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A B S T R A C T

The last few years have witnessed dramatic improvements in Machine Learn-
ing which led to major breakthroughs in many fields including computer
vision, speech recognition, and time series forecasting. These achievements,
which often outperform human beings, are based on powerful techniques
and algorithms which are all grouped in the field named "Deep Learning".

However, Machine learning systems are not inherently secure. The great
results of Deep Learning has led to the investigation of possible vulnerabili-
ties, finding that those models are susceptible to adversarial attacks which
dramatically reduce their performance. Adversarial attacks are a method to
craft slightly perturbed inputs which exploit the multi-dimensional boundary
shape of the model in order to fool it, without compromising the perception
that human beings have of it. Intuitively, adversarial inputs look totally dif-
ferent from the real inputs from the eyes of neural networks despite being
similar to humans.

Since the discovery of adversarial attacks of neural networks, a plenty of
countermeasures and detection techniques have been proposed but reliable
defenses to these attacks are an unsolved challenge.

In this Thesis we present Defense by Massive Inpainting, a novel approach
to harden neural network image classifier from adversarial attacks based on
a zero-trust strategy of the input. More specifically, it performs a total erase
of the input image and reconstruct it from scratch thanks to the inpainting
technique.

Experiments on this model shown the improved accuracy that it has against
the harder type of such attacks, namely the white box adversarial attacks.
Moreover, we compare the results of three different attacks under three
different networks against a specific baseline chosen because it is the only
using inpainting to restore parts of the images to protect from adversarial
attacks.

We also propose an evolution of such baseline to allow a faster inference
procedure with no loss on accuracy by changing the way in which it selects the
areas to inpaint. We called this second framework Saliency Based Localization
and Inpainting. Still, this new model is not as successful as Defense by
Massive Inpainting in being resilient to adversarial attacks and does not
follow a strict zero-trust approach.

This result confirms that the robustness of Defense by Massive Inpainting
is due to its zero-trust approach, which does not believe in any information
embedded in the adversarial image without firstly purify it.
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S O M M A R I O

Negli ultimi anni il Machine Learning ha beneficiato di notevoli miglioramenti
che hanno portato a importanti scoperte in molti campi, tra cui la visione
artificiale, il riconoscimento vocale e la previsione delle serie temporali. Questi
risultati, che spesso superano le prestazioni degli esseri umani, si basano su
potenti tecniche e algoritmi appartenenti al "Deep Learning".

Tuttavia, i sistemi di Machine Learning non sono intrinsecamente sicuri.
Infatti, le ottime prestazioni del Deep Learning hanno portato a indagare su
possibili vulnerabilità ed è stato scoperto che questi modelli sono suscettibili
agli attacchi avversari, tecniche che permettono di ridurne drasticamente le
prestazioni. Gli attacchi avversari sono un insieme di tecniche per creare input
leggermente perturbati che ingannano la rete neurale, senza compromettere la
percezione che gli esseri umani ne hanno. Intuitivamente, gli input avversari
sembrano totalmente diversi dagli input originali agli occhi dei modelli di
Deep Learning pur essendo molto simili per gli esseri umani.

Fin dalla prima scoperta degli attacchi avversari contro le reti neurali, sono
state proposte numerose contromisure e tecniche di rilevamento, ma difese
affidabili contro questi attacchi sono tutt’ora una sfida irrisolta.

In questa Tesi presentiamo Defense by Massive Inpainting, una nuova
difesa dagli attacchi avversari per i classificatori di immagini basati su reti
neurali che sfrutta una totale assenza di fiducia dell’input. In particolare, la
nostra difesa cancella completamente l’input e lo ricostruisce da zero grazie
alla tecnica dell’inpainting.

Gli esperimenti sulla nostra difesa mostrano una maggiore precisione
rispetto allo stato dell’arte contro la tipologia di attacchi più avanzata, vale
a dire gli attacchi avversari white-box. Inoltre, riportiamo i risultati del
confronto di tre diversi attacchi white-box su tre diverse reti rispetto alla
baseline, scelta in quanto è l’unica difesa esistente che utilizza l’inpainting
per correggere parti di input, seppur in modo molto diverso dal nostro.

Proponiamo anche un’evoluzione di tale baseline per consentire un’infe-
renza più rapida senza perdite di precisione, modificando il modo in cui essa
seleziona le aree dell’input da correggere. Abbiamo chiamato questo secondo
framework Saliency Based Localization and Inpainting. Tuttavia, questo nuo-
vo modello non ha lo stesso successo di Defense by Massive Inpainting come
robustezza agli attacchi avversari e non segue neanche un rigoroso approccio
zero-trust, in quanto segue l’approccio della baseline.

Questo risultato conferma che la robustezza di Defense by Massive Inpain-
ting è dovuta al suo approccio zero-trust, che non prende per vera alcuna
informazione incorporata nell’input avversario senza prima purificarlo.
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1
I N T R O D U C T I O N

Deep Learning based image classification models are becoming each day
more present in our lives in order to help us in creating intelligent work
applications or simply in order to replace the human need to perform many
repetitive tasks.

Figure 1.1: A silde from the 2017 Economic Report of the President of the United
States of America talking about computer vision implications

Their increased usage and popularity is due to their high accuracy, such
that the application of Neural Networks to image classification was even
presented in the 2017 Economic Report of the President of the United States of
America (Figure 1.1). Indeed, recent networks are now capable of outperform
humans’ brain in many object classification tasks.

Despite their good generalization, Deep Neural Networks suffer of a drop
of accuracy in presence of small amounts of artificial generated noise in the
image, namely adversarial perturbations. Thus, a lot of efforts have been
spent in these years (Figure 1.2) to understand the deep functioning of this
vulnerability present in Neural Networks models, how to exploit it to perform
adversarial attacks, and how to defend from them. New defense methods are
coming out on a daily basis and the research field is very active.

1



2 introduction

Figure 1.2: Cumulative number of papers about adversarial attacks since 2014 [63]

1.1 problem description

Figure 1.3: From left to right: a greyscale image of Lincoln with a resolution of
16px× 12px, the same image with the pixels labeled with numbers from 0 to 255

which indicate their intensity, and these numbers by themselves in a matrix form.
Source: [61]

While there are only few comprehensive theories of our brain functioning
on image recognition, a Neural Network (which is supposed to mimic our
brain’s computations) classifies images by only looking at the numbers which
compose it, that are the pixel values. From a network perspective, it would
be completely useless to classify the image of Lincoln shown at the left in
Figure 1.3 because the classifier would need the pixel values shown at the
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right. On the contrary, it would be hard for a human to guess what is shown
in a picture by only looking at the rightmost matrix shown in Figure 1.3.

From a human perspective, the capability to classify an image based on
our vision perception and not on pixel values makes us immune from these
slightly, human-invisible changes, which objective is to alter pixel values in
order to generate a misprediction of an image in a Neural Network.

Figure 1.4: Two images of a tabby cat. The rightmost image is perturbed by some
adversarial noise and the network mispredict it by labeling it as guacamole.

Consider Figure 1.4, the rightmost image is quite identical to the leftmost
except a few pixels which slightly differs from the original. This small pertur-
bation, if carefully executed, makes any Neural Network to mispredict the
object shown in the image. In this case, the given model would perceive it as
guacamole with 99% of confidence.

Unfortunately, the problem is far beyond the simple perception of the
tabby cat as guacamole, because the same concept of slightly perturbation
can for example be applied to physical object to fool the computer vision
mechanism present in autonomous cars or any other computer vision system
which process and classify images in order to take decisions on it.

At the center of Figure 1.5 it is possible to see a graffited stop sign, quite
usual for anyone driving a car. Being a common situation, also self-driving
vehicles should be aware of it and indeed the center image is correctly
classified as a stop sign. However, if we consider the two other images, these
are adversarially perturbed images that fake themselves to be a 45mph speed
limit sign, and a self driving car which see one of the two mentioned signs,
would accelerate instead of stopping.

It is clear that in safety-critical environments, we can not accept that a
computer vision system may fail. But also in non-safety critical environments
adversarial attacks can play a role. Consider for example the 2020 Congres-
sional Candidate Andrew Walz shown in Figure 1.6. This image was never
been shot: it is a computer generated image generated by a process known
as DeepFake Generation. An high-school student just created some of these
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Figure 1.5: Three images of a physically graffited stop sign. At the center there is a
real graffiti of a stop sign correctly perceived as a stop sign. On the left and on the
right of it, we have a adversarial graffited stop sign which is perceived as a 45mph
speed sign [58]

Figure 1.6: DeepFake image of a non-existent person who fooled Twitter into
believing that he is a 2020 Congressional Candidate

images and a Twitter profile faking to be him, and he got the "Twitter Veri-
fied" blue check that was enforced by Twitter during the election period to
avoid fake news and election manipulation. The motivation behind the blue
check assigned to a fake person is related to adversarial attacks: nor Twitter
Employees nor anti-deepfake systems were able to classify these images as
fake, because such images contains a small adversarial perturbation, which
successfully fooled the neural network DeepFake classifier.

Once again, it is not acceptable that all the neural networks performing
computer vision can be fooled with such ease and scientists all around the
world are struggling to find a way to defend from those attacks.
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1.2 generation of adversarial examples

Figure 1.7: Visualization of 2 dimension in which we can perturb an image of a dog.
The color represent the network confidence in recognizing a dog in the image. The
light blue region is the area where the dog class gets more than 50% of confidence
and thus in the light blue area the prediction is always correct. The green area
instead includes a confidence in the true class lower than 50% but higher than 20%
that means that the object is often classified correctly depending on other classes.
The blue area means a confidence in the true class between 20% and 1%, while the
yellow area (not shown here) would represent the area where the confidence of the
dog class is lower than 1%.

But how are Adversarial Examples generated? Let’s consider the 32px×
32px image of a dog shown in Figure 1.7 taken from [62]. In this figure, two
random perturbation directions are shown. We can see that increasing the
perturbation decreases the confidence that the network has in predicting
the true class, but the two perturbed images on the right (misclassified as
truck and turtle respectively) can not yet be called adversarial examples
because the added perturbation is too high and it is difficult also for a human
to identify the dog in those images. The boundaries shown in the figure
are sufficiently broad to avoid adversarial attacks which follows these two
directions. However the possible directions are 32× 32× 3 = 3072, and we
only picked two of them randomly.

In Figure 1.8 it can be seen that by carefully choosing the way in which
we want to perturb the image, it is possible to find adversarial directions
in which the perturbation needed to fool the classifier is minimal, and thus
follow that directions. In this case the image classified as airplane on the
bottom right and the original image classified as dog on the left are quite
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Figure 1.8: Visualization of 2 dimensions in which we can perturb an image of
a dog, where one of them is an adversarial one. The color represent the network
confidence in recognizing a dog in the image. The light blue region is the area where
the dog class gets more than 50% of confidence and thus in the light blue area the
prediction is always correct. The green area instead includes a confidence in the
true class lower than 50% but higher than 20% that means that the object is often
classified correctly depending on other classes. The blue area means a confidence in
the true class between 20% and 1%, while the yellow area is where the confidence of
the dog class is lower than 1%.

identical from a human point of view, but successfully manage to fool the
network.

Figure 1.9 is the plot in three dimensions of Figure 1.7 and by looking at
it we can see that the convex optimization problem of finding adversarial
examples can be simply solved with traditional gradient descend algorithm,
powerful and fast ways explicitly designed to follow the gradient direction
until a local minima.

To avoid this, what scientist has done as first try was to embed layers
which are not differentiable or highly irregular in order to mislead an adver-
sary which want to follow the gradient direction to find the best adversary
direction to perturbate the image.

The resulting confidence surface when a non differentiable layer is present
is shown in Figure 1.10. Compared with the original surface shown in Figure
1.9, we see that having added to the classifier an irregular layer did not allow
anymore attackers to exploit common gradient based method. However this
entire class of defenses was proved to be ineffective as it is possible to build a
substitute smooth model which imitates the boundaries of the original one
and has the same high-level shape of the gradient, then attack such surrogate
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Figure 1.9: Plot in three dimensions of Figure 1.7.

Figure 1.10: Plot in three dimensions of Figure 1.7 with a non differentiable, highly-
irregular gradient.

model via common convex optimization methods and finally transfer the
generated adversarial images back to the original classifier. In such a way
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the generated images will fool the classifier with irregular gradient and the
defense is ineffective.

In general, no effective and complete defense has been found so far, and in
this Thesis we want to explore this field of research in order to find a new
defense mechanism which can attenuate the problem of adversarial attacks.

1.3 methodology and document structure

The structure of this Thesis will follow our progresses during the work.
Each chapter represent an idea we had developed and is composed of an
introduction focused on the theoretical aspects, hypotheses and motivations
of our decisions, followed by a presentation of the experiments we did
along with the comments associated with them. Eventually each chapter is
concluded with a discussion of some key findings which made us proceed in
the research and links to the subsequent chapter.

A summary of each chapter is as follows:

• High level overview: In Chapter 1 we present a general overview of
the critical aspects from different points of view along with the scenario
in which our Thesis was developed.

• Problem formalization and state of the Art: In Chapter 2 we provide
to the reader the needed background to this work about the problem
and the state-of-the-art both for attacks and defenses. We clarify the
taxonomy of such field and we clearly state where our work collocates.

• CIIDefence baseline: In Chapter 3 we present and motivate the choice
of CIIDefence as our baseline. We analyze in depth its functioning, spot
areas of improvements and we pose the basis for our work to begin.

• Saliency Based Localization and Inpainting: Thanks to the knowledge
acquired from our baseline, in Chapter 4 we develop some ideas to
upgrade our baseline in order to improve both time and accuracy
performance. In this chapter the main idea behind the results of this
Thesis started to arise.

• Defense by Massive Inpainting: Our core idea that started in the
previous chapter was developed in Chapter 5 and led us to the main
result of this work. We present motivations about each choice and we
identify the best hyperparameters via ablation studies.

• Conclusion: In Chapter 6 we comment all the journey of our work,
integrating it with personal considerations. A brief summary of what
we achieved is written there along with some possible starting points
for future works.
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1.4 contributions

In this Thesis we perform a research work around the field of Digital Ad-
versarial Attacks on Deep Learning image classifiers. Our main contribution
are:

• We analyze in-depth the work of Gupta and Rahtu about CIIDefence
and we identify some critical aspects in it. We state a way to resolve them
and we propose a possible explanation for the different performance
that they have.

• We show an evolution of their work toward a zero-trust approach.
However, in order to maintain a localization stage we need to stop before
reaching a complete zero-trust strategy. We analyzed the performance
of our new strategy and we reach great time improvements without
any loss in the accuracy.

• We suggest a saliency based method instead of Class Activation Maps
in order to purify areas of the adversarial examples before submitting
them to the classifier to increase its efficiency.

• We propose a novel strategy, name lyrics Defense by Massive Inpainting,
which make use of a full zero-trust approach applied to the input in
order to be more robust to adversarial attacks. We stress each stage of
our strategy in order to be methodological compliant with the state-of-
the-art.

• We show how it is possible to employ a Generative Adversarial Network
in order to transform all the adversarial perturbation into standard noise.
We explain possible trade-offs between the level of noise generated and
the level of adversarial perturbation removed.

The experimental results show that our proposed Defense by Massive
Inpainting outperforms the CIIDefence baseline and is more resistant to
full-white box attacks where the attacker knows, in addition to the classifier
structure, also the defense mechanism in front of it. Compared with the state
of the art our defense has similar performance and is fully compliant with
the proposed methodological order proposed by [62].





2
B A C K G R O U N D

Since the advent of convolutional neural networks for image classification,
the computer vision field has seen many important milestones such as Deep
Networks, Inception nets and ResNets, all of them aiming to further improve
the classification accuracy on many image classification tasks. However, de-
spite their high and still increasing accuracy, all those models were proved to
be intrinsically weak to small perturbation of the input data called adversarial
examples [73]. Even worst, some years later Kurakin, Goodfellow, and Bengio
proved that while networks tend to be weak to perturbations, attacks do not
(Figure 2.1). More formally, an adversarial example is an input data that has
been intentionally perturbed very slightly in an artificial way intended to
cause a neural network classifier to make a wrong prediction. These types
of attacks can thus constitute a serious threat in many real systems because
they may compromise the correct behaviour of deep learning models. For
example, adversarial examples can be printed on standard paper and still be
misclassified if captured trough camera app (see 2.1).

Figure 2.1: Demonstration of a black box attack performed on a phone app for
classification in [20].

For instance an adversarial example crafted on a sticker and attached on
a road sign might cause an autonomous car to perform different actions
than it is intended to do by that road sign, causing a danger. Likewise,
adversarial examples applied on human faces might fool face recognition
systems, making those systems unreliable.

11
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2.1 taxonomy

2.1.1 Terminology

As the field of adversarial attacks of a neural network is very wide, in this
section we try to give an explanation of common acronyms that will be used
later in this thesis.

• ILSVRC: Being the acronym of ImageNet Large Scale Visual Recognition
Challenge [68], this competition takes place each year, where teams
from all around the globe compete in different challenges such as image
classification or image localization. The interest behind this competition
has generated a lot of research going in the direction of achieving a
performance boost in this challenge, often leading to new network
architectures or new techniques.

• Adversarial Example and Original Input: Those two terms refers to the
image submitted to the model for the prediction. While the Original
Input is an image that has not been tampered, an Adversarial Example
is an image artificially altered with imperceptible perturbations added
to fool the classifier. Following the definition of Szegedy et al. in [48]:

«We expect networks to be robust to small perturbations of
its input, because small perturbation cannot change the object
category of an image. However, we find that applying an
imperceptible non-random perturbation to a test image, it is
possible to arbitrarily change the network’s prediction. These
perturbations are found by optimizing the input to maximize
the prediction error. We term the so perturbed examples
adversarial examples.»

2.1.2 Network architectures

In the last twenty years a huge number of network architectures were pro-
posed and many of those brought with them new ideas and techniques
to improve their performance such as decreasing the time needed to train,
increasing the speed in predicting a sample, or increasing the classification
scores. While there are a lot of those architectures, some of them are widely
used especially in comparing performance between different research works.
Here we briefly list the ones that we will use in this thesis and will give a hint
about their structure and behaviour, being conscious that this list does not
want and can’t be an exhaustive explanation for which the reader is invited
to read the original papers describing each network.
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• VGG16: Originally proposed by Simonyan and Zisserman in [69],
VGG16 has achieved state-of-the-art performance at ILSVRC2014, where
it scored 92.7% as top-5 accuracy, quickly becoming a must in research
papers. Compared to previous winners of the competition, VGG is
way deeper and it features convolution layers of size 3x3 along with a
maxpool layer of size 2x2. The drawbacks of this network architectures
are its extreme slowness in the training phase and the heavy weights
pack it needs which size up to half a GB. In the end, VGG16 is still
considered an excellent vision model and it is widely used to compare
performance across various research projects, reason why we have cho-
sen to benchmark our defense on it. Another motivation behind the
choice of VGG is that we want to explore how much the deepness of a
network influence its robustness to adversarial examples.

• ResNet-101: Being the winner of ILSVRC2015, the name of this network
comes from the words "Residual Network" and it was originally pre-
sented by He et al. in [70]. After the success of VGG16, all the networks
adopted very deep architectures. This process however caused the so-
called vanishing gradient, a state where deep neural networks lose their
gradient due to their deepness. Indeed, during backpropagation, the
gradient of earlier layers is obtained by multiplying the gradients of
later layers and if those gradients are less than one, their multiplication
vanishes very fast. Residual Networks solved this problem by using
skip level connections between layers to transmit information even in
the case of vanishing gradient. In addition, Residual Networks include
blocks starting and ending with 1x1 convolutions in order to reduce the
number of parameters and the time complexity while not degrading
the network performance too much. Other than being a state-of-the-art
architecture, we will use ResNet in this thesis because we know that
defeating adversarial attacks often starts from image restoration but
those techniques cannot recover the same level of details of the original.
We then want to investigate how the skip-level connections employed
in residual block can help in the classification of an image that has been
firstly altered and then restored.

• Inception v3: Proposed the same year of ResNet-101 by Szegedy et al.
in [71], the goal of Inception v3 was to reduce as much as possible
the network complexity that VGG16 had brought in the year before.
To accomplish this challenge, Inception v3 uses three different block
types, each one of them aiming at reducing the number of parameters
in a different way. Thanks to factorizing convolutions and efficient grid
size reductions, Inception v3 was the first runner up at ILSVRC2015

scoring comparable performance to the state-of-the-art but having very
few parameters if compared to both VGG16 and ResNet-101. Being
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complementary to VGG, we selected this model to understand possi-
ble correlation between the number of parameters and the adversarial
robustness. In addition, vanilla Inception v3 operates on input size of
299x299 while the other two network require an input image of size
224x224. Investigating this architecture, then, may also reveal correla-
tions between adversarial robustness and the image input size.

2.1.3 Types of adversarial attacks

In the last years, Machine Learning has become pervasive is our life. New
systems and models are being deployed in every domain that can be imagined,
leading to a widespread deployment of software based inference and decision
making including but not limited to, neural networks. Such pervasiveness
has generated a lot of attention in finding potential attacks, that now space
towards many possible application fields. In this section we want to give to
the reader a basic view on attack types, and then we will focus on the types
of adversarial attack we will use in this thesis. In 2016, Papernot et al. in [38]
proposed the division of Machine Learning attacks in two categories:

• Attacks on confidentiality and privacy: this category of attacks attempt
to expose the model structure and parameters (which may be a valuable
intellectual property) or the data used to train it. This latter class of
attacks is particularly harmful as it specifically target the privacy of
the data source, for example in a clinical context, it could compromise
the privacy of patient clinical data used to train medical diagnostic
models. Potential risks are due to the extraction of the training data
starting from the model’s predictions [40], to adversaries performing
membership test to discover whether an individual data point is in the
train dataset or not [39], or to the possibility of recovering partially
known inputs using the model to complete an input vector [40].

