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1. Introduction
The number of space debris, its combined mass
and area has been steadily increasing since the
beginning of the space age [1]. A worsening of
this situation could lead to an overcrowding of
the Low Earth Orbit (LEO) regime, triggering
a collision chain that would hinder the safety of
space missions. The monitoring and tracking of
resident space objects, performed by the space
agencies SST (Space Surveillance and Tracking)
segment, is of fundamental importance. Par-
ticularly, direct observation of a debris through
the collection of the sunlight reflected from its
surface, allows to record in a short video or in
a long-exposure image the variably-illuminated
trail left by its motion (streak or tracklet). From
the extraction of light intensity over time (light
curve), angular and astrometric information can
be retrieved and used to determine the orbit
and the attitude state of the object. Informa-
tion about the latter would hugely benefit the
predictions on how the debris will reenter the
atmosphere and the different active debris re-
moval (ADR) techniques.
The main methods used to determine the space
debris attitude state inherit most of their fea-

tures from studies on light curves of asteroids
and variable stars. These techniques are primar-
ily able to determine the rotational period of the
object (period finding algorithms), while only in
few particular cases they are able to fully charac-
terise the overall attitude state (epoch method).
Conversely, a full state reconstruction is granted
by light curve inversion methods [2]. In these, a
fit of the real light curve with a simulated one
is performed taking as input the attitude state
guess; then, the difference between real and sim-
ulated signal is minimized over attitude states.
In this thesis, a variation of light curve inver-
sion methods is employed to determine the space
debris attitude state. In particular, since the
overall work is intended to be applicable in the
first stages of the study of the motion of an un-
known object, the light curve simulation is per-
formed according to simplified shape and reflec-
tion model. In addition, both real and simulated
FITS (Flexible Image Transport System) images
are considered.

2. Fundamentals
The space debris shape is simplified and approx-
imated as a flat square plate. In this way, the
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body frame (B) rotation with respect to an in-
ertial reference frame (Earth-Centered Inertial,
ECI) can be represented by the torque-free Eu-
ler’s rotation Equations (EE):

Iω̇ = Iω × ω (1)

Where ω is the vector of angular velocities
(ωx, ωy and ωz) and I is the diagonal inertia ma-
trix.
In addition, the orientation of B with respect to
ECI can be represented through the yaw (ϕ),
pitch (θ), and roll (ψ) angles. They identify
three consecutive rotations with a 321 sequence
that is condensed in a rotation matrix (AB/N).
The change in time of AB/N, in relation to the
rotational dynamics in B (kinematics), is ex-
pressed by:

ȦB/N = −

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

AB/N (2)

In order to retrieve the kinematics and dynamics
time evolution, Eq. 2 can be integrated along-
side EE with specified initial conditions.
The target object reflects specularly the sun-
light. The reflection is influenced by the relative
positions between the Sun, the observer and the
debris (see Figure 1), that can be identified with
two versors:
• Observer-Debris versor (Ô): identified by

the debris celestial coordinates (Right-
Ascension (RA) and Declination (DEC))

• Debris-Sun versor (Ŝ): Sun position in ECI
identified by its ephemeris

Figure 1: Reflecting Model

The plate area seen by the observer is given by
the product of the simply projected (Aproj) and

the simply illuminated (Aill) areas, and it is in-
fluenced by the dynamics of the object. There-
fore, the area variation expression is given by:

Avar = (Ô · N̂)(Ŝ · N̂) = cosβ cos γ (3)

Where N̂ is the normal to the face of the flat
plate considered (either +z or −z). The area
variation is different from zero only if it is illu-
minated (γ < 90◦) and visible (β < 90◦) at the
same time. Equation 3 identifies a light curve,
since it is a scaled representation of how the light
intensity reflected by the object changes in time
(due to its dynamics). In fact, it is possible to
link Avar to a pixel intensity - Lvar - by intro-
ducing a shift (n) and a multiplicative factor (k),
so that:

Lvar = Avar · k + n (4)

If n is chosen as the mean pixel value, whenever
Avar = 0, the streak is blended with the back-
ground and correctly non-visible.
In this way, the light curve is considered as a
pixel intensity variation in time. A more classi-
cal approach is to consider the streak apparent
magnitude (M) variation in time, that can be
computed as:

M = mref + Im − Imref
(5)

To evaluate it, the reference magnitude (mref )
of a control star in the field of view (FOV) and
the streak and control star instrumental mag-
nitudes (Im and Imref

, respectively) are needed.
For the former, star features can be queried from
astronomical catalogues and matched with the
stars in the image. The knowledge of the latter
instead implies the study through aperture pho-
tometry of the flux received from the sources in
the field [3]. This second technique is employed
whenever the considered streak is saturating the
detector pixels, thus losing the link between in-
coming radiation and pixel counts.
Once the real light curve is extracted - whether
in terms of light intensity or magnitude -, it is
fitted with the simulated one by minimizing the
difference between the two through genetic al-
gorithm (GA). This algorithm mimics the Dar-
winian theory of survival of the fittest in na-
ture, and is an iterative process in which the so-
lutions are represented by individuals collected
in a population. GA performs different oper-
ations on this population (selection, crossover,
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and mutation), and evaluates the objective func-
tion value (fitness score) for the solutions at
each generation. The worse fit solutions are
discarded and the process stops whenever the
fitness scores rate of change is below a certain
threshold (FunTol) or a maximum number of
generations (MaxGen) is reached.

3. Angular Velocity Extraction
Process

The proposed approach to determine the atti-
tude state of the space debris requires three main
computation steps:

1. Light curve extraction and post-processing
2. Light curve simulation through the dynam-

ics and kinematics of a square flat plate
3. Optimization of the objective function,

minimizing the difference between the two
light curves

In order to validate the developed code, syn-
thetic images are generated and analyzed.
The first step for the generation of such im-
ages is the plate dynamics simulation, follow-
ing the main physical concepts exposed in Sec.
2. The simulation, developed in MATLAB pro-
gramming environment, is carried out by a func-
tion (dynamics.m) that takes as input an array
(varinput) containing:

• Three initial yaw-pitch-roll angles: angles0
• Three initial angular velocities: ω0

The output is the illuminated-projected area
variation array (ctot) that is fed as a .txt file
to TIG (Tracklet Image Generator [4]). TIG is
a Python application that takes as input night
sky acquisitions and outputs a faithful represen-
tation of the object tracklet, according to its dy-
namics. For the purpose of this thesis, some
modifications are done to the program in order
to integrate it with the other portions of the
code, while its main structure is left untouched.
In this new version, the inputs to TIG are:
• One or more night sky FITS images
• The .txt file of the area variation
• Another .txt file containing the Azimuth

(Az) and Elevation (El) evolution for a
given tracked object

According to this last file, TIG identifies the
number of pixels needed to represent the given
passage of the object, and places the streak se-
lecting the pixel coordinates in the image. The
colouring of the tracklet is performed by substi-

tuting these central pixel values with ctot scaled
values, according to Eq. 4, with the introduction
of some noise. A certain thickness is assigned to
the streak and the colouring is performed also for
the pixels around the central line, with decreas-
ing intensity. In this new version, TIG can rep-
resent saturated or partially saturated streaks.
Saturation entails an increase in the smearing of
the streak itself due to the bleeding effect. Fur-
thermore, the pixel values must be clipped to
the maximum value (saturation threshold, sat)
according to the input sky image.
Now, either real or synthetic FITS images are
fed to SAP (Streak Analysis Pipeline), a novel
Python application developed for the extraction
and analysis of streaks. SAP, exploiting several
Python astronomical packages, performs the fol-
lowing main tasks:

1. Detection and extraction of the streak(s)
from the input FITS file

2. Extraction of central line luminosity varia-
tion (light curve in terms of light intensity)

3. Evaluation of the streak thickness
4. Source extraction with DAOPHOT algo-

rithm, control star (lowest magnitude) iden-
tification, and circular aperture photometry

5. Catalogue query and catalogue matching
with a cone search within the image FOV

6. Rectangular aperture photometry on the
streak; each aperture is one pixel wide and
with length equal to the maximum iden-
tified streak thickness. The light curve is
extracted in terms of apparent magnitude
variation in time

Tasks from 4 to 6 are performed in the case of
saturated streaks. For each run on an image,
SAP produces three HTML diagnostic pages to
track how the application worked. Moreover, it
outputs:
• Two tables containing useful information

about the streak RA and DEC evolution in
time and the observer location and time

• A .txt file featuring the real light curve evo-
lution (either central line luminosity or ap-
parent magnitude).

These outputs are used by the last part of the
code, i.e. the optimization solver. The GA
MATLAB implementation (ga.m) is used to fit
the extracted real light curve with the simulated
one, that is generated by scaling with Eq. 4
the dynamics simulator output ctot. In particu-
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lar, both light curves are scaled with respect to
sat (range between 0 and 1) in order to have a
faster optimization; then, an objective function
(obj_fun.m) sums all the elements of the abso-
lute value of the difference between the two. In
this way, a scalar cost measure is obtained, and
its value is minimized by GA over the selected
design variables, that are:
• Attitude initial conditions: three initial an-

gular velocities (ω0x, ω0y, and ω0z) and
three initial yaw-pitch-roll angles (ϕ0, θ0,
and ψ0, cf. Sec. 2), so that only six param-
eters are needed to simulate the dynamics
and input in dynamics.m, as varinput.

• Scaling parameters: only multiplicative fac-
tor k, since n is taken as the mean pixel
value of the image coming from SAP.

The lower and upper boundaries for the design
variables range are defined between 0◦ and 360◦

for the angles, between 0 and 1 for k, and be-
tween −ωlim and ωlim for the angular velocities.
The value of ωlim is determined by performing a
Fourier series expansion of the real light curve up
to the second order and evaluating its frequency.
For the fitting of saturated streak light curves a
different scaling is carried out; no shift is con-
sidered and the simulated light curve is built as
magsim = 1 − ctot · k. As a consequence, the
scaling of the real one is performed with respect
to (mref − Imref

).

4. Results
The overall procedure of angular velocity extrac-
tion is applied on both synthetic and real images.
In the realization of synthetic images, different
rotational regimes of space debris are considered,
in order to account for different real case scenar-
ios [5]. In particular, three different regimes are
arbitrarily defined:

• Slow Rotation: maximum angular velocity
below 10 ◦/s

• Medium Rotation: maximum angular veloc-
ity below 90 ◦/s

• Fast Rotation: maximum angular velocity
below 180 ◦/s

Moreover, both non-saturated and saturated
streaks are analyzed and the overall goodness
of the different methods is compared.
The real images analyzed are taken from the
Pratica di Mare ground station through a
350mm-optical telescope (PdM-MITE, Pratica

di Mare - MIlitary TElescope) operated by per-
sonnel of Aero-Space System Engineering Group
of Flight Test Wing [6].
Concerning the machine on which the tests were
performed, it is a PC with an Intel i7-6500U
CPU@2.5 GHz with a 16 GB RAM.

Synthetic Images

Figure 2: Example of a medium-rotating debris
synthetic image.

The main distinction between the generated syn-
thetic images is given by the attitude initial con-
ditions and the multiplicative factor k.
For each rotational regime, among the various
synthetic images that were generated, a repre-
sentative one is selected (see Figure 2). The re-
sults show the effectiveness of the method and
the variability between different runs on the
same image. Moreover, the differences between
rotational regimes are outlined. In general, a key
role is also played by the simulation time, since
the solver speed is penalized when it increases.
For each rotational regime, the initial conditions
for the dynamics simulation and the multiplica-
tive factor k are summarized in Table 1, along
with the results obtained through the optimiza-
tion for a given run. In addition, the same val-
ues for a slow-rotating saturated streak are pre-
sented.
The results show that:

1. The angular velocity norm (∥ω0∥) is accu-
rately retrieved in all the rotational regimes.
The accuracy decreases with the increasing
of the rotations and in general for saturated
streaks.
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2. The angular velocity z-component is the
best fitted one. The in-plane components
are sometimes inverted. Thanks to the sym-
metry of the plate, this is not considered an
issue.

3. The attitude angles are usually not properly
fitted. This is mainly due to the presence of
multiple solutions related to the light curve
fitting, and of the noise introduced in TIG.

4. The k value is optimally fitted in most
cases.

Slow Medium Fast
Sim Opt Sim Opt Sim Opt

ω0x

[◦/s]
0.1
5

0.15
2.75 25 9.5 81 76.47

ω0y

[◦/s]
1.5
2

1.4
-2.3 11 25.6 50 57.44

ω0z

[◦/s]
4
8

4.03
-8.3 50 50.1 120 120.1

∥ω0∥
[◦/s]

4.27
9.64

4.26
9.03 56.9 57.1 153.2 153.6

ϕ0

[◦]
240
0

106
281 0 124 200 191

θ0
[◦]

245
80

351
272 0 43 15 20

ψ0

[◦]
165
200

341
89 0 8 45 42

k
[-] 0.153 0.120 0.229 0.226 0.183 0.182

Table 1: Synthetic Images - Results: for the
slow-rotating regime the results are presented
for both non saturated (top) and saturated (bot-
tom) streaks. For the latter no optimization of
k is considered.

The results can be characterized in terms of the
relative error for the angular velocity norm for
each run (err):

err =

∣∣∣∣∣∥ωsim
0 ∥ − ∥ωopt

0 ∥
∥ωsim

0 ∥

∣∣∣∣∣ (6)

In order to obtain a statistical relevance of this
parameter, the optimization with ga.m is carried
out multiple times for the selected image. Then,
the cumulative distribution function (CDF) of
err values for each run is computed to evaluate
the changes between different rotational regime
cases.

(a)

(b)

(c)

Figure 3: CDF of the relative errors. (a) CDF
for slow rotation case. (b) CDF for fast rotation
case. (c) CDF for saturated case.

As it can be seen in Figure 3, the steepness of the
CDF decreases with faster rotations; this implies
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a worsening of the performances, since the prob-
ability of having higher err values is increased
from slow to fast rotational regimes. Further-
more, it can be noted a similar accuracy penal-
ization for saturated streaks in terms of CDF.

Real Images

Figure 4: Real image from the PdM-MITE 2017
observation campaign. The rendering of the im-
age is in logarithmic scale in order to better vi-
sualize the faint streak.

In the real images case, the results of the opti-
mization can be directly shown and the overall
process is lighter in terms of tasks to be per-
formed. The analyzed images are coming from
a series of acquisitions performed at the Pratica
di Mare ground station during an observation
campaign in September 2017.
As it can be seen in Figure 4, the image ac-
quired by PdM-MITE contains a faint streak left
by a debris identified as the COSMO SkyMed 2,
an ASI (Agenzia Spaziale Italiana) artifical LEO
satellite launched in 2007.
The curve extracted by SAP is quite noisy.
Therefore, a filtering of the signal is performed,
as well as a re-sampling in order to reduce the
dimensions of the luminosity array.

ω0x

[◦/s]
ω0y

[◦/s]
ω0z

[◦/s]
∥ω0∥
[◦/s]

-11.5 2.8 149 149.47

Table 2: Real Image - Results

The results in terms of angular velocity (see Ta-
ble 2) are rather consistent with a fast spinning
object in LEO and, as seen before for fast ro-

tating debris, the solver performance decreases
with the increased value of angular velocity both
in terms of prediction accuracy and of optimiza-
tion speed. Nevertheless, for the identified ob-
ject, the value of ω0z seems quite high. The
short-evolution dynamics does not allow a more
precise estimate.
The optimization is performed for 100 times on
the same image to evaluate the variability of the
results. To achieve so, a new relative error is
defined as:

err =

∣∣∣∣∥ω0∥ − µ

µ

∣∣∣∣ (7)

Where µ = 140.01◦/s is the statistical mean of
the angular velocities norm. Then, it is possi-
ble to evaluate the CDF of err and consider the
probability of having a ∥ω0∥ that differs more
than 1σ (standard deviation, σ = 31.58◦/s)
from µ.

Figure 5: CDF of the relative error for real
streaks. The CDF is quite steep, even if err is
not really contained. Nevertheless almost 80%
of the results are within 1σ of µ.

