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SOMMARIO

Nell’ambito del Few-Shot Learning (FSL) viene richiesto ai modelli di impa-
rare nuovi task sulla base di pochi esempi. Il Cross-Domain Few-Shot Lear-
ning (CDFSL) definisce un problema ancora pit difficile, imponendo anche che
i task di test siano soggetti ad uno shift di dominio. Nonostante gli approc-
ci sempre pitt numerosi proposti di recente nel campo, il problema di come
meta-imparare efficacemente su molti domini di training e al tempo stesso
evitare meta-overfitting resta un problema interessante e non banale. In que-
st’ottica, proponiamo Corrupted-Omniglot, un nuovo benchmark per CDFSL.
Inoltre, presentiamo e analizziamo molteplici tecniche che si basano su di-
sentanglement, agnosticismo di dominio e statistiche di batch normalization
di alta qualita per affrontare il problema di CDFSL. Abbiamo riscontrato che
grandi quantita di pre-training e 1'uso di informazione di dominio durante
la classificazione peggiora sensibilmente la performance. Pit1 in generale, ab-
biamo scoperto che molti modi di estendere le architetture state-of-the-art in
FSL per tenere conto della presenza di molteplici domini di training e test non
ha impatti positivi sulla performance in CDFSL. Ciononostante, reputiamo che
agnosticismo di dominio e statistiche di batch normalization di alta qualita sia-
no comunque delle direzioni di ricerca ancora da esplorare opportunamente
nel campo di CDFSL.






ABSTRACT

In Few-Shot Learning (FSL), models are challenged to learn new tasks based on
few examples. Cross-Domain Few-Shot Learning (CDFSL) takes the FSL problem
one step further, imposing test tasks to be subject to domain shift. Despite in-
creasing efforts by recent works in the field, the problem of how to effectively
meta-learn across multiple training domains while avoiding meta-overfitting
remains an important challenge. To this end, we propose Corrupted-Omniglot,
a novel CDFSL classification benchmark. Furthermore, we present and analyze
multiple techniques that rely on disentanglement, domain agnosticism, and
high-quality batch normalization statistics to tackle the CDFSL problem. We dis-
covered that large amounts of pre-training and the usage of domain informa-
tion during classification significantly worsen performance. More generally, we
found that many ways of extending state-of-the-art FSL architectures to address
the presence of multiple training and test domains fails to boost performance
in CDFSL. Nonetheless, we believe that domain agnosticism and high-quality
batch normalization statistics still represent two promising research directions
that are not yet sufficiently explored in CDFSL.
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INTRODUCTION

Machine Learning is an application of Artificial Intelligence whose goal is to
develop methods that can automatically detect patterns in data, and then to
use the uncovered patterns to predict future data or other outcomes of inter-
est [102]. In recent years, a class of parametric machine learning techniques
called Deep Learning has led to astonishing achievements in the field. The key
aspect of Deep Learning is the ability to learn how to automatically extract
relevant features from data through the employment of many neural layers,
thus not requiring field-specific expertise [45]. As a consequence, the leverage
of these techniques is very approachable and results in lower costs, promot-
ing the development of artificial intelligence applications outside the academic
community.

Nonetheless, Deep Learning currently faces some obstacles that still hinder
the technology to be fully exploited. Humans have a remarkable capacity to
quickly learn new concepts when provided with few examples. Conversely,
current popular deep learning techniques need thousand of samples to be able
to generalize their knowledge and make predictions on unseen data, making
them extremely data inefficient. In the context of Supervised Learning, this
often translates into the need to manually label thousands of samples, which
is cumbersome and time-consuming. Similarly, in Reinforcement Learning, this
translates into having access to a large number of training trajectories and this
may be unfeasible when the experience is directly observed from real-world
interactions.

Meta-Learning, also known as “learning-to-learn”, is a sub-field of Machine
Learning that exploits previous experience to optimize learning algorithms
to work well on novel tasks [41]. The experience is often formalized as a
collection of tasks, upon which meta-learning techniques build general, task-
agnostic knowledge that can be reused. The approach has been shown to ad-
dress some of the challenges posed by Few-Shot Learning (FSL), where very
few task-specific training datapoints are available and the problem of overfit-
ting is particularly insidious [84]. The literature has recently provided promis-
ing results also thanks to the leverage of deep learning techniques, achieving
human-like performance also in simple meta-learning tasks [76].

1.1 OPEN PROBLEMS IN META-LEARNING

In spite of its recent achievements, Meta-Learning currently faces many chal-
lenges. Many popular approaches struggle when scaling to more powerful
learners, obtaining poor performance when dealing with complex tasks. An-
other challenge is the transfer of knowledge among tasks that are particularly
different. Our brain builds powerful abstractions that can be used to identify
an object, no matter how it is depicted, either as a natural image, a clip-art, or
another visual representation. Conversely, a problem that has been observed
to occur in many state-of-the-art meta-learning approaches is the inability to
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generalize the knowledge when presented with a heterogeneous distribution
of domains.

As also analyzed by Triantafillou et al. [138], we identified three partially
overlapping issues that should be addressed to scale meta-learning. Firstly,
most of the current meta-learning algorithms are designed considering the
simplistic assumption that the distribution of tasks is homogeneous, namely that
tasks are coming from a single source [76], and they share the same character-
istics. In contrast, real-life learning experiences are heterogeneous: for instance,
classification tasks may vary in terms of the number of classes or examples per
class and are often unbalanced. Secondly, benchmarks in Meta-Learning only
measure within-dataset generalization. However, we are interested in having
models that can learn from multiple sources and generalize to entirely new dis-
tributions, namely new datasets or domains. Lastly, most of the current models
and benchmarks ignore the relationships between tasks and classes, disregard-
ing structures that could be useful to share knowledge across multiple tasks.

1.2 RESEARCH QUESTIONS AND MAIN CONTRIBUTIONS

In light of these issues, our goal is to determine whether the currently pro-
vided techniques can be extended to better scale Meta-Learning with respect
to data and task heterogeneity, a problem known as Cross-Domain Few-Shot
Learning (CDFSL). In particular, we attempt to tackle the problem by focusing
on the quality of the embedding in our models. A model capable of operating
among different data domains would be able to transfer knowledge among
widely different tasks, solving the lack of training samples that is observed
in certain data domains. As a practical example, the desired model would be
able to generalize the recognition of malignant tumors in x-ray images to im-
ages obtained through other less popular techniques or instruments that may
feature different colors and shades.

Our contribution to the problem is manifold. First of all, we propose Corrupted-
Omniglot, a novel CDFSL benchmark, which is obtained by augmenting images
from the Omniglot dataset [76] with images corruptions provided by Mu and
Gilmer [99]. Furthermore, we find multiple ways to extend Latent Embedding
Optimization (LEO) [124], a popular FSL algorithm, to address the presence of
multiple domains in our problem. Initially, we examine the effects of leveraging
a disentangled and interpretable embedding by pre-training a Domain-Invari-
ant Variational Autoencoder (DIVA) [61] on images from Corrupted-Omniglot
and subsequently reloading the obtained embedder into the LEO architecture.
We also pursue disentanglement directly during meta-learning by considering
a novel architecture capable of learning from both class and domain discrimi-
nation tasks. In virtue of the results obtained, we shift the focus to producing
a domain agnostic embedding by leveraging gradient reversal [43]. Finally, we
attempt to leverage Weighted Batch Normalization [92] to obtain reliable do-
main-specific statistics and a normalization procedure that can scale to unseen
domains.

We discovered that large amounts of pre-training and the usage of domain
information during classification significantly worsen performance. More gen-
erally, we found that many ways of extending state-of-the-art FSL architectures
to address the presence of multiple training and test domains fails to boost per-
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formance in CDFSL. Nonetheless, we believe that domain agnosticism and high-
quality batch normalization statistics still represent two promising research
directions that are not yet sufficiently explored in CDFSL.

1.3 THESIS STRUCTURE

We provide an ordered list of the chapters that constitute the rest of the thesis
along with a brief description of their content.

¢ Chapter 2 provides an overview of the main concepts of machine learn-
ing and deep learning that are also relevant to our specific setting;

¢ Chapter 3 introduces Meta-Learning, providing a mathematical formal-
ization of the problem, a taxonomy of the literature, and comparison
with related fields;

* Chapter 4 examines recent works in various fields of the machine learn-
ing literature that address the presence of multiple domains in our data,
such as Variational Autoencoders, Domain Adaptation, Domain General-
ization, and CDFSL;

¢ Chapter 5 provides a complete formulation of the CDFSL problem we
want to tackle and describes our first approach to the problem, which is
based on pre-training a high-quality embedding;

¢ Chapter 6 builds upon the results obtained in the previous experiments
by meta-learning the embedding from scratch and examining other inter-
esting research directions;

¢ Chapter 7 briefly reports the CDFSL problem we tackled, summarizes our
contributions and findings, and suggests promising future lines of work
in the field based on the results we obtained.

3






MACHINE LEARNING AND DEEP LEARNING

This chapter gives a brief and self-contained introduction on the main ma-
chine learning and deep learning tools used throughout this thesis to provide
the reader with the necessary background to understand the presented con-
cepts. The resources in this chapter are adapted from the comprehensive Deep
Learning textbook [45].

2.1 LEARNING FROM EXPERIENCE

Machine Learning is the study of computer algorithms that improve automati-
cally through experience:

“A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure D, if its performance at tasks in T, as measured by
P, improves with experience E.”

This informal definition from Mitchell [95] can result in a variety of possibil-
ities for the experience E, the task T, and the performance metric P, depending
on the operative framework that we might want to use to build machine learn-
ing algorithms.

2.1.1  Types of Task

Machine Learning helps us by tackling problems that are too difficult to be
solved by designing programs with a set of predefined rules. In other words,
a task is a problem that we want to solve, and the process of learning the task
is our means of attaining the ability to solve it. More naively, we expect that a
machine learning algorithm would develop an understanding of the task to be
solved by interacting with collected data and updating its knowledge of it.

Usually, a machine learning algorithm is described in terms of its ability
to process an example as input. Input samples are defined, for instance, as
vectors of features x € IR™. The literature provides multiple types of tasks,
each one considering a different kind of mapping. Two popular examples are
classification and regression.

¢ Classification: the algorithm is asked to assign a class n among a set of
possible categories to a given input. This is usually achieved by learning
a mapping in the form of f: R™ — {1,...,N}L

® Regression: the algorithm is asked to predict a real value, given some
input. The task can be solved by learning the input-output mapping as a
function f : R™ — RR.

Depending on the area of application, we can define many other types of
tasks to effectively abstract the problem. In this thesis, our main focus is on
classification tasks.
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2.1.2  Performance Measure

It is necessary to define a metric to evaluate a machine learning algorithm’s
ability to perform on a specific task T. The performance measure is generally
defined as a numerical value computed on a subset of data by comparing the
prediction output of the algorithm and its ground truth value. We are generally
interested in measuring the quality of the algorithm on data never observed
during the learning process to analyze its generalization capability.
Unfortunately, direct optimization of the performance measure we are inter-
ested in is not always feasible. Therefore, it is often necessary to find related
proxies that are easier to compute or optimize to allow the algorithm to ef-
fectively learn the task at hand. In the case of classification, the performance
measure of choice usually is accuracy, with cross-entropy as a popular proxy.

2.1.3 Experience

The experience E is defined as the data that a machine learning algorithm
can process to learn how to solve the task. Machine Learning algorithms are
generally categorized under three main learning paradigms based on what
kind of experience they have access to during the learning process. We define
a dataset as the entire collection of experience, and the examples that form the
dataset as datapoints.

* Supervised Learning algorithms observe a dataset where each sample x is
paired with a label or target y provided from a knowledgeable external
supervisor. The learning task is often formalized as estimating p(ylx) by
learning a mapping function from x to y.

* Unsupervised Learning algorithms have access to a dataset that provides
only examples x and learn to extract hidden patterns in the unlabeled
data by clustering together similar examples. Usually, we are interested
in learning the generative model of the dataset p(x).

* Reinforcement Learning algorithms aim to learn the optimal policy of an
agent by interacting sequentially with an environment and observing a
reward signal. The agent’s goal is to maximize the total reward it receives
over the long run by performing actions in each state he visits.

In this thesis, we primarily focus solely on the supervised learning setting.

2.2 SUPERVISED LEARNING

So far, we only gave an intuitive explanation of a machine learning algorithm
and its components without providing any operative description. In this sec-
tion, we focus on supervised learning, and we formalize it in a principled way
using the Empirical Risk Minimization framework [141, 142].

We consider an input space X and an output (or target) space Y, where typ-
ically X C RY. The form of the output space yields different kinds of tasks:
regression Y C R, binary classification Y = {—1;+1}, multi-class classification
Y ={1,...,K} The pair of random variables (x,y) is distributed according to
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the unknown joint probability distribution p(x,y), defined over the data space
X xY.

The training dataset Dy, = {(x1,Y1),...,(Xn,Yn)} is made of n identically
and independently distributed (i.i.d.) input-target pairs, that we assume to
be representative of the data distribution p(x,y). Supervised Learning can be
formalized as the process of finding the input-output mapping f : X — Y
based on the training data D, to predict via f(x) the output corresponding
to any new input x € X. This is usually achieved by searching for a good
approximation of the true mapping over a class of candidate functions 3 called
hypothesis space. More precisely, we can formulate an optimization problem:

R* = f“reuﬂ]:(l R(F), (1)
where H can be any class of functions such as linear functions, radial basis func-
tions or deep neural networks, and R is a “risk” functional that depends on the
training data. For any fixed loss function £ : Y : Y — R, the risk is defined as the
expected loss over the data distribution:

R(F) = By [0y, Fx))] = j je(y,f(x))p(x,y)dxdy ()

The loss function is a point-wise measure of the error {(y, f(x)) made by pre-
dicting f(x) with target value y, while the risk is a measure of the average
performance of the machine learning algorithm on the task.

2.3 EMPIRICAL RISK MINIMIZATION

Given a fixed loss function {(-, -), the true risk minimization is generally non-
trivial because the underlying data distribution in unknown, making the expec-
tation in Equation (2) non-computable and the optimization problem in Equa-
tion (1) intractable.

Instead of minimizing R(f) directly, one may replace the true data distribu-
tion p(x,y) by its empirical distribution computed using the training dataset
Dy, and obtain the following minimization problem:

R, = min anyl, x1)) ()
which is called Empirical Risk Minimization (ERM) [141]. Because the data distri-
bution is unknown, instead of minimizing the risk directly, ERM uses a sample-
based estimate to optimize the true risk. In particular, it can be shown that,
under some conditions, ERM is statistically consistent, meaning that, more data
is collected, the empirical risk converges in probability to its true value, and
ERM corresponds to minimizing the true risk [130, 142].

The induction principle of empirical risk minimization is quite general and
encompasses many popular learning methods. For instance, restricting the
space of hypothesis to H = {f(x) = 0'x V0 € R4} and taking a square loss
function {(y, f(x)) = (y —f(x))?, corresponds to the well known least squares es-
timation. Maximum likelihood estimation (MLE) [12, 101] is a also a special case
of ERM where the loss function is the negative log-likelihood:

_] mn
OMLE = argmin— (ylx, 0), (4)
g1 n;p y 4
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2.4 MODEL COMPLEXITY: UNDERFITTING VS OVERFITTING

Although under certain conditions the empirical risk corresponds to the true
risk when the sample size n grows, in practice, the number of samples is
always finite. As a result, the actual predictor might not minimize the actual
risk, especially when the space of hypothesis H is large, and the number of
samples is limited. When we have a small empirical risk but still a relatively
large true risk, we say that the algorithm is overfitting the training data. A good
learning algorithm should provide a similar behavior to the target function
and perform well on new, previously unseen data, i.e., never experienced in
the training set D,,. In this case, we say that the algorithm generalizes well.
We typically estimate the generalization error of a predictor by measuring the
performance on a fest set of examples that were separately collected from the
training set, under the assumption of being identically distributed.

2.4.1 Approximation and Estimation Errors

By considering the ERM hypothesis of a predictor f,,, namely a function in 3¢
that minimizes the empirical risk, and the best predictor among H

f* =argmin R(f), (5)
feX

we can define the excess risk of f,, and decompose the error of an ERM predictor
in two components as follows:

R(fn) =R* = (R(F) =R*) + (R(fn) = R(f)) . (6)
|
approximation error estimation error

The approximation error measures the risk caused by the restriction to a spe-
cific class of hypothesis 3, also called inductive bias. The approximation error is
deterministic and does not depend on the sample size. It can be reduced by ex-
tending the hypothesis class to other functions. The estimation error represents
how much we are losing in terms of risk by using a finite sample approxima-
tion instead of using the true data distribution, and it gives a measure of the
quality of the training set.

Similarly to the bias-variance trade-off for standard statistical estimation prob-
lems [90], there is also a tension between the approximation error and esti-
mation error. The approximation error term acts as a bias square term while
the estimation error behaves like the variance term. Choosing a very rich class
of candidate functions J{ decreases the approximation error at the cost of the
estimation error, but it might lead to overfitting. On the other hand, restrict-
ing J{ reduces the estimation error but might increase the approximation error
because the predictor might not be expressive enough to represent the true
mapping leading to underfitting.

2.4.2  Regularization Techniques

Overfitting can be mitigated by following Occam’s razor principle [30] of “par-
simony of explanation”, which states that if two models explain data equally one
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should choose the simplest one, based on some notion of complexity. Model
regularization is usually achieved by adding a penalization term AR(0) to the
objective function that encourages the learning of simpler models over com-
plex ones, where A is a coefficient that regulates the level of regularization R(0)
function of the model’s parameters. In the context of ERM, adding regulariza-
tion terms that penalize model complexity is usually referred to as Structural
Risk Minimization. From a Bayesian perspective, adding a regularization term
can be interpreted as imposing a prior over the parameters of the model. For
example, a penalty in the form of AR(8) = 670 = ||0||, also called weight decay
or simply L2 regularization corresponds to assuming that the parameters are
normally distributed with zero mean [12].

2.5 STOCHASTIC GRADIENT DESCENT

Gradient descent is an iterative optimization algorithm that improves the prob-
lem’s solution by taking a step in the direction of the negative of the gradient
of the function to be minimized at the current point.