• Attacks on integrity and availability: this category refers to attacks
attempting to influence the model outputs. As illustrated in Figure
2.2, depending on which context the Machine Learning application
is working, an attacker may have different goals such as mining the
availability or breaking the integrity. In an availability perspective, con-
sider a network intrusion detection system that shutdown the network
infrastructure if an attack is detected: by crafting adversarial example
in the form of network traffic, an attacker may fool the IDS making it
believe an intrusion is in place and thus causing availability problems
(the network is shut off) even without being able to breach the security
of the network infrastructure.
Attacks focused on integrity, are a slightly different variation of availabil-
ity attacks in which the attacker’s goal is to compromise the behaviour
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of an agent by forcing it into doing actions different to those it should
do. Both the attack surface and the attack methods are the same for
both availability and integrity attacks, but in the latter we can imagine
an autonomous driving vehicle mispredicting a stop sign and keeping
going on without stopping, or an autonomous stock price trader going
all in on a specific stock because it was fooled with small (adversarial)
variations of its price, while in availability attack we just need the archi-
tecture to stop working.
It is important to note that the example considered are referring only
to attacks performed in the testing phase. However, attacks can be
executed also in the training phase, for example by injecting into the
train dataset specific adversarial input in order to compromise the en-
tire learning process and thus the integrity and/or availability of the
network [24].

Figure 2.2: A good visualization of the general context in which an adversarial
attack is inserted taken from [38]. The generic machine learning pipeline on the first
row is illustrated with two examples coming from a computer vision model used by
an autonomous driving architecture to interpret traffic signs and a network intrusion
detection system.

For the rest of this thesis, we will focus only on attacks on integrity and
availability. As anticipated, this category contains two different types of
attacks with respect to the phase in which they are executed, that are:

• Evasion attacks: Performed in the testing phase, this attack assumes
that the attacker has no way to influence the network different than
altering its input. The training phase happens before the execution of
the attack and there is no way for the attacker to influence it. The goal is
to perturb the image as little as possible while causing a misprediction
in the architecture.
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• Poisoning attacks: Performed during the training phase, in this attack
the adversary is able to inject custom data points in the training dataset
or to directly perturb the images of the training dataset before they
reach the network. This alteration of the training dataset affects the
performance of the network, and the goal of this attack is to inject or
to alter the lowest number of images in order to degrade the network
accuracy on a clean test dataset as maximum as possible.

Being the evasion attack the most common and most studied case we will
focus on this attack scenario, that can still be divided with respect to the
type of the input that the adversary provides to the architecture, in these two
categories:

• False Positive: this input is classified with high confidence by the
classification model but is not recognized as belonging to any specific
class by a human. An example of this attack is shown in 2.3

• False Negative: the classification of this input is obvious and straightfor-
ward for a human but the classification architecture fails into classifying
it correctly. An example of this attack is shown in 2.5.

Figure 2.3: An example of a false positive adversarial example. This input can’t be
recognized by any human as belonging to any class, but is perfectly recognized with
high confidence as a panda by a fooled classification model.

The most studied type of adversarial input is the false negative. Indeed, for
this type of input attackers try to generate images that belong to different
classes with respect to what an human see straightforwardly in them. In
addition these images are often crafted by using as a starting point a real
input and perturbing it with the minimum possible adversarial noise. By
doing that, a human will encounter much more difficulties to spot the attack
and the amount of perturbation added is minimized (in the false positive
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input instead, if we start from a real input we would basically need to alter
each pixel with high perturbations). Following the literature, we will focus
only on false negative adversarial example generation attacks.

Still, evasion attacks on integrity finalized on the creation of false negatives
can be divided in two groups based on the knowledge the attacker has on
the model.

• In white-box attacks, the attacker has full knowledge about the classifi-
cation architecture, that is, it is possible to exploit information related
to the training data distribution, to the training algorithm, to the clas-
sification model and to the internal model parameters. In white-box
attacks, the adversary usually searches for the most vulnerable areas
of the feature space and, having access to the internal weights, crafts
non-random perturbations that once added to clean images cause a
misclassification of the input. An important mention that will be used
later should be taken here: in a white-box settings, the attacker should
also be aware of any defense that is in place [5] on the architecture. This
lack of information often causes many research work to claim white-box
performance when the attacker is not aware of the defense but in many
of them, if the attacker knows about the defense, it would be obvious
how to bypass it.

• In black-box attacks, the attacker only has the capability to query the
classification architecture as an oracle, that is, it is possible to submit
any input to the classifier and collect each output that the network
produces. Using this kind of techniques usually involve the gathering
of information about the training data distribution, the training of a sur-
rogate model artificially created to imitate the classification bounds of
the original network, attacking the surrogate with white-box techniques
and transfer the attack on the original model.

Similarly to previous works [1, 3], we will evaluate our defense strategy
against white-box attacks in order to have comparable results with the litera-
ture. In addition, accordingly to how Carlini et al. rephrase the Kerckhoffs’
principle [17] in On Evaluating Adversarial Robustness [5], a defense strategy
can be robustly evaluated only providing the complete knowledge of it to the
adversary, as in a white-box scenario.

2.2 state of the art

2.2.1 Adversarial Attacks

Following what has been done with the network architectures, in this section
we want to illustrate the attacks that will be used later in this thesis, along with
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Figure 2.4: An overview of the relationships between the group of attack under
study and the general attack division.

their functioning mechanism, their strengths and their weaknesses. As stated
in the previous section, we believe that the most significant defense should
be able to defeat white-box attacks, and so all the considered attacks will use
the information available inside the model to craft adversarial examples.

• Fast Gradient Sign Method: FGSM is one of the first studied adversar-
ial attacks. Proposed in 2015 by Goodfellow, Shlens, and Szegedy [73],
it uses the sign of the gradient available inside the model pipeline to
craft an adversarial example in a non-iterative fashion. As shown in 2.5,
FGSM sums to the input image a small vector whose elements are equal
to the sign of the elements of the gradient of the loss function with
respect to the input rescaled by an imperceptibly small constant. Being
x the input image, ε a small coefficient, ϑ the weights of the model, y
the target associated with the input images and J(·) the loss function,
the adversarial example is crafted as follows:

xadv = x+ ε · sign(∇x · J(ϑ, x, y))

Figure 2.5: A demonstration taken from [73] of the Fast Gradient Sign Method
applied to GoogLeNet (Szegedy et al. [49]) on ImageNet.
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• Projected Gradient Descent: PGD is a well-know mathematical tech-
nique presented for the first time in [72] and its adaptation to neural
networks is considered the most complete white-box attack because it
reduces the effort the attacker needs to find the best attack by being
quite always effective. The key point to understand PGD, is to consider
it an attempt to find the perturbation that maximises the loss that a
model has on a specific input while keeping the size of the perturbation
- normally expressed as a L2 or L∞ norm - smaller than a specified
amount, as shown in 2.6. To accomplish to this, PGD initializes the ad-
versarial example randomly in the feasible set around the input image,
and then loop until convergence the following steps:

1. Take gradient step in the direction of maximum loss

2. Project the perturbation back into the feasible ball

Figure 2.6: A demonstration taken from [60] of the Projected Gradient Descend
method applied to generate an adversarial example which maximizes the prediction
loss in the L2 feasible ball.

• DeepFool: Despite not widely known as PGD and FGSM, this method
is gaining a lot of attention thanks to its time-efficient adversarial
examples generation and its smaller perturbations. Presented in 2016

[51], at each iteration DeepFool approximates the distance between
the actual adversarial image xadv and the boundary which defines
the region of the space where the input x is correctly classified. Then,
it computes the perturbation vector that reaches this boundary and
updates the current estimate. These greedy iterations continue until
xadv is misclassified generating an adversarial example that often has



20 background

a smaller amount of adversarial perturbations with respect to other
methods, as shown in 2.7.

Figure 2.7: Comparison between DeepFool and FGSM taken from the original
DeepFool paper [51]. In the first row it is shown the adversarial example generated
by DeepFool xDF classified as turtle instead of whale, along with its perturbation.
In the second row instead it is shown the adversarial example generated by FGSM
xFGSM still misclassified as turtle, along with its corresponding perturbation. In this
case, DeepFool leads to a smaller perturbation.

2.2.2 Defense Strategies

Considering the importance of the correct functioning of Convolutional
Neural Network models in untrusted environments, many defense strategies
has been developed. Most of those, however, are primarily focused on datasets
containing a small number of classes or dataset containing small images. Even
if these works are helpful in the research process against those attacks, such
methods are not able to scale to large datasets like ImageNet. In addition, as
defense methods should be as less intrusive as possible, Papernot et al. have
identified four distinct characteristics that make a defense strategy preferable.
Following their work in [4], a defense method should:

• Have minimal impact on the architecture: unless tested and proved,
defense techniques should limit the modifications made to the architec-
ture because introducing new architectures not studied in the literature
requires a full analysis of their behaviour along with a careful design
and benchmarking.



2.2 state of the art 21

• Maintain the original accuracy: defenses against adversarial attack
should not significantly decrease the model’s classification accuracy on
clean inputs.

• Maintain speed of network: the proposed solutions should not signif-
icantly impact the time that the classifier needs at test time. Indeed,
the time consumed at test time matters for the usability of the model,
whereas an impact on training time is acceptable because it can be
viewed as a fixed cost.

• Work for adversarial samples relatively close to points in the training
dataset: following the definition of adversarial examples, those inputs
that are extremely far away from the training dataset are irrelevant to
security because they can easily be detected, at least by humans.

In general, we can divide the defense strategies in five different non-exclusive
categories, so that a defense can belong to many of them at the same time.

1. Gradient Hiding: provided the fact that we are considering white-box
attacks where the attacker has full access to the model backbone and
that most adversarial attack methods use the gradient of the model to
generate adversarial examples, one can challenge himself if we have
any possibility to deny the access to the gradient to the attacker. And
indeed we have many way of hiding the gradient: consider for example
a k-Nearest-Neighbor classifier that does not have any gradient at
all. However, Papernot et al. in [2] shown that those models can still
be fooled by constructing a smooth substitute model that imitates
the boundary of the original one. Then, adversarial examples can be
generated against it and then "transferred" to the initial model. This
phenomena is known as transferability of attacks and makes any defense
based on gradient hiding ineffective.

Still, many modern models include a non-differentiable layer that pre-
vent the attacker from obtaining the full gradient using the backpropa-
gation algorithm. This technique, known as gradient masking has been
proved ineffective in Obfuscated Gradients Give a False Sense of Security:
Circumventing Defenses to Adversarial Examples [19], where Athalye, Car-
lini, and Wagner show how those non-differentiable layers can be easily
approximated as linear to un-mask the gradient, proving also in this
case the ineffectiveness of this defense.

2. Robust training: One of the possible strategies to create a more robust
network at train time is based on adversarial training: introduced for the
first time in [73], this defense increase the training dataset at runtime
by adding adversarial generated examples. This is nowadays one of the
most used methods for training robust models as the learnt network



22 background

representations empirically align better with salient data characteristics
and human perception. In addition, as claimed in [21], even if robust
models are less accurate on the dataset used to train them on compared
to standard models, they often outperform the latter if measured on
a transfer learning task. However, it should be noted that creating a
robust model requires a full training of the architecture, and on huge
datasets like ImageNet it is a heavy task. This is the reason why in the
literature there are many papers on robust training on small datasets
like CIFAR-10 [22], but very few papers analyze the robustness on
big datasets. Another widely used method that falls in this category
is defensive distillation which was originally presented in [74] as a
compression method. Its adaptation to adversarial robustness consists
of retraining a network using previously generated soft-labels from
another network.

Yet even these specialized algorithms can easily be broken by giving
more computational firepower to the attacker or by performing adver-
sarial examples generation on a substitute model, as those techniques
accidentally perform a sort of gradient masking [65].

3. Randomization: The idea behind this defense is to introduce random-
ness to the behavior of neural networks. Randomness-based defence
methods add randomness to either the model parameters such as the
weights or the gradient or they add randomness to the input image
such as random resizing and random padding. As Wang et al. claim
in [47], "in a deterministic AI model, attackers search until they find
an adversarial example that fools that particular neural network. But if
you have a random model, the attacker will need to find a better attack
that can work on all the random variations of the model."

4. Model ensemble: Introduced for the first time in [44] and strictly linked
with the randomness-based defense, ensemble methods can be used
also for defence purposes. Besides just aggregating outputs from each
model in the ensemble, some methods average the predictions over
random noises injected to each of the model. In alternative, there can
be introduced also a regularizer to incentive the diversity among the
predictions of different models [46].

5. Transformation based defences: this wide category includes both in-
put transformation and feature transformation methods. While in the
feature transformation defences as feature squeezing, total variance
minimization or image quilting, it is often applied a denoiser in the
feature space, input transformation methods take advantage of the
fact that several defenses aim at transforming the inputs right before
feeding them to the classifier. Those techniques aim at reversing the
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modification did to the adversarial images in many ways such as JPG
compression [45] and wavelet denoising [23, 42, 41].

2.2.3 Inpainting based defenses

Special attention in this thesis will be placed on the concept of inpainting-
based defense strategies. Inpainting is an important task in computer vision
and refers to the process associated to the generation of missing or damaged
pixels of an image in order to recreate an output that is the closest to the
original input, before the pixels were cancelled or damaged. Nowadays,
inpainting based techniques are widely used to remove small defects in
photographs, to create images at a higher resolution than the original [18] or
to restore corrupted images and artworks.

In recent times however, researchers have started to explore how inpaint-
ing based techniques could recover pixels from adversarial attacks as in
“CIIDefence: Defeating Adversarial Attacks by Fusing Class-Specific Image
Inpainting and Image Denoising” [1], or could help in discriminate if an
image is adversarial or not [28]. The problem of image inpainting to restore
adversarial pixels to the original state is not only related to the capability of
the inpainting network to achieve the task but relies also on those architec-
ture having something to start recovering from. Indeed, while adversarial
attacks could be everywhere in the image, even the most advanced inpainting
techniques require 75% of the image to be visible in order to recover the
missing 25% of missing pixels [66]. Many techniques were proposed in the
past to identify which areas of the image are more critical to inpaint than
others and one interesting approach is the one proposed by Gupta and Rahtu
which looks at Class Activation Maps of the top-5 predicted classes. We will
go in depth of this technique in Chapter 3 and then will evolve the pipeline
to a different methodology in Chapter 4 and propose a different approach in
Chapter 5.

2.3 problem formulation

As discussed in 2.1.3, we will focus on attacks on integrity and availability, in
particular we will analyze attacks on image classification models. For those
architectures, the problem can be formalized in the following way. Given
a dataset D : {(xi, yi)}

N
i=1 where xi is the i-th input to a machine learning

classifier M and yi is the desired output associated to xi by M, an adversarial
example associated to the i-th input is a different input x̃i = xi + ε generated
by imperceptibly perturbing xi by ε such that the prediction that M outputs
when x̃i is the input is ỹi 6= y.
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To make the perturbation added to xi imperceptible, ε is bounded by either
using L0, L2 or L∞ norm. In this Thesis we will focus on attacks that use the
L∞ norm as constraint for ε.

Then, two categories of adversarial attacks arise from the last inequality:

• Attacks where the attacker force ỹi to a known output, namely targeted
attacks. The adversarial examples generated by these attacks follow the
gradient in the direction of the imposed output class ỹi.

• Attacks where the attacker just impose the misclassification ỹi 6= y:
named untargeted attacks, this widely used category of attacks can
minimize the adversarial noise ε better than targeted attacks because
they just need to follow the gradient the the direction of the nearest
classification bound.

As our goal is to maximize the accuracy under adversarial attacks, we will
stick to the latter method that guarantees lowest perturbation while still
influencing the classification accuracy.

2.4 research direction

Considering the state of the art reported in this chapter about adversarial
attacks and its possible defenses, it can be noticed the huge interest that
this problem is having in the last years. In addition, considering the number
of research works we can notice areas of big interest such as robust train-
ing, randomization and model ensemble and areas less explored such as
transformation based defences. In the latter, very few attention is placed on
inpainting techniques because of their drawbacks briefly discussed in 2.2.3.
However, as the article “CIIDefence: Defeating Adversarial Attacks by Fusing
Class-Specific Image Inpainting and Image Denoising” confirms, this defense
methods can still be helpful and we will start from here.

We will run experiments to stress the pipeline proposed in [1] and then
we will propose a different way to localize areas of interest adopting a
deeply-supervised technique. We will progressively move from applying
inpainting to small localized area to bigger ones. Finally, we will totally drop
the localization step to focus on massive inpainting, proposing a novel defense
called Defense by Massive Inpainting that will be discussed in Chapter 5.
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B A S E L I N E M O D E L

We started our study by analyzing the current state of the art, as better de-
tailed in Chapter 2. In doing this we found out CIIDefence, a novel technique
proposed by Gupta and Rahtu in [1] combining both inpainting and weakly
supervised localization as a defense strategy against adversarial attacks. As
performing inpainting against adversarial examples has not been extensively
explored in literature, we have chosen CIIDefence as our baseline model
because it is one of the few proposing inpainting as part of the defense
strategy. That is, we want to investigate the functioning of this methodology
and possibly enhance its performance or to propose a new defense technique
that incorporates some of the knowledge acquired from CIIDefence to get
better scores.

3.1 description and methodology

In this chapter we will detail in depth the functioning of CIIDefence in Section
3.1, but we still invite the reader that want to get even more information
about it to read the original paper [1]. Then, as we believe that our results
should be reproducible [5], we will give all the needed information about our
setup and needed prerequisites in Section 3.2. Finally, in Section 3.3 we will
describe and motivate our experiments while in Section 3.4 we will discuss
the results obtained by the baseline and move to our original contribution.
As our Thesis, also the CIIDefence technique is inspired by low number of
recent works defending from adversarial examples with image reconstruction
and denoising. In particular, while defenses like Pixel Deflection [3] - which
they used as baseline - apply a sort of massive guided shuffling of all pixels
in the input followed by a denoising filter, CIIDefence commits in finding in
the adversarial image a few areas that are most influential to the classification
result and altering those pixels that are present in those areas. To find them,
Gupta and Rahtu had the idea to employ the Class Activation Maps as a sort
of weakly supervised localization technique, able to localize in an image the
pixels where the presence of a certain class is more probable. Then, they apply
the inpainting method only for those small and carefully selected areas, that
are the most relevant areas for each of the top-ranking class in the adversarial
image prediction, and finally they use a non-linear wavelet denoising filter in
the rest of the image to perform a sort of gradient hiding defense.

25
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3.1.1 Class Activation Maps

As demonstrated by Zhou et al. in [6], Convolutional Neural Networks have
the potential to perform a localization task even if those networks were
trained only on classification based tasks. This idea is better articulated in
[16] where Zhou et al. introduce for the first time a procedure to find the
Class Activation Maps by selecting an arbitrary target class label and back-
propagate the corresponding information throughout all the layers until the
input image is reached. As shown in 3.1, each channel of the Convolutional

Figure 3.1: The predicted class prediction is back-propagated to the previous convo-
lutional layer to generate the Class Activation Maps (CAM) at that layer to highlight
the presence of some class-specific discriminative region. Image credit to [16].

Neural Network is activated by some patterns indicating the absence or the
presence of a specific class in a certain area of the space. By indicating with
Ak(x, y) the presence of a specific class pattern in the kth channel at the
spatial location (x, y), the CAM Mc for a specific class label c is obtained as
a sum of these responses weighted by the weights wc

k of that specific class
label c for the kth unit.

Mc(x, y) =
∑
k

wc
k ·Ak(x, y)

It is important to notice that in order to use this method to get Class Activation
Maps, the classifier need to end with a Global Average Pooling followed by
the output neurons. In case of networks like ResNet there will be no problem,
but if the model does not contain any Global Average Pooling layer it should
be added to the architecture and the model should be retrained in order to
identify the weights of the connection between the GAP layer and the output
neurons.
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3.1.2 Inpainting

Another method that we need to introduce before detailing CIIDefence is the
inpainting. As said in Section 3.1.2, the inpainting task consists in recreating
lost areas of the images in such a way that the inpainted image is the most
possible similar to the original image. An example is shown in Figure 3.2.

Figure 3.2: An example of inpainting taken from [66]: on the left an input image
with missing pixels, on the right the inpainted version of the image where those
pixels were reconstructed.

Before the advent of Convolutional Neural Networks, researchers at-
tempted to solve the problem using ideas similar to texture synthesis [7]
where the missing regions are matched in other areas of the image and
patched into the missing holes starting from low to high resolution. Such
approaches are most suitable for background inpainting tasks but, as they
assume that the lost areas can be found somewhere in the background, they
cannot recreate totally lost image features for difficult cases where the regions
to be inpainted involve non repetitive, complex structures such as faces or
objects.

With the introduction of Generative Adversarial Networks by Goodfellow
et al. in [37] and the rapid progresses in the field of deep Convolutional
Neural Networks, many works started to formulate the inpainting task as a
conditional image generation problem where high-level recognition and low-
level pixel creation are jointed into a convolutional encoder-decoder network
to stimulate the correspondence between recreated and already existing
pixels [25, 33, 36]. However, even if these methodologies can synthesize
plausible new contents, these CNN-based networks also happen to create
blurry textures inconsistent with surrounding areas and those models also
suffer of boundary artifacts near the inpainted regions.

