
Advanced Deep Learning Methods
for Anomaly Detection in Point
Clouds

Tesi di Laurea Magistrale in
Mathematical Engineering - Ingegneria Matematica

Author: Stefano Bruno Gusmeroli

Student ID: 944781
Advisor: Prof. Giacomo Boracchi
Co-advisors: Luca Frittoli
Academic Year: 2021-22

A
Coralli

i

Abstract

Thanks to the increased diffusion of sensors such as LiDARs, in recent years we have
witnessed the rise of a peculiar type of data: point clouds. The reasons behind such
success are to be found in their nature; in fact, a point cloud is constituted by a set of
points to which can be associated some features. From this, it follows that they rep-
resent a compact and very convenient way to depict the surface of a 3D object. More
precisely, it is possible to sample a point cloud from a three dimensional surface, hence,
in so doing, the spatial arrangement of the obtained points can be used to describe the
original shape. In consideration of the above, there has been a flourishing literature of
deep learning methods, with many models that have been proposed for the classification
and the segmentation task. However, to our concern, we have noticed that the anomaly
detection is a much more disregarded field. In this work, we aim therefore to address the
unsupervised anomaly detection task on point clouds. To do so, we have developed two
different methods. In particular, we propose an extension of the Deep Robust One Class
Classification method [36] by adopting a suitable network and introducing an adapted
version of the original loss. Besides it, we propose a model for point cloud anomaly detec-
tion inspired by NeuTraL [73] and composed of a pre-trained feature extractor, a set of
learnable transformations, and an encoder. We have evaluated the performance of both of
our methods by conducting several experiments on the ShapeNet [17] and ModelNet [95]
datasets. Our DROCC method for point cloud anomaly detection proved to be on par
with some other similar ones. Furthermore, our Neural Transformation Learning model
achieved impressive performance on both datasets, outperforming every other considered
method by a large margin. On some classes it even approaches the perfect classifier,
making register values of AUC astoundingly close to 1.

Keywords: point cloud, unsupervised, anomaly detection, 3D anomaly detection, one
class classification, novelty detection

Abstract in lingua italiana

Grazie allo sviluppo di sensori come i LiDAR, negli ultimi anni abbiamo assistito a una
crescente diffusione di un particolare tipo di dati: le Point Cloud. Le ragioni dietro a tale
successo sono da ricercare nella loro natura. Infatti, esse sono costituite da un insieme
di punti ai quali possono essere associate delle features, come ad esempio i colori. Per
questo motivo esse rappresentano un modo molto compatto ed efficace di rappresentare
la superficie di un oggetto 3D. Più precisamente, è possibile campionare dei punti da una
superficie tridimensionale e le coordinate dei punti ottenuti possono essere impiegate per
descriverne la forma. In conseguenza di ciò, si è sviluppata una fiorente letteratura di
metodi di deep learning, con innumerevoli modelli che sono stati proposti per trattare il
tema della classificazione e della segmentazione. Tuttavia, abbiamo notato che l’ambito
del rilevamento della anomalie è stato molto meno considerato. In questo lavoro ci siamo
quindi posti l’obiettivo di affrontare il problema dell’Unsupervised Anomaly Detection
per point clouds. A questo fine abbiamo sviluppato due diversi metodi. Il primo si tratta
di una estensione dell’approccio Deep Robust One Class Classification [36] nel quale ab-
biamo adottato una rete apposita e abbiamo introdotto una versione modificata della loss
originale. Oltre a ciò, abbiamo proposto un modello per l’anomaly detection per point
cloud che trae ispirazione da NeuTraL [73] e che è composto da un feature extractor
pre-addestrato, un insieme di trasformazioni apprendibili e da un encoder. Al fine di val-
utare le prestazioni dei nostri metodi abbiamo condotto svariati esperimenti usando come
datasets ShapeNet [17] e ModelNet [95]. Il nostro metodo DROCC per point cloud si è
dimostrato essere sullo stesso livello di altri metodi simili. D’altro canto, il nostro modello
di Neural Transformation Learning ha raggiunto dei risultati impressionanti su entrambi
i dataset, migliorando considerevolmente l’attuale stato dell’arte. Su alcune classi ha ad-
dirittura fatto registrare dei valori di AUC estremamente vicini a 1, rasentando così il
classificatore perfetto.

Parole chiave: point cloud, dati 3D, rilevamento delle anomalie, rilevamento degli outlier

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 Problem Formulation 5
1.1 Definition of point cloud . 5
1.2 Anomaly detection on point clouds . 6
1.3 Properties required . 6

2 Related Works 9
2.1 Deep Learning on Point Clouds . 9
2.2 Anomaly Detection . 27
2.3 Anomaly detection on point clouds . 40

3 Proposed solutions 43
3.1 DROCC for point cloud anomaly detection 43
3.2 Neural Transformation Learning for point cloud anomaly detection 52

4 Experiments 61
4.1 Datasets . 61
4.2 Figures of merit . 65
4.3 Competing methods . 68
4.4 Deep Robust Once Class Classification for point clouds 69
4.5 Neural Transformation Learning for point cloud anomaly detection 76

5 Conclusions and future developments 87

Bibliography 89

A Appendix A: The matter of the order 99

List of Figures 101

List of Tables 103

Acknowledgements 105

1

Introduction

Over the past few years, we have witnessed a great development in the technology behind
sensors like LiDARs and depth cameras, thanks to which they have become cheaper, easier
to be implemented, and available to a greater public. Just to give an idea, nowadays these
kinds of sensors can be found in almost every assisted-driving car and even in the top-of-
the-range smartphones. All of the above has led to a huge increment in the availability
of a new type of data: point clouds.

As the name suggests, a point cloud is a set of points distributed in a certain space, in
such a way that altogether usually depicts a surface. We can regard point clouds to be
composed of two elements: a set of coordinates corresponding to the points in Rd and
some features associated to each of them. For sake of generalisation, we can consider
a function φ which associates to each point its features. These features can represent
various characteristics, the most common ones are colours and the direction of the normal
vector to the surface of the object at that point, but they can represent even temperatures
and other information.

The case in which the points live in a three-dimensional space is probably the most
important and researched one. This is because they can be used to describe a 3D object
in a very convenient way, having to store in memory only the coordinates and the features
of the points. It is worth noting that point clouds do not necessarily have to be 3D data,
as they can live in any finite-dimensional real vector space. There are examples of two-
dimensional point clouds, which can be imagined as some points scattered on a plane.
The reasons behind why the latter case is less regarded have to do with the existence of
images, for which there is already a variegated amount of methods available. Another
motivation can be found in the unordered nature of point clouds, which makes them
harder to be processed. Indeed, the main difference between images and point clouds is
that the former are arranged on a regular grid and so the pixels can be identified simply
by a pair of indices (i, j), whereas the latter have to be described by coordinates.

Thanks to their capability of depicting a 3D object in a very compact way, in recent years,
point clouds have found application in a wide variety of fields, ranging from computer

2 | Introduction

vision [38], robotics [68] and autonomous driving [57], [20], [51]. A multitude of methods
have been proposed to process them, with most of them focusing on the multi-class
classification or on the segmentation tasks [69], [71], [56], [13], [60].

This being established, we have noticed that one research area on point clouds has been
much less regarded: anomaly detection. In fact, up to this date, only a few works
address this task on point clouds and, on top of that, many of them propose methods
that tackle very specific issues. Therefore these latter are highly tailored to their scope,
such as pole-like objects [75], scans of urban areas [4] or additive manufacturing [59].
To the best of our knowledge, only a handful of methods address the anomaly detection
problem on point clouds in a more general setting [63], [31], [32].

In light of the above, the objective of our work is to design and explore methods that are
suitable to the anomaly detection task when the input is presented in the form of a point
cloud. We focus on deep learning models, since these techniques have been proven to be
very successful in many areas, from image processing to speech recognition [54], [80].

More precisely, in this work we present two different methods that address the anomaly
detection problem on point clouds. The first of them is an adaptation of the Deep Robust
One Class Classification approach proposed by [36], whereas the second is inspired by
the Neural Transformation Learning method of [73]. It has to be noted that neither [36]
nor [73] take into consideration anomaly detection on point clouds. Indeed, the former is
originally applied to images and tabular data, whilst the latter mainly focuses on tabular
data and time series.

In order to assess the effectiveness of our models, we perform several experiments and
we evaluate their performance on two well established datasets in the point cloud deep
learning community: ShapeNet [17] and ModelNet40 [95]. We adopt the unsupervised
anomaly detection approach and the 1 Vs. All setup, as in [78], [36], [34], [73], [63], [31],
[32]. This means that we train our models using exclusively instances belonging to one
class, which is considered the “normal class”. After that, at evaluation time, the model is
presented with test data from the whole dataset and its task is to detect which samples are
anomalous, i.e. do not belong to the class on which it was trained. In order to investigate
the results that the method achieves on the whole dataset, we select one class at the time,
we regard it as the normal class, we train the model using solely those data and finally
we test its performance using the entire testset. The aforementioned process is reiterated
for each class of the dataset. This way of proceeding is analogous to the one followed by
[63], [31] and [32], thus it enables us to compare the results of our models with theirs.

| Introduction 3

Outline

For the sake of clarity, here we report a brief outline of this work:

• In Chapter 1 we state more rigorously the problem that we aim to address, formally
defining the input and introducing the notation that we intend to adopt. Moreover,
we discuss the requirements that the methods we research have to fulfil.

• Chapter 2 is devoted to conveying some background on the topics that are related
to our work. More precisely, in section 2.1 we present some deep learning models
that process point clouds, among which the composite layers [32]. Moreover, in
section 2.2, we explain several approaches to the anomaly detection task in various
fields. Finally, in section 2.3 we examine the current methods that perform the
aforementioned task on point clouds.

• In Chapter 3 we describe our proposed solutions by introducing, in section 3.1,
our adapted version of the DROCC approach [36] to point clouds. Furthermore,
in section 3.2 we present our Neural Transformation Learning model for anomaly
detection on point clouds inspired by [73].

• Chapter 4 is dedicated to the experiments that we have performed in order to
assess the performance of our previously introduced models. We first illustrate the
datasets and the evaluation metric that we employ. After a brief overview of the
competing methods, in section 4.4 we explore the anomaly detection capabilities of
our DROCC method for point cloud. In section 4.5 we investigate the performance
of our Neural Transformation Learning model in various scenarios.

• Chapter 5 concludes this work. In it, we make some final remarks and we discuss
some potential future developments.

(a) Chair (b) Table

Figure 1: Examples of point clouds

5

1| Problem Formulation

In this chapter, we provide a precise statement of the problem that we address and we
characterise the input, namely 3D point clouds, by illustrating its salient properties and
the main challenges that arise when working with it.

1.1. Definition of point cloud

In this work, we address the problem of unsupervised anomaly detection in 3D point
clouds. We employ a point cloud to describe a three dimensional object because it allows
a compact and convenient representation, as it requires storing in memory only a set of
coordinates and of features. The aim is to design a model which, given a 3D point cloud
representing an object, is able to distinguish whether the element is normal or anomalous.

More rigorously, we define a point cloud P as a pair (P, φ), where P = {xi}ni=1 is a set
of points in a d-dimensional Euclidean space Rd. Since we focus on three dimensional
objects, the space in which the points live corresponds to R3, namely we have that d = 3.
All the metric spaces that we consider are endowed with the Euclidean distance d2 = ∥ · ∥2,
which is therefore the one that we refer to when talking about “distances” between the
elements.

The function φ is such that φ : P → RI and its purpose is to associate, to the coordinates
of each point x, the features φ(x), hence φ : x 7→ φ(x). The vector of the features has
dimension I, namely it is the case that φ(x) ∈ RI . Each feature is a characteristic related
to the point x, such as the intensity of the three RGB channels, the temperature, or the
direction of the normal vector to the surface of the object at x.

Mathematically speaking, we regard a point cloud as a set in which it is not present a
canonical order 1. From this, it follows that one of the main challenges of processing a
point cloud is the lack of a specific order among its elements.

1Although in principle it could be argued that every set can be well ordered [99], we do not intend
to do so since every order would result to be meaningless to our purposes [80]. This is because small
variations in the coordinates may significantly alter the order of the points and affect consequently the
method as two almost identical point clouds might yield extremely different results

6 1| Problem Formulation

1.2. Anomaly detection on point clouds

In a rather general way, an anomaly can be defined as “an observation that significantly
deviates from a certain concept of normality” [16]. Depending on the field of competence,
it can also go under the names of “outlier” or “novelty”. The task of anomaly detection
therefore consists in identifying the data that do not conform to the undergoing definition
of normality. Although this may seem at first glance a rather easy task, especially com-
pared to multi-class classification, its nature is much more insidious and it poses several
subtle challenges.

We consider the framework of unsupervised anomaly detection, which means that the
training samples are not labelled. Therefore an anomaly detection algorithm must be
trained using solely instances belonging to the normal class [16], [77], [32], [34], [63].
Exclusively at evaluation time the model is presented with anomalous elements, with the
purpose of performance assessment.

The objective is to develop a method that, when it is presented with an element, is able to
discriminate on whether it belongs to the normal class or not. The output of the model is
therefore a score, which goes under the name of anomaly score, indicating the magnitude
of anomalousness or, conversely, of normality. To this purpose, we formally introduce
the anomaly score function, which is a function AS : R|P |×(d+I) → R; AS : P 7→ AS(P)

that associates to each point cloud P one real value in R such that high values of AS(·)
indicate that P is anomalous, whereas low values of AS(·) indicate that P belongs to
the normal class. Based on the values of the anomaly score function, it can be then
chosen a threshold in order to classify each element P as either normal or anomalous.
Therefore to each point cloud P will be assigned an integer representing the designated
class, for instance "1" if it is an anomaly and "0" otherwise. This can be seen in practice
as constructing a binary classifier.

1.3. Properties required

All the methods that consume point clouds are called at fulfilling some requirements that
arise from the nature of this type of input. To better understand the challenges that work-
ing on point clouds poses, we shall explore more in detail the main three characteristics
that these methods must have, which are:

1) Invariance w.r.t. permutations:
As we have mentioned in Sec. 1.1, a point cloud is an unordered set. From this it follows
that every method that works on point clouds needs to be invariant under n! permutations,

1| Problem Formulation 7

where n is the cardinality of the set P . This property is of particular concern since storing
a point cloud in memory implicitly assigns an order to the points, for instance when they
are arranged in a Pytorch’s tensor. Furthermore, the most important layers of a neural
network, such as fully connected and convolutional ones, are influenced by the order of
the input. Indeed, changing the order of the elements passed as input to these layers
can give rise to very different outputs. From this observation it follows that the whole
architecture needs to be carefully designed in order to result invariant with respect to the
order in which the input points are presented to the network.

2) Invariance w.r.t. some rigid transformations:
Some rigid transformations do not alter the nature of a shape, therefore it is expected
that the method is not affected by them. For instance, it is usually required that the
model is invariant with respect to rigid translations and in many scenarios also to rigid
rotations along the vertical axis. To give an example, in an object classification task, a
table should always be classified as such, no matter how far from the origin it is positioned
or its orientation.

3) Interaction among points:
The points live in a metric space (Rd, ∥ · ∥2) in which there is a well defined notion of
distance and of neighbourhood. The neighbouring points constitute a meaningful subset
that carries important geometrical information for the learning process. Therefore the
methods ought to leverage this aspect and to be able to capture and aggregate the infor-
mation contained in the local structures of the shape.

Figure 1.1: Point cloud representing an airplane

9

2| Related Works

In this chapter we provide an overview of the history of point clouds processing in the deep
learning era, exploring the methods that can be considered the milestones and highlighting
their main contributions as well as their drawbacks. After that, we present the different
approaches to the anomaly detection task, briefly explaining the directions that have been
pursued in this field. Lastly, we connect these first two topics by analysing some methods
that currently address the problem of anomaly detection on point cloud data.

2.1. Deep Learning on Point Clouds

As mentioned in section 1.3 and better explained in the Appendix A The matter of the
order, mathematically speaking a point cloud has the structure of a set in which there is
not a canonical order. This property is of particular importance for methods that process
point clouds since they are required to be invariant with respect to the permutations of
the points, fact that is not generally granted by algorithms in the Deep Learning field.

The first methods have tried to exploit the architecture of classical convolutional neural
networks by extending it to other types of data that can be derived from point clouds.
Among these works we recall Multi-view CNNs [89] and Volumetric CNNs [64] that use
as input images and volumes, respectively. These earliest methods have approached the
inconvenience given by the unordered nature of point clouds by circumventing it and trying
to resort to what was already consolidated at that time, namely convolutions on a regularly
structured domain. Multi-view CNN [89] relies on generating 2D views of an object and
then it treats them as images by applying a more traditional 2D Convolutional Neural
Network. On the other side, Volumetric CNNs [64], [80] work instead on a volume
and they apply a three dimensional convolutional filter. Both these approaches, namely
Multiview CNN and Volumetric CNN, require a pre-processing step, which consists in
either projecting the input to 2D views or constructing a voxel grid. This necessary
process has two main drawbacks: the first one is that it can cause loss of information,
for instance due to occlusion and/or low resolution; whilst the second is represented by
the high number of hyper-parameters to be chosen. As a matter of fact, the number and

10 2| Related Works

position of viewpoints, the rendering parameters, the number and dimension of voxels are
all hyper-parameters to be set, choices that may not be obvious in several scenarios. The
above complications can be ideally avoided by developing methods that process directly
point clouds.

volumetric CNNs on 3D shape classification. This result
has also closed the gap between volumetric CNNs and
multi-view CNNs, when they are provided with 3D input
discretized at 30⇥30⇥30 3D resolution. The first network
introduces auxiliary learning tasks by classifying part of an
object, which help to scrutize details of 3D objects more
deeply. The second network uses long anisotropic kernels
to probe for long-distance interactions. Combining data
augmentation with a multi-orientation pooling, we observe
significant performance improvement for both networks.
We also conduct extensive experiments to study the in-
fluence of volume resolution, which sheds light on future
directions of improving volumetric CNNs.

Furthermore, we introduce a new multi-resolution com-
ponent to multi-view CNNs, which improves their already
compelling performance.

In addition to providing extensive experiments on 3D
CAD model datasets, we also introduce a dataset of real-
world 3D data, constructed using dense 3D reconstruction
taken with [25]. Experiments show that our networks can
better adapt from synthetic data to this real-world data than
previous methods.

2. Related Work

Shape Descriptors A large variety of shape descriptors
has been developed in the computer vision and graphics
community. For instance, shapes can be represented as
histograms or bag-of-feature models which are constructed
from surface normals and curvatures [13]. Alternatives
include models based on distances, angles, triangle areas, or
tetrahedra volumes [26], local shape diameters measured at
densely-sampled surface points [3], Heat kernel signatures
[1, 19], or extensions of SIFT and SURF feature descriptors
to 3D voxel grids [18]. The spherical harmonic descriptor
(SPH) [17] and the Light Field descriptor (LFD) [4] are
other popular descriptors. LFD extracts geometric and
Fourier descriptors from object silhouettes rendered from
several different viewpoints, and can be directly applied to
the shape classification task. In contrast to recently devel-
oped feature learning techniques, these features are hand-
crafted and do not generalize well across different domains.

Convolutional Neural Networks Convolutional Neural
Networks (CNNs) [21] have been successfully used in dif-
ferent areas of computer vision and beyond. In particu-
lar, significant progress has been made in the context of
learning features. It turns out that training from large
RGB image datasets (e.g., ImageNet [6]) is able to learn
general purpose image descriptors that outperform hand-
crafted features for a number of vision tasks, including
object detection, scene recognition, texture recognition and
classification [7, 10, 27, 5, 12]. This significant improve-

ϯ��^ŚĂƉĞ

DƵůƚŝͲsŝĞǁ�^ƉŚĞƌĞ�ZĞŶĚĞƌŝŶŐDƵůƚŝͲsŝĞǁ�^ƚĂŶĚĂƌĚ�ZĞŶĚĞƌŝŶŐ

sŽůƵŵĞƚƌŝĐ�KĐĐƵƉĂŶĐǇ�'ƌŝĚ

Figure 1. 3D shape representations.

ment in performance on these tasks has decidedly moved
the field forward.

CNNs on Depth and 3D Data With the introduction
of commodity range sensors, the depth channel became
available to provide additional information that could be
incorporated into common CNN architectures. A very first
approach combines convolutional and recursive neural net-
works for learning features and classifying RGB-D images
[30]. Impressive performance for object detection from
RGB-D images has been achieved using a geocentric em-
bedding for depth images that encodes height above ground
and angle with gravity for each pixel in addition to the
horizontal disparity [11]. Recently, a CNN architecture has
been proposed where the RGB and depth data are processed
in two separate streams; in the end, the two streams are
combined with a late fusion network [8]. All these descrip-
tors operate on single RGB-D images, thus processing 2.5D
data.

Wu et al. [33] lift 2.5D to 3D with their 3DShapeNets
approach by categorizing each voxel as free space, surface
or occluded, depending on whether it is in front of, on, or
behind the visible surface (i.e., the depth value) from the
depth map. The resulting representation is a 3D binary
voxel grid, which is the input to a CNN with 3D filter
banks. Their method is particularly relevant in the context
of this work, as they are the first to apply CNNs on a 3D
representation. A similar approach is VoxNet [24], which
also uses binary voxel grids and a corresponding 3D CNN
architecture. The advantage of these approaches is that it
can process different sources of 3D data, including LiDAR
point clouds, RGB-D point clouds, and CAD models; we
likewise follow this direction.

An alternative direction is to exploit established 2D CNN
architectures; to this end, 2D data is extracted from the
3D representation. In this context, DeepPano [28] converts
3D shapes into panoramic views; i.e., a cylinder projection
around its principle axis. Current state-of-the-art uses mul-
tiple rendered views, and trains a CNN that can process

Figure 2.1: 3D shape representations, image from [70]

It is with PointNet [69] that it is introduced a method able to consume directly point
clouds. Although it proved to be rather effective in the classification task, this method
lacks in capturing local geometries. For this reason, the same authors developed a new
method, called PointNet++ [71] which applies PointNet hierarchically.
Since then, there have been developed many other methods that work directly on point
clouds and the main researched direction has been trying to emulate the functioning
of a convolutional neural network. Among these methods we can cite PointCNN [56],
ConvPoint [13], KPConv [93], PointMLP [60], and many more.

2.1.1. Background on methods that process point clouds

As we have explained in section 1.3, all the methods that work on point clouds are required
to be 1. invariant w.r.t. permutations, 2. invariant w.r.t. some rigid transformations
and to exploit the 3. interaction among points.

Concerning the “invariance w.r.t. some rigid transformations” property, in order to make
a model invariant w.r.t. rigid translations, it suffices to centre the shape in the origin by
subtracting to each point the mean. In addition to this, it is also possible to rescale the
point cloud, for instance by normalising the coordinates with respect to their standard

2| Related Works 11

deviation or by making them fit in a unit ball. The rescale process is usually performed
when we believe that the size of an object is not of crucial importance or worse, when
it can raise confusion. In most of the methods that we consider they are applied both
centring and rescaling [69], [71], [13], [32].

To address the “interaction among points” property, it is considered quite naturally a
system of neighbourhoods. There are two main ways of defining these neighbourhoods:
KNN and Ball query.

The “invariance w.r.t. permutations” is however probably the most insidious aspect. To
deal with the fact that a point cloud is an unordered set there are three main strategies:
sort the input in a canonical order; train a Recurrent Neural Network on the augmented
data with all the possible permutations; using a symmetric function. The latter is by far
the most common approach, as the former two can be very problematic [80]. In Appendix
A The matter of the order we cover these aspects in deeper detail. All the methods
that we consider in this work adopt the third strategy, although they resort to different
symmetric functions.

KNN and Ball Query

Many methods that process point clouds rely on the creation of a collection of neighbour-
hoods from which to extract the relevant information. There are two main approaches to
define these neighbourhoods: KNN and Ball Query.

KNN stands for K-Nearest-Neighbours (KNN) and, given a centre point x, it consists in
considering as neighbourhood of x its K closest neighbouring points (in the sense of the d2
distance). On the other side, Ball Query consists in setting a radius r and simply taking
a collection of balls of radius r centred at each point. Both methods have their pros and
cons. The KNN approach is the one that raises fewer problems, as it allows points to be
processed in batches, an aspect that eases the training process of the network. This is
due to the fact that each neighbourhood is guaranteed to have K elements. Furthermore,
there is no need to choose a radius, contrary to what happens in Ball Query, where the
radius is an additional hyper-parameter not always easy to be set.

Ball Query, on the other hand, generates neighbourhoods of a fixed scale and thus it
may ease the task of the local feature extractor as regions have a certain coherence [80].
However, we have that a different number of points can fall into each ball. This makes
it non-obvious how to aggregate the input in batches and so points usually need to be
processed separately, which slows down the training.

12 2| Related Works

2.1.2. Consuming directly point clouds

As already mentioned, point clouds allow for a simple and compact representation of 3D
data since they are made only of a set of coordinates and features. Methods that work
directly on point clouds are able to make use of this characteristic and in this way, they
avoid the possible artefacts that can arise during the quantisation step [80].
On the other side, they are required to be invariant under permutations of the elements
of the set and also they need to be not affected by specific rigid transformations, such as
translations.