When the class of candidate functions and the loss function are differen-
tiable, the risk functional is also differentiable and the minimization can be
efficiently solved, albeit approximately, by applying numerical optimization
techniques such as Stochastic Gradient Descent (SGD) [120]. When the exact gra-
dient is not available, SGD circumvents this problem by allowing the optimiza-
tion procedure to take a step along a noisy direction, as long as the expected
value of the direction is the negative of the gradient. SGD provides a method
to optimize directly the risk functional since the gradient of the loss function
on a randomly sampled example is an unbiased estimate of the gradient of the
risk.

Ep (x ) [VEY, F(x))] = VI (x4 [E(y, f(x))] = VR(f) (7)

Given a dataset of examples, training a model via gradient descent simply
consists in repeatedly sampling data points and applying the following update
rule at each i-th iteration to modify the parameters of the model 0 in the
direction that minimizes the loss:

o) = o) —nvee) (8)

where 0(°) is randomly initialized, 1 is the learning step, ¢ : R™ — R and the
vector of partial derivatives is V{(0) = (aae (9?), eee, aaee('?l) )

Combined with automatic differentiation and recent advances in stochastic
optimization [32, 53, 67, 105, 154] this provides a turnkey approach to fitting
modern differentiable machine learning models such as deep neural networks

(see Section 2.6.5 for more details).

2.6 NEURAL NETWORKS

A Neural Network (NN) is a popular machine learning model that can capture
input-output relationships and complex patterns in the data. Thanks to their
expressivity, NNs can be employed in many machine learning problems in su-
pervised, unsupervised, or reinforcement learning [12, 134] settings.
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The ancestors of early NNs (e. g., Perceptrons [121], Neucognitron [42]) were
loosely inspired by models of information processing in human and mammals
brains but soon drifted from their initial biological inspiration. Since their in-
troduction, these models have received moderate interest from the scientific
community and are considered the cornerstones of modern neural networks.
Nevertheless, research on neural networks stagnated for many decades before
the recent deep learning revolution. One of the reasons for the initial loss of
interest in neural networks was the lack of an efficient algorithm for training
complex models. Before the discovery of the backprogation algorithm, NNs were
considered intractable models. For a detailed survey on the history of neural
networks, from the first connectionist models to the recent developments, we
refer to Schmidhuber [128]. In the rest of the chapter, we introduce the basic
concepts of modern deep learning architectures preparatory for understanding
the thesis.

2.6.1 Terminology

A Neural Network can be described as a system of basic processing units, the
neurons, that are connected by weighted directed edges. The information flows
through the computational graph, with each neuron processing its input to
produce an output, also called activation. Connections between neurons, known
as weights, are gradually adjusted during the learning process and determine
the contribution to the output of the signals generated by the source neuron.
The set of units in the graph are typically organized into sequences of layers;
the number of units in a layer is referred to as its width and the total number of
processing layers indicates the depth of the neural network. The set of neurons
that processes the source information is usually referred to as input layer, while
the ones that produce the prediction are called output layer. All the other layers
are generally called hidden layers.

A Neural Network with acyclic computational graph is named Feedforward
Neural Network (FNN) because the information flows only in one direction.
Other types of neural networks such as recurrent neural networks are not con-
sidered in this work.

The flexibility of neural networks makes them a perfect family of candidate
functions for risk minimization. Feedforward Neural Networks are known to
be universal function approximators, i.e., a feedforward neural network with a
single hidden layer can approximate any measurable function to any desired
degree of accuracy on a compact set [23, 56, 57]. Although FNNs with few
hidden layers can potentially represent any function, distributing the com-
putation across multiple layers can be exponentially more efficient for some
class of functions [27, 96]. Based on this observation, modern neural architec-
tures build hierarchical data abstractions growing models in depth, improving
model efficiency at the expense of trainability.

2.6.2  Types of Layers and Networks

We now present an overview of the types of layers and neural networks that
are used in this thesis. To keep the notation tidy, the computational graph of
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Figure 1: A Multilayer Perceptron.

each layer is described in terms of matrix multiplications rather than single-
unit interactions.

2.6.2.1  Multilayer Perceptron

A Multilayer Perceptron (MLP), is the simplest kind of neural network and it
consists of a series of dense layers where each neuron is connected to all of its
input, called fully connected layers. An MLP can be represented by a function
g : R¢ — R™ that maps from the input to the output space via a composition
of L layers. Each fully connected layer, { € {1,...L}, involves first an affine
transformation of the input, parametrized by a matrix of weights Wy and a
bias vector by, followed by a non-linear activation function f(-), that warps the
hidden space. The input x; of an hidden layer is the output of its predecessor
Y, and each layer is applied in chain until the final output § =y is produced:

X¢ = Y1 (9a)
zg = Wexe + by (9b)
Yo = f(z¢) (90)

The activation functions employed in MLPs are generally point-wise nonlin-
earities such as hyperbolic tangent f(x) = tanh(x) or logistic sigmoid f(x) =
m, but in the recent years, non-saturating functions such as Rectified
Linear Units (ReLU) [44, 63, 104] f(x) = max(0,x) or other variants [52] have
been preferred thanks to their better trainability properties.

2.6.2.2  Convolutional and Pooling Layers

Similarly to Multilayer Perceptrons, a Convolutional Neural Network (CNN) [78,
80] is a kind of feedforward neural network where layers form a linear com-
putational graph. Convolutional Neural Networks are particularly well suited
for signals with spatial regularities thanks to special layers designed to exploit
spatial patterns in data with a grid-like topology such as images. The main
difference with fully connected layers consists of how the units are connected
and how the input is processed to preserve its spatial structure. Rather than
applying a large matrix of weights to the whole input, convolutional layers
take advantage of the convolutional operator to process only a portion of the

11
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Figure 2: A series of pooling and convolutional layers followed by a fully connected
layer.

input at the time and apply the same linear transformation in a sliding win-
dow fashion. This way of processing spatial data results to be beneficial for
multiple reasons. Firstly, each neuron is connected only to a portion of the
input, the receptive field, drastically reducing the number of parameters and
implementing a form of weight sharing. Secondly, the convolution operator is
equivariant to any function g(-) that translates the input. In other words, apply-
ing a transformation f(-) to a shifted version of an input x, produces the same
result as applying the transformation to x and then shifting the transformed
input, namely f(g(x)) = g(f(x)). This property is particularly useful in image
recognition tasks where the same local feature should be detected regardless
of its position in the image.

The weights of a convolutional layer are usually called filters or kernels, an
inheritance from the signal processing community. In general, each convolu-
tional layer learns a group of filters and the output after the activation function
is a volume called feature map.

CNNs often reduce the spatial dimensionality of their inputs by applying
the convolution operator every s pixels rather than at each location of the
image, i.e.,, with stride s > 1, or by utilizing pooling or sub-sampling layers.
Commonly, pooling layers aggregate the receptive field by taking their mean
or max value. Convolutional layers can also perform the opposite operation
and increase the input size via an upsampling operation [87, 131, 155]. Further
details on convolutional and pooling layers can be found in the detailed guide
to convolution arithmetic for deep learning [33].

2.6.3 Representation Learning

The success of modern supervised learning models relies on learning power-
ful feature extractors that build hierarchical representations also known as em-
beddings. Rather than manually designing features that might be sub-optimal,
Representation Learning [9] delegates the feature extraction phase to several
units learned explicitly for the task at hand. Neural Networks implement this
mechanism efficiently via a composition of differentiable functions. If prop-
erly trained, a deep neural network can produce an internal representation of
the data with several levels of abstraction [123], far more general than hand-
designed features [31, 34, 91, 131, 151, 155].
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2.6.4 Backpropagation Algorithm

The backpropagation algorithm, or simply backpropagation is an efficient method
for computing the derivative of the output of neural networks with respect
to its parameters. In particular, backpropagation solves the credit assignment
problem in neural networks by propagating the prediction error from the top
of the network through all its modules and evaluating their contributions to
the final output.

The merit of proposing the backpropagation algorithm is often assigned
to Rumelhart, Hinton, and Williams [123], who showed that neural networks
could be successfully trained to learn useful representations; however, the first
application of backpropagation to neural networks dates back to Werbos [146,
147].

Backpropagation first requires to process an input x and compute the final
output . This phase is generally called forward propagation or forward pass be-
cause the information flows forward from the input layer through the network.
During training, the forward pass evaluates also a scalar performance met-
ric, called loss or cost function £(0), which has to be differentiable. Afterward,
backpropagation computes the derivatives of the loss function with respect to
the network’s parameters, a step that takes the name of backward pass since
the layers of the network are visited in reverse order. In the second stage, the
derivatives are then used to compute the weights adjustments, usually via gra-
dient descent. It is important to highlight that these two stages are distinct.

We now follow the derivation as presented in Bishop [11] and consider the
backward pass of an MLP with £ = {1,...,L} layers described by the forward
pass equations in 9. The gradient of the loss function £ with respect to the
parameters of the layer { are:

0L _ 3L dyr (102)
aWe ay[_ an

0L AL dyr

= =3 b
abe ay[_ abg (10 )

We first introduce a useful notation 8, for the layer ¢, to indicate the local error
of the layer with respect to the output, or simply the delta:

_ L

&) =
¢ aZg

(11)

The derivatives of the output with respect to the parameters of layer { can be
expressed as:

ay]_ _ ay]_ aZg

oW, _ 0z OW, (123)
dyr  Oyr 0z

_ L Uet b
abg aZg ab( (12 )

From the forward pass in Equation (9c), the derivative of the pre-activation
variable z; with respect to its parameters is given by the input of the layer x,,
namely the activation of the previous layer:

aZg T
aWe - XE (133)

aZg .
67be =1 (13b)
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By replacing Equation (11) in Equation (12) we can write:

Ik T

W, Soxg (14a)
oy

aibe =8 (14b)

The key feature of backpropagation is that the activations computed in the
forward pass can be stored to make the computation of the backward pass
much more efficient. Thus, evaluating the derivatives only requires to calculate
the value of &, for the output and hidden layers and then apply Equation (14):

5y =f(z1) (15a)
8¢ =W{, 18041 (20) (15b)

The backpropagation formulae inform us that the contribution of the units
of each layer can be computed by propagating 6 backward from units higher
up in the network. Interestingly, backpropagation is a special case for scalar-
valued functions of the reverse accumulation mode [48] for automatic differentia-
tion.

2.6.5 Gradient-based optimization

Training models with a large number of parameters such as neural networks
requires solving a complex optimization problem. In general training NNs is
NP-hard, and there is no efficient algorithm for finding a solution to the opti-
mization problem for general topologies and tasks [13, 51, 64].

In practice, the training complexity of NNs is overcome by exploiting their
differentiability and the efficiency of the backpropagation algorithm in comput-
ing derivatives of complex compositions of functions. Indeed, under the correct
hyper-parameters choice, simple gradient methods can find optimal parameter
configurations that are global minimizers for a given training set [15].

Unfortunately, gradient-based learning is not free of issues, especially when
it involves optimizing millions of parameters, such as in NNs. Although NNs
are universal function approximators, and in principle, even the simplest MLP
is capable of learning any function [56, 57], the optimization algorithm could
fail in minimizing the objective in terms of performance or available time bud-
get, resulting in underfitting the training data. Specifically, the loss landscape
of NNs is in general non-convex with multiple saddle-points, local minima,
and plateau, causing gradient-based optimization to be highly unstable or to
stagnate in poor solutions [21, 26, 54, 83]. These difficulties have motivated
specific techniques and model architectures to improve the training efficiency
of gradient-based algorithms.

2.6.5.1 Momentum

Stochastic Gradient Descent follows the negative direction of the expected gra-
dient to minimize a certain functional in the weights space. When the learn-
ing rate decreases with the appropriate rate, this technique converges almost
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surely to the global minimum if the objective function is convex [14, 120]. On
the contrary, neural networks generally provide non-convex optimization prob-
lems, limiting our ability to characterize their loss surface and to develop con-
vergence results for the optimization algorithms. Indeed, the composition of
several nonlinear functions results in loss landscapes presenting high dimen-
sional valleys, plateau, or ravines [135] that requires different step sizes along
different dimensions in order to be escaped. In this situation, following the ac-
tual steepest descent might not be the best strategy. For instance, the gradient
direction in a valley is almost perpendicular to the flat axis and the updates
oscillate back and forth in the direction of the short axis, moving very slowly
along the long axis.

A widely used technique to accelerate the convergence of gradient descent
is the use of a momentum term [106, 114] such that the weight update at the
current time step depends on both the current gradient and the weight update
at the previous step. The momentum term helps to average out the oscillations
on the short axis while adding up contributions along the long axis, leading to
faster convergence. The update rule of gradient descent with the momentum
term at iteration i-th:

v — gy 4 ve(e™)

. . . (16)
e(1+1) _ e(l) _nv(1+1)

where V is the momentum buffer,  is the learning step and 3 the amount
of momentum applied. Note that with 3 = 0 the original gradient descent
formulation is recovered.

2.6.5.2  Second-Order Methods

Alternatively, second-order approximations like Newton’s method incorporate
information about the curvature of the loss function into the optimization al-
gorithm by rescaling the gradient with the inverse of the Hessian [107]:

o+ =g —H-Tvc(e) (17)

However, to succeed, Newton’s method requires the Hessian to be positive
definite, namely invertible. When the loss surface is non-convex in high di-
mensions such as in NN, it contains many saddle points, and the application
of Newton’s method could be problematic [26]. Near saddle points, the eigen-
values of the Hessian are not all positive, and then Newton’s method can cause
updates to move in the wrong direction. This situation can be avoided by reg-
ularizing the Hessian, simply summing a diagonal term. The convergence rate
of gradient descent methods is heavily influenced by the condition number, the
ratio between the largest and smallest eigenvalues of the Hessian, k = %
which should be close to one. If the condition number is high, the optimiza-
tion problem is ill-conditioned and the convergence rate is slow. One important
issue with second-order methods is that the size of the Hessian grows with
©®(n3), quadratically with the number of parameters ng, quickly becoming
problematic for NNs both in terms of space and the inverse time complexity.
To solve this problem, one could rely on diagonal approximations, making the
space complexity linear and the inverse computation trivial, trading off useful
information on how different directions interact with each other. See [79] for

15



16

MACHINE LEARNING AND DEEP LEARNING

an earlier review on the application of second-order methods to the training
of NNs, while a comprehensive treatment of numerical optimization methods
can be found in Nocedal and Wright [107] and Boyd, Boyd, and Vandenberghe
[15].

2.6.5.3 Advanced First-Order Methods

Because of the difficulties of second-order methods, various successful first-
order alternatives have been proposed and popular optimizers such as Ada-
Grad [32], RMSProp [53], Adadelta [154] or Adam [67] are often the preferred
choices for training NNs. By making use of momentum terms and automatically
adapting the learning rates per dimension [127], these methods are surpris-
ingly effective when used in conjunction with tricks that ease the optimization
process. Most of these heuristics apply normalization techniques to center and
decorrelate the input of each layer [29, 62, 126], inspired by standard data pre-
processing methods. Most of these methods can be seen as different precon-
ditioning of the gradient that adapts the geometry of the data to improve the
rate of convergence of gradient descent.



META-LEARNING

We provide an overview of of Meta-Learning, including a mathematical for-
malization of the problem, descriptions of the most important works in the lit-
erature, and analysis of the related fields. We then discuss current limitations
and open problems that are yet to be effectively addressed in Meta-Learning.

3.1 LEARNING TO LEARN

Meta-Learning, also known as “learning-to-learn”, is a sub-field of Machine Learn-
ing that exploits previous experience in learning to optimize learning algo-
rithms to work well on novel tasks [41]. In the meta-learning paradigm, a
machine learning model gains experience over many learning episodes, which
can lead to benefits such as data and compute efficiency. Meta-Learning is bet-
ter aligned with the way humans and animals learn in the real world, where
learning strategies improve both on a lifetime and evolutionary timescales.
Currently, the discipline is especially active in the Supervised Learning setting
and it is often associated with the field of Few-Shot Learning (FSL), where mod-
els are challenged to quickly learn new concepts while very few data points
from the task at hand are available. The problem is extremely difficult, as mod-
els operating in low data regimes are especially prone to over-fitting [84].

The field of Meta-Learning has been rising in the last few years, achieving
super-human performances in simple FSL classification tasks [76]. The reasons
for this are twofold. On one hand, deep learning techniques have been widely
employed in Meta-Learning to achieve impressive results. On the other, crit-
ical weaknesses of Deep Learning such as the data-hungriness of deep NNs,
the need for excessive computer resources, and the poor transferability of the
knowledge obtained has motivated the development of meta-learning tech-
niques to overcome its limitations. Deep Learning and Meta-Learning thus
form a symbiotic relationship that encourages progress in the two fields *.

Although we are going to focus on supervised meta-learning approaches,
it is important to note that Meta-Reinforcement Learning to improve sample ef-
ficiency is gaining a lot of interest [50, 93]. Instead, research in Unsupervised
Meta-Learning is still in its early stages [59, 94].

By focusing on the topic of Meta-Learning, we aspire to broaden the avail-
ability of deep learning techniques. A model that is capable to learn new, com-
plex tasks and generalize knowledge with few training samples would prove
beneficial to experts confronting niche machine learning tasks with little train-
ing data available online, which is, for instance, the case when working with
clinical data. For example, in dermatology, there are many instances of rare
diseases, or diseases that become rare for particular types of skin [1, 71, 122].

This is also reflected in the various meta-learning libraries that have been developed on top of
deep learning oriented frameworks, such as Higher [47] and Torchmeta [28].
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3.2 BACKGROUND

The literature provides many perspectives on Meta-Learning that are not nec-
essarily consistent with one another. Thrun and Pratt [136] define learning-to-
learn as occurring when a learner improves its ability to solve tasks drawn
from a distribution of tasks improves as the number of tasks observed in-
creases. However, this definition does not necessarily exclude paradigms that
are generally not considered Meta-Learning today, such as transfer learning,
which improves a learner from one domain by transferring information from
a related domain [145], and multi-task learning, which leverages useful infor-
mation contained in a finite set of tasks to help improve the generalization
performance of all the tasks [156]. A possible way to refine our definition is by
focusing on algorithms that achieve the above through end-to-end learning of
an explicitly defined objective function (such as cross-entropy loss) [58].

In this section, we provide a formalization of the various concepts that are
relevant in the Meta-Learning literature today.

