
POLITECNICO DI MILANO
School of Industrial and Information Engineering

Department of Electronics, Information and Bioengineering
Master of Science in Computer Science Engineering

Property Booking

A Web Platform Application

Supervisor:
Prof. Sara Comai

Master Thesis of:
Mohsen Faghfourmaghrebi, 894263

Academic Year 2020-2021

To my loving parents,

I salute you for believing in me and my dreams.

“Heav’n but the Vision of fulfill’d Desire,
And Hell the Shadow of a Soul on fire,
Cast on the Darkness into which Ourselves,
So late emerg’d from, shall so soon expire."

- Omar Khayyam, Rubáiyát, Edward FitzGerald

Acknowledgments

I would like to thank all of the professors of department of Computer Science
of Politecnico Di Milano and specially professor Sara Comai for their im-
mense support throughout my career as a student.

I would like to give my special gratitude to professor Piero Fraternali for
building a foundation of knowledge without which this project would not
have been possible.

Contents

Summary i

Abstract ii

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement . 3
1.3 Proposed Solution . 5
1.4 Thesis Structure . 6

2 Background 7
2.1 Relevant Methodologies Used 7

2.1.1 Agile Software Development 7
2.1.2 Scrum . 9

2.2 Relevant Technologies . 10
2.2.1 Three tier architecture 11
2.2.2 Spring for Web applications 14
2.2.3 Sencha Ext-JS . 16

3 Related work 18

4 Designing Web Application Platform 23
4.1 Software Modelling . 23

4.1.1 Use Case Diagram . 23
4.1.2 Class Diagram . 24
4.1.3 Business Process Modeling Diagram 25

5 Implementation 30
5.1 Design patterns . 30

5.1.1 MVC . 30
5.1.2 MVVM . 33

5.2 RESTFUL Web Services . 39
5.3 JSON . 40
5.4 Testing & Validation: . 40

5.4.1 Unit Testing with JUnit 41
5.4.2 System Test with LOG table 42
5.4.3 Debugger tools . 46

6 Conclusion and future work 47

A Application Screens 49

Bibliography 49

List of Figures

1.1 Year by year participation percentage 4
1.2 Year by year cumulative percentage 4

2.1 Agile Framework . 9
2.2 Scrum Methodology . 10
2.3 Model for Web application . 11
2.4 Taxonomy of three tier architecture 13
2.5 Request from Client to Server 14
2.6 Response from Server to Client 14
2.7 Spring container dependency injection 15

3.1 Example of a Dark pattern in UX design 20
3.2 Example of a Dark pattern in UX design 21
3.3 Spring Authorization of HttpServletRequest 22

4.1 Use case Diagram . 24
4.2 UML Class Diagram . 25
4.3 BPMN gateways . 26
4.4 BPMN guest Diagram . 27
4.5 BPMN property owner Diagram 27
4.6 BPMN platform owner Diagram 28
4.7 BPMN guest update booking Diagram 29
4.8 Database structure of digital booking platform 29

5.1 MVC Architectural design pattern 33
5.2 MVVM Architectural design pattern 38

A.1 Bookings page . 50
A.2 Warning message for Booking details page 50
A.3 Search Booking . 51
A.4 Property Owner(Agency) list 51
A.5 Property Owner Association 52
A.6 Guest Profiles . 52
A.7 Properties List . 53
A.8 Check In/Check out Management 53

Sommario

Gli andamenti globali indicano che il numero di utilizzatori di internet nel
mondo ha ormai raggiunto la cifra di 4.54 miliardi di persone, con un incre-
mento del 7 per cento (di cui 298 milioni di nuovi utenti) da gennaio 2019
fino a gennaio 2020. Inoltre, a gennaio 2020 sono stati registrati 3.8 miliardi
di utilizzatori di social media, cifra che ha avuto un incremento del +9% (321
nuovi utenti) rispetto allo stesso mese dell’anno precedente. In totale, più
di 5.19 miliardi di persone utilizzano al giorno d’oggi telefoni cellulari, aven-
do avuto un incremento di 124 milioni (2.4%) di nuovi utilizzatori rispetto
all’anno precedente.

L’impatto dei sopra citati dati hanno dato una grossa spinta alla crescita
di un altro settore, quello delle piattaforme digitali. Una piattaforma digitale
può essere definita come "un blocco fondamentale che provvedere una funzio-
ne essenziale ad un sistema tecnologico e serve da fondamento sopra il quale
altri prodotti complementari, tecnologie e servizi possono essere costruiti".

Le industrie che hanno fatto leva sulle piattafrome digitali hanno raggiun-
to una significante crescita di dimensioni e scala. Per esempio, le piattaforme
digitali che operano nelle aree dell’e-commerce e dello sviluppo software han-
no superato i 700 miliardi di dollari di valore di mercato. In aggiunta la
crescita delle piattaforme digitali ha trasformato il paesaggio di molte in-
dustrie come per esempio quella dei trasporti (Uber, Grab), dell’ospitalità
(Airbnb, CouchSurfing), e sviluppo software (Apple iOS, Google Android).

Questo report riassume come il processo del design di una piattaforma
digitale assuma i connotati dello stesso processo di design che ha l’ingegneria
del software. Nel primo capitolo vi sarà una breve discussione della defini-
zione delle piattaforme digitali e delle loro tipologie per poter dare forma al
contesto nel quale il nostro progetto si sta sviluppando.

Poichè questo progetto è il riassunto di uno stage, ne vedremo gli stadi di
design e sviluppo così come le metodologie e tecnologie che sono necessarie
per lo sviluppo di una piattaforma digitale quale è stata il nostro progetto.

i

Abstract

Global trends indicate that the number of people across the world using the
internet has grown to 4.54 billion, an increase of 7 percent (298 million new
users) from January 2019 to January 2020. In addition, there are 3.80 billion
social media users in January 2020, with this number increasing by more
than 9 percent (321 million new users) since same month last year. Globally,
more than 5.19 billion people now use mobile phones, with user numbers up
by 124 million (2.4 percent) over the past year.

The impact of the aforementioned trends boosted the growth of another
industry, the digital platforms. A digital platform can be defined as “a build-
ing block that provides an essential function to a technological system and
serves as a foundation upon which complementary products, technologies, or
services can be developed".

