POLITECNICO
MILANO 1863

SCUOLA DI INGEGNERIA INDUSTRIALE

E DELLINFORMAZIONE

EXECUTIVE SUMMARY OF THE THESIS

Physics-informed machine learning methods for reduced-order model-

ing

LAUREA MAGISTRALE IN AERONAUTICAL ENGINEERING - INGEGNERIA AERONAUTICA

Author: Riccarpo TomAaDA
Advisor: Pror. EDIE MIGLIO

Academic year: 2021-2022

1. Introduction

To solve physical problems governed by Partial
Differential Equations, a wide number of numer-
ical schemes has been developed, such as the Fi-
nite Differences Method (FDM), the Finite El-
ements Method (FEM) and the Finite Volume
Method (FVM). The required discretization in
time and space leads to the so called Full Or-
der Models (FOMs), which are in general high-
dimensional systems. While these methods are
able to achieve high accuracy on a vast set of
problems, high-dimensionality of the FOMs be-
comes an issue as soon as the PDEs are param-
eterized.

To alleviate this, some dimensionality reduction
techniques have been traditionally devised which
fall under the category of Reduced Order Models
(ROMs). The major hypothesis at the base of
the ROMs is given by the observation that even
the behaviour of a complex system can be of-
ten described by a combination of few dominant
modes.

The most widespread dimensionality reduction
technique is the Proper Orthogonal Decompo-
sition (POD). This method exploits the Singu-
lar Value Decomposition (SVD) to extract a set
of reduced basis, which represent the dominant
dynamics of the underlying problem. The main

drawback of SVD-based ROMs lies in the fact
that this matrix factorization is essentially a lin-
ear technique, therefore the method may suffer
especially if the problem at hand is unsteady or
advection dominated.

In the present work two new approaches will be
investigated with the aim to improve the accu-
racy provided by the existing linear ROMs. In
the first one, the Projection Driven Neural Net-
works - Autoencoder (PDNNs-Autoencoder),
the SVD is replaced by a deep convolutional
autoencoder. The second approach, namely
the Physics Informed Neural Networks - FOM
(PINNs-FOM), is completely different from a
conceptual point of view. This method con-
sists of an artificial neural network in which
the governing equations of the problem at hand
are directly embedded in its training algorithm.
Both these methods will be assessed on different
test problems and compared against SVD-based
ROMs.

2. Reduced Order Models

ROMs strategies are usually implemented in an
offline - online paradigm. During the offline
stage, a set of high fidelity solutions is collected
(snapshots). These are in turn used to extract
the reduced basis (RB). During the online stage

instead the reduced coefficients are computed.
The solution is then recovered as a linear com-
bination of the RB functions weighted by the
reduced coefficients.

The Proper Orthogonal Decomposition (POD)
leverages the Singular Value Decomposition
(SVD) of a matrix representative of the problem
dynamics to retrieve a low rank approximation.
Let us consider a matrix A € C"*™. This ma-
trix, in the context we are dealing with, con-
sists of a series of high fidelity solutions which
are sampled uniformly or randomly over the do-
main and then appropriately reshaped into col-
umn vectors ag.

A=|a1 ay .. ar .. ap (1)
| | |

In general, n >> m, since the mesh used for the
computation of the FOM solution is usually fine,
and the number of snapshots collected cannot be
too high (otherwise the use of a ROM is no more
time convenient). The SVD is a unique ma-
trix decomposition which ensures the existence
of two unitary matrices U = [u1]...|u,] € C™*"
and V = [v1|...|'vm] € C™*™ with orthonor-
mal columns and a matrix ¥ = diag(o1,...0m) €
R™ ™ characterized by non-negative real values
on the diagonal and zero off it, such that:

A=USV* 2)

with * being the Hermitian transpose operator.
Since n > m, ¥ has at most m nonzero entries
on the diagonal, and thus can be rewritten as:

by

Y= : 3
H)

Therefore, the economy SVD can be defined:
a=[v o] m VE—OSVE. (4)
The Eckart - Young theorem [1] guarantees that
the low rank-r approximation given by the SVD

is the optimal one in the least squares sense:
argminHA—AH UV, (5)

A F

where U and V are respectively the first r lead-

ing columns of U and the first r leading columns
of V, and || - ||r denotes the Frobenius norm.