The results for 100 runs, as it can be seen in Fig-
ure 5, are quite variable. This is mainly due to
the short evolution of the extracted light curve
that may have different optimal fittings and to
the high rotational speeds, leading to worse re-
sults

5. Conclusions
The attitude determination of a tumbling space
debris is a quite difficult challenge. In this the-
sis, a light curve inversion for attitude recon-
struction is carried out on both real and syn-
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thetic images. The generation of synthetic im-
ages, performed using TIG and the dynamics
simulator, outputs FITS files that resemble the
characteristics of a real streak left by a tumbling
debris. Moreover, SAP successfully extracts, an-
alyzes, and post-processes the streak present in
any input FITS image. The optimization part
of the code is able to identify different rotational
regimes of the tumbling object and conduct the
analysis accordingly. The performance of the op-
timization generally decreases with the increase
of the rotation rate (fast rotating debris) and if
the streak is saturated. The analysis proved to
be quite successful in the determination of the
norm of the angular velocity vector and, in some
cases, of its components. The results for real im-
ages containing tumbling space debris are quite
variable and their accuracy should be validated.
More complex models could be used for the re-
flection and shaping of the debris when a refined
analysis is required.
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Abstract

In recent years, the problem of space pollution has become more and more important in
the space field. Monitoring and tracking of the space debris population is fundamental in
order to keep space accessible for human operations. In particular, observations through
optical telescopes allow space agencies to directly observe the orbiting object and study
the trail (streak or tracklet) it leaves on the detector. From these streaks, it is possible
to extract in post-processing the variation of the light reflected by the object in time
(light curve). From light curves, the key features of the space debris such as its orbital
parameters and attitude state can be retrieved. Particularly, the information about the
latter is of fundamental importance when it comes to actively remove the debris or to
predict how it will behave when/if it will reenter the atmosphere.

Most of the techniques used for determining the attitude motion of a space object rely on
methods developed for the determination of the rotational period of asteroids and variable
stars (period finding algorithms). More complex methods, such as light curve inversion,
allow to reconstruct the attitude state by simulating the dynamics of a geometry-defined
object and the way it reflects the light coming from the Sun.

In this thesis, a variation of the latter is used to extract the angular velocity of a generic
tumbling object, that is approximated by a square flat plate. Its dynamics evolution is
employed to build synthetic light curves through a simple reflection model. They are
used to fit the real ones extracted from FITS images, through an optimization process
that outputs the attitude state of the object itself. Moreover, synthetic images containing
streaks are generated to validate the code using the same simulation process.

Considering the results, the code correctly extracts and analyzes streaks in real and syn-
thetic images. The target object angular velocity, both in norm and components, is
accurately determined for moderate rotational periods. With faster rotations, the results
validity slightly decreases, but it is still acceptable for the preliminary analysis of the
space debris tumbling motion.

Keywords: space debris, optical telescope, light curve inversion, attitude motion, FITS.
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Abstract in lingua italiana

Negli ultimi anni il problema dell’inquinamento dello spazio è diventato sempre più im-
portante nell’ambito spaziale. Il monitoraggio della popolazione di detriti spaziali è fon-
damentale affinché lo spazio rimanga accessibile per le operazioni umane. In particolare,
le osservazioni tramite telescopi ottici permettono alle agenzie spaziali di osservare diret-
tamente gli oggetti in orbita e di studiare le scie (streak) che lasciano sulle camere. A
partire da queste streak è possibile estrarre la variazione di luce riflessa dall’oggetto nel
tempo (curva di luce). Dalle curve di luce si può risalire alle caratteristiche principali dei
detriti spaziali, come i loro parametri orbitali o lo stato attitudinale. Quest’ultimo risulta
particolarmente d’aiuto nella rimozione attiva di detriti spaziali o quando è necessario
predire il comportamento del detrito al rientro nell’atmosfera terrestre.

La maggior parte delle tecniche utilizzate per determinare il moto attitudinale di un
oggetto spaziale si basa su metodi sviluppati per la determinazione del periodo rotazionale
di asteroidi e stelle ad intensità variabile (algoritmi period finding). Metodi più complessi,
come l’inversione della curva di luce, consentono di ricostruire lo stato attitudinale grazie
alla simulazione della dinamica di un oggetto a geometria ben definita che riflette la luce
proveniente dal sole.

In questa tesi, una variazione di quest’ultimo metodo viene usata per estrarre la velocità
angolare di un generico oggetto rotante, approssimato da una piastra piana quadrata. La
dinamica di quest’ultima viene impiegata per costruire curve di luce sintetiche attraverso
un semplice modello di riflessione. Queste sono utilizzate per fittare curve di luce reali
estratte da immagini FITS, attraverso un processo di ottimizzazione che fornisce in output
lo stato attitudinale dell’oggetto stesso. Inoltre, vengono generate attraverso il medesimo
processo di simulazione immagini sintetiche contenenti streak per validare il codice.

Per quanto riguarda i risultati, il codice estrae ed analizza in maniera corretta streak in
immagini FITS reali e sintetiche. La velocità angolare del target, sia in norma, sia in
componenti, è determinata accuratamente per periodi di rotazione moderati. Con ro-
tazioni più veloci, la validità dei risultati dimunuisce leggermente, ma rimane comunque
accettabile per l’analisi preliminare del moto attitudinale del detrito spaziale.



Parole chiave: detriti spaziali, telescopi ottici, inversione curve di luce, moto attitu-
dinale, FITS.
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1

1| Introduction

1.1. Space Debris

As of September 2021, more than 331 million space debris objects, ranging from 1 mm up
to sizes larger than 10 cm, are orbiting the Earth [1]. In general, the number of objects,
their combined mass and area have been steadily increasing since the beginning of the
space age, as it can be seen in Figure 1.1.

Figure 1.1: Evolution of number of objects [2]

Moreover, in recent years, commercial satellite launches, usually deploying big constel-
lations, have become fairly common (see Figure 1.2), posing a great challenge to space
sustainability.
It is also worth noting that a vast portion of space debris is composed by small fragments
generated by on-orbit events (fragmentations), such as collisions, explosive break-ups, and
tear and wear. The number of fragments continues to rise also due to deliberate actions
such as anti-satellite tests1.

1The Chinese FengYun-1C test in 2007 alone increased the space object population by 25% [3]
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This situation could lead to an overcrowding of the Low Earth Orbit (LEO) regime, trig-
gering a collision chain that would hinder the safety of space missions (Kessler Effect,
[4]).

Figure 1.2: Evolution of launch traffic near LEO per mission funding [2]

A first broad classification of space debris can be done in terms of the possibility to trace
back the object to a launch event (Identified vs. Unidentified (UI)) [2].
Identified objects can be further divided according to their purpose:

• Payload (PL2) and Payload related debris (PX): space objects designed to perform
a specific function in space excluding launch that are now non-operative, all related
debris such as Payload mission related objects (PM), Payload fragmentation debris
(PF) and Payload debris (PD).

• Rocket body (RB) and Rocket body related debris (RX): space objects designed to
perform launch that are now spent orbital stages, all related debris such as Rocket
mission related object (RM), Rocket fragmentation debris (RFr) and Rocket debris
(RD).

Furthermore, Identified objects can also be differentiated in catalogued and asserted ones.

2The acronyms refer to the nomenclature used in [2]
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Usually, the former has its orbital elements maintained for a prolonged period of time.
For the latter no report by a space surveillance system has been done yet, but the object
is known to exist in the space environment by design (e.g. rocket bodies performing a
reentry burn after inserting a payload into orbit).
In general, for catalogued objects, orbital information can be retrieved from different
datasets, whereas for asserted ones these are usually taken from different databases such
as DISCOS (Database and Information System Characterising Objects in Space) of ESA
[2]. On the other hand, for attitude state information and any estimate related to UI
objects, independent analyses have to be carried out.
Therefore, to keep space pollution under control and determine whether an object will
safely reenter in the atmosphere or collide with other active or inactive objects, space
agencies perform a set of operations that falls under the Space Surveillance and Tracking
(SST) segment. SST has the main goal of ensuring safe space operations, by assessing the
risk of collision for each of its catalogued objects [5].

Figure 1.3: SST Operations [6]

In Figure 1.3, a scheme of some activities related to the monitoring and tracking of space
debris is presented. As it can be seen, most of the activities are intertwined and/or con-
sequential. Undoubtedly, one of the most important tasks is object observation starting
from catalogue information, allowing accurate orbit determination and the estimation of
other features such as the tumbling motion.
Overall, there are many different ways to observe and monitor the space debris population
[7], with regard to its size, mass, area and distribution:

1. Passive optical: direct observation of the object through the collection of the sunlight
reflected from its surface. The data is acquired thanks to optical telescopes (see Sec.
2.2), while several conditions need to be fulfilled: object illuminated by the Sun,
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night observations, and clear sky conditions. The motion of the debris can be
recorded in a video or in a long-exposure image (where the debris leaves a streak or
tracklet of variably illuminated pixels according to the orbital and attitude motion,
see Figure 1.4). From the extraction of light intensity over time (light curve, see Sec.
2.2), angular and astrometric information can be retrieved and used to determine
the orbit and the attitude state of the object. In addition, its surface properties and
shape can be studied through multi-band spectroscopy.

Figure 1.4: Example of a simulated streak left by a space debris

2. Active optical: acquisition of range and angular measurements through Satellite
Laser Ranging (SLR) systems. Ultra-short light pulses are emitted by a ground
station towards a resident space object and reflected back. Depending on the light
time of flight, the target range and attitude can be inferred with a high degree of
accuracy. This kind of systems is still influenced by weather conditions, while is
partially affected by environmental illumination conditions. In general, high power
lasers are required for the majority of the targets.

3. Radar: radar measurements are not influenced by weather conditions and can be
performed during the whole day. Through the Radar Cross Section (RCS) parameter
- i.e. target ability to reflect radar energy -, the target size, shape, orientation and
material properties can be investigated
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4. In-situ: exposure of a satellite to the space environment to test various materials
and their suitability for space missions, and study the effects of radiation and other
space hazard. These measurements are mainly used to model the smaller (less than
1 mm) debris population.

In the mid 1980s space agencies started to deal with space pollution, but it wasn’t until
the 1990s that mitigation measures were put in place. Nowadays, the main measures
followed by most of international parties are focused on the limitation of space debris
release, collision avoidance manoeuvres and post-mission disposal regulations [2].
Long-term evolution models have shown that mitigation measures can reduce the growth
of space debris generation, however long-term proliferation is still expected, even with full
mitigation compliance and even if all launch activities were to be halted [8]. Therefore,
Active Debris Removal (ADR) techniques have been studied and employed in recent years
in order to further alleviate the problem.
In particular, ADR focuses on large and massive objects at high altitudes that may reach
critical densities in LEO and have the largest environmental impact in case of collision,
since the resulting fragments would have a long lifetime. Moreover, many of the different
ADR techniques would hugely benefit from prior knowledge of the attitude state of the
object [9].
Hence, a combination of mitigation and active removal, applied as soon as possible, is
thought to be the most effective strategy to keep the space environment sustainable and
accessible.

1.2. State of the Art and Proposed Approach

As seen in Sec. 1.1, one of the most effective ways to retrieve information about a space
debris is through observation campaigns at night and the analysis of the obtained light
curve.
In the following section, the main methods used to determine the angular velocity of
space debris will be presented. In general, the discipline inherits most of its features from
studies on light curves of asteroids [10] and variable stars [11]. In particular, light curve
inversion techniques (determination of attitude state from a light curve measurement) for
asteroids allow to assess not only the angular velocity of the object, but also some of its
physical features (shape and size) when working in different bands of the spectrum [12].
Nevertheless, most of the hereby presented techniques are able to determine mainly the
rotational period of the object, while only in few particular cases they are able to fully
characterise the overall attitude state.
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In addition, the adopted method to extract the attitude state of the tumbling space object
is outlined and the structure of the document is briefly described.

Period Finding Algorithms

There are numerous types of period finding algorithms that can be applied to light curves
of celestial objects [13]. Since the scope of this thesis is to develop an alternative method to
determine not only the period, but also the entire attitude state, the following techniques
will be briefly presented in order to have a smattering of the problem:

i. Fourier-based methods: methods that exploit signal frequency decomposition in or-
der to retrieve the period of the base sinusoidal function. In its most simple form,
Fourier decomposition rewrites the periodic signal as a sum of sines and cosines
characterized by a given period. This is the concept behind FFT (Fast Fourier
Transform) method and Welch’s Method. The former operates a Discrete Fourier
Transform (DFT) of the signal converting it into the frequency domain. In the latter
instead, the DFT is performed to different segments of the data called bins and the
final result is averaged over the segments. These methods are mainly influenced by
the light curve data quality rather than the real object physical properties. More-
over, more reliable results can be obtained if the acquisition time is at least six times
the expected period.

ii. Epoch Folding method: similarly to Welch’s method, this technique divides the
overall observation time in bins; in this case though, the bin length is equal to a
guessed period of the main peak identified in the signal. Then, each part of the light
curve is summed and a new light curve, with length equal to one bin, is obtained
(folding of the curve, see also Sec. 2.2): if no recognizable pattern is present, the
hypothesized period is wrong, whereas if an exaggerated peak is present the period
is correct. Evidently, this technique needs a first period guess that can be either set
manually after visual observation of the light curve or derived with other methods
beforehand (e.g. Fourier analysis). This means that epoch folding can be used for
refinement of results found with other methods. This method requires an acquisition
time longer than one and a half times the guessed period.

iii. Principal Component Analysis: this approach turns the original signal into a new
set of uncorrelated variables, called principal components (PC), by means of an
orthogonal transformation. The dimension of these PC is usually much lower than
the original signal one, and the period is usually retrieved through interpolation
of the curve PC vs phase. Inevitably, some information may be lost due to the
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performed trasnformation.

iv. Lomb-Scargle method: this technique falls under the least-squares spectral analysis
methods, where the frequency is obtained through a least-square fit of the data.
Generally, the signal is represented by a weighted sum of sinusoids; in this case,
also a time delay is introduced in order to have mutually orthogonal sinusoids. This
method could lead to inconclusive results that should be cross-checked with other
methods.

In Table 1.1, a summary of the advantages and disadvantages of each method is presented.

Method Advantages Disadvantages

Fourier-based Readily available results
Limited resolution and need of

equally spaced-data
Epoch Folding No need of equally spaced data Initial value required

PC Lower dimensional problem Loss of information

Lomb-Scargle
Reliable results, ok with limited

resolution data
Not always conclusive results,

need of cross-checking

Table 1.1: Period Finding Algorithms Comparison

Epoch Method

The epoch method is vastly described and used for the attitude determination of asteroids
and tumbling satellites [14]. In particular, it allows to determine, under certain conditions,
the object angular velocities and the spin axis orientation. The key quantity that needs
to be accounted for is the phase angle bisector (PAB) (see Figure 1.5), i.e the vector that
bisects the Sun-object-observer angle.
For the orbiting spinning object, two spin periods can be identified: the sidereal one
(time it takes for the object to complete one rotation with respect to the stars) and the
synodic one (interval of time to complete one rotation with respect to the observer). The
link between these two different quantities is the PAB time variation; in particular, the
synodic frequency is written as a function of the sidereal one and the PAB projection
on the plane orthogonal to the spin-axis of the object. Then, by estimating the synodic
frequency through Fourier analysis, the unknowns of the problem become the sidereal
frequency and the PAB variation that is written as a function of the spin axis orientation.
Consequently, a least-squares fitting of the real synodic frequency is performed and the
unknowns become the outputs of the process.
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Figure 1.5: Phase-Angle-Bisector

As it will be seen in the next section, this kind of process does not differ much from
a standard light curve inversion. Nevertheless, the epoch method works properly only
under certain conditions, such as: constant rotation axis direction and rotational period,
cylindrical bodies rotating about the major inertia axis, only specular glints detection.

Light Curve Inversion for Attitude Reconstruction

As detailed in previous sections, it appears evident that attitude determination from the
object light curve is hard to deal with. In fact, many peculiar quantities related to the
object motion have to be retrieved from the only periodic variation of light intensity.
In order to overcome such difficulties, light curve inversion (see Figure 1.6) can be used
to reconstruct the attitude state. This is done through a fit of the real light curve with a
simulated one taking as input the attitude state guess; then, the difference between real
and simulated signal is minimized over attitude states [15].
Undoubtedly, one of the critical points is the generation of the simulated light curve: this is
usually achieved using rendering programs ([15], [16]) that model the object under analysis
together with the different illumination and shadow conditions. Another important part is
played by the light curve extraction routine that needs to be properly designed according
to the image to be processed. Finally, once the real light curve is extracted and the
simulated one is retrieved by entering the object attitude state, a global optimization
algorithm minimizes the difference between the two, providing the value of the unknown
variable. In terms of non-linear optimization lots of algorithms have been developed and
customized for different problems [17].
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Figure 1.6: Light Curve Inversion Workflow

This kind of approach is adopted in this thesis, since it is considered to be the most
suitable and tunable among the surveyed methods.