Enterprises that have leveraged the affordances of digital platforms have
achieved significant growth in size and scale. For instance, digital platform
providers in the areas of e-commerce and software development have at-
tained more than $700 billion in market value. In addition the rise of digital
platforms has transformed the landscape of multiple industries such as trans-
portation (e.g., Uber, Grab), hospitality (e.g., Airbnb, CouchSurfing), and
software development (e.g., Apple iOS, Google android).

This report summarises the process of designing a digital platform in hos-
pitality sector from a software engineering perspective. In the first chapter
we briefly discuss definition of digital platforms and typologies of such plat-
forms for the purpose of providing some context about the software project
we are trying to build.

Since this project is a summary of an internship stage body of work, we
will discuss thoroughly design and development phases of the project as well
as methodologies and technologies which are necessary to develop a digital
platform such as our project.

ii

Chapter 1

Introduction

GN Techonomy S.r.l. is a consulting company that, since 1995, offers tech-
nological and innovative enterprise solutions. GN techonomy is active in
Information technology sector providing ERP (Enterprise resource planning)
solutions as well as variety of customized software for its clients. The com-
pany’s mission statement is to develop a lasting competitive advantage for
its customers. I chose this organization because I find their mission to be
important and relevant to my career goals. My role at GN Techonomy is
JAVA solution architect. This report aims to summarise a project which was
developed for a customer of GN Techonomy during a six months period of
time.

1.1 Context

Platforms operate in two-or multi-sided markets with distinct groups of end
users. [1] Their value lies in creating an interdependence between the differ-
ent types of users in a way that facilitates transactions, thus improving the
welfare of both. [2] Platforms operate online and offline, common offline ex-
amples are newspapers and shopping malls,while online ones include search
engines and social networks. [3] Recent technological developments–notably
computer software, the internet and smart phones have considerably ex-
panded the scope for platforms to lower transaction costs. [4]

1

According to a study performed by JPMorgan Chase Institute [5] , there
is a dramatic growth in number of individuals who are earning income from
online platforms, such as Uber1, TaskRabiit2, or Airbnb3. In addition JP-
Morgan&Chase researchers, also make a distinction between "labour" and
"capital platforms", which they define as fallowing: Labour platforms such
as Uber or TaskRabbit, often referred to as "Gig Economy" connect cus-
tomers with freelancers or contingent workers who perform discrete tasks or
projects, Capital platforms such as Ebay4 or Airbnb connect customers with
individuals who rent assets or sell goods peer to peer [5].

The result of their research indicates between October 2012 and Septem-
ber 2015, monthly participation in the Online Platform Economy grew 10-
fold, from 0.1% to 1.0% (figure1.1). In addition over this three-year period,
the cumulative participation grew from 0.1% of adults to 4.7%, a 47-fold
growth (figure1.2).

Global trends indicate that the number of people across the world using
the internet has grown to 4.54 billion, an increase of 7 percent (298 million
new users) from January 2019 to January 2020. Globally, more than 5.19
billion people now use mobile phones, with user numbers up by 124 million
(2.4 percent) over the past year 5. In addition, according to a statistics
Portal 2017 survey, 88% of Americans and 78% of French book their hotel
using Internet 6.

1Uber Technologies, Inc., commonly known as Uber, is an American multinational
ride-hailing company offering services that include peer-to-peer ridesharing, ride service
hailing, food delivery, and a micromobility system with electric bikes and scooters

2TaskRabbit is an American online and mobile marketplace that matches freelance
labor with local demand, allowing consumers to find immediate help with everyday tasks,
including cleaning, moving, delivery and handyman work

3Airbnb, Inc. is an American online marketplace company based in San Francisco,
California, United States. Airbnb offer arrangement for lodging, primarily homestays, or
tourism experiences

4eBay Inc. is an American multinational e-commerce corporation based in San Jose,
California, that facilitates consumer-to-consumer and business-to-consumer sales through
its website

5https://datareportal.com/reports/digital-2020-global-digital-overview
6https://www.statista.com/statistics/666643/preference-of-online-or-offline-hotel-

2

The result of aforementioned study helps us classify our digital platform.
An online booking digital platform belongs to the category of Capital plat-
forms. In addition as the study suggests, it is evident that the number of
adults participating in digital online platforms economy is increasing rapidly
year by year. Considering the fact that the number of people across the
world using the internet has increased by 7 percent (298 million new users)
from Jan 2019 to January 2020 7 we can confidently assume, existence of
a tremendous potential for gaining profit from online platforms by means
of taking advantage of the growing user base in order to monetize the plat-
form for interested investors. In this report we will discuss the structure of
such platforms in form of an online property booking system from a software
engineering perspective.

1.2 Problem Statement

Online booking platforms such as AirBnB offer arrangement for a short pe-
riod hospitality, primarily connecting hosts (renters) and guests (typically
tourists, students, etc.). One observation is that, the services provided by
AirBnB or similar websites is not by design a "premium experience", there
are cases of high profile, VIP guests which need to rent a property for ex-
ample a villa, a house or a mansion in its entirety for possibly an extended
period of time, in some cases even months.

This opens up opportunity for another digital platform which can connect
the high end, luxury seeking guests with property owners which do not intend
to enlist their properties on low end platforms such as AirBnB. Providing
premium user experience is the main differentiating factor which needs to
be embedded in every aspect of our digital platform. In chapter 3 we will
discuss some guidelines on how to craft a better user experience.

First part of designing any piece of software project is the identification
of already existing business processes among different actors, e.g. agencies

booking-us/
7https://datareportal.com/reports/digital-2020-global-digital-overview

3

Figure 1.1: Year by year participation percentage
Graph illustrates percentage of adults participating in the Online Platform
Economy in each month. Image courtesy JPMorgan Chase Institute[5].

Figure 1.2: Year by year cumulative percentage
Graph illustrates cumulative percentage of adults who have ever

participated in the Online Platform Economy. Image courtesy JPMorgan
Chase Institute[5]

4

enlisting properties, Realtor, VIP guest, etc. For this part interviewing the
investors of the platform and identifying their requirements and expectations
is necessary.

