
Machine learning and deep learning algorithms for anomaly
detection

Tesi di Laurea Magistrale in
Mechanical Engineering - Ingegneria Meccatronica

Gianluca Bombaci, 10482291

Advisor:
Prof. Simone Cinquemani

Co-advisors:
Ing. Francesco Morgan Bono
Ing. Luca Radicioni
Ing. Claudio Somaschini

Academic year:
2022-2023

Abstract: This Master’s Thesis work is an extension of two research
papers that delve into the utilization of artificial intelligence in the field
of Structural Health Monitoring. Changes in the nominal configuration
of a structure can often indicate the presence of structural defects that
require monitoring to prevent them from escalating to critical condi-
tions. Undoubtedly, the capability to automatically detect alterations
in a structure holds significant appeal. When there is a lack of prior
knowledge about the system, artificial intelligence, and specifically deep
learning models, can effectively identify structural changes and enhance
the ability to pinpoint the location of damage. However, it’s impor-
tant to note that acquiring data related to scenarios involving damaged
structures is not always feasible. Within this Master’s Thesis work,
a comprehensive overview of Artificial Intelligence is provided, with a
specific emphasis on machine learning and deep learning. Furthermore,
two deep learning approaches are applied to a test rig featuring a scaled-
down four-story building model: a physics-informed autoencoder and a
simpler data-driven autoencoder. Subsequently, their performances are
compared to conventional methods based on experimental modal analy-
sis. Specifically, modifications to the system are simulated by adjusting
the stiffness of the spring. Both of these machine learning algorithms
demonstrated their superiority over traditional approaches. Addition-
ally, the physics-informed neural networks exhibited a higher potential
for detecting and precisely locating structural damages.

Key-words: Artificial Intelligence, Machine Learning, Deep Learning, Structural Health
Monitoring, Fault detection, Neural Networks, Convolutional autoencoder, Physic-
informed neural network.

1

1. Introduction

In recent years, there has been a growing interest in the field of Structural Health Monitoring
(SHM) for civil structures like buildings and bridges, as evidenced by the references [1–3]. Struc-
tures are constantly exposed to various environmental factors that can potentially impact their
structural integrity. Some examples of these factors include [4]:

• Structural cracks that can influence the structure’s stiffness;

• Changes in balance or weight distribution affecting its mass;

• Wear and loosening in joints altering the boundary conditions for structural dynamics and
connections between different sections.

To address these challenges, effective damage detection techniques are crucial. SHM encompasses
a range of monitoring strategies that analyze dynamic response measurements, employ feature
extraction algorithms, and apply statistical analysis techniques [5].

In a broad sense, damage in structures can be defined as changes that affect their current or
future performance. Detecting such damage requires a comparison between two different states
of the system, in which one represents the nominal condition, often corresponding to an un-
damaged state of the structure. Visual inspections are a common method for locating damage.
However, they can be imprecise, unreliable, and time-consuming [6]. In contrast, vibration-based
techniques have proven to offer a more dependable approach to assessing a structure’s health
[7–10]. Vibration is considered the most robust indicator of a structure’s state compared to other
indicators [11].

Given the wealth of data generated by vibration monitoring, deep learning has emerged as a
powerful tool. It can identify meaningful features within large datasets using multiple processing
layers [12]. Generally, deep-learning models for damage detection rely on supervised learning
strategies, where data from both healthy and damaged structural conditions serve as training
sets to create functions capable of mapping new input data. However, obtaining the data of the
input source that excites the structure can often be prohibitive, leading to issues of robustness
and convergence in machine learning techniques [13]. Moreover, collecting data from a damaged
state of the structure can be challenging.

To overcome these limitations, Convolutional Autoencoders (CAEs) have been employed to de-
tect damages based solely on raw vibration data from healthy structures [14–16]. Research by
Jian et al. [17] demonstrates the usefulness of one-dimensional CNNs for detecting anomalies in
bridge vibration signals, while Do et al. [18] showcases the capabilities of autoencoders based on
Long Short-Term Memory structures for detecting anomaly vibrations in industrial applications.
Finotti et al. [19] assess the structural condition of a viaduct using a sparse autoencoder to learn
crucial data features characterizing vibration signals and a support vector machine for damage
classification based on these extracted features.

Additionally, the adoption of Physics-Informed Neural Networks (PINNs) allows for the incor-
poration of physical laws governing the time-dependent dynamics of the structure [13, 20, 21].
Yucesan et al. [22] introduces a novel approach to modeling the fatigue life of wind turbine
bearings by blending physics-based and data-driven components into the model. They employ
a Recurrent Neural Network (RNN) featuring a physics-informed layer to account for known
factors affecting bearing fatigue and a data-driven layer to describe more complex components,
resulting in a hybrid model that enhances accuracy and predictive capabilities for real-world
bearing fatigue assessments.

The primary motivation for using PINNs in anomaly detection is to mitigate the challenges

2

of acquiring abnormal data in physical systems and the substantial volume of data required
for training neural networks. With PINNs, first principles (physical laws and equations) are
integrated with neural networks, narrowing the search space for network parameters and reducing
the need for extensive training data. This parameter space compression represents a significant
advantage of PINNs over traditional neural network approaches, making them an attractive
option for anomaly detection and location [23].

This Master’s Thesis work serves as an extension of two research papers that investigate the com-
parison between an unsupervised deep-learning algorithm and a PINN for structural monitoring,
using only vibration data acquired from the healthy state as the training set [24, 25]. Both
neural networks are evaluated on a four-story building using acceleration data obtained from
accelerometers placed on each floor. The primary objective is to confirm the higher potential of
AI methods with respect to conventional methods and to demonstrate the superior capability of
PINNs in detecting structural damages compared to conventional unsupervised neural networks.

The organization of this Master’s Thesis is as follows:

• Section 2 provides a general overview of Artificial Intelligence (AI) and Machine Learning
(ML);

• Section 3 describes the test bench and its mathematical model;

• Section 4 discusses the experimental campaign;

• Section 5 discusses a possibile solution based on control theory;

• Section 6 delves into the ML algorithms used;

• Section 7 presents the results;

• The final section explores conclusions and future trends.

2. Artificial Intelligence and Machine Learning

2.1. Introduction to Artificial Intelligence

Since the main concern of this Master Thesis is the implementation of an AI based algorithm, a
general comprehension of the methods we are dealing with is needed and thus, it is the objective
of this section. AI is a multidisciplinary field of computer science focused on creating systems
and machines capable of performing tasks that typically require human intelligence. These tasks
encompass a wide range of activities, including problem-solving, learning, reasoning, perception,
understanding natural language, and interacting with the environment. AI systems can be
designed to simulate human cognitive functions and adapt to different situations, making them
valuable tools for a variety of applications [26].

Artificial intelligence does not comprehends only learning-based approaches, like machine learn-
ing and deep learning, but also approaches oriented to replicate the human reasoning process.

3

Figure 1: Hierarchical representation of artificial intelligence.

For these reasons, nowadays AI has become an important tool in many aspects of our lives and
various industries. Indeed, many are the examples:

• Automation and Efficiency. AI technologies can automate repetitive and labor-intensive
tasks, leading to higher efficiency and productivity across industries. This allows humans
to focus on more creative and complex tasks;

• Data Analysis. AI excels at analyzing large amounts of data quickly and accurately. This
capability is essential in fields like finance, healthcare, marketing, and scientific research,
where data-driven decision-making is crucial;

• Medical Advancements. Machine learning algorithms can analyze medical images, pre-
dict disease outcomes, and assist healthcare professionals in making informed decisions;

• Autonomous Systems. AI powers self-driving cars, drones, and robots with the aim of
improving transportation safety and logistics;

• Scientific Research. AI assists researchers in analyzing complex scientific data, simu-
lating experiments, and exploring solutions to some of the most challenging problems in
fields like physics, chemistry, and climate science;

• Cybersecurity. AI helps identify and mitigate cybersecurity threats by detecting anoma-
lies and patterns in network traffic, protecting organizations and individuals from cyber-
attacks.

In summary, Artificial Intelligence has an high potential to revolutionize industries, improve effi-
ciency, enhance decision-making, and create new opportunities for innovation and advancement.
Its impact on society and various domains continues to grow, making it a pivotal field of study
and research.

2.2. Historical overview

The development of AI has been marked by periods of optimism, setbacks, and resurgence. To-
day, AI is a rapidly evolving field with a wide range of practical applications, and it continues to
shape the future of technology and society. The concept of AI can be traced back to the 1940s
and 1950s when early computer scientists and mathematicians began to explore the possibility

4

of creating machines that could simulate human intelligence. Alan Turing’s work laid the foun-
dation for thinking about machine intelligence and whether machines could exhibit human-like
behavior in conversation. However, the term "Artificial Intelligence" was coined at the Dart-
mouth Workshop in 1956 [27]. In the 1950s and 1960s, AI research was mainly focused on
symbolic AI, where systems were built using rule-based logic and symbolic representations [28].
Despite early optimism, the field faced significant challenges in achieving its goals, leading to a
period known as the "AI Winter." Progress in AI research slowed, and funding became scarce.

