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Sommario

Recentemente, il computer quantistico è divenuto un soggetto di ricerca di
primissimo piano per la comunità scientifica mondiale. Nonostante alcuni
risultati promettenti, una tipologia dominante di implementazione del qubit
non si è ancora affermata.
Una realizzazione promettente è costituita da due quantum dot accoppiati,
definiti elettrostaticamente in un gas bidimensionale di portatori. I princi-
pali vantaggi di tale implementazione risiederebbero nell’elevato tempo di
coerenza e nell’integrazione con l’hardware attuale.
Lo scopo di questa tesi è la caratterizzazione di eterostrutture di Ge/SiGe in
cui confinare il gas bidimensionale di portatori.
Le strutture sono state cresciute sfruttando la tecnica LEPECVD (Low-
Energy Plasma-Enhanced Chemical Vapor Deposition) in L-NESS.
Le proprietà di trasporto del gas bidimensionale sono state analizzate a bassa
temperatura (fino a 1.6 K) mediante effetto Hall classico ed effetto Hall quan-
tistico. La massa efficace, la mobilità, la densità bidimensionale di portatori,
il Dingle ratio e la densità critica sono stati estrapolati per ogni campione
analizzato.
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Abstract

In the last few years, quantum computing has become a major research topic
for the scientific community. Despite some exciting results, there has not yet
been a real breakthrough for the implementation of the qubit.
A promising realization is that formed by two coupled quantum dots, electro-
statically defined in a two dimensional carrier gas. The main advantages of
such a implementation are its long coherence time and its relatively straight-
forward integration with classical hardware.
The purpose of this master’s thesis is the realization and characterization of
Ge/SiGe heterostructures, in which to confine a two dimensional hole gas.
Heterostructures have been grown by LEPECVD (Low-Energy Plasma-Enhanced
Chemical Vapor Deposition) at L-NESS.
Transport properties of the hole gas have been analyzed at low tempera-
ture (down to 1.6 K) exploiting classical Hall effect and quantum Hall effect.
Effective mass, mobility, sheet density of carriers, Dingle ratio, and critical
density have been extracted for every sample studied.
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Introduction

In the last few years, the research world seems to be on the verge of the
so-called second quantum revolution, with the development of new quantum
technologies. The most important and interesting quantum technology is the
quantum computer. As the invention of the Si MOSFET led rapidly to mass
production of computers, so a breakthrough technology to implement the
quantum bit would open a new era of quantum computers. Several different
realizations of the qubit have been proposed through the years, each with its
strengths and weaknesses.
A promising implementation is that formed by two coupled quantum dots
hosted in a Ge/SiGe heterostructure, realizing a quantum two-level system
(logical qubit). The main advantages of this qubit would be its long coher-
ence time and its integration with classical hardware. [1, 2, 3, 4, 5].

The purpose of this thesis is the characterization of the transport proper-
ties of the Ge/SiGe heterostructures in which a two-dimensional carrier gas
(2DCG) is confined. In this case the confined carriers are holes, so it is better
defined as a hole gas (2DHG).
The heterostructure studied in this thesis is the HMOS (heterostructure
metal-oxide-semiconductor). The HMOS is an undoped heterostructure in
which a layer of strained Ge is grown between two layers of SiGe. In order
to electrostatically define quantum dots, gate structures were fabricated on
LEPECVD grown HMOS at the IST (Institute of Science and Technology,
Klosterneuburg, Austria) for their own qubit studies.
Hall bars fabricated at the IST featuring an aluminium oxide gate dielec-
tric deposited by ALD (atomic layer deposition) were sent back to L-NESS
for magnetotransport characterization. Moreover, some SiGe graded buffers
grown at L-NESS were sent to the CAS (Chinese Academy of Sciences, Bei-
jing, China) where the Ge quantum well stack has been grown by MBE, with
isotopically pure silicon and germanium. The resulting nuclear spin-free ma-
terial should enhance the spin lifetimes.
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Undoped heterostructures were grown at L-NESS (Laboratory for Nanos-
tructure Epitaxy and Spintronics on Silicon, Como, Italy) by LEPECVD
(Low-Energy Plasma-Enhanced Chemical Vapor Deposition) [6].
Transport properties of 2DHGs are studied making use of the classical Hall
effect and the quantum Hall effect. In order to work at cryogenic temper-
atures, where quantum effects are activated, and in presence of a magnetic
field, a cryostat was used. The cryostat made it possible to work at temper-
atures down to 1.6 K and a magnetic field up to 7.5 T.
For every sample (when possible) effective mass, mobility, carrier density,
Dingle ratio, and critical, or percolation, density have been measured. The
critical density is the minimum density required to establish metallic con-
duction by overcoming charge carrier localization from impurities or defects.
High mobility and low percolation density are signs of material uniformity
and low disorder, both of which are required to produce stable quantum dots.

In the first chapter of this thesis HMOS heterostructures are studied the-
oretically, with a special attention to their band structure. Then transport
theory is discussed, and scattering mechanisms typical of these heterostruc-
tures are presented.
In chapter two, the LEPECVD system and the cryostat are described.
The third chapter is dedicated to the explanation of classic and quantum
Hall effect, highlighting how to exploit these phenomena to obtain mobility,
sheet density, effective mass, Dingle ratio and critical density of a 2DHG.
In chapter four, experimental results are presented and discussed, with a par-
ticular attention to mobility, as an important requirement for the stability of
quantum dots.
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1 HMOS

1.1 Quantum Dots for Quantum Computing Applications

In the last few years, the quantum computing rush has started. The funda-
mental milestone towards large-scale quantum computing is of course the re-
alization of stable and reliable quantum bits (qubits). Several possible quan-
tum bit implementations have been proposed, such as NV-centers, Josephson
junction qubits, and photonic qubits [1, 2, 3, 4, 5]. None of these technologies
has emerged as a real breakthrough, all featuring advantages and disadvan-
tages.
A promising implementation could be the coupled spins in two quantum dots
which are electrostatically defined [7]. This could be a game changer in the
quantum computation scenario, due to its long coherence time and its inte-
gration with classical hardware. There are two main characteristics required
for this kind of qubit [8]:

1. It must have an extremely long coherence time.

2. Fast manipulation is required.

To create an electrostatically defined quantum dot, a two dimensional carrier
gas (2DCG) host and depletion gates to apply confinement are needed.
The choice of the heterostructure that will host the 2DCG has a critical im-
pact on the features of the quantum dot. The first implementation dates to
2005, when coherent manipulation of coupled electron spins in GaAs quan-
tum dots was shown. A very short spin dephasing time, T ∗2 ∼ 10 ns, was
measured, but on the other hand the manipulation time was in the order of
hundreds of picoseconds [9].
Successively, the same implementation was made in silicon, in order to favour
the integration with the electronics industry. 28Si was used, and it led to a
situation with T ∗2 ∼ 120 µs, but a manipulation time of microseconds [1].
In an attempt to find the optimal trade-off between the properties of GaAs
and 28Si the IST is trying to implement qubits in germanium heterostruc-
tures, since the large spin-orbit coupling allows fast manipulation [10, 11, 12,
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13, 14].
In order to do this, Ge heterostructures have been grown and characterized
at the L-NESS. Depletion gate structures were fabricated at the IST for their
own qubit studies, while Hall bars were fabricated at the IST and sent back
to the L-NESS for magnetotransport characterization. To induce a 2DHG in
the Ge quantum well, a HMOS structure was realized at the IST featuring an
aluminium oxide gate dielectric deposited by ALD (atomic layer deposition).
For further information about manipulation of spin in quantum dots or de-
pletion gates nanofabrication the reader is referred to ref. [15]. In Figure 1
an SEM image of a quantum dot fabricated at the IST is shown.

Figure 1: Top view of the gates that will confine the 2DHG in order to create a quan-
tum dot. From IST Austria.

Like Si, Ge can be isotopically purified into a nuclear spin-free material, to
achieve long spin lifetimes [13, 16]. In order to investigate this kind of ma-
terial, graded buffers grown at L-NESS were sent to the CAS, where the
Ge QW stack was grown by MBE, using isotopically pure Ge. Then these
samples were sent back to IST and used to fabricate both qubits and Hall
bars for the magnetotransport characterization at L-NESS. By investigating
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the quantum transport properties of the HMOS at the L-NESS, it was pos-
sible to extract two main figures of merit: the mobility and the critical (or
percolation) density. This latter indicates the minimum density required to
establish metallic conduction by overcoming carrier trapping from impurities
or defects. Large mobility and small critical density indicate material unifor-
mity and low disorder and these are advantageous for stable and reproducible
quantum dots [8].

1.2 Ge/SiGe Heterostructures

Over recent years, increasing interest has been shown in p-channel strained
Ge/SiGe heterostructures, due to their large room-temperature mobility,
compared to Si-based devices [17]. Numerous studies on the impact of strain
and on the scattering mechanisms in modulation-doped Ge/SiGe heterostruc-
tures have allowed for a low temperature mobility increase to ∼ 1 · 106 cm

2

V s .
Modulation doping, however, introduces impurities that are a source for
charge noise, gate leakage and device instability at low temperature. There-
fore undoped Ge/SiGe quantum wells are preferable for quantum dot appli-
cation.
Undoped Si/SiGe heterostructures have been shown to host high mobility
2D electrons, with a large density tunability [17, 18], and even higher mo-
bility values have been reached for GaAs/AlGaAs heterostructures [19, 20].
However, these materials are not the optimal choice for qubit realization, as
discussed above.