3.2.1 Machine Learning

In conventional Supervised Machine Learning, we have access to a training
dataset D = {(x1,Y1),..., (XN, Un)}, where (xn,Yn) is a tuple containing input
and desired output, e. g., input image and class label. We can train a predictive
model { = fg(x) with parameters 6 by solving the minimization problem

0* :argmeinL(D;e;w) (18)

where £ is a loss function that measures the error between desired outputs and
those predicted by our model fg(:). The conditioning on w denotes the depen-
dence of this solution on assumptions about “how to learn”, such as character-
istics of the optimizer for 0. Generalization is then measured by evaluating the
performance of the trained model on several test points whose desired output
is known.

The conventional assumption is that w is pre-specified, meaning that the
optimization problem is performed from scratch. However, inferring w from the
data has been proven to dramatically improve performance, especially when
there is little data available from the task at hand. Meta-Learning, therefore,
does not assume a fixed w and rather learns w in an end-to-end fashion. This
is done by abandoning the conventional learning from scratch and instead
focusing on learning from a distribution of tasks, where w can be inferred
from general knowledge that is valid across the whole task family.

3.2.2  Meta-Learning: Task Distribution View

Meta-Learning is based on the concept of episodic training, where a learning al-
gorithm improves its performance on episodes from a given distribution of tasks
(or task family) p(T) as the number of observed episodes increases. An episode
is formally defined as a set of data instances sampled from the distribution
associated with a specific task. During base learning (or adaptation), an inner (or
lower / base) learning algorithm adapts itself to solve a task such as image clas-



3.2 BACKGROUND

sification, which is defined by a dataset and an objective. During meta-learning,
an outer (or upper / meta) algorithm updates the inner learning algorithm such
that the learned model improves an outer objective. Common outer objectives
are the ability of the learned model to generalize to unseen data from the same
task or the speed of the inner learning algorithm. Neural-network Meta-Learn-
ing is therefore mainly characterized by the presence of an explicit meta-level
objective and an end-to-end optimization of the inner algorithm with respect to
this objective.

While in a limiting case all training episodes can be sampled from a single
task, we will focus on the standard case where learning episodes are sampled
from a task family, leading to an inner algorithm that performs well on new
tasks sampled from this family. Moreover, despite formally referring to two
separate concepts, it is common in the literature to refer to episodes as tasks,
thus omitting the nature of tasks as distributions over data instances. In the
rest of this thesis we will also apply this convention.

In principle, a task is defined as a triple 7 = (D%, D9, L), where D%, D9 are
datasets and £ is the loss function of the task. Without loss of generality, we as-
sume that the loss function £ is shared across all tasks in the distribution. The
two datasets contain data instances independently sampled from a common,
task-specific distribution. We use the support set D* jointly with w to generate
the parameters of our task-specific model

0 :argmeinL(le,Ds) (19)

which is then evaluated on the query set D9. Finally, we can define the meta-
learning problem as a minimization problem over w:

IIEDIE(@s/@Q:‘J‘Np(‘I) L('Dq|e(w/Ds)) (20)

where £(D9]0) measures the performance over the task-specific query set D9
with respect to the loss function £ of the model fg obtained by applying our
across-task knowledge w on the task-specific support set D*.

To solve this problem in practice, we often assume to have access to a finite
training set of S tasks

-@train = {<®’§Tain/ Qgrain>(i)}13:] (21)

independently sampled from a training distribution of tasks pirqin (7). The
meta-training step of “learning to learn” can then be written as

w* = argmaxlog p(w|Zirqin)- (22)
w

To evaluate the obtained meta-model we also define a finite test set of Q
unseen tasks

gtest = {<®’§est' ®§e3t>(i)}?:1 (23)

independently sampled from a test distribution of tasks ptest(7), which can
be identical or simply related to pirain (7). In the meta-testing step we use the

learned meta-knowledge w* to train the base model on each task ‘J’,Egst in
Drest:

ot :argmeaxlogp(elw*,Dfestm). (24)
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In contrast to standard supervised learning, our training procedure is now
guided by a meta-knowledge w* that takes into account the task family we
have trained on. The meta-knowledge could be in the form of an initializa-
tion of the model’s parameters, or an entire optimization strategy. Similar to
many other machine learning algorithms, meta-learning procedures are prone
to meta-overfitting, an issue whereby the meta-knowledge learned on the train-
ing tasks does not generalize well to the test tasks.

3.2.3 Meta-Learning: Bilevel Optimization View

The previous discussion outlines Meta-Learning as the problem of learning a
training procedure to generalize across tasks from a task family but does not
directly specify how to solve the optimization problem in Equation (22). This is
usually accomplished by defining the meta-training step as a bilevel optimiza-
tion problem. While arguably only accurate in the case of optimization-based
methods (Section 3.3.3), this formalization is helpful to visualize the general
functioning of any meta-learning algorithm. Bilevel optimization refers to a
hierarchical optimization problem, where one optimization problem contains
another as a constraint. We can therefore formalize the meta-training as:

S
w* =argmin » L™ 0"V (w), w, Digin ) (25)
w
i=1
such that
o (W (w) = arg min £'*°¥ (9, W, D in ) (26)

where £™meta and £task refer to the outer and inner objectives, e.g. cross en-
tropy in the case of FSL classification. Here w could indicate the initial param-
eters of the base learner, the hyper-parameters of the optimizer, or even the
structure of the base model itself. The goal of the outer objective £™¢'® is not
necessarily limited to improve the evaluation performance and can be defined
to encourage the base model to improve its learning speed or robustness.

3.2.4 Meta-Learning: Feed-Forward Model View

Many meta-learning approaches directly synthesize the base model from the
support set in a feed-forward manner rather than leveraging an inner optimiza-
tion phase, a technique also known as amortization. While varying in degree of
complexity, amortization can be easily understood through the following toy
example for meta-training linear regression:

min E(ps pay—g-p(7) Z [(x"gw (D) —y)?. (27)
(xy)eDa

In this case, w represents the parameters of a network that embeds the support
set D* into a vector of linear regression weights to predict examples x from the
validation set. Optimizing Equation (27) via SGD “learns to learn” by training
the function g, to map a support set to a weight vector that essentially acts as
the parameters of the base model.
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3.3 TAXONOMY

Meta-learning approaches throughout the literature vary significantly in both
working principles and scope. In this section, as seen in the work of Hospedales
et al. [58], we categorize them into three distinct branches to form the following
taxonomy:

® Metric-Based approaches;
* Model-Based approaches;

* Optimization-Based approaches.

3.3.1 Metric-Based

Metric-based or non-parametric approaches are restricted to the popular but
specific FSL applications of Meta-Learning. Models in this category leverage the
similarity of new data instances with the ones in D* to predict their outputs.
Outer-level learning corresponds to Metric Learning, i.e., learning a suitable
kernel function k,, usually via SGD.

3.3.1.1 Prototypical Networks

Prototypical Networks [132] learn a metric space that enables classification by
computing the distance of a datapoint to prototype representations of each
class. The distance is computed in an embedding space and each prototype
representation is computed as the average of the embedded datapoints from
the corresponding class. The simplicity of this architecture proves to be benefi-
cial in the context of FSL classification tasks, where overfitting is an important
and critical problem.

3.3.1.2 Relation Networks

Relation Networks [133] are trained end-to-end to learn a deep distance metric
for images. Their structure can be divided into two subsequent modules; firstly,
an embedding module generates compressed image representations, secondly,
a relation module determines whether two images belong to the same category
based on their representations. The obtained distance metric can finally be
used in FSL classification tasks without updating the network to predict the
label of a new data instance by leveraging its distance with respect to the other
labeled data instances.

3.3.2 Model-Based

In model-based (or black-box) methods the inner learning step is performed via
the forward pass of a FNN. The model embeds the support set D° into an
activation state w, based on which predictions are made for new data from
D9. While the simpler optimization does not require second-order gradients,
it has been observed that model-based approaches are less able to generalize
to out-of-distribution tasks than optimization-based methods [37]. Moreover,
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as w and D¢ directly specify w, outer and inner-level optimizations are tightly
coupled, which generally leads to poorer interpretability of the results.

3.3.2.1 LSTM-Based Meta-Learning

Ravi and Larochelle [118] leverage Long short-term memory cells (LSTM) Hochre-
iter and Schmidhuber [55] to learn a meta-learner model that is then used to
optimize another learner neural network in a FSL classification setting. The
meta-learner uses its state to represent across-task knowledge w in the form
of the initialization for the learner’s parameters as well as the update rule to
be applied a set amount of times during training, addressing the slow speed
of convergence that traditional SGD techniques face in case of low availability
of samples.

3.3.2.2 Fast Weights

Fast Weights architectures [100] divide weights of a FNN in two typologies. Slow
weights are learned following a learning procedure on the whole task distri-
bution and represent task-agnostic knowledge w. In contrast, fast weights are
amortized for the specific task at hand and therefore represent task-specific
knowledge 0.

3.3.3 Optimization-Based

Optimization-based approaches adapt the inner-level task by literally solving an
optimization problem, and focus on extracting meta-knowledge w required to
improve optimization performance. Many gradient-based methods of this type
are subject to computing and memory challenges, especially when the inner
optimization consists of multiple steps.

3.3.3.1 Model-Agnostic Meta-Learning

Model-Agnostic Meta-Learning (MAML) [36] is a simple meta-learning proce-
dure that is general and model-agnostic, i.e., it can be applied to any prob-
lem and model that is trained with a gradient descent procedure. MAML is
therefore extremely versatile and can be applied to a variety of different tasks,
including classification, regression, and reinforcement learning.

The objective of MAML is to find the set of initial parameters 6 for the model
fo minimizing the estimate of the loss over a distribution of tasks after one (or
more) gradient steps:

min 3 Lylfo) = Y Lnlfo-avess () (28)
Ti~p(7) Ti~p(T)

Many earlier meta-learning approaches learn an update function or learning
rule, causing the number of learned parameters to grow. Instead, MAML learns
the initial parameters via simple SGD, leading to a simpler model that is less
prone to meta overfitting.

MAML is organized in two loops, as shown in Algorithm 1. The inner loop
computes the loss obtained with the initialization parameters over a batch of
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Algorithm 1 Model-Agnostic Meta-Learning

Require: Training meta-set Z;,qin
Require: Learning rates o, 1
1: randomly initialize 6
2: while not done do
3:  for number of tasks in batch do
Sample task T; € Zirqin
Let (D%, D9) =T;
Initialize 6 = 6
for number of adaptation steps do
Compute support loss L5 (fo/)
Perform gradient step w.r.t. 8{:
6{ + 8] —aVe: L5 (for)
10: end for
11 Compute query loss £ (fo/)
122 end for
13:  Perform gradient step w.r.t 0:
0+ 0-mVe) g quh (feg)
14: end while

L PN >k

tasks. The outer loop then updates the initialization parameters using the meta-
gradient to minimize the average loss, until a certain condition is met. The
success of MAML has contributed to the recent rise of the inner-outer loop
paradigm in the meta-learning literature, which has been later reused in works
such as ANIL [115] and LEO [124].

Nonetheless, MAML and its extensions also suffer from a variety of prob-
lems causing training instability, restricted generalization, reduced flexibility,
increased computational overhead, and costly hyperparameter tuning. To ad-
dress some of these problems, Antoniou, Edwards, and Storkey [6] propose
adjustments to the original algorithm, such as the definition of a loss that is
spread across multiple gradient steps, heuristics reducing the computational
cost of second-order derivative, and more suitable handling of batch normal-
ization layers inside the model.

3.3.3.2 Latent Embedding Optimization

Latent Embedding Optimization (LEO) [124] learns a latent code of the model pa-
rameters z in a low-dimensional latent space, avoiding the problem of the high
dimensionality of model parameters when optimizing via gradient descent.
The latent code is stochastic, which allows to better express the uncertainties
that inevitably arise when operating in low data regimes. Furthermore, unlike
many other optimization-based approaches, the support set D* is used to amor-
tize the initial latent code, making the initial state of the model task-dependent
and boosting adaptation speed. The amortization is performed by including in
the model architecture an encoder-decoder structure that meta-learns the pa-
rameter encoding and decoding. The encoder g¢,,. takes as input the support
set D* of the task to provide a task-dependent initial latent representation. The
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decoder g4, then processes the representation z to generate the task-specific
parameters 0 for the base model fg.

‘ optimized in inner loop

optimized in outer loop

— Inference

Inner loop
optimization

i

N
uonejey

Figure 3: Overview of the architecture of LEO [124]

In the case of classification tasks, the decoder is usually followed by a rela-
tion network g¢,,, exploiting the inter and out-of-class relations between im-
ages to generate a latent representation for each class that takes into account
similarity and differences with the other classes. Each latent class n represen-
tation is then decoded to a vector of parameters 6,,, which is typically the
corresponding class column of the linear classifier fg. Moreover, when the di-
mensionality of the inputs is too large (e. g., images), we leverage a pre-trained
embedding to avoid Meta-Learning to be performed with respect to a high-
dimensional input space.

LEO’s optimization algorithm is shown in Algorithm 2. It is similar to MAML,
featuring the same outer-inner loop structure. The encoding and decoding pro-
cedures are differentiable and can be learned through traditional SGD tech-
niques in the outer loop. Furthermore, decoder differentiability allows for gra-
dient descent in the latent embedded space by backpropagation.

Algorithm 2 Latent Embedding Optimization
Require: Training meta-set Zirqin
Require: Learning rates o, 1

1: Randomly initialize denc, Prn, Pdec

2: Let ¢ ={Penc, Prn, Pdec, o}
3: while not converged do

4. for number of tasks in batch do
5: Sample task T € Zirqin
6: Let (DS, D9) =T;
7: Encode D* to z using g, .. and gg, .
8: Decode z to initial params 0; using g, ..
9: Initialize z’ = z, 6] = 6;
10: for number of adaptation steps do
11: Compute support loss £5, (fe{)
12: Perform gradient step w.r.t. z”:
z' —z' — O(VZIL%i (fe{)
13: Decode z’ to obtain 0] using g¢,..
14: end for
15: Compute query loss £ (fg)
16:  end for
17:  Perform gradient step w.r.t ¢:

b Ve Y, £ (for)
18: end while

Because the training procedure is based on MAML, LEO shares with the for-
mer many issues, such as heavy computational cost. The problem is however
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partially addressed thanks to the low dimensionality of the latent parameter
code. Moreover, empirical evidence suggests that small gradient steps in the
compressed parameter representation correspond to significant changes in the
model parameters, which is also implied by the relatively high curvature that
the representation space exhibits with respect to the model parameter space.
LEO can therefore reach a much broader region of parameters within few steps,
which might lead to a further advantage over traditional optimization-based
techniques in terms of flexibility and compute efficiency.

3.3.3.3 Almost No Inner Loop

Raghu et al. [115] claim that the effectiveness of MAML is due to feature
reuse, with the meta-initialization already containing high-quality features.
They propose Almost No Inner Loop (ANIL), a simplification of MAML that
removes adaptation for all but the task-specific head of the network. ANIL of-
ten matches MAML in performance and requires substantially less computing
power both during meta-learning and task adaptation.

3.3.3.4 Multimodal MAML

Multimodal Model-Agnostic Meta-Learning (MMAML) [144] extends MAML with
the capability of identifying the type of a task from a multimodal task distribu-
tion, thus providing the optimal parameters with respect to the identified type.
This approach is especially useful in the case of a complex task distribution
featuring very different possible tasks, where the original MAML struggles
with providing a parameter initialization that is adequate for all of them. How-
ever, the approach does not contemplate the possibility for tasks from different
modes to share some relevant knowledge, which may act as a beneficial regu-
larization.

3.3.3.5 Hierarchically Structured Meta-Learning

Hierarchically Structured Meta-Learning (HSML) [149] organizes tasks in a hier-
archical clustering structure to improve knowledge customization among dif-
ferent clusters and knowledge sharing among tasks from the same cluster. The
hierarchy effectively addresses the limiting assumption of transferable knowl-
edge being globally shared that is made by many other works in the literature.
The hierarchic structure of tasks is initialized at the beginning of the Meta-
Learning process and is thus dynamically expanded when a task does not fit
in any of the available clusters. The model learns for each cluster a representa-
tion of the knowledge shared across all tasks in the cluster, which can be the
parameter initialization in the case of models trained with gradient descent.
The approach is extremely general and can be applied to any model trained
with gradient descent and more. As a downside, considering a single hierarchy
over the distribution of tasks could be limiting, as there could exist multiple
distinct hierarchies that enable effective sharing of knowledge.
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3.3.3.6 Baseline++

A popular baseline method in FSL classification consists of a linear classifier
built on top of a feature extractor. Chen et al. [19] propose baseline++, a new,
simple baseline method where the classifier instead features a layer comput-
ing the cosine-distance between the feature vector and weight vector for each
class. Baseline++ achieves surprisingly good performances, comparable with
the state of the art. They also empirically show that current FSL classification
algorithms cannot generalize well to never seen before data domains, as base-
line++ compares favorably against any other method available in the literature
in this case.

3.3.3.7 Warped Gradients

Warped Gradient Descent (WarpGrad) [38] learns a preconditioning matrix that
facilitates SGD across the task distribution. This is done by interleaving warp
layers between each learner’s layer that precondition the layer’s activation in
the forward pass and gradients in the backward pass.

Unlike prior similar works, WarpGrad can be applied to FNN and the warp
projections are computed by a generic NN instead of a simple linear layer. Like
many other gradient-based meta-learning techniques, WarpGrad features a
computational cost that is linear with respect to the number of adaptation
steps, which rules out experimenting with a large number of adaptation steps
in complex networks.

3.4 RELATED FIELDS

The field of Meta-Learning is not to be confused with other areas that share
similarities, such as dealing with multiple learning tasks and assuming a prob-
ability distribution over the space of tasks. Here we illustrate some of the most
important fields whose relation with Meta-Learning is often a source of confu-
sion and outline their main differences.

3.4.1 Transfer Learning

Transfer Learning [108] uses experience from a source task to improve the perfor-
mance on a target task. The term is used to refer both to the problem area and
the family of solutions, which are usually in the form of parameter transfer
and fine tuning [150].

In contrast, Meta-Learning is a more general paradigm and can be used to
tackle both problems that are and are not Transfer Learning. Moreover, while in
Transfer Learning the prior is extracted via standard learning, Meta-Learning
relies on a meta-objective that evaluates the benefit of the prior when learning
a new task. Finally, Meta-Learning deals with a much wider range of meta-
representations than solely model parameters.