During the 1980s, expert systems gained popularity. These systems used knowledge-based ap-
proaches to solve specific problems and were widely applied in areas like medicine and finance.
In the late 1980s and early 1990s, neural networks and machine learning started to gain attention
again. Researchers developed backpropagation algorithms and improved training methods for
neural networks, leading to renewed interest in AI.

The 21st century has witnessed significant advancements in AI, driven by breakthroughs in ma-
chine learning and deep learning. Large datasets, improved algorithms, and powerful hardware
accelerated the development of AI applications in speech recognition, computer vision, natural
language processing and robotics. The success of deep learning models like convolutional neu-
ral networks (CNNs) and recurrent neural networks (RNNs) has revolutionized AI, leading to
remarkable achievements in image recognition, language translation, and autonomous vehicles.

2.3. Machine Learning

In classical programming, it is believed that artificial intelligent of human-level can be achieved
by programming large set of explicit rules for manipulating knowledge. This approach, known
ad symbolic AI is suitable to solve well-defined problems and relies on the idea that humans
input rules and data to be processed to obtain the required outputs, as shown in Figure 2.

Figure 2: Classical programming paradigm.

However, this paradigm fails in finding explicit rules for complex, fuzzy problems as image
classification or speech recognition. For this reason, Machine Learning (ML) was introduced.
ML is a sub-method of artificial intelligence that aims to teach computers how to learn from
data and make predictions or decisions on future scenarios. Is said that ML algorithms, to
perform a task, are not programmed but trained. Indeed, the system through a new additional
phase, called training, is able to construct the knowledge about the case under study.

Figure 3: Machine learning programming paradigm.

5

Structured or unstructured data become a key point. Indeed, they are used for both training and
testing ML algorithms. Moreover, ML algorithms are strictly related to statistics. Indeed, they
are mathematical models that analyze data to recognize patterns, relationships, and trends espe-
cially. However, unlike statistic, ML well performs when dealing with large and complex dataset
and the parameters and outputs are not clearly connected, situations in which the research for
analytical solution is unpractical or really time consuming. In a more precise way, machine
learning models try to transform data in more meaningfully representations for the given task.
However, these representation are searched in a restricted space of predefined operation, called
hypothesis space. To summarize, a ML algorithm to work properly needs:

• Input data;

• Examples of the expected outputs;

• A measure of how the algorithm is performing, in order to measure the distance the
algorithm’s output and the expected one. This index works as a feedback signal, helping
the algorithm to adjust itself through the learning step.

It must be said that the ability to work with large dataset through the training phase represent
also one of the biggest limitation of ML. Indeed, it is impossible to extract generalized rules of
data analysis based from information acquired and elaborated in the past. If the input dataset
changes a re-training would be necessary.

2.4. Different machine learning problems

Focusing only on the ML framework, it is possible to distinguish different methodologies based
on the composition of the dataset. In particular, four classes of machine learning are identified:

• Supervised learning, each input is fed to the algorithm with the corresponding target
output, called label. The goal is to predict the label of objects that the machine has never
seen, based on the knowledge acquired during the training phase;

• Unsupervised learning, as the name suggest any label is fed to the machine for the
data-points. The algorithm has to find meaningful patterns by itself through statistic. It
is obvious that the solution is not unique. Dimensionality reduction and clustering are
common in this class of ML;

• Self-supervised learning. The learning phase doesn’t involve any label generated by
humans. Labels are still used but they are generated from the input data with a heuristic
algorithm. These problems are really useful when for some conditions data are not acces-
sible. In particular, as already said, data about failure condition of structures are difficult
to be acquired. Instead, data regarding the nominal condition are available. Autoencoders,
which are discussed in a more specific manner in Section 6.3, are important examples of
self-supervised learning, where the targets are the unmodified inputs;

• Reinforcement learning, suitable for all problems for which the correct answer is not
known. In those cases, a system of rewards and penalties is implemented and the machine
modifies is knowledge trying to maximize the reward.

2.5. Deep learning

In recent years, Deep Learning (DL), a sub-field of machine learning, has garnered significant
attention due to its remarkable achievements in various domains. On the contrary of what could

6

be thought, in deep learning, the therm "deep" doesn’t refers to a class of ML-algorithms with
higher capability of understanding but to a class of artificial neural networks working with several
hidden layers of increasingly meaningful representations. Indeed, while the other approaches
focus on learning by means one or two layers of representations, and for this reason called
shallow methods, deep learning relies on tens or hundreds successive layers of data elaboration.

Figure 4: Graphical representation of an artificial neural network.

Being inspired by the human brain’s structure and function, each layer used by deep learning
algorithms is composed by neurons, linked to all neurons present in the previous and successive
layers. Deep learning networks can be thought as multistage information filtering with the objec-
tive to map inputs into targets. Each layer, which acts like a filter, is characterized by a weight.
These weights are the way in which the algorithm improve itself to correctly associate inputs to
targets during the learning phase. The first layer of an Artificial Neural Network (ANN) is la-
beled as input layer. The dimension of this layer matches the dimension of the data entering the
network. Instead, the last layer of an ANN, labeled as output layer, has the dimension of what
it is expected from the layer (i.e. the fixed targets). These deep architectures enable the hierar-
chical extraction of features from raw data. In image processing, for instance, lower layers may
detect basic features like edges and corners, while higher layers can recognize complex structures
like faces or objects. This hierarchy of features allows deep learning models to capture intricate
patterns in data, making them highly effective in tasks such as image recognition and speech
recognition. The training phase of deep learning models involves an algorithm called backprop-
agation, where the model adjusts its internal parameters (weights and biases) to minimize the
difference between predicted and actual outputs. This iterative optimization process relies on a
mathematical technique known as gradient descent. Both the backpropagation algorithm and
the gradient descent are addressed in the following section[29, 30].

Despite its numerous successes, it must be said that deep learning is not without challenges.
Indeed, training deep learning models can be computationally intensive and may require large
datasets to generalize well. Moreover, one of the key challenges is interpretability, as deep models
are often regarded as "black boxes", making it difficult to understand their decision-making
processes.

2.6. Input and output data

At this point, it should be clear how important the dataset is for the learning phase of the ML
machines. To make predictions, large amount of data-points are required which should contain

7

relevant information. For this reason the dataset is said to be considerable and significant. In
general, almost the whole ML algorithms use tensors as basic data structure [28]. Tensors are
a generalization of matrices to an arbitrary number of dimension, also referred as axis. For
example, an array of numbers (vector) is a 1D tensor and matrices are 2D tensors. Tensors must
be always defined by three features:

• Number of axes;

• Shape, which is related to the number of dimensions along each axis;

• Data type, which classifies the type of the data contained in the tensor.

The input to a machine learning algorithms is also named observation x. Thus, the input dataset
D is made up by n observations, which are also characterized by some m peculiar traits named
features. All the features considered in a ML problem define a m dimensional feature space X .

On the other hand, the expected outputs y were introduced as labels in the previous sections.
Indeed, given the all the observations lying in the feature space X , the objective is to predict the
corresponding outputs of the Y set. For example, in supervised learning all observations are fed
to the algorithm with their corresponding label and the dataset is defined as:

D = {(x1, y1), ..., (xi, yi), ..., (xn, yn)}

To provide a label to a new pair (x,y), a classifier function is needed f : X → Y. Moreover,
according to the content of the label itself is possible to distinguish:

• Data classification. In this case, for each data-point there is only one possible output,
searched within a fixed space of categories;

• Data regression. In this case, even if the output is a single valued variable, it can be
influenced by many factors which must be taken into account in the data classification
process.

(a) Classification. (b) Regression.

Figure 5: Examples of data classification and regression.

2.7. Data preprocessing

Before starting the training phase of a ML model, it must be ensured that data are fed in a feasible
format. To do that, the dataset undergoes a preprocessing phase. Preprocessing methods are

8

used to transform raw data in the desired form. For main classes of data preprocessing techniques
are identified [28]:

• Data Vectorization. It aims to transform all inputs e targets in tensors of floating-point
data;

• Value Normalization. In general, it should be avoided to fed into the neural network
data with relatively large values or heterogeneous. Indeed, in these cases gradient could
not converge. For this reason, a normalization step is usually taken into account to end
up with tensors of floating-point values in the 0-1 range;

• Missing-data. Incomplete dataset are common for situation in which the data recording
is cost intensive, but missing data-point have significant impact on the performances of the
model, for this reason many methods have been implemented to come with this problem
[31];

• Feature Extraction. To decrease the computational cost of the algorithm is possible to
reduce the dimension of the feature space, removing all the irrelevant or redundant features
present in the dataset [32].

2.8. Practical implementation of a neural network

As already said, the main ingredient of a successful neural network are the layers, that can be
thought as filter for data, able to extract representation that, hopefully, would be more mean-
ingful for the problem being studied. So, a deep learning machine is like a series of increasingly
finer data filters. However, to properly train a ML algorithm three more elements are needed:

• Loss function (also objective function), which represents the quantity to be minimized
during the training phase and which defines the feedback signal;

• Optimizer, which represents the method chosen for the updating of the network based
on the feedback signal coming from the loss function;

• Metrics for training and testing.

9

Figure 6: Typical block-diagram of a neural network.