The structure of a Ge/SiGe heterostructure studied in this thesis is shown is
shown in Figure 2:
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Figure 2: 10721 HMOS structure

The starting point is a lightly p-doped Si(001) wafer, on which a graded
buffer is grown. A graded buffer is basically a thick layer in which the con-
centration of germanium has been increased by 7% each micron, so after 10
µm the final alloy composition is Si0.3Ge0.7. Then 2 µm are grown at a con-
stant composition of Si0.3Ge0.7 to form a high-quality fully-relaxed layer [21].
The stack composed by the Si wafer and the graded buffer becomes a virtual
Si0.3Ge0.7 substrate. The most important part of the HMOS is the channel,
in which carriers transport takes place. The channel is 18 nm thick, and is
made of nominally pure Ge. The Ge channel is then covered by a 20 nm
Si0.3Ge0.7 barrier. The last layer is a 2 nm Si sacrificial cap.
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Bearing in mind the lattice mismatch between Si0.3Ge0.7 and Ge, the channel
is subject to compressive strain: this has consequences on the band structure
and so on the effective mass, as we will discuss later.

For Ge/SiGe heterostructures, densities ranging from ∼ 1.1×1010 cm−2 to ∼
1.5×1011 cm−2 have been achieved, with a peak mobility of ∼ 3×105 cm2/Vs
and an in-plane effective mass m∗ = 0.105me, for a Si0.2Ge0.8 structure with
barrier hundreds of nm thick [17]. More recently, structures featuring a
lighter effective mass (m∗ = 0.05me at zero density), a large range of densi-
ties (up to ∼ 1.1× 1012 cm−2), and µ > 5× 105 cm2/Vs have been developed
[22].

1.3 Band Structure

The energy gap of Ge is smaller than that of Si so, once these materials are
connected, there is a valence band offset and a conduction band offset [23].
In this specific case, a heterostructure made of a layer of pure Ge embedded
in two layers of Si0.3Ge0.7 is a quantum well of the second type. This means
that the bands will rearrange in order to confine holes in the Ge layer and to
be a barrier for the electrons that tend to enter in this layer.
In the undoped situation typical of HMOS, bands do not curve until the
applied gate bias causes the charge to accumulate in the channel (Figure: 3).
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Figure 3: Band structure profile for a HMOS structure. On the left a voltage gate Vg
= -0.9 V is applied, on the right Vg = -1.6 V. It is possible to observe that a more nega-
tive voltage leads to a lower energy in the channel layer and so to a higher sheet carrier
density.

High bias may however lead to accumulation of charge at the surface.
When bands are bent, it is energetically favorable for the holes to migrate
into the Ge channel. Here they are confined along the growth direction but
free to move in the plane of the wafer.

The quantum well in which holes are confined is not the well-known rect-
angular well, but it is better resembled by a triangular potential. The wave-
function for the lowest energy state can be approximated by the Fang-Howard
wavefunction:

Ψ0 =

(
b3

2

)
z exp

(
−bz

2

)
(1.3.1)

where b is defined as [
12mze

2

~2εrε0
(nd +

11

32
ns)

] 1
3

(1.3.2)

where nd is the density of the ionized background impurities and mz is the
effective mass in the confinement direction.
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Figure 4: In the upper part there is a detail of the interface between the channel and
the Si0.3Ge0.7 setback, where the 2DHG is confined. E0 and E1 represent the two lowest
quantum energy levels. The lower panel shows how the Fermi Energy EF depends on
the sheet density in the simplest case of constant, isotropic effective mass [24]

1.4 Effective Mass

In bulk unstrained SiGe the light hole (LH) and heavy hole (HH) bands
are degenerate at the Γ point. This degeneracy is broken by quantum well
confinement, since LH is composed by px, py, and pz orbitals instead HH
only by px and py.
Considering that greater orbital overlap means greater conductivity, due to
the fact that the pz overlap is weaker than the px and py overlaps in a QW,
the HH band has a heavier mass in the confinement direction and a lighter
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mass in the plane of the QW. For the LH band the reverse is true. To sum
up, in a quantum well, counter-intuitively:

m∗xyHH < m∗xyLH (1.4.1)

In HMOS studied in this thesis, confinement is not the only factor that will
modify the in-plane effective mass. In fact, it has to be considered that the Ge
channel is subjected to compressive strain [25]. In a qualitatively way, when
Ge is compressively strained the px and py overlap is stronger since atoms are
closer together in the plane, while the pz overlap is weaker for the opposite
reason. It is easy to understand that compressive strain will have the same
consequence as confinement. These two effects work in a cooperative way to
make the HH in-plane effective mass lighter, and so to increase mobility.

1.5 Transport Theory

The most relevant physical quantity needed to characterize the transport
properties of a 2DHG is the mobility µ, which can be defined as:

µ =
v

E
(1.5.1)

where v is the drift velocity of the carriers and E is the applied electric field.
In a low-temperature Drude model, mobility can be rewritten as:

µ =
eτtr
m∗

(1.5.2)

in which τtr is the transport lifetime. From the previous equation it is clear
that, in order to increase mobility, one must either reduce the effective mass of
the carriers or increase the τtr. The total transport lifetime can be calculated
with Matthiensen’s rule:

τ−1tr,tot =
∑
i=1

τ−1i (1.5.3)
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This equation states that the total scattering rate is the sum of the single
scattering rates, assuming all scattering mechanisms as independent [26].
The following discussion needs to introduce two main approximations:

• The Fermi surface is assumed to be circular in the conduction plane,
even if the heavy hole band features a slight anisotropy [27].

• Scattering is only elastic: a hole with a wavevector ~ki will scatter into a
final state ~kf where |~ki| = | ~kf | = | ~kF |, being ~kF the Fermi wavevector.
This second assumption is reasonable in a low temperature regime, so
that kBT << EF .

Since the modulus of the wavector is conserved, what changes is its direction
(Figure 5) [28].
The modulus of the scattering vector can be calculated as:

|~q| = | ~kf − ~ki| = 2kF sin
θ

2
(1.5.4)

where θ is the angular variation of direction between the initial and the final
wavevector.

Figure 5: Schematic representation of a scattering event between two states with |~ki| =
| ~kf | = | ~kF |

In this framework it is possible to define the transport scattering rate:

τ−1tr,i =
m∗

π~3

∫ π

0

(1− cos θ)
|Vi(q)|2

ε2q
dθ (1.5.5)
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and the quantum scattering rate:

τ−1q,i =
m∗

π~3

∫ π

0

|Vi(q)|2

ε2q
dθ (1.5.6)

The main difference between τtr and τq is that in the second, all scattering
events are equally weighted, while in τtr, instead, every event is weighted by
the scattering angle, so the scattering events that have a final direction of
propagation very far from the initial direction will have a stronger influence
on τtr. This is the reason why in the mobility definition the relevant lifetime
is τtr.
In equation 1.5.5 and 1.5.6 V (q) is introduced, which is the scattering matrix
element: every scattering mechanism has its own and they will be analysed
later. Moreover, εq is present: this is the so called static polarizability func-
tion. εq allows screening to be considered: this is a mechanism by which
the travelling electrons feel a reduced scattering potential because all other
electrons present in the semiconductor polarize to screen the scattering cen-
ters. Thomas–Fermi theory proposes a possible mathematical expression of
εq [29]:

εq = 1 +
qs
q

(1.5.7)

where
qs =

m∗e2

2πεrε0~2
(1.5.8)

A parameter of great importance in the analysis of scattering mechanisms is
the Dingle ratio [30]:

α =
τtr
τq

(1.5.9)

Its significance can be better understood in the following section, where scat-
tering mechanisms will be discussed.
Remote impurity scattering, e.g, is predominant at low angle, and this leads
to a Dingle ratio bigger than unity. A value of α close to unity is an indication
of interface roughness scattering or local impurity scattering.

14



1.6 Scattering Mechanisms

The first important point is related to phonon scattering (both acoustical
and optical): it can be neglected at low temperature (where low means T <
80 K [29]). At higher temperatures, instead, it is possible to fit an empirical
relation

µ ∼ T−γ

in order to determine the limiting phonon mechanism. γ = 1 is expected
for acoustic phonons, while γ = 2 is considered a manifestation of optical
phonon scattering [31]. At low temperature four main scattering mechanisms
will be considered:

1. Local impurity scattering.

2. Remote impurity scattering.

3. Interface roughness scattering.

4. Alloy scattering.

1.6.1 Remote Impurity Scattering

Remote impurity scattering is caused by dopant atoms that are far from
the channel [32], as in the case of a modulation-doped quantum well. The
scattering matrix element is [33]:

|Vri(q)|2 = nDΓD(q)D(q)

(
e2

2qεrε0

)2

(1.6.1)

where nD is the doping atoms sheet density, and ΓD is defined as:

ΓD(q) =
[1− exp(−2qW )] exp(−2qS)

2qW
(1.6.2)

where W is the thickness of the doped region and S is the setback distance.
D(q) is the correlation between doping atoms:

D(q) = 1 +
qW − 4 sinh(qW/2) exp(−q2∆2)

sinh(qW )
(1.6.3)
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where
∆ = (W/nD)

1
3 (1.6.4)

is the random fluctuation in dopant spacing.
The meaning of the correlation function is that at low-q the potential looks
more smooth, so there is less scattering, while, at high-q, scattering is en-
hanced by the electric dipole created by the true position of an impurity
compared to its ideal perfectly correlated position.
Remote impurities scattering can be considered a small angle scattering
mechanism, and its strength depends on the carrier density, because q is
related to ps through the length of kF =

√
2πns.

1.6.2 Local Impurity Scattering

Local impurities are scattering centers localized at the interface between the
Ge channel and the SiGe layer. These impurities come from the background
doping from dopant atoms that are in the chamber and are incorporated into
the deposited SiGe. Usually they tend to migrate to the channel interface,
in any case their effect is strongest when they coincide with the position of
the 2DHG.
The scattering matrix element is [28]:

|Vli(q)|2 = ni

(
e2

2qεrε0

)2
2

(1 + q/b)6
(1.6.5)

ps appears inside b parameter defined in equation 1.3.2, indicating that the
2DHG with higher density is more closely confined to the interface due to
the higher electric field. However, the main dependence of local impurities
scattering on sheet density comes from the length of the q vector, as before.