In our Thesis the attention will be placed on a novel architecture called
DeepFill v1 [66] and proposed by Yu et al. that tries to mitigate those problems.
One of the motivation behind the widespread usage of DeepFill v1 is that it is
one of the very few inpainting networks which have a public implementation
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available. In general, DeepFill v1 consists in a unique Generative Adversarial
Network which overcome to the described problems by means of two stages:

• A simple dilated convolutional network trained with reconstruction
loss to rough out the missing contents. The novelty of this stage con-
sists in the type of reconstruction loss they employed. In a masked
image, the pixels that need to be inpainted located at the center of the
hole have less similarities with visible pixel near the hole boundaries
with respect to the ambiguity that have masked pixels near the border
compared to their neighbor non-masked. This phenomena is similar
to the reinforcement learning context when long-term rewards have
big variations during sampling. In this latter case, the state of the art
employs temporal discounted rewards, while in the GAN scenario the
proposed loss is a spatial discounted reconstruction loss. The weight of
each masked pixel is γl, where l is its distance to the nearest known
pixel.

• A contextual attention stage which makes use of the features of
known patches as convolutional filters. This stage consists mostly in
convolutions to find the generated patches in the list of known contex-
tual patches, a soft-max layer to weight differently each relevant patch
and a deconvolution to recreate the newly-generated patches from the
contextual patches. In addition, to allow the Generative Adversarial
Network to create novel contents not present in the image, DeepFill v1

employs another path in parallel with the other which consists only of
convolutions. The two paths are then merged together and provided to
a single decoder architecture to obtain the final inpainted image.

Figure 3.3: A general overview of the DeepFill v1 architecture taken from the original
paper [66].

The general overview of the inpaitning architecture can be seen in Figure
3.3. As shown, another novelty of this network is the different losses that
have been employed in the training phase. At early stages, it uses a pixel-
wise reconstruction loss which, although tends to make the result blurry, is
an essential ingredient for image inpainting. As described above, a spatial
discounted loss is then applied to allow the hallucination of artifacts at
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the center of the holes if the attention mechanism matches know patches
near the boundaries. The refinement network which starts from the blurred
inpainted image at the middle stage is trained using a modified version of
the outperforming WGAN-GP loss. Indeed, this loss is not applied as is,
but it is fused with the outputs of a global critic architecture and a local
critic architecture that accounts for the discrepancy respectively between the
general context of the image and the inpainted patches with respect to the
image.

3.1.2.1 DeepFill v2

The inpainting mechanism explained above and used in our baseline comes
from the work “Generative Image Inpainting with Contextual Attention” [66]
and is named DeepFill v1. However in 2018, Yu et al. propose an evolution
of such method named DeepFill v2. As in our experiments we will compare
the results also using this upgraded version of the GAN we report here the
functioning of this mechanism and the differences with DeepFill v1.

Figure 3.4: Illustration of the functioning of partial convolution guided by a binary
mask (on the left) and gated convolution proposed in [66].

The main issue that Yu et al. wanted to address by proposing DeepFill v2 is
that the approach of DeepFill v1 does not work for free-form masks. Indeed,
if we think to train DeepFill v1 on irregular mask, its performance would
not converge because of the behaviour of vanilla convolutions. This standard
type of convolutions can only be applied on rectangular input shapes and if
we would need to inpaint an irregular area they would perform convolution
to the smallest rectangle containing the irregular mask, and not only on the
masked pixels. To handle irregular masks in a correct way, Liu et al. proposed
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the use of partial convolutions [30], a special type of masked convolution
where the values are re-normalized to utilize valid pixels only.

As shown in Figure 3.4, partial convolution assigns to all the input pixels
the value either valid or invalid, and multiplies a binary mask to those inputs
throughout all the layers. However, even if this is an improvement, it has
several problems. First of all, the input spatial locations across different layers
may include valid pixels in input image but at a different depth also masked
pixels in input image or synthesized pixels in deep layers. Statically forcing
all locations to be either valid or invalid ignore these important information.
Then, there are also problems related to user-guided image inpainting where
users provide sketches inside the mask (are these pixels marked as valid or
invalid?) and related to the lose of information that happens by using the
binary mask at deeper layers.

Figure 3.5: Overview of the proposed DeepFill v2 architecture taken from [67]. As it
can be noted, after the inpainting we have the FCN whose objective is to discriminate
which pixels were inpainted and which were not. Yu et al. apply their SN-PatchGAN
in this stage.

Yu et al. proposed a different loss for their generative adversarial network,
which they named SN-PatchGAN loss that applies on a fully convolutional
network that act after the inpainting, as shown in Figure 3.5. The discriminator
of SN-PatchGAN computes the hinge loss on each point of the output map
with format Rh×w×c and formulate h×w× c number of different GANs
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each focusing on a different spatial location and with a different semantics
(with different channels depending on which is the input).

Another difference of this new architecture with respect to DeepFill v1 is
that, given that free-form masks may be of any shape and anywhere in the
image, global and local critic GANs created for a single rectangular mask
such as DeepFill v1 would simply be not applicable and thus are not present.

3.1.3 The functioning of the defense

After having introduced the Class Activation Maps and the DeepFill v1 GAN,
we can now better detail the functioning of CIIDefence. As said, this defense
strategy aims at altering the adversarial examples in such a way that the key
areas involved in the decision process would be perceived by the classification
network as similar to those in the original clean image. CIIDefence mainly
consists in three steps:

1. Image masking: In this stage the input image is submitted to the clas-
sification network in order to obtain the top-5 most probable class in
the image. Then, based on the supposition that in those 5 classes there
should be the true class, the image is processed by the same network
used for the classification, with also the same weights, but modified at
the end in order to produce in output the Class Activation Maps (see
3.1) for each of the top-5 classes obtained before. Once obtained those
five CAMs, for each of them it needs to find the top 3 most influent
areas for that specific CAM.
In summary, for each of the top-5 predicted labels CIIDefence finds
the top 3 regions of the space that are most relevant for the classifica-
tion of those classes, for a total of 5 · 3 = 15 different areas (possibly
overlapping). Then, a mask of the original image is created by leaving
everything in place except those 15 areas, which are masked with a
square size of 7x7.

2. Inpainting: In this stage CIIDefence submits the original image and the
generated mask to the DeepFill v1 Generative Adversarial Network for
image inpainting following the technique presented in Section 3.1.2.
This network produces as output an image where all the non-masked
pixel are exactly the same as the input, while the pixels that lie in those
most influential areas for the classification have been inpainted and
substituted. The key aspect here is that differently from many other
works, in CIIDefence the key areas for classification are completely
removed and then reconstructed on the basis of the contexts of neighbor
pixels, and not just denoised starting from the adversarial pixels already
present trying to remove the adversarial perturbations.
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3. Image fusion: In the last stage of the defense, the original adversarial
input is denoised with a wavelet-based filter and the key areas for
classification identified at step 1 are replaced by their inpainted versions.
In this way, the image is denoised everywhere except the key areas,
which are inpainted. The motivation behind this choice relies in the
observation they made that denoising the inpainted regions results in
blurry areas which degrade the classification performance, while the
motivation behind the use of wavelet filter among all the denoising filter
is that they found out it to be not easily approximated by attacks which
try to exploit gradient backpropagation to generate the adversarial
example.

Figure 3.6: The workflow of the CIIDefence architecture taken from [1].

Once performed these three steps that hopefully purify the picture from some
of the adversarial noise, the image is sent to the classifier model in order to
get a prediction, as shown in Figure 3.6.

3.2 setup and prerequisites

Special attention should be placed on the setup and the prerequisites needed
to run our baseline. Indeed, the original CIIDefence paper does not have
any public implementation available. Given this lack of implementations, we
have implemented it starting from the paper, with a few different details that
should be noted:

1. GradCAM++ instead of standard CAM: We decided to test all of our
experiments on the same networks used by Gupta and Rahtu, that are
VGG16, ResNet-101 and Inception v3. However, as better specified in
Section 3.1.1, in order to generate the CAMs for VGG16 and Inception
v3 we would have to modify the original model and then to perform
a full retrain on the whole ImageNet dataset, that consists of over
14 million images. Considering that in the original paper there is no
mention about how they eventually performed this training, we decided
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to use another CAM generation technique called GradCAM++ that was
introduced in [35]. This technique is more advanced than standard
CAM trough Global Average Pooling and does not need a retrain if the
network does not have the Global Average Pooling layer. GradCAM++
involves weighting each k-th convolutional feature map Ak no more by
the actual weights connecting the Global Average Pooling layer to the
output neurons (it can be that no pooling is present) but instead of a
quantity:

wc
k =

∑
i

∑
j

αkc
ij · relu

(
∂Yc

∂Ak
ij

)
where yc is the prediction for the class c and

αkc
ij =


1∑

lm

∂yc

∂Ak
lm

if
∂yc

∂Ak
ij

= 1

0 otherwise

(3.1)

2. The hyper-parameters used in CIIDefence for the wavelet denoising
filters are not publicly available. We then decided to use the standard
parameters offered by skimage which performs well and which are
using BayesShrink as method, using multichannel processing and σ =

0.01.

In addition, some more consideration needs to be done on methodology
differences between this Thesis and their paper.

• Like them, we only considered images that, without the presence of any
attacks, were correctly classified. Investigating how a network behaves
on images already misclassified even without adversarial examples
would make no sense and this is the motivation why both us and
CIIDefence have original accuracy = 100% on the ImageNet dataset,
which consists of 1000 classes. However, they performed their experi-
ments with just 3000 images randomly sampled from ImageNet dataset,
which means on average 3 images for each class. Provided the fact that
which subset of images they used is not known and that we believe
that 3 images for each class are not enough, we have chosen for our
experiments 10000 images, still randomly sampled. In addition, they
evaluate the BPDA attack with just 500 images, that means that some
classes are never gonna appear in the test set.

• When they proposed their work they used DeepFill v1, which used
contextual attention. To avoid any loss of generality but at the same
time experiment with a more powerful Generative Adversarial Network,
we run each experiment twice: the first time we use DeepFill v1 as in
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their work, the second time we use DeepFill v2 which makes use of
gated convolutions and is a more advanced architecture.
However, they state that they used DeepFill v1 pre-trained on the
ImageNet dataset. We believe that if we want to avoid any confusion,
we need to ensure that no images in the test set were present in the
train set of DeepFill v1, something that is just not possible to ensure
as DeepFill v1 is pre-trained by Yu et al. on a subset of the ImageNet
dataset which is not specified. In general, we believe that some (or all)
the 3000 image they used could have been present in the Generative
Adversarial Network train set. To avoid any objection, we used DeepFill
(both version) trained on Places2 [34]. In such a way we also hope to
verify the generalization ability that GANs have when performing the
inpainting.

• Like them, we used the FoolBox library [26] to generate adversarial ex-
amples from clean inputs. However, they claim to have used adversarial
images with L2 equal to 0.03 but such value is too small to be used as L2
norm on the ImageNet dataset. We will experiment with various epsilon
values and for the comparison we will use an equivalent value of ε = 2
on Linf attacks. With this parameter, we got images with an L2 norm
of the perturbation of approximately 500 which are comparable both
in terms of adversarial perturbations and in terms of top-1 adversarial
accuracy with their results. In our setting, each pixel (considering all
the three channels) can thus vary of a maximum absolute magnitude of
12/255.

• Finally, according to [5] a defense mechanism like CIIDefence, which
is based on a deterministic localization of the most influent areas, a
deterministic inpainting of the those areas and a deterministic denois-
ing of the background, can not claim white box performance without
giving full knowledge of the defense to the attacker. In this case, an
attacker with full knowledge of the defense would first perform the
localization to identify the most influential areas and then it would add
its perturbations in the area not covered by the inpainting. Indeed, the
wavelet denoising filter can still be approximated by attacks designed
to workaround non-differentiable layers, such as BPDA [19], thus CI-
IDefence is in our opinion weaker than described if operating in a full
white-box scenario. We will take this into consideration throughout all
our analysis.
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3.3 experiments performed

In this section, we will describe which experiments we have run and what the
motivation behind them. Then, we will continue with the results discussion
in Section 3.4.

3.3.1 Baseline assessment

The first experiment we did is the assessment of our baseline. Indeed, con-
sidered the changes we have put in place and described in Section 3.2, we
wanted to compare the performance of our architecture against the results
reported in the official CIIDefence paper. Apart from the modification cited
above, the experimental setting we used is the same as presented in [1].

3.3.2 DeepFill v1 vs DeepFill v2

By directly inspecting the generated masks we observed that it often happens
that two or more squared holes referring to different categories overlaps as
shown in Figure 3.7. This overlapping causes the holes not being perfectly
squared anymore, as they can take any form that can generate from the
overlapping of two squares. However, DeepFill v1 is not optimized to handle
masks that does contain shapes of this kind. Indeed, quoting Yu et al. from
the original paper of DeepFill v2 [67]:

«Yu et al. [66] propose an end-to-end image inpainting model by
adopting stacked generative networks to further ensure the color
and texture consistence of generated regions with surroundings.
However, this approach is mainly trained on large rectangular masks and
does not generalize well on free-form masks. To better handle irregular
masks, partial convolution is proposed where the convolution is
masked and re-normalized to utilize valid pixels only.»

Starting from this observation, we have run a comparison between our base-
line working with the first version of DeepFill and the same baseline working
on the gated-convolution version, namely DeepFill v2.

3.3.3 ImageNet vs Places2

Recalling our second consideration in Section 3.2, we criticize the choice of
running experiments on a test set composed of images taken from ImageNet
and at the same time using DeepFill v1 trained on ImageNet’s images. Yu
et al. provide the GAN with a pre-trained model but they do not specify
on which images the ImageNet version of DeepFill is trained on. This could
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Figure 3.7: Example of a mask generated starting from an adversarial example of
an ImageNet picture. It is possible to see the squares of different classes partially
overlapping in the upper left corner.

cause situations in which some of the test images of CIIDefence could have
been seen by DeepFill during the training phase. In addition we want to
decouple the training set of the the GAN from the type of images we use as
adversarial examples for testing purpose: this way we assess the ability of
the pipeline to generalize to images of other domains. Considered those two
points, we switch our baseline in using DeepFill trained on Places2 instead
of ImageNet and still test the architecture using validation images from the
ImageNet dataset.

In order to log all our changes, we decided to run a comparison between
the performance of our baseline using DeepFill v1 trained on ImageNet as
image inpainting technique and the performance of the same architecture
using DeepFill v1 trained on Places2.

3.4 results discussion

We run our experiments on five different servers, each one of them equipped
with a Nvidia K80 GPU and 12Gb of RAM, and an auxiliary server equipped
with eight different Nvidia 1080Ti GPU each having 12 Gb of RAM. The
results obtained are shown in the next sections.
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3.4.1 Baseline assessment

Attack Adv
Top-1

Adv
Top-5

Baseline
ImageNet
Top-1

Baseline
Places DF1

Top-1

Baseline
Places
DF2 Top-1

Inception v3

DeepFool 48.27% 88.32% 75.23% 75.87% 76.01%

FGSM 50.62% 83.73% 76.49% 76.56% 76.41%

PGD 35.78% 70.23% 70.02% 70.22% 69.70%

ResNet-101

DeepFool 40.14% 85.18% 64.06% 63.50% 63.77%

FGSM 41.39% 83.33% 64.49% 64.26% 64.51%

PGD 30.59% 77.60% 58.41% 58.72% 58.17%

VGG16

DeepFool 45.89% 86.88% 55.58% 55.58% 54.93%

FGSM 47.22% 84.80% 55.72% 55.82% 55.66%

PGD 42.67% 82.25% 52.74% 53.09% 52.44%

Table 3.1: Baseline results on the Inception v3, ResNet-101 and VGG16 classifier
architectures with a small value of ε = 0.2.

In Table 3.1 we report the experimental result executed with ε = 0.2. In this
setting, each pixels varies in a range that has an amplitude of 6/255 units. As
the table confirms, PGD is the strongest attack between the three types of
attacks we used (see 2.6). Consider that each attack should be executed three
time to test each network as images that are adversarial for a specific network
can be perfectly recognized by other architectures without any defense at all.

The first thing that the results show is that even using a small epsilon,
adversarial attacks are able to make the network misclassify one image every
two, dropping the top-1 accuracy with no defense to 50%. However, the
adversarial top 5 accuracy measured without the defence is high and that is
explained by the fact that the epsilon value is not sufficiently big to cause
a decrease in the prediction confidence of the true class but the attack has
anyway space to increase the probability of an adversarial class bringing it to
the top, thus reducing the top-1 but not the top-5 accuracy.

It is possible to notice that our results present a drop of approximately
15% with respect to the results published in the official CIIDefence paper [1].
This can be explained both by the differences of our implementation (3.2)
but also that we used a more significant subset of image that is more that 3
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times larger than theirs. Indeed, it is possible to notice that the top-5 accuracy
without no defense stabilizes around 85% thus setting an hard limit for a
technique that relies and trust the fact that the adversarial top-5 accuracy
contains the true class.

By increasing the value of ε up to ε = 2 (each pixel varies in a range of
amplitude 12/255 units) we can observe in Table 3.2 the drop in accuracy that
CIIDefence has, especially when attacked by PGD.

Attack Adv
Top-1

Adv
Top-5

Baseline
ImageNet
Top-1

Baseline
Places DF1

Top-1

Baseline
Places
DF2 Top-1

Inception v3

DeepFool 34.96% 78.19% 67.35% 59.93% 54.30%

FGSM 35.55% 67.79% 53.81% 53.94% 53.56%

PGD 3.61% 11.86% 43.07% 43.40% 42.00%

ResNet-101

DeepFool 15.15% 68.63% 37.57% 26.77% 26.31%

FGSM 15.33% 55.21% 31.18% 31.30% 31.00%

PGD 1.57% 30.33% 16.44% 16.86% 16.26%

VGG16

DeepFool 14.29% 69.56% 27.49% 19.62% 19.34%

FGSM 12.55% 47.33% 20.79% 18.32% 18.20%

PGD 3.95% 36.14% 10.63% 10.64% 10.34%

Table 3.2: Baseline results on the Inception v3, ResNet-101 and VGG16 classifier
architectures with an high value of ε = 2.

The results of the experiments executed with ε = 2 also rises attention on
the difference between the three networks. Even if Inception and ResNet are
comparable in terms of top-1 accuracy after the defense, there is a drop when
we consider VGG16. Our explanation is that while VGG16 is a very deep
convolutional neural network without any optimization for what concerns
the high-level feature representation, ResNet and Inception are optimized
to handle in their deep layers also fine grained features. In addition, those
two networks also has fewer parameters (which increase the robustness in
presence of adversarial attacks [27] even if it reduces the accuracy in a general
setting) but at the same times are approximately 7x deeper than VGG16.
Given that the inpainting technique adds a limited quantity of blurring
and noise to the image, networks like Inception v3 with its asymmetric
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convolution to promote high level feature representation and ResNet-101

with its skip-connection which maintains an high level of details, are less
prone to suffer blurring and noise issues as much as VGG16.

3.4.2 Considerations

Those results set up our baseline target. However, there are a few thing to
highlight:

• The test time of the CIIDefence architecture takes an extremely long
time and this is mostly due to the CAM generation stage. This stage
needs approximately 2 seconds for each image, which is a long time
if we consider that this defense should be practical to use also in real-
world scenarios. In our work, we will proceed to investigate if a more
time-efficient way does exist.

• We executed experiments with small epsilon to evaluate the accuracy
continuity across various epsilon ranges. The results show that, with
such low perturbations, there is no difference in inpainting with a
Generative Adversarial Network trained on ImageNet or Places2 and
no difference in accuracy appear also with respect to the DeepFill
version (contextual attention or gated convolutions). If compared with
the results obtained testing the same baseline with an higher epsilon
such as in Table 3.2, we can see that the GAN trained on ImageNet gives
an extra +10% boost to the top-1 accuracy in case of localized attacks
such as DeepFool. This would be explained by taking into account the
considerations done in subsection 3.2 regarding the possible overlap
between test images and GAN train images. In addition, this extra
performance boost visible at higher epsilon values gives an hint on the
fact that the loss on the accuracy at lower epsilon is mainly due to the
technique and not on the specific inpainting method.

• Finally, we noticed that in all the experiments done on the baseline, the
images that were correctly classified after the defense were all present
in the adversarial top-5. That is, CIIDefence is able to recover a correct
classification (top-1) from images that at least are in the adversarial
top-5 accuracy measured without any defence. This is confirmed by the
results, as no attack and no network architecture along with CIIDefence
were able to generate a defended top-1 higher than the adversarial top-5,
except for PGD executed with ε = 2 on Inception and ResNet as the
denoiser stage is able to remove some of the perturbation added, if we
consider that the attacked does not know about the denoiser structure
(grey box scenario). Notice that Gupta and Rahtu in the CIIDefence
paper does not tell which was the top-5 accuracy of the adversarial
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images measured without the defense. Their random extraction of such
a little number of images could have been a "lucky extraction" and
can have selected images with an high top-5 and a low top-1. This is
another element that can explain the differences in accuracy between
our implementation and theirs.

This last point open up the door to an important reflection that will be the
guideline for the entire thesis work. CIIDefence is taking the adversarial top-5
accuracy as a trusted zone, where it is possible to find useful information
for the correct recovery of the true class. Indeed they are trusting these top-5
classes by computing on them the class activation maps and then inpainting
the most influent areas.

