POLITECNICO
MILANO 1863

SCUOLA DI INGEGNERIA INDUSTRIALE

E DELLINFORMAZIONE

EXECUTIVE SUMMARY OF THE THESIS

KlevR and DeepR : a benchmark for exploring deductive reasoning
functionalities of variational autoencoders

LAUREA MAGISTRALE IN COMPUTER SCIENCE AND ENGINEERING - INGEGNERIA INFORMATICA

Author: AMEDEO PACHERA
Advisor: PRorFr. EMANUELE DELLA VALLE
Co-advisor: PrRoF. RICCARDO TOMMASINI

Academic year: 2021-2022

1. Introduction

Approximate Reasoning (AR) aims at im-
proving the efficiency of deductive artificial intel-
ligence by trading inference correctness for per-
formance (e.g., execution time). Prominent ex-
amples of approximate reasoning include, but
are not limited to consistency checking with
linear classifiers |[6], relational learning with
Machine Learning models [4], and Knowledge
Graph completion using Deep Learning tech-
niques [1]. To the best of our knowledge, none
of the existing techniques was used for mate-
rialization, i.e., the reasoning task of comput-
ing all the entailed assertions given a knowl-
edge base. A major obstacle is the lack of a
benchmark for the task that enables the inves-
tigation of expressiveness and efficiency trade-
off. In this thesis work, we address this prob-
lem by designing a benchmark for approximated
materialization. The benchmark, named KlevR,
is based on an accepted deep learning dataset
called CLEVR [2|. It consists of a knowledge
graph that counts three OWL ontologies (one for
each OWL profile [7]) that captures CLEVR’s
abstractions, scenes, and queries. We tested
KlevR using a baseline model set named DeepR,
which performs the approximate materialization

Figure 1: Example of a CLEVR scene.

task. In particular, DeepR is a set of deep learn-
ing models performing approximate materializa-
tion for each OWL profile using a tensor repre-
sentation for the KlevR.

2. CLEVR

CLEVR consists of a diagnostic dataset for
analyzing VQA systems on different visual
reasoning tasks [2]. A CLEVR scene is
a collection of spatially related objects on
the ground plane. Objects in CLEVR can
are characterized by {Shape, Size, Material,
Color}. Objects are spatially related, i.e.,
"eft","right","behind","front". Figure 1 shows

an example of a scene with three objects, a small
brown cube that is behind and on the right of
a small gray cylinder, which has a small brown
cube on front-right. For each scene, there is a set
of questions to answer, generated using different
templates.

Each scene is associated with a scene graph,
which is a direct graph with a set of nodes that
represent objects and a set of edges that rep-
resents relationships among the objects. The
nodes are labeled with the attributes of the ob-
ject they represent. Scene graphs are agnostic
from the point of view. The agnosticism is
essential to have a standard and invariant de-
scription of each scene. On the other hand, a
scene includes a point of view, which is randomly
changed over the scenes.

3. Benchmark Task: KlevR

KlevR is a KB that represents CLEVR abstrac-
tions, scenes, and queries using Semantic Web
Technologies.

In KlevR, each object belongs to the class ob-
ject, while a complex hierarchy of classes cap-
tures the semantics of the attributes. Conveying
the combinatorial nature of CLEVR attributes,
we have organized the numerous classes in two
nested hierarchies. In particular, the first hierar-
chy contains the classes that represent a type of
CLEVR attribute, namely ColoredObject, Mate-
rialObject, ShapedObject and SizedObject, their
children instead are the intersection of the father
with another attribute type (the combinations
follow the alphabetical order of the attributes).
The second hierarchy consists of attribute val-
ues. In particular KlevR contains a class for
each attribute value and for each possible com-
bination. For example, the attribute Blue is
encoded with the class BlueObject, Cube with
CubeObject. Combinations are made with both
two values (e.g. RedSphereObject), three val-
ues (e.g. GrayMetallicBigObject) and four val-
ues (e.g. GreenRubberSmallSphereObject). The
classes that describe an attribute value belong
to both hierarchies. For example BlueMetalli-
cObject is a subclass of both BlueObject, Metal-
licObject and ColoredMaterial Object.