1.6.3 Interface Roughness Scattering

Considering a Gaussian roughness, the scattering matrix element is [28]:

|Vir(q)|2 =
π∆2Λ2e4

(εrε0)2

(
ndep +

ps
2

)2
exp

(
−q

2Λ2

4

)
(1.6.6)
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Here Λ is the length and ∆ the height of the roughness.
This type of scattering mechanism is stronger when ps increases since a
stronger field confines the carriers closer to the interface.

1.6.4 Alloy Scattering

Alloy scattering exists because even though the SiGe alloy has a crystalline
structure, whether a Si or Ge atom occupies a particular lattice site is random
[24]. The scattering matrix element is [34]

|Vx(q)|2 = x(1− x)Ω0δE
2 3b

16
(1.6.7)

where Ω0 = a3

8 and is the volume occupied by one atom, δE is the strength
of the interaction and b was defined in eq. 1.3.2. Alloy scattering should
be negligible in pure Ge quantum wells, although x-ray diffraction results
suggest that up to a few percent of Si may be present. Also, the finite barrier
height at the Ge/SiGe interface means that a small probability density of the
2DHG exists within the Si0.3Ge0.7 barrier

1.7 Percolation Density

The percolation density is an important figure of merit to describe the so-
called two-dimensional metal-insulator transition (2D-MIT). The phenomenon
refers to the observation of a carrier density-induced qualitative change in
the temperature dependence of the resistivity ρ(n, T ), where np is a criti-
cal density separating an effective “metallic” phase (n > np, dρ

dT > 0) from
an “insulating” phase (n < np, dρ

dT < 0). The 2D MIT phenomenon occurs
in relatively high-mobility systems, although the mobility values range from
104 cm2/Vs to 107 cm2/Vs, depending on the 2D system under consideration.
The 2D MIT phenomenon is also considered to be a low-density phenomenon
although, depending on the 2D system under consideration, the critical den-
sity differs by some orders of magnitude (e.g. np ∼ 1011 cm−2 in 2D Si and
∼ 109 cm−2 in high-mobility GaAs/AlGaAs heterostructures). The universal
features of the 2D MIT phenomenon are:
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1. The existence of a critical density np distinguishing an effective high-
density metallic phase from an effective low-density insulating phase.

2. While the insulating phase mostly manifests the conventional activated
transport behavior, the metallic temperature dependence is universal,
in the sense that it manifests a very strong temperature dependence,
not seen in standard three-dimensional metals.

[35, 36, 37].
In order to extract the percolation density from electrical characterization
measurements, the conductivity σ can be written as:

σ(n) ∼ (n− np)p (1.7.1)

where p is the percolation exponent. Its value is theoretically predicted as
1.31. Experimentally, at very low temperatures (T < 1 K) the percolation
exponent seems to be temperature independent, while it grows with temper-
ature for T > 1 K [35].
Since the percolation density characterizes disorder at low densities, which is
the typical regime for quantum dot operation, a low value of this parameter is
considered a requirement for a good stability of the quantum dots. Recently,
values of the order of np = 2.1 × 1010 cm−2 have been achieved in Ge/SiGe
heterostructures. [38].
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2 Experimental Techniques

2.1 Low-Energy Plasma-Enhanced Chemical Vapor Deposition

Two of the samples studied in this thesis have been fully grown by LEPECVD
(Low-Energy Plasma-Enhanced Chemical Vapor Deposition). This relatively
new technique is based on the principle of the CVD, but allows many of the
problems of CVD to be overcome [6, 39]. A classical CVD has some typical
growth problems. First there is an exponential dependence of the growth
rate on the substrate temperature. This is a consequence of the thermal
energy needed to decompose precursors, and to allow hydrogen desorption
from the substrate. These conditions mean that very high temperatures are
required to have a significant growth rate (>1000°C for Si). Furthermore,
since Ge and Si have two very different H desorption rates, there is a strong
temperature dependence of the deposition rate of the SiGe alloy and a strong
non-linearity between gas composition and alloy composition [40, 41].

In LEPECVD an argon plasma is introduced into the chamber, and thanks to
a magnetic field it is focused on the Si wafer which is heated with a graphite
heater. The Ar plasma cracks the gaseous precursors of the materials and so
the radicals deposit on the wafer. In such a way an epilayer is grown. Usu-
ally SiH4 and GeH4 are the precursors for SiGe growth and PH3 and B2H6

(diluted in Ar) are used to introduce n and p-type dopants.
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Figure 6: The low-energy plasma-enhanced chemical vapor deposition (LEPECVD)
system. A low-voltage high-current DC discharge is sustained between the source and
the anode plate. The substrate is exposed to the plasma, but the ion energies are too
low to cause any damage [39].

LEPECVD overcomes problems mentioned above exploiting the high reac-
tivity of the radicals and the ion bombardment, that removes hydrogen from
the surface of the substrate [42]. It is important to stress that the energy
of ions is around 5–10 eV, not enough to cause any damage to the crystal.
So LEPECVD allows the growth of crystalline material as in thermal CVD,
but with a much higher growth rate especially at low temperatures. For
Si1−xGex of any composition, the growth rate can be varied from 0.1 nm/s to
almost 5–10 nm/s at substrate temperatures of 450–750°C. The growth rate
depends on the precursor gas flow, on the plasma arc current, and on the
magnetic confinement. These characteristics make it possible to grow both
thin films with nanometer precision and several micron thick layers using the
same reactor and in the same deposition process.
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2.2 Cryostat

A closed-cycle He cryostat has been employed for low temperature measure-
ments. The operation range of this machine sweeps from 1.6 to 300 K. A
superconducting solenoid, kept below its critical temperature, makes it pos-
sible to generate a magnetic field for Hall measurements. The range of the
generated magnetic field sweeps from -7.5 to 7.5 T.
The cooling system of the cryostat is divided into two parts. The first part
is a compressor used to cool down the He pot, all the internal parts, and
the solenoid to a temperature below 4.2 K. In the second part of the sys-
tem there is He at roughly atmospheric pressure. It comes into contact with
the inlet trap, which is cooled down below 40 K, where all the impurities
condense. After that the helium condenses to liquid in the He pot. It then
reaches the sample space through a narrow tube. Here, liquid He evaporates
at a pressure lower than atmospheric pressure, and a temperature lower than
helium evaporation temperature at atmospheric pressure, cooling down the
sample to a temperature of 1.6 K. After the evaporation, He is pumped away,
re-inserted into the circuit and re-condensed.
The external control of this system is based on a needle valve placed between
the narrow tube and the sample space. The aperture of this valve can be
modified by the operator and its status is critical. If the valve is too tightly
closed, not enough He can pass, so the sample cannot be cooled down, but,
on the other hand, if the valve is too wide open the He passes around the
system too quickly so it has no time to re-condense.
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3 Magnetic Field Effects

3.1 Conductivity Tensor

The relationship between current density and electric field in the absence of
a magnetic field is simply described by Ohm’s law:

~J = σ ~E (3.1.1)

where σ is a scalar and is known as conductivity.

The situation is slightly more complex in presence of a magnetic field, in
fact, as a consequence of the Lorentz force, there is an electric field perpen-
dicular to the initial direction of the current. To describe this situation it is
not possible to rely on eq. 3.1.1 but it is necessary to replace the scalar σ
with a 2× 2 tensor ¯̄σ. The generalized Ohm’s law can be rewritten as

~J = ¯̄σ ~E (3.1.2)

or (
Jx

Jy

)
=

(
σxx σxy

σyx σyy

)(
Ex

Ey

)
(3.1.3)

It is possible to demonstrate that the diagonal terms of ¯̄σ are equal, and the
off-diagonal terms are opposite, so that

¯̄σ =

(
σxx σxy

−σxy σxx

)
(3.1.4)

The resistivity ¯̄ρ is a 2× 2 tensor too, and it is the reciprocal of the conduc-
tivity:

¯̄ρ = ¯̄σ−1 (3.1.5)

or

¯̄ρ =

(
ρxx ρxy

−ρxy ρyy

)
=

1

σ2xx + σ2xy

(
σxx σxy

−σxy σxx

)
(3.1.6)
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3.2 Classical Hall Effect

One of the most important effects for studying the carrier mobility in a
semiconductor is the Hall effect. Some of the most important parameters
such as mobility, carrier density, effective mass, and Dingle ratio can be
extracted thanks to the classical and quantum Hall effect.
The classical Hall effect can be explained only by classical electromagnetism,
but some approximations have to be made. First, the energy bands are
considered isotropic, furthermore scattering mechanisms do not depend on
the energy, and finally, only one kind of carrier has to be considered.
To describe the classical Hall effect let us consider a two-dimensional slab
with length l and width w. A potential is applied to the ends of the slab
and there is a current flow. When a magnetic field is present perpendicular
to the surface of the slab, the carriers feel a Lorentz force in the direction
perpendicular to the one of motion:

~F = q~v × ~B (3.2.1)

This leads to an accumulation of charge on the borders of the slab which
results in the rise of a transverse electric field and consequently a potential:

VHall = wEy (3.2.2)

A steady state is reached when the electrostatic force is equal and opposite
to the Lorentz force. It is now possible to relate VH to the magnetic field B.
Keeping in mind that the current is equal to:

I = nsqvw (3.2.3)

we can derive, with the right substitutions

VH =
I

nsq
B (3.2.4)
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The off-diagonal term of the resistivity is equal to

ρxy =
VH
I

=
1

nsq
= RHB (3.2.5)

RH is the Hall coefficient.
Now it is easy to relate the carrier sheet density to the Hall coefficient in the
following way:

ns =
1

qRH
(3.2.6)

Furthermore, at low magnetic field (µB << 1) it is possible also to obtain the
mobility, in fact in this approximation ρxx and σxx are inversely proportional.
Given σxx = nqµ, the mobility is:

µ =
RH

ρxx
(3.2.7)

Considering equations 3.2.6 and 3.2.7 it is possible to understand the impor-
tance of Hall effect: thanks to it two important figures of merit are obtained.
An important consideration regarding the value of carrier density is that the
value obtained from eq. 3.2.6 is not valid if the approximations made at
the beginning of this chapter are not respected. For this reason we will call
the mobility and carrier density obtained through classical Hall effect anal-
ysis Hall mobility µH and Hall carrier density nH . In the next chapter the
effects of the non-idealities are treated.