At the end of 2016, Charles R. Qi et al. proposed what has become a pioneering method
in this direction: PointNet [69]. First of all, this is a network that consumes directly point
clouds and therefore it is not subject to the occlusion and the artefacts that may arise
during the pre-processing step required for Multi-View and Volumetric CNNs. Second,
it uses a symmetric function to summarise the information from each point, in a way
that makes it invariant with respect to the order of the points. Moreover, especially
in its “vanilla” version, it’s a very lightweight architecture that doesn’t require as many
resources and doesn’t have as many parameters as MVCNN [89] or VoxNet [64].

Nevertheless, PointNet has several flaws, the most important of them is the lack of ability
to capture context at different scales. Since the whole shape is used altogether to create the
global descriptor, PointNet does not examine different scales of the object nor takes them
into account. This also leads to a limited ability in recognising fine-grained patterns,
which are overshadowed by the main structure of the object. Another consequence is
the low generalisability to complex scenes, which might make it unsuitable for certain
applications where precision is key.

To mend the shortcomings of PointNet, Charles R. Qi proposed an evolution of this previ-
ous work: PointNet++ [71]. The main idea behind it is to create a cover of the point set
and then extract a spacial encoding from each subset by means of a local feature learner.
In this way it is obtained a new set of points, one for each subset, to each of which is
associated a new descriptor that acts as a feature vector. This process is reiterated grad-
ually reducing the cardinality of the set, until only one single point is left.
To deal with point clouds of non-uniform point density, two different density adaptive lay-
ers have been proposed [71]. This allows PointNet++ to be able to aggregate information
at various scales and to be robust with respect to variations in the points’ density.

2| Related Works 13

2.1.3. PointNet

The core of PointNet comprehends a Multi Layer Perceptron h(·) of output dimension
1024 that is applied independently to every single point of the shape. After this, all the
resulting n vectors are arranged in a matrix of dimensions n × 1024, to which a Max
Pooling operator is applied. The Max Pooling operator simply takes, for each of the
1024 columns, the maximum value and it returns as global shape descriptor a vector of
dimension 1024. This descriptor is then processed by another MLP named γ(·) whose
task is to reduce the dimension from 1024 to k. In the case of a classification problem, k
corresponds to the number of different classes.

As shown in the image 2.2, in the complete version there are two additional mini-networks,
called T-Net, whose purpose is to predict an affine transformation matrix. The idea behind
them is to try to align the shapes in few canonical poses so that all the objects of a certain
class may have a common orientation. This allows to ease the feature extraction process
for the last part of the structure, for example in a classification task.
A ReLU activation function and batch normalisation are used for all layers except for the
output one and dropout is used before the last layer [69].

LQ
SX
W�S
RL
QW
V

SRLQW�IHDWXUHV
RX
WS
XW
�VF
RU
HV

PD[
SRRO

VKDUHG� VKDUHG�

VKDUHG�

Q[
�

Q[
�

Q[
��

Q[
�� Q[����

����

Q��[�����

Q[
��
�

POS�������� POS��������������LQSXW
WUDQVIRUP

IHDWXUH
WUDQVIRUP

POS
���������N�

JOREDO�IHDWXUH

POS��������������

7�1HW

PDWUL[
PXOWLSO\

�[�
WUDQVIRUP

7�1HW

PDWUL[
PXOWLSO\

��[��
WUDQVIRUP

VKDUHG�

POS������P�

RXWSXW�VFRUHV
Q[
P

N

&ODVVLILFDWLRQ�1HWZRUN

6HJPHQWDWLRQ�1HWZRUN

Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then
aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to the
classification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, numbers
in bracket are layer sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.

4. Deep Learning on Point Sets
The architecture of our network (Sec 4.2) is inspired by

the properties of point sets in Rn (Sec 4.1).

4.1. Properties of Point Sets in Rn

Our input is a subset of points from an Euclidean space.
It has three main properties:

• Unordered. Unlike pixel arrays in images or voxel
arrays in volumetric grids, point cloud is a set of points
without specific order. In other words, a network that
consumes N 3D point sets needs to be invariant to N !
permutations of the input set in data feeding order.

• Interaction among points. The points are from a space
with a distance metric. It means that points are not
isolated, and neighboring points form a meaningful
subset. Therefore, the model needs to be able to
capture local structures from nearby points, and the
combinatorial interactions among local structures.

• Invariance under transformations. As a geometric
object, the learned representation of the point set
should be invariant to certain transformations. For
example, rotating and translating points all together
should not modify the global point cloud category nor
the segmentation of the points.

4.2. PointNet Architecture

Our full network architecture is visualized in Fig 2,
where the classification network and the segmentation
network share a great portion of structures. Please read the
caption of Fig 2 for the pipeline.

Our network has three key modules: the max pooling
layer as a symmetric function to aggregate information from

all the points, a local and global information combination
structure, and two joint alignment networks that align both
input points and point features.

We will discuss our reason behind these design choices
in separate paragraphs below.

Symmetry Function for Unordered Input In order
to make a model invariant to input permutation, three
strategies exist: 1) sort input into a canonical order; 2) treat
the input as a sequence to train an RNN, but augment the
training data by all kinds of permutations; 3) use a simple
symmetric function to aggregate the information from each
point. Here, a symmetric function takes n vectors as input
and outputs a new vector that is invariant to the input
order. For example, + and ⇤ operators are symmetric binary
functions.

While sorting sounds like a simple solution, in high
dimensional space there in fact does not exist an ordering
that is stable w.r.t. point perturbations in the general
sense. This can be easily shown by contradiction. If
such an ordering strategy exists, it defines a bijection map
between a high-dimensional space and a 1d real line. It
is not hard to see, to require an ordering to be stable w.r.t
point perturbations is equivalent to requiring that this map
preserves spatial proximity as the dimension reduces, a task
that cannot be achieved in the general case. Therefore,
sorting does not fully resolve the ordering issue, and it’s
hard for a network to learn a consistent mapping from
input to output as the ordering issue persists. As shown in
experiments (Fig 5), we find that applying a MLP directly
on the sorted point set performs poorly, though slightly
better than directly processing an unsorted input.

The idea to use RNN considers the point set as a
sequential signal and hopes that by training the RNN

Figure 2.2: PointNet architecture; in the blue box the classification network, below the
additional part of the segmentation network. Image from [69]

PointNet [69] acted as a watershed, being the first neural network to consume directly
point clouds in an effective and efficient way. It achieved the state of the art without being
so operationally demanding as a MVCNN [89] and without requiring so much memory as
a Volumetric CNN [64]. Its architecture makes it scalable with respect to the number of
points and robust to various types of input corruption.

14 2| Related Works

2.1.4. PointNet++

To overcome the scarce ability of PointNet to capture local structures, C. R. Qi [71]
proposed an evolution that applies PointNet hierarchically on a nested partitioning of
the point cloud. As it is conceptually in continuation with the previous work, this new
network was given the name of PointNet++.

PointNet++ has a hierarchical design in which each stage takes as input a set of points
with the associated features and returns a new set of points with new features. Each
of these stages has been called “set abstraction level” since it processes and performs an
abstraction of the input set of points to produce a new one with fewer elements [71]. A
set abstraction level is made of three elements: a Sampling layer, which samples a subset
from the input point cloud using Furthest Point Sampling (FPS) algorithm; a Grouping
layer that creates a collection of neighbourhoods via Ball Query and a PointNet Layer
that applies a PointNet [69] to each one of the constructed neighbourhoods, extracting in
this way a local descriptor vector.

On account of the above, PointNet++ [71] evolves the structure of PointNet [69] and it
mends one of its most critical shortcomings: capturing context at different scales. Thanks
to its hierarchical structure it is indeed able to take into account and to aggregate features
at several scales. In this way it is capable of exploiting also fine-grained patterns, which
can be beneficial in many tasks. This hierarchical architecture is probably the most
important contribution introduced by PointNet++.

2.1.5. Convolution on point clouds

One of the most prominent directions in point cloud deep learning has been trying to
extend and apply the operating principles of a convolutional neural network to this type
of data. The key point is how to define the convolution for point clouds and the associated
kernel.
In image Convolutional Neural Networks, the kernel is a relatively small matrix of pa-
rameters that is learned during the training process. For each channel, the kernel usually
consists of a square matrix, for instance of dimensions 5× 5. These parameters are then
used to compute a weighted sum of the features, in what is the convolutional formula.
The pixels are arranged on a regular grid and so it comes natural selecting a patch of
the image with the same dimensions of the filter and performing the Hadamard product
between the two. All the resulting values are then summed and in this way are obtained
the new features that will be of the pixel at the patch’s centre.

2| Related Works 15

A general way of defining a convolution for a set of points Xy can be:

ψj(y) = (φ ∗ gj)(y) =
∑

x∈Xy

I∑

i=1

φi(x)gij(x− y) (2.1)

where φi(x) is the ith component of the input feature vector φ(x) associated to x and
ψj(y) is the jth component of the output features ψ(y) of y. Xy is a set of points and it
constitutes the convolutional window.
In this equation, the vector function gj(x−y) acts as the filter and it is deputed to process
the spatial information contained in Xy. It takes as input the relative positions of the
points of Xy with respect to the centroid of the neighbourhood, namely y. This is done
to guarantee the invariance of each component gij(·) with respect to rigid translations
applied to the input points. In addition, gij(·) is applied independently to the coordinates
of a single point, which makes it invariant also to the input’s order.
Similarly to what happens in a classic convolutional layer, also in this case it is possible
having several filters gj : Rd → RI such that their number is equal to J . To each filter
gj it corresponds one output feature ψj and as a result the output feature vector ψ(y)
has dimension J . Each filter is a function defined over the whole space Rd. Furthermore,
every filter gj has I components, one for each input feature φi.

Following this intuition, there have been several proposals of point convolutional formulas,
among which we recall ConvPoint [13], PA-Conv [96], KP-Conv [93], CompositeNet [32],
PointMLP [60], just to mention a few.
In the forthcoming section we explain more in detail the functioning of ConvPoint [13],
as it represents an excellent example of convolution for point clouds. After that, we
present the work of Floris at al: CompositeNet [32]. We devote particular attention to
the composite layers [32] since they are functional to our purposes.

2.1.6. ConvPoint

ConvPoint [13] introduces a convolutional layer for set of points that resembles in basically
every aspect the ones used in image processing. As we have remarked, the kernel of a
convolutional layer that processes images has the same format of an image. Inspired by
this principle, the author [13] decided to make the kernel K of ConvPoint resemble the
input. It is therefore chosen to be explicitly a set of points with some weights associated
to them.

According to the notation that we have adopted so far, the convolutional formula defined

16 2| Related Works

by ConvPoint [13] can be written in the form:

ψj(y) =
∑

x∈Xy

I∑

i=1

φi(x)
M∑

m=1

w̃ijmγm(x− y) (2.2)

in which we have that:

gij(x− y) =
M∑

m=1

w̃ijmγm(x− y)

where w̃ijm are the learnable weights and γm are the weighting functions. These latter
actually depend on (x − y) − cm, which are the differences between the relative position
of the centred input points and the elements cm of the kernel K =

(
{cm}Mm=1, ξ

)
.

Obviously γm(·) must be invariant with respect to permutations of the input points, in a
similar way that the whole network has to be. To fulfil this requirement, the author has
decided to apply independently γm(·) to each point x [13].
In addition, γm(·) needs to be invariant also to rigid translations applied to both the
kernel and the input point cloud. In order to achieve this, A. Boulch opted to use only
the relative coordinates of the input points with respect to the kernel’s elements [13]. In
other words, γm(·) is applied to the difference {x− cm; for m = 1, ..., M} which is the
set of relative positions of x with respect to every element of the kernel.

One thing that has to be noted is that the spatial coordinates are not considered as input
features, unlike what happens for PointNet [69] and PointNet++ [71]. In this formulation,
the coordinates are solely processed by the function γm(·) which is in charge of establish-
ing a relation between the ones of the input and the ones of the kernel. The features, on
the other side, are multiplied together and weighted using the values returned by γm(·).
In ConvPoint [13] we observe a clear separation between the role of the coordinates and
the role of the features as they are not processed altogether. The resulting expression (2.2)
is much more similar to a discrete convolution than the methods that we have previously
analysed.
Similarly to what happens in a discrete convolutional layer, also a ConvPoint’s convolu-
tional layer can be made of several kernels. Instead of having just one kernel, it is indeed
possible choosing many of them; each one will be made of a set of points with its own
coordinates and features. In this way we can have several channels, one for each kernel,
and the output will consist of a vector [13].

In the role of weighting function γ(·), the author [13] has chosen to directly learn a
function by means of a Multi-Later Perceptron. In such a way, no specific assumptions
on the behaviour of γ(·) need to be made. As far as it regards the kernel, the author

2| Related Works 17

has decided to initialise the coordinates {cm}m of its points by randomly sampling them
in a unit sphere [13]. During training they are then treated as parameters and learned
accordingly. All the parameters, including the coordinates {cm}m and the features ξ of
the kernels, are optimised using Stochastic Gradient Descent [103].

ConvPoint: Continuous Convolutions for Point Cloud Processing

Conv. y

If needed, computation of
Spatial neighborhood search

Convolution operation
on each neighborhood

q

...

...

Conv. y

Conv. y

optional {q}

{q}

{q}

Figure 3: Convolutional layer, composed of two steps: the spatial structure computation (selecting {q} if needed by computing
the local neighborhoods of each q) and the convolution operation itself on each neighborhood, as defined in figure 2.

In
pu

t p
oin

t

clo
ud

Label

Convolution
+ BN + ReLU

Point-wise
fully connected

Figure 4: Classification network. It is composed of five con-
volution layer (blue blocks) with progressive point cloud size
reduction (|Q|) and a final fully connected layer (green block).
For all layers |K| = 16.

folowing tables, it correspond to the number between parenthe-
ses (for classification and part segmentation). The influence of
this number is discussed in section 6.3.1.

6.1 Classification

The first experiments are dedicated to points cloud classification.
We experimented on both 2D and 3D point cloud datasets.

Network The network is described in Fig. 4. It is composed
of five convolutions that progressively reduce the point cloud
size to one single point, while increasing the number of channels.
The features associated to this point are the inputs of a linear
layer. This architecture is very similar to the ones that can be
used for image processing (e.g., LeNet [27]).

2D classification: MNIST The 2D experiment is done on
the MNIST dataset. This is a dataset for the classification of
gray scale handwritten digits. The point cloud P = {(p,x)} is
built from the images, using pixel coordinates as point coordi-
nates and, thus, is sampled on a grid. We build two variants of
the dataset: first, point clouds are built with the whole image
and the features associated with each point is the grey level

Table 1: Shape classification. Overall accuracy (OA %) and
class average accuracy (AA, %).

(a) MNIST (b) ModelNet 40

Methods OA

Image-based methods
LeNet [27] 99.20
NiN [32] 99.53

Point-based methods
PointNet++ [40] 99.49
PointCNN [29] 99.54
Ours - Gray levels (16) 99.62
Ours - Black points (16) 99.49

Methods OA AA

Mesh or voxels
Subvolume [39] 89.2
MVCNN [47] 90.1

Points
DGCNN [54] 92.2 90.2
PointNet [38] 89.2 86.2
PointNet++ [40] 90.7
PointCNN [29] 92.2 88.1
KPConv [49] 92.9
Ours - 1024 pts (16) 91.8 88.5
Ours - 2048 pts (16) 92.5 89.6

({x} = {grey level}); second, only the black points are consid-
ered ({x} = {1}).

Results are presented in table 1(a). We compare with both
image CNNs (LeNet [27] and Network in Network [32]) and
point-based methods (PointNet++ [40] and PointCNN [29]).
Scores, averaged over 16 spatial samplings, are competitive
with other methods. More interestingly, we do not observe a
great difference between the two variants (grayscale points or
black points only). In the Gray levels experiment (whole image),
the framework is able to learn from the color value only as the
points do not hold shape-related information. On the contrary,
in the Black points only, it learns from geometry only, which is
a common case for point cloud.

3D classification: ModelNet40 We also experimented on 3D
classification on the ModelNet40 dataset. This dataset is a set of
meshes from 40 various classes (planes, cars, chairs, tables...).
We generated point clouds by randomly sampling points on the
triangular faces of the meshes. In our experiments, we use an
input size of either 1024 or 2048 points for training. Table 1(b)
presents the results. As for 2D classification, we are competitive
with the state of the art concerning point-based classification
approaches.

6.2 Segmentation

6.2.1 Segmentation network

The segmentation network is presented on Fig. 5. It has an
encoder-decoder structure, similar to U-Net, a stack of convolu-

5

Figure 2.3: Architecture of the ConvPoint network used for classification; from [13]

To compute the set of output points of a layer, it is adopted a non-uniform sampling of
the input points, which is carried out by penalising the elements that have already been
drawn once. To each point it is associated a score, which is inversely proportional to the
probability for said point to be selected. At the beginning, each point has a score of 1 and
every time a point y is drawn its score is incremented by 100. This makes it less likely
that the same point will be chosen again, diminishing the chances of a sub-optimal result
[13]. In addition, the scores of the neighbouring points of y are increased by 1 as well,
which is beneficial to ensure better coverage. The points are iteratively drawn according
to this protocol until the desired number is reached. As grouping method it is employed
KNN, since it yields neighbourhoods of the same cardinality that can be processed more
efficiently in mini-batches.

An example of ConvPoint [13] architecture is reported in Fig. 2.3, it is composed of five
convolutional layers and of a fully connected one. The convolutional layers take as input
the shape and progressively reduce the number of points, while increasing the number of
channels. The last convolutional layer reduces the point cloud to a single element, which

18 2| Related Works

can then be fed to the fully connected layer. The architecture resembles the ones that
are employed in image processing, such as LeNet [55]. Batch normalisation and ReLU
activation function have been used after each layer but the last one.

One of the main remarks to be made about the so defined convolutional layer is that it is
agnostic to the object scale. All the point clouds are normalised in a unit ball and therefore
the information about the scale of different objects is lost. This can either be problematic
or not so much, depending on the application. In some cases, such as photogrammetric
point clouds, the scales may not be even available. However, in metric scans, the scale
can be valuable information for easing the task, as some shapes (for instance humans)
tend to have almost always similar dimensions. Nevertheless, as reported by A. Boulch,
removing the normalisation step would cause the kernel and the input points to have
different volumes [13].

This formulation is flexible and computationally efficient [13] and can be used to create
various network architectures for different tasks. In addition, it is robust with respect to
both the input and the neighbourhood size [13]. In essence, ConvPoint is an excellent
example of how the concept of convolution can be extended also to point clouds.

2.1.7. Other convolutional methods

Since the publication of ConvPoint [13], there have been many other proposals of convo-
lutional layers that are able to process point clouds. The basic principles tend to be the
same and to resemble the ones that we have presented, although each network retains its
own peculiarities.

Similarly to ConvPoint, also the authors of KP-Conv [93] have used as kernel a set of points
with some associated weights, however they consider them to be regularly arranged and
their position to be rigid. They adopt Ball Query to construct the convolutional windows
instead of KNN and they employ a linear correlation as weighting function. In addition,
they introduce a deformable version of their kernels, in which some shifts are learnt during
training.

With CompositeNet [32], the authors have introduced two variants of composite layers :
the first, that is the “convolutional composite layer”, defines a new convolutional formula
for point clouds, whereas the second one, called “aggregate composite layer”, relies on a
nonlinear aggregation approach for combining the features and the spatial information.

In PA-Conv [96] the core idea is to “construct the convolution kernel by dynamically
assembling basic weight matrices stored in a Weight Bank, where the coefficients of these

2| Related Works 19

weight matrices are self-adaptively learned from point positions through ScoreNet”.
PointMLP [60] introduces a “lightweight local geometric affine module that adaptively
transforms the point features in a region” and it employs a residual MLP framework.
This said, there are countless more methods that process point clouds in a convolutional
manner, however, due to practical reasons, we cannot consider nor mention them all.
Therefore we have decided to focus our attention on ConvPoint [13], which we have just
presented, and on CompositeNet [32], which we illustrate next.

2.1.8. CompositeNet

In CompositeNet [32] it is introduced a new convolutional layer composed of two elements:
a spatial function s and a semantic function f . The former is in charge of extracting the
information from the spatial arrangement of the input points by processing their coordi-
nates. After that, the latter is responsible for combining the spatial information learned
by s with the features associated with the points.
Thanks to this design the two functions can be customised independently and the com-
plexity of each one can be adjusted without severe repercussions on the other. This allows
a notable flexibility in terms of form and number of parameters. Moreover the function
s acts like an additional regularisation term by extracting and compressing the spatial
information.

To illustrate the design flexibility of the composite layer, the authors have provided two
distinct variants that combine the geometrical information and the features in two dif-
ferent ways. A first one is called “convolutional composite layer” and it is an innovative
approach to formulating point convolution. In addition to this, it is also presented the
“aggregate composite layer”, which implements a nonlinear method to combine the spa-
tial information and the features. Thus it represents a novelty compared to most of the
existing works, which only combine them in a linear fashion [32].

Composite layers

The input of a composite layer is a point cloud (P, φ) and the output returned by it is
another point cloud (Q, ψ). Following the same logic, we have that Q is a set of points in
Rd, whereas ψ(·) is the function that associates to them the new features. The vector of
the coordinates of a point in Q is named y and the dimension of an output feature vector
is J , so we have that ψ(y) ∈ RJ and ψ : Q → RJ . As a matter of fact, y goes also under
the name of centroid, while its relative neighbourhood is called Xy. The neighbourhood
Xy represents the convolutional window.

20 2| Related Works

Point-convolutional operator

Recalling (2.1), the convolution for a set of points Xy can be defined as:

ψj(y) = (φ ∗ gj)(y) =
∑

x∈Xy

I∑

i=1

φi(x)gij(x− y)

where gj : Rd → RI j = 1, ..., J are the filter functions and to each gj it corresponds
one output feature ψj. The vector of the output features ψ(y) has therefore dimension J .
Also in this case each filter gj is a function defined over the whole space Rd and it has I
components, one for each input feature φi.

In the light of the above, the formula of the point convolution performed by a composite
layer [32] can be written, at a very general level, as:

ψj(y) = fj(φ, s)(y) (2.3)

from this expression we can see that, as previously mentioned, the layer is the composition
of a semantic function f(·, ·) which combines the geometrical information extracted by
s(·) with the input features. The semantic function s(·) takes as input the coordinates
of the points in a set Xy, and thus it is a function s : Rd → RK for some K ∈ N.
Subsequently the output of s(·) is processed by the semantic function f(·, ·), alongside
the set of input features {φ(x) : x ∈ Xy}, to generate the vector of output features ψ(y).

In the composite layers, both the spatial function and the semantic one can be customised
independently, without the other being severely affected by this. This flexibility in the
design, especially in terms of the number of parameters, can be of crucial importance
when the datasets are small, where the risk of overfitting is high [32].

Sampling method

Each composite layer receives as input the set of points P and it returns as output another
set of points Q, which has therefore to be computed. The authors [32] have decided to
obtain the coordinates of these output points by following a similar approach to the one
adopted in ConvPoint [13]. In other words, the coordinates of the output points are
obtained by randomly sampling the set P using a penalisation strategy, until the desired
number of points is drawn. This method is computationally lighter than FPS, albeit still
being able to offer a good coverage of the input point cloud.

2| Related Works 21

Grouping method

Analogously to ConvPoint [13], also a composite layer relies on a collection of neighbour-
hoods {Xy}y∈Q to define the convolutional windows. Of the two mainstream approaches,
the authors have decided to opt for KNN [32]. In this way, all the subsets are constructed
to contain the same number of points, fact that allows the input to be processed in
mini-batches. Thanks to this, the optimisation process is more efficient.

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022 1

Composite Layers for Deep Anomaly Detection on
3D Point Clouds

Alberto Floris, Luca Frittoli, Diego Carrera, and Giacomo Boracchi

Abstract—Deep neural networks require specific layers to
process point clouds, as the scattered and irregular location
of points prevents us from using convolutional filters. Here we
introduce the composite layer, a new convolutional operator
for point clouds. The peculiarity of our composite layer is
that it extracts and compresses the spatial information from
the position of points before combining it with their feature
vectors. Compared to well-known point-convolutional layers such
as those of ConvPoint and KPConv, our composite layer provides
additional regularization and guarantees greater flexibility in
terms of design and number of parameters. To demonstrate the
design flexibility, we also define an aggregate composite layer
that combines spatial information and features in a nonlinear
manner, and we use these layers to implement a convolutional
and an aggregate CompositeNet. We train our CompositeNets
to perform classification and, most remarkably, unsupervised
anomaly detection. Our experiments on synthetic and real-world
datasets show that, in both tasks, our CompositeNets outperform
ConvPoint and achieve similar results as KPConv despite having
a much simpler architecture. Moreover, our CompositeNets
substantially outperform existing solutions for anomaly detection
on point clouds.

I. INTRODUCTION

POINT CLOUDS provide a compact yet detailed repre-
sentation of 3D objects and, for this reason, they are

widely employed in several applications such as autonomous
driving [1], [2], topography [3], architecture and heritage
preservation [4]. Point clouds are unordered sets of points in
R3, typically acquired by LiDAR sensors [3], [1] or depth
cameras [5], which are sometimes paired with features like
the color or the normal vector to the surface of the object [6].

The design of deep neural networks that can process point
clouds has been attracting more and more interest in 3D deep
learning [7], starting from PointNet [6]. Such a flourishing
literature is motivated by the intrinsic challenges of training
machine learning models on point clouds. In fact, unlike
images, point clouds cannot be arranged on a regular grid,
where it is possible to define convolutional filters. For this
reason, several point-convolutional layers, namely layers im-
plementing convolutions on point clouds, have been proposed,
two relevant examples being ConvPoint [8] and KPConv [9].