In KlevR, the spatial relationships between the
objects are sub-property of hasNear or hasDi-
rectlyNear. Direct and indirect properties allow
the definition of property chains, increasing the

reasoning effort of the reasoner. Such design as-
pects are common to all the KlevR ontologies.
However, according to existing standards, we
implemented a version of KleveR’s Thox using
the OWL profiles.

KlevR RL uses OWL RL as representation
language. It icludes existential quantification
and some ValuesFrom. Thus, we captured the se-
mantic of the attribute values using classes. For
example, the class Red stands for "a red Thing"
and is subclass of Color. Their instances will
be anonymous nodes, and are used in combina-
tion with four new properties whose semantic is
"having that attribute", namely hasColor, has-
Material, hasShape and hasSize. Each class of
the first level of the hierarchy is restricted with
an existential quantification. For example

BlueObject equivalentTo hasColor some Blue

defines the class of blue objects as the set of ob-
jects having blue color. KlevR_RL also supports
transitive and symmetric properties, resulting in
the most expressive profile.

KlevR QL and KlevR EL use the OWL
QL and OWL EL profiles respectively. In par-
ticular, the QL profile supports all the RL
expressions and axioms except for existential
quantification and transitive property, while the
EL profile does not support inverse and sym-
metric properties, but in addition, it supports
the transitivity and disjunction. For this rea-
son, the semantics of the attributes lies only
in the class names in the hierarchy. Indeed,
KlevR QL and KlevR FEL were modeled start-
ing from KlevR RL and then removing the
attribute-type classes (Color, Material, Shape
and Size), their subclasses, the property has-
Color, hasMaterial, hasShape and hasSize and
the not supported axioms.

In populating the KBs, our goal was to fed the
reasoner with individuals belonging to the lower
level classes (e.g. BlueMetallicSmallCubeOb-
ject), forcing it to scale up the hierarchy us-
ing the subclass entailment rule. Moreover, we
wanted the objects to be related only with their
direct positional relationship to enforce the rea-
soner to infer about sub-properties and transi-
tivity. With the dataset annotation, we have
obtained an RDF graph for each scene, which
we call KlevR scene graph. Figure 2 shows an
example of a CLEVR scene annotated with a
KlevR scene graph.

ex:00 a ex:BrownRubberSmallCube;
ex:hasDirectlyOnFront ex:o1;
exthasDirectlyOnLeft ex:02.

ex:01 a ex:GraySmallMetallicCylinder;
DirectlyOnFront c02;

ex:hasDirectlyOnRight :02;
ex:hasDirectlyBehind ex:o0.

ex:02 a ex:BrownRubberSmallCube;
ex:hasDirectlyOnLeft exol;
ex:hasDirectlyBehind ex:o1;
ex:hasDirectlyOnRight ex:00.

Figure 2: Example of a KlevR scene graph.

To obtain the ground truth for the materializa-
tion task, we have proceeded with the materi-
alization. The reasoner of our choice was Her-
miT?.

4. Baseline solution: DeepR

With the materialization, we have obtained
three datasets. In particular, for each OWL pro-
file of KlevR we have a training and a testing
set D = {< z;,t; >} where z; is a KlevR scene
graph and t; is a materialized KlevR scene graph.
The first step to test a baseline on the bench-
mark is the choice of the embedding model for
the RDF graphs which is described in Subsec-
tion 4.1. To guide our choice, we elicited some
requirements: (R1) : The semantic (Thox) shall
be taken into account in the vector representa-
tion. (R2) : The model shall take as input the
entire ABox. (R3) : A unique mapping func-
tion between the OWL representation and the
vector representation used as input an output of
the model shall exist. The second step, reported
in Subsection 4.2, consists of the Deep Learning
model design. The generative nature of the ma-
terialization task (adding new assertions), has
led us towards generative models and, in partic-
ular, Variational Autoencoders (VAE [3]).