3.3 Generalized Classical Hall Effect

In the last section classical Hall effect was introduced, and was proven that,
considering three important approximations, the Hall coefficient RH and the
resistivity ρxx are independent of the magnetic field. In this section the
generalized classical Hall effect is presented. The aim is to understand what
happens when the approximations are no longer valid, so when

• There are parallel conduction channels.

• The effective mass is non-isotropic.
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• The scattering events are dependent on the energy.

At the end of this section particular attention will be given to understand
how the discussed theory is related to the measurements presented in this
thesis work.

The elements of the ¯̄σ tensor will be rewritten [43] as:

σxx =

∫ +∞

−∞

s(µ)

(1 + µ2B2)
dµ (3.3.1)

and
σxy =

∫ +∞

−∞

µBs(µ)

(1 + µ2B2)
dµ (3.3.2)

We have introduced s(µ):

s(µ) = ns(µ)qµ (3.3.3)

defined as the generalized conductivity, and ns(µ), defined as the mobility
spectrum. Eq. 3.3.1 and eq. 3.3.2 are valid only under the fundamental
hypothesis that s(µ) is independent of the magnetic field.
To recover the “classical” behaviour discussed in the previous section, one
has to consider the case of a δ-like mobility spectrum:

s(µ) = n0δ(µ− µ0)eµ (3.3.4)

This means that only a single carrier population with mobility µ0 is present.
Combining eq. 3.3.1 and eq. 3.3.2 with 3.3.4, 3.2.5 and 3.2.7 are obtained.
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Figure 7: Qualitative plot of ρxx and ρxy when a single type carrier is present

Now we consider what happens when there is no longer a single carrier, which
can happen both when more than one sub-band is occupied, or when there
are parallel conduction channels (e.g. a surface channel). To model this
situation each channel is treated as a δ-peak in the mobility spectrum; to
keep things simple only the situation of two parallel channels is considered:

s(µ) = s1(µ) + s2(µ) = n1δ(µ− µ1)eµ+ n2δ(µ− µ2)eµ (3.3.5)

so
σxx(B) =

n1eµ1
1 + (µ1B)2

+
n2eµ2

1 + (µ2B)2
(3.3.6)

and
σxy(B) =

n1eµ
2
1B

1 + (µ1B)2
+

n2eµ
2
2B

1 + (µ2B)2
(3.3.7)

Now it is clear that RH is no longer constant with the magnetic field, but in
a low-field regime (µB << 1)

RH =
±n1µ21 ± n2µ22
q(n1µ1 + n2µ2)2

(3.3.8)
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On the contrary, in a high-field regime (µB >> 1)

RH =
1

q(±n1 ± n2)
(3.3.9)

It must be taken into account the possibility that even a single carrier gas
shows a magnetoresistance, due to the fact that the scattering mechanisms
are energy dependent. In order to take into account this phenomena we
introduce the scattering coefficient :

r =
< τ 2 >

< τ >2
(3.3.10)

where τ is the average scattering time, and the average is made over energy.
The scattering coefficient is particularly useful to take into account that RH

changes at low field in presence of an energy dependent scattering mechanism

RH =
r

nsq
(3.3.11)

Figure 8: ρxx and ρxy in presence of two parallel channels (n1 = 5 × 1011 cm−2, n2 =
0.5× 1011 cm−2, µ1 = 1000 cm2/Vs, µ2 = 10000 cm2/Vs.
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At high field the Hall coefficient depends only on the total charge density in
the system, so equation 3.2.5 is valid.
r theoretically considers also the anisotropy of the energy bands, which
should lead to a situation in which r < 1 if no other effects are present
[43, 44]. Actually this effect has not yet been clearly observed. It is im-
portant to stress that experimentally all these effects are indistinguishably
mixed, and all contribute to the appearance of magnetoresistance.
In this thesis most of measurements were conducted at low temperature,
T < 2 K: in this regime theoretically other parallel channel are frozen so
only the holes in the quantum well give rise to the current. Furthermore, at
this kind of temperature the Fermi–Dirac function can be approximated by
a step function and consequently r = 1, so equations 3.2.5 and 3.2.6 are con-
sidered valid. The analysis that were conducted at high temperature clearly
show a magnetoresistance. To study these cases, especially to investigate the
presence of parallel channels, mobility spectrum analysis, discussed in the
following section, has been performed.

3.4 Mobility Spectrum Analysis

In order to study the presence of parallel channels it is possible to compute
the mobility spectrum nsµ starting from the measurements of ρxx and ρxy,
but to do this an inverse integral transformation has to be performed numer-
ically. Theoretically, this can be made only if all the values of σxx(B) and
σxy(B) from −∞ to +∞ are known, and of course this is a condition impos-
sible to achieve. To attain the mobility spectrum, a numerical method by
Chrastina et al. is used [45]. This implements the maximum entropy method
through the Bryan’s algorithm. Basically if two solutions are equally valid
(e.g. in the way in which they fit at the least square of the original data),
then the solution with the maximum entropy is preferable since it is the less
compromising towards missing data. This means that the maximum entropy
solution is the one that would undergo the smallest variation in presence
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of new data-points. The entropy S of a discrete mobility spectrum can be
defined as

S{sj} = −
n∑
j=1

pjln(pj) (3.4.1)

where
pj =

sj
σ0

(3.4.2)

is the probability of finding a carrier at the jth point in the discrete mobility
spectrum sj, and σ0 is the conductivity at zero field.
Fitting of experimental points of the longitudinal and transverse conductivity
becomes the problem of minimization of the Q function:

Q = χ2 − αS (3.4.3)

where
χ2 =

∑
i

[σ(Bi)− σc(Bi)]
2

δ2i
(3.4.4)

σc is the magnetoconductivity calculated from the candidate mobility spec-
trum, δ2 is the error in the data measurement and α gives the relative weight
of the least squares fitting and of the entropy. Bryan’s algorithm weights the
calculated output spectrum according to the most probable values of α [24,
45].
One interesting note is that equation 3.4.3 is quite similar to Helmholtz free
energy equation

F = E − TS (3.4.5)

Minimizing 3.4.5 implies minimizing the energy and maximizing the entropy.
Note that in eq. 3.4.4 σ(B) is equal to

σ(B) = σxx(B) + σxy(B) =

∫ +∞

−∞

1 + µB

1 + µ2B2
s(µ)dµ (3.4.6)
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3.5 Quantum Treatment

At low temperature and high magnetic field, it is possible to observe some
particular phenomena that are macroscopic manifestations of the quantum
mechanical behaviour of the system. This kind of effects are not only inter-
esting from a theoretical point of view but they turn out to be a powerful
probe to study carrier properties and extract carrier parameters, such as the
effective mass and the Dingle ratio, two figures of merit that are not found
by the classical Hall effect. In order to explain this kind of phenomenon a
fully quantum mechanical treatment is needed. The starting point is the
time-independent Schrödinger equation that in its most general form is:[

~̂p

2m
+ V (~R)

]
Ψ(~R) = EΨ(~R) (3.5.1)

V (~R) is the potential well confining the 2DHG in the channel along the z
direction, so it can be rewritten as V (z). Considering the applied magnetic
field parallel to the z direction, it can be rewritten as ~B = (0, 0, B). In
order to include the magnetic field in the Schrodinger equation, we define
the vector potential ~A as

~B = ~∇ × ~A (3.5.2)

The choice of ~A is not unique, in fact adding the gradient of a scalar potential
~∇(φ) will not change ~B.
The most suitable choice to deal with the described system is the so called
Landau gauge in which ~A = (0, Bx, 0).
The Schrödinger equation can now be rewritten as{

1

2m

[
−~2 ∂

2

∂x2
+

(
−i~ ∂

∂y
+ eBx

)2

− ~2
∂2

∂z2

]
+ V (z)

}
Ψ(~R) = EΨ~R

(3.5.3)
Solving the computations:[

− ~2

2m
∇2 − ie~x

m

∂

∂y
+

(eBx)2

2m
+ V (z)

]
Ψ(~R) = EΨ~R (3.5.4)
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This means that a parabolic magnetic potential appears.
It is possible to use separation of variables in order to isolate the z -dependence
from the (x,y)-dependence. Furthermore, the vector potential does not de-
pend on y. We write the wave function as a product of a plane wave that de-
pends only on y multiplied by a function in x [29]. Substituting u(x) exp(iky)

inside eq. 3.5.4:[
− ~2

2m

d2

dx2
+

1

2
mω2

c

(
x+

~k
eB

)2
]
u(x) = εu(x) (3.5.5)

where one can easily recognize the one-dimensional harmonic oscillator Schrödinger
equation. The frequency of the harmonic oscillator corresponds to the clas-
sical cyclotron frequency:

ωc =
eB

m
(3.5.6)

The main difference with respect to a classical one-dimensional harmonic
oscillator is that the parabolic potential is shifted, centered in

xk = − ~k
eB

= −kl2b (3.5.7)

where

lb =

√
~
eB

(3.5.8)

is the magnetic length that can be classicaly interpreted as the size of the
cyclotron orbit, while in quantum mechanics it can be regarded as the char-
acteristic length of the wavefunction.
It is important stress that the shift of the parabolic potential is determined
by the y component of the momentum [46]. The eigenvalues of the energy
are

εn =

(
n+

1

2

)
~ωc (3.5.9)

associated with eigenfunctions for motion in (x,y) plane:

Ψnk(x, y) ∝ Hn−1

(
x− xk
lb

)
exp

[
−(x− xk)2

2l2b

]
exp(iky) (3.5.10)
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Hn are Hermite polynomials of order n. The wave functions look like parallel
strips, extended in the y-direction, spaced equally along the x -direction, and
exponentially localized around xk = −kl2b .
Instead of a wave function that depends on two quantum numbers n and k,
the energy values depend only on n and they are degenerate in k. The main
consequence of the presence of a magnetic field is that the constant density
of states collapses into a series of δ-functions called Landau levels (Figure:
9).