Stimulated by the lowering of the top-5 accuracy as ε increases, we will
investigate if it is possible to un-link our performance from the adversarial top-
5 accuracy. In addition, we believe that given the high dependence between
top-5 accuracy and final prediction, this defense exposes a new attack surface:
an attacker could indeed exploit this functioning of the defense and modify its
attack accordingly to kick off the true class from the top-5 most probable ones.
We believe that this approach put too much trust in the adversarial image
and we will try to switch to a zero-trust model in the following chapters.
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S A L I E N C Y- B A S E D L O C A L I Z AT I O N A N D I N PA I N T I N G

While we were working on the baseline, we soon realized that the CAM
generation procedure was a true bottleneck for the time needed to run the
experiments. A quick comparison between the standard CAM generation pro-
cedure on ResNet-101 (which does not require retraining) and GradCAM++
shows that the time needed for both methods is comparable, so it is not an
issue of which version to adopt. To give an idea, the mean time needed by
the architecture to generate the 5 different CAMs required for each image
is around 2 seconds on a Nvidia 1080Ti GPU (12GB of Graphical Memory).
Then the whole pipeline requires an additional second to inpaint, denoise
and predict, for a total time of 3 seconds, 66% of which is needed only for
the CAMs.

In addition to test time, we observed that by making attacks stronger (i.e.
increasing ε), the top-5 accuracy started to drop really fast, making it difficult
for CIIDefence to recover useful information by trusting the fact that in the
adversarial top-5 classes it would find the true class. We thus developed a
strategy less top-5-classes dependent, and more time-efficient, to generate a
confidence region that guides the inpainting procedure.

Investigating this issue, we found out that while CIIDefence only employed
DeepFill v1 which works better on squared masks, now we have the possibility
to leverage the free-form inpainting of DeepFill v2 and thus we can create
mask of any shape without caring about them being squared. The main idea
of the defense presented in this chapter comes from “Deeply Supervised
Salient Object Detection with Short Connections” [32], where Hou et al.
propose a novel technique to identify salient objects in an image in less than
100 milliseconds, called Salient Object Detection. However, while in the CAM
generation procedure we choose which class we want to generate the CAM,
applying this technique only provide us a single mask where the salient
object is highlighted but without no clue about its class, as shown in Figure
4.1.

By switching the guideline of the inpainting from the Class Activation
Maps to a saliency-based approach, we not only avoid generating 5 different
CAMs for each image (decreasing the time required), but we also take a step
towards the direction of a zero-trust mechanism. As noted in Section 3.4.2,
we can’t trust too much information coming from an image for which the
attacker is in full control, and we should try to have an independent defense
strategy.

41
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4.1 description and methodology

Before replacing GradCAM++ with the Salient Object Detection method, we
needed to verify that the network performing the Salient Object Detection task
was invariant to adversarial attacks. That is, we have put in place experiments
to verify if the Salient Object Detection network is still able to recognize the
shape of the correct salient objects also in an adversarial example. Of course,
the network would be unable to tell which class does the object belong to, but
still it should highlight its edges. After having implemented this method by
taking the source code and the pre-trained models from one of the unofficial
implementations of the project [32] available on GitHub (link: [64]), we run an
experiment which consisted in the classification of the salient object without
no context nor background. Thanks to the results reported in Section 4.3.1.1,
we proceeded in this direction and we integrated this method in our pipeline.

Figure 4.1: An example of the output of the Salient Object Detection technique taken
from one [64] of the unofficial GitHub repositories referencing [32]. This technique
does not need any input other than the image and creates this mask by means of
short connections to skip-layer structures.

This new methodology does not provide us with a fixed number of pixels
that are most influential to the classification (in case of CIIDefence it was

(7x7) px ·3 times
classes

·5 classes = 735px), but it does provide instead a dynamic
number of pixels depending on how big the salient object is with respect to
the image.

However, as the saliency approach tend to output bigger masks with
respect to the CAMs method, we modified the way in which we use the
inpainting architecture following a divide-et-impera scheme: DeepFill will run
on image with a mask size lower than a certain threshold and if the area to be
inpainted in the mask is bigger than such threshold, the masked area is split
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in smaller inpainting areas and inpainted independently, thus running the
inpainting multiple times on different smaller masks. After this procedure,
all the reconstructed areas are merged to rebuild the original shape identified
by the salience mask. Even if we increased the number of inpainting areas
to approximately 5, we did not suffer any performance issues in terms of
timings as the DeepFill GAN architecture is really fast.

In this chapter we will show the evolution of this idea, starting from the
original saliency-based approach with dynamic number of pixel (which is
the approach proposed in [32]) and then switching to a modified version in
which we limit the number of pixel to the N most relevant, where N is an
hyperparameter.

4.1.1 Salient Object Detection

As many other strategies described in this thesis, also the salient object detec-
tion task has seen huge improvements since the introduction of Convolutional
Neural Networks. However, pure CNN-based methods use Class Activation
Maps to perform the localization tasks and thus their outputs are not fine
grained, as shown in Figure 4.2. Indeed, as described before, CAMs and pure
CNN-based methods are only able to provide a coarse weakly supervised
localization but does not have the potential to output fine grained details.

Figure 4.2: An example of the weakly localization possibilities offered using only
pure convolutional layers taken from [29]. From left to right, the original image, two
outputs of two different CNN-based localization methods which use convolutional
layers, the ground truth.
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As this is an hard limit for weakly supervised techniques, many research
works proposed different workarounds to identify pixel-level details, such as
[31]. Holistically-Nested Edge Detection (HED) is a method which combines
the expressiveness of deep CNNs with nested multi-scale feature learning
and provides in output directly the edge mask in an image-to-image fashion
(you provide an image as input and the network outputs another image). It
consists in a skip-layer structure (created by adding to each convolutional
layer of a VGGNet architecture a side output) with deep supervision for
edge and boundary detection that fuses multi-level features extracted from
different scales in a natural way, combining information coming from the
CNN such as the coarse class localization, with information coming from
edge detection layers which make the boundaries fine-grained.

However, salience detection is an harder task with respect to the general
localization just discussed since the latter does not rely too much on high-level
semantic feature representations. In the Holistically-Nested Edge Detection,
the output masks contains all the edges which are present, not just the most
salients ones, in which we are interested.

Figure 4.3: The salient object detection network architecture [32]. In the image
the underlying network is based on VGGNet which has 6 different scales and
thus introduces 6 side outputs, each of which is represented by different colors. In
addition to the side loss for each side output, a fusion loss is employed to capture
all the features coming from different levels.

Exploring the internal representation of HED networks, Hou et al. noticed
that the deeper layers outputs encode the high-level semantic information
about the salient objects and can localize them in these outputs. However,
due to the down-sampling operations in FCNs, outputs of deeper layers
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are normally small (at most a few pixels) and they have irregular shapes
especially when the input image is complex. Shallower outputs instead can
capture rich spatial information but are less meaningful if the goal is to
identify how much the object is important in the final classification.

Based on these observation, the novelty in [32] for creating better saliency
masks is to combine these multi-level features coming from deeper and
shallower layers with the introduction of short connections to the skip-layer
structure within the Holistically-Nested Edge Detection network.

Those connections from deeper layers to the shallower ones, offer two
advantages:

1. High-level features from the deeper layers can help shallower layers to
better locate the most salient region

2. Shallower layers can learn rich low level features to refine the sparse
and irregular prediction maps from deeper layers

These short connections, linking the deeper side output layers to the
shallower ones, can be mathematically formalized by writing the equation
which computes the new side activation R̃(m)

side of the m-th side output using
the weights rmi of the short connection from the side output i to the side
output m (with i > m):

R̃
(m)
side =


∑M̂

i=m+1 r
m
i R̃

(i)
side + Ã

(m)
side for m=1,...,5

Ã
(m)
side for m=6

(4.1)

For what concerns the training of the proposed Salient Object Detection
network, it is performed by means of deep supervision and followed the
training procedure of state-of-the-art saliency detection architectures. In
particular they claim to have used the same procedure as [59], which use
2500 randomly sampled images from the MSRA-B dataset [57], 500 images as
validation set, and the remaining 2000 images of MSRA-B as test set.

MSRA-B [57] is a dataset which includes 5000 images each one containing
labeled rectangles from 9 different users who were asked to draw a bounding
box around what they consider the most salient object. This dataset feature a
large variation among images which vary from natural scenes, to animals,
cities, etc. For the saliency object detection training Jiang et al. manually seg-
mented the identified salient objects edges within the user-drawn bounding
box and thus obtained binary masks, which were used to train, validate and
test the architecture.

In summary, by fusing information from different levels, the architecture
benefits of rich multi-scale feature maps at each layer, an essential property
to perform an efficient salient object detection.
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4.1.2 The functioning of the defense

Figure 4.4: Our first trial using Salient Object Detection as a substitute for the CAMs
localization in the CIIDefence pipeline.

We experimented the use of the original version of the Salient Object
Detection mechanism, which returns a dynamic number of pixels depending
on the object size, and used the same inpainting strategy as CIIDefence
by reconstructing the pixels inside the salient area and denoising the ones
outside that area, as shown in Figure 4.4. However, as the returned salient
object size is dynamic, it can happen that it occupies up to 50% of the total
image. As it is impossible for any inpainting network to hallucinate such a big
content, to improve the inpainting performance we run the inpainting GAN
following a divide-et-impera scheme which we named Partitioned Inpainting. In
particular we run the GAN five times for each mask, each time inpainting
1/5 of the total mask and then fusing it all together (standard CIIDefence
runs DeepFill only once as the inpainting area is constant). A detailed view
of the inpainting result as described here is shown in Figure 4.5.

Observing the inpainted output it is possible to notice that the reconstructed
pixels are more blurred with respect to CIIDefence, and this is due to the
bigger inpaint mask size. Even in pictures where the salient object occupies
an acceptable size of the total image, the inpainted outline is still not well
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Figure 4.5: Comparison between the adversarial input and the image with the
inpainted foreground after fusing the five different inpainted parts of the divide-et-
impera scheme (partitioned inpainting).

defined as in clean images (which is an important feature for the classification
outcome, as confirmed by CAM outputs). In images where the salient object
is even bigger, some detail of it was lost.

To better explore all the details of this mechanism we also tried to switch
the area to be inpainted from the foreground to the background, still using
our partitioned inpainting. This choice is motivated by the fact that we do not
know a-priori where the attack would focus more its adversarial perturbation,
but for sure a clean and regular area such as the images background would
be a suitable fit to place the perturbation. Switching from inpainting the
salient object to inpainting the background has also a more deeper meaning:
in average, we are reconstructing more than 50% of each image, and we are
inpainting the areas which should be less meaningful for the classification
outcome. In other words, we are decreasing the level of trust we have in
the image. Even if the background would not be inpainted perfectly the
classification network might not care too much: some blurry areas in the
background should not change the classification of the foreground, but at the
same time we are removing our trust from approximately 50% of an image
which - by definition - can’t be trusted. In our perspective, this would be an
improvement in our work since our baseline, CIIDefence, does not trust only
735/(224 ∗ 224) = 1.46% of the total area.

For what concerns the salient areas, we are denoising it in the same way in
which before we were denoising the background. An example of background
inpainting and foreground denoising is shown in Figure 4.6.
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Figure 4.6: Comparison between the adversarial input and the image with the
inpainted background after fusing the five different inpainted parts of the divide-et-
impera scheme (partitioned inpainting).

Also switching the inpainting area with the denoised one, the defense
classification accuracy did not improve a lot compared to the baseline, even
if it is now faster and less gullible.

To try to solve the problem of the heterogeneity of the mask size (which
directly depends upon the object size in the image), we modified the Salient
Object Detection algorithm and returned always images with the same num-
ber of p = 3000 most salient pixels over the other salient pixels, followed by
some ablation studies around this number. This modification of the Salient
Object Detection method is abbreviated as FixedPx variant. Lowering of the
number of pixel to inpaint allowed us to use the unmodified version of the
DeepFill GAN which was used also by our baseline and in addition, fixing a
static number of pixels for the masked area, caused two behaviours:

1. Objects smaller than 3000 pixels returned mask which are fatter with
respect to the object. This was not a problem as pictures with salient
objects smaller than 3000px are rare and still objects are recovered with
no problem (as the size of the image to be inpainted is small).

2. Objects bigger than 3000 pixels returned mask which does not con-
tain them all, but only the most salient pixels of the salient area. A
comparison of such behaviour is shown in Figure 4.7. In this case the
shape of the salient object can not be maintained but as all the returned
salient pixels lie inside the salient object, inpainting those pixels could
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break some adversarial-crafted features which may be inside the most
relevant area of the picture, that is the salient object.

Figure 4.7: Comparison between the salient object mask generated with a static
number of pixels and dynamic one. The first column from left is the original input
to the salient detector, the second column is the object matched with no constraint
about the number of pixels, the third column is the object matched fixing 3000 pixels.

However, even if those mechanisms represent an improvement in terms
of time with respect to CIIDefence, they do not raise the accuracy signifi-
cantly over the performance of our baseline. Even worst, as already said for
CIIDefence in Section 3.2, according to [5] also a defense mechanism like
ours, which is based only on salience detection and a deterministic inpainting
and denoising, can not claim white box performance without giving full
knowledge of the defense to the attacker.
In our case, an attacker with full knowledge of the defense would add its
perturbations in the area not covered by the inpainting, because as already
said the wavelet denoising filter can still be approximated by attacks designed
to workaround non-differentiable layers, such as BPDA [19]. Thus our defense
- as is - would probably fail in a full white-box scenario like the one described
by Athalye, Carlini, and Wagner. Considered this, we will first investigate its
performance in the classic way, to assess a fair comparison with our baseline
model.
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4.2 setup and prerequisites

For what concerns the parts of the pipeline reused from CIIDefence, no
special setup nor additional prerequisite is needed except for the ones already
detailed in Section 3.2.

Instead, for reproducing the correct functioning of the salient object detector
[32], we used the code from Zheng in combination with its pre-trained model
which are available in his GitHub repository [64].

4.3 experiments performed

In this section, we will first describe and then discuss the experiments related
to the single saliency localization method along with their results and then we
will introduce the partitioned inpainting strategy, applying it to our pipeline.
We will proceed this way to introduce one novelty at a time in our pipeline
to have a clear idea of what benefits and what potential drawbacks we are
bringing in.

It is important to note that, even if we did not identify too much discrepancy
in the comparison done in Section 3.4 between DeepFill v1 and DeepFill v2,
most of the experiments mentioned here were still run twice: the first time
with DeepFill v1 and the second time with DeepFill v2.

Also for these experiments, we run our tests on five different servers,
each one of them equipped with a Nvidia K80 GPU and 12Gb of Graphical
Memory, and an auxiliary server equipped with eight different Nvidia 1080Ti
GPU each having 12 Gb of Graphical Memory too. The results that we
obtained are shown next to each experiment.

4.3.1 Saliency-based localization

After the consolidation of the idea of replacing the CIIDefence CAMs local-
ization with the saliency-based one while keeping unaltered the rest of the
pipeline, the first step we needed to take was to find a way to assess the
localization performance of the single saliency-based method with respect to
the single CAMs method for localization.

4.3.1.1 Object over a white background

To assess the Salient Object Method functioning we tried to put the detected
salient object over a completely white background to check its prediction
accuracy. This experiment was only needed to test the quality of the local-
ization done by the Salient Object Localization technique, and not the final
classification accuracy, which we expect to be low compared to a full defense.
Indeed, taking the portion of the image returned by the Salient Object Detec-
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Figure 4.8: Example of a recognized salient object put over a white background for
the assessment of the Salient Object Detection method.

tion network and trying to classify it without relying on its background, was
something that would help to understand the performance of the method
in presence of adversarial examples. Indeed, the Salient Object Detection
already has some studies behind it [32] but those studies are executed on
clean, unperturbed images.

An example of image which was submitted to the classifier in this exper-
iment is reported in Figure 4.8. Of course, if the Salient Object Detection
methods fails in identifying the foreground in many images, we would expect
a step decrease in the accuracy with respect to the unmodified adversarial
example.

The results are shown in the Table 4.1. Before discussing the results of the
experiment we immediately notice that the Adversarial top-1 and top-5 have
not changed from the values reported in Table 3.1 for the original baseline
test. This is explained by the fact that once generated images with a fixed
epsilon for a certain network, those adversarial examples will be reused by
us for testing that network to ensure the comparability of the results across
experiments.

The top-1 accuracy of this experiment is not high. Even if some adversarial
perturbation which would lay in the background has been deleted, it is also
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Attack Adv
Top-1

Adv
Top-5

Saliency over
white bg Top-1

Inception v3

DeepFool 48.27% 88.32% 53.58%

FGSM 50.62% 83.73% 53.50%

PGD 35.78% 70.23% 52.40%

ResNet-101

DeepFool 40.14% 85.18% 39.37%

FGSM 41.39% 83.33% 39.20%

PGD 30.59% 77.60% 38.86%

VGG16

DeepFool 45.89% 86.88% 32.22%

FGSM 47.22% 84.80% 32.17%

PGD 42.67% 82.25% 31.82%

Table 4.1: Saliency assessments results over a white background on the Inception
v3, ResNet-101 and VGG16 classifier architectures with a value of ε = 0.2.

true that any kind of perturbation inside the salient object has been untouched.
In addition, the removal of a big portion of the image (in average the back-
ground identified by this method covers over 80% of the total surface) badly
influence the classification accuracy. For example, in order to distinguish a
missile from a projectile, the network may need to analyze if the area near
the bottom of it would present some smoke produced by the engine or not.
In other words, context information is relevant to the classification task.

By testing our architecture on images which present adversarial noise and
at the same time miss important features, we would expect a step decrease in
the accuracy with respect to the unmodified adversarial example if the Salient
Object Detection mechanism fails in identifying the salient area, because in
that case we would have no clue to guess the real class of the image, having
deleted it, and in addition we are left with adversarial noise. Otherwise, if the
salient object is correctly identified, we expect different results based on how
much adversarial perturbation is kept in the image, but in average even a
small increase or a stable result could imply a good functioning of the salient
detection mechanism.

Confirming again the differences in the three networks already discussed
in Section 3.4, we note that the weaker of the three, VGG16, shows a drop in
accuracy of approximately −15% with respect to the unmodified adversarial
examples. On the other hand, more advanced networks like Inception v3 and



4.3 experiments performed 53

ResNet-101 do not exhibit such behaviour, quite the opposite, they show a
stable results with increasing trends of approximately +10%. The increase in
the classification outcome achieved considered the removal of features and
the non-removal of the adversarial perturbation inside salient objects confirm
that the Salient Object Detection network could be used in our pipeline and
so it will be analyzed in depth in the proceedings of our analysis.

4.3.1.2 Saliency vs CIIDefence

As we assessed the performance of the Salient Object Detection mechanism
executed alone and confirmed its validity for our studies, we compared its
localization performance in presence of adversarial attacks with respect to
our baseline, which uses the Class Activation Maps. However, it should
be clear that these two methods present totally different advantages and
disadvantages and thus the comparison should be performed in different
settings. We will start by measuring these performance placing our analysis
in the most favorite scenario for the CAMs based method.

To maintain a good degree of correspondence between the two pipelines,
we used the FixedPx variant of Salient Object Detection selecting only 5 · 3 ·
(7× 7) = 735 px, that is the same number of pixels identified by the CAMs.
In addition, we used the same DeepFill inpainting strategy as our baseline
(one-shot inpainting), thus creating an architecture where the only thing that
has changed with respect to the original CIIDefence pipeline is the use of
Salient Object Detection as localization strategy instead of CAMs.

As discussed in Section 3.1, the Class Activation Maps could perform a
sort of coarse localization and thus we usually take only the peak maximal
values of the CAMs to identify salient areas. In the example of CIIDefence,
the ablation studies performed by Gupta and Rahtu suggested to take 15
squares of size 7× 7 for a total of 735px. To compare the two methodologies
from a fair point of view for CIIDefence we capped our saliency method in
returning only the 735px most salient pixels even if the method would have
the capabilities to return the entire salient object. Anyhow, as shown in Figure
4.7, the localization performed by Salient Object Detection method with fixed
pixel number is sub-optimal with respect to the full method, especially for a
low pixel values which makes more probable that the salient object would
not be included entirely.

The results are shown in Table 4.2. As it can be seen, the Saliency mecha-
nism suffers a lot for its 735px capping strategy and even if its performance
are good and encouraging, it can’t reach our baseline model inpainting such
a small number of pixels. However, at this stage we can’t exclude the FixedPx
version of saliency, we can only state that 735px are in average a too few
pixels for this strategy to succeed.
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Attack Adv
Top-1

Baseline Saliency
735px
Top-1 DF1

Saliency
735px
Top-1 DF2

Inception v3

DeepFool 48.47% 75.23% 65.57% 67.33%

FGSM 50.62% 76.49% 66.09% 67.79%

PGD 35.78% 70.02% 61.55% 62.96%

ResNet-101

DeepFool 40.14% 64.06% 54.59% 56.63%

FGSM 41.39% 64.49% 54.84% 57.10%

PGD 30.59% 58.41% 50.79% 52.66%

VGG16

DeepFool 45.89% 55.58% 46.21% 48.14%

FGSM 47.22% 55.72% 46.44% 48.44%

PGD 42.67% 52.74% 43.92% 46.05%

Table 4.2: Comparison of the results obtained by using the salient object detection
with 735 pixels compared with the baseline results as proposed in [1] tested on the
Inception v3, ResNet-101 and VGG16 classifier architectures with a value of ε = 0.2.

A quick check running the Saliency method with no cap on the pixel
number and measuring the returned area size reported that in average the
salient object size is 2500px big, with a variance σ = 1000px. This could
explain the poor performance of the mechanism with 735px and lead us to
an ablation study around the number of pixels for the FixedPx variant of
the Salient Object Detection method to assess the full capabilities of the new
localization strategy.