3.4 RELATED FIELDS

3.4.2 Domain Adaptation and Domain Generalization

Domain shift refers to the situation where the source and target task share the
same objectives, but the target input distribution of the target task is shifted
with respect to source one, affecting model performance [22, 108]. Domain Adap-
tation attempts to learn representations that alleviate this issue by adapting the
source-trained model using unsupervised data from the target domain. Domain
Generalization refers to methods that learn to be robust to domain shift without
such an adaptation. Multiple approaches have been studied and proposed to
address domain shift and boost target domain performance [22, 108].

However, Domain Adaptation and Generalization do not necessarily rely on
optimizing a meta-objective to achieve their goal. On the other hand, Meta-
Learning can and has been used to perform both Domain Adaptation and
Generalization.

3.4.3 Continual Learning

In Continual Learning, models learn from a sequence of tasks from a potentially
non-stationary distribution and in particular attempt to do so by rapidly ex-
trapolating knowledge from new tasks without forgetting old tasks [20, 109,
119]. Therefore, similarly to Meta-Learning, a distribution over the tasks is con-
sidered, and the goal is to accelerate learning of a target task.

However, most continual-learning approaches do not rely on explicit op-
timization of a meta-objective as seen in Meta-Learning. Nonetheless, Meta-
Learning can be effective in tackling continual learning problems, with a few
recent studies considering a meta-objective that incorporates continual-learn-
ing performance [4, 20, 103].

3.4.4 Multi-Task Learning

Multi-Task Learning and Meta-Learning are very related fields of Machine Learn-
ing. Both exploit the presence of shared structures across multiple tasks to
speed up the training, with a different goal in mind. Multi-Task Learning aims
to jointly learn several related tasks, to benefit from regularization that arises
from parameter sharing [18], as well as compute and memory savings.

Unlike Meta-Learning, conventional Multi-Task Learning is a single-level
optimization and does not consider a meta-objective. Moreover, while the goal
of Multi-Task Learning is to solve a fixed, finite number of seen tasks, Meta-
Learning aims to generalize to and learn quicker future unseen tasks coming
from a probability distribution. Nevertheless, Meta-Learning can be employed
in the Multi-Task Learning setting, e. g., by learning relatedness between tasks
or how to prioritize among multiple tasks.

The Multi-Task Learning literature provides several approaches to model
shared information across tasks. They can be roughly separated into two dif-
ferent categories, i.e., methods where parameters of the model are close to
each other in a geometric sense [35, 140] and approaches where the parameters
of the model share a common structure [25, 77, 110, 116, 152]. This structure
can be a clustering assumption [152], a (Gaussian) prior for the parameters of
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all tasks [77] or some advanced structure like the Kingman’s coalescent [25]
which is a continuous-time partitioned prior. Argyriou, Evgeniou, and Pontil
[7] propose an inductive bias on task parameters assuming them to lie in a
low dimensional linear subspace. Successively, Agarwal, Gerber, and Daume
[3] consider all task parameters to lie on a manifold. Based on the subspace as-
sumption, Kumar and Daume III [74] propose a framework to selectively share
the information across tasks, assuming that each task parameter vector is a lin-
ear combination of a finite number of underlying basis tasks. Other works
differentiate between tasks and address the fact that some of them might be
unrelated, by assuming the existence of disjoint groups of tasks [66] or allowing
two tasks from different groups to overlap by having one or more bases in
common [74].

3.4.5 Hyperparameter Optimization

Hyperparameter Optimization can indeed be seen as Meta-Learning since hy-
perparameters like learning rate and regularization coefficients effectively de-
scribe how to learn’. In particular, we consider as Meta-Learning the problems
that define a meta-objective that is trained end-to-end, such as gradient-based
hyperparameter learning [40].

In contrast, other approaches like random search [10] and Bayesian Hyper-
parameter Optimization [129] are rarely considered to be Meta-Learning.

3.4.6 Hierarchical Bayesian Models

Hierarchical Bayesian Models involve Bayesian learning of parameters 6 under
a prior p(6lw). The prior is conditioned on some other variable w with its
own prior p(w). Hierarchical Bayesian models are often used to in the case of
grouped data D ={D;ili =1,2,..., M}, where each group i has its own 6;. The
full model therefore is

M
[pruei)p(euw)]p(w). (29)
i=1

The levels of the hierarchy can be increased further; in particular, w can be
parameterized, and hence p(w) can be learned.

Bayesian hierarchical models provide a useful perspective for Meta-Learn-
ing, by providing a modeling framework to understand the meta-learning
process from an algorithm-agnostic point of view. In practice, prior works in
the literature usually focus on learning simple, tractable models 0. Instead,
Meta-Learning often consists of complex inner-loop learning procedures in-
volving many iterations. Nonetheless, some meta-learning approaches such as
MAML [36] can be understood from the standpoint of Hierarchical Bayesian
Models [46].

3.4.7 Automated Machine Learning

Automated Machine Learning (AutoML) [60] is a relatively broad umbrella for
methods that aim to automate phases of the machine-learning process that are
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typically hand-crafted, such as data preparation, algorithm selection, hyper-
parameter tuning, and architecture search. AutoML often leverages multiple
heuristics that are usually outside the scope of what is considered Meta-Learn-
ing. Moreover, tasks like data-cleansing are not particularly considered in the
meta-learning literature. Nonetheless, some AutoML approaches do perform
end-to-end optimization of a meta-objective; Meta-Learning can thus be seen
as a specialization of AutoML.

3.5 DISCUSSION

The meta-learning literature has produced a large variety of interesting and
performing approaches in the last few years, mainly thanks to the recent break-
throughs in Deep Learning. However, Meta-Learning, as a field, still faces
many challenges that are yet to be thoroughly addressed. Many popular ap-
proaches also struggle when scaling to the complexity of the learner, which
ultimately constrains them to poor performance when confronting complex
tasks. In some cases, heterogeneity of the various tasks may also be the cause
of counter-productive transfer learning, where irrelevant knowledge from a
task is erroneously reused when dealing with another task [153]. The prob-
lem may be addressed by reinforcing the task-specific inductive bias, though
it is important to introduce regularization to avoid unwanted overfitting. Fi-
nally, despite the latest efforts and achievements in the field, the literature still
does not offer a method that can generalize its knowledge to tasks from un-
seen, out-of-distribution data domains. Most state-of-the-art techniques were
designed and tested on simple benchmarks featuring samples from a single
domain, such as Omniglot [76]. The lack of ability to generalize to new do-
mains, unfortunately, hinders the ability to employ deep-learning solutions to
tackle interesting and important problems when the amount of available train-
ing data is low. When it comes to discriminating new categories from data,
even humans have trouble dealing with datasets that vary too greatly between
examples or differ from prior experience. Because of the many applications
that require high-quality learning from few datapoints, and the difficulty that
both machines and humans face when learning in these circumstances, finding
new methods to tackle the problem remains a challenging but desirable goal.

In light of these issues, our main objective is to determine whether the cur-
rently provided FSL techniques can be further extended to generalize previous
knowledge on new tasks from unseen data domains, a problem also known
as Cross-Domain Few-Shot Learning (CDFSL) [49]. A model capable of operating
among different data domains would be able to transfer knowledge across
widely different tasks, potentially solving the lack of training samples that are
observed in certain data domains. As a practical example, our desired model
would be able to generalize the recognition of malignant tumors in x-ray im-
ages to images obtained through other less popular techniques or instruments
that may feature different colors and patterns.
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ADDRESSING DOMAIN SHIFT

We examine various approaches in the machine learning literature that address
the presence of multiple domains in our data. We first present variational au-
toencoders, powerful models that allow us to easily model our data. We then
analyze other techniques from the fields of domain adaptation, domain gener-
alization, and cross-domain few-shot learning.

4.1 DISENTANGLEMENT AND INTERPRETABILITY
4.1.1  Introduction

When dealing with data coming from multiple domains, a simple line of work
consists of designing and leveraging a good embedding to overcome limita-
tions related to heterogeneous data. In the meta-learning literature, the ap-
proach is supported by Raghu et al. [115], arguing that feature reuse is the
dominant component in MAML's efficacy, with Tian et al. [137] recently con-
firming this hypothesis. In our CDFSL, it is thus reasonable to believe that a
good embedding satisfies the three following properties:

* Reusability: the representation or part of it can be reapplied to other prob-
lems.

¢ Disentanglement: the representation can be easily decomposed into inde-
pendent units.

e Interpretability: the various units have clear semantic meaning.

It could be argued that any embedding that is obtained from a meta-learning
algorithm is reusable to an extent, as the goal of Meta-Learning is to perform
well on new, unseen tasks. Therefore, we may want to combine existing meta-
learning approaches with other machine learning techniques that guarantee
the disentanglement and interpretability of the embedding.

4.1.2  Probabilistic Graphical Models

Probabilistic graphical models [72] are a family of models that aim to describe
the conditional dependencies between a set of stochastic variables Xj,...,Xn
by representing them as nodes in a directed graph. The joint probability of a
probabilistic graphical model is given by

N
piX1,.... Xnl = [ [ pXnlpa(Xn)] (30)
n=1
where pa(X,,) is the set of parents of X,,. Probabilistic graphs allow us to ex-
plicitly design relations among variables in our model to partition information
derived from data into latent components that are both disentangled and inter-
pretable.
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4.1.3 Bayesian Networks

Bayesian networks [111] are a subclass of probabilistic graphical models that
require the directed graph to also be acyclic. In this case, we can understand
the sampling procedure from the joint distribution as a step-by-step process
where individual nodes are sampled in topological order and the distribution
of each node depends on the values of its parents.

We can leverage Bayesian networks to model a latent representation of the
raw data x given a dataset of observations D = {xi}{:1. While in the general
case the graph may feature multiple nodes corresponding to many observa-
tions and latent variables, we analyze as an example the simple case of a
graph with two nodes, z and x, with a single arc from z to x. By consider-
ing the conditional distribution pg-(x|z) we can treat x as an observable, noisy
realization generated from the meaningful latent embedding z. Therefore, we
may be interested in the posterior distribution pg-(z[x) to infer from the obser-
vation x the latent embedding z that is likely to generate x. A possible way to
accomplish this is thus to first learn an approximation pg(x, z) of the true joint
distribution pe-«(x,z) by maximizing the likelihood over the entire dataset of
observations D:

max H Jpe(x,z)dz. (31)

xeD

After optimization we can rely on the approximated posterior pg(z|x) to infer
z from a new observation x. In practice, obtaining the exact posterior distribu-
tion is complex and often intractable. Variational Bayesian approaches attempt
to solve this problem by optimizing a variational lower bound to find an approx-
imate posterior, but still require analytical solutions that may be intractable in
the general case.

4.1.4 Variational Autoencoders

Variational Autoencoders (VAEs) [69, 70] aim to maximize a simple, unbiased
estimator of the variational lower bound, which is easily differentiable and
suitable to be optimized using online SGD. VAEs manage to combine the inter-
pretability of Bayesian networks and the powerful techniques of deep learning,
paving the way for a variety of new interesting approaches.

(O—

Figure 4: Generative model of a simple VAE.

Given a dataset D = {x;}|_, the simplest form of VAE is based on a Bayesian
network with two nodes, z and x, with an arc from z to x. The latent variables
{zi}{:] and the true generative model of the data pg-(x, z) are unknown. In this
case, the VAE consists of two coupled, independently parameterized models
that support each other. The generative model pg(x,z) learns an approxima-
tion of the true generative model of the data. At the same time, as computing
the exact posterior pg(z[x) is usually intractable, we also rely on a recognition
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model q¢(z|x) to approximate the true posterior distribution identified by 6.
We assume that the generative model pg(x,z) and recognition model qg, (z|x)
are differentiable with respect to the set of parameters 0 and ¢ respectively.
The structure of Variational Autoencoders resembles that of traditional Au-
toencoders. We can refer to the generative model as a variational encoder and
the recognition model as variational encoder.

In principle, the objective in VAEs is to obtain § parameters of the generative
model that maximizes the likelihood of the dataset as well as ¢ parameters
of the recognition model that better approximate the true posterior accord-
ing to some metric. However, the problem is still computationally intractable.
Therefore, some complexity is relaxed by instead maximizing the evidence lower
bound, abbreviated as ELBO, which is a lower bound on the log-likelihood of
the data.

Derivation of the ELBO is as follows:

logpe(x) = Eq, (zx) log pe(x]] (32)
_ L [pelx z)
- IEQdJ(Z‘X) _log _PG(Z|X) :|:| (33)
[ [pel(x,2z) qq;(ZIX)”
=E z|x 1
90 (#5) |08 | 4 (2lx) Po2ix) G4)
_ [ [pel(x 2z) qq(zlx)
= Fay a0 |10g _q¢(Z|X)H +Eqq (210 {log [pemx) (35)
:Le,d) :DKL(Q¢(Z|X)HP9(Z|X))
(ELBO)

The first term in eq. (35) is the ELBO:

Lo,p = Eq,(zix) [10g Po(zIx) —log q4(z/x)] . (36)

The second term in eq. (35) is the Kullback-Leibler (KL) divergence between
q¢ (zlx) and pe(z|x), which is non-negative:

Dxi(qe(zlx)|[pe(zlx)) > 0 (37)

and zero if, and only if, q¢ (z|x) equals the true posterior distribution. Due to
the non-negativity of the KL divergence, the ELBO is a lower bound on the
log-likelihood of the data.

Lo,o =logpe(x) — Dxi(qe(zlx)|[pe(zix))
< logpo(x)

Interestingly, the KL divergence Dk (q¢ (z/x)||pe(zlx)) determines both the
quality of the approximated posterior q4, (by definition) and the gap between
ELBO and log-likelihood of the data (according to eq. (35)). Therefore, the
benefits of maximizing the ELBO are twofold. On one hand, it approximately
maximizes the marginal likelihood pg(x), meaning that our generative model
becomes better. On the other, it minimizes the KL divergence of q¢ from the
true posterior, therefore, our recognition model also becomes better.

While the actual value of the ELBO and its gradient Vg 4, Lg,¢ is in general
intractable to compute, we can resort to an unbiased estimator of the gradi-
ent so that we can still perform minibatch SGD. In particular, in the case of
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VeLe,p, we employ a simple Monte Carlo estimator by random sampling z
from q¢ (z[x):

VoLlo,p = VoEq, () [l0gPe(x,2) —log qq (zlx)] (38)
=Eq, (zix) [Vo(logpe(x,z) —log qq(zlx))] (39)
~ Vo(logpe(x,z) —log q¢(zlx)) (40)
= Vo(logpe(x, z)). (41)

However, unbiased gradient with respect to the parameters ¢ are harder to
obtain, since the ELBO’s expectation is taken with respect to the distribution
q¢ (z|x) which is a function of ¢. In fact, in general it holds that

VoLo,o(x) = VoEq, () [l0gPe(x z) —log q¢(z/x)] (42)
#Eq, @zx [Vologpoe(x,z) —logqe(zlx))] . (43)

Nevertheless, in the case of continuous latent variables we can resort to the
reparameterization trick, i.e., we can express the random variable z ~ q, (z/x)
as some differentiable, invertible transformation z = g(e, ¢, x) of another ran-
dom variable € whose distribution is independent from x or 6. Under the
reparameterization, we can rewrite the ELBO as

Lo, (x) = Eq, (zx) [log Pe(x, 2z) —log q4 (zlx)] (44)
=E,(e) [logpe(x,z) —log qq (zlx)] (45)

where z = g(e, §,x). With the ELBO in this form, we can easily compute an
unbiased estimate of the gradient for the parameters ¢ analogously to what is
done for 0. We can then jointly learn the parameters 0, ¢ using online SGD.

A popular choice for VAEs is to model the generative and recognition model
as NNs. Moreover, the marginal prior over the latent variable is often defined as
p(z) = N(o,I). In this case, we can rewrite our generative model as pg(z/x)p(z)
and only learn the conditional distribution.

As they are based on probabilistic graphical models, VAEs allow us to come
up with models that ensure a disentangled and interpretable representation.
For example, when classifying hand-written digits, we may be able to capture
the notion of writing styles, which is independent of the notion of digit num-
ber. In the following, we illustrate and analyze various architectures that deal
with classification tasks and employ multiple latent variables to obtain an em-
bedding satisfying our desired properties. Indeed, a richer Bayesian network
also leads to higher complexity of the model’s architecture.

4.1.4.1 SSVAE

The Semi-supervised Variational Autoencoder (SSVAE) [68] is a hierarchical VAE
that operates in semi-supervised classification tasks. SSVAE encourages dis-
entanglement in its latent representation by leveraging a latent variable that
captures residual, non-class information.

In SSVAE, the dataset consists of both labeled and unlabeled samples:

D ={(xi, yi) el Y{xi, ielinanp- (46)
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M1 M2 H u
-

Figure 5: Generative model in SSVAE.

Therefore, the trivial VAE graphical model with two nodes x, z; is extended
with two new nodes y and z,, with prior factorization is

P(x,Y,2z1,22) =p(Xlz1)p(z1ly, 22)p(y)p(2Z2). (47)
The hierarchical architecture consists of:

¢ Mzi: a standard VAE encoding raw data x in a latent embedding variable
z.

e M2: a novel VAE encoding z; obtained from M1 in two independent
variables z; and y.

We first train M1 separately and freeze its parameters during the training of
Mz2. The goal in M2 is to disentangle the information in z; to store class in-
formation in the label variable y and residual, class-invariant information in
z,. Two different losses are considered when learning M2 to account for the
partial observability of y. The variational encoding process in M2 also acts as
a class predictor for unlabeled datapoints.

4.1.4.2 VFAE

The Variational Fair Autoencoder (VFAE) [88] is a VAE that can operate in a
semi-supervised setting and improves upon SSVAE by extracting features that
are more relevant to the task at hand. VFAE can capture and filter nuisance
information from the data and better guide the flow of class information in-
side the model compared to SSVAE, which helps in guaranteeing high-quality
disentanglement and interpretability of the latent representation.

Figure 6: Generative model in VFAE.
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In VFAE, each datapoint in the dataset x; is paired with a domain label d;,
while the class label may be missing for some tuples:

D ={(xi, di, Yi) hielow, U{(xi, di, ) ielimony- (48)

VFAE extends the SSVAE graphical model to feature an additional observed
variable d in the unsupervised feature extraction that is assumed to be in-
dependent from the latent representation z;. One of the goals in VFAE is to
obtain from x a latent representation z; that is maximally informative about
the partially observed variable y while minimally informative about the ob-
served variable d. In the context of domain adaptation, d is treated as a nui-
sance variable, i.e., by filtering information related to the domain d from our
representations we are likely to obtain improved performance.
The generative model of VFAE can be factorized as

p(x,d,y,21,22) = po,(xld, z1)p(d)pe,, (z1ly, z2)p(y)p(22). (49)

The priors of the domain variable d and label y can be modeled as multinomial
distributions whose statistics are inferred from the dataset and thus do not
need parameterization. We can also avoid to parameterize the prior of z, by
assuming p(z;) = N(o,I).