Figure 9: Density of states of 2DEG: (a) at B = 0; (b) in presence of ideal Landau
levels; (c) and (d) in presence of scattering broadened Landau levels [47]

The number of states must be conserved during the condensation, so the
degeneracy of a Landau level is:

NL = ~ωcD0 (3.5.11)

where
D0 =

m∗

2π~2
(3.5.12)
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is the density of states when no magnetic field is applied.
The degeneracy can be rewritten as

NL =
eB

h
(3.5.13)

As stated before, ideal Landau levels are δ-functions, but in reality elec-
trons undergo scattering events that broaden the levels. The interval of time
between two scattering events is τq and is called the quantum lifetime (eq.
1.5.6). This is not the scattering time which appears in the expression of
mobility, as explained in the previous section. In literature [29] a common
assumption is to consider a Gaussian or Lorentzian profile with the full width
at half-maximum (FWHM)

Γ =
~

2τq
(3.5.14)

Equation 3.5.14 gives the precision with which it is possible to define the
energy of Landau levels. The Landau levels are resolved only when

~ωc < Γ (3.5.15)

or alternatively
ωcτq > 1 (3.5.16)

This implies that a carrier has to complete, without scattering events, at
least one cyclotron orbit.

3.6 Shubnikov–de Haas Effect

The Shubnikov–de Haas (SdH) effect is the oscillation of the longitudinal
resistivity ρxx when an applied magnetic field is increased; at high fields
the oscillations can be so wide that zeros in longitudinal resistance can be
observed and the quantum Hall effect develops.
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3.7 Quantum Hall Effect

An increase of magnetic field leads to a bigger separation between the Landau
levels (Figure 9 (c), (d)).
At a certain magnetic field, a Landau level will cross the Fermi energy EF ,
so the level is emptied, and the corresponding electrons occupy the lower
Landau level. It is possible to define the filling factor (number of occupied
Landau levels) ν:

ν =
n2D
nB

(3.7.1)

An increasing magnetic field will raise the degree of degeneracy and decrease
the filling factor.
It is possible to start to understand the reason for the oscillating behaviour of
the conductivity since the longitudinal conduction depends on the density of
states at the Fermi level. Nevertheless to have an (almost) complete view of
this phenomena a more profound consideration of the transport in a 2DCG in
presence of magnetic field is necessary [48]. When a magnetic field is applied,
electrons in the bulk regions perform circular motions (cyclotronic orbits).
However, this is not true for the electrons near the boundaries. In a classical
view an electron tries to perform a cyclotronic orbit, but it is reflected by
the boundary of the sample, and this gives rise to a skipping orbit. In a
quantum view the boundaries of the sample add a confining potential in the
Schrodinger equation[

− ~2

2m

d2

dx2
+

1

2
ω2
c (x− xk)2 + V (x)

]
u(x) = εu(x) (3.7.2)

To model the confinement it is possible to consider V (x) = 0 inside the
sample and an infinite potential outside. For electrons in k = 0 (at the
center of the sample) the potential is close to parabolic, so the energy levels
corresponds to the Landau levels described in equation 3.5.9. At the bound-
aries, for electrons with higher k, the confinement is stronger, and leads to
an increase of the energy. These states are called edge states.
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Figure 10: Bending of the states energy in function of the position: the states are
higher in energy if closer to the edge

As depicted in Figure 10, the energy of the edge states will bend near bound-
aries, and eventually cross the Fermi level, even if the corresponding Landau
level inside the sample is very far from EF . An important property of the
edge states is that the transport in an edge state is ballistic. This means that
when a carrier is scattered, the only possible final state coincides with the
initial one. In fact, once an edge state is chosen, also the corresponding k
is fixed. If a forward-moving state wants to scatter into a backward-moving
state it has to cross the entire sample, this means that scattering in the edge
states is suppressed [49]. Electrons within the edge-channel are all at the
same potential.
To observe the quantum Hall effect the voltage is measured along the sam-
ple: when the Landau levels are far from the Fermi level (few kBT below
EF ) the transport is promoted only by edge channels and so it is ballistic
and no voltage drop occurs. When a Landau level in the interior of the chan-
nel comes closer to the Fermi level it allows scattering events between the
forward-moving electrons and the backward-moving electrons, thus a resis-
tance between the two longitudinal contact is found.
When ωcτq < 1 and the Landau levels are not so well resolved, there is always
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a Landau level near the Fermi level and the changing of the magnetic field
will induce Shubnikov–de Haas oscillations in the resistance instead.

3.7.1 Spin-Splitting of Landau Levels

The discussion above neglected completely the spin of the electrons. In real-
ity, since a magnetic moment is associated with the spin it has to be taken
into account when a magnetic field is applied. The magnetic moment asso-
ciated with the spin can align parallel or anti-parallel to the magnetic field
and these two states have different energy according to the Zeeman energy
splitting.

EZ = ±1

2
gµBB (3.7.3)

Here, the g-factor is equal to 2 for free electrons, and can assume different
values inside the material due to spin-orbit coupling.

µB =
e~

2m0
(3.7.4)

is the well-known Bohr magneton.

At low field the Landau levels contain both spin states. The spin split-
ting of the Landau levels can be observed at a field high enough to satisfy
the condition

gµBB > Γ (3.7.5)

3.8 Shubnikov–de Haas Oscillation Analysis

Shubnikov–de Haas oscillations are a very powerful instrument to study im-
portant parameters of a 2DCG.
First, SdH oscillations are periodic with respect to the inverse of magnetic
field and the period is proportional to carrier sheet density:

ns =
q

π~∆(1/B)
(3.8.1)
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The calculated nSdH can be compared to the more approximated nH , being
closer to the true carrier density.
Furthermore, it is possible to find the in-plane effective mass m∗ and the
Dingle ratio α. The resistivity of a 2DCG in a magnetic field can be modelled
as [30, 50]:

ρxx(B, T ) = ρ0(T ) [1 + 4
∞∑
s=1

sξ(B, T )

sinh[sξ(B, T )]
·

· exp

(
− παs

Bµ(T )
· cos

(
2sπ2

~ns
qB
− πs

)] (3.8.2)

where
ξ(B, T ) =

2π2kBTm
∗

eB~
(3.8.3)

and
α =

τtr
τq

(3.8.4)

is the Dingle ratio. The main assumption behind this equation is that Lan-
dau levels become Lorentzian due to a finite lifetime τq. To extract m∗ the
temperature dependence of the oscillations is studied [51]. In the magnetic
field range considered in this thesis the oscillations can be modelled consider-
ing only the s = 1 term. At any peak the cosine term becomes unity. Taking
the logarithm, eq. 3.8.2 reduces to

ln

(
A

T

)
= C − ln(sinh(ξ)) (3.8.5)

where
A =

∆ρxx
ρ0

(3.8.6)

and C is a constant. So in order to extract m∗ first a magnetic field value
was chosen, corresponding to a maximum of the oscillations. Then ln(A/T)
vs. T is plotted, and through a fitting, using as a fitting function eq. 3.8.5,
the in-plane effective mass is obtained. This kind of analysis assumes that ns
does not change at low temperature, otherwise also the position of maximum
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would change with the temperature. Once the effective mass is known the
Dingle ratio is obtained from the so called Dingle plot

ln

[
∆ρxx

sinh(ξ)

ξ

]
vs.

1

B
(3.8.7)

where the slope is equal to −πα
µ .
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4 Samples Characterization

4.1 LEPECVD Samples

4.1.1 Sample 10721

Sample 10721 is a HMOS grown at the L-NESS. It is composed by an un-
doped 18 nm thick Ge quantum well, grown on top of 2 µm of 70% graded
SiGe, and covered with a 20 nm cap of 70% SiGe, on top of which there is
another 2 nm Si cap. The growth temperature was 350°C, in order to achieve
a flat surface on the scale of hundreds of nanometers. The top gate, used
during transport characterization, is made by depositing ∼ 20 nm of Al2O3

by ALD, and then Ti/Pd as a metallic contact. The thickness of the oxide
is critical: a thick oxide layer would reduce the influence of the metallic gate
on the carriers, but, on the other hand, if the oxide is too thin there is a risk
of oxide breakdown.
The gate voltage must be considered an additional degree of freedom, so, in
principle, at each gate voltage the analysis of ns, µ, α and m∗ should be per-
formed. Practically, this was done only for Hall 2D density and Hall mobility.
For the Dingle ratio, it would have been interesting to have some points at
different carrier densities, especially to check the veracity of the mobility
analysis according to the 2D density, but oxide breakdown and leakage have
been serious issues, often impeding this kind of measurements. In literature
m∗ is often approximated as constant with respect to the gate voltage, even
if it is known that it has a systematic dependence on ns in Ge/SiGe het-
erostructures. In this thesis work the effective mass has been extracted every
time the Shubnikov–de Haas oscillations analysis was possible. Due to the
difficulties mentioned above, sometimes only one value for m∗ was available,
and this was assumed as constant [52]. Unfortunately both the gated 10721
HMOS showed immediate oxide breakdown, making it impossible to carry
out complete measurements on them.
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HF cleaning First, two devices without any oxide and top gate deposited
were measured. The main difference between the two is that one of them
has been treated with HF and immediately sealed, in order to clean its sur-
face. The HF cleaning is performed to eliminate a possible boron airborne
contamination, which can unintentionally introduce a p-doping in the sample
[53]. This test was planned after a SIMS (Secondary Ions Mass Spectroscopy)
analysis highlighted the presence of boron at the surface. Another important
piece of information coming from SIMS is the presence of a relevant oxygen
concentration inside the sample.

