

neural network (DNN) and how we trained it. The 

DNN is made of one input layer corresponding to 

the size of the input dataset, there are 20 loads in 

the electrical network we use as example [41] so we 

will need 20 neurons as inputs to map the 20 load 

active power. Then two hidden layers of 

successively 64 and 32 neurons each with ReLU 

activation function, and one output layer of 6 

neurons with sigmoid activation function to 
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constrain the output so that the active power of the 

generator is according to their operational limit. 

During the process we recover the voltage angle of 

the buses 

ϴ = B−1P    (11) 

where P is the active power injection at each bus. 

We express the power flow constraints of the DC 

OPF problem with: 

−1 ≤ Aϴ ≤ 1                (12) 

In order to take into account this constraint, we will 

use it as a penalty term in the loss error function: 

𝐿𝑒𝑟𝑟𝑜𝑟 =
1

𝑁𝑡𝑟𝑎𝑖𝑛
∑ 𝑤1. 𝐿𝑝𝑒𝑛𝑘 +

𝑁𝑡𝑟𝑎𝑖𝑛

𝑘=1

𝑤2.𝑀𝑆𝐸𝑘    (13) 

𝑀𝑆𝐸 =
1

𝑁𝑔𝑒𝑛
∑ (𝑌𝑡𝑟𝑢𝑒𝑖 − 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)

2        (14)

𝑁𝑔𝑒𝑛

𝑖=1

 

                𝐿𝑝𝑒𝑛 =
1

𝑁𝑙𝑖𝑛𝑒
∑ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(Aϴ)𝑁𝑙𝑖𝑛𝑒
𝑗           (15) 

penalty(𝑥)  =  𝑥2 − 1                 (16) 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑥) = {
𝑝𝑓(𝑥2 − 1) 𝑓𝑜𝑟 (𝑥2 − 1) > 0 
1

𝑝𝑓
(𝑥2 − 1) 𝑓𝑜𝑟 (𝑥2 − 1) < 0

     (17) 

Where pf,w1,w2 are constants to be defined, Ngen 

the number of generator, Ntrain the number of 

training samples, 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 the predicted output 

of our deep neural network (DNN) model and 

𝑌𝑡𝑟𝑢𝑒 the expected output of the traditional OPF 

solver. We defined and tried 2 penalty function 

(16)(17), in order to find the most efficient one to 

constrain effectively the solution obtained. 

 

The test step, 

In this step the goal is to test and evaluate the DNN 

that we trained. With a new dataset of 

inputs/outputs, by using our DNN and the active 

power of the loads we predict the active power of 

the generators and compare it to the expected 

active power of the generators. The metrics to 

compare these results are: 

-The average time it takes to the neural network to 

compute the solution  

-The mean square error between the predicted 

output and the expected output  

By running DC power flow with the denormalized 

we then derive 2 other metrics related to the 

feasibility of our solution 

-The percentage of network which are not valid  

-The average error related to a load flow constraint 

violation: 

𝐼𝑒𝑟𝑟𝑜𝑟 =
1

𝑁𝑡𝑒𝑠𝑡
∑

1

𝑁𝑙𝑖𝑛𝑒

𝑁𝑡𝑒𝑠𝑡

𝑙

 

× ∑
|𝑚𝑖𝑛(𝑚𝑎𝑥_𝑙𝑜𝑎𝑑𝑖𝑛𝑔𝑘,𝑙 − 𝐼𝑙𝑜𝑎𝑑𝑖𝑛𝑔𝑘,𝑙 , 0)|

100

𝑁𝑙𝑖𝑛𝑒

𝑘

  

(18) 

Where 𝑁𝑡𝑒𝑠𝑡 is the number of samples tested, 

Nline the number of lines in the network, 

𝑚𝑎𝑥_𝑙𝑜𝑎𝑑𝑖𝑛𝑔𝑘,𝑙 the maximum loading of the line k  

for the sample l in percentage, 𝐼𝑙𝑜𝑎𝑑𝑖𝑛𝑔𝑘,𝑙 the 

loading of the line k for the sample l in percentage. 