Thesis Objective and Workflow

The main objective of the following work is to determine the attitude state of a space
debris from optical observations through the extraction and fitting of its light curve.
As stated in Sec. 1.2, the main methods used to extract the rotational period are rather
limited in terms of the quality of the results and object orientation prediction. Con-
versely, the reference methods for light curve inversion are usually applied to specific
targets, whose shape, size and other physical properties are known. Since the overall
work is intended to be applicable in the first stages of the study of the motion of an
unknown space object, i.e. when no information about the object shape, orbit or attitude
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is available, a proper customization of the workflow has to be done (see Figure 1.7).

Figure 1.7: Thesis Workflow

First of all, given the lack of information on the object, it is not possible to use a rendering
program, and the debris is approximated as a square flat plate that specularly reflects the
sunlight (cf. Sec. 2.1); its dynamics is simulated in MATLAB (cf. Sec. 3.1).
Moreover, all the image processing and light curve extraction is performed by an original
analysis pipeline (Streak Analysis Pipeline - SAP) written in Python (cf. Sec. 3.2), em-
ploying ad hoc packages for astronomical image manipulation.
Both real and simulated images are considered; in particular, the creation of synthetic im-
ages is done through a modified version of an image generator (Tracklet Image Generator
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- TIG). This software tool, developed by R. Cipollone and A. De Vittori in [5], takes as
input night sky acquisitions and the object tumbling motion information obtained with
the developed MATLAB dynamics simulator; the output is a faithful representation of
the object tracklet (cf. Sec. 3.1).
Furthermore, the choice of the optimization routine falls on the genetic algorithm (GA)
in MATLAB environment (cf. Sec. 3.3), thanks to its extreme flexibility and to its un-
conventional way of reaching adequate solutions even for complex problems.
Finally, the optimization results both for real and synthetic images are presented (cf.
Chap. 4), as well as a conclusion chapter (cf. Chap. 5), where the overall code effective-
ness is summarized.
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2| Fundamentals

Before describing the detailed structure of the code (see Chap. 3), an extensive review
of some key physical concepts has to be presented, in order to justify some of the choices
that characterized the work.
Particularly, the different equations that describe 3D attitude dynamics, kinematics, and
the selected reflection model are presented, as well as the transformations between dif-
ferent reference frames. Then, the working principle of optical telescopes and detectors
is briefly explained. Moreover, an introduction to photometry and astrometry is carried
out in order to understand the fundamentals behind image calibration and magnitude
determination. Finally, the use, scope, and structure of FITS (Flexible Image Transport
System) images are quickly reviewed, since this image file format has a broad use in
astronomical applications, including this work.

2.1. Dynamics, Kinematics and Reflection Model

Reference Frames

A reference frame (RF) is a coordinate system with a specified origin and orientation and
it is usually composed by a set of three mutually orthogonal axes.
A first conceptual distinction between RFs can be made whether the RF is undergoing
an acceleration or a rotation; in the negative case, the RF is inertial, while if the RF is
accelerating or rotating with respect to an inertial one it is called non-inertial.
In order to describe an attitude problem, a fixed inertial RF and a rotating RF can be
identified. The former is the Earth-Centered Inertial (ECI) frame, while the latter is the
Body (B) frame (Figure 2.1):

– ECI: origin in Earth’s center, fixed with respect to the stars (inertial). It has the
xy-plane that coincides with the Equator, with the x-axis in the same direction
of the Vernal Equinox Line (intersection between equatorial and ecliptic planes).
The z-axis is aligned with the Earth rotation axis. It is mainly used to describe
the rotation of non-inertial frames, and to identify the inertial position of objects
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through celestial coordinates: Right-Ascension (RA) and Declination (DEC).

– B: origin in the center of the considered object. It rotates with the body and thus it
is non-inertial; the three orthogonal axes may or may not coincide with the principal
axes, for which the inertia matrix is diagonal. It is the most used RF to describe
the attitude motion of celestial objects with respect to an inertial frame.

Figure 2.1: ECI and B RF: ECI in black (XYZ) is fixed in inertial space and originates
from the Earth centre (O); B in orange (xyz) is rotating with the object

Another useful RF is the so-called Earth-Centered Earth-Fixed (ECEF). As its name
suggests, its origin is in the Earth center and the xy-plane, corresponding to the Equator,
is rotating with the x-axis that is following the location of the Greenwich meridian in
inertial space tracked by the Greenwich Sidereal Time (GST - Greenwich position with
respect to the Vernal Equinox Line). This RF can be used to identify the location of an
observer on the Earth surface, through the geographical coordinates: latitude (vertical
displacement with respect to the Equator) and longitude (horizontal displacement with
respect to the Greenwich meridian).
Therefore, by setting the latitude and longitude coordinates of the observer, it is possible
to identify the origin of another commonly used RF, that is the Topocentric Horizon
(TH) one (Figure 2.2). In particular, the xy-plane of TH is parallel to the local horizon
of the observer and, if the Earth is considered as a perfect sphere, tangent to the observer
location. The z-axis follows the position vector of the observer starting from the center
of the Earth towards the celestial sphere (infinite expansion of the Earth’s sphere) called
zenith.
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Figure 2.2: TH and ECI RF: TH in green (East, North, Zenith) is identified by the
observer position (O’) on the Earth surface. O’ is defined by longitude and latitude with
respect to ECEF in red (X’Y’Z’), which is rotated with respect to ECI in black (XYZ) of
GST (function of time).

In this frame, it is possible to locate a celestial object with respect to the local observer
horizon through the local coordinates: Azimuth (Az) and Elevation (El).

Figure 2.3: RA-DEC and Az-El: for a spherical Earth, TH and ECI can share the same ori-
gin; Az is computed clockwise starting from North, while RA is considered anti-clockwise
starting from the Vernal Equinox Line. On the other hand, both DEC and El start from
their respective xy-plane and cover an arc of great circle to reach the object onto the
celestial sphere.
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Therefore, a celestial object can be represented in two different RFs through two sets of
coordinates, respectively RA and DEC in ECI and Az and El in TH (Figure 2.3).

In general, the transformation between RFs can be performed with rotation matrices.
Given a vector a123 written in a generic inertial frame (123), it is possible to rewrite it as
a new vector auvw in another RF (uvw) with the following equation:

auvw = Arota123 (2.1)

Where Arot is a rotation matrix, i.e. it is square, orthogonal and with determinant equal
to 1.
It is useful to determine the transformation between TH and ECI, since in certain sit-
uations either RA and DEC or Az and El of the target may be available. In order to
retrieve the local coordinates from the celestial ones, some additional parameters need to
be known:

• UTC: Coordinated Universal Time, it is defined by the passage of the Sun across
the Greenwich meridian, and it is adopted globally. The local time is related to the
UTC through the different time-zones.

• Longitude: longitude of the observer location started measuring from the Greenwich
meridian (positive eastwards, negative westwards) in the range [−180◦,+180◦].

• Latitude: latitude of the observer location starting from the Equator (positive north-
wards, negative southwards) in the range [−90◦,+90◦].

Once the (Az-El) couple and the GST are determined from the celestial coordinates (cf.
Appendix A), it is possible to build up the rotation matrix from TH to ECI [18]:

RN/T =

− sinϑ − sinφ cosϑ cosφ cosϑ

cosϑ − sinφ sinϑ cosφ sinϑ

0 cosφ sinφ

 (2.2)

Where ϑ is equal to the sum of the observer East longitude (Λ) and GST , while φ is the
observer latitude.
Furthermore, rotation matrices can also be used to describe the attitude evolution of an
object (i.e. time variation of the orientation of one frame with respect to another).
The different RFs that will be used throughout the work are summed up in Table 2.1.
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RF Inertial x-axis y-axis z-axis

ECI Y Vernal Equinox Line ⊥ xz-plane Earth Rotation Axis
B N X-Body Y-Body Z-Body

ECEF N Greenwich Meridian ⊥ xz-plane Earth Rotation Axis
TH N Local East Local North Zenith

Table 2.1: Main Reference Frames

Euler’s rotation Equations

Euler’s rotation Equations (EE) describe the rotational dynamics of a body with respect
to an inertial reference frame. In principle, EE are a system of non-linear totally coupled
differential equations, where the angular velocities are the unknowns to be integrated.
For any 3D rigid body, the mass distribution can be expressed by means of the moments of
inertia, that tell how the object will rotate starting from an initial condition or responding
to applied torques. If the considered body has two symmetry planes relative to a given
RF (e.g. B), then the latter coincides with the principal axes (PA) RF and the moments
of inertia can be stored in a diagonal (3x3) matrix, called inertia matrix (I):

I =

Ix 0 0

0 Iy 0

0 0 Iz

 (2.3)

Where Ix, Iy and Iz are the principal moments of inertia (all positive) and the (xyz) axes
are the body principal axes (PA) of inertia [19].
In this context, EE can be written as:

Iω̇ = Iω × ω +M (2.4)

Where ω is the vector of angular velocities (ωx, ωy and ωz) in the body/principal axes
RF, while M is the vector of possible torques applied to the body. In order to obtain the
three angular velocity components, numerical integration of three differential equations
must be performed, and initial conditions are needed.
As stated in Sec. 1.2, in this work the generic space debris is considered to be a flat square
plate of unitary area and mass; by definition, such a solid has three planes of symmetry
and considering the z-axis as the out-of-plane one (see Figure 2.4), it is possible to write:

Ix = Iy = I = 1/12 (2.5)
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Then, thanks to the perpendicular axis theorem [20]:

Iz = Ix + Iy = 1/6 (2.6)

Figure 2.4: Flat Square Plate: B and PA frames coincide; the plate has an infinitesimal
thickness and z is the major inertia axis [21].

Moreover, if the observation of the debris is sufficiently short and the dimensions are
compact enough, all external torques can be brought to zero. Therefore, Eq. 2.4 can be
simplified and written in components as:

Iω̇x = (I − Iz)ωyωz

Iω̇y = (Iz − I)ωzωx

ω̇z = 0

(2.7)

In this way, the x and y equations are decoupled from the third one, whose solution is
constant and equal to the initial condition (ωz = ω0z). Thus, an analytical solution in
time for x and y can be easily found [21], given the initial conditions (ω0x and ω0y):ωx = ω0x cos λ̂t− ω0y sin λ̂t

ωy = ω0x sin λ̂t+ ω0y cos λ̂t
where: λ̂ =

Iz − I

I
ω0z (2.8)

The angular velocities evolution can be seen in Figure 2.5.
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Figure 2.5: Dynamics of a flat square plate: evolution of angular velocities in a 100 second
interval. Analytical and numerical solution give the same exact behaviour: constant
angular velocity about the z axis (plot at the bottom), sinusoidal behaviour around the
x and y axes (top two plots).

Attitude Parameters

The attitude parameters define the orientation of one RF with respect to another, i.e.
rotation of B with respect to ECI. In general, there are several ways to represent the
change in the three degrees of freedom that describe the attitude motion in space. Here,
two main sets of parameters will be described.

As said before, it is possible to use rotation matrices, that are usually referred to as
direction cosine matrix (DCM), to switch from one RF to another one. In particular, a
DCM has nine components (3x3) and is formed by three direction cosines (cosines of the
angles between each axis of the two RFs) stored column by column.
Considering a generic vector in ECI, its rotated version in the body frame through the
DCM (AB/N) is:

aB = AB/NaECI (2.9)

Where the notation B/N means that the application to a vector of the DCM will rotate
it from an inertial frame (N) to a body (B) one.
Moreover, DCMs allow to perform consecutive transformations between different RFs.
For instance, the rotation of PA (if it is not already coincident with B) with respect to
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an inertial RF (e.g. ECI) can be written as:

aPA = APA/BAB/NaECI = APA/NaECI (2.10)

Therefore, it is possible to represent multiple rotations just by pre-multiplying the starting
vector by the DCMs that represent the successive rotations starting from the last one
(APA/B first, and AB/N second).

The orientation of a rigid body relative to an inertial frame can also be specified by only
three parameters/angles [19].
The yaw-pitch-roll angles (ϕ, θ, and ψ) shown in Figure 2.6 define a sequence of three
rotations that relates B and ECI.

Figure 2.6: Yaw Pitch Roll angles: 321 sequence from XYZ (ECI) to xyz (B)

Their sequence is the 321 one:

1. Rotation about Z-axis through the yaw angle ϕ:

R3(ϕ) =

 cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1

 (2.11)
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2. Rotation about new y-axis (y2 = y1) through pitch angle θ:

R2(θ) =

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (2.12)

3. Rotation about x-axis through roll angle ψ:

R1(ψ) =

1 0 0

0 cosψ sinψ

0 − sinψ cosψ

 (2.13)

As seen in Eq. 2.10, the overall rotation is given by multiplication of the three matrices
in the opposite order:

AB/N = R1(ψ)R2(θ)R3(ϕ) (2.14)

This equation represents the direct mapping from yaw-pitch-roll angles to DCM.

Once the set of attitude parameters to work with is chosen, it is possible to evaluate how
these change in time in relation to the rotational dynamics in the body frame (kinematics).
The kinematic evolution of a RF can be visualized as a set of consecutive rotations in small
instants of time. Since no rule for consecutive rotations is present in the yaw-pitch-roll
angles formulation, only DCM kinematics can be stated as [21]:

ȦB/N = −[ω∧]AB/N where : [ω∧] =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (2.15)

Therefore, in order to retrieve the time evolution of the DCM, Eq. 2.15 needs to be
integrated alongside the EE with specified initial conditions.

Reflection Model

The final step is to express how the target object reflects the sunlight towards the observer
and how the dynamics affects this phenomenon.
The main features to be considered are:

• Relative positions between the Sun, the observer and the debris

• Projected area towards the observer
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• Properties of the sunlight reflecting surfaces

All the relative positions can be evaluated in the inertial frame (ECI) by using two versors
(Ô and Ŝ, see Figure 2.7). In particular, the debris location can be easily represented
through celestial coordinates (RA and DEC), while the Sun position in ECI can be esti-
mated through ephemeris (see Sec. 3.1):

Ô =

 cos (RA) cos (DEC)

sin (RA) cos (DEC)

sin (DEC)

 and Ŝ =

 S1

S2

S3

 (2.16)

Once the two versors are available, it is necessary to represent how the rotating flat plate
is seen by the observer.

Figure 2.7: Reflecting Model

In general, the projected area (Aproj) of the plate is proportional to the cosine of the angle
between the normal to the surface (z-axis in this case) and the direction of observation
(Ô). Nevertheless, the illumination conditions that are given by Ŝ need to be considered:
the portion of area illuminated (Aill) by the Sun is in fact proportional to the cosine of the
angle between the normal to the surface (z-axis again) and the Sun direction. Therefore,
the overall illuminated-projected varying area (Avar) is just the product of the simply
projected and simply illuminated areas. Moreover, it should be noted that a face will give
a contribution (Avar ̸= 0) only if it is actually reflecting the sunlight and the illuminated
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portion is visible by the observer at the same time [22]:Avar = AprojAill = (Ô · N̂)(Ŝ · N̂) = cos β cos γ, if γ < 90◦ and β < 90◦

Avar = 0, otherwise
(2.17)

Where N̂ is the normal to the face of the flat plate considered, while β and γ are the angles
between observer-normal and Sun-normal, respectively (see Figure 2.7). Considering a
zero-thickness plate, the only faces that can actually reflect light have as normal +z and
−z; thus, only one of the two will be illuminated and visible at the same time.
Equation 2.17 identifies a light curve, since it is a scaled representation of how the light
intensity reflected by the object changes in time (due to its dynamics). In order to
express a proper light variation, there are two possible strategies: in the first one, the
area variation is linked to a physical brightness through complex reflectance functions
that rely on the physical properties of the object [23]; the second and chosen one, given
the generality of the approach, links Avar to a pixel intensity (see Sec. 2.2) - Lvar - by
introducing a shift (n) and a multiplicative factor (k), so that:

Lvar = Avar · k + n (2.18)

As detailed in Sec. 3.3, the shift n is computed as the mean of the pixel values in the
image. Therefore, if Avar = 0, the variation in pixel intensity Lvar is actually uniformed
to the background and the streak is correctly not visible.
With this simplified approach, the plate specularly reflects the rays hitting the surface
with an angle equal to the incident one with respect to the normal. In general, the portion
of light reflected is regulated by the specular reflection coefficient (ρs); in this case, ρs is
embedded inside the values of k and n, which will be further discussed in Chap. 3.