Figure 11: Concentration profile in function of depth of oxygen and boron on sample
10667, a structure nominally identical to 10721. Data are extracted from a complete
SIMS analysis performed on 10667.

Oxygen contamination is known to be a limiting factor for mobility in un-
doped Ge/SiGe heterostructures [13, 54]. In order to extract the Hall density
and Hall mobility ρxx and ρxy have been measured at T = 1.6 K, sweeping
the magnetic field from -0.5 to 0.5 T. In Figure 12, the graphical result of
one of these measurements is shown:
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Figure 12: ρxx and ρxy data points measured at T = 1.6 K, sweeping the magnetic
field from -0.5 to 0.5 T. The constant behaviour of ρxx and the linear behaviour of ρxy
are in good agreement with theory. Compare with the qualitative plot of Figure 7.

The extracted values are shown in Table 1:

HF treated Not treated
µ [ cm2/Vs ] 2.61× 104 5.38× 104

p [ cm−2 ] 1.90× 1011 3.16× 1011

Table 1: Results of Hall measurements on 10721 without top gate and oxide.

These results show that, even if carrier density is lower after the HF clean-
ing, the device is still working at 1.6 K, with a carrier density of the order
of 1011 cm−2. This means that the growth introduces a p-type background.
However, all the other devices analyzed in this thesis have been cleaned with
HF.

QHE on HF cleaned sample The relatively low density of these two samples
prevented a Shubnikov–de Haas oscillation analysis, even though it was pos-
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sible to measure the quantum Hall effect, sweeping the field from 0 to 7.5 T.
In Figure 13 ρxx and ρxy of the HF treated sample are plotted as a function
of the applied magnetic field.

Figure 13: ρxx and ρxy plotted as a function of the applied magnetic field, sweeping
from 0 to 7.5T at 1.6 K.

Two plateaus in ρxy are well evident, corresponding to a filling factor ν of
1 and 2. Another interesting behaviour is in the two longitudinal resistiv-
ity minimums, where ρxx ∼ 0: in this situation electrical conduction takes
place only in the edge states. Unfortunately the measurement carried on
the uncleaned device provided a disturbed result, without a clear physical
interpretation.

10721 oxide-no-gate The following device to be measured is a 10721 Hall
bar with oxide on top. The same analysis explained before was performed,
and it resulted in a mobility µ = 5.88 × 104 cm2/Vs and a carrier density
p = 9.4×1011 cm−2. These values are quite relevant, because of the relatively
high values of mobility and density, compared with devices without the oxide
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on top. This result can be explained considering that the oxide includes a
high number of negative charges, replacing the role of the bias voltage in
populating the quantum well. This hypothesis is supported by the fact that
it is known in literature that amorphous Al2O3 layers grown using different
deposition techniques contain a significant density of negative charges of still
unclear origin [55].

QHE on 10721 oxide-no-gate In Figure 14 we show the quantum Hall effect
measurement carried on this sample.

Figure 14: ρxx and ρxy plotted in function of the applied magnetic field, sweeping from
0 to 7 T at 1.6 K. Spin-splitting is present above 4 T, and the ρxy behaviour is anoma-
lous, failing to show clear quantum Hall effect plateaus.

Once again, ρxx is near to zero in correspondence of the the high-field min-
imums, but in this plot the most interesting feature is the anomalous be-
haviour of ρxy, associated with a different shape of ρxx peaks respect to the
previous results. This behaviour can be reproduced exploiting a numeri-
cal simulation in which the Fermi energy oscillates when the magnetic field
increases (and Landau levels appear and grows in amplitude), in order to
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respect the charge conservation principle. On the contrary, the standard be-
haviour predicted for the quantum Hall effect is well explained by a model in
which the Fermi energy is kept fixed to its original value by the presence of
localized states, and the levels cross periodically this value. Further analy-
sis are needed to understand the physics behind this interesting phenomenon.

Shubnikov–de Haas oscillations analysis on 10721 oxide-no-gate From Shubnikov–
de Haas oscillations it is possible to extract important parameters, such as the
effective mass and the Dingle ratio. Furthermore, the periodicity of the oscil-
lation is inversely proportional to the carrier sheet density. As explained in
section 3, this value is the real sheet density, since approximations were made
in the classical Hall effect theory, but at low temperature the two values are
expected to be similar. From this analysis the value nSdH = 9.43×1011 cm−2

is obtained. The strong agreement between the Hall density and the SdH
density indicates that only one 2D carrier gas plays a role in the transport,
and so only one sub-band contributes to electrical conduction [8].

In order to extract the α and m∗, SdH oscillations have been measured at
1.6, 2.5, 3.5, 4.5, 5.5, 6.5, and 7.5 K. A peak and its corresponding magnetic
field were selected, then the temperature dependence of the relative resistiv-
ity value of the peak was studied. First of all, the maxima and the minima
were interpolated by two polynomials, and from the average of these two
the slowly varying magnetoresistance ρMR was obtained. In order to isolate
the oscillations, the magnetoresistance was subtracted from the experimental
data which was then divided by its value.

A =
ρxx − ρMR

ρMR
(4.1.1)

In this way the relative amplitudes of the oscillations were found. The choice
to divide by the slowly variable magnetoresistance is not unique in litera-
ture. In some articles, the amplitudes are divided by ρ0, corresponding to
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the value of ρxx at zero magnetic field, which is assumed to be constant for
all magnetic fields. In this analysis the first approach was chosen, but it
was observed that the two methods differed very little. The selected peaks
for effective mass extraction are at 2.57 T, a value chosen to avoid the spin
splitting events occurring at higher fields, while having a significant ampli-
tude for the peaks. Figure 15a shows that the position of the peak is almost
temperature independent, meaning that the 2D carrier density is constant at
these different temperatures. The result is an m∗ = 0.12me, a value in good
agreement with similar structures in literature [17, 24, 52, 56]. It is relevant
to underline that this is the value for the in-plane effective mass and it is
practically half that of the heavy hole mass in bulk Ge.

(a) (b)

Figure 15: (a) Normalized SdH oscillations of ρxx with B sweeping from 1 to 3 T for
10721 oxide-no-gate. The dashed line indicates the peaks chosen for the m∗ extraction
(b) Effective mass plot: ln(A/T ) vs. T .

After the extraction of the in-plane effective mass, it is possible to calculate
the Dingle ratio from the Shubnikov–de Haas oscillations envelope at 1.6 K
in the range between 1 and 3 T. The value is α = 3.0, however, as depicted
in Figure 16, the Dingle ratio is clearly not constant with the applied field.
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Figure 16: Dingle plot of device 10721 oxide-no-gate, obtained analyzing the curve at
1.6 K.

In a 1991 article [33], Coleridge states that a non-constant behaviour of the
Dingle ratio is well justified by inhomogeneities and field dependent dephas-
ing due to a distribution of densities in the 2D carrier gas. This explanation
seems to be suited to our situation, in fact the population of the quantum
well in this device is not activated by a uniform potential applied by means
of a metal gate, but it is caused by the high amount of charges present in
the oxide, whose distribution is reasonably assumed to be non uniform.
However, an empirical fitting has been performed, hypothesizing a linear de-
pendence of α respect to 1/B, providing this result, and the plot in Figure
17:

α = 4.04− 4.33
1

B
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Figure 17: Dingle plot of sample 10721 oxide-no-gate. The superimposed fitting has
been performend assuming a linear dependence of α respect to 1/B

Mobility Spectrum analysis on 10721 oxide-no-gate In order to determine
if a low-mobility surface conduction channel is present, ρxx and ρxy have
been measured at 20 K and 40 K. At cryogenic temperatures the participat-
ing carriers should be only those in the Ge channel. When the sample is
heated up the SiGe bulk of the device can contribute to the conduction due
to background doping, or conduction can be present in a 2DHG formed at
the sample surface. This means that now in the device there are two parallel
conduction channels. As was explained in section 3 this situation could not
be studied with classical Hall effect analysis, since now RH and ρxx are no
longer constant with a changing magnetic field.
These temperatures are supposed to be high enough to suppress quantum
effects, such as the formation of Landau levels. On the contrary this does
not mean that at low temperature parallel conduction is always excluded.
In some samples analysed in this thesis a slowly varying magnetoresistance
was observed, superimposed on the expected Shubnikov–de Haas behaviour
at low temperature. This would require us to assume a parallel conduction
channel even at cryogenic temperatures. For this reason, the classical magne-
toresistence was computed interpolating all the maxima and all the minima
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and then it was subtracted in order to isolate the quantum behaviour, as
shown in Figure 18.

Figure 18: Shubnikov–de Haas oscillations in ρxx measured at 2.5 K, superimposed on
a slowly varying magnetoresistance for 10721 oxide-no-gate

As depicted in Figure 19, the mobility spectrum at 20 K shows a peak relative
to a channel with a mobility µ = 5.87 × 104 cm2/Vs in excellent agreement
with the extracted Hall mobility (µH = 5.88 × 104 cm2/Vs), and the ab-
sence of low-mobility peaks. The mobility spectrum at 40 K shows the same
situation, with mobility values slightly lower, as expected.
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Figure 19: Mobility spectrum of the 10721 oxide-no-gate sample. The presence of a
single peak at the expected mobility suggests the absence of a parallel channel.

Percolation Density of 10721 In absence of working gated structures, it was
impossible to obtain a µ vs ns data-set needed to extract the percolation
density. However, some 10721 gated devices, now broken, were measured
by G. Tavani, and featured a np = 4.2 × 1011 cm−2. This value is reported
in order to be compared with 10820 percolation density extracted in a next
section.
A reliable percolation density extraction requires stable measurements in a
voltage range close to the device threshold. Some fabrication issues on 10822
and 10818 prevented us from obtaining this condition, so their percolation
density has not been extracted. This issues have been solved with a new Hall
bars design, as later explained. When comparing np of 10721 with the value
obtained for 10820 it must be taken into account that the first result has
been obtained with the old, less satisfactory, design, and it could be shifted
towards higher values.