4.3.1.3 Ablation studies

Once we assessed the capabilities of our first proposed modification to the
defense architecture, we put in place an ablation study in order to identify
the best number of pixel to inpaint in the FixedPx variant of the Salient Object
Detection method. Indeed, as shown in Figure 4.7, the number of pixel is
an important hyperparameter of our method which identify only the top N
most salient pixels instead of reporting the whole object shape.

As anticipated, saliency method with no cap on the pixel number reports
in average a salient object size of 2200px with a variance σ = 1000px. This
thing gives us 4 different choices for the parameter that is the focus of our
ablation studies: we compared the performance of the full pipeline using a
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localization strategy with a number of pixel from 1000 to 4000 with steps of
1000px. In this way we try pixels values in a range of ± 2σ from the mean
value of 2500px, thus including around 95% of the salient object sizes of our
images.

We did not use yet the partitioned inpainting mechanism, as in those range
of number of pixels it would be still possible for the standard inpainting GAN
to reconstruct the missing areas in just one pass. The partitioned inpainting
will come into play when the area to be inpainted is so big that it would be
impossible to hallucinate such a big size in just one pass.

From the results shown in Table 4.3 it is possible to see that the pixel
number increase had a positive impact on the classification outcome. In
particular, using a pixel size greater or equal than 2000px the top-1 accuracy
has overtook our baseline results (shown in Table 3.1) of approximately +2%.
The key result here does not lay in the fact that we created a method which
can score a few percent points over the baseline, but instead the key takeaway
is that we built a pipeline which has approximately the same results of
CIIDefence, but runs 3x faster. Indeed, having replaced the CAMs with the
Salient Object Detection strategy we were able to perform the localization
step in 80ms instead of 2s. The remaining stages of the architecture are the
same which took 1s and thus we decreased the time needed from 3s for each
image to 1s per image. In doing this, we were also able to achieve a little
improvement also in the classification accuracy.

From the same table it is possible to confirm once again that the classi-
fication performance does not depend too much on the specific inpainting
network such as DeepFill v1 and DeepFill v2, but it is approximately equal
using any GAN from Yu et al. [67, 66]. However, the trends shown in the
experiment prove that the classification performance suffer more with fewer
pixels than with bigger numbers and that is explained by the fact that inpaint-
ing fewer pixels we are leaving untouched large parts of the image where
adversarial pixels might hide.

Those ablation studies confirms that the optimal range for the number of
pixel is between 2000 and 4000. In average, we have increased the no-trust
zone with respect to CIIDefence, bringing it to 3000/(224 ∗ 224) = 5.97% of
the size of the total image, with respect to the 735/(224 ∗ 224) = 1.46% of
CIIDefence.

4.3.2 Partitioned Inpainting strategy

Following the same scheme used in the previous section we will gradually
introduce the partitioned inpainting strategy by assessing the performance of
a pipeline which is just the same as our baseline CIIDefence except for the
single building block which we are analyzing.
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Attack Adv
Top-1

Adv
Top-5

1000px 2000px 3000px 4000px

Standard DeepFill v1

Inception v3

DeepFool 48.27% 88.32% 38.48% 75.03% 74.84% 73.94%

FGSM 50.62% 83.73% 38.65% 76.28% 75.62% 73.81%

PGD 35.78% 70.23% 36.59% 70.30% 70.32% 68.97%

ResNet-101

DeepFool 40.14% 85.18% 31.35% 63.12% 62.55% 61.32%

FGSM 41.39% 83.33% 31.43% 63.55% 62.91% 61.48%

PGD 30.59% 77.60% 29.44% 58.14% 58.41% 57.15%

VGG16

DeepFool 45.89% 86.88% 25.01% 54.77% 53.51% 51.54%

FGSM 47.22% 84.80% 24.92% 55.35% 53.87% 51.61%

PGD 42.67% 82.25% 23.84% 52.11% 50.78% 48.94%

Standard DeepFill v2

Inception v3

DeepFool 48.27% 88.32% 43.59% 75.42% 75.30% 75.01%

FGSM 50.62% 83.73% 43.63% 76.33% 76.30% 74.91%

PGD 35.78% 70.23% 41.69% 70.09% 70.12% 69.95%

ResNet-101

DeepFool 40.14% 85.18% 36.62% 63.53% 63.47% 62.90%

FGSM 41.39% 83.33% 36.42% 64.22% 64.12% 63.62%

PGD 30.59% 77.60% 33.86% 58.69% 59.08% 59.01%

VGG16

DeepFool 45.89% 86.88% 28.95% 54.91% 54.63% 54.05%

FGSM 47.22% 84.80% 28.88% 55.67% 55.03% 54.16%

PGD 42.67% 82.25% 27.76% 52.46% 52.39% 51.60%

Table 4.3: Saliency ablation study results for different number of pixel to take as
most salient ones on the Inception v3, ResNet-101 and VGG16 classifier architectures
with a value of ε = 0.2.

4.3.2.1 CAMs and Partitioned Inpainting strategy

As detailed in the partitioned inpainting strategy description in Section 4.1.2,
this methodology has born to overcome the problem of inpainting large areas
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without loss of lots of details and features. However, the localization strategy
in CIIDefence is designed to take into account this problem by returning a
low number of pixel, precisely 735px.

Figure 4.9: Comparison between inpainting done in CIIDefence and the inpainting
done by the partitioned inpainting method guided by the CAMs. The localization
idea is the same for both of them but while CIIDefence only inpaint 15 squares of
size 7× 7, in the proposed weakly supervised localisation strategy we inpaint the
smallest rectangle containing all the pixels identified by the CAMs. In this way the
number of pixel contained in the rectangle varies between images.

In order to test the potential of the partitioned inpainting strategy leaving
in place the CAMs localization to account for our one-change-at-a-time
approach, we inpainted not only the 7× 7 tiles returned by the CAMs but
instead we reconstruct-by-partitioning the whole area covered by the smallest
rectangle containing all the salient pixels generated via the CAMs, as shown
in Figure 4.9. The partitioned inpainting strategy divides the area to be
inpainted in 25 squares (five rows of five columns) and inpaint each one
singularly, aggregating them all only at the end.

The results showed in Table 4.4 for this test are encouraging as the perfor-
mance using CAMs for localization and the partitioned inpainting method to
reconstruct those areas have reached our target baseline model which was
using CAMs for localization and standard single-pass DeepFill for inpainting.

Having reached the baseline performance changing the inpainting strategy
means that, for the specific localization performed by means of CAMs, our
inpainting method has the same expressiveness of the standard DeepFill
and so we can continue our road to the input zero-trust using a this new
strategy which for sure will help, having increased the reachable area size for
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Attack CAM with P.I.
Top-1 DF1

CAM with P.I.
Top-1 DF2

Baseline

Inception v3

DeepFool 75.40% 75.52% 75.23%

FGSM 76.78% 76.94% 76.49%

PGD 70.40% 69.81% 70.02%

ResNet-101

DeepFool 63.86% 64.06% 64.06%

FGSM 63.99% 64.64% 64.49%

PGD 58.13% 58.65% 58.41%

VGG16

DeepFool 55.26% 55.62% 55.58%

FGSM 55.81% 56.06% 55.72%

PGD 52.77% 52.89% 52.74%

Table 4.4: Saliency assessments results on the Inception v3, ResNet-101 and VGG16

classifier architectures with a value of ε = 0.2.

inpainting. As Figure 4.9 suggest we obtained the same accuracy removing
trust from more than 20% of the image in average.

4.3.2.2 Fixed px vs Dynamic px

Having verified that our partitioned inpainting strategy has the same expres-
siveness as the inpainting method used in our baseline we can proceed taking
a further change in our architecture. Indeed, we can exploit the full potential
of the partitioned inpainting strategy to inpaint bigger areas such as the full
salient object size as returned from the original Salient Object Detection as it
was proposed in [32].

In addition, having identified the best number of pixel to inpaint in the
FixedPx variant of the Salient Object Detection method, we were ready
to compare if the usage of a dynamic area size would have brought some
improvements or not with respect to the FixedPx best model. Using a dynamic
pixel size area results in the full object being inpainted, but on the other hand
if the salient object is too big with respect to the total input image size
even for the partitioned inpainting scheme, having a fixed, carefully-chosen
number of pixel might help the Generative Adeversarial Network to recover
adversarially perturbed pixels in a better way.

Until now, we discovered that the Salient Object Detection mechanism was
able to reach our baseline results by fixing an appropriate number of pixels to
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inpaint, and that the classification accuracy decreases more rapidly inpainting
lower values while decreases more slowly by fixing higher numbers of pixels.
We have not run yet a comparison between the standard Salient Object
Detection pipeline as presented in [32] which returns a dynamic area size
depending on the salient object size and the FixedPx variant which is capped
at the N topmost salient pixels.

It is true that the defended top-1 accuracy presented in the ablation studies
already performs well by fixing a static number of pixel to inpaint, however
there could be performance gains in sticking to the object size and no more
to a predefined hyperparameter.

As we are now testing an architecture which uses a dynamic size for salient
object size, we should employ the improved inpainting strategy, namely
the partitioned inpainting. Indeed, it would not be possible for any GAN to
hallucinate totally missing salient object just by looking at the context without
any clue at all. To ensure consistency, we will use partitioned inpainting also
for the FixedPx variant of the method, reason why we will not have the very
same results as the previous section. Using such inpainting strategy made us
compare the Dynamic version with the 3000px version, as it is true that using
3000px is slightly suboptimal with respect to 2000px but at this time we are
using partitioned inpainting which does handle bigger mask sizes with no
problem and thus the 3000px variant is more appropriate.

The experimental top-1 classification accuracy of such comparison is shown
in Table 4.5. The obvious starting point of the discussion about these results
resides in the difference between the pipeline which uses DeepFill v1 with
dynamic object size and the architecture which uses DeepFill v2 with the
same dynamic object size. Indeed, we can not find such difference in the
comparison between the other two experiments where we compare our two
GANs running the fixed-size pipeline.

The reason why, using a dynamic number of pixels, DeepFill v2 performs
better than DeepFill v1 lays in the fact that in this setting the Salient Object
Detection network almost always includes in the mask the whole object and
from what discussed in Section 3.1.2.1, DeepFill v2 is more able to handle
such situations with respect to DeepFill v1. Instead, when parts of the salient
object are visible such when the number of pixel of the mask is fixed or we
employ the CAMs for localization, DeepFill v1 is good in reconstructing the
salient area as much as DeepFill v2, as it is possible to see in the column Fix
DF1 and Fix DF2.

Following this research direction we are stuck on our initial goal of remov-
ing the trust from the adversarial images. Indeed, we proposed the Salient
Object Detection to be used as localization method, decreasing the time
needed while maintaining the accuracy (even improving it a bit), but as the
dynamic version of such salient object detection network does not perform
better than our modified one which uses a fixed number of pixel, we are not
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Attack Adv
Top-1

Adv
Top-5

Fix
DF1

Fix
DF2

Dyn
DF1

Dyn
DF2

Inception v3

DeepFool 48.27% 88.32% 76.00% 76.72% 63.94% 67.76%

FGSM 50.62% 83.73% 76.93% 77.22% 64.49% 68.05%

PGD 35.78% 70.23% 71.59% 72.16% 61.77% 65.25%

ResNet-101

DeepFool 40.14% 85.18% 64.50% 65.13% 58.02% 61.30%

FGSM 41.39% 83.33% 65.03% 65.60% 57.88% 61.15%

PGD 30.59% 77.60% 59.65% 60.07% 55.17% 58.54%

VGG16

DeepFool 45.89% 86.88% 54.50% 55.46% 45.95% 47.85%

FGSM 47.22% 84.80% 55.09% 56.04% 46.11% 48.04%

PGD 42.67% 82.25% 51.94% 53.05% 44.14% 46.23%

Table 4.5: Comparison between saliency results using a fixed pixel size over a
dynamic one on the Inception v3, ResNet-101 and VGG16 classifier architectures
with a value of ε = 0.2. All the pipeline used partitioned inpainting instead of the
standard one with DeepFill v1.

able to remove any more trust from the images. From inpainting 1, 46% of the
image we now are not trusting (and thus inpainting) 3000/(224× 224) = 6%
of the total image but still we leave room for attackers to exploit the other
94% of the image which is only protected by a denoiser filter which, at least
in the CIIDefence paper, the attacker is not aware of.

4.3.2.3 Background vs foreground inpainting

We consider the FixedPx strategy an evolution of the CIIDefence architecture
in terms of time and accuracy, but still we wish to follow a research direction
oriented trough a low-trust models and thus we want to investigate if the
lack of performance that the Salient Object Method has when using the full
dynamic pixel number mask can be solved by a different inpainting strategy.

Until now, in all our experiments we have always followed the direction
impressed by CIIDefence which made us to inpaint the salient object (aka
foreground) and to denoise the background, except when stated differently
like in the salient object over white background experiment. However, we can
also decide to inpaint the background, which should contain a less amount of
useful features, and denoise the foreground, which should preserve as much
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as possible original clean features removing adversarial ones. In general, we
have two possibilities to proceed:

• Inpaint the foreground and denoise the background: this strategy relies
on the fact that the foreground (or salient object) is the most critical
area of our image for its classification. To choose the correct class of the
image indeed, the architecture should look at the salient object which,
if adversarially compromised, may not show the features needed to
the network to identify it. By inpainting and partitioning it, we try to
recover such features that should increase the prediction confidence of
the true class.
Since we inpaint the foreground, we need to choose what to do with the
background. The choice here is to denoise it, based on the observation
that some attacks just don’t care about decreasing the confidence of
the true class but they add artificially crafted features elsewhere in
the image to divert the network to focus in another area. Thus, the
background should be cleaned from these adversarial features but
as we already inpainted the salient object, we can only denoise the
background. If this strategy will have success with the attacks we are
testing, we should take care to test such defense also with attacks which
approximate the non differentiable layers (such as the wavelet denoiser)
to give full knowledge of the defense to the attacker before claiming
white-box performance [19].

• Inpaint the background and denoise the foreground: this strategy is
the exact opposite of the first but is born from the same motivations.
Considered that inpainting the whole salient object (or most parts of it)
is achieved by the state-of-the-art GANs without too much details and
features (needed for the classification) we might change the strategy to
the opposite. We then inpaint the whole background with a partitioned-
based inpainting strategy (because of its size) and we don’t care if
the GAN is not able to recover in a perfect way all the details of the
background, we just need that it is able to remove the adversarial
perturbation from it. Of course, doing this, we should then defend the
salient object from the attack and so we have chosen to denoise it, as
the denoising filter maintains better the features already present (as it
does not need to hallucinate new content based on the surroundings),
it just need to slightly change some pixel values to be more coherent
and have less adversarial variance from one another. Also in this case
the considerations from [19] are valid and we need to pay attention in
this sense if we will proceed in this way.

In addition, in the next Chapter 5 we will present a new inpainting method
which is the core result of this Thesis and we will test the saliency based
localization inpainted with this new technique.
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Attack Adv
Top-1

Adv
Top-5

Inp. Background
DynPx

Inp. Foreground
DynPx

Inception v3

DeepFool 48.27% 88.32% 67.88% 67.76%

FGSM 50.62% 83.73% 68.32% 68.05%

PGD 35.78% 70.23% 65.59% 65.25%

ResNet-101

DeepFool 40.14% 85.18% 61.20% 61.30%

FGSM 41.39% 83.33% 61.13% 61.15%

PGD 30.59% 77.60% 58.52% 58.54%

VGG16

DeepFool 45.89% 86.88% 47.82% 47.85%

FGSM 47.22% 84.80% 47.99% 48.04%

PGD 42.67% 82.25% 46.42% 46.23%

Table 4.6: Comparison between saliency results using a denoising filter on fore-
ground and inpainting the background versus the opposite strategy on the Inception
v3, ResNet-101 and VGG16 classifier architectures with a value of ε = 0.2. All the
pipeline used partitioned inpainting instead of the standard DeepFill.

We have reported in Table 4.6 results of this experiment. We can see that for
all the networks and all the attacks, we get very similar results even by totally
changing the inpainting strategy. An image with an inpainted background
and a denoised salient object would appear to be different both in terms of
human perception and in terms of clean features with respect to an image
which has a denoised background and an inpainted foreground. Yet, we see
that in average the classification network has near the same performance on
these two different kind of images.

However there is a substantial difference in the two kind of images: while
in the input with the foreground inpainted we erase and restore an area with
a size of about 2000px−3000px that is around 6% of the total image, in the
picture with the background inpainted we cancel and recover the opposite
area, that is 100% − 6% = 94%, maintaining the same performance.

We discovered a trade-off between the size of the area to trust and the
importance of the information inside that area. It is possible to inpaint the
94% of the image (thus trusting only 6% of it) if in that area we do not have
too many features of the object to be classified (background). At the opposite,
if we want to inpaint a critical area for the classification outcome that is the
salient object, we should put our trust in huge parts of the image, such as the
whole background. Of course one method could perform better than other
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when subject to specific attacks. For example, in the paper “Mask-guided
noise restriction adversarial attacks for image classification” [50], Duan et al.
propose an attack which concentrate all the adversarial perturbation inside
the salient object. Needless to say, for this specific attacks, the method which
should outperform the other is to inpaint the salient object and denoise the
background. But as in a white box scenario we are defending from unknown
types of attacks, we can not favorite a specific inpainting method on this basis.
All the attacks that we have chosen to test our architecture, which are general
well-know attacks in the literature, place their perturbation all over the image
without preferences explaining in this way the quite similar performance of
the two different inpainting methods.

Such trade-off between the size of the area to trust and the importance of
the information inside that area will be solved in the next chapter.





5
D E F E N S E B Y M A S S I V E I N PA I N T I N G

Since the beginning of our studies we followed a research direction oriented
in removing as much trust as possible from adversarial images because, as
the name suggest, those are images which were artificially manipulated by
an adversary at the only purpose of fooling a classification network to make
a wrong prediction.

However, the concept of trust related to an image is broad, and we want to
give a categorization to it by dividing such concept in two distinct categories:

• Trust pixel-level values: this category refers to whether we should take
for granted the single individually-considered RGB values inside a
pixel. Those values ranges from 0 to 255 and identify the intensity of a
channel in the pixel. An adversary has the power to alter those values
in such an imperceptible way that new adversarial features appear at a
macroscopic level and real class features are broken at microscopic level.
Therefore image has some pixels which values are changed of a few
points, thus those variations are not easily noticeable by a human, but
those pixel-level changes can be singularly used to break real features
of the true class in such a way that the network lower his confidence in
the real class. In addition, if those microscopic variations are correlated
one another as it is in adversarial attacks, the resulting adversarial
features from those variations are superimposed over the real image
with a low intensity. Even if those pixel-level variations are not clearly
distinguishable by humans, the network which should classify the
image often get confused by the presence of such human-invisible
perturbations that exhibits adversarial features and thus the input is
often misclassified.

• Trust macroscopic level features: this level of trust in the image is
related to the trust that we should have in the features present in the
image. Non-adversarially trained neural network can not discriminate
the bounty of a feature by only looking at its relative intensity over the
background because those networks were trained to make classification
guess, not other tasks such as adversarial recognition. Classification
networks acquire all the features shown in the input image and then
assign them an importance score accordingly to different factors, such
as the mutual presence of some features which may resemble a class
that the network knows from train time. The problem with macroscopic
level perturbations is that we can not delete it as we would with pixel-
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level RGB values: for example, microscopic changes can be achieved
by looking at neighborhood pixels and increasing their relative co-
existence probability, as Bayesian denoisers do. However, the concept of
adversarial feature or macroscopic perturbation for a neural network
still arise from the microscopic presence of certain patterns in pixel-
level values thus to eliminate the trust in macroscopic level features we
would still need to alter the microscopic level RGB values, but in such a
way that the high-level coherence between them is preserved.

We discovered that the method proposed in Chapter 4 presents a trade-off
between the size of the area to trust and the importance of the information
inside that area. Rephrased, the trade-off is between the pixel-level trust and
the feature-level trust. Indeed, we can mess up with many pixel as long as
they are not part of important features, while we can only modify a small
number of single pixel values if we are operating in a zone rich of features
which are important for the classification outcome, such as the foreground or
salient object area.

This trade-off however, is something connected to the method. Architec-
tures such as Pixel-Deflection [3], CIIDefence [1] and our improved saliency-
based localization and inpainting [Chap. 4], all suffer of this trade-off.

In order to avoid the presence of this trade-off between inpainting a small
number of pixel of the foreground, and inpainting a big number of pixels
of the background, we would need a way which allows us to do both: this
technique is called Massive Inpainting.

5.1 description and methodology

We propose a novel defense strategy which we call Defence by Massive
Inpainting in which we alter the pixel-level values present in the input image
in such a way that macroscopic-level adversarial features are removed and
non-adversary macroscopic-level features are maintained. Indeed, as we wish
to migrate to a zero-trust model, we propose a way to defend from adversarial
attack which modify all the pixels of the input image, regardless of it being a
salient pixel or a background pixel.

To the best of our knowledge, the only research work which applies in-
painting to adversarial attacks is [28], the Erase-and-Restore attack detection
mechanism. In this work, Zuo and Zeng randomly draw a percentage of
pixels of the input image, then they inpaint only those pixels and the result-
ing image is compared back with the original image, in order to detect if
the inpainting has changed or not the input image. If the image has been
modified a lot, the input picture is considered to be adversarially perturbed.
However, in this Thesis we are proposing a defense mechanism and not a
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detection mechanism and in addition, while they inpaint a subset of pixels,
we always inpaint the 100% of input pixels.