Loss function

The loss function, L : X → Y, quantifies how far the predicted label ŷ = f(x) is from the
true label y [33]. Even if quite similar, loss function should not be confused with cost function.
Indeed, the former is used to optimize the model during training while the latter aggregates the
loss values over the entire training set and guides the optimization process.

Optimizer

Optimization method have to be taken into account to improve the performances of learning
models. These optimization methods rely on optimization algorithms or optimizers which highly
affect the accuracy and training speed of the model. During the training phase the optimizer
model, modify the weights of each layer and minimize the loss function with the objective of
reducing the overall loss and improving accuracy. The choice of the correct optimization model is
crucial, indeed, especially for deep learning models, choose the right weights can be a challenging
task, as a deep learning model generally consists of millions of parameters. Among the several
option available today, the most commonly used are listed below:

• Gradient descent is a method based on a convex function, which update its parameters
iteratively with the aim of minimizing a given function to its minimum. A gradient is
a measures of how much the output of a function changes in relation to changes in the
inputs. Thus, in machine learning context it can be thought as an index of the change
in all weights with respect to the change in error. You can also think of a gradient as
the slope of a function. In mathematical terms, a gradient is the partial derivative of a
function with respect to its inputs. As the name suggest, the weights are updated in the
direction of the steepest gradient and in a descending versus.

wi = wi−1 − γ · ∇f(wi−1)

where i represent the current iteration, γ is the learning rate, a parameter regulated by
the optimizer and f is the objective function. The length of the steps into the direction of
the local minimum is determined by the learning rate, which figures out how fast or slow

10

we will move towards the optimal weights. However, the length of the steps is a crucial
parameter to be set. Indeed, if the steps taken are too big, this method may not end up
reaching the local minimum because it bounces back and forth in the convex function. On
the contrary, setting the learning rate to a very small value, gradient descent will eventually
reach the local minimum but in a longer time span.

(a) High learning rate. (b) Low learning rate.

Figure 7: Effect of different learning rate for the gradient descent method.

Among all the methods which use the gradient descent:
◦ Batch gradient descent firstly calculates the error for each sample within the

training dataset and only after updates the model. This whole process happens in a
time span which is called epoch. Among all the advantages of batch gradient descent
the computational efficiency is the most important. Usually, it produces a stable
error gradient and convergence. However, this stable error gradient can sometimes
result in a model which isn’t the best achievable. Moreover, it requires the entire
training dataset to be in memory and available to the algorithm.

◦ Stochastic gradient descent (SGD) updates the parameters for each training sam-
ple one by one. Depending on the problem, this can make SGD faster than batch
gradient descent. Moreover, the frequent updates allow to have a detailed rate of im-
provement. However, it is clear that those frequent updates are more computationally
expensive.

◦ Mini-batch gradient descent is a combination of the concepts of SGD and batch
gradient descent. It splits the training dataset into small batches and performs an
update for each of those batches. This results in a balance between the robustness of
stochastic gradient descent and the efficiency of batch gradient descent. This is the
most common type of gradient descent within deep learning.

• Adam optimizer, short for Adaptive Moment Estimation optimizer, is a commonly em-
ployed tool in the realm of deep learning. It serves as an extension to the Stochastic
Gradient Descent (SGD) algorithm, primarily responsible for updating a neural network’s
weights throughout the training process. Unlike SGD, which maintains a consistent learn-
ing rate from start to finish, the Adam optimizer dynamically calculates individual learning
rates by considering past gradients and their second moments. This adaptive feature con-
tributes to swifter convergence and enhances the overall performance of the neural network.
The Adam optimizer has several advantages. It is notably simple to implement, exhibits
faster execution times, places minimal demands on memory resources, and necessitates less

11

fine-tuning compared to alternative optimization algorithms. However, it leans more to-
wards optimizing convergence speed and may, in some instances, generalize the data-points
slightly less effectively than SGD.

Metrics

Performance metrics are an essential element of every machine learning model. They allow to
quantify and study the performances of the algorithm. What is important to highlights is that
metrics are different from loss functions. Loss functions show a measure of model performance
whilst metrics are used to monitor and measure the performance of a model during training and
testing. As already said, machine learning tasks are divided in Regression or Classification, in
the same way also the performance metrics. In this Master ’s Thesis work only the regression
metrics are of interest, for this reason classification metrics will not be addressed. The output of
regression models is continuous, for this reason the distance between the predicted output and
the real output must be evaluated. Among the several possibilities of regression metrics, the
main used are:

• Mean Square Error (MSE) evaluates the average of the squared difference between the
target value and the value predicted by the regression model.

MSE =
1

N

N∑
j=1

(yj − ŷj)
2

Due its nature, it penalizes even small errors by squaring them, which essentially leads to
an overestimation of how bad the model is. For this reason, when interpreting the error
the squaring factor must be kept in mind.

• Mean Absolute Error (MAE) evaluates the average of the difference between the real
values and the predicted values.

MAE =
1

N

N∑
j=1

|yj − ŷj |

On the contrary of MSE, since the absence of the squaring factor, it tends to be more
robust towards outliers. It gives us a measure of how far the predictions were from the
actual output. However, the absolute value of the residual is not able to show the direction
of the error, i.e. whether we’re under-predicting or over-predicting the data.

• Root Mean Squared Error is evaluated taking the the square root of the average of the
squared difference between the target value and the value predicted. Basically, it represent
the square root of the MSE.

MSE =

√√√√ 1

N

N∑
j=1

(yj − ŷj)2

Backpropagation algorithm

As it has been pointed out, typically weights of the layers are updated following the direction the
gradient in a descending way, according to the type of optimizer chosen. However, this updating
process would be really slow and complicated also for small neural networks. To overcome this
limitation, the new set of weights is computed through an algorithm called backpropagation. The
basic idea behind this algorithm is to start from a random set of weights, collect the outputs

12

of the model for the given inputs and compute the loss. Once the final loss value has been
computed, backpropagation works backward from the top layers to the bottom layers to compute
the contribution of each parameter to the loss. Doing that it make extensive use of the chain
rule.

2.9. Under-fitting and Over-fitting

In Section 2.3 it has been highlighted how machine learning is related to statistics. For this
reason, ML algorithms can be affected by two common problems: under-fitting and over-fitting.

Under-fitting

Under-fitting can occur when:

• The model is characterized by an insufficient number of parameters;

• It is difficult to find the global optimum of the objective function on the training set, i.e.
getting stuck at local minimum;

• There are limitations on the computation resources (not enough training iterations of an
iterative optimization procedure)

In all of these situations the learner cannot capture some important aspects of the data, therefore
not finding a solution that fits the training set in the correct manner. For example, an under-
fitting situation could be if the learner uses a linear regression for the pairs (xtraini , ytraini) even
if ytraini is a quadratic function of xtraini .

Over-fitting

Over-fit can occur when:

• The model feature set is too large compared with the size of the training data;

• The data at disposal are not sufficient;

In these cases, the learner fits the training set in a very good way but loses the ability of gener-
alization, i.e. small training error but larger generalization error. As results, the performances
with an unknown dataset will drop drastically.

(a) Over-fitting. (b) Right-fitting. (c) Under-fitting.

Figure 8: Examples of over-fitting, right-fitting and under-fitting for data classification.

13

(a) Over-fitting. (b) Right-fitting. (c) Under-fitting.

Figure 9: Examples of over-fitting, right-fitting and under-fitting for data regression.

At this point, could be useful to define the characteristics of capacity of a ML model. Informally, a
model’s capacity is its ability to fit a wide variety of functions. A model with higher capacity can
model several different types of functions and so be able to learn a function which sufficiently
map inputs to outputs in the training dataset. However, a model with too much capacity
may memorize the training dataset and its associated noise and fail to generalize. The term
"generalization" refers to the capability of the model to adapt and properly react to unseen and
new data, but coming from the same distribution as the one used to train the model. It’s clear
that a trade-off between generalization and capacity must be found to obtain the correct solution
from a ML algorithm.

Figure 10: Generalization and training errors as function of the capacity of the model.

As shown in Figure 10, as model’s capacity increases, training error is reduced, but the difference
between training and generalization error increases. At some point, the increase in this difference
is larger than the decrease in training error (typically when the training error is low and cannot
go much lower), and we enter the over-fitting region, where capacity is too large, above the
optimal capacity [12].

2.10. Model validation

The main goal of a machine learning model is to generalize, in other words to perform in a good
way on unseen data. To achieve that, typically the initial dataset is split into three subsets:
training, validation and test sets. As the name suggest, they will be used for three different

14

phases: training, validation and test. Splitting the dataset allow the model to be evaluated
on different data with respect to the one used for training, trying to avoid the model to begin
to over-fit. With validation is intended the process for assessing the performances of the ML
model. In principle one can think that only training and test phases are needed to obtain a
performing model. However, the configuration of the model needs to be tuned, i.e. number of
layers or size of layers. Indeed, as it has been pointed out over-fitting and under-fitting problems
are very common after the training process. For this reason, a previously separated portion of
the dataset is used to check how the model would perform for real-world predictions. There are
several validation techniques, the most used are listed below [28]:

• Holdout Validation is the simplest validation method. The available dataset is split
into training and validation sets. The model, trained on the training set, is then applied
to the validation set and the loss is evaluated. It must be pointed out that the result of
the validation process are strictly dependent on the way the dataset have been divided;

Figure 11: Holdout validation split.