Concerning the recognition model, the posterior is factorized as

q(z1,22,ylx,d) = qq,, (11X, d)q9, (ylz1)qe,, (22121, Y) (50)

where the posteriors of z; and z, are modeled as normal distributions. The
model learns from both labeled and unlabeled data and the predictive poste-
rior (g, (ylz1) can be used as a class predictor for unlabeled datapoints, anal-
ogously to SSVAE. A regularization term that estimates maximum mean dis-
crepancy is also considered in the loss to guarantee the independence between
zq and d.

Unlike SSVAE, all the parameters of VFAE are jointly learned to promote a
representation z; that is strongly correlated to y. This also prevents situations
where the model erroneously recognizes useful information as coming from
d rather than z; due to possible correlations between d and y, though this is
usually not a problem in the domain adaptation setting as we assume the two
variables to be independent.

4.1.4.3 DIVA

The Domain Invariant Variational Autoencoder (DIVA) [61] extends the standard
VAE model by partitioning the latent space in three latent subspaces (or latents)
representing domain, class, and residual information of the raw data x, to learn
a disentangled and interpretable representation. Furthermore, the continuity
and stochasticity of the latents can potentially be reusable, i.e., generalize to
images from unseen classes and domains, which is particularly useful in the
CDFSL setting.

In DIVA, each datapoint in the dataset x; is paired with a domain label d;,
while the class label y; may be missing for some tuples:

D ={(xi, di, Yi) hie Lo, U{(xi, di, D hie Loy (51)
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DIVA'’s latent space z is partitioned in three subspaces z4, zy, and z,, with
prior distributions over z4 and zy conditioned on the domain label d and the
class label y respectively. In the graphical model, d and y are independent,
which is consistent with the standard definition of the domain as a nuisance
variable that is commonly adopted in the cross-domain setting.

Figure 7: Generative model in DIVA.
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Figure 8: DIVA architecture.
The generative model p(d, x,y,zq4, Zx, Zy) can be factored as

Peo, (X1za, Zx, Zy)Pe, (zald)p(zx)pe, (zyly)p(d)p(y). (52)

The priors over the labels p(d) and p(y) can be modeled as multinomial
distributions whose statistics are inferred from the dataset and thus do not
need parameterization. We can also avoid to parameterize p(z,) by assuming
p(zx) =N(o,I).

The recognition model of DIVA is learned by considering the approximate
factorization

Qo (2a,2x, 2y X) = Ao, (2aX)qp,, (2x/X) A5, (24l) (53)

where Aeps, (zalx), d¢,, (zx[x), and by, (zy|x) are modeled as normal distribu-
tions, as well as the two posterior distributions q¢,(d|z4) and q¢,, (ylzy) which
act as auxiliary discriminators of domain and class label respectively.

The loss function considered when training DIVA with labeled samples is

Fovald, x,y) == £L(d, x,y) (54)
+oaBq,, (zai0 [10g dg,(diza)]] (55)
+oyEq,, (2, (108 do, (ylzy)] (56)
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where
L(d,x,y) = Eqy,  (2a1x)dan, (2x1%) 4, (2y1x) llogpe Xz, zx, Zy )] (57)
—BaDki(qg,, (zalx)[[pe,(zald)) (58)
- BXDKL(qq)zx (ZX|X)||'P(ZX)) (59)
— ByDki(qg,, (zylx)[[pe, (zyly)) (60)

and where «q, oy, Ba, Bx, and By are tunable weighting terms. Indeed, sim-
ilarly to other VAEs, the loss of the model can be extended to operate in a
semi-supervised setting where the label y may be missing. This brings signifi-
cant performance improvements when a large quantity of domain-labeled data
is available.

Lastly, we can perform class discrimination of an unlabeled sample x by
using the mean of the distribution g4, (zylx) as input to the auxiliary class
discriminator (¢, (ylzy). The entire class discrimination process does not re-
quire knowledge on the domain label d of the sample. Instead, many previous
methods such as VFAE [88] and CVIB [98] do require domain information at
inference time, which makes employing them in unseen domains unreliable or
impossible.

By learning the disentanglement of domain, class, and residual the model
addresses and prevents the impossibility of learning a disentangled represen-
tation in an unsupervised fashion for arbitrary generative models, a claim that
is made by Locatello et al. [85] and Dai and Wipf [24].

4.2 DOMAIN ADAPTATION AND GENERALIZATION

Domain Adaptation aims to boost cross-domain performance by combining su-
pervised learning on source domains and unsupervised learning on target do-
mains.

Ganin and Lempitsky [43] propose Gradient Reversal. The approach lever-
ages a novel gradient reversal layer that multiplies the gradient by a certain
negative constant during backpropagation, resembling the behavior of adver-
sarial training. The parameters of a deep feature extractor are thus encouraged
to be non-informative about the domain membership of the input, which in
turn promotes feature alignment between domains and boosts performance in
the target domain.

Digits adaptation Cross-modality adaptation Office adaptation
(NYUD)

- ; e PC1000HE,
MNIST . N v Amazon =
RGB | “~ \\ | —
USPS DSLR - y = 4

SVHN ﬁl ’ .-- Webca_m . @

Figure 9: Examples of domain shift in images from three different settings [43].




4.3 CROSS-DOMAIN FEW-SHOT LEARNING

Motivated by the observation that activations within a NN follow domain-
dependent distributions, Mancini et al. [92] revisit batch normalization to pro-
vide domain-specific statistics and normalization. When dealing with target
domains, they leverage a domain prediction network to find a suitable inter-
polation of the various domain-specific normalizations of the input. The ap-
proach can potentially provide reliable statistics that can generalize to unseen
domains.

Domain Generalization approaches do not assume access to a large collection
of unlabeled samples from the target domains and instead learn from multiple
source domains to extract a domain-agnostic model that can then be applied
to an unseen domain. Li et al. [82] propose a domain generalization method
based on low-rank parameterized CNNs to obtain domain-agnostic features
while avoiding overfitting.

4.3 CROSS-DOMAIN FEW-SHOT LEARNING

In FSL classification, models are challenged to learn new tasks based on few ex-
amples. Cross-Domain Few-Shot Learning (CDFSL) takes the FSL problem one
step further, assuming that test tasks are subject to domain shift. Multiple in-
terpretations of CDFSL are available in the literature. Works such as [97] assume
that images from source and target domains share the same class distribution.
In our work, we instead focus on the more challenging problem where the dis-
tribution of both classes and domains are shifted. Others such as [125] presume
access to a large quantity of unlabeled data from the target domain. Instead,
we aim to adapt to the unseen domain considering only a few data from the
support set of the task, which is much more difficult.

While the literature has produced many interesting approaches in the triv-
ial FSL setting [36, 117, 143], Chen et al. [19] recently highlight that meta-
learning based FsSL algorithms fail to outperform traditional pre-training and
fine-tuning methods when dealing with test data that is subject to significant
domain shift. Consequently, several new approaches have been recently devel-
oped to tackle the CDFSL problem.

Peng, Song, and Ester [112] propose Combining Domain-Specific Meta-Learners
(CosML), where a set of meta-learners are trained to be later combined via a
task-dependent weighted average in the parameter space, generating the initial
parameters of a task-specific meta-learner which is then adapted to the novel
FSL classification task at hand. The architecture of CosML consists of a set of
domain-specific meta-learners on top of a shared, pre-trained feature extractor.
During meta-training, some source domains are never observed during base
learning to simulate unseen domains and are instead used to meta-optimize
the quality of the generalization to unseen domains.

Representation fusion is the concept of unifying and merging information
from different levels of abstraction within the layers of a deep NN. Adler et
al. [2] recognize the effectiveness of representation fusion in the CDFSL setting
and propose Cross-domain Hebbian Ensemble Few-shot learning (CHEF), which
achieves representation fusion by employing an ensemble of Hebbian learners
acting on different layers of a deep NN.
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Kwon et al. [75] repurpose MAML checkpoints to solve new out-of-domain
FSL classification tasks by acting on the gradient update rule during task adap-
tation based on information extracted from the support set.

Zhao et al. [157] argue that a naive combination of existing domain adapta-
tion and FSL methods fails to offer an effective solution to the CDFSL problem:
existing domain adaptation methods assume that the target and source do-
mains have identical label space, and global or per-class distribution alignment
would have a detrimental effect on class separation and discriminativeness.
Consequently, they propose a Domain-Adversarial Prototypical Network (DAPN),
where the adversarial domain confusion objective is complemented by new
losses that enforce source/target class discriminativeness, leading to both glob-
ally aligned distributions and well-separable class representations.

Tseng et al. [139] employ feature-wise transform during meta-training to
simulate various distributions of image features that encourage learning rep-
resentations with improved ability to generalize. The hyperparameters of the
feature-wise transformation layers are meta-learned.
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Figure 10: Images from BSCD-FSL [49].

Nevertheless, despite increasing efforts by recent works in the field, the prob-
lem of how to effectively meta-learn across multiple source domains while
avoiding meta-overfitting remains an important challenge. Furthermore, in the
case of CDFSL, the literature currently does not feature well-established evalua-
tion benchmarks, with many existing ones only involving natural images [138,
139]. When evaluating on BSCD-FSL, a benchmark that contains both natural
and non-natural images, Guo et al. [49] conclude that state-of-the-art meta-
learning approaches are outperformed by earlier, shallow learning methods
such as fine-tuning, with recent CDFSL techniques degrading performance.



PRE-TRAINING THE EMBEDDING

We provide a formulation of the CDFSL problem we want to tackle. In particu-
lar, we define a new benchmark for our experiments and build upon LEO to
improve cross-domain performance. We then attempt to tackle the problem by
leveraging a pre-trained embedding with useful properties.

5.1 PRELIMINARIES

To test our hypotheses, we first need to define a solid foundation on which to
base our experiments. Therefore, we provide a rigorous formalization of the
CDFSL problem we want to tackle, as well as define the model we want to build
upon.

5.1.1 Background

To formally define our Meta Domain Adaptation problem, we expand on the
task distribution view illustrated in Section 3.2.2. Like always, our objective is
to learn a training procedure that can generalize to many tasks from a distribu-
tion of tasks. Without loss of generality, we assume that the loss function £ is
shared across all tasks in the distribution. To simplify the problem even further,
we assume that the tasks we are dealing with are FSL classification tasks. An
N-way, K-shot classification task is a tuple of two datasets T = (D%, D9), where
both the support set D and query set D9 contain pairs of inputs and desired
outputs:

7 (61a)

DS = {<xfllk, |1 K
"< KL (61b)

<N, 1<
DI ={{xp M <n<N, 1<

<n
<n<N,]
The model adapts to the task by adjusting its parameters based on the support
set, while the query set is used to evaluate the performance of the model on the
task after the inner adaptation. Consequently, the difficulty of the task mainly
depends on the values of N and K, i. e., the number of classes and the number
of examples per class provided for the task at hand. The value of K’ mostly
affects the reliability of the estimation of the model’s performance on a task.

In the case of single-domain FSL classification, the probability distribution
over tasks p(7) can be expressed as a Bayesian network by introducing latent
variables z¢,, representing the classes of the tasks, sampled from a distribution
over the latent class variables p°:

z5, ~p(zf), 1T<n<N. (62)
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Then, each data instance in the support and query set is sampled from a dis-
tribution over the data instances p* that is conditioned on the corresponding
class latent variable:

Xp ~ P (xlz) T<n<N,T<k<K; (63a)
Xp o ~PH(xzg) T<n<N, 1<K <K (63b)

However, since we are interested in Cross-Domain Few-Shot Learning, our
FSL classification tasks must be from multiple different domains. In particu-
lar, we want to learn across-task knowledge w that can generalize to unseen,
possibly out-of-distribution domains. The definition of the task probability dis-
tribution p(7) is therefore enriched with a new latent variable z¢ representing
the domain of the task that is sampled from a distribution over the latent do-
main variables p<:

z4 ~pd(zY). (64)

The distribution of each data instance in the task is now also conditioned on
the task-specific domain latent variable:

4

Xn k™ p*(xnlzf, z%) 1 N
1 N, Kk’

1<k<K; (65a)
xgt,k/ ~ Px(xn|z$u Zd) 1 <

K. (65b)

//\ /A
//\ //\
//\ //\

Thus, the hyper-parameters N, K, K’ along with the probability distributions
p¢,pd,p* completely define the distribution of tasks:

p(T) = prkk (TS, pd, po). (66)

We can now define our training and test distributions of tasks. For simplic-
ity, we assume that the hyper-parameters N, K, K’ as well as the probability
distribution over data instances p*(x|z¢,z¢) are shared across all the possible
task distributions:

p(T) =p(TIpS, p9). (67)

Therefore, training and test distributions of tasks differ in either the shape of
the distribution over class latents p¢, the distribution over domain latents p9,
or both. In particular, if we consider a training distribution p{, ;,, and test
distribution p{,,, over class latents as well as a training distribution p¢. ;,,
and test distribution p{,; over domain latents, we can identify four possible
distributions:

pc = p‘irain .pc - p%est
pd = pfgirain ptrain,train(q) ptest,train(q)

pd = pfciest ptrain,test(T) ptest,test(j)

Our training distribution is ptrain,train(7), while we are particularly inter-
ested in the performance obtained by our model in ptest,test(T), which fea-
tures both unseen out-of-distribution classes and domains. The test distribu-
tion ptesttrain(J) arguably identifies the test distribution of traditional meta-
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learning problems, where the only change from the training distribution is ob-
served from the point of view of classes, while the domain distribution remains
unchanged.

An interesting direction for us is to attempt to minimize the difference in
performance between the in-domain distribution ptest,train(7) and the out-of-
domain distribution piest test (T). Indeed, the test distributions over class and
domain latents should cover areas of the latent spaces that, while potentially
unseen during training, are nonetheless related to the areas covered by the
training distributions, so that the meta-knowledge acquired during training
has a chance of generalizing to the new distributions.

5.1.2 Transductive vs Non-Transductive Meta-Learning

In the FsSL literature, we can identify two mutually exclusive settings: trans-
ductive and non-transductive learning. Non-transductive learning prohibits any
type of access to query set information during adaptation, meaning that, for
each prediction of a generic unlabeled query input x‘?l,k/’ the model can only
rely on that query input, the meta-knowledge w, and the support set D* of the
task. On the other hand, in transductive learning, we also have access to the
inputs of the query set D9 of the task during adaptation. For instance, when
computing statistics for normalization in the transductive setting, we can lever-
age the unlabeled inputs in the query set to obtain more accurate statistics. The
non-transductive setting is more challenging, as we have access to less infor-
mation.

Transductive learning features some arguably undesired properties, such as
dependence on the size and distribution of the query set. Furthermore, the
assumption of having access to a large set of unlabeled samples may be unreal-
istic when considering many real-world problems, e. g., it may violate privacy
constraints. In light of these considerations, in our work, we decide to focus on
the non-transductive setting.

5.1.3 Addressing Meta-Batch Normalization

In standard supervised learning, batch normalization layers behave differently
during training and evaluation phase. In particular, during training, first and
second order statistics fL and 62 of the activations x; are computed across the
batch {xi}{3:1 :

B
L] o2 ] 12
H= B E Xi; 07 = B E (i — )~ (68)

The statistics are then used to normalize and match those of the standard
normal distribution:

. Xi— [
o 6
YoVelte (69)

where € is a small constant value to avoid division by zero. Meanwhile, at eval-
uation time activations are normalized by leveraging estimation of the statistics
computed at training time over multiple batches, which is usually more reli-
able.
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Adapting the rationale of batch normalization to meta-learning is not trivial.
In meta-learning, a batch contains a set of tasks, and each task, in turn, con-
tains a set of images. Since we focus on the non-transductive setting, we can
compute statistics using only images from the support sets of the tasks. For
simplicity, we consider the case where each image produces a single activation
for the normalization. Furthermore, we refer to the activation corresponding
to the k-th image of class n in the support set of the b-th task in the batch as
Xlsank'

A naive way to implement meta-batch normalization would be to ignore the
separation in tasks of the images and compute the statistics over all the images
of the entire meta-batch, independently from the task they belong to:

;B N K ;B N K
WZZZX%W 62:mZZZank W% (70)
b=1n=1k=1 b=1 n=1 k=1

The statistics can then be used to normalize the activation x of a generic image
in the meta-batch:

x—fi
Vol e (71)
In this case, we can also keep track of the statistics in the same way we do in
supervised learning to later use them at evaluation time. We refer to this type
of meta-batch normalization as naive normalization.

However, when adapting batch normalization to meta-learning, we should
take into account that, unlike traditional supervised learning, images are not
i.i.d. globally, but only with respect to a specific task. We address the above by
leveraging task-specific normalization. In task-specific normalization, we normal-
ize the activations by only considering the statistics over the images of the task
at hand:

X =

Z‘_.

N K ] N K
Z Z Xbnks 6% NK Z Z XPnk — . (72)
n=1k=1 n=1k=1

The statistics can then be used to normalize the activation xy, of a generic image
in the b-th task in the meta-batch:

Xb — flb

=2 (73)
\/ 02+ €

We also leverage task-specific normalization at evaluation time, which means
that we do not need to keep track of any statistics during the training phase.
Task-specific normalization is a popular way to implement batch normalization
in the meta-learning literature [16, 138]. In our meta-learning experiments, we
leverage this type of normalization unless specified otherwise.

Xp =

5.1.4 Our Main Benchmark: Corrupted-Omniglot

Following the mathematical formalization of our CDFSL classification problem,
we now need to define a concrete benchmark to evaluate our models on. Ini-
tially, we are interested in a benchmark that both represents a moderate cross-
domain challenge and is easy to handle in terms of computing power so that
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we can comfortably evaluate our ideas on a simpler problem before moving on
to harder ones. The Omniglot dataset [76] is a popular benchmark in the FsL lit-
erature. It consists of a collection of black-and-white square images displaying
handwritten characters from 50 different alphabets. The classification problem
is significantly easier than the ones that feature natural images. Moreover, by
resizing the images to a resolution of 28x28, we manage to considerably speed
up our experiments.