The result of the interview between the project investor and software
developer is as follows: A booking platform in essence should be capable of
managing interactions between host(s) and guest(s). The host should be able
to enlist his/her property on the platform specifying a period of availability
and a set of criteria for the guests including number of guests and the price for
the property. Alternatively the guest should be able to filter listed properties
on the platform based on his/her preferences which includes price,location,
desired period, etc. and obviously book the chosen property. Finally there is
also an authority figure to manage conflicts between hosts and guests, this is
defined as the platform administrator which in this project is defined as the
platform manager.

After the identifying the scope and requirements of the project, we need to
assess them in order to find out possible candidate technologies and method-
ologies, in order to design the software architecture solution which can firstly
address the requirements, secondly speed up the business processes and fi-
nally increase productivity for the software customer as well as end users.

1.3 Proposed Solution

After analyzing the investors requirements, as well as identifying end user
needs through analysis of similar software, we chose a candidate solution,
a website which addresses needs of the high end property owners as well
as guests looking for luxury/high valued properties for rent. The website
platform is capable of making profit for the investors through monetizing
transactions between guests and hosts. Another proposed solution was de-
velopment of a mobile application encapsulating the same functionalities as
the website, however throughout interviews with investors we found that,
they prefer development of a web application due to the existence of previ-
ously built assets and capabilities, however they are in favor of extending the

5

platform to mobile devices in the future.
In a nutshell, our solution boils down to development of a fully functional

responsive website 8, hosted by one of the well known cloud providers, which
is capable of managing booking, reservation, handling transactions, making
invoices and finally build reports for future analysis. The emphasis on "UX
Design" in order to provide premium experience for the users is considered
as well.

1.4 Thesis Structure

We already provided some context and back ground info about digital plat-
forms in general and booking digital platform specifically throughout this
chapter. In he second chapter we will focus on technologies used for the
implementation of our digital platform as well as methodologies which were
chosen by the software development team. In the third chapter we will go
through software engineering blue print of the project and discuss the soft-
ware architectural design thoroughly. Finally in the fourth chapter we will
discuss the implementation experience and process of validation by the cus-
tomer and end users. The conclusion and possibility for future improvement
of the software is discussed in the last chapter.

8Responsive web design is an approach to web design that makes web pages render well
on a variety of devices and window or screen sizes.

6

Chapter 2

Background

In Section 2.1 we will go through software development methodologies used
to assess the requirements. The methodologies mentioned in 2.1 hep us create
a framework upon which we build our solution.

2.1 Relevant Methodologies Used

2.1.1 Agile Software Development

Agile 1 software development is an umbrella term for a set of frameworks and
practices based on the values and principles expressed in the Manifesto for
Agile Software Development.

Agile by nature focuses on customer collaboration, interactions between
individual members of a development team, and most importantly respond-
ing to unforeseen changes (that may arise during development cycle) in re-
quirements. The goal of agile is to produce a working software rather than
a comprehensive documentation.

Some of the more famous agile based frameworks are as follows:

• Scrum

• Rapid application development(RAD)
1https://www.agilealliance.org

7

• lean software development

• lean startup

• feature driven development

• extreme programming(XP)

We chose Scrum for the purpose of this project and throughout 2.1.2 we
describe how it works.

The Agile software development life cycle is an iterative process. Each it-
eration delivers a piece of working software available for use by the customer
until the final product is complete. The duration of each iteration is usually
two to four weeks in length and by definition has a fixed completion time.
As it is evident due to the iterative nature of Agile software development
life cycle, multiple iterations take place during development, with each iter-
ation completed the customers and business stakeholders provide additional
feedback in order to ensure the features delivered meet their requirements.

Figure 2.1 illustrates a typical iteration process flow of agile methodology.
Each iteration is composed of phases which are described briefly below:

1. Requirements: Define the requirements for the iteration based on the
product backlog, sprint backlog, customer and stakeholder feedback.

2. Design & Development: Design and develop software based on defined
requirements.

3. Testing: QA (Quality Assurance) testing, internal and external train-
ing, documentation development.

4. Deployment: Integrate and deliver the working iteration into produc-
tion.

5. Review: Accept customer and stakeholder feedback and work it into
the requirements of the next iteration.

8

Figure 2.1: Agile Framework
Figure illustrating phases of an iteration in Agile methodology.

2.1.2 Scrum

Scrum 2 is an agile process framework for managing complex knowledge work,
with an initial emphasis on software development. We choose Scrum because
it is adaptive,it uses iterative cycles, and it is fast and flexible therefore this
methodology allows us to deliver significant value to the customer early on.
Scrum ensures transparency in communication and creates an environment
of collective accountability and continuous progress.

We start by gathering information about the product and the require-
ments in form of User Stories. A user story is the smallest unit of work
in an agile framework. It is an end goal, not a feature, expressed from the
software users perspective. User stories are usually developed through discus-
sions with stakeholders. A common template for a user story is as follows:
As a<role>I can<capability>, so that<receive benefit>. User stories are
grouped together in order to from Epics. Epics are a collection of user sto-
ries which are related to each other either implicitly or explicitly. The scrum

2https://www.scrum.org

9

Figure 2.2: Scrum Methodology
Figure illustrating various phases of scrum methodology.

team usually choose epics based on a list of prioritized requirements defined
by the customer. The chosen epics enter the product backlog3. In scrum, the
Product Backlog is an ordered list of everything that is known to be needed
in the product. It is the single source of requirements for any changes to
be made to the product. The scrum team identifies a list of tasks from the
product backlog, these tasks must be completed by the end of the Scrum
Sprint. Sprint4 is a time-box of one month or less during which a “Done”,
usable, and potentially releasable product Increment is created.

2.2 Relevant Technologies

In this section we introduce technologies used for the development of this
project. Figure 2.3 shows the main elements of our web application. We will
go through main elements of proposed architecture for our web application
in section 2.2.1. Once we defined the architecture we plan to use, in section
2.2.2 we will discuss the technology used for the front-end and finally in 2.2.3
the back-end platform of choice is examined.

3https://www.scrum.org/resources/what-is-a-product-backlog
4https://www.scrum.org/resources/what-is-a-sprint-in-scrum

10

Figure 2.3: Model for Web application
Figure illustrating main elements of our web application and how they work

together.

2.2.1 Three tier architecture

In this section we will examine our proposed architecture for the application,
which is three tier architecture.

The three tier architecture is a client-server architecture, in which tier
represents physical separation and layer represents logical separation. In this
architecture each layer can potentially run on a different machine. In addition
each tier is developed and maintained as independent modules, most often
on separate platforms.