• Cross Validation represent a more robust alternative to holdout validation. It performs
well in all the cases in which the dataset is limited. In this case, the model is trained and
validated on different set of the initial dataset at each iteration. Then, the overall loss is
evaluated as average of the single losses;

• Iterate Cross Validation with shuffling is an extension of the previous method, used
when the dataset is extremely limited. In this case, a cross-validation methods is applied;
then, the dataset is shuffled and the same cross-validation method is applied. At the end
an averaging procedure is done taking into account each loss obtained. It’s clear how this
method requires huge amount of resources. Indeed, the model must be trained several
times.

Figure 12: Cross validation split.

15

3. System description

(a) A photo of the
real system.

(b) Lumped
mass model of
the system.

Figure 13: Real system and lumped mass model.

The system object of this work is a multi-storey building shown in Figure 13. Five aluminum
plates, connected by steel laminas, respectively model the storeys and the pillars of the building;
the physical data of the system are reported in Table 1. [34]

Table 1: Data of the system.

Storey

Area 200× 200 mm2

Thickness 20 mm
Mass 2.26 kg

Pillars

Area 0.5× 50 mm2

Length 180 mm
Thickness negligible
Mass negligible

3.1. Mathematical model

The reason behind using a lumped mass approach in modeling the system is the substantial
difference in mass between each storey and the laminas. This approach simplifies the system
into four degrees of freedom, represented by four masses connected by springs, as depicted in
Figure 13 (b). In the upcoming sections, we will introduce a physics-informed neural network
(PINN). PINNs stand out due to their custom loss function, which incorporates information

16

related to the governing physical laws of the system. Therefore, deriving the equations of motion
that describe the dynamics of the tested building, as presented in equation 1, becomes a critical
aspect of training the machine learning algorithm we are implementing.

[M] ẍ + [C] ẋ + [K] x = 0 (1)

In particular, the column vector x represents the absolute horizontal displacements of the storeys:

x = [x1 x2 x3 x4]
T (2)

The mass matrix of the model is diagonal:

[M] =


m 0 0 0
0 m 0 0
0 0 m 0
0 0 0 m

 (3)

While it’s possible that future studies may relax this assumption, by including displacement and
degree of rotation as boundary conditions, in this Master’s Thesis the hypothesis of a clamped-
clamped beam is used to calculate the stiffness matrix, as outlined in [35]. Specifically, since one
end experiences transversal displacement, the stiffness of the equivalent spring can be determined
as follows:

keq = 4 · k = 4 · 12EJ

L3
(4)

Furthermore, it’s essential to consider the influence of the weight of each storey on the transversal
stiffness, as emphasized in [36]. To empirically validate this point, Section 4 will investigate the
inverted building. In this regard, the term T = m · g/L is taken into consideration, and the
resulting stiffness matrix is presented as follows:

[K] =


2keq − 7T −keq + 3T 0 0
−keq + 3T 2keq − 5T −keq + 2T 0

0 −keq + 2T 2keq − 3T −keq + T
0 0 −keq + T keq − T

 (5)

Regarding damping, the analysis incorporates Rayleigh’s damping model, which permits the
representation of the damping matrix as a linear combination of both the mass matrix and the
stiffness matrix, as outlined in [37]. This relationship is expressed as follows:

[C] = α · [M] + β · [K] (6)

The coefficients α and β are determined through a process of least square minimization. When
modal coordinates are used, the mass, stiffness, and damping matrices become diagonal matrices,
allowing us to express for each vibration mode i within a specific set:

ci = α ·mi + β · ki ⇒ ξi =
ci

2miωi
=

α

2ωi
+

βωi

2
(7)

In this context, ξi represents the modal damping, and ωi stands for the natural frequency linked
to the i-th vibration mode. Furthermore, typically, ξi and ωi are determined by examining
the structural vibration response through modal analysis, which leads to the formulation of the
following over-determined system of equations: 1

2ω1

ω1
2

... ...
1

2ωi

ωi
2

 ·
[
α
β

]
=

ξ1...
ξi

 (8)

17

which is then resolved through a least square minimization process. In this thesis, during the
experimental investigation discussed in subsequent sections, we determine the modal damping
ξi and the natural frequency ωi for the four vibration modes exhibited by the structure. The
resulting coefficients for the Rayleigh’s damping model are provided in Table 2.

It’s worth highlighting that the methodology outlined in this study can be expanded to en-
compass more intricate continuous structures, such as bridges. In such cases, the model can
be approximated by either estimating and incorporating the modal parameters of the first N
vibration modes using experimental modal analysis, as detailed in [35], or by developing a finite
element model.

Table 2: Results of the least square minimization process.

α 0.03
β 0.028

4. Experimental campaign

To identify structural damage, both conventional methods and machine learning algorithms
depend on detecting alterations in the structural behavior. The techniques explored in this
thesis employ variations in vibration measurements between the structure in its standard state,
referred to as "healthy," and a state with "damage" as an indicator of potential damage.

Hence, the experimental campaign carried out on the tested structure is designed to collect raw
data for both the "healthy" and "damaged" states. The experimental setup for both scenarios
includes:

• four TE triaxial capacitive MEMS accelerometers, one per each storey;
• a PCB Piezotronics impact hammer;
• a National Instruments c-DAQ.

The structure is stimulated using an impact hammer, and the transverse vibrations are captured.
In the "healthy" scenario, a total of 1000 data records, each lasting 70 seconds and sampled at
a rate of 128Hz, are recorded. An illustration of the responses, specifically for the initial 30
seconds, is displayed in Figure 14.

Since the vibration signals are initially recorded in Volts, they require preprocessing before under-
going analysis. This preprocessing involves accounting for the sensitivity of each accelerometer
and the impact hammer, thereby correctly restoring the measurements to their respective units,
such as m/s2 and N .

Additionally, it’s crucial to recognize that the measured data are digitized signals acquired within
a finite time window. Consequently, they may be susceptible to various issues, including (i) noise,
(ii) aliasing due to the sampling process, and (iii) leakage, owing to the finite acquisition window.
To address these challenges, an averaging procedure is employed. Two distinct estimators, as
outlined in equation 9, are employed to assess the Frequency Response Function (FRF) for
inertance (acceleration/force) for each accelerometer.

H1(f) =
X(f)

F (f)
=

GXF (f)

GFF (f)

H2(f) =
X(f)

F (f)
=

GXX(f)

GFX(f)

(9)

18

(a) 2nd floor. (b) 3rd floor.

(c) 4th floor. (d) 5th floor.

Figure 14: Acceleration of each floor with input applied on 5th floor.

In this context, F and X represent the Fourier transforms of the input force and the output
vibration, while GFF and GXX denote the estimated auto spectra. Additionally, GXF and GFX

represent the estimated cross spectra, which are typically computed as follows:

GXX(f) =
1

N

N∑
j=1

X∗
j (f) ·Xj(f)

GXY (f) =
1

N

N∑
j=1

X∗
j (f) · Yj(f)

(10)

where X and Y are two general sampled signals and N is their length. Figure 15 shows an
example of FRFs for the case in which the structure was excited by an input force acting on the
5th floor. After calculating the Frequency Response Functions (FRFs) for each accelerometer, the
natural frequencies and mode shapes are deduced using the Experimental Modal Analysis (EMA)
technique, as described in references [38] and [39]. Specifically, the natural frequencies of the
system are presented in Table 3 for both the numerical and experimental models. Additionally,
the mode shapes are illustrated in Figure 16.

19

(a) 2nd floor. (b) 3rd floor.

(c) 4th floor. (d) 5th floor.

Figure 15: FRFs evaluated for each accelerometer, one for each floor, with input applied
on 5th floor.

Table 3: Natural frequencies for both the numerical and the experimental model.

Mode Numerical model [Hz] Experimental model [Hz]

1 0.79 0.75
2 2.51 2.41
3 3.88 3.74
4 5.01 5.04

20

(a) 1st mode. (b) 2nd mode. (c) 3rd mode. (d) 4th mode.

Figure 16: Vibration modes of structure for the healthy scenario.

It’s crucial to emphasize that the natural frequencies and mode shapes obtained for the "healthy"
structure, as presented earlier, will serve as a reference for the vibration-based damage detection
method. This method, in turn, will be used as a benchmark to evaluate the performance of the
two machine learning algorithms.

To empirically validate the hypotheses proposed in Section 3 concerning the impact of weight
on stiffness, another test was conducted. In this test, the structure was placed in an inverted
configuration, without the addition of any extra mass, as depicted in Figure 17.

(a) A photo of the flipped real sys-
tem.

(b) Lumped mass
model of the system.

Figure 17: Flipped real system and lumped mass model.

21

Moreover, the contribution of this tension beam effect on the modal stiffness of the first four
modes of vibration was investigated through the influence coefficient αT , evaluated as follow:

αT =
kT
kfl

where:

• kT is evaluated through the difference between the modal stiffness of the system in the
default configuration and the one in the flipped configuration;

• kfl is the structural part of the modal stiffness in the flipped configuration: kfl = ki − kT .

The values of αT are reported in Table 4.

Table 4: Flipped system: stiffness and influence coefficient.