2.2. Optical Telescopes

The main operations performed by an optical telescope are [24]:

• Collection of light using static or dynamic optics and collimation (rays brought
parallel) to fit subsequent optics

• Filtering of specific wavelengths

• Changing the direction of photons through optics and focusing them on the detectors

• Transformation of photons in voltage (analog) performed by detectors
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• Conversion from analog to digital quantity

• Processing and storing in memory of digital info into a digital file

The light-collecting surfaces and the optics that focus the rays onto the detectors (or
the eye-piece for human observation) are either mirrors or lenses; thus, optical telescopes
are divided in refractors, if lenses are used to focalize rays, and reflectors, if mirrors are
employed to reflect the impinging rays onto the detector (Figure 2.8).

Figure 2.8: Refractor and reflector telescope [25]

Ground observations are inevitably influenced by the presence of the atmosphere [25].
First of all, when the light passes through the unsteady turbulent air (with gradient
of density and temperature), its rays undergo random changes in refraction and are no
longer parallel to each other. Thus, the amount of light that reaches the detector varies
constantly and the source appears to scintillate. In order to alleviate such a problem,
telescopes collect light over a large area, diminishing the rapid changes of the scintillation.
Nevertheless, point sources still may experience differences in refraction along different
paths of light through the atmosphere that smear the image. This phenomenon is called
seeing and it is embedded in the physics of optical telescopes for which the image of a
point source will never be a point, but it will be spread onto the detector (in combination
with the intrinsic diffracting nature of light). Finally, all the light that passes through the
atmosphere may suffer scattering and absorption by molecules and could be attenuated
by dust particles.
Therefore, transparency and darkness are fundamental to observe faint objects in the night
sky. Moreover, some wavelength regions in the electromagnetic spectrum are strongly
absorbed by the atmosphere (see Figure 2.9); luckily, the visible window (from 300 to 800
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nm) is practically undisturbed.

Figure 2.9: Atmospheric Electromagnetic Opacity: the most energetic part of the spec-
trum is completely absorbed by the atmosphere, while the opacity decreases for the visible
part and is basically null for radio-waves [26].

Consequently, the three major tasks [25] that an optical telescope must fulfill are:

1. Collect light from a large area, in order to diminish scintillation phenomena and
study faint objects

2. Increase the apparent angular diameter of the object, improving the resolution

3. Measure the positions of the objects

Once the light is correctly focused onto the detector, with the minimization of external
disturbances, it is converted into a digital format and stored in an image file that can
have different extensions (mainly FITS files).

Refractor Telescope

In refractor telescopes the light is collected by a lens that forms an image in the focal plane.
The light gathering power of the telescope is characterized by the ratio of the aperture to



26 2| Fundamentals

the focal length, that is the distance between the lens and its focus (point on optical axis
where the infinitely-distant parallel rays are brought). Moreover, the telescope can be
characterized by the magnification and the resolving power. The former is obtained with
systems of lenses that enlarge the image projected onto the detector/eyepiece, while the
latter determines the minimum angular separation between two point sources in the sky
that the instrument is able to discern. The theoretical limit for the resolution is set by the
diffraction of light, for which the image of a point is formed as a small disk. The spreading
of a point source onto the detector has to be carefully evaluated when performing studies
on the celestial object that generated that disk (see Sec. 3.2).
The main issue for refractors, which are usually quite heavy instruments, is the chromatic
aberration: the light refracted by the lens is dispersed, since glass refracts different colours
(wavelengths) by different amounts. In order to remove such aberration, achromatic lenses
(combination of two or more lenses) collimate all the different rays back to one point.

Reflector Telescope

Reflector telescopes use mirrors to focalize the light onto the detectors, and are the most
commonly used telescopes in space research. This kind of instrument is particularly
suitable for large systems, since mirrors are easier to manufacture and lighter than lenses.
Mirrors are usually spherical or parabolic and coated with a thin layer of aluminium; in
this way, the rays hitting their surface are reflected and brought to a point (focus of the
parabola or centre of the circle) independently from their wavelength (reflection does not
suffer from chromatic aberration). Nonetheless, different aberrations may still be present
such as coma and spherical aberrations. There are different configurations of reflectors,
according to the way they reflect and bring the light towards the detector. One of the
most common architectures is the Newtonian one, with a two mirrors configuration: the
primary reflects the light onto a secondary put in front of the primary focus; in this way,
the secondary inclined mirror reflects the light onto the detector located on the side of
the telescope tube (see Figure 2.8).

Detectors

Detectors are usually placed after collimation, filtration and isolation of the light enter-
ing the telescope. Their task is to convert the incoming photons into an electric current
proportional to the radiation amount. Once this photon-electron conversion is performed,
the information has to be digitized (using analog-to-digital (A/D) converters), processed
and stored.
There are two main devices employed to perform the aforementioned tasks: Charged-
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Coupled-Device (CCD) and Complementary Metal-Oxide Semiconductor (CMOS) cam-
eras (see Figure 2.10). In both, each pixel (smallest portion of sensitive material inside
the device) could be associated with a "bucket" collecting electrons from the incident
light [5]. The key difference is that CCDs have only one reading circuit to collect the
electrons row by row, while CMOS perform this process in parallel thanks to the pres-
ence of one reading element for each pixel. Usually, CCDs provide high quality and low
noise measurements and are quite simple if compared to CMOS. Generally though, CCDs
are limited in reading speed due to the single acquisition system. This means that for
high resolution images, mechanical shutters are needed to blind the detector during the
read-out. On the other hand, CMOS does not suffer from reading speed issues thanks
to its architecture with a single A/D converter for each pixel (or at least for each row of
pixels). Nevertheless, CMOS cameras provide low quality, high noise measurements and
are rather complex and expensive devices.

Figure 2.10: CCDs vs CMOS sensors [24].

For both technologies, one of the main issues is pixels saturation, that occurs when photons
hit the sensitive material and generate a current too high to be properly handled by the
read-out circuit. Therefore, a two-fold problem arises: firstly, the corresponding digital
value will be at its maximum and not necessarily proportional to the actual radiation;
secondly, the electrons in the pixel-bucket may overflow and spread over the adjacent pixels
(bleeding effect), that in turn may saturate. Therefore, when the radiation reaching the
detector is excessive, either the device is covered with mechanical or electronic shutters
(protection from high energy radiation [27]) or saturation is accepted and studied. This
second situation is what usually happens with space debris in LEO with high reflecting
area [28] (e.g. International Space Station, ISS) that leave a streak on the image of almost
completely saturated pixels. As detailed in Sec. 2.3, it is still possible to study and extract
light curves of such saturated pixels by exploiting the spreading of the streak itself across
the image.
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FITS Images

Keyword Keyword

SIMPLE

Logical constant with the
value T if the file conforms

to FITS Standard
BSCALE

Floating-point number
representing the coefficient
of the linear term in the

scaling equation, the ratio
of physical value to array

value at zero offset

BITPIX

Integer, its absolute value
is used in computing the
sizes of data structures

BZERO

Floating-point number
representing the physical
value corresponding to an
array value of zero (default

0.0)

NAXIS

Non-negative integer no
greater than 999

representing the number of
axes in the associated data

array

OBJCTRA

Character string giving the
RA of the centre of the

image in hh:mm:ss

NAXISn

Non-negative integer
representing the number of
elements along Axis n of a

data array

OBJCTDEC

Character string giving the
DEC of the centre of the

image in ±dd:mm:ss

DATE-OBS

Character string giving the
date on which the HDU
was created, in the form
YYYY-MM-DDThh:mm:ss

SITELAT

Character string giving the
latitude of the observer in

±dd:mm:ss

TELESCOP
Character string identifying

the telescope used
SITELON

Character string giving the
longitude of the observer in

±dd:mm:ss

EXPOSURE

Floating-point number
giving the exposure time of

the image
FOCALLEN

Floating-point number
giving the focal length of
the instrument used (may

not always be present)

Table 2.2: FITS Keywords
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According to NASA’s Definition of FITS [29], the Flexible Image Transport System (FITS)
is the standard archival data format for astronomical data sets. FITS files are in fact
commonly used by astronomers and space researchers as a data interchange and archiving
format for astronomical images. These files allow the user to store the image and the
fundamental metadata that describes it. Due to the peculiarity of the files, specialized
software is needed to read them [30].
A FITS file is mainly composed of the primary Header and Data Unit (HDU) FITS
structure. The HDU contains the primary header and may be followed by the primary
data array. The header consists of different header blocks, describing important features
of the image itself with relevant keywords as seen in Table 2.2. On the other hand, the
primary data array comprises a single data array (1 to 999 dimensions, specified by NAXIS,
see table). Its most simple form (NAXIS = 2) represents the value of the x and y pixels
of the image. The pixel bit-depth in the image is specified in the header (BITPIX) and
may be equal to 8, 16, 32 or 64 levels. 8-bit integers are unsigned and contained in one
byte, corresponding to decimal values ranging from 0 to 255 (28 values). 16, 32, and 64-bit
integers are two’s complement signed binary integers, contained in two, four or eight bytes
with decimal values ranging from −2nbits to 2nbits − 1.
Sometimes, a linear scaling is introduced in order to reduce the size of the data array;
thus, the physical value of the pixels differs from the array one:

physical_value = BZERO+ BSCALE · array_value (2.19)

Another important feature that can be represented within FITS HDUs is the mapping
between image coordinates and physical (i.e., world) coordinate systems (WCSs). The
transformation working principle can be seen in Figure 2.11.
If the FITS header does not present any WCS information, it can be computed through
the Astrometry.net web service operating at nova.astrometry.net [31]. In particular,
FITS images can be submitted for astrometric calibration and the computed WCS info
are directly inserted into the image header.

Astrometry.net
nova.astrometry.net
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Figure 2.11: A schematic view of converting pixel coordinates to world coordinates (e.g.
celestial coordinates) [29].

2.3. Light curves and Photometry

In Sec. 1.2, different methods to study the attitude motion of a celestial object are
reviewed. In all of these techniques, the object light curve has to be known. In this section,
a more thorough review of how to extract and characterize light curves is presented.
Moreover, a brief overview of photometry and catalogue matching is essential in order to
understand the principles behind the working of SAP (cf. Sec. 3.2).
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Light curves

In the most generic case, a light curve is the variation of light intensity emitted or reflected
by an object in a certain interval of time (Figure 2.12).

Figure 2.12: Example of a light curve of asteroid Steins: data from ESA Rosetta Mission
[32]

The light intensity can be measured in different ways; in the most simple case, it can just
be represented by the pixel values that are directly connected to the photons collected by
the detector (see Sec. 2.2). That said, in many applications it is preferable to work in
terms of magnitude. The magnitude is a unitless quantification of the light intensity in
logarithmic scale. In particular, the transformation from intensity to magnitude must be
performed with respect to a reference measurement:

M −mref = −2.5 · log10
(

IL
ILref

)
(2.20)

Where mref and ILref
are the magnitude and light intensity of a reference celestial object,

while M and IL are the ones of the target object. According to this formula, the brighter
the object (the higher the intensity), the lower the value of the magnitude; thus, the
brightest objects in the sky will have negative values of magnitude.
In particular, Eq. 2.20 is used to define the apparent magnitude, i.e. an estimate of
the brightness of a celestial body as seen from Earth. Therefore, it is influenced by the
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object distance from the observer and interstellar absorption. Alternatively, it is possible
to define the absolute magnitude, that is the apparent magnitude that an object would
have if it were placed at a distance of 10 parsec (approximately 32.6 light-years). In this
way, the intrinsic luminosity of the object, i.e. what it actually emits or reflects, is taken
into consideration.
Finally, if the light curve shows a visible periodicity, it is sometimes useful to work with
the so-called folded light curves, that is light curves represented with respect to full cycles
(Figure 2.13).

(a) (b)

Figure 2.13: Light curves of variable star X Cyg [33]: (a) is the unfolded light curve,
while (b) is the folded one.

In this way, instead of considering a time evolution, the light intensity or magnitude can
be plotted against a rotational phase representing how far into the cycle the evolution
is. Therefore, consecutive sections of the light curve are overlapped and a compressed
representation is obtained in a range 0 to 1 (full period). It is worth noting that this
different representation needs the period to be available (which is actually the unknown
in the current problem); nevertheless, besides being employed in post-processing of the
light curve to better visualize it, it can also be used in some period finding methods (cf.
Sec. 1.2).

Photometry

Photometry is the science of measuring the amount of energy (flux), in the form of elec-
tromagnetic radiation that is received from celestial objects. The measurement of the flux
is of fundamental importance to retrieve information about the total energy output of the
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object (luminosity), the object size and other physical properties [34].
As seen in Sec. 2.2, the images coming from the detectors (either CCDs or CMOS) are
naturally in a digital form with a linear relationship between photons and pixel values.
Whenever this linearity is lost (pixel saturation), another way to retrieve the information
about the photon count is needed.
Moreover, there are several complications that must be dealt with: atmospheric seeing
determines a spreading of the objects in a number of pixels and causes the shape of the
object image to vary with time; the sky may show undesired external light sources that
need to be filtered out; in some scenarios, images of different objects may overlap (crowded
fields), and a way to separate them must be envisaged.
Considering the image of an isolated star, a fundamental concept to proceed is the point
spread function (PSF). The PSF describes the response of a detector to a point source. In
general, the shape of a PSF should be circularly symmetric. Nonetheless, seeing forces to
approximate a PSF as a central Gaussian core and a large halo approximated by a power
law. A common measure of the angular size (estimate of the image spreading pixel-wise)
of a PSF is the full width at half maximum (FWHM) that is the diameter where the flux
falls to half its central value (see Figure 2.14).

Figure 2.14: FWHM of a faint and bright star: brighter stars look bigger than faint ones,
even if their image shape and size is exactly the same, due to the higher intensity of the
latter [34]

Once the shape of the PSF is known, the relation between the pixel value and star
brightness has to be retrieved. First of all, a window inside which all the pixel values
are summed up (aperture) is defined. The aperture can have different shapes (circular,
ellipsoidal, rectangular) and its dimensions is usually defined from the FWHM estimate of
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the PSF. In particular, optimal aperture measurements have a diameter about 1.4 times
the FWHM [34].
Then, the aperture is centred on the star to be measured and the flux is computed as the
sum of all the pixel values contained inside. As mentioned before, the sky background
needs somehow to be subtracted; there are two main ways to achieve so:

• Subtraction of the statistic mean of all the pixel values to the image itself. In this
way, the background pixels are approximately zero and give no contribution to the
flux measure.

• Definition of a central circular aperture for the flux and annulus measurements.
With the annulus, an estimate of the background next to the source itself is provided,
leading to more accurate results.

The second method is in general preferred, but needs a sufficiently isolated star, so that
no other contribution but the sky background is falling inside the annulus.
Finally, once the flux coming from a given source is determined, its instrumental magni-
tude (Im) can be defined as:

Im = −2.5 · log
(
Nap

texp

)
(2.21)

Where Nap is the sum of the counts in the sky-subtracted aperture, while texp is the
exposure time of the image.
Therefore, aperture photometry gives the flux and instrumental magnitude of a star in
an image. Nevertheless, it can be applied to any source of light, even to streaks left by
space debris. In this case, there are different ways to define the shape of the aperture:
the most simple approach is to define rectangular apertures [35] that, pixel-by-pixel, slide
along the streak itself (cf. Sec. 3.2).

Now, if a reference star is identified in the field of view (FOV), the apparent magnitude of
the object of interest (M) only demands Im of both sources (reference (Imref

) and object
of interest (Im)) [36]. Then, similarly to Eq. 2.20:

M = mref + Im − Imref
(2.22)

Clearly, for M to be determined, mref needs somehow to be known.
In this work, aperture photometry will be mainly applied to the apparent magnitude
variation of saturated streaks, while for non-saturated ones a simpler approach evaluating
the central light intensity variation will be used (cf. Sec. 3.2).
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Catalogue Matching

To compute the apparent magnitude of an unknown object - whether a star or a space
debris reflecting light -, as seen in Eq. 2.22, the magnitude of a reference star must be
known.

Figure 2.15: Catalogue Matching Workflow: 1. Source Detection; 2. Catalogue Query
through different servers; 3. Catalogue Matching to get star association.

The identification of a star in a certain portion of the sky requires few steps (see also
Figure 2.15):

1. Identification of the sources in the image: the stars present in the image must be
pinpointed in terms of their celestial coordinates (RA and DEC). The identification
is carried out through source finding algorithms [37].

2. Catalogue Query: given the central celestial coordinates of the image and its angular
extension, star catalogues can be queried in order to retrieve the actual stars inside
the search radius set by the image width. In particular, star catalogues usually
present information about positions in the sky and magnitudes in different spectra
of the stars [38].
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3. Catalogue Matching: comparison between the positions of the identified stars in the
image and the queried ones. A proper matching allows to associate each star in the
catalogue to the ones in the image.

If the matching is successful, a control star can be chosen (usually the brightest one in
the field, i.e. lowest magnitude) and its apparent magnitude (mref ) used as a reference.