Some aspects concerning design of three tier architecture are as follows:

• Unconnected tiers should not communicate.

• Change in platform affects only the layer running on that particular
platform.

• Data transfer between tiers is part of the architecture. Protocols in-
volved may include one or more of SNMP, CORBA, Java RMI, .NET
Remoting, Windows Communication Foundation, sockets, UDP, web
services or other proprietary protocols.

• Three tier architecture follows component-oriented approach, generally

11

the architecture uses platform specific methods for communication in-
staed of a message based approach.

Now we briefly discuss role of each tier and how tiers work together.
Figure 2.4 illustrates elements discussed below.

1. Presentation Tier/Front-end: This is the topmost level of the ap-
plication. It provides user interface, handles the interaction with the
user. Sometimes called the GUI or client view or front-end. It sends
content to browsers in the form of HTML/JS/CSS. This tier may use
frameworks such as React, Angular, Ember, Aurora, etc. It communi-
cates with business logic tier in form of http request/response, which
business logic tier can handle.

2. Application Tier/Back-end (Business Logic or Middle Tier):
This tier contains set of rules for processing information(business logic)
and is able to accommodate many users. This tier is sometimes also
called as middle-ware. Middle-ware processes the inputs received from
the clients and interacts with the database. The logic tier will have
the JSP, Java Servlets, Ruby, PHP, C++, Python and other programs.
The logic tier runs on a Web server.

3. Data Tier: A database, comprising both data sets and the database
management system or RDBMS 5 software that manages and provides
access to the data (back-end). It provides security, data integrity and
support application. The data tier is usually a kind of database, such
as a MySQL, SQLite or PostgreSQL database running on a server.

Now that we have defined the three tier architecture and how it works,
we discuss the main advantages as well as disadvantages of using this archi-
tecture.

Advantages:

• Maintainability: Because each tier is independent of the other tiers,
updates or changes can be carried out without affecting the application
as a whole.

5Relational Database Management System

12

Figure 2.4: Taxonomy of three tier architecture
Figure illustrating the three tier architecture.

• Scalability: Because tiers are based on the deployment of layers, scal-
ing out an application is reasonably straightforward.

• Flexibility: Because each tier can be managed or scaled indepen-
dently, flexibility is increased.

• Availability: Applications can exploit the modular architecture of en-
abling systems using easily scalable components, which increases avail-
ability.

• Re-usability: Components are reusable

• Faster development: Because of division of work web designer does
presentation, software engineer does logic, DB admin does data model.

Disadvantages:

• Cost: High installation cost.

• Complexity: Structure is more complex as compare to 1 & 2 tier
architectures.

The usage of Cloud environments as Database solution provider is op-
timal for our architecture. The dynamic distributed database over Cloud

13

Figure 2.5: Request from Client to Server
Figure illustrating a request made by a client toward the web application

server.

Figure 2.6: Response from Server to Client
Figure illustrating server response to the client request.

Environment improves accessibility and response time for our clients as well
as providing scalability in case of future expansions of our digital platform.
Figure 2.3 illustrates this concept.

2.2.2 Spring for Web applications

The Spring Framework is an application framework and inversion of control
container for the Java platform.

There are a few key concepts which need declaration. Firstly we explain
the concept of "Web Container" briefly. A Web Container is a java applica-
tion that controls servlet. Servlets do not have a main() method, therefore
they require a container to load them. In essence A Web Container is a place
where servlets are deployed. Figure 2.5 shows a request made by a client to
the application server, when a client sends a request to the web server which
contains a servlet, the web server redirects that request to the container
rather than to the servlet directly. Figure 2.6 shows the response received
by the client. In this case the Web Container finds out the servlet which
requested a response and passes the Http Request as well as the response to
the servlet and loads the servlet methods i.e. doGet() or do Post().

14

Figure 2.7: Spring container dependency injection
Figure illustrating usage of user supplied Metadata and JAVA POJO
classes for the purpose of dependency Injection into the application.

Secondly we introduce the concept of "Inversion of Control". IOC 6 is
a process whereby objects define their dependencies, that is, the other ob-
jects they work with,only through constructor arguments, arguments to a
factory method, or properties that are set on the object instance after it is
constructed or returned from a factory method.The container then injects
those dependencies when it creates the bean. In other words Inversion of
control indicates the control flow of the program is inverted meaning that
the control flow of the program is delegated to an external source, a.k.a. the
container.

In addition the Spring IoC container consumes a form of configuration
metadata which can be seen in figure 2.7; this configuration metadata repre-
sents how an application developer instructs the Spring container to instan-
tiate, configure, and assemble the objects in an application. Configuration
metadata is traditionally supplied in a simple and intuitive XML format
provided by the programmer.

6https://docs.spring.io/spring/docs/3.2.x/spring-framework-
reference/html/beans.html#beans-introduction

15

Some essential tasks which the web container is responsible for are listed
below.

• Managing objects/Dependency Injection

• Managing the servlets life cycle

• Mapping URLs to a particular servlet

• Directing/redirecting requests

• Verifying the URL requester has correct access rights

The Spring7 Framework provides a comprehensive programming and config-
uration model for modern Java-based enterprise applications. Spring web
framework core technologies are: dependency injection, events, resources,
i18n, validation, data binding, type conversion, SpEL, AOP. We use JDBC
for our data access,Java Database Connectivity(JDBC) is an application pro-
gramming interface(API) for the programming language Java, which defines
how a client may access a database. JDBC is a Java-based data access tech-
nology used for Java database connectivity which is part of the Java Standard
Edition platform, from Oracle Corporation.

2.2.3 Sencha Ext-JS

Sencha Ext-JS is a JavaScript framework for building cross-platform HTML5-
based web applications. Ext-JS includes pre-integrated and tested UI com-
ponents which make it a suitable framework for data visualization across a
wide array of browsers.

Ext-JS allows us to build a single page web application. A single-page ap-
plication is a web application or website that interacts with the web browser
by dynamically rewriting the current web page with new data from the web
server, instead of the default method of the browser loading entire new pages.