Mode of vibration
1st 2nd 3rd 4th

ωi,def [Hz] 0,75 2,41 3,72 5,06
ωi,flip [Hz] 1,47 3,84 5,88 7,34
kT [N/m] 71 399 925 1261
ks [N/m] 122 9171 2160 3546

ki,def [N/m] 51 518 1235 2284
ki,flip [N/m] 193 1316 3085 4807
αT [-] 0,59 0,43 0,43 0,36

The resulting natural frequencies are reported in Table 5.

Table 5: Natural frequencies for both the numerical and the experimental model.

Mode Numerical model [Hz] Experimental model [Hz]

1 1,39 1,46
2 3,72 3,84
3 5,48 5,88
4 6,75 7,32

As is possibile to notice, the effect of the weight on the transversal stiffness of the system must
be taken into account. Indeed, this effect is not negligible.

When examining scenarios involving structural damage, it’s essential to bear in mind that internal
structural issues are typically not caused by material loss and, consequently, do not result in
changes in mass. Instead, they often stem from alterations in geometry or material properties
that impact one or more elements within the stiffness matrix, as discussed in [40]. Therefore,
in the "damaged" condition, the time histories are acquired by altering only the stiffness values
of the laminas. Specifically, six distinct sets of laminas, all featuring the same cross-sectional
dimensions but varying in length as indicated in Table 6, are employed to reduce the stiffness
of the springs connecting consecutive floors. These adjustments result in stiffness values ranging
from 10% to 60% of the nominal value.

22

Table 6: Lengths of the set of laminas used to reproduce a damage in the structure.

Damage Length
Percentage

0% 180.0 mm
−10% 186.5 mm
−20% 194.0 mm
−30% 203.0 mm
−40% 213.5 mm
−50% 227.0 mm
−60% 244.0 mm

In total, a dataset comprising 240 time records, each lasting 70 seconds and sampled at a rate
of 128Hz, is collected. This dataset encompasses 10 records for every possible combination of
damage extent (represented by the type of lamina) and damage location (across four floors).

5. Pole Placement for SHM and model updating

In control theory Pole Placement technique allows to change the position of the closed-loop poles
of the system with respect to the open-loop ones [41]. Considering a Linear Time Invariant (LTI)
system in state-space representation:

˙⃗
X = [A]X⃗ + [B]u⃗ (11)

the Pole Placement method determines the feedback gain matrix such that the closed-loop poles
are placed at desired location, applying a full state feedback to system motion:

u⃗ = [K](X⃗ref − X⃗) (12)

where the matrix [K] represents the feedback gain matrix and X⃗ref the reference motion. Writing
the equation of motion of the controlled system:

˙⃗
X = [A]X⃗ + [B][K](X⃗ref − X⃗)

= ([A]− [B][K])X⃗ + [B][K]X⃗ref

= [Ac]X⃗ + [Bc]X⃗ref

(13)

(14)

(15)

where [Ac] = [A]− [B][K] is the state matrix of the feedback control system. The eigenvalues of
the open-loop system are strictly related to the dynamic properties of the system. In principle, a
structural damage will modify those properties through changes in mass, stiffness and damping
of the system. With this in mind the application of a feedback control system via pole placement
to detect damages and update the matrices related to the system seems a viable option [42–45].
Indeed, once identified the new poles of the system, they could be imposed to the system in
the nominal conditions, thus evaluating the feedback gain matrix and updating the matrices
representing the system in the new status. However, as already said in Section 4 in this work
the hypothesis that damages affect only the stiffness matrix is used. Moreover, before applying
the pole placement, being the stiffness and the damping matrices of the system not diagonal
resulting in inertially and dynamically coupled, the following modal coordinate transformation is
applied to the system:

x⃗ = [Φ] · q⃗ (16)

23

where the matrix [Φ] is the modal matrix of nxn dimension (4x4 in this work), containing the
identified mode vectors of the system, while q⃗ are the new coordinates, called modal or principal
coordinates. Those coordinates are able to diagonalize the mass, the damping and the stiffness
matrices of the system, allowing so to write decoupled equation of motion.

[M̂] = [Φ]T [M][Φ]

[K̂] = [Φ]T [K][Φ]

[Ĉ] = [M̂] + [K̂]

(17)

(18)

(19)

Once the system in modal coordinates is obtained and its new state-space representation is
written, the pole placement technique is applied and the new state matrix of the controlled
system is computed [Ac]. Recalling that in the state space the state matrix is composed as
follows:

[A] =

[
0 1

− [K]
[M] − [R]

[M]

]
(20)

To obtain the new, updated, stiffness matrix:

[K̂]upd = −[A21] ∗ [M̂]; (21)

However, it should be remembered that the obtained matrix represents the stiffness matrix of
the system in modal coordinates. So, the inverse transformation should be applied, obtaining:

[K]upd = [Φ][K̂][Φ]T (22)

This method showed great capabilities in detecting damages and updating the stiffness matrix.
However, it should pointed out that the results were obtained studying a fully observable and
fully controllable system, as required by the hypothesis of the pole placement methods. However,
in general, for complex structures this represent a big limitation. Indeed, even approximating the
number of degrees of freedom of the system, it would be not so straight-forward and expensive to
use a very high number of accelerometers. To overcome this limitation, Model Order Reduction
methods could be used. However, the description and the application of this techniques is out
of the scope of this work but they can be found in dedicated books, as [46].

6. Network architectures and training

The core objective of this Master’s Thesis work is to compare the ability to detect structural
damage between a physics-informed neural network and a purely data-driven neural network.
Furthermore, conventional vibration-based techniques, which rely on the analysis of changes in
both natural frequencies and vibration modes of the structure, are used as a reference to evaluate
the advantages of employing machine learning algorithms over traditional methods.

6.1. Pre-processing

In the case of the undamaged structure, 1000 time records, each lasting 70 seconds, are recorded.
Specifically, transverse accelerations are captured by four accelerometers at a sampling frequency
of 128 Hz and organized into a 4-column matrix. The dataset is then normalized, as described
in [47]. Normalization involves calculating the maximum absolute value for each channel and
storing these values in a vector denoted as G. This normalization process ensures that each data
point within the signals falls within the range of -1 to 1. Finally, the dataset is divided into three
subsets: training, validation, and test, comprising 800, 100, and 100 records, respectively.

24

6.2. Training and test

The training dataset is employed to train the autoencoder model illustrated in Figure 18. No-
tably, the training phase for the PINN-CAE and DD-CAE models differs due to the custom loss
function implemented for the former. Details of this custom loss function will be discussed in
the subsequent subsection. During the CAE training process, 200 epochs are considered, with
Mean Absolute Error (MAE) serving as the loss function. Additionally, a callback is applied to
monitor the validation loss. MAE is evaluated separately for each accelerometer to assess the
reconstruction error generated by the trained model when predicting the test set. The maxi-
mum MAE values observed across the entire test set are established as thresholds for anomaly
detection. As mentioned earlier, MAE values exceeding these thresholds are indicative of time
histories representing the damaged structure.

6.3. Autoencoder

Both machine learning algorithms, referred to as PINN-CAE and DD-CAE, share a common neu-
ral network architecture based on a convolutional autoencoder. Autoencoders are self-supervised
learning techniques that aim to reconstruct input data at the output with minimal distortion
after a series of transformations and data compression steps. They are widely used for denoising,
data compression, and high-dimensional data visualization [48]. Convolutional Neural Networks
(CNNs), upon which Convolutional Autoencoders (CAEs) are built, are a subset of Artificial Neu-
ral Networks (ANNs) that leverage convolution operations, offering advantages such as reduced
parameter connections and faster convergence due to dimension reduction. This architecture is
employed to remove irrelevant features while preserving essential information [49, 50].

In this Master’s Thesis work, the autoencoder is constructed using the TensorFlow framework
and assembled using the Keras API. As reported in Figure 18, the model counts 11 layers of the

Figure 18: Autoencoder model.

following types:

1. Separable Convolutional 1D layer. This layer performs 1D convolutions separately on
each channel of the input data. Then, it combines the channels through point-wise multi-
plication. This approach is highly effective for analyzing time series data, as demonstrated
in [51];

2. MaxPooling layer. Convolutional layers tend to increase the number of parameters in
the output tensors significantly compared to the input tensors, especially when numerous

25

filters are applied. To address this, a pooling layer is typically used after a convolutional
layer. The purpose of the pooling layer is to downsample the feature map by retaining only
the most significant information extracted by the preceding convolutional layer. Various
pooling methods exist, but this work adopts MaxPooling, which selects the maximum
value from a predefined sub-matrix;

3. Dropout layer. As already pointed out in Section 2, overfitting is a common challenge
in neural network development, where a model becomes overly specialized in the training
data, potentially leading to poor generalization to new data. Dropout is a regularization
technique that enhances the network’s robustness during training by encouraging it to learn
general and recurring patterns. During training, if a tensor passes through a dropout layer,
some of its values are randomly set to zero based on a dropout probability, which indicates
the fraction of input elements to be zeroed out. During testing, no values are zeroed
out, but the output is scaled by a factor equal to the dropout probability. Sometimes,
dropout is applied only during training, leaving the test and prediction phases unchanged.
Additional guidance on managing the dropout layer can be found in [52].