The first results we report have been obtained with 

10000 samples with [-10% ; +10%] variation of the 

load. We define 2 cases, each one describes the 

results obtained after the training of our DNN 

according to the error function used which is 

different for each case: Case 1, the loss function 

used to train our DNN is the mean square error, it 

corresponds to the equations (13), (14) with w1=1 

and w2=0 as parameters. Case 2, the loss function 

used to train our DNN is the mean square error in 

addition to the penalty function, it corresponds to 

the equations (13), (14), (15), (16) with w1=1 and 

w2=0.001 

 𝑀𝑆𝐸 𝐴𝑣𝑒𝑟𝑎𝑔𝑒  

𝑡𝑖𝑚𝑒 [s] 

𝐼𝑒𝑟𝑟𝑜𝑟 Percentage 

of network 

which are 

not valid 

Case 

1 

5.9789

0e-06 

0.000578 0 0 

Case 

2 

5.9789

0e-06 

0.000703 0 0 

      Table 1: Results 1 of the DC neural network 

As results we can conclude that our DNN model 

increases the solving speed of the OPF problem by 

approximatively 100 times the traditional OPF 

problem. We also see that with or without penalty 

function there are no changes. It means that the 

penalty function used has no influence and so that 

our neural network does not learn the 

limits/constraints related to optimal power flow 

and related to the active power limit of the lines. 

As we vary the load only between [-10%;+10%], 

this peculiar case leads to the fact that the results 

are always far away from the maximum limits of 

our network. So, we solve only a small range of the 

problem. In order to test our neural network 

correctly, we generate samples with active power 

of the load varying with a range [-60%;+60%] from 

the initial setpoints which is also a closer 

approximation of the real load range variation. We 

keep the same number of samples (10,000) and 

other parameters. We define 3 cases, each one 

describes the results obtained after the training of 

our DNN according to the error function used 

which is different for each case : 
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Case 1 The loss function is defined as the mean 

square error only, it corresponds to the equations 

(13), (14) with w1=1 and w2=0) 

Case 2 The loss function is defined as the sum of 

the mean square error and the penalty function, it 

corresponds to the equations (13), (14), (15), (16) 

with w1=1 and w2=0.001 

Case 3 The loss function is defined as the sum of 

the mean square error and the penalty function, it 

corresponds to the equations (13), (14), (15), (17) 

with w1=1, w2=1, 𝑝𝑓=10000 

 𝑀𝑆𝐸 𝐴𝑣𝑒𝑟𝑎𝑔𝑒  

𝑡𝑖𝑚𝑒 [s] 

𝐼𝑒𝑟𝑟𝑜𝑟 Percenta

ge of 

network 

which 

are not 

valid 

Case

1 

0.00055 0.00041 

 

0.06146 

 

15,75% 

Case 

2 

0.00055 

 

0.00035 

 

0.06146 

 

15,75% 

Case 

3 

0.00061 

 

0.000776 

 
0.07568 13,1% 

      Table 2: Results 2 of the DC neural network 

We see that the penalty function used in case 2 is 

not relevant to reduce the violation of constraints. 

In case 3 we reduce the percentage of network 

which are not valid however when a network is not 

valid the error obtained is larger as Ierror is worst 

in case 3 than case 1 and 2. It means that we will 

have fewer violations of the constraints in term of 

number but larger in term of magnitude. The case3 

shows that we are probably underfitting, as we 

increase the percentage of variation of the load. It 

means that the range of the solution that the neural 

network has to learn is also wider thus needing 

more data to be trained. We train 58,360 samples 

with [-60%;60%] uniform variation, then  we define 

3 cases. Each one describes the results obtained 

after the training of our DNN according to the 

error function used which is different for each case: 

Case 1 The loss function is defined as the mean 

square error only, it corresponds to the equations 

(13), (14) with w1=1 and w2=0 

Case 2 The loss function defined as the sum of the 

mean square error and the penalty function, it 

corresponds to the equations (13), (14), (15), (16) 

with w1=1 and w2=0.001 

Case 3 The loss function is defined as the sum of 

the mean square error and the penalty function, it 

corresponds to the equations (13), (14), (15), (17) 

with w1=1, w2=1, 𝑝𝑓=10000 

 𝑀𝑆𝐸 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 

 𝑡𝑖𝑚𝑒 [s] 