7https://spring.io/projects/spring-framework

16

Sencha Ext-Js libraries support a variety of data visualization elements
including charts, grids, trees, as well as other common user interface com-
ponents such as buttons, tabs, tool tips, gauges which can be customized
for various purposes according to the programmers needs. Some features of
Ext-Js which make it a viable choice for a client side web application are as
follows:

• Browser Compatibility

• Support of applications across multiple devices

• Increased developer productivity

• Rapid Prototyping

• Multi Platform

• No extra Plugin installation on the browser

• Sencha Support

In this project we use "Sencha Cmd" command line tools suit which builds
the front end web application for us.

17

Chapter 3

Related work

There are a number of other similar digital platforms on the internet which
provide booking services online. Among them Booking1 and AirBnB are the
most well known. Observation of similar platforms help us in understanding
the shortcomings and lacking features/functionalities which can potentially
differentiate our platform from the existing platforms. In addition we can
identify the most essential functionalities that our platform shall provide for
the end users (a.k.a. "Must-have features").

Since development team did not have access to Software code and assets
of the competitor platforms, the team analyzed their software from User
Experience(UX) perspective. The team found out, practices used by the
competitor platforms toward their customers are not always aligned with
end users expectations from these platforms, this concept is defined as Dark
patterns among UX design researchers community.

According to Gray et al. the term Dark patterns refers to instances where
designers use their knowledge of human behavior (e.g., psychology)and the
desires of end users to implement deceptive functionality that is not in the
user’s best interest[6]. In addition Gray et al. classify Dark patterns as fol-
lows:

• Bait and Switch disguised Ad: User sets out to do one thing, but a
different, undesirable thing happens instead. Adverts that are disguised

1www.Booking.com is a travel meta search engine for lodging reservations.

18

as other kinds of content or navigation, in order to get User to click on
them.

• Forced Continuity: When Users free trial with a service comes to an
end and Users credit card silently starts getting charged without any
warning. In some cases this is made even worse by making it difficult
to cancel the membership.

• Friend Spam: The product asks for Users email or social media permis-
sions under the pretence it will be used for a desirable outcome (e.g.
finding friends), but then spams all Users contacts in a message that
claims to be from the user.

• Hidden Costs: User get to the last step of the checkout process, only to
discover some unexpected charges have appeared, e.g. delivery charges,
tax, etc.

• misdirection: The design purposefully focuses users attention on one
thing in order to distract him/her attention from another.

• Price comparison prevention: The retailer makes it hard for user to
compare the price of an item with another item, so user cannot make
an informed decision.

• privacy zuckering: Users are tricked into publicly sharing more infor-
mation about themselves than they really intended to. Named after
Facebook CEO Mark Zuckerberg.

• roach model: The design makes it very easy for user to get into a
certain situation, but then makes it hard for user to get out of it (e.g.
a subscription).

• Sneak into basket: User attempts to purchase something, but some-
where in the purchasing journey the site sneaks an additional item into
the users basket, often through the use of an opt-out radio button or
checkbox on a prior page

19

Figure 3.1: Example of a Dark pattern in UX design
Figure illustrating one type of Dark Patterns used by a booking platform

• Trick questions: User responds to a question, which, when glanced upon
quickly appears to ask one thing, but if read carefully, asks another
thing entirely.

The development team analyzed competitor platforms, by conducting an
online survey from a community of one hundred digital platform users among
company employees. The result showed 85% already experienced either one
or multiple forms of Dark patterns practices and they were dissatisfied with
their experience. The dominant categories of malpractices from survey are
as follows:

• Misleading price sorting

• Incoherent rating system, some platforms categorize multiple aspects of
hospitality experience, however they only show the best average rating

• Misleading reviews on front/first page, some platforms tend to sort
reviews in a way which prioritize positive reviews on the first page

Here there are some examples of usage of Dark patterns. Figure 3.1 and
3.2 illustrate a case of Misdirection by a digital platform, in this case viewers
are mislead into believing that the offer the platform purposes is time limited
(sense of emergency) and the viewer may lose the chance in case of hesitation,
which is not the case.

20

Figure 3.2: Example of a Dark pattern in UX design
Figure illustrating one type of Dark Patterns used by a booking platform

Final conclusion drafted from the survey indicates, while in the short run
usage of Dark patterns practices might improve short term profitability of
the platform through increased number of bookings, in the long run it will
damage reputation of company as well as customer loyalty to the platform,
which lead customers into migrating to another platform. The development
team concluded that the differentiating factor for our platform is "customer
first" approach. By adopting "customer first" approach the Dark patterns
practices are avoided altogether, while the emphasis is to build a trust and
log lasting relationship between platform end users and the platform owners.

Huang and Lee study [7] examines various modes of attacks on websites
including cross site scripting(XSS), Sql Injection as well as mitigation tech-
niques against such attacks which author classifies as extensive testing of se-
curity and software verification techniques. The important viewpoint which
needs to be addressed is the insecure information flow of web application
which can introduce vulnerabilities. For this purpose we used mitigation tech-
niques against SQL injection attacks by using Spring framework’s prepared
statement. Furthermore the design of the back-end system follows guidelines
which incorporate cleansed(validated) data which is only accessible through
tested APIs which are controlled by spring authentication mechanisms in
order to deny access to unauthorized usage of back-end data. Figure 3.3
illustrates one of the mitigation techniques against Unauthorized requests.
The steps which are implemented by Spring Security is as follows:

1. the FilterSecurityInterceptor obtains an Authentication from the Secu-
rityContextHolder.

21

Figure 3.3: Spring Authorization of HttpServletRequest
Figure handling of Unauthorized HttpServletRequest.

2. FilterSecurityInterceptor creates a FilterInvocation from the HttpServle-
tRequest, HttpServletResponse, and FilterChain that are passed into
the FilterSecurityInterceptor.

3. lNext, it passes the FilterInvocation to SecurityMetadataSource to get
the ConfigAttributes.

4. Finally, it passes the Authentication, FilterInvocation, and ConfigAt-
tributes to the AccessDecisionManager.

5. If authorization is denied, an AccessDeniedException is thrown. In
this case the ExceptionTranslationFilter handles the AccessDeniedEx-
ception.

6. If access is granted, FilterSecurityInterceptor continues with the Fil-
terChain which allows the application to process normally.