4. Dense layer. This layer is the simplest and most straightforward type. It is used to
define the latent space of the neural network. Every neuron in a dense layer is connected
to every neuron in the preceding layer. Each connection is associated with a weight that
multiplies the input value. The dense layer also includes a bias term, denoted as "b,"
and an activation function, represented as "f." If "x" denotes the input tensor, "z" is the
output tensor, and "W" represents the weights tensor, the mathematical equation for a
dense layer is given as follows:

z = f(z̃) = f(Wx+ b) (23)

Where z̃ is called weighted sum of the input.

5. Transposed Convolutional 1D layer. The layer in question is a specific type of convo-
lutional layer designed to upscale the spatial resolution of an input tensor while preserving
a connectivity pattern compatible with certain convolutional layers. Essentially, it func-
tions as an operation that transforms an input tensor into an output tensor with a higher
spatial resolution. This operation is commonly referred to as "deconvolution".

The training process for the autoencoder involves utilizing the Mean Absolute Error (MAE)
as the loss function. Ass already introduced, MAE, expressed in Equation 24, quantifies the
average magnitude of the absolute discrepancies between the predicted values (which are the
outputs generated by the autoencoder) denoted as yi and the input values xi [53].

MAE =

∑N
i=1 |yi − xi|

N
=

∑N
i=1 |ei|
N

(24)

In this equation, N represents the number of signal samples. Furthermore, upon completing
the training phase, the Mean Absolute Error (MAE) is utilized as an indicator for detecting
anomalous time histories within the tested structure. The MAE loss essentially quantifies the
level of error in the reconstruction carried out by the autoencoder. Therefore, it’s reasonable to
assume that a higher reconstruction error corresponds to more significant damage, as outlined
in [54].

6.4. Physic-informed neural network

Training deep neural networks often necessitates access to extensive datasets, which can be chal-
lenging to obtain, especially for pre-existing structures or damaged scenarios. Physics-informed

26

neural networks offer a potential solution to this limitation. These networks can be trained using
additional information derived from the underlying physical principles governing the dynamic
behavior of the system. This approach seamlessly integrates both data and mathematical mod-
els, even in situations where the models may not be fully understood, are subject to uncertainty,
or involve high-dimensional parameters, as highlighted in [55] and [56].

To facilitate the training of PINNs, conventional loss functions are not suitable. Instead, custom
loss functions are essential. Specifically, these custom loss functions should incorporate the
physical laws that govern the dynamic response of the system, thereby constraining the space
of allowable solutions during autoencoder training. The outline of the proposed custom loss
function is depicted in Figure 19.

Figure 19: Custom loss scheme.

The signals denoted as yi, which are the outcomes of the autoencoder, represent the reconstructed
time histories of the scaled vibration data acquired during the healthy scenario. These data, in
turn, depict the system’s response to the input force applied by the hammer. However, it can
be assumed that after a certain period, set at 10 seconds in this case, the transient behavior
resulting from the forced motion of the system completely diminishes. Consequently, following
the inverse scaling operation using the vector G (containing the scaler values applied during the
preprocessing stage), the remaining portion of each reconstructed time history should exhibit low
error when compared to the previously presented set of Ordinary Differential Equations (ODEs)
in Equation 1.

In particular, to maintain consistency with measurement units, the ODEs are divided by the mass
of the corresponding floor. By doing so, the error functions are expressed in acceleration units.
This adjustment is made to ensure that the physical loss shares the same measurement units as
the data-driven loss. Moreover, it’s reasonable to anticipate a greater error when considering time
histories originating from the damaged scenario. As a result, after appropriate time-domain inte-
gration, following methods such as those described in [57] and [58], the following error functions

27

are computed for each time instant:

err1 =
m11 · ÿ1 + c11 · ẏ1 + c12 · ẏ2 + k11 · y1 + k12 · y2

m11

err2 =
m22 · ÿ2 + c21 · ẏ1 + c22 · ẏ2 + c23 · ẏ3 + k12 · y1 + k22 · y2 + k23 · y3

m22

err3 =
m33 · ÿ3 + c32 · ẏ2 + c33 · ẏ3 + c34 · ẏ4 + k32 · y2 + k33 · y3 + k34 · y4

m33

err4 =
m44 · ÿ4 + c43 · ẏ3 + c44 · ẏ3 + k43 · y3 + k44 · y4

m44

(25)

As previously mentioned, within these error functions, yi, ẏi, and ÿi correspond to the dis-
placement, velocity, and acceleration signals obtained through the autoencoder’s reconstruction.
Subsequently, the absolute values of their mean values are calculated and collectively form the
physical component of the custom loss function:

Lphysic =

∑N
i=1 |err1,i|

N
+

∑N
i=1 |err2,i|

N
+

∑N
i=1 |err3,i|

N
+

∑N
i=1 |err4,i|

N
(26)

In this context, where N represents the number of time steps for which the error functions are
assessed.

To demonstrate the effectiveness of the information derived from the physical component of
the loss, the error functions described in Equation 25 are computed for both "healthy" and
"damaged" time histories. In the "damaged" scenario, a defect is introduced by reducing the
stiffness by 28% of the nominal value, specifically in the third floor. The results, presented in
Figure 20, affirm the equation of motion for the system’s value as part of the custom loss. It
is evident that for an anomalous time history, the error related to the equations of motion is
greater compared to a healthy one, particularly for the degrees of freedom near the location of
the damage.

28

(a) err1. (b) err2.

(c) err3. (d) err4.

Figure 20: Error functions evaluated for two different scenarios: "healthy" and "dam-
aged".

On the other hand, for the data driven portion of the custom loss again the MAE loss function
is taken into account.

At the end, the obtained custom loss function is:

L = K ·
[∑n

i=1 |err1,i|
n

+

∑n
i=1 |err2,i|

n
+

∑n
i=1 |err3,i|

n
+

∑n
i=1 |err4,i|

n

]
+MAE

(27)

where K is a constant to express the physical part of the custom loss in an adimensional form,
as the data driven portion of the loss function.

7. Results

The dataset comprising 240 damaged records is initially subjected to analysis through Experi-
mental Modal Analysis (EMA). However, it is observed that natural frequencies and mode shapes
exhibit only slight variations in response to damages of 10%, as depicted in Figure 21.

29

(a) 1st mode. (b) 2nd mode. (c) 3rd mode. (d) 4th mode.

Figure 21: Vibration modes of structure for 10% reduction of the stiffness value and for
different positions of the damage.

In the case of more significant damages, as illustrated in Figure 22, noticeable differences in
natural frequencies and mode shapes become evident. However, it’s worth noting that pinpoint-
ing the precise location of the damage is not straightforward. This observation aligns with a
common challenge outlined in the literature, which highlights that vibration signals are reliable
indicators of damage presence but may pose difficulties in precisely identifying its location, as
discussed in [59]. With this approach in mind, the anomaly dataset is pre-processed using the
same scaling parameters obtained during the training phase. Subsequently, this pre-processed
data is input into both the PINN-CAE and DD-CAE models. The Mean Absolute Error (MAE)
values are computed for each anomaly record and for each channel (corresponding to different
accelerometers). These MAE values are then compared to the previously established MAE test
thresholds. Any record with a loss exceeding the threshold is classified as an anomaly.

Both architectures successfully identify all the considered time histories as anomalies. This out-
come confirms the anticipated higher precision of data-driven algorithms in detecting structural
damage compared to conventional methods. Notably, this difference becomes particularly evident
when the extent of the damage is relatively low.

Moreover, for each detected anomaly, the channel (corresponding to the accelerometer position,
i.e., the floor) with the highest MAE loss is selected as the predicted damage location. This pre-
dicted position is then compared to the known real damage location. Subsequently, an accuracy
indicator is evaluated for both of the considered algorithms, with damages ranging from 10% to
60% serving as the reference point.

A =
nd

ntot
× 100 (28)

In this equation, where nd represents the count of anomalies with a damage extent equal to or
greater than the reference value, and where the model accurately identifies their positions, while
ntot stands for the total number of anomalies with a damage extent equal to or greater than the
reference value. The outcomes of these evaluations are presented in Table 7.

30

(a) 1st mode. (b) 2nd mode. (c) 3rd mode. (d) 4th mode.

Figure 22: Vibration modes of structure for 50% reduction of the stiffness value and for
different positions of the damage.

Table 7: Anomalies detection rates as function of the damage percentage for both PINN-
CAE and DD-CAE.

Damage Accuracy A
Percentage DD-CAE PINN-CAE

-10% 33.19% 79.43%
-20% 40.20% 82.81%
-30% 52.24% 87.22%
-40% 65.11% 92.03%
-50% 84.61% 100%
-60% 100% 100%

It is possible to conclude that the PINN outperforms the results obtained with the purely data-
driven approach, as expected.

8. Conclusion

A general introduction to Artificial Intelligence and Machine learning is given.

The main focus of this thesis work is to assess the accuracy of detecting structural damages
using two distinct machine learning algorithms: a physics-informed convolutional autoencoder
(PINN-CAE) and a purely data-driven convolutional autoencoder (DD-CAE). The evaluation is
based on raw data obtained from experimental acquisitions conducted on a four-storey building,
and both algorithms share the same structural architecture. The Mean Absolute Error (MAE)
of the reconstruction is employed as an indicator to identify anomalous records.