4.1. Embedding Model

The simpler model that could respect our re-
quirements is the SPO [5] , a tensor representa-
tion for triples in a KB, where an entry x; jr = 1
if the triple <s;,pj,o> exists. With SPO, we
can encode every triple of the KB in a single
tensor, making our model able to predict based
on the entire available information. In partic-

"http://www.hermit-reasoner.com

ular, each tensor slice encodes a properties py,
while its rows and column are unique indexes for
subjects and objects in the scenes. Encoding all
the scenes in this way, introduces a bias for the
deep learning model, but it is essential to com-
ply with R1. R2 is also respected since an SPO
tensor embeds an entire KlevR scene graph. For
what concern R3, the algorithm we have used to
build the embedding keeps track of the indexes
of the elements, building a mapping function be-
tween the RDF and the tensor representations.

4.2. VAE Design

In order to evaluate our benchmark for the ap-
proximation of the materialization task, we have
designed a baseline VAE called DeepR. In par-
ticular, DeepR has three different architectures,
one for each OWL profile of Klevr. Our ap-
proach in designing the architectures was not
model based. In the research community in
fact there is no other studies regarding VAEs
for the reasoning approximation. Thus, we have
decided to plan an hyper-parameters tuning to
find the best architectures that maximize the
models’ accuracies on the data. In particular,
we have tested different number of layers, filters
per layer, learning rates and optimizers. The
loss function of our choice is the binary cross-
entropy, which ignore the existing trade-off be-
tween the reconstruction term and the regular-
ization term of the standard VAE loss functions.
In this way the whole model contributes to the
approximation, getting rid of redundant or use-
less information in the encoding and adding new
triples both in the encoding and decoding part.
The choice of a simpler loss function leads to
a simplified VAE, however, in Section 6 we will
discuss an extension of the model that strictly
follows the design of a VAE, encoding the input
in the first part of the architecture.

5. Evaluation

The hyperparameter tuning selected a single-
layer architecture for the QL profile, a four-
layer architecture for the EL profile and a five-
layer architecture for the RL profile. To eval-
uate the efficiency of the models’ approxima-
tion in terms of time performances, we compare
the computational time of DeepR in its differ-
ent phases (scene parsing, embedding, training
and testing) with the time performances of Her-

Profile Parsing | Embedding | Training | Total Testing | HermiT
DeepR_EL 4402.6 92.2 912505.2 | 917000.0 14340.5 | 211933.0
DeepR QL | 5027.3 4141.0 555266.1 564434.4 | 8835.7 536749.0
DeepR_RL | 5563.6 6438.1 193370.0 | 205371.5 | 3210.1 4764269.0

Table 1: Computing time (in seconds) comparison between DeepR models and HermiT.

miT on the entire dataset. Table 1 reports the
results of the performance evaluation. As we
could expect, the training time for the DeepR
models is larger than the average time that Her-
miT spends reasoning on a KG, except for the
RL profile. Instead, the DeepR models outper-
form HermiT in the testing. To evaluate the
quality of the approximation, we opted for stan-
dards Deep Learning metrics (i.e., accuracy, pre-
cision, and recall), giving them an interpretation
from a reasoning point of view. Thanks to the
SPO embedding, we evaluated the model’s per-
formances as if it was a classification task. In
particular, TPs are valid triples predicted by
the model, TNs are triples not asserted both
by the model and the reasoner, FPs are incor-
rectly asserted triples by the model, and FNs
are missing triples by the model. With this in-
terpretation, precision is the percentage of valid
triples correctly asserted with respect to the to-
tal number of assertions, while recall is the per-
centage of valid triples asserted with respect to
the total number of expected assertions. We also
compared the model’s predictions to the tar-
get ABoxes removing the input triples, which
allowed us to distinguish if a triple is asserted
by the model or if it was already present in the
ABox. Due to the sparse nature of the SPO
embedding, we expected the models to push
their weights towards zero during the training
phase. To deal with the unbalanced classifica-
tion problem, we evaluated the models using
the threshold-moving technique, which consists
of comparing the confidence of a model’s pre-
dictions with different thresholds. Thus, we ex-
ploited the ROC curve to understand the trade-
off between the true-positive rate (TPR) and
false-positive rate (FPR) for different thresh-
olds and the ROC AUC to compare the two ap-
proaches (with and without the input triples).
Given the ROC, the highest value of the Ge-
ometric Mean between TPR and the FPR de-
notes the best threshold. To evaluate the as-
sertions made by the model, however, the main
focus should fall on the asserted triples (the pos-
itives). For this reason, we also relied on the