A natural consideration to make is that, as we are not anymore interested
in knowing where the salient objects and the most influent areas for the
classification are, we can now drop the localization stage of our pipeline.
Completely dropping this stage will increase the architectural speed even
more than what we achieved by introducing the saliency-based localization
and in addition it removes an exposed attack surface that in a full white-
box scenario the adversary can exploit. By giving full knowledge of the
defense to the adversary [5], it is no more possible from him to integrate
the localization defense mechanism in its adversarial example generation
pipeline to avoid well-defended areas and to find the best location for his
perturbation, because the localization stage was removed and now it does not
exist anymore. By inpainting all the pixels of the image, the only remaining
possibility that an adversary has thanks to the full knowledge of the defense
architecture would be to target the Generative Adversarial Network which
performs the defensive inpainting. Attacks on the GAN are not common
in the literature as to the best of our knowledge, all the works mentioning
GANs and Adversarial Attacks are using an adversarially-trained GAN to
generate Adversarial Examples, but are not generating Adversarial Examples
which target a specific GAN to lower its reconstruction accuracy. The process
of creating a new adversarial attack specific for GANs is more difficult than
using the common attacks already known in the literature and just avoid the
inpainted zones in order to place the adversarial features in the denoised
area, as it would be possible for CIIDefence. However, we will remove also
the possibility to exploit the GAN in an adversarial attack (which is the only
remaining added attack surface) by totally randomizing the way in which
the GAN operates.

The turning point for the massive pixel reconstruction came from the
reading “Reconstruction by inpainting for visual anomaly detection” [43].
In this work, Zavrtanik, Kristan, and Skočaj propose a novel architecture
applied to anomaly detection of objects and visual quality control which uses
inpainting as one of their pipeline stages. Using their inpainting method as a
defense against adversarial attacks has, to the best of our knowledge, never
been studied in literature.

5.1.1 RIAD

Reconstruction by Inpainting for visual Anomaly Detection (RIAD) [43] ad-
dresses the task of anomaly detection of defects in objects by only analyzing
their pictures and reduces the problem to a classification and localization
of areas of an image which deviate from their normal aspect, which thus
may have a defect. Popular approaches for solving this problem involve the
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training of an auto-encoder (which acts as a denoising filter) and computing
the similarity between the original image and the denoised output. If the
similarity is high, it means that the denoiser has not performed many mod-
ifications and thus the object in the picture is considered to be defect-free.
On the other hand, if the similarity is low, it means that the denoiser has
removed something from the input image (probably the defect) and thus the
object should be considered as defective and inspected or discarded.

Figure 5.1: General functioning mechanism of the full RIAD pipeline. The input
image is massively inpainted and then compared back to itself to identify anomalies
in the object.

However encoder-decoder networks, even if trained on defects-free images,
were proved to generalize well also to anomalies, thus reducing the detection
capabilities [43]. Based on this assumption, Zavrtanik, Kristan, and Skočaj
formulate the problem of visual anomaly detection as a reconstruction by
inpainting problem. They propose a massive inpainting strategy which is
able to reconstruct all the pixels of the input image and afterwards, as other
methods do, they compare the inpainted result with the input picture to
check if anomalies were present in the object, as shown in Figure 5.1.

5.1.1.1 Inpainting strategy of RIAD

For what concerns the adversarial attacks application that we will explain,
the most interesting stage in their work is the mechanism which they employ
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to erase and restore every single pixel of the original image maintaining an
high level of detail.

Figure 5.2: General functioning mechanism of the inpainting strategy used in the
RIAD pipeline. The input image is randomly masked by small tiles in such a way to
uniformly distribute all the tiles between the N masks.

The mask generation strategy used in RIAD creates a fixed number of
masks and then it computes the percentage of image area to hide in each of
these mask in order to cover the full image area. For example, if we choose to
generate N masks it is clear that each mask should contain 1/N of the total
original image area. In addition, instead of choosing big adjacent areas to
hide in the same mask, they randomly draw the percentage of the original
image area tile by tile, as shown in Figure 5.2.

The inpainting strategy of RIAD uses a grid which tiles can be as small as
they want thanks to the fact that the tiles dimension does not influence the
number of inpainting runs. In addition, as the task that they are solving is
related to anomaly detection and the defects they are detecting could space
from a few pixels up to 16px and more, they use different grid sizes and
aggregate all the inpainting results performed with the different grids at the
end, by taking the pixel-wise average.

In particular, Zavrtanik, Kristan, and Skočaj decided to generate for each
input image 4 different inpainted images respectively with a tile size of 2px,
4px, 8px and 16px. After all the inpainted outputs are ready, the final image
which will be compared back to the original is created by taking the average
pixel by pixel of those 4 images.

An example of the mask generation which uses 3 inpainting runs for each
output and different tile sizes is shown in Figure 5.3. The motivation behind
the need of such strategy in RIAD is that by aggregating different scales of
tiles in the masks, the resulting image is more detailed thanks to fine-grained
masks, and at the same time it is more smooth thanks to the coarse masks. In
addition, it is sure that both smaller defects and bigger defects were inpainted,
thanks to the multi-scale tile sizes which better cover more adjacent area in
the input image.
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Figure 5.3: Example of the RIAD inpainting strategy taken from [43] applied to an
input image masked by N = 3 disjoint sets of inpainting regions with four different
squared mask tile of sizes 2px, 4px, 8px, 16px. In this case it needs 3 inpainting
runs to reconstruct a single image with a fixed tile size, and 4 different images to
aggregate at the end, for a total of 3 · 4 = 12 inpainting runs.

The inpainting mechanism which they employ is based out of the well-
known U-Net architecture [56], which they trained using a multi-scale gradi-
ent magnitude similarity (MSGMS) loss [51] and a structured similarity index
(SSIM) loss [53]. The choice of using those losses that penalize structural
differences between the reconstructed regions and regions belonging to the



5.1 description and methodology 71

original image is related to the fact that the standard per-pixel L2 loss which
is commonly used assumes independence between neighboring pixels, which
is often incorrect.

Figure 5.4: Example of the defect localization performance on different images
which the original RIAD method is capable of achieving. Starting from the leftmost
column we have the original image, the full inpainted image, the localization mask
and the overlay of the mask over the original image.

The final result of the full RIAD method is shown in figure 5.4. In this
Thesis we are interested in the specific inpainting strategy that they employed,
that is the multi-scale grid sizes with random pixel level inpainting via
disjoint sets, and we will experiment if and how this methodology could
help in defeating adversarial attacks. We will implement this strategy using
our already analyzed DeepFill GAN and thus we will not use their U-Net
architecture nor any other part of their pipeline which we believe is designed
for the specific task of anomaly detection.
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5.1.1.2 Benefits of the inpainting strategy of RIAD in our pipeline

Until now our defense strategy was stuck at inpainting at most 25% of
the input image with the standard DeepFill GANs which we increased to
approximately 90% using the partitioned inpainting strategy, provided that
the quality of the inpainting would be low and thus excluding from the
inpainting process the key features for the classification.

We recall that our partitioned inpainting mechanism could improve its
level of detail in the inpainting result if we set a smaller size as base area in
our divide-et-impera approach. The method proposed in Chapter 4 divides the
input mask of the inpainting GAN in 5 different rows each composed of 5
different columns, for a total of 25 tiles. Each tile is then inpainted singularly
for a total of 25 different runs of the inpainting network in order to fully
reconstruct the original image.

Figure 5.5: The core idea behind the mechanism of the full partitioned inpainting
scheme. The input image is masked one tile at a time, thus needing N2 different
inpainting runs, where N is the number of tiles in a row or column.

Without using RIAD, if we want to increase the detail of the inpainting,
we can lower the tile size of the Partitioned Inpainting method by creating a
10×10 grid (thus using 24px×24px tiles), but then we would need to perform
10 · 10 = 100 different inpaintings just to reconstruct a single input image. An
example of our partitioned inpainting technique used to massively inpaint an
image is shown in Figure 5.5: it is possible to see that this method generates
big tiles which badly influence the inpainting results and the reduction of
their size increases quadratically the number of needed inpaintings.

Instead, integrating the inpainting strategy used by RIAD in our pipeline
has at least two evident benefits:

• By using masks made of small tiles, it is possible to cover the whole
image surface without influencing too much a single area of it. For
example, inpainting an area of 56px× 56px = 3136px creating a single
adjacent black hole creates much more reconstruction error with respect
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to removing 1 pixel every 4 for the whole size of the image. Indeed,
in the latter case, the inpainting GAN has, for each pixel, 3 neighbors
which can be used to infer the missing one. Instead, by creating the
single large hole of 56px× 56px the inpainting GAN loses some of its
expressiveness when it comes to hallucinate the inner pixels of such
hole.

• In addition, fixing the number of inpainting runs is useful when it
comes to the time required to reconstruct the entire image. Increasing
the size of the Partitioned Inpainting method of 1 column and 1 row
results in a squared increment of the number of the inpainting needed.
Suppose for example to increase the partitioned inpainting grid from a
size of 5× 5 (25 total inpaintings) to a size of 6× 6 (36 total inpaintings),
there would be a 44% time increment even for the smallest possible
variation. Instead, by using the strategy used in RIAD it is possible to
fix a static number N of inpainting runs and have N different masks,
each one with 1/N-th of the image which is randomly masked. In such
a way we can fix any number of inpainting runs we require without
caring of it being a quadratic number, a non-prime number or any other
constraint.

5.1.2 The functioning of the defense

The defense mechanism simplifies a lot our Defense by Massive Inpainting
proposition but it should be noted that the complexity resides in the way in
which we defend, and not in the number of defense stages in the pipeline.

Figure 5.6: Full architectural scheme of our Defense by Massive Inpainting.

As shown in Figure 5.6, given the input image we randomly create N
different pixel-level masks to be used for the massive inpainting and run
N times the DeepFill architecture, each time with a different mask. Once
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finished, we take from each DeepFill run the set of inpainted pixel and we
aggregate them trough all the runs to reconstruct the input image with all
the pixel inpainted. Finally we submit this image made of only inpainted
pixels to the classification network, eventually adding a denoiser.

If we would randomly select a subset of pixels to inpaint as in [28], it would
be possible to state that there can happen lucky inpainting runs where the
architecture has randomly selected many adversarial pixels and few original
ones, thus removing a lot of adversarial perturbation and facilitating the
prediction. However in our mechanism, we inpaint the totality of the pixels
provided as input picture, thus the final image that will be predicted by the
classifier will be constituted of only inpainted pixels: no original pixel is left,
we reached a zero-trust defense strategy.

Inpainting every pixel of every image result in four possible inpainting
cases to be handled by the GAN:

• Reconstructing an adversarial pixel by inferring it from its adversar-
ial neighbors. The single adversarial pixel we are inpainting has been
erased. In order to reconstruct it, the GAN is looking to other adver-
sarial pixels. As the inpainting network is obviously not an adversarial
attack, the inpainting result would not be the perfect pixel-level adver-
sary values as it was previously. However, the Generative Adversarial
Network is not even able to guess the perfect original non-adversarial
values of the pixel if it does not have any non-adversarial clue. The most
probable result of this situation is noise: the reconstructed pixel will
contain a value that is near the original one but also near the adversarial
one, thus the pixel can be considered no more an adversarial one, but
still it can challenge the classification network. In natural images, we
can expect that the channel and spatial correlations are specific, and
that real pictures have all similar distributions, which is the motiva-
tion behind the good generalization of generative networks to unseen
images. A non-adversarially trained GAN fills the masked pixels by
using its ability to model natural images correlations. However, since
an adversarial example is not a natural image, the reconstructed pixel
would follow a distribution which is different from the one used to
attack the GAN, thus the adversary pixels values are corrupted. These
situations decrease the adversariety of the image and increase the noise,
thus are helpful.

• Reconstructing a non adversarial pixel by inferring from its adversar-
ial neighbors. Inpainting 100% of the input pixels would also include
erasing and reconstructing pixels that were left as is by the attacker, but
that we still do not trust. In case a non-adversarial pixel is deleted and
the neighbors which are considered by the GAN to infer the missing
one are adversarial, the situation is similar to the previous described
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one, and the true pixel is replaced with noise. These situations decrease
the image similarity with the original input and increase the noise, thus
are not helpful.

• Reconstructing an adversarial pixel by inferring from its non-adversarial
neighbors. In this case the adversarial pixel is deleted and the GAN
needs a way to infer the values for the deleted pixel. As the focus of
the inpainting network is on original true pixels, it is probable that
the reconstructed pixel is very similar to the original one thanks to its
correlation with their original neighbors. These situations decrease the
adversariety of the image and increase the similarity with the unmodi-
fied image (good).

• Reconstructing a non adversarial pixel by inferring from its non ad-
versarial neighbors. in this case it is probable that the GAN would
reconstruct the pixel as it is or at least very similar to it. These situations
do not decrease nor increase any metric, thus are neutral.

We have always kept in mind the problem stated in [5] about the big
number of defense strategies claiming white-box performance without giving
full knowledge of the defense architecture to the adversary throughout all
our research.

The defense strategy that we are proposing is designed is such a way that
there would be no improvements for the attacker to know how it works or
not. Indeed, we removed the localization stage which could be exploited
by adversaries and the only remaining weak point in this sense was the
inpainting stage.

To overcome possible adversaries which, in a full white-box scenario,
would leverage our GAN to make its inpainting results worse than the non-
inpainted adversarial image (attacks on the GAN), we used a randomized
mask generation procedure. Instead of assigning each pixel to one of the N
masks in a deterministic way, this choice is done in a random way following
a uniform probability distribution. In such a way, two different classification
runs of the same image would have slightly different inpainted results thanks
to the random way in which the mask are generated. In this way, the adversary
does not know which masks the GAN will use to inpaint the image and thus
the adversary can not generate image which confuse the GAN maintaining
a low perturbation norm. The only feasible strategy for the adversary is to
increase the adversarial noise in each pixel of the image but doing this over a
certain threshold would violate the basic assumption of adversarial attacks:
the adversarial examples should be indistinguishable by a human from the
clean image version.

Notice that the white-box threat model gives to the adversary full access
to the neural network classifier architecture and weights, but not test-time
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randomness (only the distribution). In this sense, the adversary can not
know how the mask submitted to the GAN are made and which pixels they
contain. What it can do, is to enumerate all the possibilities, that thanks to
the uniform distribution, have all the same probability. The possible masks
are the combination of 224× 224 = 50176 pixels in class 224× 224/NIMG. In
case NIMG = 12, these are:(
50176

4181

)
=

50176!
4181! · (50176− 4181)!

=
4.77 · 10214063

9.92 · 1013326 · 5.38 · 10194488
≈ 106250

Randomness-based defenses can always be defeated by enumerating all the
possibilities, but usually stochastic gradients or random weights have much
lower combinations, because each one of them would require a retrain. In
our case instead, brute forcing all those mask possibilities is not feasible.

Having secured all the attack surfaces that would be exposed in a full white-
box scenario as described in [5], we can now focus on standard white-box
attacks and still comply with Carlini et al.’s policy.

5.2 setup and prerequisites

The functioning of the architecture is based only on massive inpainting
and reconstruction. For the inpainting stage, we took inspiration from [43]
and implemented our own version of the inpainting architecture which is
based on the same RIAD mask generation and uses the DeepFill GAN for the
inpainting. The only required prerequisite is to use the official implementation
of DeepFill from [67, 66] and its pre-trained models on Places2 [34].

As for the other experiments, we run our tests on five different servers,
each one of them equipped with a Nvidia K80 GPU and 12Gb of Graphical
Memory, and an auxiliary server equipped with eight different Nvidia 1080Ti
GPU each having 12 Gb of Graphical Memory too. The results that we
obtained are shown next to each experiment.

5.3 experiments performed

In this section, we will describe and then discuss the experiments related
to the Massive Inpainting defense method along with their results. We will
start by identifying the best hyper-parameters for our method, then we will
compare our best model with our baseline and with our improved Saliency
Based Localization and Inpainting, and finally we will assess the consistence
of the results across different values of epsilon.

We will not cover experiments performed using the BPDA [19] attack
because the proposed defense strategy do not use any kind of gradient
obfuscation technique. The real gradient is freely available to all the attackers
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and thus there is no need to test our method with the Backwards Pass
Differentiable Approximation attack strategy.

5.3.1 Ablation Studies

The first thing that we want to assess in our proposed defense strategy is the
hyper-parameters selection. Indeed, we will study some method variations
and by running the ablation studies before the result discussion and before
the comparison with other defences, we can follow a waterfall approach
using in each subsequent experiment the best hyper-parameters from the
previous. This strategy will allow us to reduce the number of runs per single
experiment while maintaining full generality. However, for the experiments
executed before having run the ablation study to identify the best tile size, the
previous ones (i.e. the one to exclude the usage of denoiser) were executed
with tile size = (1× 1). Instead, before the ablation study about the number
of images, the previous ones were run with Nimg = 12 as suggested by the
original DeepFill paper.

All the ablation studies for our hyper-parameters are executed at ε = 1.5
which was the upper bound limit of our baseline tests in Chapter 3 and was
considered as high in Chapter 4 while discussing the results of Saliency Based
Localization and Inpainting. The motivation behind this choice is that we
need to identify the best hyper-parameters and strategies to be used at high
epsilons if we want to propose a new defense strategy which should compete
with other state-of-the-art approaches.

5.3.1.1 Usage of denoisers

The first immediate question that we posed ourselves was related to the
usage of denoisers. Denoising filters have been used since the beginning of
this Thesis to try to remove some adversarial perturbation in areas of the
image which was not covered by the inpainting. Such usage has been proved
to be weak [19] with respect to full white box attacks such as BPDA, and we
already dropped this usage.

However, it is still possible to employ denoising filters for the original task
they were created: removing the (non-adversarial) noise from an image. As
already said in Section 5.1.2, the RIAD inpainting strategy removes some
adversarial perturbation at the cost of adding noise. We can notice this
behavior in Figure 5.7 and more in detail this is shown in Figure 5.8.

It is important to consider that denoiser architectures have some limitations
and drawbacks. The most impacting drawback for this task would be the
potential loss of details that denoising filters cause in the image in order to
smooth pixels values, as shown in Figure 5.9. It is possible that the smoothness



78 defense by massive inpainting

Figure 5.7: Differences between the RIAD-like inpainted result and the original
input.

Figure 5.8: Detail of Figure 5.7 to highlight the changes performed to the adversarial
perturbation by the inpainting GAN.

added by such filters is not useful for the classification architectures but it is
just more eye-appealing for us.

The denoiser that we have tested is the same used by our baseline, that is
the wavelet denoising filter implemented in the skimage library with automatic
σnoise estimation in YCbCr color space.

In order to verify such behaviour, we run an experiment with the goal of
discovering if a denoising filter applied after the inpainting could help the
classification model in better recognizing the true class. The results are shown
in Table 5.1.
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Figure 5.9: Possible improvement reached by denoising the output of the RIAD-like
inpainting GAN.

Attack Adv
Top-1

Adv
Top-5

Denoised
DF1

Clean
DF1

Denoised
DF2

Clean
DF2

Inception v3

DeepFool 34.99% 78.18% 86.83% 88.62% 85.08% 87.67%

FGSM 35.55% 67.79% 83.08% 84.40% 76.87% 76.42%

PGD 3.61% 11.86% 86.23% 88.01% 84.21% 85.80%

ResNet-101

DeepFool 15.15% 68.63% 77.32% 77.91% 69.41% 68.93%

FGSM 15.33% 55.21% 70.23% 70.09% 57.52% 54.58%

PGD 1.57% 30.33% 76.30% 76.57% 65.58% 62.64%

VGG16

DeepFool 14.49% 69.56% 53.93% 54.22% 40.99% 38.04%

FGSM 12.55% 47.33% 41.73% 40.90% 30.11% 26.66%

PGD 3.95% 36.14% 44.71% 43.94% 26.02% 20.49%

Table 5.1: Ablation studies over the usage of a wavelet denoiser filter on the Inception
v3, ResNet-101 and VGG16 classifier architectures with a value of ε = 1.5.

As we have not yet assessed if it would be better to use DeepFill v1

or DeepFill v2, we used both and we compare the results here. We can
see that with Inception v3, there is no improvements using a denoiser nor
with DeepFill v1 nor with DeepFill v2. In addition, the performance of
the denoiser filter with DeepFill v1 are better than the performance with
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DeepFill v2. However, using a denoiser filter with ResNet-101 or VGG16

as classification models has similar performance with DeepFill v1 and even
better performance using DeepFill v2. Along with DeepFill v2, the usage of
such denoiser successfully increases the prediction accuracy, but it is worth
to be noted that the performance with DeepFill v2 in such situations are low
and the increase using the denoiser does not overtake the clean accuracy of
DeepFill v1 without denoiser.

As a result, we think that using a denoiser does not improve our defense
mechanism and then we will drop the adoption of a denoiser in such defense
strategy.

5.3.1.2 GAN performance: DeepFill v1 vs DeepFill v2

The second experiment addresses the differences in the accuracy between
DeepFill v1 and DeepFill v2. As DeepFill v1 is explicitly designed for squared
masks while DeepFill v2 is explicitly created for all other mask shapes, switch-
ing from a free-form mask generation (as in Saliency Based Localization)
back to masks which are composed only of squares would then suggest us
to evaluate DeepFill v1 as potential candidate as the Generative Adversarial
Network of our inpainting stage.