Deep learning research on point clouds has primarily ad-
dressed supervised tasks such as classification or part seg-
mentation [8], [9], [10], [11], [12], [13], while unsupervised

A. Floris is with Skyqraft AB, Stockholm, Sweden. Part of this work was
done during a postgraduate internship at STMicroelectronics.

L. Frittoli and G. Boracchi are with Politecnico di Milano, Dipartimento
di Elettronica, Informazione e Bioingegneria, Milan, Italy.

D. Carrera is with STMicroelectronics, Systems Research and Applications,
Agrate Brianza, Italy

Manuscript received .

y y

Xy

P Q

Xy

�

s(· � y)
f

Fig. 1. Our composite layer: the spatial function s outputs a vector
in RK for each point x belonging to the convolution window Xy ,
where y is the output point. The semantic function combines the input
features � and the output of the spatial function {s(x� y)}x2Xy to
produce the output feature vector (y).

problems have been much less investigated. Moreover, most
of the anomaly detection algorithms for point clouds concern
very specific scenarios [14], [15], and typically resort to
ad-hoc feature extractors. Needless to say, many industrial
and quality inspection scenarios would benefit from effective
deep neural networks for anomaly detection on point clouds
since these do not require feature engineering. To the best of
our knowledge, the only deep learning solution for anomaly
detection on point clouds is a variational autoencoder [16].

In this work we propose a novel composite layer (Fig. 1),
which is a flexible alternative to the existing point convolutions
in deep neural networks for point clouds. We define the
composite layer as the composition of two learnable functions
defined over each convolution window Xy , namely a neighbor-
hood of each point y of the output point cloud. The first, called
spatial function s, extracts and compresses the information
from the spatial arrangement of the points in Xy . The second,
called semantic function f , combines the spatial information
extracted by s with the feature vectors �(x) 2 RI associated
to each point x 2 Xy . Similarly to convolutional layers in
CNNs for images, our semantic function stacks J filters that
share the spatial information and produce the output features
 (y) 2 RJ . By compressing the spatial information through s
before combining it with the features, our composite layer adds
a form of regularization compared to the point-convolutional
layers from the literature.

Another major advantage of the composite layer is that

ar
X

iv
:2

20
9.

11
79

6v
1

 [c
s.C

V
]

23
 S

ep
 2

02
2

Figure 2.4: Scheme of the functioning of a Composite layer; on the left there are the input
points P grouped in subsets, on the right the output points Q. Below, it is presented the
depiction of the operations performed by the spatial function s, which takes as input Xy,
and by the semantic function f that receives as input the output of s and the features φ.
Image from [32]

2.1.9. Convolutional Composite Layer

The two main components of a convolutional composite layer [32] are the spatial function
s and the semantic function f . In this section, we investigate further in detail how these
elements are implemented.

Spatial Function

The authors, inspired by previous works [93], [5], opted to use a Radial Basis Function
Network (RBFN) with M centers as spatial function s. This choice comes from the fact
that a RBFN has the same approximation capability of a Multi-Layer Perceptron [65],

22 2| Related Works

but still, it relies on fewer hyper-parameters.

The function s is vector-valued and has output dimension K, which controls the expres-
siveness of the spatial information. On the same line of thought of ConvPoint [13], the
points in a neighbourhood Xy are firstly centred by subtracting to them the coordinates
of the centroid y. This way of proceeding, we remind, allows the function to be invariant
to rigid translations of the input points. After that, it is taken their relative positions
with respect to the elements of the kernel, as to make the functions dependent only on
this difference. To each kernel, there are associated M centers cm which are points in Rd

as well. The result is that each component sk receives as input the vector (x − y) − cm

and it is defined as:

sk(x− y) =
M∑

m=1

vkmh(∥(x− y)− cm∥) (2.4)

where vkm are learnable weights ∀k ∈ {1, ..., K}, ∀m ∈ {1, ..., M}. As far as it regards
the choice of the Radial Basis Function h(·), it is adopted a Gaussian function of the
form:

h(∥(x− y)− cm∥) = exp

{
− ∥(x− y)− cm∥2

2σ2

}
(2.5)

in which σ is a hyper-parameter common to all the radial basis functions [32].
Similarly to what happens with ConvPoint [13], the positions of the centers {cm} are
parameters that are learned during training.

To better convey their reasoning, the authors have depicted these operations also in a
matricial form [Img. 2.5 (a)]. In this scenario, the spatial function can be represented as
the multiplication between a matrix V = (vkm) and a matrix H, which stores the output
of the functions h(·). V is the matrix of the weights vkm and it has dimensions K ×M .
On the other side, H contains the values h(∥(x− y)− cm∥) and it has M rows, each one
corresponding to a center cm, and |Xy| columns, one for each point x ∈ Xy. Therefore H
is of size M × |Xy| and so the multiplication is well defined, with the resulting product
matrix V H having dimensions K × |Xy|. Since it is the case that K < M , we have that
the spatial function performs a compression of the information contained in the columns
of H to a K-dimensional space [32].

2| Related Works 23

Semantic function

In this case, the authors [32] wanted the resulting operation to be in the form of a point
convolution, therefore the semantic function f has been defined as:

ψj(y) = fj(φ, s)(y) =
∑

x∈Xy

I∑

i=1

φi(x)
K∑

k=1

wijksk(x− y) (2.6)

In this formula it can be recognised the product between the features of the points x ∈ Xy

within the convolutional window and the filter functions gij(x − y). Indeed, by setting
gij(x − y) =

∑K
k=1wijksk(x − y) we have that the above equation resembles the general

formula (2.1) that we have introduced at the beginning of this chapter.
The weights wijk are learnable parameters ∀i ∈ {1, ..., I}, ∀j ∈ {1, ..., J} and ∀k ∈
{1, ..., K} corresponding to each input feature, output feature and component of the
spatial function, respectively.SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022 5

 (y)

J = I

�

|Xy|

⌦
I

W

K

J

K

V

M

M

H

|Xy|

 (y)

J = I

�

|Xy|

⌦
I

fW

M

J

M

H

|Xy|

(a) Convolutional composite layer

(b) ConvPoint / KPConv

Fig. 2. The scheme illustrating the operations in point-convolutional layers
expressed in matrix form. (a) Our convolutional composite layer (5); (b)
the well-known point-convolutional layers ConvPoint and KPConv. Here
⌦ indicates the Frobenius inner product. In practice, our composite layer
decomposes the matrix fW of ConvPoint and KPConv into the product W ·V ,
enabling more flexibility in terms of number of parameters.

to the location of the output point y. We define the k-th
component of s as:

sk(x � y) =

MX

m=1

vkm h(k(x � y) � cmk), (4)

where vkm are learnable parameters, for k 2 {1, ..., K}. We
employ a Gaussian function h(r) = exp(r2/2�2), where
r = k(x � y) � cmk, � is a hyperparameter common to all
RBFs as in [11]. The position of the centers {cm} is learned
during training. The spatial function can be expressed as a
multiplication between a weight matrix V = (vkm) and the
matrix H , which contain the RBF output h(k(x�y)�cmk) for
each point x 2 Xy and RBF center cm for m 2 {1, . . . , M},
as shown in Fig. 2(a). Thus, the spatial function compresses
the spatial information by projecting each column of H to a
K-dimensional space, where K < M is a hyperparameter.
Semantic Function. To produce an equivalent formulation of
point convolution (1) from our composite layer (3) we define
the semantic function as:

 j(y) = fj(�, s)(y) =
X

x2Xy

IX

i=1

�i(x)

KX

k=1

wijk sk(x � y)

| {z }
gij(x�y)

,

(5)
where the indices i, j, k refer to the i-th component of the
input feature vector, the j-th output feature vector and the k-
th component of the spatial function, and wijk are learnable
parameters. As shown in Fig. 2(a), the most inner sum in
(5) can be expressed as a multiplication of the projections
V H against each of the J slices of a tensor W = (wijk),
which contains the learnable weights of each convolution filter.
Finally, each output feature j(y) can be expressed as the
Frobenius inner product between the matrix � containing the
features �i(x) for x 2 Xy and i 2 {1, . . . , I} and the j-th
slice of WV H .

Comparison with point-convolutions. The formulation of
our composite convolution is equivalent to point convolution
since the most inner sum in (5) can be interpreted as the
filter function gij in (1). In Fig. 2 we compare the matrix
operations of our convolutional composite layer with two
mainstream point-convolutional layers, namely ConvPoint [8]
and KPConv [9]. When applied to a convolution window
Xy , all these layers combine the input features of the points
x 2 Xy , grouped in the matrix �, and the spatial information
extracted from the coordinates of the points encoded in the
matrix H . While our layer extracts the spatial information in
H by the spatial function (4) and then shares it among the
filters (5), KPConv and ConvPoint directly learn a huge weight
tensor fW to combine spatial information and features.

Therefore, our convolutional composite layer has two major
advantages over the existing point-convolutional layers: i) it
performs an implicit regularization by decomposing fW into
the product W ·V , which has lower rank than fW , and ii) it is
more flexible since it allows to increase the complexity (and
therefore the descriptive power) of the spatial function without
dramatically increasing the number of parameters of the layer,
as we show in Section V-D. In particular, the complexity of
the spatial function can be tuned by increasing the number
of RBF centers M . Similarly, in KPConv and ConvPoint, the
number of centers M allows to tune the complexity of the
network processing the coordinates of the points x 2 Xy .
However, the size of fW , which collects the vast majority of the
parameters of KPConv and ConvPoint layers, grows linearly
with M , while in our composite layer only the size of V ,
which contains substantially fewer parameters than fW , grows
with M (see Fig. 2).

B. Aggregate Composite Layer

We also define an aggregate composite layer, implementing
a nonlinear semantic function f that aggregates the spatial
information extracted by s (4) and the input features �
differently from point-convolution (1). In particular, we adopt
pooling operators defined as the component-wise mean Ms

and standard deviation Ss of the output of the spatial function
over the points x 2 Xy , namely:

[Ms(y)]k =
1

|Xy|
X

x2Xy

sk(x � y),

[Ss(y)]k =

sP
x2Xy

(sk(x � y) � [Ms(y)]k)2

|Xy| � 1
.

Thus, the pooling functions Ms and Ss receive as input |Xy|
vectors in RK (the output of the spatial function s), and
return a single vector in RK each. Analogously, we define
M�(y), S�(y) 2 RI as the component-wise mean and stan-
dard deviation of the features of the points in the convolution
window Xy . Then, we concatenate these in two vectors ✓(y) =
[Ms(y); Ss(y)] 2 R2K and ⌘(y) = [M�(y); S�(y)] 2 R2I , and
combine them as:

fj(�, s)(y) = ✓(y)>Wj⌘(y) =
2IX

i=1

2KX

k=1

✓k(y)wijk⌘i(y), (6)

Figure 2.5: Illustration in a matricial form of the operations performed by point-
convolutional layers; from [32]

From a matricial point of view, this operation can be expressed as the multiplication of
three entities [Img. 2.5 (a)]. The matrix representing the filter functions gij(x − y) is
given by the product between the matrix V H and the tensor W = (wijk), which contains
all the various weights wijk. We remember that V H stores the values of the spatial

24 2| Related Works

function and it is itself the result of the multiplication between the weights V = (vkm)

and H, as discussed in the previous subsection. The tensor W has size I × K × J and
the multiplication is performed along the dimension K, therefore the result is a tensor
W VH of size I × |Xy| × J . Ultimately, each component ψj(y) of the output feature
vector can be represented as the Frobenius inner product between the matrix Φ and the
j-th slice of W VH. Φ contains the input features φi(x), the vectors φ(x) are arranged
on the columns and so Φ is of dimensions I × |Xy|. The final outcome is the vector ψ(y)
which has length J .

Comparison with ConvPoint

As explained above, the computations performed by a composite convolutional layer can
be expressed as a product between Φ and W (V H). The latter tensor comes from the
multiplication of W , V and H, which have respectively sizes I × K × J , K × M and
M × |Xy|.
Following the same way of reasoning, we now investigate how the operations carried out
by ConvPoint [13] would be represented. In ConvPoint it is implemented another exam-
ple of point convolution, which can be taken as prototypical since the majority of point
convolutional layers have a very similar structure. Studying it from a matricial point of
view therefore allows us to better understand how a composite layer relates to the rest of
the literature.
The equation that describes the point convolution of ConvPoint we recall to be:

ψj(y) =
∑

x∈Xy

I∑

i=1

φi(x)
M∑

m=1

w̃ijmγm(x− y)

The values of the weighting functions γm(x− y) give rise to a matrix H of size M × |Xy|,
since the kernel has M elements and the cardinality of each neighbourhood is |Xy|. In a
similar way, the weights w̃ijm can be stored in a tensor W̃ which has dimensions I×M×J .
The matrix H is of the same size of the one that is found in the formulation of the
composite layer, so they are similar under this aspect. However, in ConvPoint [Img. 2.5
(b)] we have that H is multiplied directly by W̃ , whereas in CompositeNet [Img. 2.5 (a)]
V first multiplies H and then their product is multiplied by W . The matrix of the input
features Φ is multiplied in the same way in both cases to the tensors W̃ and W .

Inspecting more carefully the differences displayed by the image 2.5, we have that W̃
from ConvPoint comprehends I ·M · J parameters, whilst in W and V are involved a
total of I · K · J + K · M parameters. Since K is set to be lower than M (K < M)

2| Related Works 25

[32], we have that in the latter case the total number of parameters can be significantly
lower than the former. Moreover, in a convolutional composite layer it is possible to boost
the complexity of the spacial function without causing an enormous increase in the total
number of parameters. This is due to the fact that increasing the complexity of the spatial
function translates into increasing the number of centers, namely M . In a composite layer
this is done without having necessarily to change K and, consequently, the dimension of
W [32]. On the contrary, doing such a thing for ConvPoint implies changing the size of
the three dimensional tensor W̃ , which results in many more parameters. On account of
the above, in a composite layer the multiplication between W and H allows us to tune the
expressiveness of the spatial and of the semantic function separately, as the two concepts
are decoupled.

The authors suggest that it is possible improving the classification accuracy of Compos-
iteNet [32] without having to considerably increase the number of parameters. Further-
more, they demonstrate that the number of learnable weights can be effectively reduced
without jeopardising the performance [32].

2.1.10. Aggregate composite layer

In addition to the convolutional composite layers, the authors have implemented also a
variant that combines the spatial information and the features in a non-linear manner [32].
The spatial function s has the same design of the one that we have presented when talking
about the convolutional version in section 2.1.9, namely it is implemented by means of a
Radial Basis Function Network. However, in this layer the semantic function f aggregates
the geometrical information extracted by s with the input features φ by resorting to a
non-linear operation. More into the details, given the output sk(x − y) of the semantic
function for every x ∈ Xy, firstly they are defined the component-wise mean Ms(y) and
the component-wise standard deviation Ss(y), namely:

[
Ms(y)

]
k
=

1

|Xy|
∑

x∈Xy

sk(x− y)

[
Ss(y)

]
k
=

√
1

|Xy| − 1

∑

x∈Xy

{
sk(x− y)−

[
Ms(y)

]
k

}2

We observe that s(x− y) are vectors in RK , from which it follows that also Ms(y) ∈ RK

and Ss(y) ∈ RK .

In an analogous manner, they are computed the point-wise mean and the point-wise

26 2| Related Works

standard deviation of the input feature vector φ(x):

[
Mφ(y)

]
k
=

1

|Xy|
∑

x∈Xy

φk(x)

[
Sφ(y)

]
k
=

√
1

|Xy| − 1

∑

x∈Xy

{
φk(x)−

[
Mφ(y)

]
k

}2

The input feature vectors have dimension I, as φ(x) ∈ RI , therefrom we have that
Mφ(y) ∈ RI and Sφ(y) ∈ RI as well. The point-wise mean and standard deviation
act like pooling operators that receive |Xy| elements each and condense the contained
information in only one vector of their same dimension.

Once in possession of the above components, the first two vectors are concatenated and
so do the last two; this gives rise to:

θ(y) =
[
Ms(y), Ss(y)

]
η(y) =

[
Mφ(y), Sφ(y)

]

As a consequence we have that θ(y) ∈ R2K and η(y) ∈ R2I .

Finally, the semantic function f is defined as:

ψj(y) = fj(φ, s)(y) = θ(y)T Wj η(y) =
2I∑

i=1

2K∑

k=1

θk(y)
T wijk ηi(y) (2.7)

where Wj is a matrix of size 2K × 2I and it is the j-th slice of the 3D tensor W that in
this case has dimensions 2K × J × 2I.
The concatenation of the two vectors guarantees that the semantic function is nonlinear.
Moreover, by making the network learn from the mean and standard deviation, it is
introduced an additional form of regularisation [32].

2| Related Works 27

2.2. Anomaly Detection

In recent years, thanks to the development of deep learning approaches, it has been wit-
nessed a renewed interest in the anomaly detection task.
Anomaly detection is a well established research area in statistics, with the first doc-
umented methods that date back to the 19th century (such as Edgeworth 1887 [24]),
although there is every reason to believe that it was already studied prior to that period.
Since then several methods have been introduced to deal with this problem and the
proposed solutions vary from density based models, reconstruction principles, generative
models, decision boundaries, transformation based methods, and many more.

Anomaly detection methods have found application in a miscellaneous assortment of
sectors, that varies from cybersecurity [62, 67], fraud detection, insurance, medicine
[18, 87, 90], telecommunication [12, 102], quality control, fault and damage detection
[74, 101], infrastructures monitoring [101] and many more [77].

2.2.1. The type of supervision

Broadly speaking, anomaly detection techniques can be divided into three categories,
depending on the use of labelled data.
A first group is the one of Supervised methods, which require an extensive dataset of
labeled data, both for the normal class and, more critically, for the anomalies. This
approach is not much taken into consideration because of one major obstacle: the lack of
such datasets. A second category is called Semi-supervised anomaly detection, in which
it is assumed that only one portion of the data is labelled. The third class, and by far the
most relevant and commonly studied, is the one of Unsupervised approaches, in which
the data are unlabelled.

In most of real-world scenarios, anomalies are rare and can occur in variegated forms,
therefore making it hard to construct an extensive dataset. It is the very nature of
anomalies, namely the high heterogeneity and the unpredictability, that makes it difficult
and expensive to characterise all notions of anomalousness. The latter are therefore failed
to be captured in the training data, fact that often leads a supervised (or semi-supervised)
method to perform poorly. It is even the case that supervised methods perform worse
than a their supervised counterpart when trained on the same dataset [77]. The causes
of this behaviour are once again to be found in the exposure of the supervised method
only to a restricted variety of anomalies, which is not fully representative and thus makes
the method ineffective. All of the above is the reason why the first two categories are

28 2| Related Works

of less interest than the third one, which is consequently also the most investigated:
unsupervised anomaly detection.

2.2.2. Classical methods

In the years numerous statistical approaches have been proposed. The traditional methods
comprehend:

• density based methods, in which an observation is deemed anomalous if it is not
generated by the stochastic model assumed [3], [86], [6], [9];

• spectral techniques, that map the data to a lower dimensional space where anoma-
lies appear to be different from normal observations, such as Principal Component
Analysis (PCA) [45], Kernel PCA [42], [83] and Robust PCA[43], [88]

• clustering based, which rely on the principle that normal instances belong to a cluster
in the data, while anomalies do not, like k-Means [52], Kernel Density Estimator
(KDE) [47], Gaussian Mixture Models (GMM) [53], DBSCAN [28], ROCK [37],
SNN clustering [26], WaveCluster algorithm [84]

• Nearest Neighbour based, that check the distances between the kth nearest neighbors
[14], [27], [2], [100]

Other types of methods rely on a one-class classification approach, for instance, One-Class
Support Vector Machine (OCSVM) [82] and Support Vector Data Description (SVDD)
[92], which both learn a decision boundary in the data. In the last decade have been
proposed also ensemble methods, that aim to explicitly isolate anomalies from the rest of
normal data, such as Isolation Forest [58].

OC-SVM, which stands for One Class Support Vector Machine, is a well-established ap-
proach also outside the realm of anomaly detection. In essence, its objective is to find a
separating hyperplane in some feature space. The feature space can in theory be the orig-
inal input space X , although, since the drawn decision boundary is linear, this is usually
deemed to be not sufficiently expressive. A more suitable feature space can be represented
by a RKHS, i.e. Reproducing Kernel Hilbert Space; in this case we talk about Kernel
OC-SVM. Despite being still a shallow method, the fact that the hyperplane is sought
after in a more complex feature space (often of infinite dimension) has as consequence
that the decision boundary looks nonlinear when projected back into X . In this way, it
is possible obtaining a nonlinear decision boundary that more easily divides the normal
data from the anomalies.

2| Related Works 29

Another family of models is made of the ones inspired by the Support Vector Data De-
scriptor [92]. The objective of SVDD can be shown to be conceptually related to the
one of OC-SVM [16], however in this case the boundary consists in a hyper-sphere that
encompasses the normal class. The task they solve translates into finding the minimum
enclosing volume of the normal class.
Likewise to OC-SVM, there exists also kernelised versions of SVDD [91], which consider
a more elaborated feature space induced by a kernel and draw the decision boundary in
it. Once again, when transferred back into the original input space, the boundary will no
more have the shape of a perfect hyper-sphere and this allows a higher expressiveness.

2.2.3. The Deep Learning Era

With the advent of Deep Learning, many have tried to extend these techniques also to the
field of Anomaly Detection. The great advantage of a deep learning based method is that
it does not require the manual feature engineering process, which, especially for complex
problems, can represent a burden. Conversely, Deep Learning allows an automated feature
learning process, which in many areas has brought drastic improvements in performance,
such as in image processing. The proposed approaches rely on different principles, among
which we recount the density based ones [49], deep one class classifiers, reconstruction
models [35], [81] and transformation learning [34].

2.2.4. Generative models

A first direction consists in modelling the distribution of the normal class, fact that in
the deep learning scenario is done by using a deep neural network. This approach is in
the same line of thought of classical methods such as Gaussian Mixture Models [39, 66],
histogram estimators [23] and kernel density estimators (KDE) [23, 47]. These shallow
methods however require an enormous amount of data in order to retain a good accuracy
when the dimension of the feature space increases. This effect is known as the curse of
dimensionality and, by employing a deep model, the underlying idea is to avoid it.

Examples of these methods are Variational Autoencoders (VAE) [49] and Generative
Adversarial Networks (GAN) [35]. The aim of these neural generative models is to learn
a function that maps the elements sampled from a simple input distribution Q to the
distribution P+ of the normal class. The function is modelled by means of a neural network
and as input distribution, for simplicity, it is usually considered a uniform Gaussian. In
Variational Autoencoders, as anomaly score it can be used either an estimate of the
likelihood of an observation of belonging to the normal class, either the reconstruction

30 2| Related Works

probability [1].

As far as it regards GANs [35], they are composed of two networks: a generator G and
a discriminator D. The task of the generator, as the name suggests, is to generate an
element of the input space X starting from a point in a latent space Z, on which it can
be cast a simple input distribution. On the other hand, the discriminator D is trained to
distinguish between the elements generated by G and the samples from the normal class.
As anomaly detection score, the authors of AnoGAN [81] recommend for instance of using
a convex combination between the reconstruction loss and the discrimination loss.

2.2.5. Reconstruction models

A second family of methods is based on the idea of embedding the input in a lower
dimensional space and subsequently trying to reconstruct it. These are among the earliest
deep learning approaches applied to the field of anomaly detection [44], [40] and are among
the most common.
The goal of a deep reconstruction method such as [44], [40] is to learn two functions ϕE

and ϕD. The first function ϕE performs a compression of the input data u to the latent
space, based upon which ϕD has to reconstruct back the original element. If we do not
constrain the dimension of the latent space to be smaller than the input space, a trivial
optimal solution would consist in taking the identity function ϕD◦ϕE(·) = I(·). However,
by requiring that the latent space has a lower dimension, the model has to learn a lower
dimensional representation of the input, in what can be considered to be a bottleneck.

The model is trained using solely the data from the normal class, therefore it is optimised
to reconstruct exclusively the normal instances. As a consequence, when an anomaly is
fed to the model, the latter will very likely fail to meticulously reconstruct the element.
On this account, as anomaly score it is usually employed some kind of measure of the
reconstruction error, for instance the square norm of the difference between the original
input and the reconstructed version:

S(u) = ∥u− ϕD ◦ ϕE(u)∥2

In the years these methods have proven to be rather effective at detecting anomalies,
nevertheless, it has to be pointed out that this strategy has a quite remarkable downsize.
Strictly speaking, these networks are trained to perform another task rather than anomaly
detection and they are then adapted to the latter use. Indeed, in order to be able to
discern between normal and anomalous instances, the model is required to learn how to

2| Related Works 31

reconstruct the whole input, which is a very demanding task. Therefore, these models
are called to solve a significantly more difficult problem than just a binary classification,
aspect that requires a lot of resources and it makes these approaches rather inefficient.

2.2.6. Decision boundary based

The task of anomaly detection can also be seen as finding a decision boundary that allows
the model to discriminate between normal elements and anomalies with a low error. Some
traditional methods fall within this category as well, and, among the most famous types,
it is worth mentioning OC-SVM [82] and SVDD [92].