2.4. Genetic Algorithm

The genetic algorithm (GA) is one of the most used metaheuristic algorithms for optimiza-
tion related problems [39]. These algorithms can solve complex real-life problems, and are
inspired by biological evolution process, swarm behavior, and physics law. It is possible to
broadly divide such algorithms in single-solution based and population based ones. The
first uses single candidate solution and improves it by means of local search that may
cause the solution to get stuck in local optimum. On the other hand, population-based
metaheuristics use multiple candidate solutions during the search process, maintaining
sufficient diversity in the population to expand the search region and reduce the value of
the cost function.
Among the population-based metaheuristic algorithms, GA is inspired from evolutionary
biological processes. In fact, it mimics the Darwinian theory of survival of the fittest in
nature [40]. In GA, usually five phases are considered: Initial Population Generation;
Fitness Function Evaluation; Selection; Crossover; Mutation.

Figure 2.16: Population, Genes and Chromosomes [41]

The process begins with the random generation of a set of N individuals called popula-
tion. Each individual is a possible solution of the considered problem, i.e. parameters
that may guarantee a global optimum (Yb) of the objective function. An individual is
represented by a set of variables (genes) that, in the most simple implementation of the
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algorithm, are joined in a binary string (either 0 or 1 value), called chromosome Yi (see
Figure 2.16).
The fitness function determines how fit each individual is according to the objective to
minimize in the problem. Each chromosome of the population is evaluated by the fitness
function and a fitness score is associated to it. Depending on this value, each individual
will have a certain probability to be reproduced into the successive generations. In fact, in
the selection process two pairs of individuals (parents) are selected based on their fitness
score. The higher the fit of the individuals, the higher the probability to be selected.
Crossover is the most significant phase of the GA: for each obtained pair of parents, a
crossover point (CP) is randomly chosen within the genes. Genes inside each chromosome
of the two parents are swapped up to the crossover point, and two new chromosomes are
created (offspring, see Figure 2.17). The new offspring are then added to the population.
In some of them, certain genes may be subject to mutation with a low random proba-
bility, i.e. certain genes in the string are flipped from one value to another. Mutation is
introduced in order to guarantee a correct diversification in the metaheuristic algorithm.
The selection, crossover, and mutation operations are repeated on the current population
until a new population is obtained (new generation). Since the number of chromosomes in
the population is constant, in new generations individuals with the lowest fitness score are
discarded, giving way to new (better fit) offspring. The sequence of phases is repeated to
produce new individuals in each generation characterized by progressively higher fitness
scores. Convergence is obtained as soon as the produced offspring are not significantly
different from the previous generation (according to a certain function tolerance, FunTol)
or a maximum number of generations (NMAX) is reached.

Figure 2.17: Crossover Scheme [41]

GAs use a variety of operators to perform the phases listed above. In particular, there
are several different encoding schemes employed to translate each possible solution into a
chromosome:

• Binary encoding: the gene or chromosome is represented as a string of 1 or 0 (as
seen before)



38 2| Fundamentals

• Octal encoding: the gene or chromosome is represented in the form of octal numbers,
from 1 to 7

• Hexadecimal encoding: the gene or chromosome is represented in the form of hex-
adecimal numbers, from 0 to 9 or from A to F

• Value encoding: the chromosome is represented using a string with different values
that can be real (floating-point) or integer numbers, or characters

As it can be seen in Sec. 3.3, the implementation of the GA in MATLAB (ga.m, [42]) is
employed in the code. In particular, ga.m uses a floating-point value encoding scheme,
since it is able to solve more complex problems with respect to simple binary encoding.
Furthermore, there are various selection, crossover and mutation techniques that can be
employed in order to obtain a better convergence of the GA [39].
The working principle of GA is summed up in Alg. 2.1.

Algorithm 2.1 Genetic Algorithm [39]
- Generate initial population of N chromosomes Yi (i = 1, ..., N)
- Set iteration counter k = 0

- Compute fitness function of each chromosome
while k < NMAX do

- Select chromosomes with best fitness score
- Apply crossover operation on the pair of parents with crossover probability
- Apply mutation operation on the produced offspring with mutation probability
- Replace old population with newly generated population
- Evaluate the fitness function on the new individuals
- Evaluate the variation (var) of the fitness score with respect to the previous gener-
ation
if var > FunTol then

- Increment iteration counter: k = k + 1

else
break

end if
end while
- Return the global optimum Yb
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Process

As seen in Sec. 1.2, the proposed approach to determine the attitude state of the space
debris requires three main computation steps:

1. Light curve extraction and post-processing

2. Light curve simulation through the dynamics and kinematics of a square flat plate

3. Optimization of the objective function, minimizing the difference between the two
light curves

In order to validate the developed code, synthetic images are generated and analyzed. For
the creation of such images, the same code used to generate a target dynamics is leveraged
to reconstruct the area variation fed to TIG. As mentioned before, TIG is an image tracklet
generator developed by A. De Vittori and R. Cipollone in their master’s thesis work [5].
In particular, TIG is customized to draw space object tracklets, considering the tumbling
motion, over a night sky image.
Images (whether real or synthetic) are analyzed through SAP (Streak Analysis Pipeline)
(cf. Sec. 3.2), a novel Python application specifically developed for this thesis. SAP
extracts the main features of the target FITS image and streak (i.e. the real light curve).
FITS image metadata (observer location, time of observation) and some streak properties
(RA and DEC evolution in time) are exploited by the dynamics simulator (developed in
MATLAB) to generate the corresponding overall area variation (cf. Sec. 3.1). By scaling
this value according to Eq. 2.18, the simulated light curve is generated. The real light
curve is instead fitted by the optimization process carried out in MATLAB with ga.m by
changing the inputs of the dynamics simulator (cf. Sec. 3.3).
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3.1. Synthetic Image Generation

Figure 3.1: Thesis Workflow: Synthetic Image Generation

The first step performed when generating synthetic images (Figure 3.1) is the simulation
of the plate dynamics. In order to do so, the main physical concepts exposed in Sec. 2.1
are followed. Then, once the unitary illuminated-projected area variation is determined,
TIG is used to generate the image that will be fed to SAP (see Figure 3.2).
Since the dynamics simulation (used also in the case of real images in the optimization
step (cf. Sec. 3.3)) needs some information stored in the input FITS image header, as
well as some important features extracted by SAP (see Sec. 3.2), a two-run approach is
followed in the generation of the image. A first run (trial run (TR)) sets up a trial image,
used in a second run (real run (RR)) that finally produces a synthetic image.
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Figure 3.2: Image Generation Block: SAP is only used to provide information to set up
trial images when generating synthetic images.

Before giving more details about this two-run approach, a brief explanation of the dy-
namics simulator and TIG working principle must be done, in order to better understand
the rationale behind the two-run structure.

Dynamics and Kinematics Simulation

The dynamics simulation of the square flat plate is performed in MATLAB programming
environment. The code consists of two parts: a script and a function.
The script (main_dyn.m) reads from the tables coming from SAP (cf. Sec. 3.2) the
evolution of RA and DEC of the considered object and the associated time vector (L
points), the UTC, latitude, and longitude of the observer. Moreover, it sets the value of
the inertia matrix of the flat plate and its normal (z-axis):

Quantity Dimension Unit Description

Ra double [Lx1] [◦] RA evolution of the streak
Dec double [Lx1] [◦] DEC evolution of the streak
t double [Lx1] [s] Time vector

UTC datetime [1x1] [-] UTC of the observation
φ double [1x1] [◦] Latitude of the observer
λ double [1x1] [◦] Longitude of the observer
I double [3x3] [kgm2] Inertia matrix of the plate

N double [2x3] [-]
Matrix collecting the direction of

the normal (+z and −z in B)

The function (dynamics.m, see Alg. 3.1) simulates the dynamics and kinematics of the
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flat plate given a set of initial conditions (initial yaw-pitch-roll angles1 and initial angular
velocities) and the data provided by main_dyn.m.

Algorithm 3.1 Dynamics Simulation
% PROTOTYPE: [c_tot] = dynamics(var_input, param)

% ——————————————————————————————————— %
- Extract the initial conditions ω0 and angles0 from varinput

- Get the initial DCM (A0) through angle2dcm.m

- Determine the direction of the Sun in ECI (ŜN) through ephemeris using sun.m [43]
- Integrate Euler equations using Euler.m to get dynamics (ω) and kinematics (A)
evolution
% Loop over the time:
for i =1:length(t) do

- Determine the Observer-Object versor in ECI (ÔN) (cf. Eq. 2.16)
% Orthonormalize the DCM to correct integration errors with the following scheme
[21]:
Aortho[i] = 3/2 ·A[i]−A[i](A[i])′A[i] · 1/2
% Switch to Object-Observer versor in B:
ÔB = −Aortho[i]ÔN

% Define the Object-Sun versor in B:
ŜB = Aortho[i]ŜN

% Loop over the surface normals (two for a flat plate):
for j = 1:size(N,1) do

- Extract the normal as a row (nB = N[j, :]′)
% In order to be seen, the area must be illuminated by the Sun and at the same
time visible to the observer:
if ÔB · nB > 0 and ŜB · nB > 0 then

- Compute the projected area variation according to Eq. 2.17
else

- The projected area variation is equal to zero
end if

end for
end for
Return the projected area variation: ctot

1See Sec. 3.3 for details about the selection of the attitude parameters
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This function considers the orbital motion of the debris (RA, DEC evolution), as well as
the direction of the Sun for the given observation time. It outputs the area variation of
the flat plate as a function of time. The inputs to dynamics.m are:

• param: structure collecting all the quantities defined in the table above

• varinput: [1x6] row array collecting the initial conditions for the three angles (angles0)
and three angular velocities (ω0)

The reasoning behind dynamics.m follows the procedure exposed in Sec. 2.1; its output
is the overall area variation determined in Eq. 2.17, which is saved as a .txt file in the
same folder where TIG operates.

TIG - Tracklet Image Generator

As previously stated, TIG is a Python application for the generation of synthetic images
containing streaks left by space debris in a real or simulated sky image [5]. For the
purpose of this thesis, some modifications are done in order to integrate the program with
the other portions of the code, while the main structure of the code is left untouched.
In general, TIG is composed of three main Python files:

1. TIG_main.py : the main file to run the program

2. TIG_Classes.py : the core of the code, where most of the computations and analyses
are performed

3. TIG_External_Functions.py : file containing some useful functions used both by
TIG_Classes.py and by TIG_main.py

For the modified version of TIG to work properly, three different files need to be fed to
the program: one or more night sky FITS images, a .txt file of the area variation with
time (ctot) and another .txt file containing the output from SCOOP [44] (see Figure 3.3).
SCOOP (SpaceCraft and Objects Observation Planner) is a software, internally developed
in the Department of Aerospace Science and Technology of Politecnico di Milano, that
provides the relative Azimuth and Elevation for a given tracked object. In particular, the
input to SCOOP is a Two-Line orbital Element set (TLE), an ASCII string featuring a
list of orbital elements of the object in question, that can be propagated using the SGP4
algorithm [45].
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Figure 3.3: An example of a SCOOP text output file, displaying the relevant information
of the selected passages [5].

In this work, the input images are taken from the Online Digitized Sky Surveys server
at the European Southern Observatory (ESO) archive that gives access to the Digitized
Sky Survey 1 and 2 (DSS1 and DSS2) produced at the Space Telescope Science Institute
through its Guide Star Survey group [46]. The images (see Figure 3.4) are based on
photographic data obtained using the Oschin Schmidt Telescope on Palomar Mountain
(California) and the UK Schmidt Telescope in Australia.

Figure 3.4: Example of a night sky image surveyed from DSS1. The server needs the
central coordinates (RA, DEC) and the image size to output the FITS image.
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TIG original workflow [5] can be summarized as follows:

1. Definition of three variables: Img, Mask and Passage

-> Img: information on the input image

-> Mask: features related to the output mask

-> Passage: information on the passages contained in SCOOP output

2. Passage extraction: Az and El at each time instant of a random passage are read
from SCOOP output; initial and final conditions of the extraction are randomly
selected

3. Noise addition: random noise is added for simulated images

4. Trail placement and colouring: the number of pixels that form the tracklet for the
considered random passage are determined; the tracklet in the image is randomly
positioned and coloured

5. Other image processing operations: equalization, star fitter, vignetting, and mask
creation

In this work, the main modifications regarded the randomness of many operations, as well
as the pixel selection and colouring.
Firstly, the passage selection is fixed so that the (Az, El) evolution of the streak is always
the same for the current run.
Then, the selection of pixels is modified, in order to properly account for the area variation.
The idea is that, at least in the central part of the streak, the variation has to be faithfully
reproduced. In order to characterize and justify this modification, the method followed
to associate the pixels to a given passage must be explained.
Once the arrays of successive Az and El coordinates evolving in time are extracted from
the SCOOP output text file, they are interpolated with piecewise Lagrange second-order
polynomials (fi) (see Figure 3.5) and a start and end point are selected (red dots in the
image).
In order to determine the number of pixels associated to the angular evolution, the ratio
between the resolution of the image and the FOV is computed; then this pixel per degree
ratio (rp/d) is used in the following equation:

npx =
√

(Azend − Azstart)2 + (Elend − Elstart)2 · rp/d (3.1)

Where npx is the number of pixels required for the streak in question.
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Therefore, the arrays of Az or El evolution (Az and El, respectively) can be scaled with
the new number of components given by npx. If Az is built in this way, then El can be
determined by evaluating the interpolating function in Az.

Az

E
l

start

end

Figure 3.5: The quadratic interpolating function (in black) with Lagrangian basis on the
passage points (in blue). The red portion accounts for the randomly chosen trail to be
placed in the image [5].

Once these two arrays are defined, rp/d is used to determine the corresponding pixel
coordinates with respect to the image center in horizontal (pixh) and vertical (pixv)
direction. In order not to have all the streaks in the center of the image, a vertical (kv)
and horizontal (kh) random shifts are introduced. For the same reason as the random
passage extraction, in this work, the shifts are set as fixed values by the user.
With this procedure, the streak pixels are identified as couples of (x,y) coordinates in the
image that, when rounded, can sometimes repeat. Clearly, this could be an important
issue when considering that each value of the input area variation will be associated to a
pixel coordinates couple. In this way, there would be the risk to write on the same pixel
(same (x,y) coordinate) two consecutive values, thus losing the correct variation evolution.
Therefore, all the repeating couples in the [pixh, pixv] array are deleted according to Alg.
3.2.
As for the colouring, the area variation array (ctot) coming from the dynamics simulation
has to be scaled according to Eq. 2.18. Therefore, a multiplicative factor k and a shift n
are defined as follows:k : set by the user, boundaries defined by BITPIX and BZERO/BSCALE

n : pixel mean values in the considered image
(3.2)
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In particular, the choice of n allows to reduce the number of variables of the optimization
problem (cf. Sec. 3.3).
Moreover, some noise needs to be introduced in the tracklet colouring process. In particu-
lar, the noise is summed to the luminosity expression and determined as a Gaussian noise
with zero mean and a user-defined standard deviation (std). Therefore, the expression of
the luminosity, i.e. synthetic light curve (Lsyn), is:

Lsyn = ctot · k + n+ noise(std) (3.3)

Algorithm 3.2 Delete Repeating Couples
- Stack vertically rounded pixh and rounded pixv to get a [npxx2] matrix (points)
% Loop over the rows (npx):
for i=1:range(npx − 1) do

% Check if current row is equal to successive one:
if points[i, :] == points[i + 1, :] then

- Collect the row index in a vector (delrow)
end if

end for
- Delete the rows inside points according to delrow and obtain pointsnew

Now, for each point identified in pointsnew, the old pixel value is replaced by the corre-
sponding value of Lsyn. In this way, a thin streak of varying luminous pixels is obtained.
In order to account for atmospheric seeing and resolution issues (cf. Sec. 2.2), a randomly
selected thickness variation (thickvari) between a minimum (thickmin) and a maximum
(thickmax) value is given to the streak (see Figure 3.6).

Figure 3.6: Detail on streak’s thickness variation. In case of non-saturated one, the
variation in thickness is assigned randomly.