22

Chapter 4

Designing Web Application
Platform

In this chapter we will go through necessary phases required to develop a soft-
ware solution. This chapter is entirely focused on the design and modelling
of the software solution, regardless of the underlying programming languages
or development platform of choice. We use UML 1 in order to make a model
of our proposed solution. UML is a general-purpose, developmental, model-
ing language in the field of software engineering that is intended to provide
a standard way to visualize the design of a system. In addition we need to
make model of business processes and main activities, we will see BPMN 2

diagrams throughout this chapter.

4.1 Software Modelling

4.1.1 Use Case Diagram

UML use case diagrams describe relevant functionalities of the business pro-
cess, the users/actors involved in execution of the business process, and the
assignment of functionalities to users/actors.

1The Unified Modeling Language(UML)
2Business Process Model and Notation(BPMN)

23

Figure 4.1: Use case Diagram
Figure illustrating Use case diagram, part of UML modelling diagrams.

Use case diagram visualizes functional requirements of the system which
were previously defined in requirement analysis section of chapter one. As
it is evident in figure 4.1, some use cases are linked only to one actor, while
others involve two or more actors based on nature of the task.

Figure 4.1 illustrates use case diagram for our digital booking platform.
Main actors of the system are "Platform Manager", "Property Owner" and
"Guest". These actors are connected to their respective functionalities which
are indicated as oval shaped figures in the use case diagram.

4.1.2 Class Diagram

UML class diagrams report the schema of the underlying information model.
We need class diagram in order to describe the structure of our system by
showing the system’s classes, their attributes, operations (or methods), and
the relationships among objects. Figure 4.2 illustrates our digital booking
platform classes and the relationship among objects. As the figure 4.2 il-
lustrates, there are four essential classes identified for our system namely

24

Figure 4.2: UML Class Diagram
Figure illustrating UML class diagram, part of UML modelling diagrams.

"Guest", "Platform Administrator", "Property Owner" and "Booking". In
addition figure 4.2 also shows association relationships among identified
classes which are shown by the numbers on both ends of the association
relationship. These associations are essential for designing database tables
and placement of foreign keys later on. One of the important aspects of
modelling UML class diagram is the fact that, class diagram provides a solid
foundation about the structure of classes which later on we will use when in
the implement ion of our system.

4.1.3 Business Process Modeling Diagram

After identifying the main actors and functionalities of the system, we need
to further examine the flow of the business processes which occur inside the
system. For this purpose we use Business Process Modelling in particular

25

Figure 4.3: BPMN gateways
Figure illustrating BPMN gateways.

BPMN 3. BPMN is a widely used standard for process modeling. In BPMN,
activities are represented as round rectangles, Control nodes (called gate-
ways) are represented using diamond shapes finally Activities and control
nodes are connected by means of arcs (called flows) that determine the order
in which the process is executed. Figure 4.3 shows various types of gateways
used in our business process diagrams.

Figure 4.4 illustrates business process of booking by Guest. In this process
we use exclusive gateway which evaluates the state of the business process
and, based on the condition, breaks the flow into one of the two or more
mutually exclusive paths. In addition we can see parallel tasks which execute
concurrently, as shown in figure 4.4 "Check Availability" and "Check approval
by Owner" tasks are executed concurrently in the booking process. Final
point which we need to address is usage of time based events. A clock icon
represents the timer event, we used this technique in order to indicate the
payment is bound to a time limit in this case 60 minutes, in this way guest
must finalize the booking by doing the "payment transaction" task otherwise

3business Process Model and Notation(BPMN)

26

Figure 4.4: BPMN guest Diagram
Figure illustrating BPMN guest Diagram.

Figure 4.5: BPMN property owner Diagram
Figure illustrating BPMN property owner Diagram.

the booking process ends.
Figure 4.5 illustrates business process of booking from perspective of prop-

erty owner. Property owner firstly registers to the platform, the platform
then validates property owner and property owner is given permission to en-
list his/her property for booking. After enlisting the property the business
process stops until there is a signal indicating a request for booking, the
property owner has a choice of approving or rejecting the request. Upon ac-
cepting the request "Receive payment" and "Archive transaction" processes
will execute simultaneously and finally the business process ends.

Figure 4.6 illustrates the process of "Managing dispute" between "Prop-
erty owner" and "Guest" from perspective of platform administrator. The
process begins by simultaneous validation of Property Owner’s clam and
Guest’s claim. Once this is done, one of the claim’s is chosen as a "valid"
claim. If we consider Owner claim as the valid claim, the status of payment
by the "Guest" is evaluated, and the security deposit of the Guest is collected
in case the Guest has already paid the security deposit. Then the guest is
notified and the process ends. On the other hand if the guest’s claim turns

27

Figure 4.6: BPMN platform owner Diagram
Figure illustrating BPMN platform owner Diagram.

out to be valid, guest will receive a refund from the platform and property
owner will receive a warning.

Figure 4.7 illustrate guest update/cancel booking business process. As it
is evident from the diagram, firstly we must check for the status of booking
in case the booking is not locked the process continues and the guest is
given options to either change date/duration of stay, edit number of guests
or simply cancel the booking altogether. Upon choice of edit by guest, the
platform checks for availability of the property in the specified period, in case
property is available the change made by Guest is confirmed and the process
continues by sending invoice and wait for payment. In case the Guest decides
not to commit payment, the timer will continue the process and as a result
verify payment check returns false and consequently the process ends.

Now that we have seen the main structure of our system throughout
UML use case diagram, UML class diagram and BPMN business process
diagrams, we arrive at design of database structure for our digital booking
platform project. We complete this chapter by representing our database
structure represented in Figure 4.8. As evident from the picture, the tables
are similar in structure to the class diagram represented in figure 4.2. In
addition the choice of primary and foreign keys is a direct result of the UML
class diagram relationships.

28

Figure 4.7: BPMN guest update booking Diagram
Figure illustrating BPMN guest update booking Diagram.

Figure 4.8: Database structure of digital booking platform
Figure illustrating main tables as well as relationship among tables through

usage of foreign keys.

29

Chapter 5

Implementation

Throughout this chapter we will go through the development phase of our
proposed solution. In section 5.1 we will see design patterns commonly used
for development of web applications, as well as some examples from our
application code in order to clarify the concepts. In section 5.4 we will
discuss methods that we use for testing and debugging our application.