The most relevant drawback of the SVD is that
if the data are not aligned, the relevant singular
values of the underlying problem increase. This
means that the number of columns of U which
must be considered to accurately describe the
dynamics becomes higher, thus lowering the di-
mensionality reduction capability of the whole
POD procedure.

3. Autoencoders

Artificial Neural Networks (ANNSs) represents
the most famous and nowadays widespread cat-
egory of Deep Learning algorithms. Autoen-
coders are a class of ANNs used in the field of
data reconstruction and dimensionality reduc-
tion. The network is trained to learn the identity
matrix, i.e., to reconstruct the input (after com-
pressing it in a low-dimension space) and it is
made up of two portions: the encoder E(z) and
the decoder D(x). More powerful and non-linear
representations can be learned by stacking mul-
tiple hidden layers. These networks are called
deep autoencoders.

The reconstruction loss is given by:

Lapw) =+ Y ID(E@) -2)3, (©)

zeS

where S is the data set containing N generic
input arrays .

3.1. PDNNs - Autoencoder

PDNNs consists of a purely non-intrusive data-
driven ROM approach. In particular, PDNNs
are built and trained in order to obtain a con-
tinuous map between samples of the parameter
space and the corresponding projection coeffi-
cients of the ROM.

The offline stage starts with the collection of the
FOM problem snapshots uy, (¢,) sampled at dif-
ferent values of the parameters g and time ¢. In
the present work the Finite Element Method has
been implemented to compute the high-fidelity
solution. To this aim, the python library FEn-
iCS [3] has been leveraged.

The snapshots go through a preprocessing phase
in which they are standardized. In this way the
training process gains a speed-up and the accu-
racy of the reconstructed snapshots increases.
The autoencoder architecture is a mixed convo-
lutional - fully connected one.

; lI

Figure 1: PDNN - Autoencoder online stage.
Note that the encoder is not being used in this
process.

The loss function to be minimized during the
autoencoder training is given by:

Las=— Y D@ -wli, 0

where m corresponds to the amount of available
snapshots.

Once the autoencoder is successfully trained, the
encoder portion is fed with the snapshots cor-
responding to the sampled time-parameter in-
stances and it outputs their latent representa-
tions. In this way it is possible to construct
a dataset D of dimension N3 for the training
of the associated PDNN, which consists of the
time-parameters instances along with their cor-
responding latent representation.

This dataset is finally used to train the PDNN in
a supervised learning context in order to learn
the map g : R¥** — R™ between the time-
parameters space and the latent representation
one, where again k is 1 if the problem considered
is time-dependent, zero otherwise.

The loss to be minimized in order to optimize
the PDNN weights is:

Coovw =5 S laC) =Bl)
P (tw),E()eD
The online stage (see Figure (1)) is performed
by evaluating the PDNN at the desired time-
parameter instance and feeding the correspond-
ing latent representation to the decoder which
in turns outputs the ROM solution:

ﬁ'h(t :U’) = D(g(t7ll')) <9>

4. Physics Informed Neural

Networks

Traditional ANNs exploit the backpropagation
algorithm [6] to compute the derivatives of
the loss function with respect to the network
weights. In the same way, the backpropagation
algorithm can be used to compute other deriva-
tives, i.e. the derivative of the output with re-
spect to the network inputs.

Physics Informed Neural Networks (PINNs) are
made of a traditional ANN architecture. The
input layer is fed with the spatio-temporal co-
ordinates array . In the case of a parameter-
ized PDE, the parameters are treated as coordi-
nates along additional domain dimensions. The
output layer delivers a surrogate of the solution
@(z). In addition to a classical ANN, a PINN
presents a backpropagation block in which the
derivatives of the output are computed with re-
spect to the input layer variables. In such man-
ner it is possible to force the network to comply
with the constraints imposed by both the PDE
and its initial & boundary conditions.