4.1.2 Sample 10822

The 10822 sample has been grown as an exact copy of 10721, with the aim to
compare the data, evaluating their consistency, and to perform the analysis
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on the gated devices. The 10822 device with deposited Al2O3 and no metallic
gate showed a Hall mobility µH = 9.88 × 104 cm2/Vs and a Hall density
nH = 7.54× 1011 cm−2.

QHE on 10822 oxide-no-gate The quantum Hall effect measurement was
similar to that on 10721, with the difference of a superimposed magnetore-
sistance preventing the zero longitudinal resistivity condition, as depicted in
Figure 20:

Figure 20: Quantum Hall effect measured on 10822 with oxide but without top metal
gate. The magnetic field range is 0–5 T, since that was the operational limit of the
cryostat at that time.

SdH oscillations analysis on 10822 oxide-no-gate The density extracted from
the Shubnikov–de Haas oscillations is nSdH = 7.15 × 1011 cm−2, in good
agreement with the Hall density.

Mobility Spectrum analysis on 10822 oxide-no-gate The mobility spectrum
at 20 K shows a main peak corresponding to a mobility µ = 8.26× 104 cm2/Vs,
and a higher-mobility secondary peak whose interpretation needs further in-
vestigations, to understand if it is an error introduced by the algorithm itself,
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or if it has a physical explanation. However the mobility spectrum confirmed
the absence of a low-mobility superficial parallel channel.

Figure 21: Mobility spectrum of the 10822 at T = 20 K. The secondary peak at higher
mobility does not have a clear interpretation.

10822 gated devices For the gated 10822 devices the Hall mobility and Hall
density have been calculated for many different gate voltages, with the results
in Figure 41a and 41b.

(a) (b)

Figure 22: (a) Mobility and density plotted as a function of bias voltage at T = 1.6 K
for 10822. (b) Mobility plotted as a function of 2D density at T = 1.6 K for 10822.
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Some relevant information can be extracted from these two plots:

• The device turns on at Vg = −0.2V , meaning that the Schottky contact
of the metal gate is enough to compensate and overcome the effect of the
charges in the oxide. Thus, a negative potential is needed to populate
the channel with a 2DHG.

• The mobility grows with the absolute value of the bias voltage, then
saturates to a value similar to the mobility of the oxide-no-gate device.
This behaviour will be even more evident in samples discussed later,
suggesting that the charges brought by the oxide are able to saturate
the conduction channel.

QHE on 10822 gated device Shubnikov–de Haas and quantum Hall effect
measurements have been carried on the 10822 sample, but the device was
affected by a serious current leakage through the top gate, which limited the
maximum bias voltage which could be applied.
Another problem was that measured values for ρxx and ρxy were extremely
disturbed and often not physically realistic, e.g. the presence of zones at
negative resistivity, as one can see in Figure 23:
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Figure 23: Quantum Hall effect measured on 10822 sample. The measurement is ev-
idently disturbed, and ρxx goes negative, which is a result clearly not compatible with
the physics of the structure.

These issues were mitigated if the gate voltage was increased towards more
negative values, or increasing the current injected into the Hall bar, to the
cost of heating up the 2DHG. This behaviour suggested that they are not re-
lated to the leakage through the oxide (otherwise their influence would have
been proportional to the absolute value of the bias voltage). One possible
explanation is that, at low bias, the very thin voltage probes on the Hall are
turned off, so that they can not conduct properly, distorting the measured
signal.
In order to overcome this problem, it has been decided, in accordance with
IST, to change the design of the future Hall bars. In the new body gate de-
sign, the metal for the top gate is not deposited on the probes, exploiting
the fact that the oxide brings the conductivity of the sample to its maximum
value. This strategy is also expected to mitigate leakage phenomena arising
from the proximity between the metallic gate and the metallic eletrical con-
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tact pads.

SdH oscillation analysis on 10822 gated device Two identical devices were
fabricated on 10822, and they both have been measured, but the second
device gave results very similar respect to that discussed above, and it also
featured the same issues and problems. However, on the second device, at
high bias, it has been possible to measure a few oscillations, sufficiently stable
to estimate the effective mass and the Dingle ratio:

Vg = −0.9V Vg = −1.1V

µ [ cm2/Vs ] 8.92× 104 9.30× 104

p [ cm−2 ] 7.49× 1011 8× 1011

m∗ [ kg ] 0.11me 0.11me

α 8.45 6.73

Table 2: nH , µH , m∗, and α extracted at two different values of bias voltage Vb.

The value of the Dingle ratio α � 1 suggests that small-angle scattering
mechanisms, e.g. remote impurity scattering, are dominant.
τq values can be easily calculated, and they correspond to 0.66 and 0.86 ps.
Knowing this, it is possible to calculate the broadening Γ of a Landau level
as

Γ ∼ ~
2τq

= 0.49meV and 0.38meV

It is relevant to underline that, as one can see in Figure 24a and 24b, the
assumption of constant Dingle ratio is more reasonable, with respect to 10721.
As already discussed, this can be due to the fact that an applied bias through
a metallic gate is a much more uniform potential than that generated by
charges trapped in the Al2O3 layer.
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(a) (b)

Figure 24: Dingle plot for 10822 at (a) Vg = -0.9 V (b) Vg = -1.1 V. Even if some
outliers are present, the linear fitting is much more consistent than in 10721.
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4.2 MBE Samples

4.2.1 Sample 10818

Sample 10818 is a structure whose graded buffer layer was grown at L-NESS
via LEPECVD, while the Germanium QW stack has been grown by MBE
in Beijing by the group of Jianjun Zhang at the Chinese Academy of Sciences.

Before discussing electrical measurements, it is important to underline that
an XRD analysis, performed after the MBE growth, shows that the barrier of
the 13 nm thick Ge QW has a Ge content of 62.6%, compared to the nominal
70% Ge content of the buffer layer.

Figure 25: XRD analysis performed by D. Chrastina at the L-NESS. A mismatch be-
tween the Ge content of the MBE grown barrier and the buffer layer content is well
highlighted.

Another consideration to be taken into account is that 10818 devices were
fabricated before the decision to change the Hall bar design, so they are af-
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fected by the same problems identified on 10721 and 10822, especially at low
bias.

The best low-temperature 2DHG mobility for a Ge/SiGe heterostructure
grown by MBE in the literature is 5.5×104 cm2/Vs [57, 58, 59], a value clearly
exceeded by LEPECVD (as well as CVD) heterostructures, as demonstrated
in the previous section.

10818 oxide-no-gate The first relevant result is the absence of conduction
at cryogenic temperatures of a device without the oxide and gate layers: this
would suggest that the p-type background introduced with the LEPECVD
growth is no longer present in these MBE grown samples.

The Hall measurements performed on a device following oxide deposition,
but without top gate, resulted in a mobility value µH = 3.30× 104 cm2/Vs,
with a carrier density nH = 1.09× 1012 cm2/Vs. The relevant role of the de-
posited oxide in activating the conduction by populating the quantum well
can be stressed once again.

SdH oscillation analysis on 10818 oxide-no-gate The Shubnikov–de Haas os-
cillation analysis confirmed the accuracy of the Hall density value, since
nSdH = 1.07× 1012 cm2/Vs.
Shubnikov–de Haas oscillations have been measured for six different temper-
atures, sweeping from 1.6 to 5 K in order to extract m∗ and α.
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Figure 26: Shubnikov–de Haas oscillations of ρxx measured at different values of tem-
peratures. The background of a slowly varying magnetoresistance has been subtracted.

(a) (b)

Figure 27: (a) ln(A/T ) plotted as a function of T in order to extract the in-plane ef-
fective mass of the carriers for 10818. (b) Dingle plot for 10818 sample without top
metal gate. In this case the assumption of considering α as constant respect to B seems
well justified.

The values obtained are m∗ = 0.117me and α = 9.85. A Dingle ratio
>> 1 suggests, as stated before, that small-angle scattering mechanisms are
dominant. In this particular situation the Dingle ratio is constant with the
magnetic field, even if the potential is applied by means of oxide trapped
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charges: this matter will require a further investigation, to understand if
results change for every device, as the oxide layers are always different, or if
the theory predicting a constant α needs to be improved to take into account
a field dependence under some circumstances.
τq can be easily calculated, and it corresponds to 0.22 ps. Knowing this it is
possible to calculate the broadening Γ of a Landau level as

Γ ∼ ~
2τq

= 1.5meV

10818 gated device The 10818 device with the metal gate on top was mea-
sured to determine µH and nH at different gate voltages:

(a) (b)

Figure 28: (a) Hall mobility and density plotted as a function of the gate voltage. The
threshold to turn on the device is significantly higher than Vth for 10822. Some different
runs have been performed and there is a clear shift of the curve towards more negative
bias values. (b) Hall mobility plotted in function of density. The value of the oxide-no-
gate device is clearly the upper limit for mobility.

From Figure 28a and 28b, two relevant pieces of information can be extracted:

• The threshold voltage is significantly higher (in absolute value) than that
for 10822, meaning that the effect of the work function of the metallic
gate is even more effective in de-populating the QW.

• Different runs show that there is a relevant hysteresis effect, with a shift
of the µ, p vs Vg curve towards more negative values. This is an issue that
must be taken into account when qubits are realized, since the applica-
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tion of a confining voltage can shift electrical properties of the material,
seriously affecting the measurements’ stability and reproducibility.

QHE on 10818 gated device An attempt to measure the quantum Hall ef-
fect has been carried out, but unfortunately the magnetic field limit at that
time was lowered to 5 T, due to technical problems, and above 4 T the
measurements featured jumps and disturbances.

Figure 29: ρxx and ρxy measured at 1.6 K, sweeping the magnetic field from 0 to 5
T, at Vg. Shubnikov–de Haas oscillations are clearly present, and ρxy plateaus can be
identified.