The common source of concern for this family of methods is that the engineering of the
feature space may be non-trivial. In principle it has to be noted that it is also possible
creating handcrafted features (for instance by taking the product of some dimensions),
although this usually requires a lot of intelligence about the problem.
If working in the input space X yields scarce performance, creating handcrafted features
is complicated, and using the features induced by a kernel still requires a thorough ex-
ploration of the possible choices, with the advent of Deep Learning it has been tried to
develop deep versions of these approaches to circumvent all the aforementioned issues.
The main benefit of the deep learning counterparts consists in removing the burden of
feature engineering via learning the features directly during the optimisation process [54].
To this end, many works have been proposed, among which we recall Deep SVDD [78],
[79], [33] and deep OC-SVM variants [25], [15]. For sake of clarity, in the following section
we give an example of a deep single class classifier by illustrating the principles behind
Deep SVDD [78].

Deep SVDD

In the work of Ruff et al [78] it is introduced a new model for anomaly detection called
Deep Support Vector Data Descriptor, which takes inspiration from the Kernel SVDD
and other traditional non-deep methods. The main idea is to train a neural network to
learn a representation of the inputs, while at the same time minimising the volume of an
hyper-sphere enclosing the learnt representations. By minimising the volume, the network
is encouraged to extract the common factors of variation since it has to closely map the
elements to the center of the sphere [78].

More precisely, given an input space X ⊆ RN , a set of training data D = {ui}ni=1 such that
D ⊂,X and an output space Z ⊆ Rp; it is considered a neural network ϕ(· ;W) : X → Z
with L layers of weights W l and W = {W l}Ll=1. For each element u ∈ X of the input

32 2| Related Works

space, ϕ(u ;W) ∈ Z is its representation in the feature space Z produced by ϕ. The goal
of Deep SVDD is therefore to learn the parameters W of the network while simultaneously
minimising the volume of an hypersphere in Z that encloses the representations ϕ(u ;W).
The hypersphere is centred at a point c ∈ Z and it has radius R > 0.

A first version of this method is called soft-margin Deep SVDD and it takes its name
from the fact that it allows a small portion of the input elements of being outside of the
hyper-sphere. Its objective can be formulated as:

min
R,W

[
R2 +

1

ν n

n∑

i=1

max
{
∥ϕ(u; W)− c∥2 −R2, 0

}
+
λ

2

L∑

l=1

∥W l∥2F
]

(2.8)

From this expression we can see that the first term is the squared radius R2 and hence
minimising it implies shrinking the hyper-sphere. As far as it regards the second term,
this is zero if the vector ϕ(ui; W) is inside the hyper-sphere and it is equal to

∥ϕ(ui; W)− c ∥2 −R2 > 0

if it falls outside of it. Hence, this allows elements to be mapped outside of the bounded
ball, although they are discouraged by the minimisation mechanism. For this reason the
method is called soft-margin. ν ∈ (0, 1] is a hyper-parameter that controls the tradeoff
between the volume of the sphere and the violations of the boundary [78]; in a certain
sense we can say that it controls the softness of the margin. The third term consists in
the sum of the Frobenius norm of the weights of each layer and it has a regularisation
purpose; λ > 0 decides the magnitude of this effect.

As a result of the optimisation process, the normal instances are mapped near the center
c and within the hypersphere, whereas anomalies will very likely fall outside of this ball.

The objective function of the soft-margin Deep SVDD is constructed in such a way that
it can also deal with anomalies during the training phase. However, in the framework of
anomaly detection, it can be assumed that most of the data are normal. Actually, it is
very often the case that all the available elements belong to the normal class, as it happens
in unsupervised anomaly detection. Taking this remark into account, the authors have
proposed also a simplified version, which has been called One-Class Deep SVDD. The
optimisation problem that has been developed is:

min
W

[
1

n

n∑

i=1

∥ϕ(ui; W)− c ∥2 + λ

2

L∑

l=1

∥W l∥2F
]

(2.9)

2| Related Works 33

Once again the last term serves a regularisation purpose and is equal to the one of the
previous formulation (2.8). However, in this expression the radius and the penalties in
case of violation of the boundary have been substituted by a term that accounts for the
distance of the elements from the center of the hyper-sphere. This term is still able to
incentive the mapped elements to be close to the center c in the feature space Z without
explicitly requiring the shrinkage of the radius. Indeed, instead of minimising the radius
directly, it minimises the average distance of the representations from the center, process
that can be done in presence of solely normal elements.

After having trained any of the two models, quite naturally, it can be taken as anomaly
score of an element u ∈ X the distance from the center c of its representation ϕ(u; W∗):

s(u) = ∥ϕ(u; W∗)− c ∥2 (2.10)

where W∗ refers to the parameters of the trained model, which ideally correspond to the
optimal ones.

The main drawback of the Deep SVDD model is that it can suffer from a rather insidious
aspect, that goes under the name of representation collapse. Up to now it has not been
mentioned how to set the hyper-sphere’s center c, which, as it turns out, is a very delicate
matter. Since we are in the deep learning field, one might think that a good solution
would be of considering it as a parameter and let the algorithm learn it during the training
process. Although this may sound reasonable, letting the model learn the center c, brings
to the collapse of the hyper-sphere. More precisely, if we consider all the weights of the
network to be zero, the latter maps all the inputs to a same point c0 = 0. Hence, if it is
possible that c = c0, we have all the elements are mapped to the origin c0 = 0 and that
the radius results to be equal to zero R∗ = 0, hence an optimal solution. For this reason
the authors recommend fixing the center c a-priori and they suggest empirically setting c
as the average of the network representations when performing a first initial forward pass
of some training data [78]. In addition, it goes without saying that setting c = 0 has to
be avoided as well, since it would lead to the same effect. Another problem is that, if the
layers of the network have a bias term, this will once more give rise to a trivial optimal
solution in which all the weights but the biases are zero. This is because it is possible
that the network learns a constant mapping to a vector c. Moreover, the authors reported
that also the use of bounded activation functions, such as a sigmoid, could act like a bias
term when they are saturated. On this account, in a Deep SVDD model all the activation
functions should be unbounded, for instance like a ReLU function [78].

In outline, when implementing a Deep SVDD model, it has to be kept in mind that the

34 2| Related Works

center c has to be fixed and to be different from zero, all the bias terms from the layers
need to be removed and the activation functions employed have to be unbounded, such as
ReLU. Using these precautions, the authors have successfully trained Depp SVDD models
for the task of anomaly detection on several datasets, such as MNIST [55] and CIFAR-10
[50], obtaining good results. From this we can conclude that, although the training can
be rather delicate, a Deep SVDD model is capable of reaching remarkable performance.

Deep Robust One Class Classification (DROCC)

In 2020, Goyal et al proposed a work [36] that shares many core aspects with Deep SVDD
[78], although it is designed to be more robust to the representation collapse. From this
comes its name: DROCC, which stands for Deep Robust One Class Classification.

DROCC is based on the assumption that the normal data lies on a low-dimensional
manifold that can be locally approximated with a Euclidean space and that is well sampled
in the training data [36]. The elements are deemed to be anomalous if they lie outside
the union of a collection of hyperspheres centred at some typical training points [36].
In addition, this allows the generation of synthetic anomalous data by a gradient ascent
phase during training, in what resembles an adversarial search. In this way it is found
the most adversarial element, which is then added to the set of anomalies. The model
is optimised to discriminate between the normal data and the progressively generated
anomalies, fact that encourages it to learn an appropriate representation. This is similar
to what happens in the case of Deep SVDD [78].

Let RN be the input space and denote by D = {ui}ni=1 the set of training data with
ui ∈ RN ∀i = 1, ..., n. It is considered a function ϕθ(·) : RN → {0, 1} such that
ϕθ(u) = 0 if u belongs to the normal class and ϕθ(u) = 1 if u is an anomaly. In this case
ϕθ(·) is modelled by a neural network and θ corresponds to the set of learnable weights.

Given a neural network ϕθ(·) and a radius r > 0, the objective of DROCC is to estimate
the parameters θ̂. In order to achieve this, it is minimised the loss LDROCC defined as:

LDROCC =
n∑

i=1

[
ℓ(ϕθ(ui), 0) + µ max

ũi∈Ni(r)
ℓ(ϕθ(ũi), 1)

]
+ λ∥ θ ∥2 (2.11)

where:

Ni(r) :=
{
∥ ũi − ui ∥2 ≤ γ · r; r ≤ ∥ ũi − uj ∥2 ∀j = 1, ..., n

}
(2.12)

Moreover λ > 0 and µ > 0 are hyper-parameters of the loss LDROCC and they are mixing
coefficients. The term λ∥ θ ∥2 serves a regularisation purpose.

2| Related Works 35

Ni(r) defines the set of the elements ũi off the manifold, which are the ones at distance
greater than r from every training point (i.e. ∥ ũi−uj ∥2 ≥ r, ∀j = 1, ..., n). In addition,
it is considered an upper bound γ · r, which is of use for regularising the optimisation
problem, as it limits the adversarial search of anomalies inside the ball ∥ ũi − ui ∥2 ≤ γ · r
centered at ui and of radius γ · r. In this expression γ is another hyper-parameter and it
is such that γ ≥ 1.
In (2.11), ℓ is a classification loss function, with ℓ : R× R → R, and its aim is to classify
the normal elements ui as label "0" and the generated anomalous examples ũi as label
"1" [36]. In the role of ℓ it can be chosen any classification loss, for instance, the authors
[36] opted for a classic cross-entropy loss.

One of the key points of DROCC is the generation of negative examples by means of a
gradient ascent phase. More precisely, given an element z ∈ RN , the objective is to find:

ũi = arg min
u∈RN

∥u− z ∥2 s.t. u ∈ Ni(r) (2.13)

Ideally, Ni(r) contains elements that are anomalous since they are at least at distance
r from every element of the normal class. However, the authors report that taking into
consideration all of the elements in the normal class, as in (2.12), is too computationally
challenging [36], therefore they redefine the set Ni(r) to be:

Ni(r) :=
{
r ≤ ∥ ũi − ui ∥2 ≤ γ · r

}
(2.14)

At this regard, the authors state that, since the normal class is assumed to lie on a low
dimensional manifold of RN , the adversarial search in Ni(r) as defined in (2.14) yields
an element which empirically does not belong to the normal class [36]. In addition they
suggest giving less weight to the classification loss of the generated negative example in
order to guard against possible non-anomalous points in Ni(r).
The projection onto the set Ni(r) is given by the scalar multiplication:

ũi = ui + α · (z − ui) (2.15)

with:

α =

γ · r/β if β ≥ γ · r
r/β if β ≤ r

1 otherwise

(2.16)

36 2| Related Works

where β = ∥ z − ui ∥. Starting from u, the anomalous example is generated in a gradient
ascent phase by expressing ũ as ũ = u+ h and then computing the gradient of the loss ℓ
with respect to it.

The authors [36] have successfully applied DROCC to the anomaly detection problem
on tabular data, time series data and image data. In the latter case they have used as
datasets MNIST [55] and CIFAR-10 [50].

2.2.7. Geometric transformations

A rather different approach to anomaly detection is based on learning salient structures
of the normal data by means of predicting geometric transformations. This is done by
training a model to identify which transformation was applied to a certain element.

To this end it is considered a predefined set of geometric transformations and a neural
network in the role of discriminator. During the training phase, all these transformations
are applied to each member of the normal class, resulting therefore in several versions
of the same element. After that, the obtained copies are fed to the neural network that
is called to identify, for each version, which transformation was used. This process is
actually a classification task since the discriminator in practice returns the classification
scores over the set of considered transformations. The idea behind this type of approach
is that the discriminator, in order to distinguish between the transformed elements, is
required to capture salient geometrical features, some of which are characteristic of the
normal class [34].

These methods fall in the category of Self-Supervised strategies, as in the process it is
created a set of labels corresponding to the different transformations involved. Neverthe-
less, it can still be considered as a type of unsupervised anomaly detection since there is
no information involved regarding the anomalies.

Recently there have been introduced other models that, moving from the same principles,
have tried to find the proper transformations in an automated way. This allows to remove
the burden of having to define manually the set T and therefore they can be more easily
adopted on various types of input. Among the most prominent works, we mention Neural
Transformation Learning by C. Qiu et al [73].

Deep Anomaly Detection Using Geometric Transformations

In their work from 2018, Golan and El-Yanin [34] present a novel approach to anomaly
detection for image data. Their idea is to train a multi-class model to discriminate

2| Related Works 37

between several geometric transformations applied to the normal input images [34]. This
encourages the network to learn features that are useful in the task of detecting anomalies.

The first step consists in creating a set of K transformations T = {T0, T1, ..., TK−1 } with
Tk : X → X ∀k = 1, ..., K − 1 and where T0(u) = u is the identity. After that, each
element of the training set is transformed using all of the defined transformations and it
is kept track of which one was applied.
Therefore, starting from a dataset D of n images and proceeding this way, it is obtained
a new dataset of n · |T | elements, each one of them being a pair:

DT :=
{
(Tk(u), k) : u ∈ D, Tk ∈ T

}

where k is the label that allows to identify the transformation Tk(u).
Once in possession of DT , a neural network fθ is optimised to learn to identify which
geometric transformation was used given the element Tk(u). The training is performed
by following a classical K-class classification protocol and using a standard cross entropy
loss.
For each input, the classifier fθ returns a vector of dimension K to which has been applied
a softmax operator and can be therefore interpreted as the probabilities assigned to each
transformation.

These response vectors are then combined at evaluation time to create a measure of
anomalousness of a given image. More precisely, let y(u) := softmax

{
fθ(u)

}
be the

vector of the softmax responses for an element u. The normality score is defined as the
combined log-likelihood of a transformed image conditioned on each applied transforma-
tion, namely:

NS(u) :=
K−1∑

k=0

log p[y(Tk(u)) |Tk] (2.17)

The underlying assumption is that all the conditional distributions are independent, even
though this is not usually the case. Each conditional distribution is modelled with a
Dirichlet distribution:

y(Tk(u)) |Tk ∼ Dir(αk)

of parameter vector αk ∈ Rk
+ and each transformation is considered to be uniformly prob-

able, namely k ∼ U(0, K). During the training phase they are estimated the parameters

38 2| Related Works

of the Dirichlet distributions and they are denoted by α̂k.

As normality score it is then employed:

NS(u) =
K−1∑

k=0

(α̂k − 1) log [y(Tk(u))] (2.18)

Given two elements u1 and u2, NS(u1) > NS(u2) signifies that u1 is more normal than u2
and therefore a high value of NS(·) indicates normality [34].

As we have already mentioned, the model is trained utilising solely data from the normal
class, which are then used in a self-supervised manner to create a dataset of augmented
images. This dataset consists of the normal elements and of their transformed versions.
It has to be remarked that the set of predefined transformations is a hyper-parameter of
the method. In fact, the transformations employed have been manually selected by the
authors, who have used, for instance: rotations, flips and translations. This aspect is one
of the main weaknesses of this approach, since it requires precise information on the type
of data involved. In some scenarios, usually rather than images, it is non-trivial how to
define these transformations, which makes this method difficult to be applied to certain
types of inputs. They are examples tabular data and time series.

Neural Transformation Learning for Anomaly Detection

One of the main drawbacks of the method proposed in [34] is having to manually predefine
the set of geometric transformations, which in some contexts might be non-trivial. For
instance, in the case of tabular data or time series it is often unclear how to define
these transformations. To alleviate this issue, Qiu et al proposed to directly learn the
transformations such that the transformed samples share semantic information with their
original version, while at the same time being easily distinguishable [73].

The authors point out two requirements that the transformations are supposed to meet:
1) Semantics: the transformations should produce views that share relevant semantic
information with the original data [73]
2) Diversity: the transformations should produce diverse views of each sample [73]

The designed pipeline of NeuTraL AD is made of two components: the first one is a set of
learnable transformations, which are modelled by neural networks, whilst the second part
is constituted by an encoder that embeds the transformed elements in a latent space.

In the specific, let X be the input space and denote by D = {ui}ni=1 the set of training data,
with ui ∈ X ∀i = 1, ..., n. It is considered a set of transformations T = {T1, T1, ..., TK }

2| Related Works 39

such that Tk : X → X ∀k = 1, ..., K. Moreover, it is assumed that each transformation
Tk is learnable; in other words, Tk is modelled by a parameterised function whose param-
eters ϑk can be optimised during the training process. In the work of Qiu et al [73], each
Tk is modelled by a feed forward neural network.
Therefore, given an element u, they are computed its transformed versions by applying
each Tk to it, obtaining in this way the set

{
uk = Tk(u) ∀k = 1, ..., K

}
. Subsequently

the encoder ϕθ : X → Z embeds the transformed versions uk in the latent space Z. Once
again the encoder is modelled by a neural network whose parameters are denoted by θ.

The key element of this method is the loss function that has been implemented, which
goes under the name of Deterministic Contrastive Loss (DCL) [73]. This loss incentives
the transformed versions uk = Tk(u) to retain some similarity with their original element
u, while at the same time it encourages the transformed versions to be dissimilar from each
other. More precisely, given an element u ∈ D, let’s consider two transformed versions
of u, denoted by uk = Tk(u) and ul = Tl(u) with k ̸= l. The score function between two
transformed versions is defined as:

h(uk, ul) = exp

{
1

τ
sim

[
ϕθ(Tk(u)), ϕθ(Tl(u))

]}
(2.19)

where τ is the temperature hyper-parameter and as similarity function sim[· , ·] it is
adopted the cosine similarity, namely sim[a, b] = aT b/∥a∥∥b∥. In this scenario the encoder
network ϕθ acts as a feature extractor.
The Deterministic Contrastive Loss is then defined as:

LDCL := Eu∼D

[
−

K∑

k=1

log
h(uk, u)

h(uk, u) +
∑

l ̸=k h(uk, ul)

]
(2.20)

When LDCL is minimised during the training process, the numerator in the eq. (2.20)
encourages each embedded transformed version uk to be close to the embedding of the
original element u. On the other side, the denominator pushes all the embeddings of
the transformed versions away from each other. Thus, the former aspect induces the
transformed versions to be similar to the original element and hence to preserve rele-
vant semantic information, whereas the latter incentives the learnt transformations to be
dissimilar from each other and henceforth diverse [73].

From (2.20) the authors derived also the anomaly score to be used at evaluation time,
which is:

40 2| Related Works

AS(u) := −
K∑

k=1

log
h(uk, u)

h(uk, u) +
∑

l ̸=k h(uk, ul)
(2.21)

Since during the optimisation process the LDCL (2.20) is minimised for the elements u ∈ D
belonging to the normal class, it follows that (2.21) shall assume low values for normal
instances and high values for anomalies [73].

All the parameters ϑk of the transformations and the parameters θ of the encoder are
jointly optimised during the training phase by minimising the loss function LDCL (2.20).

2.3. Anomaly detection on point clouds

The problem of anomaly detection has been extensively analysed for a wide range of data,
nevertheless, the case of point cloud data has been much less regarded. The majority of
the methods tackle very specific problems, either related to industrial manufacturing, such
as detecting defective products in additive manufacturing [59], or to objects with a very
characteristic signature, such as the detection of pole-like objects in urban environments
[75]. Other works address the one class classification of airborne LiDAR scans of urban
areas [4] and the real-time object detection in the context of autonomous driving [97].
However, all these methods are tailored to the specific issue they face and therefore they
do not generalise well to every anomaly detection task on point clouds. Differently from
them, we would like to address the unsupervised anomaly detection task on point clouds
in a more general way.

Another line of work is represented by “Anomaly detection in 3d point clouds using deep
geometric descriptors” [11], which focuses on anomaly localisation in high resolution point
clouds. The dataset used, namely MVTec-3D [10], is specifically designed for this task
and the developed method is an adaptation of the student-teacher framework. However,
this problem differs in many aspects from the one we are addressing. More precisely,
the dataset used (MVTec-3D [10]) is characterised by a very low variability within the
class and the objects contained in it are all disposed in roughly the same position. In
addition, the point clouds are composed of thousands of points and thus have a much
higher resolution.

A first attempt of performing point cloud anomaly detection in a more general way is
presented by Masuda et al in [63], where it is used a Variational Autoencoder. In [31] it
is proposed an extension of the DeepSVDD [78] to the case of point clouds, whilst in [32]

2| Related Works 41

it is developed an adaptation of the Self-Supervised method [34].

2.3.1. 3D Variational Autoencoders for Anomaly Detection

In the work by Masuda et al. [63] it is introduced a deep Variational Autoencoder
adapted to the task of anomaly detection in point clouds. The authors decided to adopt
a reconstruction-based approach, similar to what we have explained in section 2.2.5.
The model learns the distribution of the normal class and during training it minimises a
metric AS(·); at evaluation time AS(·) is used an anomaly score. Since this function is
minimised during the optimisation process when exclusively normal elements are involved,
it follows that AS(·) assumes low values for elements belonging to the normal class and
high values for anomalies.

More in the specific, the model is made of an encoder and of a decoder. In the architecture
of the encoder are introduced skip connections and graph max-pooling layers that estimate
local features [85]. As decoder it is employed a FoldingNet architecture [98]. Given
an input point cloud P , the encoder returns two vectors, µ and σ, which are used to
parametrise a Gaussian N (µ, σ2). The decoder then tries to reconstruct the original
element starting from m vectors sampled from N (µ, σ2).

Since the data consist of point clouds, in order to account for the reconstruction error, it
has been adopted as reconstruction loss the Chamfer Distance (CD) [7]. It has to be noted
that the Mean Square Error between the original and the reconstructed object cannot be
employed because of the lack of an effective bijection between the points before and after
the compression step.

The authors decided to follow a traditional VAE approach [29], therefore they considered
the KL divergence between a standard Gaussian N (0, 1) and a distribution N (µ, σ2)

computed from the original point cloud P :

LKL = DKL

(
N (µ, σ2) || N (0, 1)

)
(2.22)

Furthermore, it is considered the KL divergence between N (0, 1) and the distribution
N (µ̃, σ̃2), which is retrieved in an analogous way by providing as input the reconstructed
version P̃ to the encoder.
The model is trained by minimising the total loss that is given by the sum of the three
components introduced above, namely:

L = DKL

(
N (µ, σ2) || N (0, 1)

)
+DKL

(
N (µ̃, σ̃2) || N (0, 1)

)
+ dCD

(
P , P̃

)
(2.23)

42 2| Related Works

As anomaly score it is employed the Chamfer Distance between the original point cloud
and the reconstructed one:

AS(P) = dCD

(
P , P̃

)
(2.24)

As an alternative, it is considered the Earth Mover’s Distance [76] in the role of recon-
struction loss and anomaly score AS(·), although the authors [63] report that it performs
worse than the Chamfer Distance.

A final remark about this approach is that it solves a very demanding task, as the network
has to learn how to reconstruct entirely the input. Doing this for point clouds poses even
more challenges than the case of images, since a proper reconstruction loss has to be
defined. For this reason, it has to be adopted a more complex reconstruction loss, such as
the Chamfer Distance [7] or the Earth Mover’s one [76], choice that is of crucial importance
to the success of the optmisation process.

43

3| Proposed solutions

In this chapter, we explain the models that we have implemented in order to address the
anomaly detection task on point clouds. First, we develop an extension of the Deep Robust
One Class Classification approach [36] to the case of point cloud data. In particular, we
employ a specific architecture and an adapted loss function. Then, we take inspiration
from the approach proposed in Neural Transformation Learning [73] and we apply it to
the anomaly detection problem on point clouds.
We remark that none of these methods had ever been applied to point cloud data before,
hence this is one of the motivations for our work. More specifically, DROCC [36] is
originally implemented for images and tabular data, whilst [73] focuses on tabular data
and time series. Other than that, in our work we devote our attention to the case of point
clouds by employing networks based on point convolutional operators.

3.1. DROCC for point cloud anomaly detection

As we have discussed in section 2.2.6, the Deep Robust One Class Classification approach
relies on the discrimination between elements belonging to the normal class and adver-
sarially generated anomalies. The underlying assumption is that the normal data lie on
a well sampled low-dimensional manifold in the high dimensional input space, which can
be locally approximated by a Euclidean space. This is known as the manifold assumption
and it is motivated by the fact that the normal instances tend to share common character-
istics among them and so to be close in the space they live in. Therefore, their variability
can be well captured also by a lower dimensional representation of them.
We retain the manifold assumption to hold also in the case of point cloud data for every
normal class that we consider. Furthermore, to guarantee the quality of the sampling, in
our experiments we consider normal classes constituted by thousands of elements.

The input of the model is a point cloud P = (P, φ) and it is processed by a function
ϕθ(·), which is in charge of associating to P a value to be then used as normality score.
In our case, we define ϕθ(·) by means of a neural network based on the Composite layers
[32]. We have experimented with different architectures employing these layers in order to

44 3| Proposed solutions

evaluate their effectiveness in this context. Furthermore, we have considered other types
of neural networks in the role of ϕθ(·), such as a classical PointNet [69], a ConvPoint [13]
and a more advanced PointMLP [60].

3.1.1. The loss function

The loss function that we have utilised has the same form of the one presented in section
2.2.6, although it has been adequately adapted to the case of point cloud data. More
precisely, given a set of input point clouds

{
Pm

}M

m=1
, the loss function that we employed

can be written as:

LDROCC =
M∑

m=1

[
ℓ(ϕθ(Pm), 0) + µ max

P̃m∈Nm(r)
ℓ(ϕθ(P̃m), 1)

]
+ λ∥ θ ∥2 (3.1)

where P̃m indicates the generated anomaly.

Moreover, in accordance with Goyal et al [36], we have adopted a standard cross entropy
loss in the role of the binary classification loss ℓ. In our case, the normal class is identified
by the label "0", whereas anomalies are indicated by the label "1". The aim of ϕθ(·) is
to classify the normal instances P as belonging to the normal class and the adversarially
generated examples P̃ as anomalies.