Each character in the dataset is represented by 20 different images portraying
the same character written in different styles. When performing N-way FSL
classification with Omniglot, tasks are usually dynamically generated by first
sampling N different characters out of all the ones available in the dataset, thus
determining the classes of the task. Then, for each character selected, some
of its corresponding images are randomly selected to form the support set
D3 of the task. Meanwhile, the images that end up not being selected are
instead included in the query set D9 of the task. When splitting the dataset
into training and test classes, we resort to the harder setup provided by Vinyals
et al. [143], where the split is randomly performed at alphabet level, rather
than character level. In this way, some alphabets are never seen during meta
training, guaranteeing the out-of-distribution property of test classes.

Despite providing a reasonable benchmark for standard FSL classification,
the Omniglot dataset is not an example of CDFSL classification. Furthermore,
the latest performances obtained from state-of-the-art models on Omniglot are
tremendously high [81], suggesting possible obsolescence. However, we can
augment the dataset by applying many different image corruptions to the im-
ages. Image corruptions transform images by introducing some kind of pertur-
bation to the image itself. A classic example of image corruption is Gaussian
blur, which blurs the image by convolving the image with a Gaussian function.
In the case of black-and-white images, Mu and Gilmer [99] provide us with a
set of 15 readily implemented corruptions. By considering each corruption as
a domain, we can augment the Omniglot dataset and repurpose it as Corrupted-
Ommniglot (or briefly C-Omniglot), a new benchmark for CDFSL classification.

C-Omniglot features 16 domains; one of them is the domain of uncorrupted
images, which we refer to as identity. When sampling a task from C-Omniglot,
the domain is randomly selected among the available ones and the images in
both the support and query set of the task are corrupted accordingly, which
conforms to the formal definition of the CDFSL classification problem we pro-
vide. The tasks in C-Omniglot also include the domain label d:

T = (D%, D9, d). (74)

The information of the domain label may or may not be leveraged depending
on the algorithm.

Finally, we also split the available domains into 10 training domains and 6
test domains, intending to generalize meta-knowledge extracted from the for-
mer to the latter. In our experiments, we consider 20-way, 1-shot classification
tasks, which is a popular and challenging setting in the literature. Our query
set always contains 15 images per class to provide a robust evaluation of the
performance on the task after adaptation. The batch size during meta-learning,
i.e., the number of tasks per meta-gradient step, is 8 unless specified other-
wise.
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Figure 11: Examples of corruptions in C-Omniglot. The top row represents the training
domains identity, fog, dotted line, and scale, while the bottom row repre-
sents the test domains brightness, canny edges, shot noise, and zigzag.

5.1.5 Our Baseline Model: LEO

To avoid starting from scratch, we decide to build upon LEO (Section 3.3.3.2),
which features attractive qualities such as reduced computation costs com-
pared to MAML. In particular, we extend LEO’s architecture by including a
convolutional embedder gg,,, , that we use as input for the original LEO meta-
learning pipeline’. Given a generic input image x, we refer to its embedding
Idbomp (X) @s simply X.

Initially, we carry out numerous other experiments to gather insights on
what affects the performance of our model. In particular, since the original
LEO originally features a very complex architecture and many non-trivial reg-
ularizations, we analyze their impact by comparing it with a version of LEO
that has a simpler architecture and fewer regularizations. Surprisingly, we find
that many choices in the architectures such as the presence of a relation net-
work g, right after the encoder g4, and the stochastic nature of the latent pa-
rameter code z are not needed to achieve top performance on our benchmark.
We can often even remove the entire encoding process from the architecture
and initialize z with a constant value and still obtain results that are compa-
rable with the original architecture. Furthermore, we observe that besides L2
regularization we can ignore all other forms of regularizations in our network
without hurting performance. Finally, we find that a single gradient step in the
parameter code space and no fine-tuning of the parameters after latent code
optimization is enough when adapting to a new task. Thanks to these discover-
ies, we can consider a simpler LEO architecture, shown in Fig. 12, that is faster
to train, is easier to understand, and better lends itself to further extensions.
We define Baseline LEO as the model obtained by meta-training this simpler
LEO architecture from scratch.

When considering 20-way, 1-shot tasks with test classes from Corrupted-Om-
niglot, Baseline LEO achieves a classification accuracy of 0.95 in training do-

1 In contrast, Rusu et al. [124] consider a pre-trained embedder that is external to the model.
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Figure 12: Baseline LEO architecture.

mains and 0.76 in test domains. Since our goal is to find a novel solution that is
capable of achieving comparable training and test domains performances, we
realize that there is still large room for improvement. In the following sections,
we compare the performance of new models with respect to Baseline LEO to
quantify their capabilities when generalizing to unseen domains.

5.2 A GOOD EMBEDDING

As seen in Section 4.1, Raghu et al. [115] and Tian et al. [137] argue that the per-
formance of meta-learning procedures heavily depends on the quality of the
embedding. We thus focus on obtaining a high-quality embedding by leverag-
ing existing techniques and pre-training on images from the training dataset.
We also evaluate disentanglement and interpretability in the embeddings in
multiple ways.

5.2.1 Pre-Training DIVA

One of the most trivial ways to implement a disentangled and interpretable
embedding in LEO is to first learn an embedder by using an existing approach
in the literature that promotes our desired properties. The parameters of the
embedder can then be reloaded as the parameters of LEO’s embedder so that
the original LEO architecture can meta-learn on the high-quality embedding.

Our go-to disentangling model is DIVA (Section 4.1.4.3), since it offers con-
tinuous, stochastic latent spaces representing class and domain information
that can potentially generalize to unseen classes and domains, something that
is particularly useful in the cross-domain meta-learning setting. In DIVA, dis-
entanglement and interpretability are provided by the variational encoders
deb, (zalx), d¢,, (zxIx), and Aop, (zylx), partitioning the embedding space in
domain, residual, and class information. By leveraging DIVA’s embedding dur-
ing meta-learning, we can effectively evaluate the quality of the generalization
for our scope.

Nonetheless, since DIVA is trained via standard (semi) supervised learning,
we first need to define a dataset to perform our pre-training on, as well as iden-
tify other baseline pre-training models to compare with. Moreover, we want to
observe a high-quality disentanglement and interpretability of the embedding
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on this new dataset before proceeding with the meta-learning phase. Finally,
we might decide to extend the DIVA model to improve the quality of the em-
bedding we obtain during pre-training.

5.2.2  Corrupted-Omniglot PT

We define our supervised-learning pre-training task by considering a dataset
of labeled images from C-Omniglot, thus assuming that features that are useful
for traditional supervised classification tasks are also suitable in FSL classifica-
tion. Indeed, we do not consider images coming from test classes or domains
during pre-training, preserving their validity as unseen samples when evaluat-
ing our meta-learning model. Our pre-training dataset Corrupted-Omniglot Pre-
Training (briefly C-Omniglot PT) is in the form

Ditain = {xi,Yi, di) el an (75)

where y; and d; are class and domain labels of the image x;. For each train-
ing class and domain, 19 of the 20 available images in C-Omniglot end up
in DIT ., whereas the remaining one is instead included in an evaluation

dataset DYL , to assess the performance of the pre-trained model after pre-

training. Moreover, since DIVA does not rely on the domain label when per-
forming class discrimination, we also include in D}l , images from training
classes and test domains to evaluate the ability of DIVA to generalize to un-
seen domains.

In the end, we obtain a pre-training discrimination task where each image
is assigned to one of 1028 possible class labels and one of 10 possible domain

labels.

5.2.3 Other Pre-Training Baselines

To thoroughly evaluate the advantages provided by DIVA’s disentangled and
interpretable representation, we also consider a variety of baseline models to
compare with. Firstly, we consider a simple NN that is pre-trained to discrimi-
nate the class label of the images in C-Omniglot PT. We refer to the model in
question as Classifier. The architecture of Classifier consists of a linear classi-
fier positioned on top of a deep convolutional feature extractor. Unlike DIVA,
Classifier does not leverage the information of domain label d provided in
C-Omniglot PT. Furthermore, its sole objective is to provide accurate class dis-
crimination, while DIVA also discriminates the domain labels d and learns to
reconstruct the images from the latents.

Secondly, we consider a standard VAE (see 4.1.4) that is pre-trained to max-
imize the likelihood of the images in C-Omniglot PT. We refer to the model
in question as simply VAE. Indeed, VAE does not make any use of class labels
y and domain labels d and instead only focuses on reconstructing the input
image x as accurately as possible. Consequently, unlike DIVA and Classifier,
VAE does not perform class discrimination.

Concerning the architecture of our models, we obtain a fair comparison be-
tween them by assuming the following:
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¢ in DIVA, each variational encoder features the same structure, which is a
fully connected layer on top of a deep CNN;

¢ in Classifier, the feature extractor is a deep CNN with the same structure
as the one found in DIVA'’s variational encoders;

¢ in VAE, the single variational encoder shares the same structure as the
ones found in DIVA.

5.2.4 Quality Evaluation of the Embedding

One of the simplest ways to evaluate the quality of the obtained embedding
is considering the class discrimination accuracy obtained during pre-training.
When confronting the performance of DIVA and Classifier in Table 1, we can
observe a small improvement of the former with respect to the latter in both
training and test domains images. This suggests that DIVA is indeed able to
make good use of the additional information provided by the domain label in
our dataset. Furthermore, the performance gap accentuates in the case of test
domains, which hints at a better generalization of DIVA to unseen domains
with respect to the Classifier baseline. However, it is important to note that the
performances of both models drop dramatically in the case of test domains,
suggesting that there is still much room for improvement when generalizing
to unseen domains.

Model Tram{ng Test.
Domains Domains

DIVA 0.85 0.33
Classifier 0.83 0.31

Table 1: C-Omniglot PT. Classification accuracy for DIVA and Classifier models on test
images and training/test domains.

Nonetheless, focusing only on performances may not provide us with a cor-
rect perception of the quality of our embedding. In particular, it is hard to eval-
uate the quality of the disentanglement and interpretability when only looking
at these metrics. Another valuable way to evaluate the quality of the disentan-
glement in the embedding is by inspecting the values of correlation between
pairs of latents. More specifically, we can compute a correlation matrix among
the various latent activations. Since DIVA’s graphical model assumes statisti-
cal independence between all three possible latent pairs, we expect to observe
correlation values that are very close to 0 in the entries that correspond to pair
of activations that reside in different latent spaces. In Fig. 13, we observe that
this is indeed the case for most pairs of activations considered, with a few
exceptions that exhibit moderate correlation.

As a Variational Autoencoder, DIVA also features a variational decoder

Pox (X|Zd/ Zy, Zy) (76)

to reconstruct the input image from the latents. We can therefore inspect the re-
constructions obtained by considering various subsets of latents (e. g., {zx, zy})
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Zy Zy

Zy 0.00

V4

Figure 13: C-Omniglot PT. Correlation matrix of latent activations in DIVA. The blocks
on the diagonal represent intra-latent correlation and are not matter of con-
cern when pursuing disentanglement

to verify whether the embedding is disentangled and interpretable. The value
of latents that are not considered during reconstruction is set to the mode of
their prior distribution before being fed as input to the variational decoder.
We thus expect to observe reconstructed images that, while different from the
original, still look like something that would reasonably appear in our dataset.
In our reconstructions, we expect the reconstructed image

* to be very similar to the original when reconstructing from {zq, zx, zy},
since all types of information are considered in this case;

* to feature the same scribble of the original when reconstructing from
{zx,zy}, but also to display a different image corruption since zq is not
considered;

¢ to feature the same character and image corruption of the original when
reconstructing from {zq,zy}, but also present a different writing style
since z, is not considered;

¢ to feature the same image corruption (and, in principle, the same writing
style, but this may be difficult to interpret in this case) when reconstruct-
ing from {zq,z}, but also display a different character since z, is not
considered.

The obtained reconstructions are shown in Fig. 14. The quality of disentan-
glement and interpretability in the reconstructions seems good when observ-
ing images from training domains. We can observe how reconstructing from
{zx,zy} has the only effect of completely removing the corruption from the
image, which is particularly evident in the case of domains such as dotted
line. Therefore, zq seems successful in capturing all and only domain infor-
mation, which is exactly what we want. Moreover, the absence of corruption
suggests that the identity domain is encoded by DIVA near the mode of the
latent space. The behavior is not surprising, as the identity domain is a special
type of domain that does not corrupt the image, making it a suitable “latent
neighbor” for many other domains. Furthermore, we notice that reconstruct-
ing from {z4, z,} only modifies the character part of the image by transforming
the scribble into a shape resembling a rounded edge box shape. Consequently,
even in this case, we observe the correct behavior as z, captures class infor-
mation. The resulting box-like character can be explained by considering its
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similarity to many existing characters, e. g., the letter “0” in the Latin alphabet.
Finally, when reconstructing from {zq4, zy }, we observe that changing the value
of the latent variable does not alter the type of corruption and class displayed
in the reconstruction. Instead, what seems to change is the writing style of the
character. Indeed, this is exactly the behavior we were hoping for in this case,
since it proves that z, contains residual information that does not represent
class nor domain.

(a) Training domain dotted line. (b) Test domain zigzag.

Figure 14: C-Omniglot PT. Reconstructions of the images in DIVA when considering
various subsets of latents. Original images are shown in the leftmost col-
umn.

Unfortunately, the disentangling and interpretability of the embedding do
not generalize to the test domains. In particular, domain information from
unseen domains is often encoded as class information, making the original
character unrecognizable. This is especially noticeable in the case of the do-
main zigzag. Nevertheless, the disentangled reconstructions of images from
the brightness and rotate domains seem to be satisfactory, perhaps thanks to
the similarity of such domains to fog and rotate respectively. Indeed, the poor
generalization capabilities were to be expected. Like many variational autoen-
coders, DIVA is also likely to struggle when dealing with out-of-distribution
samples, which is confirmed by considering the poor class discrimination per-
formance and reconstruction quality in test domains we have obtained in our
experiments.

For completeness, we also analyze the embedding provided by leveraging a
convolutional latent space in DIVA, i.e., by replacing the fully connected layer
found at the end of the variational encoders with a convolution. We refer to this
type of model as DIVA Conv. Comparing the accuracy obtained in class predic-
tion with our original DIVA architecture in Table 2 suggests an improvement
in the quality of the embedding, as we obtain marginally better performance
for test domains images. However, in this case, the correlation matrix in Fig. 15
exhibits a high amount of correlation between latents, which is undesirable as
it is a sign of the absence of disentanglement. Concerning the reconstructions
in Fig. 16, we can observe some imperfections in the disentangling capability
of DIVA Conv, even when only looking at images from training domains. For
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instance, we can observe how information about the dotted line is distributed
between z4 and z, while in the case of correct behavior we would expect z4 to
fully capture the information. Moreover, we also observe a perturbation in the
background of the image when not considering z4 in the reconstruction. This
may be caused by the model encoding the fog domain near the latent space ori-
gin, which should not be a source of concern. Interestingly, not considering z,
in the reconstruction produces a series of horizontal lines in the reconstruction
itself. Many characters include multiple horizontal lines in their shape, such as
the letter “E”.

Model Trainiﬁg Test.
Domains Domains

DIVA 0.85 0.33
DIVA Conv 0.85 0.35

Table 2: C-Ommniglot PT. Classification accuracy for DIVA and DIVA Conv models on
test images and training/test domains.

Zy Zy

Zy £ iR 1 0.00

Figure 15: C-Omniglot PT. Correlation matrix of DIVA Conv’s latent activations. The
blocks on the diagonal represent intra-latent correlation and are not matter
of concern when pursuing disentanglement

5.2.5 Refining the Quality of the Embedding: MI Minimization

DIVA has provided us with an embedding that is disentangled and inter-
pretable when dealing with images from training domains. However, it also
struggles when dealing with data from test domains, treating domain infor-
mation as class information. We thus aim to refine our disentanglement by
introducing further regularization into our model. In particular, we do so by
minimizing the Mutual Information (MI) between pairs of activations from dif-
ferent latents. Mutual Information is a fundamental quantity for measuring
the relationship between two variables. It quantifies the dependence of two
random variables X7, X, with the formula

I(X1,X2) = Dk (Px, x, |IPx, ® Px,) (77)

where Px, x, is the joint probability distribution and where Px, and Px, are
the marginals. One of the most interesting properties of M1 is that it is equal to
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Zy Zy Z4 Zq
Zy Zq Zyp Zy Zy Zy Zg

(a) Training domain dotted line. (b) Test domain zigzag.

Figure 16: C-Omniglot PT. Reconstructions of the images in DIVA Conv when consid-
ering various subsets of latents. Original images are shown in the leftmost
column.

0 if and only if the two variables are independent. In contrast, correlation, an-
other popular metric for modeling dependence, does not satisfy the above: two
variables can have zero correlation while still being dependent. Unfortunately,
MI is notoriously difficult to compute, with exact computation only tractable
for a limited family of problems. Therefore, we rely on the Mutual Information
Neural Estimator (MINE) [8], a parametric approach to estimate MI using deep
NNs. The method exploits the bound I(X, Z) > Ig(Xj, X2), where Ig(Xj, X3) is
the neural information measure defined as

To(X1,X2) = Sup Fr, [To X1, Xa)] — 0 (Ery, oy, [e7)] ) (78)
with Tg deep NN parameterized by 6. In practice, samples from the product
of marginals Px, ® Px, are obtained by shuffling the samples from the joint
distribution along the batch axis. The objective can then be maximized via
gradient ascent to find a set of parameters 0* that provides a sharp lower
bound of the true MI:

I(X],Xz) = IE]PX]XZ [T@*(X],Xz)] — log (IE:]pX1 ®Px, |:€T9* (X1,Xz)} > (79)

We therefore employ three different NNs To, , To,,, and Tp,, to estimate the
mutual information between the pairs (zq,2x), (z4,2y), and (zx,zy) respec-
tively. While MI as a KL divergence is potentially unbounded, we encounter
problems when training the MI estimators using an unbounded final output
function, e. g., linear. In particular, the networks tend to find a local optimum
that leads to the uninformative lower bound 0. For this reason, we decide to
bound the outputs of the networks using a sigmoid activation function. In
this case, though it is unfortunately impossible for us to obtain lower bounds
greater than 1, we at least manage to surpass 0. Indeed, all three networks
reach the maximum possible lower bound, or close to it. This is a clear indi-
cation that none of our latents are truly independent from the others, despite
correlation values and reconstructions seemingly suggesting otherwise. This is
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not surprising, as zero correlation and disentangled image reconstructions are
necessary but not sufficient conditions for independence.