Precision-Recall (PR) curve to compare the pre-
cision against the recall on different thresholds.
Given the PR, the highest value of F-measure
denotes the best threshold. Figure 3 shows the
ROCGCs derived from the experiments of DeepR
QL on KlevR, Figure 5 the ROCs derived from
DeepR EL, and Figure 7 the ROCs derived from
DeepR RL. The blue curve refers to the standard
predictions, while the green one is derived by re-
moving the triples belonging to the input from
the predictions and the targets. Despite the re-
sults of the efficiency evaluation, DeepR does not
perform well for what concerns the approxima-
tion quality. The two ROCs of each models are
close to each other, denoting a similar degree of
separability in both the experiments (with and
without the input), and the high values of the
AUC suggest good overall performances. How-
ever, the steepness of the curves reveals a high
true-positive rate and a low false-positive rate,
caused by the sparse nature of the SPO embed-
ding and the resulting tendency of the model to
push the weights toward zero. Unlike standard
Deep Learning experiments, the high value of
the accuracy in our baseline does not prove the
quality of the approximation. The high num-
ber of Os in the embedding leads to an elevated
number of true negatives which increases the
accuracy. To better deal with the unbalanced
problem, we also derived the PR curves for the
experiments, which are reported in Figure 4 for
DeepR QL, in Figure 6 for DeepR EL, and in Fig-
ure 8 for DeepR RL. Despite the high accuracy,
the model performs a poor inference in terms of
both correctly predicted triples, which is pointed
by the low precisions, and the number of pre-
dicted triples, which is pointed by the low re-
calls. Moreover, the difference between the two
PR curves highlights the real model’s ability to
infer new triples. Lower precisions in the experi-
ments without the input triples mean fewer TPs
and/or more FPs, which translates into fewer
asserted triples and/or more wrong assertions.
Therefore, the majority of the TPs are due to
the triples already belonging to the ABoxes be-
fore the materialization. The best thresholds

selected by the threshold-moving technique are
very small, increasing the risk of false positives.
Table 2 reports the metrics computed for the
DeepR models, relative to their best threshold,
for the experiments that do not consider the in-
put triples. The results highlight how the na-
ture of the embedding impacts the evaluation of
the metrics. The values of accuracy for the ma-
terialization task with the SPO do not reflect
the quality of the inference, which is instead ex-
plained by the precision and the recall.

6. Conclusion and future works

KlevR proves how a trivial model based on a
VAE is not able to successfully perform the ap-
proximation of the materialization. This result
manifests the importance of the benchmark for
the task, which lies the foundation for future as-
sessments. The quality of the benchmark lies
on the scalability of the dataset and on the rea-
soning effort proved by the ground-truth given
by HermiT. However, its implementation is not
exempt from improvements regarding the porta-
bility and usability of the data. The poor re-
sults obtained from the baseline proposed by us
proves the complexity of the task. In particu-
lar, the SPO embedding is not the best choice
for encoding the Knowledge graphs. The sparse
nature of SPO forces the network to very low
thresholds, increasing the risk of false positives.
Also, classic Deep Learning metrics can be mis-
leading due to the high presence of true nega-
tives. The accuracy of DeepR, in fact, is ex-
cellent on the test set, but it does not reflect
the accuracy of the task objective, which instead
resides in the true positives/negatives and the
precision. For reasons of time, we did not have
the opportunity to perform other complex ex-
periments. An important extension that repre-
sents a future work consists of testing different
embedding models on KlevR and verifying how
different representations deals with our bench-
mark. To solve the problem of encoding the

Model Accuracy | Precision | Recall | Threshold
DeepR EL | 0.99957 0.08532 | 0.09276 | 0.105182
DeepR QL | 0.99955 0.08532 | 0.09276 | 0.089300
DeepR RL | 0.99930 0.06418 | 0.14723 | 0.029293

Table 2: Accuracy, precision, recall and thresh-
old comparison of DeepR models.

KGs, the design of an embedding model that
takes into consideration the semantics of the on-
tology should be tackled. Moreover, other exper-
iments could focus on the scalability property of
KlevR. Future investigations include the design
of a more efficient baseline model for the approx-
imate materialization task with more complex
VAE architectures.