SdH oscillations analysis on 10818 gated device However, Shubnikov–de
Haas oscillations were stable enough to perform the usual analysis at a gate
voltage Vg = −2.2 V: nSdH = 1.06× 1012 cm−2, m∗ = 0.12me, α = 9.075.
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(a) (b)

Figure 30: (a) ln(A/T ) plotted as a function of T in order to extract the in-plane ef-
fective mass of the carriers. (b) Dingle plot for 10818 with a top metal gate at Vg =
−2.2 V.

The same considerations made for the oxide-no-gate sample are valid for
these data. It is interesting to observe that for 10818 there is no qualitative
difference between Dingle plots of the oxide-no-gate and the gated sample,
suggesting, as already discussed before, that the dependence of α on the
magnetic field should be carefully investigated.

Mobility Spectrum analysis on 10818 gated device The mobility spectrum
analysis confirmed the absence of a low-mobility surface channel.

4.2.2 Sample 10820

The sample 10820 was meant to be an exact copy of the 10818, except for
the fact that the germanium quantum well has been grown with isotopically
purified 72Ge. This choice should positively affect the performance of the
qubits, but in principle it should not affect electrical characterization mea-
surements.
In reality, the 10820 is not exactly the same as 10818, since the Ge content
of the SiGe barrier growth by MBE corresponds to the nominal 70%, as the
XRD measurement shown in Figure 31 demonstrates.
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Figure 31: XRD analysis performed by D. Chrastina at the L-NESS. No mismatch
between the Ge content of the MBE grown barrier and the buffer layer is detected.

Three different gated devices fabricated on 10820 have been characterized:
the first was fabricated following the old design, with voltage probes covered
by the top gate; the second and the third devices have been fabricated with
the new body gate design.

10820 oxide-no-gate The first measured device was the oxide-no-gate struc-
ture: Hall measurements gave µH = 3.67 × 104 cm2/Vs and nH = 8.23 ×
1011 cm−2; the accuracy of these values has been confirmed by the subsequent
extraction of nSdH = 7.94× 1011 cm−2.
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SdH Oscillation analysis on 10820 oxide-no-gate In order to extract the ef-
fective mass and the Dingle ratio, Shubnikov–de Haas oscillations have been
measured at six different temperatures, in a range between 1.6 and 6.5 K
(Figure 32).

Figure 32: Shubnikov–de Haas oscillations measured on 10820 oxide-no-gate. The
dashed line indicates the peaks chosen for the effective mass extraction.

(a) (b)

Figure 33: (a) ln(A/T ) plotted as a function of T in order to extract the in-plane ef-
fective mass of the carriers for 10820 oxide-no-gate. (b) Dingle plot for 10820 without
top metal gate for 10820 oxide-no-gate

63



In Figure 33b it can be seen that the points of the Dingle plot slightly oscil-
late around the fitted linear behaviour. The extracted m∗ = 0.118me, while
the Dingle ratio α = 17.22. This value is almost twice that found for 10818,
but it has been confirmed also by the characterization of gated devices, as
we will discuss later.
For this value of α, the quantum lifetime τq = 0.14ps, leading to a broaden-
ing of the Landau levels Γ = 2.3meV.

QHE on 10820 oxide-no-gate A measurement of the Quantum Hall effect
has been performed.

Figure 34: ρxx and ρxy measured at T = 1.6 K for 10820 oxide-no-gate. The magnetic
field sweeps in a range between 0 and 7 T.

The result is a typical QHE behaviour. In Figure 34 transverse resistivity
plateaus are visible and, in the same field ranges, the longitudinal resistivity
reaches small values (but never zero). The only unexpected feature is visible
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at ∼ 6 T.

Mobility Spectrum analysis on 10820 oxide-no-gate Finally, a mobility spec-
trum analysis has been carried on the device, at 20 and 40 K. Figure 35 shows
the results of the 20 K analysis:

Figure 35: Mobility spectrum of 10820 oxide-no-gate.

A main peak at 3.72×104 cm2/Vs is present; this value is slightly higher than
the Hall mobility, and the software compensates it introducing a few non-
zero points around µ = 0 and µ < −5 × 104 cm2/Vs, without any physical
meaning.

10820 gated device - Old design Unfortunately, the gated device fabricated
with the old design was not properly useful, because of an extremely high
leakage current, increasing with the bias voltage (Figure 36).
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Figure 36: Signal current and leakage current through the gate for 10820 (old design).
The dominant contribution is given by the leakage current, making it difficult to make
reliable measurements.

Hall mobilities and Hall densities as a function of the voltage bias has been
measured, but with unstable results, such that their interpretation is difficult
and not particularly interesting, if compared with the results coming later.

10820 gated device (1) The first device covered with the “body” gate has
shown the Hall mobilities and densities in Figure 37a and 37b.
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(a) (b)

Figure 37: (a) Mobility and density plotted as a function of bias voltage at T = 1.6 K.
(b) Mobility plotted as a function of 2D density at T = 1.6 K. The triangle represents
µong, and represents the saturation value for µ(n).

The threshold voltage is Vg = −0.2 V, significantly lower than the thresh-
old value for 10818. Moreover, no leakage has been detected in the range of
tens of nA. These two facts suggest that the modification introduced in the
fabrication process is useful to obtain more stable and reliable measurements.

QHE on 10820 gated device (1) Quantum Hall effect has been measured at
a bias voltage Vg = −1.8 V (Figure 38).
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Figure 38: QHE measured at T = 1.6 K and Vg = −1.8 V for 10820.

The interpretation is similar to that discussed for the oxide-no-gate sample,
and the same feature near B = 6 T is present.

SdH oscillation analysis on 10820 gated device (1) Shubnikov–de Haas os-
cillations measured at the same bias voltage allowed us to extract the values
for the effective mass m∗ = 0.113me and for the Dingle ratio α = 18.23.
As anticipated, the high value of the Dingle ratio is confirmed for 10820,
meaning that the low angle scattering mechanisms are even more dominant
than in 10818 despite the similar mobility. Moreover, the behaviour of the
Dingle plot is linear, as expected, meaning that α is constant with respect
to the applied field (Figure 39). This contributes to increasing the reliability
of the value extracted.
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Figure 39: Dingle plot at Vg = −1.8 V for 10820 (1)

Mobility Spectrum analysis on 10820 gated device (1) The mobility spec-
trum analysis has been performed at Vg = −1.8 V and the result coincides
with the result discussed for the oxide-no-gate sample.
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Figure 40: Mobility spectrum of 10820 (1)

10820 gated device (2) The second “body gated” sample turned on even at
zero bias, and its extreme stability allowed accurate measurements near the
threshold voltage, as depicted in Figure 41a.

(a) (b)

Figure 41: (a) Mobility and density plotted as a function of bias voltage at T = 1.6 K
for 10820 (2). (b) Mobility plotted as a function of 2D density at T = 1.6 K for 10820
(2). The triangle represents µong, and represents the saturation value for µ(n).
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QHE on 10820 gated device (2) This good performance has been exploited,
first to measure the quantum Hall Effect at relatively low density (Figure 42)
and then to extract the percolation density (Figure 43).

Figure 42: QHE measured at T = 1.6 K and Vg = −0.5 V for 10820.

The measurement is affected by some noise, but all the typically expected
features, such as plateaus in ρxy corresponding to a ρxx ∼ 0, are present,
along with a spin splitting effect on the peaks at higher field.

Percolation Density of 10820 gated device (2) The most important result
related to this specific device is that the mentioned stability just above the
threshold voltage provides a good data-set to extract the percolation density.
In order to extrapolate this parameter the conductivity σ is expressed in
units of e2

h , then these values are plotted vs. sheet density, and fitted with a
function

σ = A(n− np)p (4.2.1)
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While A and np are used as fitting parameters, the value of the exponent p
is critical: as discussed before, it is theoretically fixed at p = 1.31, but this
value provides a completely unfeasible fitting, as one can see in Figure 43.

Figure 43: σ(n) plot, fitted to extract the percolation density. The blue line is ob-
tained considering p a fitting parameter. The orange line is obtained for p = 1.31, and
clearly is not suitable to fit the experimental data.

In order to obtain a correct fit, p has been treated as a third fitting pa-
rameter: within this approach, pfit = 1.63 and the percolation density is
9.6× 1010 cm−2.
The value of the exponent is not so dissimilar to the theoretical value, espe-
cially if it is taken into account that the measurement has been performed
at T > 1 K.
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Conclusions

This thesis work has the main objective to analyze HMOS structures, in or-
der to study their capability to host quantum dots for quantum computing
applications.

The first conclusion about the LEPECVD material is the presence of a
p-type background independent from airborne boron contamination. This
background doping is not present in the MBE material, where the channel is
frozen in absence of Al2O3 or bias voltage applied. However the MBE grown
Ge features a lower mobility, as expected.
The reduction of oxygen contamination in LEPECVD growth could be a
critical step in enhancing 2DHG mobility in the HMOS heterostructure.

The Dingle ratio values extracted are interesting because, despite being
higher than 1, they are relatively low, meaning that the quantum lifetime
is quite long. It must be taken into account that a high Dingle ratio is not
good per se: the higher is the Dingle ratio, the longer is τtr respect to τq, but
on the other hand, a high mobility already indicates that τtr is long, and a
large α means that τq is short.
The next steps regard a deeper investigation of the Dingle ratio values, its
dependence on the applied field, and differences between LEPECVD sam-
ples and MBE samples, and even between 10818 and 10820 samples, since
the isotopic purity of Ge should not affect this figure of merit.

Discussions with the members of the IST group regarding the performances
of their quantum dots fabricated on these samples will provide a feedback
useful to understand the impact of these characterization values on the sta-
bility of qubits.

The new body gate design is an important improvement, since now more
stable measurements will be available, meaning more reliable percolation
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density values. This design is possible because is now confirmed that the
oxide layer activates the conduction at its maximum.
In order to improve the efficiency of electrical characterizations L-NESS
started to develop an internal fabrication process for Hall bars.
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