Then, four arrays are defined:
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• vect: array ranging from minus to plus thickvari

• vect2: array ranging from 2·min(vect) to 2·max(vect), excluding the pixels already
present in vect

• vect3: array ranging from 1.5 ·min(vect2) to 1.5 ·max(vect2), excluding the pixels
already present in vect2

• vect4: array ranging from 1.5 ·min(vect3) to 1.5 ·max(vect3), excluding the pixels
already present in vect3

These arrays specify pixels color around [pixh, pixv]. In particular, it is necessary to con-
sider two distinct conditions, whether the streak develops more horizontally or vertically.
The corresponding colouring is performed as it is outlined in Alg. 3.3 and the outcome
can be seen in Figure 3.7.
In this new version, TIG can represent saturated or partially saturated streaks (Figure
3.7). As seen in Sec. 2.3, saturation entails an increase in the smearing of the streak itself
due to the bleeding effect. Moreover, the pixel values must be clipped to the maximum
value (saturation threshold, sat) according to the input sky image (following BZERO and
BSCALE indications, cf. Sec. 2.2). In order to render these effects, the central part of the
tracklet is left almost all saturated (depending on the values coming from Lsyn), while also
vect3 and vect4 are used to guarantee a correct enlargement corresponding to saturated
central pixels and an overall thickening of the streak (see Alg. 3.4).

(a) (b)

Figure 3.7: Synthetic Images from TIG: (a) is non saturated, while (b) is the saturated
one.



3| Angular Velocity Extraction Process 49

Algorithm 3.3 Streak Colouring
% PROCEDURE: colour pixels of matrix of the image (imgarray) according to the
pixels identified by pixv and pixh

% ——————————————————————————————————— %
% Check if the streak is developed more horizontally or vertically:
hor = max(pixv)−min(pixv) < max(pixh)−min(pixh)
if hor then

- Delete repeating horizontal coordinates (see Alg. 3.2): avoid overwriting
else

- Delete repeating vertical coordinates (see Alg. 3.2): avoid overwriting
end if
% Define the arrays for the thickness:
for i = 1:size(pixv) do

% Check if thickvari [i] is even or odd:
if thickvari [i]%2 == 0 then
vect = range(−thickvari [i]/2, thickvari [i]/2)

else
vect = range((−thickvari [i]/2 + 1), (thickvari [i]/2 + 1))

end if
- Build vect2, vect3 and vect4
% Differentiate saturated and non-saturated condition:
if Lsyn[i] < sat then

% Consider vertical development:
if hor then

% Colour the central part of the streak:
for n in vect do
imgarray[pixv[i] + n][pixh[i]] = Lsyn[i]

end for
% Colour pixels above and below the central pixel with decreasing intensity:
for r in vect2 do
imgarray[pixv[i] + r][pixh[i]] = Lsyn[i] ∗ (1− 0.15 ∗ |r|/2)

end for
else

% Consider horizontal development: same procedure, loop over horizontal pixels
end if

else
- Saturated streak: check Alg. 3.4

end if
end for



50 3| Angular Velocity Extraction Process

Algorithm 3.4 Streak Colouring - Saturated
% PROCEDURE: colour pixels of matrix of the image (imgarray) according to the
pixels identified by pixv and pixh with saturated values in Lsyn

% ——————————————————————————————————— %
if Lsyn[i] >= sat then

% Distinguish between vertical or horizontal development:
if hor then

% Saturate the central part of the streak:
for n in vect do
imgarray[pixv[i] + n][pixh[i]] = sat

end for
% Colour pixels above and below the central ones with decreasing intensity (clip
to sat if the values are still above sat):
for r in vect2 do
imgarray[pixv[i] + r][pixh[i]] = Lsyn[i] ∗ (1− 0.03 ∗ |r|)

end for
% Keep colouring pixels above and below with decreasing intensity (clip to sat if
the values are still above sat):
for s in vect3 do
imgarray[pixv[i] + s][pixh[i]] = Lsyn[i] ∗ (1− 0.06 ∗ |s|)

end for
% Check if farther pixel coloured is still saturated:
if imgarray[pixv[i] + s][pixh[i]] == sat then

% Keep on decreasing the intensity:
for p in vect4 do
imgarray[pixv[i] + p][pixh[i]] = Lsyn[i] ∗ (1− 0.08 ∗ |p|)

end for
end if

else
- Consider horizontal development: same procedure, loop over horizontal pixels

end if
end if

Trial Run and Real Run

Now, it is possible to better explain the logic behind TR and RR. As seen before,
dynamics.m works with some information that is either stored in FITS image header
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or computed by SAP. Therefore, when simulating the dynamics from scratch, this infor-
mation is not available from the beginning.
In TR (see Figure 3.8), a trial dynamics is simulated with fake information regarding all
the inputs to dynamics.m and with random initial conditions. In particular, the time
vector of the simulation is set to be compliant with the SCOOP output file. The Sun
direction can either be computed through ephemeris with a fake UTC or directly set with
artificial RA and DEC of the Sun. In this way, a sufficiently long area variation array
(cTR

tot ) is obtained and ready for TIG. Hence, a fixed passage selection and extraction of
fixed length and a predetermined positioning of the streak is set, so that in both TR and
RR the streak will be exactly the same in terms of length and position. Then, TIG is
run with the fake colouring based on cTR

tot , with a background sky image containing some
information needed by dynamics.m for the RR (UTC, φ, and ϑ).

Figure 3.8: Block Scheme of the Trial Run. The output (Trial Image) is given to SAP.

The last bit of missing information is the Ra and Dec evolution of the tracklet. Since the
SCOOP output refers to an observer location that is different from the one stored in the
FITS file header, TIG cannot be used to retrieve Az and El and then to transform them
into Ra and Dec (cf. Appendix A). On the other hand, SAP is developed to analyze any
kind of image (both real and synthetic) and is able to identify and extract the streak from
the image itself. Therefore, in TR, SAP is used on the trial image exclusively to extract
Ra and Dec and the vector of time t (cf. Sec. 3.2 for more details).
In this way, all the inputs to dynamics.m and main_dyn.m are now available for RR to
be performed. In RR (see Figure 3.9), a finer evaluation of the initial conditions is done
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in order to obtain a streak that is correctly visible in the image generated by TIG.

Figure 3.9: Block Scheme of the Real Run. The output is the synthetic image that will
be given to SAP to perform a complete analysis.
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Therefore, the initial direction of the Observer-Object versor and Observer-Sun versor is
evaluated in TH, to see if the extracted information is actually representing a feasible
situation (see Figure 3.10). If the Sun versor is in a somehow incompatible illumination
condition (i.e. above the horizon or with a too low angle with respect to the object) an
artificial direction is forced in order to have the object lit and visible on ground.

Figure 3.10: Initial directions between Observer, Object and Sun in TH frame. Feasible
situation with Sun below the horizon illuminating the debris that is visible by the observer,
for a given UTC, latitude, and longitude.

Clearly, this expedient is used only in the case of synthetic images, where the presence
of a light-reflecting debris is forced into the image and the illumination coming from the
Sun for the given observation time may not be the most suitable one; with real images,
the direction of the Sun can be directly computed through ephemeris.
Once the initial directions are identified, the user needs to set the initial attitude param-
eters and angular velocities fed into dynamics.m. This choice is done in order to have
an overall cRR

tot variation always different from zero. This implies that both γ and β are
always lower than 90◦ for a given normal (see Sec. 2.1) or that the rotation is sufficiently
fast that the non-reflecting zero-thickness sides are not seen by the observer.
Finally, cRR

tot is simulated with the correct Ra and Dec arrays. Then, this quantity is
fed to TIG, which generates the final image according to the desired area variation trend
using the same parameters as in TR.
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The overall process is quite lengthy, but in this way all the physics behind the procedure
is preserved, which is particularly important when evaluating streaks in real images.

3.2. SAP - Streak Analysis Pipeline

Figure 3.11: Thesis Workflow: SAP

The Streak Analysis Pipeline (SAP, Figure 3.11) is a Python application that performs
the following main tasks (see Figure 3.12):

1. Detection and extraction of the streak(s) from the input FITS file

2. Extraction of central line luminosity variation (light curve in terms of light intensity)
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3. Evaluation of the streak thickness

4. Detection of the sources in the image and control star (lowest magnitude) identifi-
cation and aperture photometry

5. Catalogue query and catalogue matching with the field in the image

6. Aperture photometry on the streak and light curve extraction (in terms of apparent
magnitude)

Tasks from 4 to 6 are performed in the case of saturated streaks (cf. Figure 3.12).

Figure 3.12: Block Scheme of SAP

The code consists of three Python files:

• SAP_Main.py : the main file to run the program

• SAP_Classes.py : the core of the code, where most of the computations and analyses
are performed

• SAP_Ext_functions.py : file containing some useful functions used both by SAP_
Classes.py and by SAP_Main.py

The overall code is conceived as an independent pipeline that can work with any FITS
image that contains one or more streaks. For the purpose of this work, the output of SAP
is saved in a folder where the MATLAB optimization operates. Moreover, for each run
on the image different HTML pages for diagnostics are created.
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Streak Detection and Extraction

Among the available Python packages for streak detection, ASTRiDE (Automated Streak
Detection for Astronomical Images) [47] is selected, since it implements the functionality
of streak detection that provides a border for each object (boundary-tracing or contour-
tracing).
Moreover, ASTRiDE employs an algorithm for quantifying the shape of each border to
assess whether or not it belongs to a streak. In order to do so, the steps followed are:

1. Background removal: ASTRiDE removes the background noise from the FITS image
using the photutils package [48].

2. Contour map: border detection of the streak controlled by a threshold value

3. Morphology of the detected border: star-like sources are removed by considering
different morphological parameters that ASTRiDE defines for each identified border

The different parameters defined for each streak are:

Quantity Dimension Description

SF double [1x1]
Shape Factor. Circularity of the

streak (SF = 1 for a circle)

RD double [1x1]
Radius Deviation. Approximated

deviation from roundness
area double [1x1] Area inside the border in px2

x double [Mx1]
X coordinate of the M points of

the streak

y double [Mx1]
Y coordinate of the M points of

the streak

xmin and xmax doubles [1x1]
Minimum and maximum X
coordinates of the streak

ymin and ymax doubles [1x1]
Minimum and maximum Y
coordinates of the streak

xc and yc doubles [1x1]
X and Y coordinates of the

streak centroid

slope double [1x1]
Angular coefficient of the streak
with respect to the horizontal

intercept double [1x1]
Intercept of the streak with the

vertical axis
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The output is organized as follows:

• .txt file where the main features of the detected streaks are organized. If more than
one streak is detected, a connectivity parameter notifies the user whether the streaks
are linked one over the other depending on their slopes

• Different figures: an image showing all the streaks identified (see Figure 3.13) and
close-ups of each of them

Figure 3.13: Example of ASTRiDE all.png output image. Each identified streak is marked
with different numbers and colours [47].

Algorithm 3.5 Streak Extraction
- Extract the image array data from the FITS file (imgarray)
% Collect the points of the contour identified by ASTRiDE:
points2 = [x,y]

- Create a True/False boolean matrix (mask) with the same dimension of imgarray

with True values in correspondence of points2
% Extract from imgarray the pixels identified by mask:
out[mask] = imgarray[mask]
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All the information relative to the streak is also accessible in Python. If more than one
streak is identified, SAP automatically selects the largest area streak. Once the streak is
identified in the image, SAP proceeds to extract the interested pixels to be analyzed (cf.
Alg. 3.5).
Therefore, the pixels of the streak become the only non-zero ones in out as it can be seen
in the figure below:

Figure 3.14: Detail of the streak extracted in out. All pixel values are null, but the streak
ones. In the image, the rendering is in negative colours to better visualize the streak.

Central Intensity Extraction

Figure 3.15: Typical light curve extracted by SAP of a synthetic streak as a variation of
the central luminosity in time.
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In the case of non-saturated streaks, the light curve extraction can be carried out by just
considering the evolution of the pixel values along the streak central line (see Figure 3.15).
In fact, this trend retains all the information contained in the supposed area variation,
thanks to the scaling considered in Eq. 2.18.
First of all, the streak orientation must be defined in the same way as in Alg. 3.3, to
check if the streak develops more horizontally or vertically. According to this distinction,
the streak central line is analytically defined as a line with equation:y = m · x+ q if hor is True

x = y/m− q/m if hor is False
(3.4)

Therefore, depending on hor, x or y are chosen as dependent or independent variables,
while the values of m and q are slope and intercept, respectively. In order to create two
arrays (xcentral and ycentral) that give the coordinates of the pixels along the central line,
the boundary points (start and end for x or y coordinates) are defined according to Alg.
3.6.

Algorithm 3.6 Central Line Definition
% Consider distinct cases according to hor:
if hor then

% Set the horizontal boundaries:
xstart = xmin and xend = xmax

% Compute the dependent variable (y) with first case in Eq. 3.4:
ystart = m · xstart + q

yend = m · xend + q

- Check if ystart < yend, otherwise switch them
- Compute nx and ny with Eq. 3.5 and the corresponding lstreak
% Build xcentral:
xcentral = linspace(xstart, xend, lstreak)

% Compute ycentral accordingly:
ycentral = m · xcentral + q

else
- Perform similar computation with y as the independent variable

end if

Then, the number of pixels in the horizontal and vertical direction needed to get from
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one streak extreme to the other are computed:nx = xstart − xend

ny = ystart − yend
(3.5)

The overall length of the streak (lstreak) is obtained as:

lstreak =
√
n2
x + n2

y (3.6)

Then, according to hor, the independent variable is built as an array ranging from the
previously identified extremes and with lstreak elements inside, while the dependent one is
again built according to Eq. 3.4 (check again Alg. 3.6 for the complete procedure).
Up until this point, all the computations are performed at sub-pixel level: when rounding
the pixel coordinates in a matrix that collects xcentral and ycentral (points3), some repe-
titions may occur. Therefore, Alg. 3.2 is applied in the same way as it was done in Sec.
3.1. Thereby, repeating rows in points3 are deleted and the extraction of the central line
is performed pixel by pixel without overwriting.

Figure 3.16: Visualization of repeating pixel values. The rounded coordinates given by
the central line may extract the same value on a column (if horizontally developed) of a
central pixel. The repeating value - at least for synthetic images, but also for real images
due to smearing - is an issue when trying to extract the correct luminosity evolution.

Once the pixels of the central line are determined, their coordinates are used to directly
extract the values of the pixels from the image. Two main issues may arise with this
procedure:
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• The extremes identified by ASTRiDE may not be precise, leading to the reading of
pixels not really part of the streak.

• In the extraction along the central coordinates, the same pixel value may be read
on different pixel coordinates due to the streak smearing. This is an important issue
mainly for synthetic images, where, whether horizontally or vertically developed, the
streak must be read without repetitions in order to correctly reproduce the input
area variation evolution.

The solution of the first problem is simply checking if the extracted pixel values differ
too much from each other or the associated brightness is too low. As regards the second
issue, whenever a repeating value is part of the luminosity evolution, it is deleted and the
associated coordinate is not considered anymore (see Figure 3.16).
In this way, the luminosity evolution (lumcentre) along the streak is determined. Now,
in order to retrieve a proper light curve, the time information is needed. In the case of
real images, the EXPOSURE field from the FITS header must be read and a time vector
is built ranging from zero to EXPOSURE, with the same number of elements as lumcentre.
For synthetic images instead, an artificial time vector is built, ranging from zero to the
number of elements of lumcentre, but with a certain time step (see Alg. 3.7).

Algorithm 3.7 Time Array Definition
% Consider distinct cases whether the image is real or synthetic:
if sim then

% Directly build the time array with a user-defined time step (dt):
t = linspace(0, dt · length(lumcentre), length(lumcentre))

else
- Extract the EXPOSURE field from the header (texp)
% Build the time array:
t = linspace(0, texp, length(lumcentre))

end if

This approach succeeds only with non-saturated streaks; with saturated ones, only the
streak central line coordinates are evaluated, while the light curve is determined in terms
of apparent magnitude after all the photometry process.

Thickness Variation

The streak thickness variation is a useful information for many reasons. As for saturated
streaks, it gives an indication on the different thickening due to the bleeding effect. For
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non-saturated streaks instead, it can be useful to know if some link between the thickness
variation and the smearing of the streak is present.
In order to evaluate the thickness, the following operations are performed:

1. Zero-padding of the mask with only streak illuminated pixels

2. Rotation of the zero-padded mask (check Alg. 3.8) so that the streak becomes
horizontal

3. Evaluation of the thickness

Algorithm 3.8 Zero-Padded Image Rotation
% Pad the masked image data array with zeros on the sides:
imgpadded = pad(out)

- Rotate imgpadded (avoid out-of-frame streak) according to slope to get the rotated
padded image (outrot)
- Consider the origin (upper left-hand corner) in the original image (cor) and in the
rotated one (crot)
% Compute the streak centroid with respect to cor:
xyor = [xc, yc]− cor

- Rotate xyor to get the streak’s centroid in outrot (xyr) through a 2D rotation matrix
with an angle equal to slope
% Compute the streak centroid with respect to the centre of the image:
xyrot = [xrotc , yrotc ] = xyr + crot

Figure 3.17: Visualization of the rotated streak pixels. The Y coordinate of the central
line (yrotc ) is constant, while the horizontal evolution (xhor) follows a straight line.
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Then, a loop over the vertical direction, starting from each central line coordinate (see
Figure 3.17), allows to determine how many pixels are not null (using out, see Alg. 3.9).
It is worth noting that with this approach the streak is considered to be symmetric with
respect to the central line.