In addition, we have added the L2 - regularisation term λ∥ θ ∥2 in the loss, as shown in
(3.1), which is missing in the implementation of [36].

3.1.2. The adversarial search

One of the core aspects of DROCC is the synthetic generation of anomalous examples P̃ .
This is done during a gradient ascent phase that resembles an adversarial search. More
precisely, it is sought after the element that the network deems to be the most anomalous
one in terms of the function ℓ. In this section we cover more in details what this search
consists of and how it can be carried out, in particular for the case of point cloud data.

During training, DROCC generates an anomalous example P̃ for each normal element P
of the training set. These artificially generated anomalies are then of help in teaching the
model how to discriminate between normal instances and anomalous ones. This is indeed
the reason why we employ a binary classification loss ℓ.

The need for artificial anomalies comes from the assumption of unsupervised anomaly
detection, which means that all training data belong to the normal class. From this it

3| Proposed solutions 45

follows that it is not possible using real anomalies to this end, as we do not have them at
our disposal.

Let us consider a point cloud P = (P, φ). It is easy to note that a point cloud has two
components: a set P = {xi}i of points in Rd and the associated features φ(xi). On this
account, an element P might be deemed to be anomalous based on the set of coordinates
P , based on the features φ, or based on both of them. This gives rise to three different
kinds of anomalies and so there are as many that can be produced.
However, we observe that many datasets include only constant features (i.e. φ ≡ 1) and
this condition is actually the case for ModelNet40 [95] and ShapeNet7C [17], which we
use in our experiments. When this is the scenario, we can only generate elements that
can be deemed anomalous just with respect to the coordinates.
Nevertheless, for sake of completeness, we have implemented the adversarial search such
that it could be carried out only in the space of the coordinates, only in the space of the
features, or in both. This said, since in our experiments we perform the adversarial search
solely in the space of the coordinates, in what follows we illustrate only this latter case.

The objective

Given a normal instance P , the aim of the adversarial search is to return an anomalous
element P̃ . We now focus our attention on what this exactly means and how it could
be performed. First of all, the adversarial search that we perform consists of a gradient
ascent phase during training. More precisely, the function that is utilised to quantify the
concept “most adversarial element” is the binary classification loss ℓ(·). In addition, this
element P̃ is regarded as an anomaly, from which it follows that its classification label
must be "1". For this reason we want the function ϕθ(·) to predict P̃ as anomalous, too.
This is done by maximising the agreement between the prediction ϕθ(P̃) of the network
and the label "1" according to the loss function ℓ(·). Putting all together, we have that
finding the most adversarial element can be formally expressed as solving the optimisation
problem:

max
P̃∈N(r)

ℓ
(
ϕθ(P̃), 1

)
(3.2)

Initialisation

The initialisation stage consists in adding to each point xi ∈ P a zero-mean Gaussian
noise hi; 0 ∼ N (0, σ2 · I) of standard deviation σ. To ease the implementation, instead
of extracting |P | Gaussian vectors of dimension d, we extract a unique Gaussian vector
h0 ∼ N (0, σ2 · I) of dimension d · |P |, namely h0 ∈ Rd·|P |, and we rearrange it. We are

46 3| Proposed solutions

entitled to do so since we consider a diagonal covariance matrix σ2 · I, which implies that
all the components of the Gaussian vector h0 are independent and thus the two ways of
proceeding are equivalent. For this reason we indicate the resulting set of coordinates as
P + h0. We consider the same value of σ for every dimension since we do not have any
information that would lead us to do otherwise.
In principle, instead of using as starting point P +h0, it is also possible to use directly h0,
which is a set of points randomly scattered in the space. However, we believe that starting
the adversarial search from h0 would yield worse results than starting from a normal
element and it would jeopardise the motivations behind this search. Some experiments
that we have conducted corroborate this hypothesis, as the model showed to be less
effective.

The domain

On the same line of thought of [36], the anomalous example P̃ is sought after in the set:

N(r) :=
{
r ≤ ∥ P̃ − P ∥2 ≤ γ · r

}
(3.3)

In accordance with what stated by Goyal et al [36], instead of the more rigorous definition
of N(r) reported in (2.12), we adopt the simplified version. More precisely, rather than
always considering the elements that are at least at distance r from all the training
samples, we define N(r) to be the set of the elements at least at distance r from the single
P under consideration. Even with the simpler set N(r) as in (3.3), the adversarial search
empirically yields generated samples that still do not belong to the normal class, as we
have asserted upon visual inspection.
The upper bound γ · r is functional to the success of the optimisation procedure, as we
have had the opportunity to verify. Indeed, by setting a too large value of γ we have
experienced that the training process failed, allegedly due to the gradient explosion.

Optimisation process

We maximise (3.2) by the traditional optimisation method of gradient ascent [8]. The
idea is to find the steepest ascent direction of ℓ(·) w.r.t. hs−1, which corresponds to the
one given by the gradient of ℓ(ϕθ(P +hs−1), 1) with respect to hs−1. After that, we make
a step in the direction of the gradient of length η, namely:

hs = hs−1 + η
∇h, s−1ℓ(hs−1)

∥∇h, s−1ℓ(hs−1) ∥
(3.4)

3| Proposed solutions 47

where ℓ(hs−1) := ℓ
(
ϕθ(P + hs−1), 1

)
, s refers to the number of the iteration and the step

size η is a hyper-parameter.
Analogously to Goyal et al [36] we project hs of (3.4) into the set N(r) centered at P
(3.3) by computing:

hs = α · hs where α =

γ · r/∥hs ∥ if ∥hs ∥ ≥ γ · r
r/∥hs ∥ if ∥hs ∥ ≤ r

1 otherwise

(3.5)

in which the operator · indicates the scalar multiplication between α ∈ R and the vector
hs ∈ Rd·|P |. The procedure described above is repeated for each step s = 1, ..., S.

Remarks

As disclaimed, we usually perform the adversarial search taking into account only the
coordinates of a point cloud. This is made out of necessity since in the datasets that we
consider the features are equal to the constant 1 (i.e. φ ≡ 1) and therefore they do not
carry any useful information. On this ground, when we adversarially generate solely the
set of points P̃ , we associate to it the original features of P , namely we set P̃ = (P̃ , φ).

Overall, the hyper-parameters of the adversarial search are:

• S: the number of gradient ascent steps to be performed

• η: the step-size

• r: the radius of the set N(r) defined in eq. (3.3)

• γ: the value used for the upper bound of the set N(r) as in eq. (3.3)

3.1.3. Modelling the function ϕθ

In the role of the function ϕθ(·) we have employed a neural network designed to pro-
cess point clouds. We have primarily devoted our attention to networks based on the
composite layers proposed by Floris et al [32]. The motivations behind such a choice are
twofold: first, we want to investigate their effectiveness in this context. Secondly, this
allows us to directly compare our results with those obtained by the anomaly detection
solutions in [32]. In this way we believe to provide a more comprehensive picture of
the anomaly detection problem on point clouds. In addition, for sake of completeness,
we have experimented also with other types of neural networks that process point clouds,
with some of them being significantly more complex in terms of the number of parameters

48 3| Proposed solutions

and architecture.

Architectures based on the composite layers

The network which we have primarily utilised is made of three convolutional composite
layers followed by one fully connected layer and it has been named ADCompositeNet3. In
it, the task of the composite layers is to capture the information contained in the point
cloud P and to condense it in a shape descriptor, which is then fed to the fully connected
layer. The output dimension of the last layer is always 1, as it corresponds to the anomaly
score assigned to the input P .
More details about the architecture of ADCompositeNet3 are reported in Table 3.1. The
same architecture has been used for the ADCompositeNet3 (Aggr.) network, which uses
aggregate composite layers instead of the convolutional ones.
We also have considered a slight variation of this network, which has an additional fully
connected layer and has been called ADCompositeNet3b. In this case, the convolutional
layers are identical to the ones in Table 3.1, although they are followed by two fully
connected layers. The input and output dimensions of the latter are (6 · J0 → 2 · J0) for
the first and (2 · J0 → 1) for the second.

Table 3.1: Architecture of ADCompositeNet3; J is the number of output features, |Xy|
the cardinality of neighbourhoods and |Q| the number of output points. BN stands for
Batch Normalisation

ADCompositeNet3
Layer type J |Xy| |Q|

Composite + BN + LeakyReLU J0 32 256
Composite + BN + LeakyReLU 3 · J0 16 64
Composite + BN + LeakyReLU 6 · J0 16 1

Fully Connected 1 - -

In Table 3.1 J represents the number of output features, whose values are defined in terms
of J0, that is the number of output features of the first layer. This is mainly done out
of convenience, as in this way J0 is the only hyper-parameter on which the dimensions of
the output features depend. Moreover this ensures a greater flexibility than just fixing
the dimensions of each layer and at the same time it eases the hyper-parameters tuning.
In the case of fully connected layers, J refers to the output dimension. The cardinality
of the neighbourhoods used in each layer is indicated by |Xy| and the number of output
points by |Q|. Although not expressively mentioned, the number of input points of P

3| Proposed solutions 49

that we consider is always equal to 1024. After each layer, it is used batch normalisation
and as activation function it is employed a LeakyReLU [61] of slope 0.02. Similarly to
what happens in CNNs for image processing, where the coordinates of the pixels are not
changed, nonlinearities and batch normalisation are applied only to the features and not
to the spatial coordinates of the points, as also done by [32].

Table 3.2: Architecture of ADCompositeNet5

ADCompositeNet5
Layer type J |Xy| |Q|

Composite + BN + LeakyReLU J0 32 1024
Composite + BN + LeakyReLU 2 · J0 32 256
Composite + BN + LeakyReLU 4 · J0 16 64
Composite + BN + LeakyReLU 4 · J0 16 16
Composite + BN + LeakyReLU 8 · J0 16 1

Fully Connected 1 - -

In addition to ADCompositeNet3, we have also analysed a more complex network, called
ADCompositeNet5. As the name may suggest, it is composed of five convolutional layers.
Its architecture can be found in Table 3.2 and it resembles the one of ADCompositeNet3.
The notation is the same that we have previously introduced.

Other architectures considered

In addition to the networks constructed using the composite layers [32], we have considered
also a ConvPoint [13] network, whose architecture is reported in Table 3.3.

Table 3.3: Architecture of ADConvPoint3; J is the number of output features, |Xy| the
cardinality of neighbourhoods and |Q| the number of output points. BN stands for Batch
Normalisation.

ADConvPoint3
Layer type J |Xy| |Q|

Point convolutional + BN + LeakyReLU 16 32 256
Point convolutional + BN + LeakyReLU 48 16 64
Point convolutional + BN + LeakyReLU 96 16 1

Fully Connected 1 - -

50 3| Proposed solutions

To make the comparison between it and ADCompositeNet3 (Tab. 3.1) as fair as possible,
we have designed the former network such that its architecture resembles as closely as
we could the one of the latter. Therefore we have used three point convolutional layers,
followed by a fully connected one. Following our consolidated naming scheme, we called
this network ADConvPoint3. In addition, also the dimensions of the output features
are the same among the two networks, as well as other hyper-parameters such as the
cardinality of the neighbourhoods and of the output sets of points.

Another network that we have taken into account for our experiments is a more traditional
PointNet [69], which we have presented in section 2.1.3. The architecture that we designed
is reported in Table 3.4. The first three fully connected layers constitute an MLP which
is used to process each single point, subsequently, a max pooling operator aggregates the
information from all the points. After that, a second MLP made of three fully connected
layers is in charge of returning the output, which in our case corresponds to the anomaly
score. Overall this architecture is rather simple, nonetheless, because of the massive
presence of fully connected layers, this network counts 736641 learnable parameters.

Table 3.4: Architecture of PointNet

PointNet
Layer type Input dim Output dim
h FC1 3 64
h FC2 64 128
h FC3 128 1024

MAX pooling (1024)
γ FC4 1024 512
γ FC5 512 128
γ FC6 128 1

Outline of the algorithm

Once established the aspects that we have described so far, let us put together all the
elements in order to convey a unifying view of the method.

Input

The training data consist of a set of point clouds
{
Pj

}
j
. During the optimisation pro-

cess, the latter is divided and processed in mini-batches, so as to take full advantage of
the GPU’s computational power. Each mini-batch is composed of a batch_size number

3| Proposed solutions 51

of point clouds, which is a hyper-parameter of the method. In our case we opted for
batch_size = 32.

Hyper-parameters

Most of the hyper-parameters have already been introduced in the previous sections,
however, for sake of clarity, we believe that it can be of use reporting them all together:

• n_points: number of points of each point cloud

• batch_size: dimension of each mini-batch

• lr: initial learning rate of the optimiser

• µ: mixing coefficient in LDROCC, eq. (3.1)

• λ: regularisation coefficient in LDROCC, eq. (3.1)

• Hyper-parameters of the adversarial search:

– r: radius that characterises the set N(r) defined in eq. (3.3)

– γ: value used for the upper bound of the set N(r) as in eq. (3.3)

– σ: standard deviation of the additive noise h0 in the initialisation stage

– S: number of gradient ascent steps performed for each sample Pj

– η: step-size of each gradient ascent step

Objective

The objective is to minimise the loss function:

LDROCC =
M∑

m=1

[
ℓ(ϕθ(Pm), 0) + µ max

P̃m∈Nm(r)
ℓ(ϕθ(P̃m), 1)

]
+ λ∥ θ ∥2

The optimisation process is carried out by means of a gradient-descent method such as
Stochastic Gradient Descent [103] or Adam [48].

52 3| Proposed solutions

3.1.4. Scheme of the algorithm

The complete scheme of the training procedure is presented in Alg. 3.1. Instruction 7
consists in the projection in the set Nm(r) and we report it here below:

hs = α · hs where α =

γ · r/∥hs ∥ if ∥hs ∥ ≥ γ · r
r/∥hs ∥ if ∥hs ∥ ≤ r

1 otherwise

The set Nm(r) we recall to be:

N(r) :=
{
r ≤ ∥ P̃ − P ∥2 ≤ γ · r

}

Algorithm 3.1 DROCC for Point Cloud Anomaly Detection (one epoch)
Input:

{
Pj

}
j

1: for each batch Bb, b = 1, ..., B do
2: for each point cloud Pm ∈ Bb do
3: Sample h0 ∼ N (0, σ2 · I)
4: for each step s = 1, ..., S do
5: ℓ

(
hs−1

)
:= ℓ

[
ϕθ(P + hs−1, φ), 1

]

6: hs = hs−1 + η
∇h, s−1ℓ(hs−1)

∥∇h, s−1ℓ(hs−1) ∥
7: hs = α · hs
8: end for
9: P̃m := (P + hS, φ)

10: end for
11: L =

∑
Pm∈Bb

[
ℓ(ϕθ(Pm), 0) + µmaxP̃m∈Nm(r) ℓ(ϕθ(P̃m), 1)

]
+ λ∥ θ ∥2

12: θ = θ −Gradient_step{L}
13: end for

3.2. Neural Transformation Learning for point cloud

anomaly detection

A promising direction in anomaly detection is based on transforming the input data to
produce surrogate labels and then predicting which transformation had been applied. In
[32], the original method from [34] has been extended to point clouds, using as transfor-
mations 8 rotations around a fixed horizontal axis. However, this set of transformations

3| Proposed solutions 53

has proven to be too limited for guaranteeing the success of the method on certain classes
of point clouds such as “lamp” [32] of ShapeNetCore [17]. In general, the main drawback
of [34] is that the transformations have to be defined a-priori. Motivated at mending the
shortcomings of [34], we have developed a new method for anomaly detection on point
clouds that takes inspiration from the one proposed in [73], in which the transformations
are modelled by neural networks and are learnt during training.

We have attempted to learn the transformations directly on point clouds, however this
resulted in very poor performance, in some cases. For this reason, inspired by [73] and the
rest of the literature [94], [19], [89], [11], [72], we decided to employ a pre-trained feature
extractor to process the point clouds. The feature extractor returns a vector for each
input point cloud. Proceeding similarly to [73], the transformations are learnt on these
feature vectors. Moreover, following the suggestions provided by [73], we use an encoder
to map the transformed elements to a lower dimensional latent space before computing
the values of the loss function.

3.2.1. The structure of the model

As we have anticipated, the model is composed of three components: a feature extractor,
a set of learnable transformations, and an encoder. Here we illustrate more in detail their
roles and how we have implemented them.

Feature extractor

The task of the feature extractor is to process a point cloud P and to return a vector
that ideally condenses the useful information contained in the input. This vector can be
thought as a global descriptor of the shape.
Formally, the feature extractor is a function ϕPC : P 7→ ϕPC(P) that associates to each
point cloud P a vector ϕPC(P) ∈ RJ̄ , where J̄ is the dimension of the global descriptor.
For this purpose, we consider a neural network based on the composite layers [32]. More
precisely, our feature extractor is made of five convolutional composite layers that grad-
ually reduce the cardinality of the point cloud until only one point is left. The output
feature vector of this remaining point is then employed as the global descriptor. These
vectors describe the point cloud since the network is trained to perform the classification
task, a fact that requires the convolutional layers to extract meaningful features in order
for the network to succeed in the aforementioned task.

54 3| Proposed solutions

Learnable transformations

On the same line of thought of [73], we have implemented the transformations by means of
deep neural networks. In such a way, we can regard these transformations to be learnable
and we are relieved from having to manually define them.

The set of learnable transformations T = {T1, T2, ..., TK } is constituted by K functions
Tk : RJ̄ → RJ̄ for k = 1, ..., K, whose parameters are denoted by ϑk for k = 1, ..., K.
Each transformation takes as input a global descriptor vector ϕPC(P) and it returns a
vector in RJ̄ of the same dimension. To model each transformation we have used a neural
network made of three fully connected layers and we have employed a ReLU as activation
function.

As in [73], the output of each neural network can be either directly considered as the
transformed version Tk(ϕPC(P)) or it can be combined with the input ϕPC(P). In the
latter case, we regard the output of the neural network as a mask Mk and we combine
it with the global descriptor ϕPC(P) in two different manners. More precisely, given an
input ϕPC(P) and the output Mk(ϕPC(P)) of a neural network, they are defined three
types of parametrisation of the learnable transformations:

– Feed forward: Tk(ϕPC(P)) =Mk(ϕPC(P))

– Residual: Tk(ϕPC(P)) =Mk(ϕPC(P)) + ϕPC(P)

– Multiplicative: Tk(ϕPC(P)) =Mk(ϕPC(P)) ⊙ ϕPC(P)

In the multiplicative case, ⊙ denotes the Hadamard (i.e. point-wise) product. The resid-
ual version introduces what can be defined a skip connection, a strategy that proved to be
effective in other deep learning fields [41] as the network has to learn only the difference
with respect to the input. The multiplicative version is somehow similar to a skip con-
nection, although in this case the input and the output are multiplied together instead of
being summed.

Encoder

The encoder maps the transformed versions of a same point cloud to a lower dimensional
space where ideally they are more easily distinguishable [73]. The representations in
this latent space are then used to compute the loss. The encoder is therefore a function
ϕenc : RJ̄ → RL and the same encoder is used to map all the transformed versions. We
have employed as encoder a simple Multi-Layer Perceptron made of two fully connected
layers.

3| Proposed solutions 55

3.2.2. The loss function

The key aspect of this method is the loss function, namely the Deterministic Contrastive
Loss (DCL). Let us first define the score function between two transformed versions as:

h(Pk, Pl) := exp

{
1

τ
sim

[
ϕenc(Tk(ϕPC(P))), ϕenc(Tl(ϕPC(P)))

]}
(3.6)

where τ is an hyper-parameter and sim[· , ·] is a similarity function. In line with [73], we
have adopted the cosine similarity, that is sim[a, b] = aT b/∥a∥∥b∥.

The Deterministic Contrastive Loss function can be therefore written as:

LDCL := EP∼D

[
−

K∑

k=1

log
h(Pk, P)

h(Pk, P) +
∑

l ̸=k h(Pk, Pl)

]
(3.7)

When LDCL is minimised, the numerator pushes the embedding of each transformed ver-
sion Tk(ϕPC(P)) close to the one of the original element ϕPC(P), fact that incentives the
transformations to retain relevant semantic information. On the other side, the denom-
inator encourages the transformed versions to be dissimilar from each other by pulling
away the relative embedding.

3.2.3. Anomaly score

The anomaly score which is used as evaluation time resembles the Deterministic Con-
trastive Loss (3.7) and, for an input point cloud P it is defined as:

AS(P) = −
K∑

k=1

log
h(Pk, P)

h(Pk, P) +
∑

l ̸=k h(Pk, Pl)
(3.8)

3.2.4. Outline of the algorithm

The training procedure can be summarised as in Alg. 3.2. The input of the algorithm
are the set of training data D =

{
Pj

}
j

and the (pre-trained) feature extractor ϕPC(·).
The point clouds are processed in batches due to computational reasons. The learnable
weights θ include the parameters ϑk of each neural transformation Tk and the parameters
of the encoder ϕenc. The parameters of the feature extractor ϕPC(·) are assumed to be
fixed since they have already been optimised to capture the information contained in the
input point clouds.

56 3| Proposed solutions

Algorithm 3.2 Neural Transformation Learning for Point Cloud Anomaly Detection (one
epoch)
Input:

{
Pj

}
j
, ϕPC(·) pre-trained

1: for each batch Bb, b = 1, ..., B do
2: for each point cloud P ∈ Bb do
3: Compute the global descriptor: ϕPC(P)

4: for each k = 1, ..., K do
5: Compute the transformed version: Tk

(
ϕPC(P)

)

6: Encode each Tk
(
ϕPC(P)

)
in the latent space RL: ϕenc

(
Tk

(
ϕPC(P)

))

7: end for
8: end for
9: Compute the loss:

L = EP∈Bb

[
−∑K

k=1 log
h(Pk,P)

h(Pk,P)+
∑

l ̸=k h(Pk,Pl)

]

where: h(Pk, Pl) := exp
{

1
τ
sim

[
ϕenc(Tk(ϕPC(P))), ϕenc(Tl(ϕPC(P)))

] }

10: Update the weights: θ = θ −Gradient_step{L}
11: end for

3.2.5. Implementation details

Pre-training procedure

As we have mentioned, we employ a pre-trained feature extractor. This feature extractor
is trained on a dataset different from the one used for the anomaly detection task. In
addition to this, if the former shares some classes with the latter, these common classes
are removed from the dataset used for the pre-training. This is done in order to avoid
the possibility that the feature extractor during the pre-training process is exposed to
the same types of objects that are being used for the anomaly detection task. In fact,
we have reasons to believe that performing the pre-training on objects belonging to the
classes used for anomaly detection would provide an unfair advantage to the overall model.
This “unfair advantage” is intended with respect to methods that do not make use of a
pre-training strategy.

To make an example, when we pre-train ϕPC(·) on ModelNet40 with in mind the objective
of performing the anomaly detection task on ShapeNet7C, we remove from ModelNet40
the classes that these two datasets have in common. The feature extractor is then opti-
mised using solely the data of the remaining classes.

The pre-training protocol that we have developed consists of training a model on a multi-

3| Proposed solutions 57

class classification task. In order to succeed in this task, the model is required to learn
how to extract the discriminative features of the different objects. Ideally, the features
learnt by the model, especially at low levels, are simple and therefore they generalise well.
A pre-training strategy is also exploited by [73] when performing anomaly detection on
image data.
In the role of the feature extractor we have employed a CompositeNet, whose architecture
resembles the one presented in [32]. In particular, the network that we have used is
composed of five composite layers, followed by one fully connected layer. Once the pre-
training procedure is over, we discard the fully connected layer and we retain the composite
layers as feature extractor.

3.2.6. Networks’ architecture

In this section, we present the architecture of the networks that we have employed in the
roles of feature extractor, transformations and encoder, respectively.

Feature extractor

As we recall, the input of the feature extractor ϕPC(·) is a point cloud P and its purpose
is to return a vector ϕPC(P) ∈ RJ̄ that acts like a global descriptor. In light of this, since
the feature extractor has to process point clouds, we have decided to model it by means of
a neural network based on the composite layers. The architecture that we have designed
slightly reminds us of the one that is used for the classification task in [32], since it is
declared by the authors to be the best performing one in said scenario. More specifically,
the feature extractor that we have constructed is composed of five convolutional composite
layers which gradually reduce the cardinality of the point cloud. In Table 3.5 it is reported
the architecture that we have implemented.

Table 3.5: Architecture of the feature extractor; J is the number of output features, |Xy|
the cardinality of neighbourhoods and |Q| the number of output points

Feature extractor
Layer type J |Xy| |Q|

Composite + BN + LeakyReLU 64 32 1024
Composite + BN + LeakyReLU 128 32 256
Composite + BN + LeakyReLU 256 24 64
Composite + BN + LeakyReLU 512 16 16

Composite 1024 16 1

58 3| Proposed solutions

We have decided to employ the convolutional version of the composite layer since it has
fewer parameters than its aggregate counterpart and the difference in performance is not
so significant. Indeed, the gap in the classification accuracy found by [32] is of around 1%
and furthermore it has to be reminded that our primary objective is not the classification
task. On the other hand, the lower number of parameters is important to us since we
already use a higher dimension for the output features, fact that substantially contributes
to increasing the total number of parameters to be learnt. The reason behind the latter
choice is that we want the global descriptor vector to be expressive, hence we adopt a
high dimension for it. In the role of this descriptor vector we employ the output features
returned by the last convolutional layer. The whole architecture is designed such that the
information contained in the input point cloud is condensed in the features of a single
output point.