To measure the error of the network, @(z) and its
derivatives with respect to the inputs are evalu-
ated on a number of points, named collocation
points. The values obtained are then substituted
inside the PDE and ICs-BCs definitions to re-
trieve their residuals. The loss function to be
minimized is usually constructed as the weighted
sum of the L?-norm of the residuals:

Lw;T)=arLs(w;Ts) +aply(w;Tp), (10)

where w are the weights of the network, 7 is
the set of collocation points, divided into the
ones inside the domain to test the PDE residual
(T7) and the ones on the boundaries to test the
boundary conditions (7). Moreover, L¢(w;Ty)
is the MSE of the PDE residual, while £(w; 75)
is the MSE deriving from the ICs-BCs impo-
sition. Finally, ay and a3 are the respective
weighting coefficients, which are generally cho-
sen such that the two terms become of the same
order of magnitude.

The minimization of Equation (10) is performed
in order to determine the optimal weights w*
of the network. The most widespread optimiz-
ers in the PINNs context are Adam [2]| and L-
BFGS [4]. Usually the training is initially per-
formed via Adam to "warm-up" the weights and

i 8%
& A

-

BC & IG residuals

S i(z,t) — gp(,t)
S

S(@.t) — gr(w,1)

Flo

u “r Backpropagation Residuals

Figure 2: Example of a Physics Informed Neu-
ral Network Architecture for solving the 1D dif-
fusion PDE %7; =)\% with mixed Dirichlet -
Robin BC.

then continued switching to the second-order op-
timizer L-BFGS, which in general is more effi-
cient. The complete architecture of a PINN can
be visualized in Figure (2).

4.1. PINNs - FOM

Setting up the parameterized problem is
straightforward. With respect to a generic non-
parameterized case, the only task to be per-
formed is to treat the parameter as an additional
input coordinate, just as the spatio-temporal
ones. Moreover, since the dimensionality of the
problem is increased, it is likely that the network
width and depth, the number of residual points
to be sampled and the training epochs required
will be higher than the non-parameterized coun-
terpart.

Apart from these important considerations, the
rest of the algorithm is the same as explained
above. The neural network architecture em-
ployed for this task can be simply a traditional
FFNN with problem-dependent hyperparame-
ters to be tuned.

The high-level python library DeepXDE |[5] has
been exploited to implement this procedure.

5. Results

The proposed strategies has been tested against
two linear SVD-based ROM approaches, namely
the PDNNs-SVD and the POD-G-NN, the latter
only in the steady cases. To evaluate the perfor-
mances of the different strategies we rely on the
L5 relative error indicator, defined as:

1 Ntest

Ntest

||uh(tl7/~l‘l) - ﬁ’(twl-l'l)”Q
2 un(te i)z

(11)

€l,

over the test sets built for each case. As concern

|

10°
1073
107°

107°

Singualar Values

10-12

10-15

0 1000 2000 3000 4000 5000 6000 7000 8000
m

Figure 3: Test 3: Singular Values decay.

the latter, in each case 10 parameter values have
been sampled to later build a test set of high-
fidelity benchmark solutions (up(pest)) used to
evaluate and compare the different approaches
through Equation (11).

Only the two most remarcable tests, namely
Test 3 and Test 4 are here reported.

5.1. Test 3: Pure Advection

Let wus the parameterized
dimensional unsteady and linear Pure Advection
equation, the circular transport of a Gaussian
perturbation with period 1 [s]:

consider two-

ou

a‘FV'(bu):O inQXI,
U = Ueg on I'p, (12)
U‘t:o == uea:(xv Y, 0) in Qv
where Q = (0,1)%, I = (0,1) and:
b(z,y) = [2n(y — 0.5),2x(0.5 —)",
_(x—xc)2+(y—yc)2
Uez (T, Y, t) = 0.56(207 >,
in(2rt (13)
ze(z,y,t) = 0.5+ Slnzﬂ)a
2t
Ye(z,y,t) = 0.5+ COS(f)

The single 0% parameter space is given by M =
[be — 04, 5e — 03].