31

Both the PINN-CAE and the DD-CAE outperform conventional vibration-based methods in
their ability to detect structural damages and pinpoint their locations. They successfully iden-
tify all anomalous time histories and exhibit a high level of precision in detecting structural
changes. Notably, the physics-informed network demonstrates greater accuracy in locating dam-
age compared to the data-driven approach, especially for lower levels of damage severity. This
emphasizes the significant potential of combining a data-driven architecture with information
derived from the physical model of the studied system.

Future developments of this research will involve altering the mass of the system and utilizing
the model in conjunction with neural networks to detect anomalies in more complex structures
such as bridges or viaducts. Analytically representing such structures can be challenging, but a
numerical model based on simulation methods like the Finite Element Method can be employed.
The expansion of this work by considering a numerical model of more complex system will be
developed in future by the authors.

Abbreviations

The following abbreviations are used in this manuscript:
SHM Structural Health Monitoring
AI Artificial Intelligence
ML Machine Learning
NN Neural network
ANN Artificial Neural Networks
CNN Convolutional Neural Networks
RNN Recurrent Neural Network
SGD Stochastic Gradient Descent
PINN Physic-Informed Neural Network
CAE Convolutional Autoencoder
MSE Mean Square Error
MAE Mean Absolute Error
LTI Linear Time Invariant
EMA Experimental Modal Analysis
FRF Frequency Response Function
PINN-CAE Physic-informed Convolutional Autoencoder
DD-CAE Data-driven Convolutional Autoencoder

References

[1] Gangbing Song, Chuji Wang, and Bo Wang. Structural health monitoring (shm) of civil
structures, 2017.

[2] Hong-Nan Li, Liang Ren, Zi-Guang Jia, Ting-Hua Yi, and Dong-Sheng Li. State-of-the-art
in structural health monitoring of large and complex civil infrastructures. Journal of Civil
Structural Health Monitoring, 6:3–16, 2016.

[3] Francisco J Pallarés, Michele Betti, Gianni Bartoli, and Luis Pallarés. Structural health
monitoring (shm) and nondestructive testing (ndt) of slender masonry structures: A prac-
tical review. Construction and Building Materials, 297:123768, 2021.

[4] Diogo Montalvao, Nuno Manuel Mendes Maia, and António Manuel Relógio Ribeiro. A

32

review of vibration-based structural health monitoring with special emphasis on composite
materials. Shock and vibration digest, 38(4):295–324, 2006.

[5] Charles R Farrar and Keith Worden. Structural health monitoring: a machine learning
perspective. John Wiley & Sons, 2012.

[6] X Wu, J Ghaboussi, and JH Garrett Jr. Use of neural networks in detection of structural
damage. Computers & structures, 42(4):649–659, 1992.

[7] OS Salawu. Detection of structural damage through changes in frequency: a review. Engi-
neering structures, 19(9):718–723, 1997.

[8] D Goyal and BS Pabla. The vibration monitoring methods and signal processing tech-
niques for structural health monitoring: a review. Archives of Computational Methods in
Engineering, 23:585–594, 2016.

[9] Claus Peter Fritzen. Vibration-based structural health monitoring–concepts and applica-
tions. Key Engineering Materials, 293:3–20, 2005.

[10] Filipe Magalhães, Álvaro Cunha, and Elsa Caetano. Vibration based structural health
monitoring of an arch bridge: From automated oma to damage detection. Mechanical
Systems and signal processing, 28:212–228, 2012.

[11] Arnaud Deraemaeker, Edwin Reynders, Guido De Roeck, and Jyrki Kullaa. Vibration-based
structural health monitoring using output-only measurements under changing environment.
Mechanical systems and signal processing, 22(1):34–56, 2008.

[12] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):
436–444, 2015.

[13] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems involving non-
linear partial differential equations. Journal of Computational physics, 378:686–707, 2019.

[14] Zahra Rastin, Gholamreza Ghodrati Amiri, and Ehsan Darvishan. Unsupervised struc-
tural damage detection technique based on a deep convolutional autoencoder. Shock and
Vibration, 2021:1–11, 2021.

[15] Luca Rosafalco, Andrea Manzoni, Alberto Corigliano, and Stefano Mariani. A time se-
ries autoencoder for load identification via dimensionality reduction of sensor recordings.
Engineering Proceedings, 2(1):34, 2021.

[16] Xirui Ma, Yizhou Lin, Zhenhua Nie, and Hongwei Ma. Structural damage identification
based on unsupervised feature-extraction via variational auto-encoder. Measurement, 160:
107811, 2020.

[17] Xudong Jian, Huaqiang Zhong, Ye Xia, and Limin Sun. Faulty data detection and classi-
fication for bridge structural health monitoring via statistical and deep-learning approach.
Structural Control and Health Monitoring, 28(11):e2824, 2021.

[18] Jae Seok Do, Akeem Bayo Kareem, and Jang-Wook Hur. Lstm-autoencoder for vibration
anomaly detection in vertical carousel storage and retrieval system (vcsrs). Sensors, 23(2),
2023. ISSN 1424-8220. doi: 10.3390/s23021009. URL https://www.mdpi.com/1424-8220/
23/2/1009.

[19] Rafaelle Piazzaroli Finotti, Flavio de Souza Barbosa, Alexandre Abrahão Cury, and
Roberto Leal Pimentel. Novelty detection using sparse auto-encoders to characterize struc-
tural vibration responses. Arabian Journal for Science and Engineering, pages 1–14, 2022.

33

https://www.mdpi.com/1424-8220/23/2/1009
https://www.mdpi.com/1424-8220/23/2/1009

[20] Maziar Raissi, Zhicheng Wang, Michael S Triantafyllou, and George Em Karniadakis. Deep
learning of vortex-induced vibrations. Journal of Fluid Mechanics, 861:119–137, 2019.

[21] Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis.
Physics-informed neural networks (pinns) for fluid mechanics: A review. Acta Mechanica
Sinica, 37(12):1727–1738, 2021.

[22] Yigit Yucesan and Felipe Viana. A physics-informed neural network for wind turbine main
bearing fatigue. International Journal of Prognostics and Health Management, 11:17, 05
2020.

[23] Bin Huang and Jianhui Wang. Applications of physics-informed neural networks in power
systems - a review. IEEE Transactions on Power Systems, 38(1):572–588, 2023. doi: 10.
1109/TPWRS.2022.3162473.

[24] Francesco Morgan Bono, Luca Radicioni, Simone Cinquemani, and Gianluca Bombaci. A
comparison of deep learning algorithms for anomaly detection in discrete mechanical sys-
tems. Applied Sciences, 13(9):5683, 2023.

[25] Francesco Morgan Bono, Luca Radicioni, Gianluca Bombaci, Claudio Somaschini, and Si-
mone Cinquemani. An approach based on convolutional autoencoder for detecting damage
location in a mechanical system. In NDE 4.0, Predictive Maintenance, Communication, and
Energy Systems: The Digital Transformation of NDE, volume 12489, pages 93–100. SPIE,
2023.

[26] Dalvinder Singh Grewal. A critical conceptual analysis of definitions of artificial intelligence
as applicable to computer engineering. IOSR Journal of Computer Engineering, 16(2):9–13,
2014.

[27] Michael Haenlein and Andreas Kaplan. A brief history of artificial intelligence: On the
past, present, and future of artificial intelligence. California management review, 61(4):
5–14, 2019.

[28] Francois Chollet. Deep learning with Python. Simon and Schuster, 2021.

[29] Raul Rojas and Raúl Rojas. The backpropagation algorithm. Neural networks: a systematic
introduction, pages 149–182, 1996.

[30] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

[31] Jae-On Kim and James Curry. The treatment of missing data in multivariate analysis.
Sociological Methods & Research, 6(2):215–240, 1977.

[32] Rizgar Zebari, Adnan Abdulazeez, Diyar Zeebaree, Dilovan Zebari, and Jwan Saeed. A com-
prehensive review of dimensionality reduction techniques for feature selection and feature
extraction. Journal of Applied Science and Technology Trends, 1(2):56–70, 2020.

[33] Qi Wang, Yue Ma, Kun Zhao, and Yingjie Tian. A comprehensive survey of loss functions
in machine learning. Annals of Data Science, pages 1–26, 2020.

[34] S. Di Carlo, L. Benedetti, and E. Di Gialleonardo. Teaching by active learning: A laboratory
experience on fundamentals of vibrations. International Journal of Mechanical Engineering
Education, 50(4):869–882, 2022. doi: 10.1177/03064190221082033. URL https://doi.org/
10.1177/03064190221082033.

[35] Federico Cheli and Giorgio Diana. Advanced dynamics of mechanical systems, volume 2020.
Springer, 2015.

34

https://doi.org/10.1177/03064190221082033
https://doi.org/10.1177/03064190221082033

[36] A. Ghali, A. M. Neville, and T. G. Brown. Structural Analysis. CRC Press, 12 2017. ISBN
9781315273006. doi: 10.1201/9781315273006.

[37] Man Liu and Dadiv G Gorman. Formulation of rayleigh damping and its extensions. Com-
puters & structures, 57(2):277–285, 1995.