References

[1] Tim Dettmers, Pasquale Minervini, Pontus
Stenetorp, and Sebastian Riedel. Convolu-
tional 2d knowledge graph embeddings. In
Sheila A. Mecllraith and Kilian Q. Wein-
berger, editors, Proceedings of the Thirty-
Second AAAI Conference on Artificial Intel-
ligence, pages 1811-1818. AAAI Press, 2018.

[2] Justin Johnson, Bharath Hariharan, Laurens
van der Maaten, Li Fei-Fei, C. Lawrence Zit-
nick, and Ross B. Girshick. CLEVR: A di-
agnostic dataset for compositional language
and elementary visual reasoning. CoRR,
abs/1612.06890, 2016.

[3] Diederik P. Kingma and Max Welling. An
introduction to variational autoencoders.
Found. Trends Mach. Learn., 12(4):307-392,
2019.

[4] Maximilian Nickel, Kevin Murphy, Volker
Tresp, and Evgeniy Gabrilovich. A review

of relational machine learning for knowledge
graphs. Proc. IEEFE, 104(1):11-33, 2016.

[5] Maximilian Nickel, Volker Tresp, and Hans-
Peter Kriegel. A three-way model for collec-
tive learning on multi-relational data. In Lise
Getoor and Tobias Scheffer, editors, Proceed-
ings of the 28th ICML 2011, Bellevue, Wash-
ington, USA, June 28 - July 2, 2011, pages
809-816. Omnipress, 2011.

[6] Heiko Paulheim and Heiner Stuckenschmidt.
Fast approximate a-box consistency check-
ing using machine learning. In The 13th,
ESWC 2016, Heraklion, Crete, Greece, May
29 - June 2, 2016, Proceedings, volume 9678
of Lecture Notes in Computer Science, pages
135-150. Springer, 2016.

[7] W3C. Owl 2 web ontology language profiles,
2012.

True Positive Rate

True Positive Rate

True Positive Rate

Executive summary

DeepR QL ROC Curve

1.0

0.8

0.6 1

0.4 4

0.2 4

0.0 4

—— DeepR QL, AUC=0.9335
~—— No Skill
—— DeepR QL no input, AUC=0.9275
® Best Threshold
@ Best Threshold no input

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 3: DeepR QL ROC curve.

DeepR EL ROC Curve

1.0

0.8 1

0.6

0.4

0.2 1

0.0 4

DeepR EL, AUC=0.9086
No Skill

—— DeepR EL no input, AUC=0.9038
® Best Threshold
@ Best Threshold no input

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 5: DeepR EL ROC curve.

DeepR RL ROC Curve

1.0

0.8

0.6

0.4 1

0.2 1

0.0 4

—— DeepR RL, AUC=0.9491
~—— No Skill
—— DeepR RL no input, AUC=0.9479
® Best Threshold
® Best Threshold no input

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 7: DeepR RL ROC curve.

Precision

Precision

Precision

Amedeo Pachera

DeepR QL Precision-Recall Curve

1.0 —— DeepR QL
—— DeepR QL no input
@ Best Threshold
0.8 ® Best Threshold no input
0.6 1
0.4
0.2 4
0.0 4
0.0 0.2 0.4 0.6 0.8 1.0
Recall
Figure 4: DeepR QL PR curve.
DeepR EL Precision-Recall Curve
1.0 —— DeepR EL
—— DeepR EL no input
@ Best Threshold
0.8 ® Best Threshold no input
0.6 1
0.4
0.21
0.0 4
0.0 0.2 0.4 0.6 0.8 1.0
Recall
Figure 6: DeepR EL PR curve.
DeepR RL Precision-Recall Curve
1.0 —— DeepR RL
—— DeepR RL no input
@ Best Threshold
0.8 ® Best Threshold no input
0.6 1
0.4 1
0.2 4
0.0 4
OjO 0:2 0:4 0:6 0:8 1:0

Recall

Figure 8: DeepR RL PR curve.

	Introduction
	CLEVR
	Benchmark Task: KlevR
	Baseline solution: DeepR
	Embedding Model
	VAE Design

	Evaluation
	Conclusion and future works