5.1 Design patterns

A design pattern is a general solution that addresses common software-design
challenges. While not a finished design, you may think of a design pattern
as a template or set of best practices. [8]

5.1.1 MVC

The model-view-controller (MVC) pattern is a software-design pattern used
for creating data-driven web applications. In the design pattern of Model-
View-Controller (MVC) the presentation of information (View) is separated
from the information itself (Model) and the control or manipulation of the
information (Controller).[9]

In an MVC architecture, most classes are either Models, Views or Con-
trollers. The user interacts with Views, which display data held in Models.
Those interactions are monitored by a Controller, which then responds to the

30

interactions by updating the View and Model, as necessary. The View and
the Model are generally unaware of each other because the Controller has
the sole responsibility of directing updates. Generally speaking, Controllers
will contain most of the application logic within an MVC application. Views
ideally have little (if any) business logic. Models are primarily an interface
to data and contain business logic to manage changes to said data.

The goal of MVC is to clearly define the responsibilities for each class
in the application. Because every class has clearly defined responsibilities,
they implicitly become decoupled from the larger environment. This makes
the app easier to test and maintain, and its code more reusable, since it
is not integrated with a specific presentation format. We choose MVC as
design pattern of choice for our back-end application. Figure 5.1 shows the
adaptation of MVC architecture to the web application, using JAVA as a
reference platform.

In order to use MVC pattern in our project we need to take a look at
class diagram 4.2. As it is evident from diagram 4.2, we have five classes
which we consider as our model objects. A model is a simple POJO (Plain
Old Java Object) class, as an example we model Guest class as:

->Guest.java

public class Guest {

private int id;

private String name;

private String surName;

private String passportNo;

private String email;

private String username;

private String password;

public String getId() {

return id;

}

public void setId(int id) {

31

this.id = id;

}

//...

// Above code is repeated for other fields for generating

// getter and setter methods.

}

Now that we have seen how a model class is created, we will see a Con-
troller example. Example shown here is called RESTFUL controller which we
will see in section 5.2. The controller receives HTTP requests and responds
to them, according to the defined path. This controller is in charge of API
requests made by the front-end application.

->Controller.java

@RequestMapping("/api")

@RestController

class ApiController {

//... A repository containing the fetched data from database

@Autowired

private final GuestRepository repository;

//... Mapping which connects a path to a method defined in

//... controller.

@GetMapping("/guests")

List<Guest> all() {

return repository.findAll();

}

}

The final piece of our MVC example is "View". We used Sencha ExtJS
framework for our GUI application, however any plain HTML or JSP file is
suitable for representing of a "View" to the client as long as an appropriate
path and method for retrieving that view is defined in a Controller.

32

Figure 5.1: MVC Architectural design pattern
Figure illustrating the MVC architecture applied to Web application. In
this section we will see two design patterns for our back end and front end

applications.

5.1.2 MVVM

Another software-design pattern used in the development of our front-end
application is Model View ViewModel (MVVM) design pattern. In MVVM,
the View layer is concerned only about the graphical user interface, while
the Model layer only about the business logic. All communication between
them is realized by the ViewModel layer. [10]

The key difference between MVC and MVVM is that MVVM features
an abstraction of a View called the ViewModel. The ViewModel coordinates
the changes between a Model’s data and the View’s presentation of that data
using a technique called “data binding”. The goal of MVVM is that the Model
and framework perform as much work as possible, minimizing or eliminating
application logic that directly manipulates the View.

In this section we go through each part of MVVM architectural pattern
and see some examples:

• Model: This is the data for our application. A set of classes (called
“Models”) defines the fields for their data (e.g. a Guest model with

33

username and password fields). Models know how to persist them-
selves through the data package and can be linked to other models via
associations. Store: Models are normally used in conjunction with
Stores to provide data for grids and other components. Models are
also an ideal location for any data logic that you may need, such as
validation, conversion, etc.

• View: A View is any type of component that is visually represented.
For instance, grids, trees and panels are all considered Views.

• Controller: Controllers are used as a place to maintain the view’s
logic that makes the application work. This could entail rendering
views, routing, instantiating Models, and any other sort of app logic.

• ViewModel: The ViewModel is a class that manages data specific to
the View. It allows interested components to bind to it and be updated
whenever this data changes.

Figure 5.2 shows the adaptation of MVVM architecture for the Graphical
User Interface (GUI) of our web application which lives inside the end user’s
browser.

Example code shown below represents a MVVM Model for our Booking
class, defined in our front-end application.

-> Booking.js

// Definition of a Model class according to ExtJS framework

Ext.define(’BookingApplication.model.Booking’, {

//We need to extend the Model super class defined by ExtJS

extend: ’Ext.data.Model’,

requires: [’Ext.data.proxy.JsonP’],

//We define model fields here

fields: [

{

name: ’id’,

mapping: ’id’ //-> Mapping our model fields to the Object

34

// fields, coming from JSON response of back-end

},

{

name: ’startDate’,

mapping: ’startDate’

},

{

name: ’endDate’,

mapping: ’endDate’

},

{

name: ’numberOfPeople’,

mapping: ’numberOfPeople’

},

{

name: ’paymentStatus’,

mapping: ’paymentStatus’

}],

proxy:

{

type: ’ajax’,

url: ’/api/bookings’,

reader: {

type: ’json’,

}

}});

As we can see in above code, "proxy" defines the type of call which is
required to fill the model fields as well as the end point url on the back-end
which responds to the call made by the object. The response which "reader"
for this model expects is in from of a JSON message which we will discuss
in section 5.3.

Now that we have seen how a model is defined in Sencha ExtJS frame-

35

work, the next step is to define a ViewModel for our model. In the Below
code section we can see that the Model for which we are defining a View
Model must be referenced, there is also a Store type of object which holds a
collection of items of the type specified type. This store object is used inside
the View to show the collection of objects to the user.

Ext.define(’BookingApplication.view.main.BookingViewModel’, {

extend: ’Ext.app.ViewModel’,

alias: ’viewmodel.bookingviewmodel’,

requires: [

’BookingApplication.model.Booking’

],

stores: {

bookings: {

model:’BookingApplication.model.Booking’,

autoLoad: true

}

}

});

We need a Grid object from the ExtJS framework libraries in order to
show the collection of objects in the "Store" we have created. The Grid
example shown below is later used inside our View.