[38] Brian J Schwarz and Mark H Richardson. Experimental modal analysis. CSI Reliability
week, 35(1):1–12, 1999.

[39] Álvaro Cunha and Elsa Caetano. Experimental modal analysis of civil engineering struc-
tures. 2006.

[40] P Hajela and FJ Soeiro. Structural damage detection based on static and modal analysis.
AIAA journal, 28(6):1110–1115, 1990.

[41] Paraskevas N Paraskevopoulos. Modern control engineering. CRC Press, 2017.

[42] K Ramar and KK Appukuttan. Pole assignment for multi-input multi-output systems using
output feedback. Automatica, 27(6):1061–1062, 1991.

[43] Fereidoun Amini and Farzaneh Modiri. Restoring dynamic properties of damaged buildings
using pole assignment control method. Journal of Vibroengineering, 16(6):2920–2932, 2014.

[44] W Wonham. On pole assignment in multi-input controllable linear systems. IEEE transac-
tions on automatic control, 12(6):660–665, 1967.

[45] YM Ram and S Elhay. Pole assignment in vibratory systems by multi-input control. Journal
of Sound and Vibration, 230(2):309–321, 2000.

[46] Wilhelmus HA Schilders, Henk A Van der Vorst, and Joost Rommes. Model order reduction:
theory, research aspects and applications, volume 13. Springer, 2008.

[47] F.M. Bono, L. Radicioni, and S. Cinquemani. A novel approach for quality control of auto-
mated production lines working under highly inconsistent conditions. Engineering Applica-
tions of Artificial Intelligence, 122:106149, 2023. ISSN 0952-1976. doi: https://doi.org/10.
1016/j.engappai.2023.106149. URL https://www.sciencedirect.com/science/article/
pii/S0952197623003330.

[48] Yifei Zhang. A better autoencoder for image: Convolutional autoencoder.
In ICONIP17-DCEC. Available online: http://users. cecs. anu. edu. au/Tom.
Gedeon/conf/ABCs2018/paper/ABCs2018_paper_58. pdf (accessed on 23 March 2017),
2018.

[49] Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of convolu-
tional neural networks: analysis, applications, and prospects. IEEE transactions on neural
networks and learning systems, 2021.

[50] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a convolutional
neural network. In 2017 international conference on engineering and technology (ICET),
pages 1–6. Ieee, 2017.

[51] Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian Lumezanu, Wei Cheng,
Jingchao Ni, Bo Zong, Haifeng Chen, and Nitesh V Chawla. A deep neural network for un-
supervised anomaly detection and diagnosis in multivariate time series data. In Proceedings
of the AAAI conference on artificial intelligence, volume 33, pages 1409–1416, 2019.

[52] Nitish Srivastava. Improving neural networks with dropout. University of Toronto, 182
(566):7, 2013.

35

https://www.sciencedirect.com/science/article/pii/S0952197623003330
https://www.sciencedirect.com/science/article/pii/S0952197623003330

[53] Jun Qi, Jun Du, Sabato Marco Siniscalchi, Xiaoli Ma, and Chin-Hui Lee. On mean absolute
error for deep neural network based vector-to-vector regression. IEEE Signal Processing
Letters, 27:1485–1489, 2020. doi: 10.1109/lsp.2020.3016837. URL https://doi.org/10.
1109%2Flsp.2020.3016837.

[54] Francesco Morgan Bono, Luca Radicioni, Simone Cinquemani, Lorenzo Benedetti, Gabriele
Cazzulani, Claudio Somaschini, and Marco Belloli. A deep learning approach to detect
failures in bridges based on the coherence of signals. Future Internet, 15(4), 2023. ISSN
1999-5903. doi: 10.3390/fi15040119. URL https://www.mdpi.com/1999-5903/15/4/119.

[55] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and
Liu Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

[56] Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar
Raissi, and Francesco Piccialli. Scientific machine learning through physics–informed neural
networks: where we are and what’s next. Journal of Scientific Computing, 92(3):88, 2022.

[57] Philip J Davis and Philip Rabinowitz. Methods of numerical integration. Courier Corpora-
tion, 2007.

[58] Anders Brandt and Rune Brincker. Integrating time signals in frequency domain – compar-
ison with time domain integration. Measurement, 58:511–519, 2014. ISSN 0263-2241. doi:
https://doi.org/10.1016/j.measurement.2014.09.004. URL https://www.sciencedirect.
com/science/article/pii/S0263224114003832.

[59] Scott W Doebling, Charles R Farrar, Michael B Prime, and Daniel W Shevitz. Damage
identification and health monitoring of structural and mechanical systems from changes in
their vibration characteristics: a literature review. 1996.

36

https://doi.org/10.1109%2Flsp.2020.3016837
https://doi.org/10.1109%2Flsp.2020.3016837
https://www.mdpi.com/1999-5903/15/4/119
https://www.sciencedirect.com/science/article/pii/S0263224114003832
https://www.sciencedirect.com/science/article/pii/S0263224114003832

Abstract in lingua italiana

Questo lavoro di Tesi Magistrale rappresenta l’estensione di due articoli di ricerca incentrati
sull’applicazione dell’intelligenza artificiale per il monitoraggio della condizione delle strutture.
Infatti, una variazione della configurazione nominale può essere correlata ad un difetto strut-
turale che deve essere attenzionato prima che raggiunga condizioni critiche. E’ evidente come
la capacità di rilevare automaticamente i cambiamenti in una struttura abbia riscosso molto
interesse negli ultimi anni. Inoltre, senza una conoscenza pregressa del sistema, l’intelligenza
artificiale e, in modo più preciso, i modelli di deep learning potrebbero rivelarsi efficaci nella
rilevazione di cambiamenti struttura e migliorare inoltre la capacità di identificarne la posizione.
Tuttavia, l’acquisizione di dati relativi a scenari di strutture danneggiate non è sempre prat-
icabile. In questo articolo viene fornita una panoramica generale dell’Intelligenza Artificiale,
con particolare attenzione al machine learning e al deep learning. Inoltre, due approcci basati
sul deep learning sono applicati a un modello di un edificio di quattro piani: un autoencoder
physic-based e autoencoder semplicemente basato sui dati disponibili. Le prestazioni sono poi
confrontate con quelle ottenute con approcci convenzionali basati sulla classica analisi modale.
In particolare, i possibili danni strutturali sono simulati variando la rigidezza della dei pilastri,
modellati attraverso molle. Entrambi gli algoritmi di machine learning hanno dimostrato migliori
prestazione rispetto all’approccio tradizionale. Inoltre, viene confermato il maggiore potenziale
nel rilevare e localizzare i danni delle reti neurali physic-informed.

Parole chiave: Intelligenza artificiale, Machine Learning, Deep Learning, Monitoraggio
Strutturale, Rilevamento Danni, Reti Neurali, Autoencoder convoluzionale, Reti neurali
Physic-informed.

Acknowledgements

Il percorso al Politecnico di Milano è stato tortuoso, pieno di alti e bassi e momenti complicati
ma al contempo è stata, senza dubbio, l’esperienza più temprante e formativa della mia vita.

Vorrei ringraziare il prof. Cinquemani e tutto il team di ricerca impegnato in questo progetto. In
particolare, vorrei ringraziare Morgan, Luca e Claudio, persone splendide e tutor dalle capacità
incredibili. Lavorare con voi è stato veramente un piacere ed un periodo di grande appredimento.

Un ringrazimento speciale a tutti i miei amici, compagni di una vita che mi hanno sempre sup-
portato e senza cui non avrei mai superato così tante difficoltà. In particolare, vorrei ringraziare
Giuseppe T. che considero letteralamente un fratello, compagno di mille avventure e spero di
altrettante tante in futuro.

Un grazie ad Antonio M., amico di una vita e oggi compagno di una nuova esperienza lavorativa
che spero ci porti verso vette inesplorate.

Un grazie speciale ai due colleghi che hanno segnato questo percorso di Laurea Magistrale:
Michele e Alberto. Con assoluta certezza posso dire che senza voi due, il risultato non sarebbe
stato lo stesso.

Un ringrazimento a tutta la mia famiglia, ai miei zii Gianfranco e Stefania e i miei cugini Manuel
e Gaia per essere stati sempre presenti con una parola di conforto e di incitamento. Un enorme
grazie a mia sorella Claudia, ma sopratutto ai miei genitori Maria Rita e Riccardo. Conosco il
peso dei vostri sacrifici e questo rende quello che avete fatto per me ancora più speciale.

37

In ultimo, ma non per importanza, ringrazio chi non c’è più: i miei nonni Vincenzo, Santina,
Nellina e Franco e mia cugina Chiara, questo traguardo è anche per voi.

38

	Introduction
	Artificial Intelligence and Machine Learning
	Introduction to Artificial Intelligence
	Historical overview
	Machine Learning
	Different machine learning problems
	Deep learning
	Input and output data
	Data preprocessing
	Practical implementation of a neural network
	Under-fitting and Over-fitting
	Model validation

	System description
	Mathematical model

	Experimental campaign
	Pole Placement for SHM and model updating
	Network architectures and training
	Pre-processing
	Training and test
	Autoencoder
	Physic-informed neural network

	Results
	Conclusion