The number of output points of each layer is reported in Table 3.5 and it is denoted by
J . Moreover, in said table, |Xy| indicates the cardinality of the neighbourhoods and Q

the cardinality of the output set of points. As we can see from it, the feature extractor
gradually increases the dimensions of the output features, while simultaneously reducing
the cardinality of the set of points to 1.
As far as it regards the dimension of the spatial function s of each composite layer and
the number of centers, we have decided to set the former to 16 and the latter to 64.
This is done in accordance with [32]. The choice of the output dimension of s is further
motivated by the will of keeping the total number of learnable parameters under control,
since this value is another factor that highly affects the number of parameters, as we have
explained in 2.1.8. We have used batch normalisation and a leaky ReLU of negative slope
0.02 activation function after each composite layer but the output one.

Learnable transformations

The transformations that we consider are modelled by neural networks, in such a way they
result to be learnable. To this end we have employed a classic Multi-Layer Perceptron
made of three fully connected layers. More specifically, the output dimension of each
layer is 1024, which also corresponds to the input dimension. Thus the MLP that we
implemented results to be:

FC1(1024, 1024) → FC2(1024, 1024) → FC3(1024, 1024)

where the first number in the parenthesis indicates the input dimension whilst the second
is the output one.

3| Proposed solutions 59

An illustration of the architecture of each transformation is reported in Figure 3.1.
We have used a ReLU nonlinearity as activation function after each layer but the last one.

Figure 3.1: Depiction of the MLP employed as learnable transformation

To each transformation it corresponds one neural network as the one here represented and
they do not share parameters. In total, for our experiments, we have used 15 learnable
transformations.

Encoder

The aim of the encoder is to map the transformed versions Tk(ϕPC(P)) in a latent space
where the representations of the latter are more easily distinguishable. In line with [73],
we have decided to model our encoder ϕenc(·) with a Multi-Layer Perceptron, since it is
probably the simplest network that could have been employed in such a role. More in the
specific, in this case we have decided to use only two fully connected layers, as we did not
find beneficial increasing their number. According to the same notation we have adopted
earlier, this network can be written as:

FC1(1024, 640) → FC2(640, 256)

The input dimension of the first layer is 1024, that is the dimension of Tk(ϕPC(P)),
whereas its output dimension is 640. The output dimension of the last layer is 256, which
corresponds to the dimension of the latent space. We chose these values because it is

60 3| Proposed solutions

the best configuration that emerged from our experiments. The resulting architecture is
illustrated in Figure 3.2.
As activation function after the first layer we have employed once again a ReLU.

Figure 3.2: Illustration of the encoder

As we can see, the network that we have implemented as encoder is very simple. This is
motivated by the fact that we believe it is not necessary to design an over-complicated
architecture for such a role.

61

4| Experiments

In this chapter, we illustrate the experiments we have carried out to assess the performance
of our anomaly detection methods. We first present the datasets that we have used and
the figures of merit we have employed for evaluation. After that, we investigate the results
obtained by our extension to point clouds of DROCC [36] (section 3.1), both when using
different architectures based on the composite layers [32] and other types of networks
[13], [69]. Moreover, we compare them to the ones of other methods such as [63], [31] and
[32]. Ultimately, we explore our adapted version of the Neural Transformation Learning
approach [73], which we have developed in section 3.2, when applied in different scenarios.

4.1. Datasets

In our experiments we have utilised the ShapeNet7C and the ModelNet40 datasets. The
former is a subset of the ShapeNet dataset [17], which is widely used in point cloud deep
learning [71], [13], [32]. We have employed ShapeNet7C as our principal benchmarking
dataset since it allows us to compare our results with the ones obtained in [32], [31], and in
[63]. ModelNet40 [95] is mainly used in the experiments related to Neural Transformation
Learning, either for the anomaly detection task or for the pre-train of the feature extractor.

4.1.1. ShapeNet7C

ShapeNet7C is composed of objects from 7 different classes and it is a subset of the wider
ShapeNet [17], which contains 55 classes. This latter dataset however suffers from severe
class imbalance, with some classes that contain less than one-hundred training samples
and others that contain more than five-thousands of them. Since each anomaly detection
model is trained using solely data belonging to one class (that is regarded as the normal
class) this can lead to potential issues. In particular, since the availability of data is crucial
for a deep learning method [54], the models trained on the less populous classes are not
expected to reach the same level of performance as the ones trained using thousands of
samples. To avoid this problem we therefore consider only the 7 most represented classes
of ShapeNet and we build a dataset with them, which we refer to as "ShapeNet7C".

62 4| Experiments

Table 4.1: ShapeNet7C: number of training samples and test samples for each class

Class Train Test
0 Airplane 3232 807
1 Car 2812 702
2 Chair 5388 1347
3 Lamp 1848 461
4 Table 6716 1678
5 Sofa 2524 831
6 Rifle 1897 474

tot. 24417 6100

The classes and the number of both training and test samples from ShapeNet7C are
reported in Table 4.1.

Figure 4.1: Examples of objects from the category "cars" of ShapeNetCore [17]

In addition, we have to mention that in this dataset there is a rather high variability
inside each class. This is because one of the aims of ShapeNet is actually to comprehend
all the objects that are characterised by a specific condition that makes them belong to
that certain category [17].

4| Experiments 63

More precisely, the concept that defines each class, as reported in the official website1, is:

0. Airplane: “an aircraft that has a fixed wing and is powered by propellers or jets”;

1. Car: “a motor vehicle with four wheels; usually propelled by an internal combustion
engine”;

2. Chair: “a seat for one person, with a support for the back”;

3. Lamp: “a piece of furniture holding one or more electric light bulbs”;

4. Sofa:“an upholstered seat for more than one person”;

5. Table: “a piece of furniture having a smooth flat top that is usually supported by one
or more vertical legs”;

6. Rifle: “a shoulder firearm with a long barrel and a rifled bore”

Figure 4.2: Subdivision of the objects in the class "chair" of ShapeNet [17]

For this reason, inside the class "lamp" are present table lamps, chandeliers, floor lamps,
1https://shapenet.org/taxonomy-viewer

64 4| Experiments

wall lamps, and spotlights. Inside the category "car", besides the Porsche 911, are included
also ambulances, emergency vehicles, military vehicles, and even double-deckers. In the
class "chair" are present all sorts of chairs, from dining chairs, armchairs, lawn chairs,
and chaise longues, as we can see from Figure 4.2.

The point clouds contained in ShapeNet7C are synthetically generated, meaning that
they do not come from scans of real objects, but rather from CAD models. The ShapeNet
dataset is born as a collection of 3D meshes in the form of CAD files. A point cloud has
been obtained from each mesh by sampling points from the surface of the object with a
probability proportional to the area of each face, after that, the position of the points
is slightly jittered. The point clouds are rescaled in a unit ball as done in [69], [13] and
[31]. For our experiments we have used 1024 points for each shape. The most notable
consequence of this procedure is that the point clouds have a uniform density, therefore
they are not present regions of lower density of points that would make more challenging
the learning process. Moreover, the objects are not occluded nor have parts missing,
differently for instance from what happens with real-life datasets such as ScanNet [21].
Therefore, if from one side the objects are characterised by a high variability within the
class, from the other their synthetic nature eases the learning process.

Another fact that has to be mentioned about ShapeNet7C is that the feature function
of each point cloud is identically equal to the constant "1", namely φ ≡ 1. From this it
follows that when dealing with this dataset, they are the coordinates of the points that
play the most important role.

4.1.2. ModelNet40

Another dataset that we have used for our experiments is ModelNet40 [95]. It com-
prehends a vast collection of objects of everyday use divided into 40 categories. More
precisely, it contains 12311 elements, of which 9843 constitute the training set and 2468
of them are used for testing purposes. In our experiments we always adopt the official
training-testing split. A detailed list of the classes of ModelNet40 can be found in Table
4.2, where there are reported also the cardinality of the training data and of the test data
for each class.
Similarly to ShapeNet, the objects are synthetically generated, therefore the shapes are
complete, they are not occluded and the point clouds have a uniform sampling density.
These characteristics make it very suitable for tasks such as multi-class classification.
ModelNet40 [95] is probably the most widely used dataset in the point cloud deep learn-
ing scenario [69], [71], [13], [4], [60]. The reasons of its success are to be found in the

4| Experiments 65

nature of its elements and in the fact that it represented one of the first comprehensive
datasets of such 3D objects.

Also in this dataset the features of the point clouds are constant, that is φ ≡ 1. Within
each class there is a rather high variability, although the latter is not as high as the one
present in ShapeNet7C. Nevertheless, many classes have a very low cardinality, with some
of them being made of less than eighty training samples. Because of this, most of the
categories are not really suited to be regarded as the “normal class” in a deep anomaly
detection task. In addition, the most numerous classes are almost identical to the ones
of ShapeNet7C. Nevertheless, we employ this dataset in the experiments related to our
Neural Transformation Learning method for point clouds, especially for the pre-train of
the feature extractor.

Table 4.2: ModelNet40: number of training samples and test samples for each class

Class Train Test Class Train Test Class Train Test
Airplane 626 100 Dresser 200 86 Range hood 115 100
Bathtub 106 50 Flower pot 149 20 Sink 128 20
Bed 515 100 Glass box 171 100 Sofa 680 100
Bench 173 20 Guitar 155 100 Stairs 124 20
Booksheld 572 100 Keyboard 145 20 Stool 90 20
Bottle 335 100 Lamp 124 20 Table 392 100
Bowl 64 20 Laptop 149 20 Tent 163 20
Car 197 100 Mantel 284 100 Toilet 344 100
Chair 889 100 Monitor 465 100 TV stand 267 100
Cone 167 20 Night stand 200 86 Vase 475 100
Cup 79 20 Person 88 20 Wardrobe 87 20
Curtain 138 20 Piano 231 100 Xbox 103 20
Desk 200 86 Plant 240 100 tot. 9843 2468
Door 109 20 Radio 104 20

4.2. Figures of merit

Anomaly detection can be seen as a binary classification problem, where the aim is to
assign the label "1" to anomalies and the label "0" to elements belonging to the normal
class. The output of all the models that we train is an anomaly score AS which indicates
the magnitude of anomalousness of each input point cloud P . Then, we set a threshold

66 4| Experiments

ν and regard all the elements whose anomaly score is less than ν as normal and all the
others as anomalous. Therefore, we can use traditional metrics for binary classification
such as True Positive Rate and False Positive Rate. In particular, instead of considering
a fixed threshold, we compute the trend of the true (TPR) and of the false positive rate
(FPR) when varying the threshold ν. These values are then used to construct the Receiver
Operating Characteristics curve, better known as ROC curve. The Area Under the Curve
(AUC) is then employed as a metric to assess the performance of the methods. This
standard framework allows us to make our models comparable to the rest of the literature
such as [32] and [63].

More rigorously, given a set of elements containing both normal and anomalous instances,
and a classifier that assigns to them the labels {0, 1}, we can introduce the following
quantities:

• True Positives (TP): the number of anomalies correctly classified as such, hence
the ones to which the classifier assigns the label "1"

• False Positives (FP): the number of normal elements which are classified as
anomalous, i.e. with "1", while in reality they belong to the normal class

• False Negatives (FN): the number of anomalies to which the classifier wrongly
assigns the label "0"

• True Negatives (TN): the number of normal elements which are correctly classi-
fied as such, namely the ones to which the classifier assigns the label "0"

Table 4.3: Confusion Matrix

Real class

Positive Negative

TP FP
1 True False

Predicted Positives Positives
class FN TN

0 False True
Negatives Negatives

The TP and the TN correspond to the elements that are correctly classified, whereas the
FP and the FN are the ones that are wrongly classified. For better understanding, all

4| Experiments 67

these quantities can be effectively arranged in a matrix, which goes under the name of
Confusion Matrix, as in Table 4.3.

After that, we can define the True Positive Rate (TPR) as:

TPR =
TP

TP + FN

namely the ratio between the True Positives and the totality of the real positive ele-
ments, including hence the ones that are misclassified. The TPR is also known as recall,
sensitivity or, in some cases, as hit rate.

Another quantity that can be defined is the specificity :

specificity =
TN

TN + FP

Strictly related to the specificity is the False Positive Rate (FPR):

FPR = 1− specificity =
FP

TN + FP

Once the above is established, given a binary classifier, they are computed the values of
FPR and of the TPR when varying the threshold ν. Subsequently, the pairs obtained
are plotted in a graph. The resulting curve takes the name of Receiver Operating Char-
acteristics (ROC) curve. From the definition of True Positive Rate and of False Positive
Rate, it follows that both of them are numbers in the interval [0, 1], hence the ROC is
contained in the square [0, 1]× [0, 1]. The integral on [0, 1] of the ROC goes under the
name of AUC (or, alternatively, of AUROC) and it can be employed as an evaluation
metric [30].

An important remark that has to be made about the AUC is that this metric is invariant
with respect to the class skew of the data, namely the proportion between the anomalies
and the normal instances. In addition, it does not depend on the range of the values
assumed by the anomaly score function AS, which makes it possible to compare very
different models. For instance, it enables the confront between models whose output is
a probability, hence in [0, 1], and those whose anomaly score function assumes values in
the whole R.

The AUC is a measure of how well a model is able to separate the data into two classes.
High values indicate excellent separation capabilities, whereas low values signify that the
model is not very effective.

68 4| Experiments

Another nice property of this metric is that a random guesser, namely a model which
assigns the labels to the elements completely at random, makes register a value of AUC
equal to 0.5. From this, we can deduce that a model whose AUC is less than 0.5 performs
worse than one without any knowledge of the data, which is rather alarming. The maxi-
mum value of AUC that can be reached is 1 and it corresponds to the optimal classifier.

Figure 4.3: Depiction of some examples of ROC curves. A higher value of AUC indicates
a better classifier. The random classifier corresponds to the red dashed line

4.3. Competing methods

After explaining the metric that we are using for evaluation, we now illustrate the methods
to which we compare to. The field of anomaly detection on point clouds is a rather
unexplored world, hence there is not a plethora of works that address this task. To the
best of our knowledge, the followings are the sole methods that address this problem in a
similar way to how we intend to do it:

• IFOR [32]: it is an Isolation Forest [58] on the Global Orthographic Object de-
scriptors (GOOD) [46]. GOOD are handcrafted features extracted from each point
cloud. This is a shallow method and hence it is employed as a baseline, following
what has been done in [32];

• VAE [63]: this method consists of a Variational Autoencoder for 3D point cloud

4| Experiments 69

anomaly detection and relies on the comparison between the original item and a
reconstructed version. In fact, this model is trained to compress and subsequently
reconstruct the point clouds belonging to the normal class;

• DeepSVDD for point clouds [31]: it is an extended version of the original
DeppSVDD by Ruff et al [78]. Its aim is to map all the normal instances in an
enclosing hyper-sphere in a certain latent space;

• Self-supervised using geometric transformations [32]: this method has been
developed in [32] and it is an application to point clouds of the original self-
supervised approach proposed in [34]. It is based on training a classifier to distin-
guish several rigid transformations applied to the input. In [32] as set of geometric
transformations have been employed 8 rotations along a fixed horizontal axis.

Furthermore, it has to be noted that all the methods reported above adopt the AUC as
evaluation metric, therefore we are able to compare the results in a natural way. This
constitutes also one of the main reasons why we have decided to employ said metric.

4.4. Deep Robust Once Class Classification for point

clouds

In this section, we illustrate the experiments that we have performed using the Deep
Robust One Class Classification method for point cloud anomaly detection that we have
introduced in section 3.1. We explore different architectures based on the composite
layers [32] in order to evaluate how the latter perform in this scenario. In addition,
we experiment with other networks, more importantly with ConvPoint [13]. A similar
comparison between CompositeNet and ConvPoint networks can be found in [31] for the
case of the DeepSVDD method. Finally, we compare the results achieved by our extension
of DROCC to point clouds with the ones of the rest of the literature.

4.4.1. Experimental setup

In order to make the experiments more comparable, we have adopted a common experi-
mental setup for every one of them. We decided to set the cardinality of each point cloud
to 1024, similarly to [32]. In these experiments we have employed the ShapeNet7C dataset
that we have presented in section 4.1.1. Since the classes that we consider contain a high
number of samples, every model is trained for 15 epochs. Empirically we have found that
after such time the value of the AUC stabilises and training them for more time does not

70 4| Experiments

yield better performance. The batch size has been fixed to 64. All the models have been
trained using Adam [48] optimiser with an initial learning rate lr = 0.0005.

DROCC Hyperparameters

We have extensively tuned the hyper-parameters of our DROCC method by conducting
several experiments and trying different combinations of them. The network that we
have employed for such purpose is the ADCompositeNet3, whose architecture is reported
in Table 3.1. After that, we have taken the best performing hyper-parameters and we
have adopted them in every model. Furthermore, since we are conscious that the concept
of “best performing” hyper-parameters may depend on the specific model, we have also
explored whether there were better performing hyper-parameters for each one of them.
Nevertheless, we found that there were no significant differences in terms of performance
between the latter and the former, hence we have decided to adopt the hyper-parameters
tuned with the ADCompositeNet3 network for every model.

Therefore, the hyper-parameters that we have used are:

• Mixing coefficient: µ = 0.4:

• Regularisation coefficient: λ = 0.15

• Standard deviation of h0: σ = 0.3

• Radius: r = 28

• Upper bound: γ = 2:

• Ascent step number: S = 30

• Step size: η = 0.001

As far as it regards the radius, its value is in accordance with what found in [36], where it is
suggested that the best performing radius corresponds to r̄ =

√
dn/2. In this expression,

dn represents the dimension of the input space, which in our case is dn = 3 · 1024. The
upper bound γ = 2 is also analogous to the one that has been adopted in [36] and we
found that increasing it, for instance to γ = 4, was not beneficial to the performance.

4.4.2. DROCC using Composite Layers

As we have declared, one of the aims of this work is to explore the performance of the
composite layers when they are exploited by other anomaly detection methods on point
clouds. Therefore we have used them to build several networks that we have then employed

4| Experiments 71

in the role of the function ϕθ(·) of the method presented in section 3.1.

Of the networks presented in 3.1.3 we have tuned the various hyper-parameters and we
found that the configuration which yields the best performance overall corresponds to:

• J0 = 16

• M = 64

• K = 25

Where J0 decides the number of output features of each composite layer, M is the number
of centers of each spatial function s and K is the output dimension of the latter. Hence,
from now on, we assign the values here reported to these hyper-parameters for each
CompositeNet that we create, unless explicitly specified otherwise.

Results

Class ADComposite5 ADComposite3 ADComposite3b ADComposite3 (Aggr.)
0 Airplane 0,7925 0,7909 0,8182 0,7709
1 Car 0,6936 0,6370 0,6479 0,6311
2 Chair 0,5871 0,7336 0,7315 0,7266
3 Lamp 0,6426 0,6821 0,5942 0,5895
4 Table 0,5864 0,7816 0,7524 0,8198
5 Sofa 0,7564 0,6935 0,6999 0,6420
6 Rifle 0,8537 0,8515 0,8847 0,9015
Average AUC 0,7018 0,7386 0,7327 0,7259
Average rank 2,57 2,29 2,29 2,86

Table 4.4: Results of the anomaly detection task on ShapeNet7C for different architectures
based on the composite layers. All the values are in terms of AUC

The results of the anomaly detection task that we obtained on ShapeNet7C when varying
the networks’ architecture are reported in Table 4.4. As we can see, there is not a clearly
predominant architecture above the others. This does not represent a huge surprise since
all the networks are similar as they are based on the composite layers. The most no-
table difference is that on average the ADCompositeNet5 tends to perform worse than
the others. This can be explained by the fact that it has a more complex architecture
constituted by five layers instead of the three layers of the other networks. On this basis,
we can speculate that the DROCC method for point cloud anomaly detection reaches
better results when simple networks are employed in the role of the function ϕθ(·).

Moreover, it seems that the convolutional composite layers yield slightly better results
than their aggregate counterpart. Once again this behaviour is probably due to the more

72 4| Experiments

complex structure of the latter. On the other hand, we did not find a great difference
when the ADCompositeNet3 has one unique fully connected layer or when it has two of
them. It has to be taken into account that the number of parameters in these cases is not
dramatically different.

For sake of completeness, we have experimented also with a network constituted by 4
convolutional composite layers, called without much fantasy ADCompositeNet4. Its ar-
chitecture resembles the one of ADCompositeNet5 in Table 3.2, with the sole difference
that the fourth layer is missing. However, its results are very similar to the ones achieved
by ADCompositeNet5, hence we decided to omit them as they would not have been much
informative.

In essence, what we can deduce from the results that we obtained is that the method we
developed basing ourselves on the DROCC approach tends to yield better results when
simple architectures are involved. In fact, the best performing configuration corresponds
to the simplest one that we have tried, namely the one with only three composite layers.
Furthermore, the convolutional version is to be privileged in such models. This conclu-
sion is for instance in contrast with the results that have been found in [32] regarding
the classification task. In that scenario it was a five layers CompositeNet composed of
aggregate composite layers the best performing network.

4.4.3. Comparison among different types of network

A second group of experiments is aimed at exploring how the performance of the Deep
Robust Once Class Classification method for point cloud AD that we have developed
is affected by the type of network that is employed. To this end we have considered,
besides the ADCompositeNet3 that we have earlier introduced, a ConvPoint [13] network
and a network based on the architecture of PointNet [69]. The functioning principles of
ConvPoint [13] are similar to the ones of CompositeNet [32], as both networks implement
a point convolutional operator. Furthermore, ConvPoint represents one of the sources
of inspiration for CompositeNet [32] and the two networks are direct competitors. All
of this adds more value to the comparison between them, as we aim to discover which
architecture is more suitable to our method.

For the comparison, we have considered an ADCompositeNet3 since, as shown in section
4.4.2, it proved to be the best performing architecture based on the composite layers. In
addition to ADCompositeNet3, we consider the ADConvPoint in Tab.3.3. The number
of centers is chosen to be 64 for both the networks, whilst we decided to set the output
dimension of the semantic function of ADCompositeNet3 to K = 25.

4| Experiments 73

These two networks are designed to be as similar as possible, although obviously there are
some differences between the two, the most relevant of which is the number of learnable
weights, as the implementation of the convolutional layers is different. More precisely, the
ADConvPoint3 counts 457601 learnable parameters, whereas the ADCompositeNet3 just
140423, which is around three times less.

Furthermore, we consider the PointNet network that we have represented in Tab.3.4,
which counts 736641 parameters because of the fully connected layers. The number of
parameters for each network is reported in 4.5.

Table 4.5: Comparison between the number of parameters

Network Number of parameters
PointNet 736641
ADConvPoint3 457601
ADCompositeNet3 140423

Results

In Table 4.6 are reported the results that we obtained.

Table 4.6: Results in terms of AUC of our DROCC method for point cloud anomaly
detection when different networks are employed

Class ADConvPoint3 PointNet ADCompositeNet3
0 Airplane 0,6738 0,8067 0,7909
1 Car 0,5218 0,7635 0,6370
2 Chair 0,6374 0,6024 0,7336
3 Lamp 0,4829 0,6734 0,6821
4 Table 0,6973 0,6522 0,7816
5 Sofa 0,5465 0,6711 0,6935
6 Rifle 0,7440 0,8612 0,8515
Average AUC 0,6148 0,7186 0,7386
Average rank 2,71 1,86 1,43

From that we can see that, in this experiment, ADCompositeNet3 is the best performing
network for the Deep Robust One Class Classification on point clouds. PointNet, despite

74 4| Experiments

the significantly higher number of parameters, achieves similar performance, making reg-
istering a difference of 0.02 points of AUC. On the other hand, ADConvPoint3 represents
the worst performing network among the ones that we have considered.

Most remarkably, in spite of the similar structure, ADConvPoint3 is outperformed by the
ADCompositeNet3 by more than 10% of AUC on average. As we have alluded to in the
previous section 4.4.2, this is probably due to the higher number of parameters, which
makes the optimisation process more challenging.
Nevertheless, when we take into account that PointNet is the network with the highest
number of parameters, we deduce that the latter is not the only aspect that influences
the success of the method. Indeed, our PointNet network has roughly twice as many
parameters as ADConvPoint3 and it is still able to reach significantly better results than
the latter. We can explain this behaviour with the fact that the PointNet architecture is
the simplest of the three, which then makes it simpler to be trained. On the contrary,
ADConvPoint3 is characterised by a more complex design made of convolutional layers.
Thus, the cause of its scarce success probably resides in these more sophisticated layers,
which also comprehend most of the parameters of the network.

In addition, we have also carried out some experiments employing an advanced PointMLP
network [60], which adopts a residual architecture. This network is currently one of the
top performing models in the classification task on the ModelNet40 dataset [95], hence
the choice. However, the results we obtained were below our expectations, as they were
slightly worse than the ones of PointNet.

Collecting all the observations from the above experiments together, we can advocate
that the optimisation process of the method we developed can be quite insidious. In
order to avoid such complications we thus recommend employing a neural network with
a simple design in the role of ϕθ(·) and eventually prefer a low number of parameters.
Sophisticated architectures that count millions of learnable parameters, despite they may
perform excellently in other tasks, are not well suited to our DROCC method for anomaly
detection on point clouds.