This problem is of particular interest because
it shows a strong misalignment in the snapshot
matrix A, leading to a slow decay of its Singular
Values (see Figure (3)).

PINNs-FOM

A comparison between the high-fidelity FEM so-
lution and the PINNs-FOM one can be appreci-
ated in Figure (4). The parameter value chosen
to conduct the comparison is 02 = 5e — 03, the

5.2.

(a) (b)

Figure 4: Test 3: Comparison of the PINNs-
FOM solution with the FEM solution. (4a) the
FEM solution uy, (4b) the PINNs-FOM solution
U

PDNNs-SVD
v PDNNs-AE

0 25 50 75 100 125 150 175 200
r
Figure 5: Test 3: Lo relative error e;, vs reduced
trial manifold dimension r: comparison between
the ROM approaches.

one that leads to the largest gaussian, and the
time chosen was the final time, ¢ = 1.0 [s].

As it can be noticed, the two solutions are qual-
itatively identical.

5.3. PDNNs-SVD &
Autoencoder

PDNNSs-

Due to data misalignment, problem (12) is a
challenging task for linear ROMs. By perform-
ing the SVD on the snapshots matrix A it is
found that 133 modes are needed in order to
capture the 99.99% of the system energy.

The average Lo relative error between the two
different approaches and the FEM solutions, as a
function of the dimension r of the corresponding
reduced trial manifold is presented in Figure (5).
Not surprisingly, Figure (5) shows the superi-
ority of the PDNNs-Autoencoder approach over
the PDNNs-SVD one in presence of data mis-
alignment in the snapshot matrix A for the
whole range of the reduced trial manifold dimen-
sion r considered.

— FEM

08 / PINNs-FOM
06 /

Figure 6: Test 4: Comparison between the
PINNs-FOM and the FEM solution for g =
le — 03 and t = 0.2.

6. Test 4: Burgers Equation

Let us consider the parameterized mono-
dimensional unsteady and non-linear Burgers
equation defined as:

ou ou 9%u

—tUu— —p—s = in Qx [
ot +u3x e 0 indx u
u=0 on I'p, (14)
uli=0 = up in Q,
where Q = (0,1), I = (0,2) and:
0.5(1 — cos(8mx)), for x < 0.25;
ug =
0, otherwise,
(15)

The single parameter u space is given by M =
[le — 03, 1e — 01].

6.1. PINNs-FOM

A comparison between the high-fidelity FEM so-
lution and the PINNs-FOM one can be appreci-
ated in Figure (6). The parameter value chosen
to conduct the comparison is u = le — 03, the
one that gives the sharpest wave front, and the
time chosen was t = 0.2 [s|, when the wave peak
is still high in magnitude.

As it can be seen in Figure (6), the accuracy
of the proposed method is very high. The two
solutions overlaps almost perfectly and there’s
no evidence of unphysical artificial artifacts.

6.2. PDNNs-SVD &
Autoencoder

PDNNs-

Due to the non-linear time-varying nature of the
problem at hand, by performing the SVD on the

PDNNs-SVD
v PDNNs-AE

ey,

v v

0 10 20 30 40 50 60
r
Figure 7: Test 4: Lo relative error e;, vs reduced
trial manifold dimension r: comparison between
the ROM approaches.

— FEM
A PDNNs-SVD
08 PDNNs-Autoencoder

Figure 8: Test 4: Comparison of the ROM ap-
proaches with the FEM solution for u = 1le — 03
and t = 0.2.

snapshots matrix A it has been found that 27
modes are required to capture the 99.99% of the
energy of this simple system.

The average Lo relative error between the two
different approaches and the FEM solutions, as a
function of the dimension r of the corresponding
reduced trial manifold is presented in Figure (7).
The strong dimensionality reduction offered by
the PDNNs-Autoencoder approach has been
confirmed also in this case: for » < 10 the
performances are one order of magnitude better
than the ones characterizing the PDNNs-SVD
approach. As r increases, the increase in accu-
racy of the autoencoder model rapidly saturates,
until the output of the linear ROM becomes the
most accurate.