Attack Adv Top-1 Adv Top-5 DF1 DF2

Inception v3

DeepFool 34.99% 78.18% 88.62% 87.67%

FGSM 35.55% 67.79% 84.40% 76.42%

PGD 3.61% 11.86% 88.01% 85.80%

ResNet-101

DeepFool 15.15% 68.63% 77.91% 68.93%

FGSM 15.33% 55.21% 70.09% 54.58%

PGD 1.57% 30.33% 76.57% 62.64%

VGG16

DeepFool 14.49% 69.56% 54.22% 38.04%

FGSM 12.55% 47.33% 40.90% 26.66%

PGD 3.95% 36.14% 43.94% 20.49%

Table 5.2: Ablation tests over the two different DeepFill versions executed and tested
on the Inception v3, ResNet-101 and VGG16 classifier architectures with a value of
ε = 1.5.

The results of the comparison between DeepFill v1 and DeepFill v2 are
shown in table 5.2. We can see that DeepFill v1 has more stable performance
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over the three different network architectures tested as its performance ranges
from 41% to 89% while the second generation of DeepFill has the accuracy
ranging from 20% to 88%.

In addition to the considerations done in the previous chapters about the
physiological accuracy drop of VGG16 and ResNet-101, we also note that
DeepFill v1 has less variance over the different attacks. Fast Gradient Sign
Method (FGSM) seems to be the most challenging attack causing a drop
of accuracy of 12% in average with DeepFill v2 but that drop reduces to a
decrements of only 5% in average with DeepFill v1.

As the performance using DeepFill v2 are similar or worse with respect
to the performance of DeepFill v1, we will continue our studies using only
DeepFill v1, except when explicitly stated otherwise such in case of doubts
or further experiments.

5.3.1.3 Area of the image to inpaint in each GAN run

One important ablation study performed is the one regarding what extension
of the image we need to mask in order to obtain good performance. We recall
that differently from our Partitioned Inpainting strategy, RIAD propose to fix
a certain percentage p over the full image of the maximum area to inpaint
and then run the GAN 1/p times.

Until now we have followed the advice wrote in the original DeepFill
v1 paper [66] which states that their GAN is optimized to handle masks
covering up to 1/12 of the total area size. Accordingly, for each input image
we run DeepFill a number of N = 12 times by randomly masking the image
following a uniform distribution with p̄ = 1/12.

However, we challenged our proposed defense about the possibility to
further improve the performance by reducing the total masked area at each
DeepFill run following the idea that the GAN might infer pixels more accu-
rately if it need to do it more times and with more available pixels to use for
such inference.

The results are shown in Table 5.3. It is possible to note that there is
no predominant best hyperparameter and this is due to the fact that in
some networks which may have space for improving (e.g. Inception v3),
the performance rises as the rise of N but not as fast as N. A possible
explanation to this resides in the fact that DeepFill might already have all
the needed information to infer missing pixels yet from N = 12 and by
decreasing the total mask area (thus increasing the available information for
the GAN), DeepFill may just ignore it or even worse, it may be confused as
the correlation between many pixels is not the same as in the original image
because these are adversarial examples, thus adversarially de-correlated. This
adversarial de-correlation could be the explanation of the slightly decrease in
the performance of ResNet-101 and VGG16 as N rises. Contrarily of Inception
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Attack Adv
Top-1

Adv
Top-5

N = 12 N = 20 N = 28

Inception v3

DeepFool 34.99% 78.18% 88.62% 89.12% 89.21%

FGSM 35.55% 67.79% 84.40% 83.67% 83.27%

PGD 3.61% 11.86% 88.01% 88.24% 88.30%

ResNet-101

DeepFool 15.15% 68.63% 77.91% 78.52% 75.93%

FGSM 15.33% 55.21% 70.09% 68.51% 67.44%

PGD 1.57% 30.33% 76.57% 76.20% 73.58%

VGG16

DeepFool 14.49% 69.56% 54.22% 52.76% 49.98%

FGSM 12.55% 47.33% 40.90% 38.53% 36.03%

PGD 3.95% 36.14% 43.94% 40.05% 37.44%

Table 5.3: Ablation studies of different total masked area per single GAN run on the
Inception v3, ResNet-101 and VGG16 classifier architectures with a value of ε = 1.5.

v3, these networks could be more sensitive to the worse GAN outputs in
presence of too much non-correlated information and may fail the prediction.

5.3.1.4 Tile size to consider for the inpainting mask

The final and most important ablation study regards the size of the tiles
which compose our masks. Indeed, the original proposition of RIAD for
anomaly detection suggest to reconstruct the image 4 different times:

1. Perform N inpainting runs using a tile size of (2× 2) pixels

2. Perform N inpainting runs using a tile size of (4× 4) pixels

3. Perform N inpainting runs using a tile size of (8× 8) pixels

4. Perform N inpainting runs using a tile size of (16× 16) pixels

After these 4 ·N inpainting runs RIAD states to aggregate the 4 different
output images by taking the pixel-level average.

However, this procedure was designed for their anomaly detection task,
and do not applies well to our defense strategy. Indeed, we need to take into
consideration both macroscopic-level adversarial features but also pixel-level
adversarial perturbations. To handle this situation and to experiment with
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Figure 5.10: Adversarial example generated with ε = 1.5.

lower tiles, we added a (1× 1) tile-size for the inpainting GAN, that is, every
pixel is assigned to a random mask.

The first experiment that we put in place consider only a single tile size. We
do not aggregate the results by average but we directly predict the output of
the GAN. We want to discover if a single GAN pass successfully removes the
adversarial perturbation or if we would need more. To give an example of the
different inpainting strategy, we will show the differences of each inpainting
with respect to the Adversarial Example shown in Figure 5.10, generated
with ε = 1.5.

Figure 5.11: Differences in the inpainting results by changing the tile size, for the
single tile size version Massive Inpainting strategy.

As it can be seen in Figure 5.11, lower sized tiles better maintain the details
of the original picture while increasing the pixel-level noise. Bigger tile size
have intra-tile coherency and thus the noise is lower but many details are
lost.

The results of the experiment shown in Table 5.4 confirm that the images
inpainted with tile sizes bigger than (2× 2) lose too much useful detail for
the classification. Still, also bigger tile sizes have an higher accuracy than the
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Attack Adv
Top-1

Tile
Size
(1, 1)

Tile
Size
(2,2)

Tile
Size
(4,4)

Tile
Size
(8,8)

Inception v3

DeepFool 34.96% 88.62% 77.93% 57.45% 39.59%

FGSM 35.55% 84.40% 78.16% 56.96% 40.16%

PGD 3.61% 88.01% 77.34% 57.40% 39.53%

ResNet-101

DeepFool 15.15% 77.91% 73.59% 54.07% 41.29%

FGSM 15.33% 70.09% 73.17% 53.06% 41.12%

PGD 1.57% 76.57% 73.64% 54.06% 0.00%

VGG16

DeepFool 14.49% 54.22% 58.55% 37.95% 24.80%

FGSM 12.55% 40.90% 58.01% 35.86% 0.00%

PGD 3.95% 43.94% 57.99% 37.26% 24.84%

Table 5.4: Ablation tests for the single-size tile masking version of Massive Inpaint-
ing. This experiments run on the Inception v3, ResNet-101 and VGG16 classifier
architectures with a value of ε = 1.5.

adversarial top-1 that means that our defense is removing the adversarial
noise, but it also need to maintain the details needed for the classification.

Interestingly, we see that yet by using a single tile size inpainting, our
Defense by Massive Inpainting is able to recover up to 88% of accuracy
from the adversarial examples. In general, the (1× 1) tile size maintains
more details and is the one with the highest performance in general, but on
networks which suffers the presence of noise more than Inception v3, also a
tile size of (2× 2) performs well.

The natural question to study is now if the accuracy could benefit of a
combination of the details of the (1× 1) tile size with the lower noise of the
(2× 2) tile size, as in the central image of Figure 5.12. In other words, we
see if by using a multi tile size inpainting with average aggregation as in the
original RIAD proposition, the defense could benefit or not.

A detail of each of the three pictures of Figure 5.12 is shown in Figure
5.13. We immediately see that the version which aggregates by average the
(1× 1) version with the (2× 2) version is more smooth and do not show as
much noise as the single (1× 1) version. At the same time, the details are
well defined but obviously not as in the single (1× 1) version. We would
need to test such aggregation to see if the networks can accept some noise in
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Figure 5.12: Differences in the inpainting results by changing the tile size, for the
multi tile size version Massive Inpainting strategy.

Figure 5.13: Differences in the inpainting results by changing the tile size, for the
multi tile size version Massive Inpainting strategy.

change of clearer details or if it would prefer a smooth version at the cost of
fewer details.

The result of the multi tile size experiment are shown in Table 5.5. If we
take into account the difference between the pictures in Figure 5.13, we see
more clearly the difference between the three networks.

Inception v3, which can better support the noise added by the single
version (1× 1) tile size inpainting, still keeps preferring this single version,
even if the results compared to the multi size (1× 1) and (2× 2)] does not
show evident differences.

In ResNet-101 experiments, the network which can handle the noise added
by our GAN better than VGG16 but still suffers if compared to Inception
v3, we see that all the results start to indicate that the multi tile size [(1× 1)
and (2 × 2)] would provide better accuracy, even if also in this case the
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Attack Adv
Top-1

Tile
Size
(1, 1)

Tile Sizes
(1, 1), (2, 2)

Tile Sizes
(1, 1), (2, 2),
(4, 4), (8, 8)

Inception v3

DeepFool 34.96% 88.62% 87.51% 83.45%

FGSM 35.55% 84.40% 84.44% 81.44%

PGD 3.61% 88.01% 87.37% 82.79%

ResNet-101

DeepFool 15.15% 77.91% 78.11% 74.93%

FGSM 15.33% 70.09% 71.00% 71.04%

PGD 1.57% 76.57% 77.01% 74.68%

VGG16

DeepFool 14.49% 54.22% 55.39% 62.85%

FGSM 12.55% 40.90% 43.16% 47.67%

PGD 3.95% 43.94% 46.19% 51.59%

Table 5.5: Ablation tests for the multi-size tile masking version of Massive Inpaint-
ing. This experiments run on the Inception v3, ResNet-101 and VGG16 classifier
architectures with a value of ε = 1.5.

differences are not high. As the compromise between those three networks
is that the more fine-grained mask we use, the more details we get but also
the more noise we get, we can confirm that ResNet does not achieve the
same performance of Inception because it suffers more the noise produced
by (1× 1) inpainting mask.

Finally in the experiments performed with VGG16, we see that the best
results are achieved with the network which mediates the (1× 1) inpainting
outcome with the outcome from the (2× 2), (4× 4) and (8× 8) masks. Such
strategy of using 4 different tile sizes produces very little noise at the cost of
having more blurred details if compared to single small tile size inpainting
or to dual small size inpainting as [(1× 1) and (2× 2)]. In case of VGG16

we proved that the noise that the GAN adds at ε = 1.5 is too much for the
classifier and thus it prefers the full [(1× 1), (2× 2), (4× 4), (8× 8)] inpainting
at the cost of a decreased performance.

5.3.2 Comparison with other defense

Once identified the best hyper-parameters for our proposed defence, we are
ready to compare its performance with our baseline and our Saliency Based
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method to highlight the improvements and the motivation behind them.
Finally, we will measure the capabilities of our proposed method without any
attack, because the defense should not impact too much on clean accuracy,
and we will make some final considerations about different experiments in a
broad ε range.

So far, we identified the following method: Massive DeepFill v1 Inpainting
via (1× 1) RIAD-like tiles and random masking of 1/12 of the image at a time,
not followed by any denoiser and submitted to an Inception v3 classifier.

5.3.2.1 Massive Inpainting and Saliency-Based Inpainting

The first comparison we performed is with respect to our saliency based
localization and inpainting strategy that we described in Chapter 3. This
latter architecture was able to overtake our previous baseline of a few percent
points while increasing of three times its speed.

Still, the Saliency Based localization and Partitioned Inpainting strategy
requires more than 16 GAN runs in addition to the time required by the
saliency localization strategy. As our Massive Inpainting approach does not
have the localization stage and it needs only 12 GAN runs, we reached
another time improvement reducing the required time of the defense to just
400 milliseconds, including the classification prediction time, resulting in a
very small overhead.

In addition to the speed improvement we have also reached a tangible
accuracy improvement, as it can be seen in Table 5.6. Every test executed
on each network and attack reported an higher accuracy using our Massive
Inpainting strategy with respect to the Saliency based one. This confirms
our initial guess about trust in presence of adversarial examples: the lower it
is, the better it is. Having successfully removed all the trust from the input
image by massively inpainting all and each pixel, is showing a final top-1
accuracy which is higher than structured approaches such as Saliency Based
Localization and Partitioned Inpainting which still trust some areas of the
image.

It is worth to notice that it may happen that the inpainted image which is
sent to the classification network in our Massive Inpainting strategy could be
perceived as worse than the one of Saliency Based by a human person, but
for sure our inpainted result does not contain any adversarial feature and
thus any missprediction is to be imputed to the added noise of the method
and the noise robustness of the classification model.

To better document our statement about the fact that the low accuracy
performance of Saliency Based Localization and Inpainting is due to its trust
and not to the method, we run an experiment in which we localize the salient
object with Saliency Based Localization and then we denoise the foreground
and inpaint the background with RIAD-like masking and not anymore with
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Attack Adv
Top-1

Adv
Top-5

Massive
Proposed

Saliency
Best

Inception v3

DeepFool 34.99% 78.18% 89.43% 76.72%

FGSM 35.55% 67.79% 89.60% 77.22%

PGD 3.61% 11.86% 88.73% 72.16%

ResNet-101

DeepFool 15.15% 68.63% 83.51% 65.13%

FGSM 15.33% 55.21% 83.24% 65.60%

PGD 1.57% 30.33% 83.03% 60.07%

VGG16

DeepFool 14.49% 69.56% 67.97% 55.46%

FGSM 12.55% 47.33% 68.03% 56.04%

PGD 3.95% 36.14% 68.00% 53.05%

Table 5.6: Comparison between our proposed Massive Inpainting method and
the Saliency Based Localization and Partitioned Inpainting strategy, tested on the
Inception v3, ResNet-101 and VGG16 classifier architectures with a value of ε = 0.2.

Partitioned Inpainting. We then compare this result with its opposite which
uses the denoiser on the background and the RIAD-like inpainting strategy
on the foreground, and we compare it to the Massive Inpainting we are
proposing.

Attack Adv
Top-1

Adv
Top-5

Saliency +
RIAD BG

Saliency +
RIAD FG

Massive
Inpainting

Inception v3

DeepFool 34.96% 78.19% 76.02% 76.00% 88.62%

FGSM 35.55% 67.79% 65.46% 65.16% 84.40%

PGD 3.61% 11.86% 63.74% 63.54% 88.01%

Table 5.7: Comparison between a Massive Inpainting Strategy and a Saliency Based
strategy whose inpainting technique is the same used for our Massive Inpainting
architecture. Experiments are run over the Inception v3 classifier architecture with a
value of ε = 1.5.

The results of this experiment are shown in Table 5.7. We see that nor in-
painting only the background while denoising the foreground, nor inpainting
only the foreground while denoising the background, has a top-1 accuracy
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comparable with our proposed Massive Inpainting strategy. As the only thing
which changes between Saliency with RIAD-like inpainting and Massive
Inpainting is just the trust posed in the image (we use the same inpainting
strategy), we see that our approach of switching to a zero-trust adversarial
defense was indeed correct.

5.3.2.2 Comparison with our baseline

Having verified that the Defense by Massive Inpainting is our best model
with respect to all the other proposed approaches of Chapter 4, we can show
the improvements compared with our baseline CIIDefence [1]. We run our
experiments using two different ε values to better assess possible variations
of the method linked to the increase of ε.

Eps = 0.2 Eps = 2.0

Attack Adv
Top-1

Massive
Pro-

posed

Baseline
Best

Adv
Top-1

Massive
Pro-

posed

Baseline
Best

Inception v3

DeepFool 48.47% 89.43% 75.87% 34.99% 88.03% 67.35%

FGSM 50.62% 89.60% 76.56% 35.55% 85.81% 53.81%

PGD 35.78% 88.73% 70.22% 3.61% 87.88% 43.07%

ResNet-101

DeepFool 40.14% 83.51% 63.50% 15.15% 75.71% 37.57%

FGSM 41.39% 83.24% 64.26% 15.33% 64.72% 31.18%

PGD 30.59% 83.03% 58.72% 1.57% 75.57% 16.44%

VGG16

DeepFool 45.89% 67.97% 55.58% 14.49% 47.97% 27.49%

FGSM 47.22% 68.03% 55.82% 12.55% 31.27% 20.79%

PGD 42.67% 68.00% 53.09% 3.95% 36.34% 10.63%

Table 5.8: Comparison between our proposed Massive Inpainting method and our
Baseline CIIDefence [1] tested on the Inception v3, ResNet-101 and VGG16 classifier
architectures with a value of ε = 0.2 and ε = 2.

Unsurprisingly, in Table 5.8 we see that our method overtakes our baseline
both at low epsilon values and at high epsilon values. In addition we notice
again the stability that our method has between different epsilons: using
Inception v3 as classifier, the mean accuracy drop of switching from ε = 0.2
to ε = 2 is just 2%. At the opposite, our baseline drops over 20% when ε
changes from ε = 0.2 to ε = 2.
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This stability of the results over such range of ε is a feature of our proposed
defense and will be further investigated to assess its potentialities and limits.

5.3.3 Consistency of the results

As just highlighted, our proposed defense strategy has stable results over both
small and high ε values. However, to understand our defense consistency, we
need to investigate how and where the performance start to drop. Indeed,
we recall that the formalization of the concept of Adversarial Attack does
not define a maximum ε but just impose that the adversarial perturbations
should be "small enough" to avoid being recognized by a human as altered
images.

By keeping increasing ε, sooner or later the network will surrender, with
the hard limit for any defense that is ε = 128 over 255. By allowing such
perturbation indeed the attacker could simply set each pixel to be equal to
128 (subtracting up to 128 to light pixels, adding up to 128 to dark ones) and
generate a totally grey image which can not be classified. However, these
value of ε do not have any importance as over ε = 2 some human could
start to spot adversarial patterns and nevertheless in the literature the higher
tests have ε = 8, even if with such important variation the attack is for sure
spotted by humans.

5.3.3.1 performance for a fixed epsilon range

In the following, we will only test the Inception v3 classifier to assess the top-1
accuracy of our proposed Massive Inpainting strategy as it is the network
which better handle the noise generated by the (1× 1) inpainting performed
by our method.

The results are shown in Table 5.9. We can see that as epsilon increases,
the adversarial top-1 and top-5 move towards 0%, and also our defended
top-1 accuracy decreases. However, our defense as epsilon doubles loses only
up to 1% accuracy with DeepFool and loses only up to 2% with PGD. The
story is different for FGSM as our defense still achieve good performance but
the accuracy drops over 10% with respect to the previous test with halved
epsilon.

The motivation for this result can be found on how the two different attacks
work: as explained in Section 2.2.1, PGD is a more powerful attack which
can exploit at each iteration the correct direction of the gradient to generate
Adversarial Examples which are composed of the minimal variation needed
to be predicted in a wrong class. On the contrary, FGSM is a computed
one-shot method which approximate the nearest boundary direction with the
gradient direction at the first computation, thus the Adversarial Examples
generated by FGSM have more noise compared with the other attacks.
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Attack Adv
Top-1

Adv
Top-5

DF1 Massive
Inpainting

Inception v3 @ Eps = 2

DeepFool 33.24% 77.14% 88.03%

FGSM 35.05% 67.62% 85.81%

PGD 2.00% 8.66% 87.88%

Inception v3 @ Eps = 4

DeepFool 28.80% 75.31% 87.79%

FGSM 31.20% 61.06% 73.23%

PGD 0.27% 2.19% 86.36%

Inception v3 @ Eps = 8

DeepFool 27.02% 74.44% 87.07%

FGSM 30.92% 60.98% 63.48%

PGD 0.08% 0.77% 83.27%

Table 5.9: Attacks on our proposed Massive Inpainting methods with ε that ranges
from 2 to 8. Those attacks are tested only on the Inception v3 architectures for better
comparison.

Figure 5.14: Comparison of FGSM and PGD at ε = 2. The two image can be perceived
as similar and it is difficult to spot the presence of the adversarial perturbation.

As we can see in Figure 5.14, with a perturbation ε = 2 the two adversarial
examples can be easily confused with the original real images, even if the
attacks manage to drop the accuracy from 100% to 33% and 2% respectively.
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Figure 5.15: Comparison of FGSM and PGD at ε = 4. While it is easy to spot some
perturbation in the FGSM generated Adversarial Example, PGD still manages to
keep the adversarial noise well hidden.

It is important to note that from those values, our defense is able to restore
an accuracy of over 85% and 88% for the two attacks, thanks to the fact that
the adversarial noise is limited.

As ε increases up to 4, we can see in Figure 5.15 that while the presence
of PGD is still well hidden in the picture (even if the adversarial accuracy
is only 0.27%), FGSM has added a huge amount of noise and we can now
easily spot the presence of such attack. Even if the added noise is still in the
L∞ bound, the presence of such perturbation act as noise for our GAN and
thus explained the performance drop if compared to the others.

Finally, if we inspect the images generated with ε = 8 as in Figure 5.16, we
immediately see that PGD starts to be noticed, while FGSM is gone far out of
the boundaries of the "small enough".

We do not put too many attention on the results obtained by our defense
if applied to images that can not be considered as Adversarial Examples,
as they lacks the fundamental propriety: the slightly perturbation. Instead,
we want to keep studying the performance of our defence in presence of
PGD and DeepFool, the only two attacks which still manage to create altered
inputs which can not be clearly distinguished from clean inputs.