Algorithm 3.9 Streak Thickness Evaluation
- Set the counter: i = 0

% Loop over the horizontal length of the streak:
while i < length(xhor) do

- Set the half-thickness counter (j = 0)
% Loop along vertical extension of the streak until a 0 is encountered:
while outrot[y

rot
c + j, xhor[i]] > 0 do

- Update the increment j: j = j + 1

end while
- Save the value of j in an array J

- Update the horizontal pixel: i = i+ 1

end while
- Get the full-thickness evolution value: thickvar = 2 · J

Control Star Photometry

In case of saturated streaks, the light curve loses the information about its physical
evolution. Therefore, a reference source in the field has to be identified and studied
to determine the apparent magnitude of the streak (cf. Sec. 2.2).
The search and analysis of this control star is performed by using different astronomic
Python packages (mainly astropy [49] and photutils).
The main steps are:

1. Source finding in the field. DAOStarFinder (based on the DAOPHOT algorithm
[50]) source extractor is used on the background-subtracted image with a mask
applied onto the streak (so that it is not considered) and with an initial FWHM set
by the user.

2. After the catalogue matching (see below), identification of the lowest magnitude
source in the field among the extracted ones. Cropping (with user-desired offset) of
the image around the control star.

3. PSF aperture photometry (cf. Sec. 2.2) on the identified star.

The main output of this process is the flux of the control star (fluxref ), i.e. sum of all
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the pixel values in the aperture.
This is the standard procedure for the aperture photometry of stars [51]. Nevertheless,
some difficulties arose during the development of this part of the code. In particular, once
the control star is identified, the cropping around its position does not guarantee that in
the resulting image only one star will be present (especially for crowded fields, see Figure
3.18).

Figure 3.18: Control Star Photometry in a crowded field. If the catalogue matching is
done properly, the control star will be at the centre of the cropped image and the aperture
(blue circle) will be centred on it.

Algorithm 3.10 Control Star Position
- If more than one star is present in the cropped field, the centroid coordinates will be
determined by the source extractor and stored in a matrix (positions)
% Loop over each star centroid coordinate:
for pos in positions do

if pos is within a 5x5 pixel box around the centre of the cropped image then
- Perform photometry on the selected source

end if
end for

Moreover, a refinement of the source extraction proved to be necessary, especially in terms
of FWHM. Therefore, another DAOStarFinder run is performed with a FWHM defined
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with aspylib astro package [52] fitting a Gaussian circular PSF onto the background-
subtracted sources in the cropped field. Finally, if the coordinates found through catalogue
matching are correct, the control star will be surely near the centre of the cropped image
(see Alg. 3.10) and the analysis can continue.
The overall process is represented in Figure 3.19.

Figure 3.19: Block Scheme of the photometry of the control star. Catalogue query and
matching is fundamental in order to determine the location of the control star in the field.
The process leads to the evaluation of the flux of the reference star.
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Catalogue Matching

As stated above, in order to identify the control star, its apparent magnitude needs to
be determined. Such a quantity is usually stored in astronomical catalogues that can be
queried online with different methods. The query returns the celestial coordinates (RA
and DEC) of a number of sources in a given field, that can be compared with the ones
extracted from the image. This procedure is called catalogue matching (cf. Sec. 2.2) and
it is of the utmost importance for the proper definition of the control star magnitude.

Algorithm 3.11 Search Radius Definition
- Extract the WCS information from the header
- Extract the pixel size (pixsize) of the detector from the header (XPIXSZ2)
- Get the focal length (FL) of the telescope from the header (FOCALLEN)
% Compute the pixel scale in arcsec/px [53]:
pixscale =

pixsize

FL
· 206.3

- Get the image dimension (ID) from the header (NAXIS1)
% Get the angle covered by the image:
dim = pixscale · ID
% Define the search radius (in arcsec) as half that dimension:
searchrad = dim/2

A well-known query is the ConeSearch provided by the Python package astroquery [54].
This function requires the user to input the centre and the radius of the field in the im-
age. While the central celestial coordinates can be retrieved from the header (OBJCTRA
and OBJCTDEC fields, see Sec. 2.2), the search radius needs to be computed from some of
the header information (see Alg. 3.11).
Then, in order to compare the catalogued sources with the extracted ones, a transforma-
tion from pixel to angular coordinates needs to be performed. A function pix_to_RADEC

is therefore implemented: it uses the WCS header info (cf. Sec. 2.2) to transform pixel
coordinates into world coordinates through the pixel_to_world function. Hence, with
astroquery’s match_to_catalog_sky function, the distances between the positions of
the extracted sources and the queried ones are computed, and the matching quality can
be evaluated. Finally, the lowest magnitude star can be identified and its apparent mag-
nitude stored as mref . Moreover, its celestial coordinates can be fed to the control star

2This is an unconventional field for FITS headers. Therefore, it can change its name depending on
the software used to generate the FITS file.
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photometry step, in order to perform the cropping (see Figure 3.20).

Figure 3.20: Block Scheme of the catalogue matching. The main outputs are the control
star magnitude and coordinates. The matching quality is used to check the goodness of
the process.

Streak Photometry

The last step left to perform is determining the streak flux variation. A series of rectan-
gular apertures are applied pixel by pixel, sliding horizontally or vertically according to
hor, along the central line of the streak.
Therefore, horizontal or vertical one-pixel-wide rectangles are placed along the coordi-
nates identified by xcentral and ycentral, with the length given by the maximum value
of thickvar (see Figure 3.21). In fact, considering that the analysis is performed for a
background-subtracted image, the contribution of the background pixels is almost null,
and the streak is certainly contained inside the apertures. The flux variation in each
aperture is stored in an array (fluxstreak).
In order to define the apparent magnitude variation, Eq. 2.21 is applied both to the flux
of the control star and to the one of the streak:

Imref
= −2.5 · log

(
fluxref

texp

)

Im = −2.5 · log
(

fluxstreak

Texp

) (3.7)
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Where two different exposure times are considered. In the control star case, the exposure
time (texp) coincides with the overall one of the image (whether real or synthetic). For
the streak instead, the pixels in each aperture collect photons only for the instant of
time when the object crosses that particular aperture; this implies that the corresponding
exposure time Texp is equal to texp scaled by the number of pixels that made up the streak,
since one-pixel-wide rectangular apertures are being considered.

Figure 3.21: Detail of Rectangular apertures (in blue) on the streak. The width of each
aperture is of one pixel, while the length is given by the maximum value of thickvar. The
background pixels give almost no contribution (image in negative colours).

Finally, the apparent magnitude evolution can be determined through Eq. 2.22:

m = mref + Im − Imref
(3.8)

SAP - Diagnostics and Output

As it can be seen, SAP is an application that performs multiple tasks and has different
outputs. In order to track how SAP worked, three HTML diagnostics pages are produced
for each run:
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1. streak_diagnostics.html : it contains the main results regarding the streak detection
and extraction.

2. phot_diagnostics.html : it contains the main results concerning the control star pho-
tometry

3. streak_phot_diagnostics.html : it contains the main results coming from the pho-
tometry of the streak

The last two diagnostics pages are returned only if the streak is saturated.
As for the outputs sent to MATLAB, two .csv tables and a .txt file are stored:

• A first table (table.csv) storing the RA and DEC coordinate evolution (Ra and
Dec) of the streak central line (pix_to_RADEC applied to xcentral and ycentral) and
the associated time vector (t).

• A second table (dat.csv) storing useful information read from the FITS header
image: UTC, φ and ϑ. It also embeds the mean value of pixels in the image (n)
and the saturation threshold (sat).

• A text file that features the time evolution of the central luminosity (lum.txt) or
of the apparent magnitude (mag.txt) for saturated streaks. In both cases, the real
extracted light curve is given to the optimization part of the code.

3.3. Optimization

The last part of the procedure to extract the attitude state of the approximated square
flat plate is the optimization between the real light curve extracted from SAP (cf. Sec.
3.2) and the simulated light curve (see Figure 3.22).
The code (completely developed in MATLAB) is made of two parts:

• A script (main.m): it reads from the tables coming from SAP the evolution of RA
and DEC of the streak (Ra and Dec), the associated time vector (t), the UTC,
latitude (φ) and longitude (ϑ) of the observer, the pixel mean value of the image (n)
and the saturation threshold (sat). It builds the array of the real light curve read
from the .txt coming from SAP. It sets the value of the inertia matrix (I) and of the
normal (N). Moreover, it defines the optimization problem variables and settings
and runs the solver ga.m (see Sec. 1.2).

• A function (obj_fun.m): it takes as input the initial attitude conditions to run
dynamics.m (see Sec. 3.1) and the multiplicative factor k, in order to build the
simulated light curve according to Eq. 2.18. It outputs the difference (cost) between
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the synthetic and the real light curve. It is used as the fitness function to be
minimized by ga.m.

Figure 3.22: Thesis Workflow: Optimization

The cost function, in its simplest form, could be written as the difference in absolute value
between the two light curves (diffabs), although implying two main issues:

1. ga.m can minimize a function that outputs a scalar value

2. The values in diffabs are difficult to manage by the optimization solver due to
improper scaling of light curves

Consequently, the variation of light intensity is rescaled to the [0,1] range using the sat-
uration threshold (sat) computed in SAP. In this way, the mean cost value during the
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optimization is much lower, leading to a better convergence. Then, in order to obtain a
scalar value, cost is computed as the summation of all the elements in diffabs (see Alg.
3.12). This decision stems from a trial and error process to achieve the best cost function
for the problem at hand.

Algorithm 3.12 Cost Definition
% PROTOTYPE: [cost] = obj_fun(var_input_opt, param)

% ——————————————————————————————————— %
- Run dynamics.m with the initial attitude conditions and obtain ctot

% Read the real light curve in terms of central luminosity from the .txt file and scale
it:
lumreal = lumcentre/sat

- Extract the multiplicative factor k from varinput,opt

% Scale the shift n:
nscaled = n/sat

% Compute the simulated light curve according to Eq. 2.18:
lumsim = ctot · k + nscaled

% Compute the cost:
cost = sum(abs(lumreal − lumsim))

In order to properly set the ga.m problem, the different inputs to the function need to be
defined:

1. fitnessfcn: fitness function that outputs the problem objective to be minimized.
As seen above, obj_fun.m is used.

2. nvars: number of design (input) variables (x). This number is defined in order to
maximize the solver speed. x must contain the initial conditions for the dynamics
and kinematics simulation of dynamics.m and the ctot upscaling parameters.

3. Aineq and A: matrices for linear inequality and equality constraints on x (not needed
for the problem at hand)

4. bineq and b: vectors for linear inequality and equality constraints on x (not needed
for the problem at hand)

5. lb: lower boundaries of x (check Table 3.1)

6. ub: upper boundaries of x (check Table 3.1)

7. nonlcon: nonlinear constraint function (not needed for the problem at hand)
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8. options: options structure with different fields. Different settings can be defined,
such as: maximum number of generations (MaxGen), maximum number of iter-
ations, population, selection, crossover and mutation options, function tolerance
(FunTol).

Quantity lb ub

ω0x −ωlim ωlim

ω0y −ωlim ωlim

ω0z −ωlim ωlim

ϕ0 0◦ 360◦

θ0 0◦ 360◦

ψ0 0◦ 360◦

k 0 1

Table 3.1: Lower and Upper boundaries of the design variables: ωlim value is determined
by performing a Fourier series expansion of the real light curve up to the second order
[55] and extracting the fundamental frequency of the resulting curve.

Therefore, the final array of design variables (varinput,opt, see Alg. 3.12) is composed by:

• Attitude initial conditions: three initial angular velocities (ω0x, ω0y, and ω0z) and
three initial yaw-pitch-roll angles (ϕ0, θ0, and ψ0, cf. Sec. 2.1), so that only six
parameters are needed to simulate the dynamics and input in dynamics.m, as seen
before (see Alg. 3.1).

• Scaling parameters: only the multiplicative factor k, since n is taken as the mean
pixel value of the image coming from SAP.

In this way, only seven parameters are iteratively updated by ga.m, reducing the solver
computational cost. The choice of n can be justified considering that in this way the
streak luminosity variation will always be above the background sky pixel values (ctot
always larger than 0), i.e. the streak is actually visible.

If all the inputs are collected in a structure (problem), the optimal solution is given by
x=ga(problem). Other outputs can be requested to further characterize the solution:

• fval: objective function value at the solution

• exitflag: integer number that tells the reason why ga.m stopped
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• output: information about the optimization process, returned as a structure with
different fields

Along with the GA minimization process, a plot showing the mean and the best fitness
value and the progress of the optimization is provided (see Figure 3.23). Moreover, the
computation time is tracked through MATLAB tic/toc functions [56].

Figure 3.23: GA Progress plot. Mean and best fitness values for each generation are
represented in the upper plot, while the stopping criteria (maximum stall time, FunTol,
maximum time or MaxGen) of the run is in the bottom one. For the considered run, the
solver stopped after reaching the maximum number of generations.

The optimization output accuracy can be estimated by visualizing the fitting between the
real light curve and the simulated one (see Chap. 4).
The aforementioned procedure (summarized in Figure 3.24) can also be extended when
considering the apparent magnitude light curve of saturated streaks. In this case, the
scaling of real and simulated magnitude variation is modified as it can be seen in Alg.
3.13. Moreover, some additional information is needed from SAP, such as the apparent
(mref ) and instrumental (Imref

) magnitudes of the control star.
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Figure 3.24: Block Scheme of the optimization.

Algorithm 3.13 Cost Definition (Apparent Magnitude)
% PROTOTYPE: [cost] = obj_fun_mag(var_input_opt, param)

% ——————————————————————————————————— %
- Run dynamics.m with the initial attitude conditions and obtain ctot

% Read the real light curve in terms of apparent magnitude from the .txt file and scale
it with respect to mref and Imref

:
magreal = m/(mref − Imref

)

- Extract the multiplicative factor k from varinput,opt

% No shift n considered. Compute the simulated light curve by scaling ctot, inverting
its behaviour (minus sign in logarithm computing the magnitude) and subtract it to 1:
magsim = 1− ctot · k
% Compute the cost:
cost = sum(abs(magreal −magsim))
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4| Results

In this chapter, the results and performance of the algorithm are analyzed and discussed
in detail. The overall procedure of angular velocity extraction is applied both on synthetic
and real images.
In the realization of synthetic images, different rotational regimes of space debris are
considered, in order to account for different real case scenarios [57]. In particular, three
different regimes are arbitrarily defined:

• Slow Rotation: maximum angular velocity below 10 ◦/s

• Medium Rotation: maximum angular velocity below 90 ◦/s

• Fast Rotation: maximum angular velocity below 180 ◦/s

Moreover, both non-saturated and saturated streaks are analyzed and the overall good-
ness of the different methods is compared.
The real images analyzed are taken from the Pratica di Mare ground station through a
350mm-optical telescope (PdM-MITE, Pratica di Mare - MIlitary TElescope) operated
by personnel of Aero-Space System Engineering Group of Flight Test Wing [58] and de-
signed by GMSpazio and Officina Stellare. These images were acquired in an observation
campaign of September 2017.
Concerning the machine on which the tests were performed, it is a PC with an Intel
i7-6500U CPU@2.5 GHz with a 16 GB RAM.

4.1. Synthetic Images

As previously seen in Sec. 3.1, the creation of synthetic images requires two main inputs
to TIG: FITS file containing the background image and header metadata; simulated
dynamics evolution (ctot) as the output of dynamics.m.
Then, when feeding the image to SAP, the user needs to set certain fixed values inside
the code (cf. Sec. 3.2). Finally, the settings of the optimization solver (cf. Sec. 3.3) are
defined according to the identified rotational regime.
The main distinction between the generated synthetic images will be given by the attitude
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initial conditions and the multiplicative factor k.
For each rotational regime, among the various synthetic images that were generated,
a representative one is selected. The results will show the effectiveness of the method
(quality of the fitting and retrieval of the attitude state) and the variability between
different runs on the same image. Moreover, the differences between rotational regimes
will be outlined.
In general, a key role is also played by the simulation time that is set in SAP (cf. Sec.
3.2), since the solver speed is penalized when it increases. Nonetheless, longer exposure
times imply a longer dynamics evolution, leading to a better attitude estimate.