Let us now consider the same time-parameter
instance of the PINNs-FOM example, i.e, p =
le — 03 and t = 0.2[s]. The plot of the solu-
tions obtained via the two approaches is com-
pared with the high fidelity one in Figure (8).

6.3. Results summary

| PINNs-FOM | PDNNs-Ae | PDNNs-SVD | POD-G-NN |

1.32e-03 1.16e-02 8.60e-03 5.55e-03
3.08e-02 1.99e-03 3.03e-05 2.14e-05
1.20e-02 1.60e-02 5.62e-02 -
1.57e-02 5.46e-03 3.79e-03 -

Table 1: Overall comparison between the inves-
tigated methods. The ROMs techniques values
has been chosen case by case as the ones which
led to achieve the best result.

7. Conclusions

In the present work two new promising strate-
gies to solve parameterized PDEs while allowing
at the same time a fast online prediction have
been investigated and compared with more tra-
ditional SVD-based methods.

Concerning the PINNs-FOM method, the re-
sults it achieved are very satisfactory. In fact, it
turned out to be the most accurate method on
2 out of 4 tests, outperforming the other strate-
gies, as well as being the easiest to implement. It
suffered more on the tests which involved the de-
velopment of a thin boundary layer (Advection
Diffusion, here not reported) and of a moving
wave front (6).

An interesting way to improve the method
could be to generate and add some high-fidelity
snapshots as additional boundary conditions to
match. While it is likely that this strategy will
lead to better performances, its drawback con-
sists of an additional offline cost given by the
need of solving the FOM system via a traditional
numerical solver at least for few instances of the
parameters.

Regarding instead the PDNNs-Autoencoder ap-
proach, it has been proved that its dimensional-
ity reduction capabilities are higher than a tra-
ditional SVD-based method, thanks to its non-
linear framework. Moreover, as depicted in Fig-
ure(8), in presence of sharp wave fronts, the
approximation delivered is much more realistic
than the PDNNs-SVD oscillatory one. However,
this strategy is not drawbacks-free too. First of
all, it must be noticed that the hyperparameter
tuning process of the autoencoder architecture
and its training procedure is very time consum-
ing. Moreover, in all the test cases it can be

noticed that as the latent space representation
dimension increases, the enhancements in the
solution accuracy rapidly saturates, as opposed
to the SVD-based approaches. We believe that
there is still room from improvements in the au-
toencoder architecture choice.

In conclusion it can be said that this two ap-
proaches, despite being totally different from a
conceptual point of view, represent both a great
alternative to the traditional ROMs. They both
have their drawbacks but, as mentioned above,
with the mentioned future improvements their
potential for possible industrial applications is
huge.

References

[1] Carl Eckart and Gale Young. The approx-
imation of one matrix by another of lower
rank. Psychometrika, 1(3):211-218, 1936.

[2] Diederik P Kingma and Jimmy Ba. Adam:
A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[3] Hans Petter Langtangen and Anders Logg.
Solving PDEs in Python. Springer, 2017.

[4] Dong C Liu and Jorge Nocedal. On the
limited memory bfgs method for large scale
optimization. Mathematical programming,
45(1):503-528, 1989.

[5] Lu Lu, Xuhui Meng, Zhiping Mao, and
George Em Karniadakis. Deepxde: A deep

learning library for solving differential equa-
tions. SIAM Review, 63(1):208-228, 2021.

[6] David E Rumelhart, Geoffrey E Hinton, and
Ronald J Williams. Learning representa-

tions by back-propagating errors. nature,
323(6088):533-536, 1986.

	Introduction
	Reduced Order Models
	Autoencoders
	PDNNs - Autoencoder

	Physics Informed Neural Networks
	PINNs - FOM

	Results
	Test 3: Pure Advection
	PINNs-FOM
	PDNNs-SVD & PDNNs-Autoencoder

	Test 4: Burgers Equation
	PINNs-FOM
	PDNNs-SVD & PDNNs-Autoencoder
	Results summary

	Conclusions