4.4.4. Comparison with other methods

Once that we have identified the best configuration in terms of both type and architecture
of the network, this last section is devoted to verifying how our anomaly detection method
for point clouds compares to the rest of the literature. To this purpose, analogously to
what has been done in [32], we consider as baseline an Isolation Forest [58] that relies
on the Global Orthographic Object Descriptor (GOOD) [46] of the point clouds. This

4| Experiments 75

method is regarded as "IFOR" in Table 4.7 and the related values of AUC have been
directly reported from [32].
In addition, another method that is taken into account is the Variational Autoencoder
presented in [63]. This is a deep reconstruction-based model and in Table 4.7 are rep-
resented two versions of it; the number next to the name "VAE" indicates the number
of points used for the reconstruction of the original point cloud. Since the code is not
publicly available, we report the official results from the original paper [63].

A third method that we have considered is the extension developed in [31] of the DeepSVDD
model [78] to the scenario of unsupervised anomaly detection on point clouds. This com-
parison is of particular relevance since the moving principles of DROCC [36] are similar
to the ones of the DeepSVDD [78]. However, one of the aims of DROCC is to develop a
method more robust to the representation collapse than the DeepSVDD, as declared by
its authors [36]. In this case, we have taken the code used by [31] in his work and we have
run our experiments adopting the experimental setup that we have introduced in section
4.4.1. Moreover, we have employed as neural network the same ADCompositeNet3 that
we have used with our DROCC per point clouds method. On this ground, we believe that
we have made the comparison between these two methods as fair as possible. The results
that we obtained are then reported in Table 4.7, alongside the ones of our method based
on DROCC.

Table 4.7: Comparison between anomaly detection methods for point clouds on the
ShapeNet7C dataset. All the values are in terms of AUC

Class IFOR [58] VAE 2048 [63] VAE 4096 [63] DeepSVDD [31] DROCC (Ours)
0 Airplane 0,912 0,716 0,747 0,6898 0,7909
1 Car 0,712 0,752 0,757 0,6217 0,6370
2 Chair 0,571 0,918 0,931 0,6758 0,7336
3 Lamp 0,962 0,903 0,907 0,641 0,6821
4 Table 0,883 0,834 0,839 0,6585 0,7816
5 Sofa 0,986 0,778 0,777 0,5834 0,6935
6 Rifle 0,475 0,286 0,382 0,7422 0,8515
Average AUC 0,7859 0,741 0,7629 0,6589 0,7386
Average rank 2,14 3 2,29 4,43 3,14

As we can see from Table 4.7, our DROCC method for point cloud anomaly detection
performs on average better than the DeepSVDD method. Nonetheless, it is surpassed in
performance by the IFOR, VAE 4096 and it is on par with the VAE 2048. The better
results of the Variational Autoencoder [63] allegedly have to do with the fact that it uses

76 4| Experiments

point clouds of cardinality 2048, whereas in our experiments we have always considered
only 1024 points. In addition, this method totally fails on the class "rifle", probably due
to reconstruction issues. Also the IFOR performs very poorly on this class, making record
a value of AUC below 0.5. Quite surprisingly, on said class, both the DeepSVDD and our
DROCC methods achieve their best results.

IFOR, which we have used as baseline, still shows very good results on several classes
and it is the best performing method in this experiment. However, all considered, it does
not emerge one method that consistently performs better than the others, as they all
have their criticalities on certain classes. Indeed, only the DeepSVDD and the DROCC
methods reach values of AUC above the 0.5 threshold on every class. This threshold is
relevant since it is the value that would be achieved by a random guesser, hence without
having any sort of knowledge about the data.

In addition, it can be noted that our DROCC method performs better than the DeepSVDD
on all the classes of this dataset, achieving an average AUC of 8% higher than the latter.
This suggests that the former approach is more effective. Furthermore, the DeepSVDD
method is the one that performs the worst in terms of average AUC, proving that it does
not work very well in the context of point cloud anomaly detection. This observation is
in accordance with what found by [31].

This said, also the DROCC method that we have proposed does not prove to be extremely
effective overall, since it is outperformed on several classes by the shallow baseline IFOR.
If from one side it is true that it does not make register values of AUC as low as the ones
of IFOR on classes such as "rifle" or "chair", from the other it never achieves any value
of AUC greater than 0.90. Taking into account that we have widely experimented with
various networks and explored different architectures, we speculate that the reasons for
its non-outstanding performance lie in the approach itself. In particular, we suspect that
the adversarial search plays a major role in this since we advocate that the context of
point cloud data is much more challenging than the ones of [36] and hence it does not
result to be as effective.

4.5. Neural Transformation Learning for point cloud

anomaly detection

The second method that we have developed for the anomaly detection task on point clouds
is based on the approach of [73]. Our model is composed of three ingredients: a feature
extractor, a set of learnable transformations, and an encoder. This section is devoted

4| Experiments 77

to illustrating the various experiments that we have conducted and to investigating the
results achieved by this method.

4.5.1. Hyper-parameters’ tuning

In order to tune the hyper-parameters we have conducted several experiments on the
ShapeNet7C dataset by and trying different values. In particular, we have investigated
the following combinations:

– Batch size: {128, 256, 512}

– Number of transformations: {7, 15}

– Layers of each transformation: {2, 3}

– Type of transformations: {feed_forward, multiplicative, residual}

– Encoder output dimension: {128, 256, 512}

More specifically, we adopted a semi-grid-search approach, examining only the most
prominent combinations and branching out values that were deemed to yield sub-par
results. For instance, when we noted that the feed forward transformations performed
worse than the other types, we did not investigate them further. This observation is also
in accordance with what reported in [73].
In bold are highlighted the hyper-parameters of the combination that yielded the best re-
sult. From now on, unless otherwise explicitly specified, we adopt these hyper-parameters
in all our experiments.

We also attempted to change the architecture of each transformation in:

FC1(1024, 512) → FC2(512, 512) → FC3(512, 1024)

However, we got slightly worse results than with the one in Fig 3.1.

4.5.2. Anomaly detection on ShapeNet7C

We have performed several experiments in order to assess the performance of the method
that we have developed for the anomaly detection task on point clouds. In this section,
we utilise as a benchmark the ShapeNet7C dataset that we have presented in 4.1.1.

78 4| Experiments

Pre-training of the feature extractor

Our method makes use of a pre-trained feature extractor ϕPC(·) which is used to process
the input point clouds. The pre-training protocol that we have applied is the one we
presented in 3.2.5. More specifically, since our aim in this case is to investigate the
anomaly detection problem on ShapeNet7C, we pre-train our feature extractor on a subset
of ModelNet40 [95].

To do so we have removed from the original ModelNet40 datasets the classes that this
latter has in common with ShapeNet7C, that are:

"Airplane", "Car", "Chair", "Lamp", "Table" and "Sofa".
For sake of thoroughness, we have removed from ModelNet40 also the classes "Stool" and
"Desk", since they might be very similar to "Chair" and "Table", respectively.

The resulting dataset contains 32 classes and 8487 samples, of which 6645 of them con-
stitute the training set and the remaining 1842 are used for the test set. Because it is
made of 32 classes, we can refer to this dataset as “ModelNet32”. When creating it, we
maintained the original train-test split of ModelNet40 [95].

Table 4.8: ModelNet32: the 32 classes of ModelNet40 used in our experiments. We
report the number of train and test samples. The number beside the name of each class
refers to the label of the original class in ModelNet40 [95]

Class Train Test Class Train Test Class Train Test
1 bathtub 106 50 15 flower pot 149 20 27 radio 104 20
2 bed 515 100 16 glass box 171 100 28 range hood 115 100
3 bench 173 20 17 guitar 155 100 29 sink 128 20
4 bookshelf 572 100 18 keyboard 145 20 31 stairs 124 20
5 bottle 335 100 20 laptop 149 20 34 tent 163 20
6 bowl 64 20 21 mantel 284 100 35 toilet 344 100
9 cone 167 20 22 monitor 465 100 36 tv stand 267 100
10 cup 79 20 23 night stand 200 86 37 vase 475 100
11 curtain 138 20 24 person 88 20 38 wardrobe 87 20
13 door 109 20 25 piano 231 100 39 xbox 103 20
14 dresser 200 86 26 plant 240 100 tot. 6645 1842

Using as a basis the architecture of the feature extractor reported in Table 3.5, we have
constructed a network suited for the classification task. In particular, we have completed
the last composite layer in Table 3.5 by adding a batch normalisation layer and a Leaky
ReLU activation function after it. In such a way the former is coherent with all the other

4| Experiments 79

composite layers. Furthermore, we have added a final fully connected layer at the end of
the network, which serves as a classification head. This fully connected layer has input
dimension 1024 and output dimension 32, where the latter corresponds to the number of
classes of ModelNet32.

We have trained the created network on ModelNet32 for 50 epochs using Adam optimiser
[48] of initial learning rate 0.001. After that, the classification head is discarded in order
to obtain the architecture described in Table 3.5.

Results

In order to assess the effectiveness of our model we trained it to perform the anomaly
detection task on the ShapeNet7C dataset. The architectures that we have employed for
the transformations and the encoder are the ones that we presented in sections 3.2.6 (Img.
3.1 and Img. 3.2, respectively). To make our results less subject to variability, we train
the model five times and in Table 4.9 we report the average AUC over the five runs, as
well as the standard deviation.

Table 4.9: Results over five runs in terms of AUC of our NeuTraL method for point cloud
anomaly detection. The values of AUC are averaged over the 5 runs and Std. dev refers
to their standard deviation

Class AUC Std. dev.
0 Airplane 0,9988 0,000108
1 Car 0,9984 0,000040
2 Chair 0,9573 0,002195
3 Lamp 0,9627 0,000904
4 Table 0,9916 0,000259
5 Sofa 0,9882 0,000628
6 Rifle 0,9984 0,000094

Mean 0,9851 0,000310

As it can be seen from Table 4.9, our Neural Transformation Learning method achieves
excellent performance. In particular, on four of the seven classes of the ShapeNet7C
dataset, our model reaches values of AUC greater than 0.99. It has to be remembered
that the maximum value of AUC that can be achieved is 1.0. Our model, especially on
classes such as "airplane", "car" and "rifle", gets extremely close to it. In addition, all the
standard deviations are very low, hence our model reaches these results with consistency
and the variability of its performance is small.

80 4| Experiments

Since we have adopted the AUC as evaluation metric, we can easily compare the perfor-
mance of our model with the ones of the rest of the literature. The results are reported
in Table 4.10.
More into the specific, "IFOR" indicates an Isolation Forest [58] on the Global Ortho-
graphic Object Descriptors [46] of the point clouds as in [32]. "VAE" stands for the
Variational Autoencoder proposed in [63], whose values of the AUC are taken directly
from the official paper. "Self-Sup" denotes the extension of the Self-Supervised method
[34] to point cloud anomaly detection presented in [32]. As far as it regards the latter
method, we have decided to take into consideration the results that the authors obtained
using a CompositeNet based on the aggregate composite layers, as this is one of the
best performing architectures they tested [32]. For sake of completeness, we report also
the results that we obtained with the best configuration of our DROCC for point cloud
method that we have discussed in the previous section 4.4.2. The former are denoted by
"DROCC" in the table. In addition, we present also the results from the "DeepSVDD"
model that we have trained on this dataset using the original code from [31], as we have
done in section 4.4.4.

Table 4.10: Comparison between point cloud anomaly detection methods on ShapeNet7C.
All the values are in terms of AUC

Class IFOR [32] VAE [63] DeepSVDD [31] DROCC (Ours) Self-Sup. [32] NeuTraL (Ours)
0 Airplane 0,912 0,747 0,6898 0,7909 0,9700 0,9988
1 Car 0,712 0,757 0,6217 0,6370 0,9720 0,9984
2 Chair 0,571 0,931 0,6758 0,7336 0,9410 0,9573
3 Lamp 0,962 0,907 0,6410 0,6821 0,4210 0,9627
4 Table 0,883 0,839 0,6585 0,7816 0,8540 0,9916
5 Sofa 0,986 0,777 0,5834 0,6935 0,9440 0,9882
6 Rifle 0,475 0,382 0,7422 0,8515 0,9770 0,9984
Average AUC 0,7859 0,7629 0,6589 0,7386 0,8684 0,9851
Average rank 3,43 4,00 5,43 4,29 2,86 1,00

From this comparison, it emerges that our Neural transformation Learning for point cloud
anomaly detection method is the best performing one on the ShapeNet7C dataset. In fact,
it reaches the highest AUC on every class of said dataset, setting the new state of the
art. More precisely, it achieves a mean AUC of 0.9851, which improves the previous mean
AUC of more than 10% and it approaches the perfect value of 1.
In addition, it can be noted that our method outperforms the shallow baseline IFOR [32],
VAE [63], DeepSVDD [31] and DROCC (Section 3.1) by a very large margin. Moreover,
differently from the other methods, it is much more consistent on every class, as its lowest
value of AUC is equal to a solid 0.9573, which still represents an impressive performance.

4| Experiments 81

The method that reaches the best results, besides ours, is the extension proposed in [32]
of the self-supervised approach originally proposed in [34]. This method makes use of a
set of geometric transformations which, differently from ours, has to be decided a-priori.
In the original paper [34], this approach is applied to image data and the considered
transformations include flips, rotations, and translations. Of these transformations how-
ever only rotations can be adopted in the case of point cloud data, therefore in [32] the
authors opted for 8 rotations along a fixed horizontal axis. Indeed, as we have explained
in section 1.3, the methods that process point clouds are required to be invariant to rigid
translations, hence translations cannot be employed. Furthermore, many objects of the
ShapeNet7C dataset are symmetric (for instance tables), which implies that flips do not
yield transformed versions distinguishable from the original one. As far as it regards ro-
tations, since the objects are not oriented in a canonical pose, usually only rotations w.r.t
a horizontal axis can be employed. Taking these observations into account, we deduce
that the set of transformations that can be employed for the case of point clouds is much
more restricted than the one used on images.

From Table 4.10 we can see that the Self Supervised method of [32] fails on the class
"lamp", making register an AUC of less than 0.5, namely worse than a random guesser.
We speculate that the motivation behind such behaviour is that the category "lamp"
of ShapeNet7C comprehends very different types of such objects, including table lamps
and chandeliers, as in [32]. Since the latter are very similar to the upside-down version
of the former, when rotations of 180° degrees around a horizontal axis are used, they
become indistinguishable by the classifier, thus jeopardising the learning process. On the
contrary, since our method does not rely on pre-defined transformations, it is able to
achieve a remarkable value of 0.9627 of AUC on that same class.

Discussion and limitations

The method that we have introduced for the anomaly detection task by extending the
approach of [73] proved to be extremely successful. We hypothesise that these outstanding
results are also thanks to the pre-trained feature extractor ϕPC(·) and we believe that
the pre-training procedure plays a major role in it.
From this, we can conclude that the pre-training strategy can be very useful in the context
of anomaly detection, even when the classes used for the pre-training are different from the
ones used for the latter purpose. This observation holds as long as the features extracted
by ϕPC(·) generalise well.

The pre-training procedure is probably one the of main criticalities of our method, as it
requires additional data compared to alternatives. If it is true that these data do not

82 4| Experiments

necessarily have to be exactly like the ones used during the anomaly detection task, they
still have to yield general features. This fact might be not always granted, hence it has
to be chosen a suitable pre-training dataset.

Another criticism that may arise concerns the amount of data necessary for the pre-
training, as they could be problematic to be collected. To this regard, we can try to
answer by taking into account the case that we have analysed. In fact, we have performed
the pre-training on a dataset constituted by 32 classes of ModelNet40 [95], for a total of
6645 training samples. As we can see from Table 4.8, many categories count very few
elements, with some classes such as "bowl", "cup" and "wardrobe" that count less than
100 instances. Furthermore, each class contains on average just 200 training samples.
When compared to other datasets in the deep learning field, such as ImageNet [22], that
contain millions of samples, these numbers can be argued to be low. Nonetheless, the
features extracted seem to generalise very well, as we have proved. In the light of the
above, we can sustain that it is not necessary a gargantuan amount of data for pre-training
purposes.

4.5.3. Anomaly detection with few samples on ModelNet

In the previous section, we have assessed the anomaly detection capabilities of the method
we developed using as benchmark the ShapeNet7C dataset. In that case, our model takes
advantage of pre-trained feature extractor on ModelNet32. Here we devote our attention
to exploring the consequences that arise when we invert the roles of the aforementioned
datasets.

We believe this setup to be more challenging for two main reasons. The first one is that
the feature extractor is pre-trained on a dataset that contains objects from only seven
categories, versus the 32 of before. This means that ϕPC(·) is exposed to a more limited
selection of objects and consequently of features. Therefore, it is interesting to enquiring
whether the extracted features still generalise well or not.

The second reason resides in the fact that the anomaly detection model is trained on
a much smaller dataset. Indeed, as we have also discussed in section 4.5.2, the latter
contains only 6645 training samples. In addition, some of its classes are made of less
than one-hundred elements (Table 4.8). We recall that all the models under consideration
in this work that address the anomaly detection task are trained solely using data from
the normal class. This means that our model, on classes such as "bowl", "cup" and
"wardrobe", is trained using less than ninety samples.

4| Experiments 83

Pre-training of the feature extractor

The protocol that we have adopted for the pre-training of the feature extractor is anal-
ogous to the one we followed in section 4.5.2. Furthermore, we have employed the same
architecture for ϕPC(·), namely the one depicted in Table 3.5. In this case, we train the
feature extractor on the ShapeNet7C dataset, which is constituted by 7 classes 2.

Results

The architectures that we have employed for the learnable transformations and for the
encoder are the ones that we have illustrated in Img. 3.1 and Img. 3.2, respectively. We
have trained our models for 100 epochs using Adam optimiser [48] of initial learning rate
equal to 0.0002.

Similarly to what we have done for the case of ShapeNet7C in section 4.5.2, we have
trained all the models five times and in Table 4.11 we report the average AUC over the
five runs, as well as the standard deviation. In addition, we indicate also the cardinality of
each class, which corresponds to the number of samples on which each associated anomaly
detection model is trained.

From what we can see in Table 4.11, our Neural Transformation Learning model for
anomaly detection on point clouds achieves excellent results on basically every class con-
sidered. The mean of the AUC over the whole 32 classes is of 0.9456, which is an impressive
result. Furthermore, all the standard deviations of the AUC over the five runs are very
small, which signifies that these results can be regarded as reliable.

In particular, our model is able to reach values of AUC above 0.99 on several classes
such as: "bed", "bottle", "guitar", "keyboard", "laptop", "monitor" and "toilet". What
is more remarkable is that on "keyboard" it makes register an AUC of 0.999 and on
"laptop" of even 0.9997, values astoundingly close to the perfect score of 1. In addition,
these latter two classes count a little less than 150 training samples, which is a rather low
number, especially when compared to the cardinality of the classes of ShapeNet7C (Tab.
4.1) and to other deep learning datasets [22], [50], [55].

The only category on which our method seems to perform not as well as on the others is
"radio", on which it obtains a value of AUC of “only” 0.7835. We hypothesise that such
behaviour is related to the low cardinality of said class, since it counts just 104 elements.

2We have decided to proceed in this way and not by removing from ShapeNet7C the intersection of
the classes between ModelNet40 and ShapeNet7C since otherwise there would have been only one class
left: "rifle"

84 4| Experiments

Table 4.11: Results in terms of AUC of anomaly detection on ModelNet32 obtained by
our model. The values of AUC are averaged over the 5 runs and Std. dev refers to their
standard deviation. Next to them we report the number of training samples of each class.

Class AUC Std. dev. #Train
1 bathtub 0,9672 0,004525 106
2 bed 0,9939 0,000570 515
3 bench 0,9259 0,003129 173
4 bookshelf 0,9817 0,001611 572
5 bottle 0,9949 0,000367 335
6 bowl 0,9753 0,003333 64
9 cone 0,9787 0,000870 167
10 cup 0,9255 0,000609 79
11 curtain 0,9788 0,001358 138
13 door 0,9659 0,003784 109
14 dresser 0,9680 0,001279 200
15 flower pot 0,8536 0,007559 149
16 glass box 0,9690 0,000302 171
17 guitar 0,9940 0,001005 155
18 keyboard 0,9990 0,000512 145
20 laptop 0,9997 0,000068 149
21 mantel 0,9481 0,003124 284
22 monitor 0,9951 0,000453 465
23 night stand 0,9503 0,000966 200
24 person 0,9704 0,001575 88
25 piano 0,9073 0,000879 231
26 plant 0,9556 0,002248 240
27 radio 0,7835 0,006306 104
28 range hood 0,9641 0,004160 115
29 sink 0,8296 0,008381 128
31 stairs 0,8106 0,020754 124
34 tent 0,9713 0,001122 163
35 toilet 0,9947 0,000683 344
36 tv stand 0,9575 0,000800 267
37 vase 0,9397 0,001043 475
38 wardrobe 0,9188 0,009396 87
39 xbox 0,8923 0,008521 103
Average AUC 0,9456 0,001429 6645

4| Experiments 85

Moreover, also the variability within the class might play a role in it, since it contains
quite different types of radios. Additionally, the features extracted could be similar to the
ones of some other categories and therefore confound our method.

Another observation that can be made concerns the number of training samples. In
fact, from Table 4.11 we can see that our model achieves notable performance on the
categories "bowl", "person", "cup" and "wardrobe". This happens in spite of the fact
that they contain less than one hundred elements. Furthermore, it is very interesting
to note that on the two former classes, namely "bowl" and "person", our model makes
register values of AUC above 0.97 despite being trained on less than ninety samples. On
the two former categories it obtains values around 0.92, which are still noteworthy.

Overall, we can notice that on the most numerous categories the performance seems to
be better than on the ones with fewer samples. Indeed, all the values of AUC less than
0.90 are recorded on classes that contain less than 150 elements. This was to be expected
since deep learning methods strongly rely on a huge amount of data for their success [54].
On the contrary, it is more surprising that our model achieves outstanding results even
when few training samples are being used.

Discussion and limitations

In this section, we have discussed the application of our model to the anomaly detection
problem on ModelNet32. We regard this case to be more challenging than the previous
one since the feature extractor is pre-trained on fewer classes and, more importantly, since
the model used to perform the anomaly detection is trained using only a few samples.
Nonetheless, from the obtained results we have shown that our method proved to be very
effective also in this scenario, consistently reaching remarkable values of AUC.

To the best of our knowledge, we are the first to address the anomaly detection problem
on classes from ModelNet40 in a deep manner, as other works have probably deemed
the number of training samples to be insufficient for such a purpose. Nevertheless, our
model, by leveraging a pre-trained feature extractor, demonstrated to be able to achieve
remarkable performance even in this context.

At this point, we believe that the main criticism that could be moved regards the pre-
training strategy, as it is an operation that requires additional data. To this end, we
advocate that such procedure proved to be very effective in both the scenarios that we have
examined. In particular, in the first one we have performed it on a relatively small amount
of data and the results we obtained ShapeNet7C outperformed every other considered
method by a large margin. On the other hand, in the second scenario we have pre-

86 4| Experiments

trained the feature extractor on just 7 categories and then we have performed the anomaly
detection task using normal classes of even less than ninety samples. In spite of this,
our model still confirmed to be substantially effective on every class of ModelNet32.
On this ground, we speculate that the amount of pre-training data and the number
of different categories used are not extremely fundamental to the good success of our
anomaly detection model, as long as the extracted features can generalise well.

87

5| Conclusions and future

developments

In this work, we have addressed the anomaly detection task on point clouds by designing
two different methods. The first of them, namely our Deep Robust One Class Classifica-
tion method, extends the approach proposed by [36] to the case of point clouds. This has
been done by developing a suitable network architecture, as well as a specific adversarial
search, as we have explained in section 3.1. Furthermore, we have performed several ex-
periments in order to evaluate its performance. We have discussed the best performing
architecture and we have compared the results with the ones of other competing methods,
which adopt different approaches to anomaly detection. Overall our DROCC model for
point cloud shown better performance than the DeepSVDD model [31], which is the most
similar method among the ones we have considered. This said, the results that it achieves
are not very outstanding, but rather in line with the ones of most of the present methods,
as showed in 4.4.4.

The second method that we have developed is inspired by [73], in particular, we adopt the
loss function which has been proposed in said paper. The model that we have developed,
taking advantage of a pre-trained feature extractor and of a set of learnable transforma-
tions, proved to be able to achieve astounding results. In fact, as shown in section 4.5, our
model outperforms all the methods of which we are currently aware of. More precisely, on
the ShapeNet7C dataset it reaches an average AUC of 0.9851, value that is astoundingly
close to the maximum achievable, namely 1. In so doing it improves by a large margin
the previous state of the art and, on some classes of this dataset, it even makes register
values of AUC greater than 0.99.

Furthermore, we have employed our Neural Transformations Learning method also for the
point cloud anomaly detection task on 32 classes from ModelNet40 [95]. Because of the
very low cardinality of many of these classes, we have reasons to believe that this scenario
is very challenging for a deep learning method. In spite of the odds, our model achieved
noteworthy results on every class, even the ones with less than one-hundred training

88 5| Conclusions and future developments

samples. From this we deduced that, by leveraging a pre-trained feature extractor, our
method is able to reach remarkable performance in the anomaly detection task even when
very small training sets are used.

All things considered, we reckon that in the next years many more methods will be
proposed to address the task of anomaly detection and some of them will eventually be
better than ours. For instance, we believe that it would be interesting to develop methods
that effectively learn the transformations directly on point clouds without the support of
a feature extractor. We have attempted to make a step in this direction, however, the
results that we obtained were mixed. More precisely, on some classes we have been able
to achieve values of AUC greater than 0.95, however on some others the method made
register values below the 0.5 threshold. For this reason, we have decided to omit the details
about the implementation of this other method in our work. Irregardless, we think that
this is a promising approach to be explored, probably by introducing an improved loss
function.