Nonetheless, by having access to a MI estimator, we can now extend the
loss in DIVA to explicitly minimize MI between the three pairs of latents. For
each pair of latent (zq,zy), we add a weighted term I(zz,\zb) to the loss. We
then proceed to train both DIVA and the MI estimators in an alternating man-
ner, effectively rendering the MI minimization problem a minimax problem.
When maximizing MINE to obtain a sharp bound, we keep DIVA’s parameters
fixed and train the MI estimators, while the reverse happens when minimizing
MINE with the intent of obtaining independent latents. We find that for each
gradient step performed by DIVA, 5 gradient steps are needed by MINE to
properly address the shift in the distribution of the latents and re-adapt. In our
experiments, introducing MINE minimization significantly reduces the lower
bound of the MI computed by MINE, which is the desired behavior.

Unfortunately, we find that the regularization generally does not improve
class accuracy in DIVA. However, leveraging MINE minimization in DIVA
Conv exhibits higher quality reconstructions of training domains images, as
shown in Fig. 17.
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(b) Test domain zigzag.

Figure 17: C-Omniglot PT. Reconstructions of the images in DIVA Conv with MINE
minimization when considering various subsets of latents. Original images
are shown in the leftmost column.

5.2.6 DIVA and Colored Images

Before transitioning to testing the obtained embeddings in meta-learning, we
decide to evaluate DIVA’s disentanglement capabilities on colored images,
i.e., images that feature 3 input channels representing red, green, and blue
light. The cross-domain natural images are obtained by augmenting the CIFAR
dataset [73] with a collection of corruptions from various online repositories[17,
65, 99], obtaining C-CIFAR and, by extension, C-CIFAR PT. The reconstructions
are shown in Fig. 18.
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(a) Training domain gaussian noise. (b) Test domain brightness.

Figure 18: C-CIFAR PT. Reconstructions of natural images in DIVA. Original images
are shown in the leftmost column.

Unfortunately, DIVA is not able to disentangle domain and class informa-
tion in the natural image case. For instance, we can observe how both z4 and
z, erroneously store a large quantity of class information, such as the shapes
and colors of the original image. DIVA's failure in this field strongly suggests
that rethinking how we obtain disentanglement and interpretability of the em-
bedding will be necessary when scaling to harder problems.

5.3 LEVERAGING THE EMBEDDING IN LEO

We have managed to obtain a disentangled and interpretable embedding by
pre-training DIVA on images from C-Omniglot. We now want to verify whether
such embedding is also reusable, i.e., generalizes well to unseen classes and
domains. To do so, we reload in our LEO architecture the embedders found
in DIVA and the other baseline pre-training models to observe their effects in
our CDFSL classification setting. In particular, if our hypothesis is true, we ex-
pect to observe significantly higher performance for test domain tasks when
leveraging DIVA'’s variational encoders.

5.3.1 Identifying the Embedding in the Pre-Trained Models

Firstly, we need to identify the part of the model we are going to reload as
LEO’s embedder for each one of our pre-trained models. In the case of DIVA,
there are various possible options to choose from when defining the embed-
ding. For instance, we may decide to reload all three variational encoders and
consider their concatenated output as our embedding, or only consider the
variational encoder that captures class information. We opt for the second al-
ternative if not specified otherwise, since in principle domain and residual
information are completely useless when discriminating the class of the im-
ages. Moreover, we might choose to reload the entire variational encoder or
only a portion of it, such as its deep convolutional feature extractor. This is
because the harsh dimensionality reduction performed by the final fully con-
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nected layer could act as a disadvantageous bottleneck when meta-learning.
We refer to the embedding provided by the variational encoder as a whole
as DIVA Latents and to the embedding provided by the convolutional feature
extractor as DIVA Features. In contrast, our VAE model only includes a single
variational encoder. Since the structure of the variational encoder is the same
as the ones found in DIVA, we use the same rationale to refer to define VAE
Latents and VAE Features. Finally, concerning the Classifier model, we easily
identify the embedding as the deep convolutional feature extractor preceding
the fully connected classifier layer.

5.3.2 Pre-Training Normalization

Concerning the type of meta-batch normalization in the embedding, we have
seen that two possible choices are naive and task-specific normalization. How-
ever, in this case, since our embeddings are pre-trained, we can decide to rely
on the running statistics fi, & tracked during the supervised learning phase:

X— i

Vol +e

We refer to this type of batch normalization as pre-training normalization. In this
instance, the embedding obtained from an image is always the same, indepen-
dently from the other images in the batch of tasks. Moreover, since changing
the parameters of the embedding would skew the distribution of the activa-
tions, thus rendering the pre-training running statistics meaningless, we can-
not train the embedding further in this case.

X =

(80)

5.3.3 Experiments and Results

We identify 5 possible options for our embeddings and 3 possible ways to
implement batch normalization in meta-learning, leading to 15 possible unique
configurations for our experiments. In practice, some of them are discarded as
we believe they do not provide meaningful insight and address our limited
compute resources. To provide a fair comparison with the other experiments,
the meta-trained embedding is a deep convolutional feature extractor and its
structure is the same as the reloaded feature extractors found in the pre-trained
models.

When meta-training LEO with a pre-trained embedding, we decide to keep
the parameters of the embedding fixed. The reason for this is manifold. Firstly,
modifying the parameters of the embedding is undesirable when using pre-
training normalization. Furthermore, we currently do not have access to a
meta-training procedure that preserves the unique characteristics of our em-
beddings. The standard inner-outer loop meta-learning algorithm would most
definitely neutralize the stochastic nature of the variational encoders or the
disentanglement and interpretability provided by DIVA.

The results are available in Table 3. We can observe that the embeddings pro-
vided by VAE perform far worse than the other models. This is perhaps to be
expected since VAE does not make any use of the class and domain informa-
tion when learning the embedding, which leads to both sub-optimal capture of
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class information and unnecessary presence of domain information. Further-
more, we observe a sharp general drop in performance when comparing DIVA
Latents to DIVA Features. This suggests that the dimensionality bottleneck
caused by the last fully connected layer in the variational encoder erroneously
filters useful class information.

When comparing the various types of batch normalization, task-specific nor-
malization stands out with respect to the naive and pre-training normalization.
In the case of performance in training domains, we notice a sizeable drop in
performance. This is probably because that the running statistics computed
over the entire training dataset of images are much more reliable than the
ones obtained by only considering the support set of the task. Nonetheless, in
the case of test domains, there is a general improvement. Indeed, while run-
ning statistics may be more reliable, they are only suitable when dealing with
images from training domains. Instead, when dealing with images from test
domains, task-specific statistics are far superior. Interestingly, the improvement
is particularly noteworthy when using the DIVA embeddings. Perhaps this is a
sign that a disentangled embedding capturing only class information benefits
greatly from high-quality batch normalization statistics.

Unfortunately, when comparing the pre-trained embeddings with Baseline
LEOQ, the latter significantly outperforms the former, especially when it comes
to tasks from test domains. Interestingly, this suggests that the inner-outer loop
algorithm exhibits at least some domain generalization capabilities.

We also decide to examine the effects of meta-learning the embedding start-
ing from a pre-trained initialization. Interestingly, it seems that while most
embeddings reach a common plateau in terms of train domains performance,
the performance in test domains is negatively affected by the amount of pre-
training performed. For instance, reloading earlier epochs or considering mod-
els only trained on the identity domain seems to boost performance in test do-
mains. This suggests that pre-training actually hurts domain generalization ca-
pabilities in meta-learning and that we should instead strive to meta-learn the
embedding from scratch. We thus shift our focus away from the pre-training
of a good embedding to concentrate on possible extensions of the LEO algo-
rithm that encourages disentanglement and interpretability of the embedding
during meta-learning.

5.4 ORACLES

We employ oracle models, i. e., models trained on images and tasks from test
domains. Our goal is to understand if and how we should leverage a latent
representation of the domain of the task and to determine an upper bound on
the performance in test domains.

5.4.1 Oracle Pre-Training and Evaluation

Before focusing our attention on new architecture ideas that encourage disen-
tanglement and interpretability during meta-learning, we would first like to
gather additional information on what seems to work best when dealing with
CDFSL tasks. We could argue that the reason DIVA fails in providing us with
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Naive BN Pre-Training BN  Task-Specific BN
. Training Test Training Test Training Test

Embeddlng Domains Domains Domains Domains Domains Domains
Classifier 0.94 0.66 0.95 0.63 0.88 0.64
DIVA Features 0.94 0.66 0.95 0.65 0.91 0.72
DIVA Latents 0.89 0.60 0.89 0.55 0.84 0.65
VAE Features 0.67 0.45 — — — —
VAE Latents 0.41 0.35 — — — —
Meta-Trained — — — — 0.95 0.76

Table 3: C-Omniglot, 20-ways, 1-shot. Classification accuracy using different embed-
dings with various batch normalization methods on test classes and train-
ing/test domains.

a good embedding for CDFSL is due to its poor reusability, which is suggested
by many factors such as the insufficient quality of the reconstructions in test
domains. However, coming up with a method that can provide an embedding
that is at the same time reusable, disentangled, and interpretable is a very chal-
lenging task that, to our best of knowledge, is yet to be properly addressed.
Therefore, we want to understand how and whether we should leverage such
a powerful embedding. To do so, we resort to a simplified setting where we are
allowed to train our models on images and tasks from test domains. In this way,
we can effortlessly obtain such an embedding by pre-training DIVA on both
training and test domains images without spending time on coming up with
a model that can generalize to unseen domains. We refer to a DIVA trained on
images from both training and test domains as Oracle DIVA. For completeness,
we also consider a Classifier model trained on images from both training and
test domains, which we refer to as Oracle Classifier.

Pre-Training performances of the oracles are shown in Table 4. We can ob-
serve how Oracle DIVA manages to outperform Oracle Classifier in most do-
mains. Moreover, we want to make sure that Oracle DIVA provides us with a
disentangled and interpretable embedding, especially when dealing with the
test domains. The reconstructions in Fig. 19 display the correct behavior, with
z4 and z, capturing domain and class information respectively.

We also analyze the latents using t-distributed Stochastic Neighbor Embedding
(t-SNE) [89], a statistical method for visualizing high-dimensional data by giv-
ing each datapoint a location in a two-dimensional map. In t-SNE, datapoints
that are close to each other in the original high-dimensional space are encour-
aged to end up close to each other in the two-dimensional space as well. Simi-
larly, datapoints that are far from each other in the original space are also likely
to be far from each other in the two-dimensional space.

In our case, the data we want to visualize is a collection of latents obtained
from Oracle DIVA when encoding images from one of 20 possible classes and
one of the 16 available domains. When visualizing the latents of Oracle DIVA
with t-SNE, we expect to observe different behaviors depending on the type of
the latent we consider. In particular, if we want our latents to be disentangled
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Domain Oracle DIVA  Oracle Classifier
Dotted Line 0.85 0.84
Fog 0.85 0.84
Glass Blur 0.76 0.70
Identity 0.87 0.86
Scale 0.84 0.82
Shear 0.84 0.83
Shot Noise 0.83 0.81
Spatter 0.85 0.84
Stripe 0.85 0.85
Translate 0.82 0.84
Avg Training Domains 0.84 0.82
Brightness 0.85 0.85
Canny Edges 0.82 0.78
Impulse Noise 0.83 0.80
Motion Blur 0.83 0.81
Rotate 0.79 0.77
Zigzag 0.85 0.83
Avg Test Domains 0.83 0.81

Table 4: C-Omniglot PT. Domain-Specific classification accuracy for the oracle models
during pre-training.

and interpretable, then the visualization of z4 should show 16 discernible clus-
ters, with each one containing all the datapoints from a certain domain, and
no same-class clusters. Analogously, the visualization of z, should display 20
different clusters, each one containing all the datapoints from a certain class,
and no same-domain clusters. The t-SNE visualizations are available in Fig. 2o.
In the case of zq, we can observe that the behavior is generally correct, with
some misclustered datapoints and few overlapping clusters. Interestingly, we
observe that some domains such as dotted line and zigzag are particularly
near to each other, which is reasonable considering their similarity. Regarding
zy, the behavior is mostly the desired one, though unfortunately, some small
domain clusters appear, such as dotted line, zigzag, and stripe.

5.4.2 Experiments and Results

After pre-training our oracle models, we first reload the embedder they pro-
vide in our LEO architecture as already seen in Section 5.3. Because we want
to observe the benefits of the oracles solely from the point of view of disen-
tanglement, we still meta-train LEO on train domains only. We thus keep the
parameters of our embedder fixed when meta-learning to preserve the domain
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(a) Train domain dotted line. (b) Test domain zigzag.

Figure 19: Reconstructions of the images in Oracle DIVA. Original images are shown
in the leftmost column. The other columns contain image reconstructions
from the subset of latents denoted above.
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Figure 20: C-Omniglot PT. t-SNE plots of z4 and z,, in Oracle DIVA with class/domain
labels. Centroids are identified in the plot with the name of the label.

generalization capabilities of the oracles. Moreover, we also consider a Meta-
Oracle, i. e., LEO meta-trained from scratch on both training and test domains.

The results are shown in Table 5. Interestingly, leveraging pre-training nor-
malization in oracles also improves performance in test domains. This is be-
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Pre-Training BN Task-Specific BN

. Training Test Training Test

Embeddlng domains domains domains domains
Oracle Classifier 0.94 0.90 0.86 0.83
Oracle DIVA Features 0.91 0.87 — —
Oracle DIVA Latents 0.88 0.85 0.79 0.77
Meta-Oracle — — 0.94 0.93
Classifier 0.95 0.63 0.88 0.64
DIVA Features 0.95 0.65 0.91 0.72
DIVA Latents 0.89 0.55 0.84 0.65
Meta-Trained — — 0.95 0.76

Table 5: C-Omniglot, 20-ways, 1-shot. Classification accuracy using different oracle and
non-oracle embeddings with various batch normalization methods on test
classes and training/test domains.

cause the statistics are now also suitable for test domains. Generally, we can
observe that Oracle DIVA performs much better than non-oracle DIVA in test
domains, which is another proof that DIVA is not able to generalize to unseen
domains. Surprisingly, Oracle DIVA is outperformed by Oracle Classifier in
both training and test domains. This suggests that forcing disentanglement, at
least during pre-training, is not the correct way to generalize to unseen do-
mains in meta-learning.

Finally, the Meta-Oracle performance provides us with an upper bound on
the test domains performance we can hope to achieve. The fact that all the pre-
trained oracle embeddings perform worse than Meta-Oracle in test domains
suggests that focusing our research on pre-training models is not the correct
way to achieve top performance. Instead, encouraging domain generalization
directly when meta-learning seems to be a promising direction to explore.

5.4.3 Leveraging Domain Information

Oracle DIVA also provides us with a high-quality representation of the do-
main that is also suitable for the test domains. We thus want to find a way to
leverage this domain information effectively in order to boost performance in
our model. Discovering a method that successfully employs domain informa-
tion would make the search for a suitable domain embedding likely worth the
effort.

Initially, we consider a model where Oracle DIVA’s z4 and z,; latents are con-
catenated and considered as LEO’s embedding. We hope that LEO can learn
to exploit the domain information of the task to better guide the adaptation
process. Interestingly, we find that this causes LEO to tremendously overfit on
training domains, causing a huge drop in test domains performance. This sug-
gests that domain information is something that we want to avoid at embed-
ding level. Therefore, we leverage Feature-wise Linear Modulation (FiLM) [113]
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between the layers of the embedder to filter domain information from the em-
bedding via affine transformations. The parameters of the transformations are
dynamically computed by meta-learned NNs that receive as input a domain
representation of the task provided by Oracle DIVA’s z4. Unfortunately, we
find that even in this case performance in test domains does not improve, sug-
gesting that domain information is not something that we want to capture

anywhere in our model.



META-TRAINING THE EMBEDDING

Our experiments in Chapter 5 have suggested that pre-training hurts the per-
formance of our model. We thus focus on meta-learning the embedding from
scratch while leveraging techniques that address the CDFSL setting defined in
Section 5.1. We try many different approaches, such as pursuing disentangle-
ment and interpretability of the embedding during meta-training, enforcing
domain agnosticism of the embedding, and refining the quality of batch nor-
malization statistics in the embedder.

6.1 META-LEARNING DOMAIN INFORMATION

Succesfully leveraging domain information from pre-training has proven to be
particularly difficult in our CDFSL problem. However, since pre-training was
shown to hurt performance, one could argue that meta-learning how to cap-
ture domain information may instead bring significant improvement. There-
fore, to encourage disentanglement and interpretability during meta-learning,
we come up with the concept of domain-discrimination task. We then present
Disentangling Meta-Encoder, an original architecture that meta-learns a disen-
tangled and interpretable latent representation of the task.

6.1.1 Domain Discrimination Tasks

Until now, we have only considered tasks where images from the same do-
mains are to be correctly discriminated based on their class. We refer to a task
of this type as a class discrimination task. We now propose the dual version of
this type of task, the domain discrimination task.

In domain discrimination tasks, images from the same class are to be cor-
rectly discriminated based on their domain. The structure of an N-way, K-shot
domain discrimination task 7 remains unchanged with respect to the class
discrimination case:

D* ={{(xp 1,1 <N <N, 1<k <K (81a)
DI ={{x} ., M <N <N, T <K <k} (81b)

Like in the case of class discrimination, the distribution over domain discrim-
ination tasks can also be expressed as a Bayesian network. In particular, N
domain latent variables z¢ are sampled from a distribution over the domain
latent variables p4:

d d(

Zh ~ P z4), 1<n<N. (82)

At the same time, a single class latent variable z¢ is sampled from a distribution
over the class latent variables p°©:

z° ~p©(z°). (83)
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Each image in the task is thus sampled from a distribution over the images
p* that is conditioned on the values of the domain latent variables and class
latent variable:

X5 ~ P (xnlz,z%) T<n <N, T<k<K; (84a)
X1~ PX(xnlzh, z) TSN, 1<K <K, (84b)

With the concept of domain discrimination tasks, we aim to learn domain in-
formation in a FSL setting, which could provide more reusable representations.

6.1.2 Disentangling Meta-Encoder

We propose a new model, Disentangling Meta-Encoder (DME), to leverage both
class and domain discrimination tasks. DME is based on an encoder gg¢,,..
encoding the embedding of each support set image X}, , into class and domain
latent codes z7, , and zﬂ’k. The behavior of the model afterward depends on
the type of discrimination task considered. The obtained codes are averaged
grouping by label or across all the images in the tasks depending on the type
of the task.

e

Legend
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Figure 21: Disentangling Meta-Encoder pipeline for class-discrimination tasks.