Analyzing the results of DeepFool, we see that from ε = 2 to ε = 8 our
Massive Inpainting defense loses only less than 1% of accuracy, while the
attack successfully achieve a reduction of the performance of the undefended
network of over 6%. Here, we are more interested in the stability of the results
rather than the single experiments outcomes, as following the guidelines of
[5], there is no single epsilon values which can measure the power of the
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Figure 5.16: Comparison of FGSM and PGD at ε = 8. FGSM has totally compromised
the image while PGD starts to be noticed.

defence: attacks are various and different one another and valuing consistency
it is more important than single results.

Looking at PGD, it does not have a huge drop in the undefended accuracy
as DeepFool because the accuracy is already low, that is 2% yet at ε = 2.
Increasing ε gives more power to PGD of creating adversarial examples also
for images which, thanks to their nature, are difficult to mispredict with
only small perturbations, but does not change substantially other images. We
consider the 0.08% accuracy at ε = 8 to be a casual noise: these 8 images over
10000 can not be easily misclassified by means of PGD. Indeed, as it can be
said in Table 5.10 even with higher epsilons the accuracy maintains itself over
0.00%.

The results obtained with higher ε showed in Table 5.10 outline the stability
of our method once more. By giving the ability to the attack to change each
channel of each pixel up to ±20 units, the Massive Inpainting is able to
reconstruct images which can still be classified correctly in over 85% of times
in presence of DeepFool and over 70% of times in presence of PGD.

To give an idea of the magnitude of the perturbation, we can see in Figure
5.17 an example image drawn from the perturbed images generated by
DeepFool. We can see that the attack ha almost completely modified the
shape of the snout and the ears of the quadruped making it hard also for
a human to recognize the correct class from the different quadruped class
contained in ImageNet.

As ε reaches 20, it would not make sense to continue our analysis even more.
The amount of noise added is starting to make difficult to recognize the true
class also by a human and as in can be seen in Figure 5.18, also the Massive
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Attack Adv
Top-1

Adv
Top-5

DF1 Massive
Inpainting

Inception v3 @ Eps = 12

DeepFool 26.93% 74.45% 86.25%

FGSM 33.63% 62.87% 59.45%

PGD 0.08% 0.50% 79.77%

Inception v3 @ Eps = 16

DeepFool 26.81% 74.42% 85.94%

FGSM 35.29% 63.92% 57.04%

PGD 0.09% 0.43% 76.02%

Inception v3 @ Eps = 20

DeepFool 26.46% 74.34% 85.02%

FGSM 36.76% 64.66% 51.81%

PGD 0.08% 0.31% 70.13%

Table 5.10: Attacks on our proposed Massive Inpainting methods with ε that ranges
from 12 to 20. Those attacks are tested only on the Inception v3 architectures for
better comparison.

Inpainting GAN start to suffer the presence of such noise. Nevertheless, the
defense strategy is still increasing the prediction accuracy also in presence of
FGSM with ε = 20 from 36% to 52%.

Notice that with attacks which keep the unnecessary noise limited as
DeepFool, our proposed defense is able to maintain consistent its performance
with a defended top-1 accuracy of DeepFool that goes from 88% at ε = 2 to
a top-1 accuracy of 86% at ε = 16. Similarly with PGD, Massive Inpainting
maintains consistent its performance with a defended top-1 accuracy that
goes from 88% at ε = 2 to a top-1 accuracy of 76% at ε = 16.

5.3.3.2 performance with no attack in place

Taking inspiration from the requirements of a defense method exposed in [4],
until now we have verified that our defense method:

• Has minimal impact on the architecture

• Maintains speed of network

• Works for adversarial samples relatively close to points in the training
dataset
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Figure 5.17: Example of an image generated by DeepFool with ε = 20

We need to prove that our defense strategy also maintains as much as possible
the original accuracy of the network when no attack is put in place.

Attack Adv
Top-1

Adv
Top-5

DF1 Massive
Inpainting

DF2 Massive
Inpainting

Inception v3

No Attack 100.00% 100.00% 92.16% 96.33%

ResNet-101

No Attack 100.00% 100.00% 90.33% 95.92%

VGG16

No Attack 100.00% 100.00% 84.79% 93.09%

Table 5.11: Accuracy measured on clean images tested on Massive Inpainting using
the Inception v3, ResNet-101 and VGG16 classifier architectures. In this case ε = 0
because no attack is put in place.
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Figure 5.18: Example of an image of a jellyfish generated by FGSM with ε = 20

along with its inpainted version.

In Table 5.11 we can see how Massive Inpainting performs on clean inputs.
The architecture is able to keep the accuracy always 90% and here we see
a difference between the usage of DeepFill v1 and DeepFill v2. While until
now we have executed our test especially using DeepFill v1, we note that on
clean inputs the partial convolutions used in DeepFill v2 helped to preserve
the fine-grained details. As stated in Section 5.3.1.2 however, DeepFill v2 is
more vulnerable to the presence of noise in the image, motivation behind the
usage of the first version of the GAN.

We found DeepFill v1 to achieve lower performance in average, but stable.
On the contrary, DeepFill v2 achieves the best performance on clean input but
rapidly decrease its accuracy in presence of noise or adversarial perturbations.

5.4 remark

In Section 5.1.2 we hypothesized that the functioning of Massive Inpainting
is tightly related to the transformation of the adversarial perturbation in
noise. More specifically we believe that the Generative Adversarial Network
which performs the inpainting tries to infer the masked pixels thanks to the
correlation that pixel has with its neighbors. When Adversarial Examples are
within a certain perturbation bound that depends on the attack and that we
identified to be ε ∈ [0, 16] for DeepFill and PGD and ε ∈ [0, 8] for FGSM (due
to the added noise), the GAN successfully manages to infer pixels based on
their mutual correlation linked to the true class.
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As the experiments confirms, our proposed defense we were able to alter
the microscopic level value of each pixel via (1× 1) inpaintings in such a way
that the adversarial features at macroscopic level are broken as described in
Section 5, and the misprediction rate is mostly due to noise.

However, as it can be seen in Figure 5.18, when we increase the perturbation
over a certain threshold and the real figure is not well defined, the Generative
Adversarial Network starts to infer missing pixels based on the mutual
correlation with the adversarial perturbation itself. In this way, following a
zero-trust approach and inpainting all the pixel the defense can still increase
the accuracy but at the same time it can not manage to fully erase the
adversarial perturbation.

In general, even with acceptable ε, we found many inpainted images to
be less visually pleasant to a human with respect to the adversarial example
from which they are generated. However, the adversarial examples have low
accuracy while our inpainting outcome recovers a good accuracy even if
those image are less human-pleasant. The phenomena could be due to the
transformation of the hidden adversarial perturbation in clear noise in the
image. To validate such hypothesis we set up a final analysis based on the
Structural Similarity Index Method [53] (SSIM) and performed on our whole
test dataset (10000 images). We have chosen SSIM with respect to other image
quality assessments like RMSE because SSIM is a perception based model
which emphasizes the strongly inter-dependant pixels or spatially closed
pixels. By definition, SSIM measures the change of perception in structural
information (which is what we are interested in), while RMSE measure just
the absolute change of pixel values.

1. We compute the SSIM of all our adversarial examples with ε = 16 with
respect to the original image, and we find this value to be equal to
SSIM = 78.45%.

2. Then, we compute the Structural Similarity Index of all our inpainted
results with respect to the original image before the adversarial attack
(clean input). We find this value to be SSIM = 59.33%

3. Finally, we compute the Structural Similarity Index of the clean image
perturbed with some Salt and Pepper noise modified to comply with
the L∞ norm equal to 16. We subtract 16 to pepper pixels and add 16 to
salt pixel. A comparison of adversarial image and S&P image in shown
in Figure 5.19. We compute the SSIM index of this noised image with
the clean input over all our dataset and we find it to be SSIM = 57.43%

This simple experiment which results are summarized in Table 5.12 proved
that in presence of adversarial attack there is no correspondence between
the SSIM index and the quality of an image measured as the ability for a
classifier to correctly recognize its true class. Indeed, our inpainted input is
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Figure 5.19: Example of an image of a jellyfish generated by FGSM with ε = 20

along with its inpainted version.

less similar to the clean input but has a very higher accuracy if compared to
the adversarial image.

SSIM Clean
Image

Adv
Image

Inpainted
Image

S&P Image

Clean
Image

100.00% 78.45% 59.33% 57.43%

Table 5.12: Summary of the results of the noise test. It can be seen that the adversarial
image is more similar to the clean image with respect to the inpainted outcome, even
if the latter accuracy is higher.

In particular, we find that the SSIM measure of the inpainted input with
respect to the clean image is not bigger than the adversarial input one. On the
contrary, the inpainted image is more similar to an artificially noised image
with same epsilon as the attack, than to the original input. This fact could
be explained by taking into consideration the de-correlation operation per-
formed by adversarial attacks and the reconstruction operation just described
performed by the GAN.
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C O N C L U S I O N

We’ve come a long way towards understanding adversarial robustness.
We still have a long way to go.

— Carlini, Adversarially non-Robust Machine Learning, 2021

Thanks to the scientific literature of the past few years it is nowadays well
known that Neural Networks models are vulnerable to adversarial exam-
ples: artificially perturbed inputs almost indistinguishable from natural data
that are classified incorrectly by the network. Some of the latest findings
in addition suggest that the presence of adversarial attacks may be an in-
herent propriety of deep learning models. This phenomenon is a threat to
the deployments of such models in real-word scenarios, especially if these
domains are safety critical. Even if approximately each year a new accuracy
improvement appears for standard deep learning models which operates
without considering adversarial attacks, such intrinsic weakness has not yet
been solved.

To address this problem, which is critical for the mass-adoption of deep
learning models, we studied the adversarial robustness of neural networks
through the lens of a zero-trust approach. Such reasoning has provided
us with a broad view on much of the prior work on this topic and was
conjugated by us as a trust-recovering problem through image inpainting
because our problem was related to the computer vision world, but it can
be easily extended on other domains such as audio and speech recognition
through audio wave reconstruction.

This approach has always taken into consideration real-world use cases
and that was the reason why we did not try a robust learning approach: in
some domains it may be unfeasible to perform a full retrain of a critical deep
learning model just to increase its accuracy over perturbed data, because
the retrain takes a lot of time and if not carefully planned and designed it
may lead to a degradation of clean performance. The high difficulty of this
approach is confirmed by the high number of research works which apply
variations of robust learning to small datasets like MNIST of CIFAR ones, but
only a very limited number extend it to complex dataset like ImageNet.

In addition to this, in all our study we also have followed advises from
influent scientists which have brought to the adversarial attacks literature
many new discoveries. Some of them, such as Anish Athalye, Nicholas Carlini,
David Wagner, Ian Goodfellow, Nicolas Papernot, et al. often state best practices to
make research works on this topic reproducible and useful for the scientific
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community. We tried to apply all their advises in our work; the most chal-
lenging best practice to follow was related to the full white-box evaluation as
described in [5], where no detail is left to chance in order to correctly define
a defense strategy as "fully white box", but many other such as the public
availability of the code were also followed.

It is worth mentioning that the accuracy of our proposed defense method
could be improved even more by increasing the expressiveness and generative
power of the GAN. Training GANs is a challenging task and an active area of
research, and the performance of Defense by Massive Inpainting are highly
related to a good inpainting quality. In addition, our defense has only one
hyperparameter, the size of the tiles of the mask for the GAN. Choosing this
hyperparameter is not a difficult task and this makes Defense by Massive
Inpainting an easier to implement defense.

While working on our baseline we faced many problems related to the ad-
versarial world, like performing white-box attacks, analyzing the robustness
of a classifier, and understanding the basis behind how to make a defense
from attacks without altering too much the clean accuracy of the network.
Finally, we needed a way to choose which attacks could we use for the result
comparison as the real goal is not to defend from specific attacks, but to
defend also from unseen attacks. We have chosen the most used ones in
the literature, adding also some variance: we took PGD because is one of
the strongest attacks used nowadays, we took FGSM which is an old and
well know attack but we also took DeepFool which is a newly-presented
fast attack with low added perturbations. We believe that robustness against
such well-defined classes of adversaries is an important step towards fully
resistant deep learning models.

Our main discoveries are the following:

• Strategies which trust less the input are more robust than models
which trust it more. Our Defense by Massive Inpainting (which does
not trust the input at all) has proven to be more accurate with respect
to both our baseline (which trusts a lot the input) and with respect to
Saliency Based Localization and Inpainting (which trusts less the input).
This is explained by the fact that in our threat model the adversary has
full power of perturbing the input in the strongest possible way, and if
we tell to our adversary how the defense work (as in a full white-box
scenario) then he would be able to compute which parts of the image
do we trust and he may use this information to strengthen its attack.

• Simpler defenses can be as powerful as complex ones. Our Defense
by Massive Inpainting has many similarities with both our baseline and
our Saliency Based Localization and Inpainting, but it totally removes an
entire pipeline stage: the localization one. What our Massive Inpainting
is doing is just inpainting the image in a smart way, without the need
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of other complex computations to identify differences of importance in
the image. This allows a time reduction of up to 75% and an increase in
the accuracy of up to 50%.

• Plug and Play defenses are not the only solution. All our work is
based on Plug and Play solutions. Someone who needs to secure its
model can take our proposed defense, place it in front of its model and
use it as it normally does. However, this would be useful if the domain
requires it, but may be suboptimal if its domain does not have too strict
constraint on the retraining. In such case, it is also possible to choose
to follow a robust learning approach. In other circumstances, even if
the retraining may be possible, it is more convenient to opt in for our
Plug and Play defense. In summary, there is not yet a defense which
can eliminate the problem of Adversarial Examples at all, but we think
that the results of our Thesis can be useful for the future research about
this topic.

• Trade-offs are the normality. Trade-offs are common in every aspect of
Computer Science and Adversarial Attacks of Deep Learning models are
not an exception. We discovered a trade-off between the time required
by the defense and the accuracy, and another one more linked to the
inpainting between the quality of the inpainting and the presence of
noise. In general, these trade-offs must be manually solved with respect
to the different domains in which we are employing the defense and
their relative constraint (i.e. on time, on the classifier).

• Inpainting could help in transforming the adversarial perturbation
in noise. We discovered that adversarial examples are way more similar
to the original clean image than inpainting results if analyzed trough
the Structural Similarity Index Method (SSIM). At the same time, in-
painted results seem to be similar to clean inputs as much as a random
Salt and Pepper noise generated by limiting the L∞ norm to the same
value of the adversarial one. These results can be explained taking into
account that the GAN that we use tries to infer pixel values based on
the learnt correlation that there exists between neighboring pixels in nat-
ural images. As adversarial examples does not exhibit this correlation
because they are altered, non-natural images, the adversarial perturba-
tion is converted into noise. Then, if we submit the noisy inpainting
result to a network which handles well the noise the accuracy is almost
recovered, otherwise we need to take actions to remove some of the
GAN generated noise by means of denoising filters or multiple size
inpaintings, but doing so will destroy part of the details of the image.

• Inpainting could protect from full-white box threats. Many accepted
papers in the literature present white box techniques without a careful
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assessment of the added attack surfaces that the proposed defence
brought in. Many of such defenses could not be broken via standard
attacks targeting the classification network but easily fail with attacks
targeting the defense. This is demonstrated by the huge amount of scien-
tific papers which are published each year to disprove previous results.
The inpainting however does not just introduce a non-linearity as other
gradient obfuscation based defense do, but instead it totally changes
the input based on mutual learnt natural correlation. Integrating such
technique in a defense could help to protect from full-white box attacks
because at the moment the only known way to make the inpainting
GAN to be bad for a classification task is by increasing the perturbation,
a thing that is allowed only under a constraint in adversarial examples.

6.1 future works

While developing this Thesis along with the two proposed framework Saliency
Based and Massive Inpainting we followed a specific path that led us in
finding the robust defense which we called Defense by Massive Inpainting.
However, there are other possible options risen during the work which were
not extensively explored to help keeping the focus on what we thought was
more important. These option can be the source of new interesting insights
about adversarial attacks and in general about learning algorithms. The
following are some of them:

• Better understanding of the difference in the accuracy between Inception
v3, ResNet-101 and VGG16. Throughout all our Thesis, our proposed
defense worked at its best with Inception v3, followed by ResNet-101

and only after by VGG16. We tried to give an explanation related to the
maximum supported noise but more extensive tests could be performed
to stress this point.

• Starting from the previous point, it is possible to study if the Massive
Inpainting strategy could be better suited for certain network architec-
tures or it does apply to all. If the Defense by Massive Inpainting is
supported only by a subset of networks (maybe the ones which better
handle the noise in the image), it should be identified in order to in-
crease the accuracy and in order to have a deeper view of the defense’s
actions.

• Throughout our Thesis we focused only on L∞ attacks. To better explore
all the possible research directions however, studies about the effects
of Massive Inpainting on L2 Adversarial Examples should be done. In
L2 attacks the perturbation is more hidden because it can not have
high single amplitude, but it can be more pervasive. We think that a
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lower maximum amplitude (although followed by a broader number of
impacted pixels) could suffer more the effect of the inpainting and thus
our defense can be even more effective but this is an open point for a
future work.

• This Thesis focuses on attacks against digital images, but physical
attacks [55, 54] are attracting day after day more attention from the
scientific community. In particular, patch-generated Adversarial Exam-
ples (widely used in physical attacks applied over objects) are out of
the scope of this work. However, it would be interesting to study the
effectiveness of our digital Defense by Massive Inpainting on physical
attacks.

In addition, starting from our results, it is possible to research about specific
improvements around our Massive Inpainting strategy:

• Incorporate our Defense by Massive Inpainting in a detector of attacks
which chooses which images to predict between the original input and
the inpainted image based on the difference between the two, similarly
to what RIAD does.

• Considered that we found that smaller tile sizes better influence the
reconstruction accuracy of the GAN for what concern the prediction task
(while increasing the noise), we ended up using the smallest possible
tile size. We wonder if and how an even smaller tile size could influence
the defense. For example, it would be possible to consider one channel
at a time, with a 3D mask, an inpaint channel-level values in the same
way we are doing with Defense by Massive Inpainting. This would just
require a slightly modification to the GAN but it could be justified by
improved accuracy.

• Finally, we wonder about the possibility of training a Generative Adver-
sarial Network with a loss which accounts for the classification accuracy
of the classifier. Actually, we are using a GAN which was trained for
reconstruction tasks and this fact has the obvious benefit of potentially
apply the GAN to any network. However, if it would be possible to
train the GAN already attached to a specific network which exposes the
gradient (like Inception v3 and many other networks do) then the GAN
will be bounded to the classifier but the performance may increase
significantly because the GAN would have a clear and well defined
gradient to follow in the training phase, while the training of the GAN
with reconstruction losses often take into account too many factors to
make human-pleasant images. This will be a difficult task because the
classifier must be already trained and some considerations may be done
about the possibility of fine-tuning it with the GAN but the benefits
may be huge.
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6.2 reflection on the long term direction

Since 2015, the research on adversarial attacks has seen huge improvements.

Figure 6.1: Cumulative number of paper regarding adversarial attacks published
since 2014 taken from [63]

Nowadays, as shown in Figure 6.1, it is impossible to keep up to date with
all the latest paper and research work in this field, because each day there are
almost ten different publications studying new attacks or new defenses [63].

Even worst, the situation is becoming stuck in a lack of novelty. A couple
of years ago all the papers claiming excellent performance against adversarial
attacks and proposing new defenses techniques were broken thanks to smart
ideas of some scientific researcher around the world (i.e. [19]). This process
is an important part of the scientific learning process because by providing
the ideas behind the new attacks which broke the proposed defences, the
research knowledge increases.

However, nowadays the number of proposed defenses has reached an ex-
ponential growth and while some of these new works are doing shenanigans
with the results to prove statements that are not always true or at least that
are not as interesting as they are described, the bad part is that even honest
works about new defenses were broken using state-of-the-art attacks (i.e. [15,
8]). According to Figure 6.2, new papers are not injecting new knowledge into
the scientific community and also disproving papers are being rejected from
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Figure 6.2: Graphical illustration of the no-novelty conjecture.

publication because they do not use new attacks to broke novel defenses, but
they just adjust the parameters of well-known methods like PGD or BPDA.

Our personal opinion about the adversarial attacks problem of the Neural
Networks is that it is just one of the problem that the scientific community
has faced and will continue to face. For example, twenty years ago computer
scientists all around the world were proposing new cryptographic standards.
Just in 1997, Wagner co-authored more than 10 papers disproving previous
results (i.e. [9, 12, 13, 10]). However nowadays there exists one cryptographic
standard which has not been broken for over 20 years (AES [11]).

As Carlini states in [62], the adversarial attacks field can be considered at
the same innovation level of cryptoanalysis pre-Shannon theorem. Before the
Shannon theorem, researchers were proposing new cryptographic system just
based out of empirical results: just like adversarial attacks nowadays. With
the advent of such theorem and its strong implications, the methodological
aspect of cryptoanalysis became stronger and that was the basis for such big
improvements.

Like the introduction of Convolutional Layers in 1998 [14] totally changed
the way in which image classifiers works, we think that the high-interest
moment that adversarial attacks is experiencing (shown in Figure 6.1) should
be exploited to give a new boost to the scientific literature with a clear and
rigorous methodology on which researchers can start building on.
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With this Thesis we claim to have found a defense strategy which can not
be simply defeated to 0% by already existing attacks and thus we hope to
give a new content to the scientific research. We are perfectly aware that
there will require years and hard work before finding a definitive solution
to adversarial attacks, but we consider this novel defense strategy a good
advance in this direction.
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