This being said, we hope with our work to have made a small, yet tangible, contribution
in the field of anomaly detection on point cloud.

89

Bibliography

[1] Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection
using reconstruction probability. Special Lecture on IE, 2(1):1–18, 2015.

[2] Fabrizio Angiulli and Clara Pizzuti. Fast outlier detection in high dimensional
spaces. In European conference on principles of data mining and knowledge discov-
ery, pages 15–27. Springer, 2002.

[3] Frank J Anscombe. Rejection of outliers. Technometrics, 2(2):123–146, 1960.

[4] Zurui Ao, Yanjun Su, Wenkai Li, Qinghua Guo, and Jing Zhang. One-class clas-
sification of airborne lidar data in urban areas using a presence and background
learning algorithm. Remote Sensing, 9(10):1001, 2017.

[5] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point convolutional neural
networks by extension operators. arXiv preprint arXiv:1803.10091, 2018.

[6] Vic Barnett and Toby Lewis. Outliers in statistical data. Wiley Series in Probability
and Mathematical Statistics. Applied Probability and Statistics, 1984.

[7] Harry G Barrow, Jay M Tenenbaum, Robert C Bolles, and Helen C Wolf. Paramet-
ric correspondence and chamfer matching: Two new techniques for image matching.
Technical report, SRI INTERNATIONAL MENLO PARK CA ARTIFICIAL IN-
TELLIGENCE CENTER, 1977.

[8] Mokhtar S Bazaraa, Hanif D Sherali, and Chitharanjan M Shetty. Nonlinear pro-
gramming: theory and algorithms. John Wiley & Sons, 2013.

[9] Richard J Beckman and R Dennis Cook. Outlier. s. Technometrics,
25(2):119–149, 1983.

[10] Paul Bergmann, Xin Jin, David Sattlegger, and Carsten Steger. The mvtec 3d-
ad dataset for unsupervised 3d anomaly detection and localization. arXiv preprint
arXiv:2112.09045, 2021.

90 | Bibliography

[11] Paul Bergmann and David Sattlegger. Anomaly detection in 3d point clouds using
deep geometric descriptors. arXiv preprint arXiv:2202.11660, 2022.

[12] Richard J Bolton and David J Hand. Statistical fraud detection: A review. Statis-
tical science, 17(3):235–255, 2002.

[13] Alexandre Boulch. Convpoint: Continuous convolutions for point cloud processing.
Computers & Graphics, 88:24–34, 2020.

[14] Simon Byers and Adrian E Raftery. Nearest-neighbor clutter removal for estimating
features in spatial point processes. Journal of the American Statistical Association,
93(442):577–584, 1998.

[15] Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla. Anomaly
detection using one-class neural networks. arXiv preprint arXiv:1802.06360, 2018.

[16] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM computing surveys (CSUR), 41(3):1–58, 2009.

[17] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qix-
ing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su,
et al. Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015.

[18] Sucheta Chauhan and Lovekesh Vig. Anomaly detection in ecg time signals via
deep long short-term memory networks. In 2015 IEEE International Conference on
Data Science and Advanced Analytics (DSAA), pages 1–7. IEEE, 2015.

[19] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A sim-
ple framework for contrastive learning of visual representations. In International
conference on machine learning, pages 1597–1607. PMLR, 2020.

[20] Yaodong Cui, Ren Chen, Wenbo Chu, Long Chen, Daxin Tian, Ying Li, and Dongpu
Cao. Deep learning for image and point cloud fusion in autonomous driving: A
review. IEEE Transactions on Intelligent Transportation Systems, 23(2):722–739,
2021.

[21] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser,
and Matthias Nießner. Scannet: Richly-annotated 3d reconstructions of indoor
scenes. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 5828–5839, 2017.

[22] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

| Bibliography 91

A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee, 2009.

[23] Luc Devroye. Nonparametric density estimation. The L_1 View, 1985.

[24] Francis Ysidro Edgeworth. Xli. on discordant observations. The london, edinburgh,
and dublin philosophical magazine and journal of science, 23(143):364–375, 1887.

[25] Sarah M Erfani, Sutharshan Rajasegarar, Shanika Karunasekera, and Christopher
Leckie. High-dimensional and large-scale anomaly detection using a linear one-class
svm with deep learning. Pattern Recognition, 58:121–134, 2016.

[26] Levent Ertoz, Michael Steinbach, and Vipin Kumar. A new shared nearest neigh-
bor clustering algorithm and its applications. In Workshop on clustering high di-
mensional data and its applications at 2nd SIAM international conference on data
mining, volume 8, 2002.

[27] Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid Portnoy, and Sal Stolfo. A
geometric framework for unsupervised anomaly detection. In Applications of data
mining in computer security, pages 77–101. Springer, 2002.

[28] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based
algorithm for discovering clusters in large spatial databases with noise. In kdd,
volume 96, pages 226–231, 1996.

[29] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for
3d object reconstruction from a single image. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 605–613, 2017.

[30] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861–
874, 2006.

[31] Alberto Floris. Composite convolution for 3d point clouds, 2021. M.Sc. Thesis,
Politecnico di Milano.

[32] Alberto Floris, Luca Frittoli, Diego Carrera, and Giacomo Boracchi. Composite lay-
ers for deep anomaly detection on 3d point clouds. arXiv preprint arXiv:2209.11796,
2022.

[33] Zahra Ghafoori and Christopher Leckie. Deep multi-sphere support vector data
description. In Proceedings of the 2020 SIAM International Conference on Data
Mining, pages 109–117. SIAM, 2020.

92 | Bibliography

[34] Izhak Golan and Ran El-Yaniv. Deep anomaly detection using geometric transfor-
mations. Advances in neural information processing systems, 31, 2018.

[35] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.
Communications of the ACM, 63(11):139–144, 2020.

[36] Sachin Goyal, Aditi Raghunathan, Moksh Jain, Harsha Vardhan Simhadri, and Pra-
teek Jain. Drocc: Deep robust one-class classification. In International Conference
on Machine Learning, pages 3711–3721. PMLR, 2020.

[37] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Rock: A robust clustering
algorithm for categorical attributes. Information systems, 25(5):345–366, 2000.

[38] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Ben-
namoun. Deep learning for 3d point clouds: A survey. IEEE transactions on pattern
analysis and machine intelligence, 43(12):4338–4364, 2020.

[39] Wolfgang Härdle. Applied nonparametric regression. Number 19. Cambridge uni-
versity press, 1990.

[40] Simon Hawkins, Hongxing He, Graham Williams, and Rohan Baxter. Outlier detec-
tion using replicator neural networks. In International Conference on Data Ware-
housing and Knowledge Discovery, pages 170–180. Springer, 2002.

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[42] Heiko Hoffmann. Kernel pca for novelty detection. Pattern recognition, 40(3):863–
874, 2007.

[43] Peter J Huber. Robust statistics. In International encyclopedia of statistical science,
pages 1248–1251. Springer, 2011.

[44] Nathalie Japkowicz, Catherine Myers, Mark Gluck, et al. A novelty detection ap-
proach to classification. In IJCAI, volume 1, pages 518–523. Citeseer, 1995.

[45] Ian T Jolliffe. Principal component analysis for special types of data. Springer, 2002.

[46] S Hamidreza Kasaei, Ana Maria Tomé, Luís Seabra Lopes, and Miguel Oliveira.
Good: A global orthographic object descriptor for 3d object recognition and ma-
nipulation. Pattern Recognition Letters, 83:312–320, 2016.

| Bibliography 93

[47] JooSeuk Kim and Clayton D Scott. Robust kernel density estimation. The Journal
of Machine Learning Research, 13(1):2529–2565, 2012.

[48] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[49] Diederik P Kingma, Max Welling, et al. An introduction to variational autoen-
coders. Foundations and Trends® in Machine Learning, 12(4):307–392, 2019.

[50] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from
tiny images. 2009.

[51] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar
Beijbom. Pointpillars: Fast encoders for object detection from point clouds. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 12697–12705, 2019.

[52] Longin Jan Latecki, Aleksandar Lazarevic, and Dragoljub Pokrajac. Outlier detec-
tion with kernel density functions. In International Workshop on Machine Learning
and Data Mining in Pattern Recognition, pages 61–75. Springer, 2007.

[53] Rikard Laxhammar, Goran Falkman, and Egils Sviestins. Anomaly detection in sea
traffic-a comparison of the gaussian mixture model and the kernel density estimator.
In 2009 12th International Conference on Information Fusion, pages 756–763. IEEE,
2009.

[54] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

[55] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[56] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen.
Pointcnn: Convolution on x-transformed points. Advances in neural information
processing systems, 31, 2018.

[57] Ying Li, Lingfei Ma, Zilong Zhong, Fei Liu, Michael A Chapman, Dongpu Cao, and
Jonathan Li. Deep learning for lidar point clouds in autonomous driving: A review.
IEEE Transactions on Neural Networks and Learning Systems, 32(8):3412–3432,
2020.

94 | Bibliography

[58] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 eighth
ieee international conference on data mining, pages 413–422. IEEE, 2008.

[59] Jiaqi Lyu and Souran Manoochehri. Online convolutional neural network-based
anomaly detection and quality control for fused filament fabrication process. Virtual
and Physical Prototyping, 16(2):160–177, 2021.

[60] Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Rethinking network
design and local geometry in point cloud: A simple residual mlp framework. arXiv
preprint arXiv:2202.07123, 2022.

[61] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities
improve neural network acoustic models. In Proc. icml, volume 30, page 3. Citeseer,
2013.

[62] Ritesh K Malaiya, Donghwoon Kwon, Jinoh Kim, Sang C Suh, Hyunjoo Kim, and
Ikkyun Kim. An empirical evaluation of deep learning for network anomaly detec-
tion. In 2018 International Conference on Computing, Networking and Communi-
cations (ICNC), pages 893–898. IEEE, 2018.

[63] Mana Masuda, Ryo Hachiuma, Ryo Fujii, Hideo Saito, and Yusuke Sekikawa. To-
ward unsupervised 3d point cloud anomaly detection using variational autoencoder.
In 2021 IEEE International Conference on Image Processing (ICIP), pages 3118–
3122. IEEE, 2021.

[64] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network
for real-time object recognition. In 2015 IEEE/RSJ international conference on
intelligent robots and systems (IROS), pages 922–928. IEEE, 2015.

[65] Jooyoung Park and Irwin W Sandberg. Universal approximation using radial-basis-
function networks. Neural computation, 3(2):246–257, 1991.

[66] Emanuel Parzen. On estimation of a probability density function and mode. The
annals of mathematical statistics, 33(3):1065–1076, 1962.

[67] Animesh Patcha and Jung-Min Park. An overview of anomaly detection techniques:
Existing solutions and latest technological trends. Computer networks, 51(12):3448–
3470, 2007.

[68] François Pomerleau, Francis Colas, Roland Siegwart, et al. A review of point cloud
registration algorithms for mobile robotics. Foundations and Trends® in Robotics,
4(1):1–104, 2015.

| Bibliography 95

[69] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning
on point sets for 3d classification and segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 652–660, 2017.

[70] Charles R Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan, and
Leonidas J Guibas. Volumetric and multi-view cnns for object classification on
3d data. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 5648–5656, 2016.

[71] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. Advances in neural
information processing systems, 30, 2017.

[72] Jianjian Qin, Chunzhi Gu, Jun Yu, and Chao Zhang. Teacher-student network
for 3d point cloud anomaly detection with few normal samples. arXiv preprint
arXiv:2210.17258, 2022.

[73] Chen Qiu, Timo Pfrommer, Marius Kloft, Stephan Mandt, and Maja Rudolph.
Neural transformation learning for deep anomaly detection beyond images. In In-
ternational Conference on Machine Learning, pages 8703–8714. PMLR, 2021.

[74] Julien Rabatel, Sandra Bringay, and Pascal Poncelet. Anomaly detection in mon-
itoring sensor data for preventive maintenance. Expert Systems with Applications,
38(6):7003–7015, 2011.

[75] Borja Rodríguez-Cuenca, Silverio García-Cortés, Celestino Ordóñez, and Maria C
Alonso. Automatic detection and classification of pole-like objects in urban point
cloud data using an anomaly detection algorithm. Remote Sensing, 7(10):12680–
12703, 2015.

[76] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s distance as
a metric for image retrieval. International journal of computer vision, 40(2):99–121,
2000.

[77] Lukas Ruff, Jacob R Kauffmann, Robert A Vandermeulen, Grégoire Montavon,
Wojciech Samek, Marius Kloft, Thomas G Dietterich, and Klaus-Robert Müller. A
unifying review of deep and shallow anomaly detection. Proceedings of the IEEE,
109(5):756–795, 2021.

[78] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed
Siddiqui, Alexander Binder, Emmanuel Müller, and Marius Kloft. Deep one-class

96 | Bibliography

classification. In International conference on machine learning, pages 4393–4402.
PMLR, 2018.

[79] Lukas Ruff, Robert A Vandermeulen, Nico Görnitz, Alexander Binder, Emmanuel
Müller, Klaus-Robert Müller, and Marius Kloft. Deep semi-supervised anomaly
detection. arXiv preprint arXiv:1906.02694, 2019.

[80] Charles Ruizhongtai Qi. Deep learning on 3d data. In 3D Imaging, Analysis and
Applications, pages 513–566. Springer, 2020.

[81] Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Ursula Schmidt-Erfurth,
and Georg Langs. Unsupervised anomaly detection with generative adversarial
networks to guide marker discovery. In International conference on information
processing in medical imaging, pages 146–157. Springer, 2017.

[82] Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C
Williamson. Estimating the support of a high-dimensional distribution. Neural
computation, 13(7):1443–1471, 2001.

[83] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear compo-
nent analysis as a kernel eigenvalue problem. Neural computation, 10(5):1299–1319,
1998.

[84] Gholamhosein Sheikholeslami, Surojit Chatterjee, and Aidong Zhang. Wavecluster:
A multi-resolution clustering approach for very large spatial databases. In VLDB,
volume 98, pages 428–439, 1998.

[85] Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. Mining point cloud local
structures by kernel correlation and graph pooling. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 4548–4557, 2018.

[86] Walter Andrew Shewhart. Economic quality control of manufactured product 1.
Bell System Technical Journal, 9(2):364–389, 1930.

[87] Nina Shvetsova, Bart Bakker, Irina Fedulova, Heinrich Schulz, and Dmitry V Dylov.
Anomaly detection in medical imaging with deep perceptual autoencoders. IEEE
Access, 9:118571–118583, 2021.

[88] Mei-Ling Shyu, Shu-Ching Chen, Kanoksri Sarinnapakorn, and LiWu Chang. A
novel anomaly detection scheme based on principal component classifier. Technical
report, Miami Univ Coral Gables Fl Dept of Electrical and Computer Engineering,
2003.

| Bibliography 97

[89] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-
view convolutional neural networks for 3d shape recognition. In Proceedings of the
IEEE international conference on computer vision, pages 945–953, 2015.

[90] Lionel Tarassenko, Paul Hayton, Nicholas Cerneaz, and Michael Brady. Novelty
detection for the identification of masses in mammograms. 1995.

[91] David Martinus Johannes Tax. One-class classification: Concept learning in the
absence of counter-examples. 2002.

[92] David MJ Tax and Robert PW Duin. Support vector data description. Machine
learning, 54(1):45–66, 2004.

[93] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui,
François Goulette, and Leonidas J Guibas. Kpconv: Flexible and deformable con-
volution for point clouds. In Proceedings of the IEEE/CVF international conference
on computer vision, pages 6411–6420, 2019.

[94] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer
learning. Journal of Big data, 3(1):1–40, 2016.

[95] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou
Tang, and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric
shapes. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1912–1920, 2015.

[96] Mutian Xu, Runyu Ding, Hengshuang Zhao, and Xiaojuan Qi. Paconv: Position
adaptive convolution with dynamic kernel assembling on point clouds. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 3173–3182, 2021.

[97] Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-time 3d object detection
from point clouds. In Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pages 7652–7660, 2018.

[98] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Point cloud
auto-encoder via deep grid deformation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 206–215, 2018.

[99] Ernst Zermelo. Beweis, daß jede menge wohlgeordnet werden kann. Mathematische
Annalen, 59(4):514–516, 1904.

[100] Ji Zhang and Hai Wang. Detecting outlying subspaces for high-dimensional data:

98 5| BIBLIOGRAPHY

the new task, algorithms, and performance. Knowledge and information systems,
10(3):333–355, 2006.

[101] Rui Zhao, Ruqiang Yan, Zhenghua Chen, Kezhi Mao, Peng Wang, and Robert X
Gao. Deep learning and its applications to machine health monitoring. Mechanical
Systems and Signal Processing, 115:213–237, 2019.

[102] Yu-Jun Zheng, Xiao-Han Zhou, Wei-Guo Sheng, Yu Xue, and Sheng-Yong Chen.
Generative adversarial network based telecom fraud detection at the receiving bank.
Neural Networks, 102:78–86, 2018.

[103] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex Smola. Parallelized stochas-
tic gradient descent. Advances in neural information processing systems, 23, 2010.

99

A| Appendix A: The matter of

the order

As we have mentioned in this work, we regard a point cloud as an unordered set of points.
In this appendix we give some insights on why this choice and on the approaches that
have been developed to deal with their unordered structure.

A first idea may be trying to sort the points in a canonical order. Although very rea-
sonable, this solution is non-trivial and complex to be put into practice since already in
R2 there is not a unique way to define a total order. One quite natural way to go is
opting for the lexicographical order, but also in this case the sorted input may not be
very meaningful. This is because small variations in the first component considered can
results in drastic changes of the order, whereas high variations in the last component will
very likely go unnoticed.
In general, fully connected networks applied on a sorted input tend to perform poorly,
even though they still yield slightly better results than when the input is unsorted [80].
On account of the above, this strategy, as simple and intuitive as it may seem, in practice
does not work well, hence it is rarely implemented.

A second possible approach consists in training a RNN and exploit the fact that, by its
nature, it takes as input a sequence. The set of points is then treated as a sequence of
vectors, which is fed to the network in a random order. To make the RNN invariant
with respect to the order, many versions of the same point cloud are considered, each of
them consisting of a randomly permuted sequence. The practice of feeding to the network
slightly different versions of the same input is called data augmentation and it relies on the
idea that in such a way the network increases its generalisation capabilities and becomes
more robust. The process described previously falls under this umbrella.
Nonetheless, although augmenting the input is beneficial, it becomes quickly infeasible
taking into account all the possible permutations for points clouds made of thousands of
elements. This leads to an underrepresentation of all the possible permutations and so,
during training, the network is exposed only to a very limited portion of them, making

100 A| Appendix A: The matter of the order

the method suboptimal [80].

Another approach, by far the most common one, relies on the use of a symmetric function
to aggregate intelligence from each point. Here by “symmetric function” we mean a
multivariable function that takes as input n elements x1, ..., xn and returns a vector
f(h(x1), ..., h(xn)) so that the latter does not depend on the order of the elements.
Several basic operations, such as addition and multiplication, have this property, as well
as the the composition of them. What is usually done in this case is to process each point
with the same function h(·) and then use a symmetric function f(·) to aggregate their
information into f(h(x1), ..., h(xn)). Since we’re in the field of deep learning, it comes
natural that h(·) is implemented by a neural network [80].

101

List of Figures

1 Examples of point clouds . 3

1.1 Point cloud representing an airplane . 7

2.1 3D shape representations, image from [70] 10
2.2 PointNet architecture; in the blue box the classification network, below the

additional part of the segmentation network. Image from [69] 13
2.3 Architecture of the ConvPoint network used for classification; from [13] . . 17
2.4 Scheme of the functioning of a Composite layer; on the left there are the

input points P grouped in subsets, on the right the output points Q. Below,
it is presented the depiction of the operations performed by the spatial
function s, which takes as input Xy, and by the semantic function f that
receives as input the output of s and the features φ. Image from [32] . . . 21

2.5 Illustration in a matricial form of the operations performed by point-convolutional
layers; from [32] . 23

3.1 Depiction of the MLP employed as learnable transformation 59
3.2 Illustration of the encoder . 60

4.1 Examples of objects from the category "cars" of ShapeNetCore [17] 62
4.2 Subdivision of the objects in the class "chair" of ShapeNet [17] 63
4.3 Depiction of some examples of ROC curves. A higher value of AUC in-

dicates a better classifier. The random classifier corresponds to the red
dashed line . 68

103

List of Tables

3.1 Architecture of ADCompositeNet3; J is the number of output features, |Xy|
the cardinality of neighbourhoods and |Q| the number of output points. BN
stands for Batch Normalisation . 48

3.2 Architecture of ADCompositeNet5 . 49
3.3 Architecture of ADConvPoint3; J is the number of output features, |Xy|

the cardinality of neighbourhoods and |Q| the number of output points.
BN stands for Batch Normalisation. 49

3.4 Architecture of PointNet . 50
3.5 Architecture of the feature extractor; J is the number of output features,

|Xy| the cardinality of neighbourhoods and |Q| the number of output points 57

4.1 ShapeNet7C: number of training samples and test samples for each class . 62
4.2 ModelNet40: number of training samples and test samples for each class . 65
4.3 Confusion Matrix . 66
4.4 Results of the anomaly detection task on ShapeNet7C for different archi-

tectures based on the composite layers. All the values are in terms of AUC
. 71

4.5 Comparison between the number of parameters 73
4.6 Results in terms of AUC of our DROCC method for point cloud anomaly

detection when different networks are employed 73
4.7 Comparison between anomaly detection methods for point clouds on the

ShapeNet7C dataset. All the values are in terms of AUC 75
4.8 ModelNet32: the 32 classes of ModelNet40 used in our experiments. We

report the number of train and test samples. The number beside the name
of each class refers to the label of the original class in ModelNet40 [95] . . 78

4.9 Results over five runs in terms of AUC of our NeuTraL method for point
cloud anomaly detection. The values of AUC are averaged over the 5 runs
and Std. dev refers to their standard deviation 79

4.10 Comparison between point cloud anomaly detection methods on ShapeNet7C.
All the values are in terms of AUC . 80

104 | List of Tables

4.11 Results in terms of AUC of anomaly detection on ModelNet32 obtained by
our model. The values of AUC are averaged over the 5 runs and Std. dev
refers to their standard deviation. Next to them we report the number of
training samples of each class. 84

105

Acknowledgements

Vorrei innanzitutto ringraziare il Professor Giacomo Boracchi per la disponibilità e l’interesse
dimostrato. Ringrazio specialmente anche il Dott. Luca Frittoli, per avermi assistito nella
stesura di questo lavoro e per i suoi preziosi consigli.

Un ringraziamento particolare va alla mia famiglia, che mi ha sempre supportato in tutti
questi anni e mi ha permesso di giungere a questo traguardo.
Sono inoltre grato a tutte le mie insegnati di matematica, che durante tutto il mio percorso
scolastico sono riuscite, con il loro entusiasmo, a farmi appassionare a questa meravigliosa
materia. Se ho intrapreso questo cammino è anche merito loro. A partire dalle elementari:
Elisabetta Pipino, la prima che ha visto un qualcosa in me; Cristina Discacciati alle medie
e infine Barbara Coppo al liceo.

Vorrei inoltre ringraziare tutte le persone che ho incontrato lungo questo percorso univer-
sitario, per tutti i pomeriggi passati a studiare assieme e per tutti i momenti di svago che
abbiamo condiviso.
A special thanks goes to all the wonderful people I’ve had the luck to meet during my
exchange year in Helsinki, who have contributed to making that period the most beautiful
one of my studies. I’m particularly grateful for all the memories and the experiences we
got to share, which will never be forgotten.
Vorrei infine ringraziare i miei amici del liceo, in particolare modo Cinzia, Alessia e Mauro,
per tutti i momenti passati insieme. Un ringraziamento speciale va a Luca Coralli, per
l’ineguagliabile senso dato alla parola amicizia, per la sua spensieratezza, per la sua lealtà
e per il suo veloce volo, indimenticabile.

	
	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Problem Formulation
	Definition of point cloud
	Anomaly detection on point clouds
	Properties required

	Related Works
	Deep Learning on Point Clouds
	Background on methods that process point clouds
	Consuming directly point clouds
	PointNet
	PointNet++
	Convolution on point clouds
	ConvPoint
	Other convolutional methods
	CompositeNet
	Convolutional Composite Layer
	Aggregate composite layer

	Anomaly Detection
	The type of supervision
	Classical methods
	The Deep Learning Era
	Generative models
	Reconstruction models
	Decision boundary based
	Geometric transformations

	Anomaly detection on point clouds
	3D Variational Autoencoders for Anomaly Detection

	Proposed solutions
	DROCC for point cloud anomaly detection
	The loss function
	The adversarial search
	Modelling the function
	Scheme of the algorithm

	Neural Transformation Learning for point cloud anomaly detection
	The structure of the model
	The loss function
	Anomaly score
	Outline of the algorithm
	Implementation details
	Networks' architecture

	Experiments
	Datasets
	ShapeNet7C
	ModelNet40

	Figures of merit
	Competing methods
	Deep Robust Once Class Classification for point clouds
	Experimental setup
	DROCC using Composite Layers
	Comparison among different types of network
	Comparison with other methods

	Neural Transformation Learning for point cloud anomaly detection
	Hyper-parameters' tuning
	Anomaly detection on ShapeNet7C
	Anomaly detection with few samples on ModelNet

	Conclusions and future developments
	Bibliography
	Appendix A: The matter of the order
	List of Figures
	List of Tables
	Acknowledgements