Slow Rotation

In Figure 4.1, the synthetic image of a slow rotating debris generated by TIG is presented.
The extension of the streak is determined by the passage extracted from SCOOP, while
the colouring is given by the simulated dynamics and the scaling performed in TIG.

Figure 4.1: Slow-rotating debris synthetic image.

The initial conditions for the dynamics simulation and the multiplicative factor k are
summarized in Table 4.1, along with the results obtained through the optimization for a
given run.
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ω0x

[◦/s]
ω0y

[◦/s]
ω0z

[◦/s]
ϕ0

[◦]
θ0

[◦]
ψ0

[◦]
k

[-]
∥ω0∥
[◦/s]

Simulated
Dynamics

0.1 1.5 4 240 245 165 0.1526 4.27

Optimized
Dynamics

0.15 1.39 4.03 106 351 341 0.1191 4.26

Table 4.1: Slow Rotation - Results

In general, the optimization for the norm of the initial angular velocity is extremely
accurate, achieving a difference between the simulated and the optimized value below 0.1
◦/s. In particular the relative error between the two can be defined as:

err =

∣∣∣∣∥ωsim0 ∥ − ∥ωopt0 ∥
∥ωsim0 ∥

∣∣∣∣ (4.1)

For the result in Table 4.1, err = 0.2%.
On the other hand, the initial attitude parameters are not properly fitted; this is mainly
due to the presence of multiple solutions related to the light curve fitting. In fact, in
Figure 4.2, it can be seen that the solver has reached convergence.

Figure 4.2: Comparison of the real (in blue) and fitted (in red) light curves. Even if the
initial attitude parameters are different from the simulated ones, the curves are optimally
fitted (cost = 0.24) and the solver correctly stops.
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When running obj_fun.m with the simulated dynamics initial conditions and the multi-
plicative factor k used for the generation of the synthetic image, the cost measure may be
higher than the one obtained through optimization. This is clearly due to the presence
of some noise in the signal and underlines once more the possible presence of more than
one optimal solution for the problem.

In order to obtain a statistical relevance of the results, the optimization with ga.m is
carried out multiple times for the selected image. For this specific image, the following
parameters are set for each run: MaxGen = 1000, FunTol = 1e-6, and ωlim = 8◦/s. The
value of ωlim is identified by taking a Fourier series expansion of the input real light curve
(cf. Sec 3.3) and evaluating its period.
The results can be characterized in terms of err value for each run (see Figure 4.3). The
spreading of the results is quite contained and err is always kept below 10%. For each run,
the mean running time is approximately 12 minutes, that is quite contained considering
that the dynamics is simulated for more than 150 seconds.

Figure 4.3: Error in multiple runs (20) of the optimization solver on the given image.

Nevertheless, the behaviour of the results when considering this kind of parameter is
inevitably influenced by the absolute value of the considered angular velocity. Therefore,
a classical statistical approach to the results is employed by computing the cumulative
distribution function (CDF) of the relative error, in order to evaluate its changes between
the different rotational regime cases.
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The CDF of err can be defined as:

Ferr(x) = P (err ≤ x) (4.2)

Each point of the CDF represents the probability that err will take a value less than or
equal to x.

Figure 4.4: CDF of the relative error for slow rotating debris.

The CDF can be employed to better visualize the statistical distribution of err for the
selected image. In fact, its steepness is an estimate of the accuracy in the angular velocity
determination. In Figure 4.4, it can be seen that, in most of the cases (80%), err is below
5%.

Medium Rotation

The same procedure can be followed in the analysis of medium rotation synthetic im-
ages (see Figure 4.5). In this case, the angular velocity regime is incremented and the
corresponding results1 with respect to the simulation parameters are presented in Table
4.2.

1In the tables, always the best result among the different GA runs is shown.
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Figure 4.5: Medium-rotating debris synthetic image.

ω0x

[◦/s]
ω0y

[◦/s]
ω0z

[◦/s]
ϕ0

[◦]
θ0

[◦]
ψ0

[◦]
k

[-]
∥ω0∥
[◦/s]

Simulated
Dynamics

25 11 50 0 0 0 0.2289 56.97

Optimized
Dynamics

9.45 25.61 50.14 124 43 8 0.2263 57.08

Table 4.2: Medium Rotation - Results

These results highlight that the z-component of the angular velocity is the best fitted one,
while the x and y ones are inverted. This is a common behaviour shown by the solver,
occurring independently from the target rotational regime, and is closely related to the
the symmetry of the flat square plate that approximates the real debris. Clearly, this
is not considered an issue, since the x and y axis are completely interchangeable in this
framework.
Once again, the norm of the angular velocity is properly fitted (the relative error is rather
limited: err = 0.19%).
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Figure 4.6: CDF of the relative error for medium rotating debris.

As it can be seen in Figure 4.6, the CDF is less steep with respect to the slow rotating
case (cf. Figure 4.4). Moreover, the values of err are increased, meaning that in some
of the results the angular velocity is off by more than 1 ◦/s. Nevertheless, the solver is
able to find accurate solutions for an acceptable number of times (approximately 70% of
probability to get a result 5◦/s off). It is worth noting that the CDF is computed for 20
values of err (20 runs each). This number of samples may not be completely indicative of
the overall behaviour, but is considered a good compromise between the accuracy of the
statistics and the time required by each GA run (for the medium rotation synthetic image
considered, approximately 23 minutes per run were required for the 8-second simulated
dynamics).
The parameters used for ga.m for the image in question are:

Parameter Value

MaxGen 2000
FunTol 1e-9
ωlim 67 ◦/s

Fast Rotation

For fast rotating debris (see Figure 4.7), the optimization is carried out in the same way
as the other rotational regime cases.
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Figure 4.7: Fast-rotating debris synthetic image.

In this kind of synthetic images, the values of the angular velocity are associated to fast
spinning objects in LEO (cf. Sec. 4.2): the observation times are rather limited and the
evolution of the dynamics is quite contained.
The parameters set for ga.m are the same as the medium rotating case, with an increased
ωlim = 129◦/s. The mean run time is approximately 18 minutes, which is quite high
considering that the dynamics evolution is set at 1 second.

For the selected image, the initial simulation conditions and the optimized results are
summarized in Table 4.3.

ω0x

[◦/s]
ω0y

[◦/s]
ω0z

[◦/s]
ϕ0

[◦]
θ0

[◦]
ψ0

[◦]
k

[-]
∥ω0∥
[◦/s]

Simulated
Dynamics

81 50 120 200 15 45 0.1831 153.17

Optimized
Dynamics

76.47 57.44 120.13 191 20 42 0.1827 153.55

Table 4.3: Fast Rotation - Results

Once again the results show the trend to fit more properly the z-axis (major inertia one,
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see Sec. 2.1).

Figure 4.8: CDF of the relative error for fast rotating debris.

The relative error for the norm of the angular velocity in Table 4.3 is again quite low
(err = 0.25%). Nevertheless, the statistical behaviour of the CDF shows an increased
worsening of the solver performance with the increase of the angular velocity values (see
Figure 4.8).

Saturated Streaks

As seen in Chap. 3, the generation and analysis of synthetic images containing saturated
streaks (Figure 4.9) is also carried out in this work. The reasoning behind the code is the
same as the one used for non-saturated streaks. The main differences are the incremented
computational burden withstood by SAP (cf. Sec. 3.2) and the different nature of the
input light curve in terms of apparent magnitude evolution with time (cf. Sec. 3.3).
A slow rotational regime is considered in the selected image, and the initial conditions
and optimized results relative to it are presented in Table 4.4.
In general, it is evident that in case of saturated streaks the performance (with the same
settings as the slow rotation case) slightly decreases. Nevertheless, the norm of the angu-
lar velocity extracted is less than 1 ◦/s off the simulated value, which can be considered
an acceptable result.
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Figure 4.9: Saturated synthetic image.

ω0x

[◦/s]
ω0y

[◦/s]
ω0z

[◦/s]
ϕ0

[◦]
θ0

[◦]
ψ0

[◦]
∥ω0∥
[◦/s]

Simulated
Dynamics

5 2 8 0 80 200 9.64

Optimized
Dynamics

2.75 -2.32 -8.25 281 272 89 9.03

Table 4.4: Saturated - Results

Another visible feature, that occurs for all the target rotational regimes, is the opposite
sign between the optimized and the simulated angular velocities. Evidently, this is due
to the possibility for the solver to choose indifferently a positive or a negative z-axis for
the flat plate (cf. Sec. 2.1). This additional degree of freedom, even if it implies this sign
inversion, appeared to be an important feature for the solver ability to reach convergence,
since it allows GA to search for more diverse solutions and not to be stuck in sub-optimal
ones.
The CDF for err in different runs is less steep with respect to the results of a non-saturated
streak (Figure 4.10). This decline in the performance is clearly due to the increased loss
of information caused by saturation (see Sec. 2.2). This causes the solver to converge to
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worse solutions with a run time similar to the one of non-saturated slow rotation synthetic
images (approximately 9 minutes).

Figure 4.10: CDF of the relative error for saturated streaks.

4.2. Real Images

Once the code is tested against synthetic images, the analysis switches to real ones. In
this case, the results of the optimization can be directly shown and the overall process is
lighter in terms of tasks to be performed.
The image (see Figure 4.11) acquired by PdM-MITE contains a rather faint streak left by
a debris orbiting in LEO (exposure time of 1 second). In particular, through a simulation
on sorvegliatispaziali.inaf.it satellites map [59], the object passing in the image
FOV at the FITS header UTC is identified as the COSMO SkyMed 2, an ASI (Agenzia
Spaziale Italiana) artifical LEO satellite launched in 2007.
Since the image does not have any WCS info in the header, this is obtained with Astrometry.

net web service (cf. Sec. 2.2). Then, it is fed to SAP that extracts the real light curve.
As it can be seen from Figure 4.12, the curve is quite noisy and therefore a filtering of the
signal is performed. In fact, it was noted that by using a filtered version of the noisy real
light curve, the performance of the optimization solver improved. Moreover, a re-sampling
of the signal is carried out to decrease the number of points in the light curve, increasing
the solver speed; the selection of the number of points is done taking into consideration
possible aliasing problems.

sorvegliatispaziali.inaf.it
Astrometry.net
Astrometry.net
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Figure 4.11: Real image from the PdM-MITE 2017 observation campaign. The rendering
of the image is in logarithmic scale in order to better visualize the faint streak.

(a) (b)

Figure 4.12: Light curve filtering and results of the fitting. (a) Real noisy light curve
and filtered curve through Fourier series expansion. (b) Results of the optimization: real
light curve in blue, optimized one in red.

The parameters used for ga.m are: MaxGen = 1000, FunTol = 1e-6, and ωlim = 360◦/s.
The value of ωlim is set to grant a higher degree of freedom to the GA optimization during
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the design variable update. This was done after observing that a more stringent limitation
on the angular velocities led to an early poor convergence of the solver.
In Table 4.5, the results of the optimization are shown.

ω0x

[◦/s]
ω0y

[◦/s]
ω0z

[◦/s]
ϕ0

[◦]
θ0

[◦]
ψ0

[◦]
∥ω0∥
[◦/s]

-11.5 2.8 149 233 216 30 149.47

Table 4.5: Real Image - Results

The results are rather consistent with a fast spinning object in LEO and, as seen before for
fast rotating debris, the solver performance decreases with the increased value of angular
velocity both in terms of accuracy of the prediction and of optimization speed (average
run time of 11 minutes for just one second of simulation of the dynamics). Nevertheless,
for the identified object (COSMO SkyMed 2), the value of ω0z seems quite high. The
short-evolution dynamics does not allow a more precise estimate.
The fitting (see again Figure 4.12) can be considered accurate even if some of the fast
variations in the real light curve cannot be followed by the reflection model and simplified
geometry (cf. Sec. 2.1) used in the optimization problem.

Figure 4.13: CDF of the relative error for real streaks. The CDF is quite steep, even if
err is not really contained. Nevertheless almost 80% of the results are within 1σ of µ.

The optimization is performed for 100 times on the same image to evaluate the variability
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of the results. To achieve so, a new relative error is defined as:

err =

∣∣∣∣∥ω0∥ − µ

µ

∣∣∣∣ (4.3)

Where µ = 140.01◦/s is the statistical mean of the angular velocities norm. Then, it is
possible to evaluate the CDF of err and consider the probability of having a ∥ω0∥ that
differs more than 1σ (standard deviation, σ = 31.58◦/s) from µ.
The results for 100 runs, as it can be seen in Figure 4.13, are quite variable. This is mainly
due to the short evolution of the extracted light curve that may have different optimal
fittings and to the high rotational speeds, leading to worse results (cf. Sec. 4.1).
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The attitude determination of a tumbling space debris is a quite difficult challenge. Among
the many available methods, only few are able to extract a complete state and rather focus
on the determination of the period of rotation. In this thesis, a light curve inversion for
attitude reconstruction is carried out on both real and synthetic images.
The generation of synthetic images, performed using TIG and the dynamics simulator,
outputs FITS files that resemble the characteristics of a real streak left by a tumbling de-
bris. Moreover, SAP successfully extracts, analyzes, and post-processes the streak present
in any input FITS image. The optimization part of the code is able to identify different
rotational regimes of the tumbling object and conduct the analysis accordingly. The per-
formance of the optimization generally decreases with the increase of the rotation rate
(fast rotating debris), and if the streak is saturated. For noisy data, filtering of the signal
proved to be necessary in order to improve the performance of GA. The randomness of
the results of the latter is taken into consideration by performing multiple runs on the
same light curve, in order to consider a statistics of the different results of the fitting.
The analysis proved to be quite successful in the determination of the norm of the an-
gular velocity vector and, in some cases, of its components. On the other hand, attitude
orientation parameters are usually not identified. This is mainly due to the:

• Approximation of the generic space debris to a flat square plate

• Multiplicity of optimal solutions for the problem at hand

Nevertheless, since the code in this thesis is intended to be used for a preliminary analysis
of an unknown rotating space debris, this is not considered an issue.
The use of synthetic images was fundamental for the validation of the code and for the set
up of its main properties. The results for real images containing tumbling space debris
are quite variable and their accuracy should be checked. Hence, it could be useful to
test the code on a wider range of real images (e.g. with real saturated streaks inside)
with the chance to validate the results against known objects. Moreover, more complex
models could be used for the reflection and shaping of the debris when a refined analysis
is required.
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As seen in Sec. 2.1, it is useful to transform the celestial coordinates of a space object
(RA and DEC) into its local ones (Az and El) for a given observer location and time.
For this purpose, a function is developed in MATLAB (RADEC2AzEl.m), and its working
principle is based on the following procedure [60].
First of all, the inputs needed are:

• Ra and Dec evolution arrays

• UTC (in YYYY/MM/DD hh:mm:ss), latitude (φ) and longitude (λ) of the observer
(both in decimal degrees)

The first step is to link the streak observation to a reference date. For most modern
astronomical computations, J2000 is used. J2000 corresponds to 12:00 hrs UT of 1st
January 2000, and the observation UTC can be related to it in term of days passed since
(d). Once this operation is done, it is possible to determine the local sidereal time (LST)
of the observer in decimal degrees with the following formula:

LST = 100.46 + 0.985647 ∗ d+ λ+ 15 ∗ UT (A.1)

Where UT is the Universal Time in decimal hours; the constants inside are defined as:

• 100.46◦: value needed to make the expression yield the correct value for GST at 12h
UT on 1 January 2000

• 0.985647 ◦/day: number of degrees the Earth rotates in one mean solar day

• 15 ◦/h: number of degrees the Earth rotates with respect to the mean fictitious Sun
every hour

Then, the value in degrees of LST is brought in the range 0◦ to 360◦ by adding or sub-
tracting multiples of 360◦.
From LST, the local hour angle (LHA) (angle between observer meridian and meridian
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of the mean Sun) is computed for Ra at a given instant of time (t̂):

LHA = LST −Ra(t̂) (A.2)

Referring to Figure 2.2, the spherical triangle in Figure A.1 is identified.

Figure A.1: Spherical Triangle

Now, through spherical trigonometry it is possible to solve for Az and El:

El = arcsin (sin (DEC) sin (φ) + cos (DEC) cos (φ) cos (LHA))

Az =


arccos

(
sin (DEC)−sin (El) sin (φ)

cos (El) cos (φ)

)
if: sin (LHA) < 0

360◦ − arccos
(

sin (DEC)−sin (El) sin (φ)
cos (El) cos (φ)

)
if: sin (LHA) > 0

(A.3)
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