𝐼𝑒𝑟𝑟𝑜𝑟 Percentage 

of network 

which are 

not valid 

Case1 0.00011 0.00047 0.18806 11.99% 

Case 2 0.00011 0.00069 0.18806 11.99% 

Case 3 0.00018 0.00259 0.16120 10.49% 

      Table 3: Results 3 of the DC neural network 

We see that the penalty term we introduce for case 

3 leads to a better feasibility as it reduces the 

magnitude of the violation of the constraint (Ierror) 

but it also reduces the number of violations of the 

constraints.  However, we see that the difference is 

not so significant between case 1 and case 3 and 

also adding a penalty term as we already said will 

decrease the accuracy (MSE) of the solution 

obtained. Note that we are also probably still 

underfitting otherwise it would become too 

computationally challenging to increase the 

number of samples. 

 

Finally, we do a recovery of the results. If the post-

processing leads to infeasible solution, we 

recompute new solutions with traditional OPF 

solver. The best would be to use the outputs 

predicted as a warm start point in order to make 

the algorithm converge faster. At the end of the 

process, we will get solutions which ensure to 

solve the DC OPF problem without violation of the 

constraints. 

 

In this part we also defined the theory related to an 

AC OPF deep learning method. We keep the [-

60%;+60%] variation with uniform distribution but 

this time using a traditional AC OPF solver. As 

input of the DNN model we will have 

active/reactive power of the loads and as outputs 

the voltage magnitude/angle of the buses and 

active/reactive power of the generators. We would 

define the architecture of the DNN with 1 common 

input layer and 4×2 hidden layers in parallels. It 

means 2 hidden layers for each variable, where we 

will use ReLU activation function. At the end we 

will use 1 common output layer which would be 

with a sigmoid activation function to constraints 

the output. To deal with the power flow constraints 

of the cable we could use the formula: 

𝑆𝑖𝑗 = (𝑣𝑖
2 − 𝑣𝑗𝑣𝑖( 𝑐𝑜𝑠(𝛳𝑖𝑗) + 𝑗𝑠𝑖𝑛(𝛳𝑖𝑗)) ( 𝑔𝑖𝑗 − 𝑗𝑏𝑖𝑗)   
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   (19) 

Where 𝑣𝑖 , 𝑣𝑗 are the voltage magnitudes of the 

buses i and j where the line is connected, 𝛳𝑖𝑗 the 

voltage angle difference between bus i and j, 𝑔𝑖𝑗 

and 𝑏𝑖𝑗  the equivalent conductance and 

susceptance of the line. 𝑆𝑖𝑗  the apparent power flow 

in the line. We could keep the same loss error 

functions (13), (14), (15), (17) with w1=1, w2=1, 

𝑝𝑓=10000. 

To test this AC OPF DNN model, we would use the 

same metrics and process compared to the DC OPF 

DNN model except the fact that we must check the 

feasibility of the model by using AC power flow 

and not DC power flow. 

6. Conclusions 

The use of deep learning to solve OPF problem is 

still a challenging problem because of the 

constraints of power flow to fulfil and the huge 

number of data it requires to train the model to 

learn these constraints and the optimal solutions. 

Nevertheless, from the first trial we achieved that 

artificial neural network could effectively 

approximate solutions of the OPF problems. 

During our work we developed a general method 

to build a deep neural network according to a 

given electrical network in order to solve DC OPF 

problem. There are many possible areas for 

improvement of the study: 

- Use of a warm start solver at the end of our 

method to recover the solutions when the 

predicted solution is infeasible 

- Speed-up the training process and the sample 

generation in order to deal with a larger dataset 

- Achieve the part of the AC neural network, as we 

just designed in theory the neural network related 

to this part so we need now to build it correctly and 

test it 

- Find an effective barrier or penalty functions to 

constraints effectively our DNN model 

- Try solutions different from the simply mapping 

of the variables and compared their effectiveness  
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