For instance, in class discrimination tasks, we have:

1 K 1 N K
=g T 2E g 2 D e (85)
k=1 n=1k=1

The obtained codes are then decoded individually to obtain various different
subset of parameters for the discriminator of the task. In particular, we leverage
the class discrimination decoders gg¢ and 9Eb’jec to obtain the set of class-
specific parameters {07°}N_; and the domain parameter 0¢¢ respectively:

On =9y, (2n), T<n<N; (86a)
ec,d _ gfpfddec(Ad)~ (86b)

In practice, we consider a class discriminator f§. where we use the class-
specific parameters 05 as the n-th column for the final fully connected layer
and 0%4 as parameters for a feature extraction with the intent of filtering do-
main information.

In the case of domain discrimination tasks, dual reasoning is applied by
switching the role of class and domain. Indeed, here we consider two domain



6.1 META-LEARNING DOMAIN INFORMATION

discrimination decoders gg’;c and g$’ic to generate the parameters of a do-
main discriminator f gd

The codes are also adapted via gradient descent during adaptation to opti-
mize the performance on the support set The parameters of the encoder gg4,,,..
and of the four decoders g ¢d , 95 ¢dec, g ¢d o and gg’ic are meta-learned in the
outer loop.

6.1.3 Experiments and Results

We meta-train DME providing a balanced number of class and domain dis-
crimination tasks for each batch. The loss we consider is a weighted sum of
the average loss obtained in the two types of tasks. Furthermore, we consider
two types of feature extraction layers of the discriminators, namely attention
and fully connected layer, thus obtaining DME Attention and DME FC respec-
tively. A t-SNE analysis of domain information in the codes is shown in Fig. 22,
while the performances obtained are available in Table 6.
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(a) Class code. (b) Domain code.

Figure 22: C-Omniglot, 20-way, 1-shot. t-SNE plots of post-adaptation class and domain
codes in DME with domain labels. Images are from test classes and test
domains. Centroids are identified in the plot with the name of the label.

Model Tra1n11.1g Test.
Domains Domains

Baseline LEO 0.95 0.76
DME Attention 0.92 0.71
DME FC 0.94 0.74

Table 6: C-Omniglot, 20-ways, 1-shot. Classification accuracy of Baseline LEO and DME
variations on test classes and training/test domains.

We observe that DME does not provide any performance advantage over
Baseline LEO in class-discrimination tasks. A possible reason for this is that
the model is not able to fully filter domain information from the class code, as
otherwise the centroids computed for each domain in the t-SNE plot would
be much closer to each other. Nonetheless, another likely explanation is that
domain information is not useful at all in our CDFSL classification problem,
which is something that we already observed in Section 5.4. This would not
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be entirely surprising, since the domain is modeled as a perturbation variable
and shares no mutual information with the class of the image in our setting.
Consequently, in our future works, we decide not to pursue a high-quality do-
main representation of the task and instead rely on other promising directions,
namely domain agnosticism and reliable batch normalization statistics.

6.2 PURSUING DOMAIN AGNOSTICISM

Our oracle analysis in Section 5.4 and experiments in Section 6.1 have sug-
gested that the presence of domain information anywhere in our model is
something that we want to avoid. Furthermore, performances obtained when
reloading a pre-trained embedding in our model have been disappointing
when compared to meta-learning the embedder from scratch. Consequently,
we focus our attention on ways to meta-learn an embedding that is domain
agnostic, i.e., that is invariant to domain shifts in the image. We attempt to
achieve domain agnosticism by leveraging gradient reversal.

6.2.1  Gradient Reversal

Gradient Reversal is a technique originally proposed by Ganin and Lempitsky
[43] for performing unsupervised domain adaptation from a single training to
a single test domain. The approach leverages a novel gradient reversal layer
that multiplies the gradient by a certain negative constant during backprop-
agation. An auxiliary domain discriminator is thus connected via a gradient
reversal layer to the embedding of a standard deep NN. The domain discrimi-
nator is then trained jointly with the original model to discriminate the domain
label of a datapoint based on the corresponding embedding. In this way, while
the parameters of the domain discriminator learn to discriminate the domain
label, at the same time the parameters of the embedder learn to produce an
embedding that fools the domain discriminator, resembling the behavior of
adversarial training.

Empirical evidence shows that gradient reversal encourages the embedding
to be domain agnostic, which is exactly what we are looking for. Indeed, the
domain alignment obtained also results in a substantial improvement in stan-
dard classification performance in the target domain.

6.2.2 Meta Gradient Reversal

Implementing gradient reversal in our LEO model is not trivial, as our set-
ting vastly differs from the one tackled by Ganin and Lempitsky [43]. Indeed,
we are interested in solving a FSL problem, which presents many differences
compared to standard machine learning tasks. We are also dealing with mul-
tiple training and test domains, which makes alignment more difficult. Fur-
thermore, in our case, we do not have access to a large collection of unlabeled
images from the target domains, which makes domain adaptation much more
challenging, since we can at most rely on the few data available in the support
set of the task. Moreover, we have to decide where to position the auxiliary
domain discriminator within our model.



6.2 PURSUING DOMAIN AGNOSTICISM

In principle, we want to encourage domain agnosticism in an area of our
LEO model that is otherwise particularly abundant with domain information.
To discover possible intervention zones, we first meta-train Baseline LEO along
with a set of auxiliary domain discriminators that learn to discriminate the
domain of a task based on quantities in the model such as the output of the
embedder and post-adaptation value of the latent parameter code. We only
update the discriminators during the meta-learning outer loop, and we do not
backpropagate the gradient to the parameters of our original model as we do
not want to explicitly encourage extraction of domain information from the
images. Surprisingly, we find that the latent parameter code autonomously
achieves domain agnosticism, as the accuracy we obtain when discriminating
domain from its value is rather low. In contrast, the auxiliary discriminator in
charge of discriminating the domain from the embedding manages to achieve
accuracy very near to the perfect guess, which is a clear sign that domain
information is present in the embedding.
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Figure 23: Gradient Reversal LEO architecture.

After identifying our intervention zone, we proceed to leverage a gradient-re-
versed domain discriminator g4, ,, to encourage domain agnosticism in LEO’s
embedding, obtaining GR LEO. In particular, during meta-learning, we con-
sider the average of the embedding across all query images

N

_ 1 Z Z _

ngg - NK/ ng/ (87)
n

to discriminate the domain of the task. We leverage orthonormal regulariza-
tion for the weights of the discriminators since otherwise the gradients ob-
tained when introducing gradient reversal are too noisy. When updating the
parameters in the outer loop, we reverse the gradient for the parameter in the
embedder to encourage our embedding to be domain agnostic. Introducing
gradient reversal to our model reduces the performance obtained by the do-
main discriminator, which is a possible sign of domain agnosticism. Analyzing
the embedding via t-SNE visualizations also seems to confirm this hypothesis.

Unfortunately, when comparing the performance of GR LEO with respect to
Baseline LEO in Table 7, we observe a marginal drop in overall performance
in both training and test domains. Though our approach does not guarantee
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Model Tralmgg Test.
Domains Domains

Baseline LEO 0.95 0.76
GR LEO 0.94 0.75

Table 7: C-Omniglot, 20-ways, 1-shot. Classification accuracy of Baseline LEO and GR
LEO on test classes and training/test domains.

the ability to generalize to unseen domains in principle, it is surprising that
even training domains performance is negatively affected. By explicitly forcing
our model to discard domain information during meta-training, we would ex-
pect LEO to be better at extracting class information and consequently achieve
higher performance when confronted with training domain tasks. A possible
explanation for this could reside in the objective implicitly defined by revers-
ing the domain discrimination gradient, which is essentially maximization of
the cross-entropy of the discriminator. Domain agnosticism always leads to
random guess, which is not the optimal solution for the maximization objec-
tive when considering the possibility of guesses being worse than random.
Unfortunately, fooling the discriminator into performing worse than random
requires some type of domain information. Therefore, it could be the case that
our embedder learns to worsen the performance of the discriminator not by
providing a domain agnostic embedding, but by introducing fictitious domain
information in the embedding to deceive the discriminator. This is something
that we would want to avoid since it does not bring any advantage for classi-
fication. Nonetheless, as we do not observe worse-than-random performance
in the domain discriminator, we cannot verify whether this is effectively the
case. Possible future lines of work in this direction could instead consider ad-
versarial training and entropy maximization of the discriminator guess, which
should help in preventing this pathological case.

6.2.3 Discriminator Prediction Alignment

We further experiment on Gradient Reversal LEO by considering an alignment
of the embedding at adaptation time when dealing with out-of-distribution
domains. The approach is based on the observation that tasks from out-of-
distribution domains tend to exhibit a slight difference in the statistics of the
prediction made by the domain discriminator when compared to tasks from
training domains. We thus act on this discrepancy by implementing an embed-
der adaptation phase that precedes the original LEO inner loop. The goal of
the adaptation is to fine-tune the last layers of the embedder to obtain a do-
main discrimination prediction on the embedding that is similar to the average
prediction observed during meta-training. We manage to do so by minimizing
the mean square error via gradient descent to match the average mean square
error observed in the case of training domains. Unfortunately, even when align-
ing the embedding via this method, the performance in our model seems to be
unaffected.
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6.2.4 Other Experiments

We leverage gradient reversal in several ways to understand whether the tech-
nique can be useful in our setting. In particular, we also attempt to use gradi-
ent reversal by defining a domain-match pair discrimination problem, where
a discriminator is asked to recognize whether two tasks 77, 7, share the same
domain based on the value of the pair (xJ_ 9/1,?(2\) g,2)- A domain agnostic em-
bedding would lead to optimal performance for the problem that is equal to
random guess. Unfortunately, we do not manage to successfully train a dis-
criminator that achieves performance better than random guess in this case,
making the application of gradient reversal futile.

We also attempt to recreate a setting that is similar to the one found in the
original gradient reversal approach by introducing pseudo-unseen domains,
i.e., training domains that are not encountered when performing classification
but are instead used to align the distribution of the embedding across the do-
mains. In this case, we find that most pseudo-unseen domains benefit from the
alignment compared to the case in which alignment does not occur, though
the same is not true for some domains whose performance is instead nega-
tively affected by the alignment. Nonetheless, the performance in test domains
generally worsens.

63 REFINING BATCH NORMALIZATION

Previous experiments (Section 5.3) have suggested that the quality of batch nor-
malization statistics significantly impacts the final performance of our model.
However, since non-transductive meta-learning presumes no access to query
set data during adaptation, the statistics we can obtain from the small support
set alone are often quite unreliable and noisy. An interesting research direction
thus becomes to refine the reliability of batch normalization statistics.

6.3.1  Weighted Batch Normalization

Domain adaptation layers are motivated by the observation that activations
within a NN follow domain-dependent distributions. Domain shift is thus ad-
dressed by normalizing activations in a domain-dependent way, usually by
matching the first and second-order moments to those of the standard normal
distribution. The main idea can be easily extended to multiple source domains,
as long as the domain of each source sample is known. However, in some cases
domain of most or even all the samples in the dataset is unknown.

Mancini et al. [92] address the problem by introducing Weighted Batch Nor-
malization (WBN). They define the global input distribution qq4x as a mixture
of k Gaussians, one for each domain d. The statistics g, Gfi can then estimated
for each domain d from a batch of samples B = {xi}?:] as

b b
Ma =) &iaXi, 0q=) &ia(xi—Ha)% (88)
=1 iz
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where

q x(d|xi)
®Ai,d = —p d : (89)
2_i—1 9ax(dixq)

The value of qq)x(d[x;) is known for all samples x; for which domain informa-
tion is available and is otherwise inferred from data using a domain prediction
network. These probabilities become an additional input for the alignment
layer, denoted as w; q for the predicted probability of x; belonging to d. By
substituting w; g4 for q4x(d|xi) they can finally obtain the empirical estimates
for the mixture parameters fLq, 63 that are then used to normalize the layer’s
inputs according to the formula:

A A x. - (i
WBN(x;, wi; 1,6) = Y wiq——td, (90)
deD \/ 05+ €

Interestingly, the weights provided by the domain prediction network can be
leveraged when dealing with unseen domains to find a suitable interpolation
of the various domain-specific normalizations that employ running statistics
collected at training time. This potentially provides normalization statistics
that are reliable and can generalize to unseen domains, which is welcome in
our model.

6.3.2 Meta WBN

Generalizing the idea behind WBN to our setting is not straightforward. Since
the images within a task are all from the same domain, we opt for normal-
ization at the meta-batch level, thus sharing information on image statistics
across tasks during meta-training. Considering the problem of normalizing
tasks across the meta-batch would raise the question of how to generalize the
concept of standard batch normalization to meta-batches, where tasks are dat-
apoints. Therefore, we consider instead the simpler problem of normalizing
images within the meta-batch independently from task membership, to repo-
sition ourselves in a familiar, supervised-learning case and leverage the theory
behind standard WBN. Nonetheless, we still perform some small changes in
the algorithm to adapt to our case. In particular, since we know that a task
contains images from a single domain, we discriminate the domain of a task
T to obtain domain membership values q4/x(d|7;) that are valid for all images
Xij € Ti.

The domain discrimination of the task is performed via a stand-alone deep
CNN g¢,,., that takes as input the images in the support set of the task to
return the array of domain weights for the task w. Analogously to standard
WBN, we can leverage the predictions of the domain discriminator to inter-
polate various domain-specific normalizations when dealing with tasks from
unseen domains.

We thus test our implementation of Meta WBN by substituting the batch
normalization layers in Baseline LEO’s embedder with WBN layers, obtaining
WBN LEO. For completeness, we also consider WBN a convex combination of
task-specific normalization and WBN, with a meta-learned interpolation pa-
rameter, which we refer to as TWBN LEO. Unfortunately, our implementation
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Figure 24: Weighted Batch Normalization LEO architecture.

of WBN is very demanding on the memory resources, which forces us to fur-
ther reduce the batch size in our experiments from 8 to 4. The results are shown
in Table 8.

Model Traini‘ng Test'
Domains Domains

Baseline LEO 0.95 0.76
WBN LEO 0.94 0.62
TWBN LEO 0.94 0.74

Table 8: C-Omniglot, 20-ways, 1-shot. Classification accuracy of Baseline LEO, WBN
LEO, and TWBN LEO on test classes and training/test domains.

When leveraging WBN LEO we find that while training domains perfor-
mance is barely affected, test domains performance experiences a sharp drop.
There are multiple possible reasons for this occurrence, such as poor quality
of the interpolation provided by the domain discriminator or even the non-
existence of a suitable interpolation. Nonetheless, since the entropy displayed
by the domain discriminator is extremely low, we tend to favor the first expla-
nation. An interesting future line of work could therefore involve coming up
with domain discriminators that provide high-quality interpolation of train-
ing domains when presented with images from unseen domains. Furthermore,
since WBN may benefit from larger batch size, an optimized version of the
algorithm would be needed to fully evaluate the approach.

Leveraging TWBN LEO also seems to degrade test domains performance,
though much less severely. Interestingly, the parameters defining the convex
interpolation between the two BN techniques tend to favor weighted BN in the
low-level layers and task-specific BN in the high-level layers, suggesting that
domain information is especially present in low-level features. Indeed, this is
in line with the observation that features tend to become increasingly more
domain-invariant when going deeper into the network [5].
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CONCLUSION

In this thesis, we tackled the challenging problem of CDFSL classification, where
models are challenged to learn classification tasks while dealing with both data
scarcity and domain shift. The problem is often ignored in the literature, with
many recent works in Meta-Learning only considering simple benchmarks fea-
turing samples from a single domain. Despite the latest efforts and achieve-
ments in the field, the literature still does not offer a method that can gen-
eralize its knowledge to tasks from unseen, out-of-distribution data domains.
Finding a way to generalize meta-knowledge to new domains would enable
deep-learning solutions to tackle interesting and important problems when
the amount of available training data is low.

7.1 ORIGINAL CONTRIBUTION

To effectively address the CDFSL problem, we first proposed Corrupted-Om-
niglot, a novel CDFSL benchmark for classification. The dataset is obtained by
augmenting the images found in Omniglot [76] with the image corruptions
provided by Mu and Gilmer [99]. We thus built upon LEO [124] to address the
presence of multiple domains in our dataset.

Initially, we leveraged a disentangled and interpretable embedding provided
by a pre-trained DIVA [61]. We observed that, despite being the best among the
other pre-trained embeddings considered, DIVA’s embedding is outperformed
by a simple meta-trained embedding in test domains. Moreover, in this phase,
we also found that poor quality of batch normalization statistics and large
amounts of pre-training significantly worsens the model’s performance.

We then employed oracle models, i.e., models trained on test domains, to
understand how and whether we should focus on learning a domain repre-
sentation. Interestingly, we learned that including domain information from
pre-training causes performance to drop in test domains. Furthermore, we ob-
served that, in terms of embedding performance, Oracle DIVA is surprisingly
outclassed by a simple Oracle Classifier, casting doubts on whether disentan-
glement and interpretability of the embedding are beneficial.

We thus shifted our focus to meta-learning the embedding from scratch.
Initially, we tried to encourage disentanglement and interpretability during
meta-learning by proposing Disentangling Meta Encoder, a novel architecture
that meta-learns class and domain representations of the task. We found that
even in this case the obtained domain representation is not helpful to boost
performance in both training and test domains.

We then developed other promising ideas, namely meta-learning a domain
agnostic embedding via gradient reversal [43] and obtaining high-quality, reusable
normalization statistics by rethinking weighted batch normalization [92] in the
meta-learning setting. Unfortunately, both approaches failed to boost test do-
mains performance.
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7.2 FUTURE WORK

Because of our findings, we believe that future works in CDFSL should not
consider a pre-training phase and instead should focus on meta-learning from
scratch. Furthermore, we believe that, despite the initial failures encountered
with our experiments, a domain agnostic embedding and reliable batch nor-
malization statistics are two promising research directions that are not yet suf-
ficiently explored in CDFSL.

Moreover, we think that a promising line of work is to focus on the role of
adaptation. Compared to the static nature of the embedding, adaptation can
correct the model based on data from the task at hand, which leads to a rea-
sonable assumption of improvement in unseen domains. To this end, warped
gradients [39] may help in achieving the desired effect. Rethinking domain
adaptation techniques available in the literature [86, 148] for the adaptation
phase of meta-learning may also be effective in generalizing to unseen do-
mains.
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