Ext.define(’BookingApplication.view.BookingGrid’,

{

extend: ’Ext.grid.Grid’,

xtype: ’bookinggrid’,

cls: ’booking-grid’,

requires: [

’Ext.grid.column.Column’,

’Ext.grid.cell.*’

],

defaults: {

36

height: 54

},

columns: [{

text: ’id’,

dataIndex: ’id’,

flex: 1

}, {

text: ’startDate’,

dataIndex: ’startDate’,

flex: 1

}, {

text: ’endDate’,

dataIndex: ’endDate’,

flex: .5

}, {

text: ’numberOfPeople’,

dataIndex: ’numberOfPeople’,

flex: .5

},{

text: ’paymentStatus’,

dataIndex: ’paymentStatus’,

flex: .5

}

]});

Finally we proceed to insert the Grid we have created above, in our View.
As we can see in the code section below, we include a reference to our custom
grid inside our View, we also have to reference the store object that we
have created so that ExtJS framework loads the custom Grid with the store
content.

Ext.define(’BookingApplication.view.main.MainView’, {

extend: ’Ext.tab.Panel’,

xtype: ’mainview’,

37

Figure 5.2: MVVM Architectural design pattern
Figure illustrating the MVVM architecture which is applied to the

front-end application.

requires: [

’ModernTunes.view.main.BookingViewController’,

’ModernTunes.view.main.BookingViewModel’,

],

controller: ’bookingviewcontroller’,

viewModel: {

type: "bookingviewmodel"

},

items: [

{

title: "Grid",

xtype: ’tunesgrid’,

bind: {

store: ’{bookings}’

}

}

]

});

Now we have created our ViewModel and View. As the above code indi-
cates, we also added BookingViewController. This controller handles inter-
actions between the user and GUI application for this specific View.

38

5.2 RESTFUL Web Services

REpresentational State Transfer (REST) was originally introduced as an
architectural style for building large-scale distributed hypermedia systems.
REST leverages existing well knownW3C/IETF standards (HTTP,XML,URI,MIME).[11]
The REST architectural style is based on four principles: [11]

• Resource identification through URI: A RESTFUL Web service
exposes a set of resources which identify the targets of interaction with
its clients. Resources are identified by URIs, which provide a global
addressing space for resource and service discovery.

• Uniform interface: Resources are manipulated using fixed set of
four create, read, update, delete operations: PUT,GET,POST and
DELETE. GET retrieves the current state of a resource in some repre-
sentation. POST transfers a new state onto a resource.

• Self-descriptive messages: Resources are decoupled from their rep-
resentation so that their content can be accessed in a variety of formats
(e.g., HTML, XML, plain text, PDF, JPEG, etc.). Meta data about
the resource is available and used for example control caching, detect
transmission errors, negotiate appropriate representation format, and
perform authentication or access control.

• Stateful interactions through hyperlinks: Every interaction with
a resource is stateless, i.e., request messages are self-contained. Stateful
interactions are based on the concept of explicit state transfer. Several
techniques exist to exchange state, e.g. URI rewriting, cookies, and
hidden form fields. State can be embedded in response message to
point to valid future states of the interactions.

We use RESTFUL web services to create back-end APIs which respond
to HTTP requests created by the front-end GUI application. These APIs
allow us to create communications between the front-end client application
and the back-end server application. An example request is provided below:

39

->An example request

GET localhost:8080/api/guests

The server responds to this request by sending HTTP 200 (OK) status code
which indicates that the request has been processed successfully on the server.
In addition the response contains A JSON message corresponding to the
requested source. We will discuss JSON in the next section.

5.3 JSON

JSON (JavaScript Object Notation) is a lightweight data-interchange format.
It is easy for humans to read and write. It is easy for machines to parse and
generate. It is based on a subset of the JavaScript Programming Language
Standard ECMA-262 3rd Edition - December 1999.1

JSON is used primarily to transmit data between our web application
server and our front-end GUI application. Following on the example we
made through this chapter, the JSON respond to the sample request made
in section 5.2 is shown below.

->JSON response

{

"id":"1", "name":"Max",

"surName":"Wayne","passportNo":"T51617181",

"email":"max.p@server.com","username":"maxwayne",

"password":"0d0a96fa021ccd3fac05df1a584e3185"

}

5.4 Testing & Validation:

In this section we will go through tools and methods used for testing our
application. There are various testing methodologies which cover different
aspects of either functional or non functional requirements.We will focus

1https://www.json.org/json-en.html

40

mainly on "Unit testing" and "System testing" due to the nature of the
project.

The goal of utilizing testing methodologies in development process is to
make sure the software can successfully operate. Testing methodologies can
typically be broken down between functional and non-functional testing.
Functional testing involves testing the application against the business re-
quirements. It incorporates all test types designed to guarantee each part of
a piece of software behaves as expected by using uses cases provided by the
design team or business analyst.

5.4.1 Unit Testing with JUnit

Unit testing is the first level of testing and is often performed by the de-
velopers themselves. It is the process of ensuring individual components of
a piece of software at the code level are functional and work as they were
designed to. Developers in a test-driven environment will typically write and
run the tests prior to the software or feature being passed over to the test
team. Unit testing can be conducted manually, but automating the process
will speed up delivery cycles and expand test coverage. Unit testing will also
make debugging easier because finding issues earlier means they take less
time to fix than if they were discovered later in the testing process. 2

JUnit is a unit testing framework for the Java programming language.
We can write unit tests manually or use already existing framework tools to
generate automated tests. The simple test shown below checks whether our
"ApiController" is not null.

package com.example.testingweb;

import static org.assertj.core.api.Assertions.assertThat;

import org.junit.jupiter.api.Test;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.context.SpringBootTest;

2https://smartbear.com/learn/automated-testing/software-testing-methodologies/

41

@SpringBootTest

public class ControllerTest {

@Autowired

private ApiController controller;

@Test

public void contexLoads() throws Exception {

assertThat(controller).isNotNull();

}

}

As mentioned above we can also write custom unit tests. Example shown
below is a custom Unit test which checks whether "Guest" user has "Pass-
portNo" field or not.

@ExtendWith(SpringExtension.class)

@SpringBootTest

class GuestRegisterTest {

@Autowired

private GuestService guestService;

@Test

void savedGuestHasPassportNumber() {

Guest guest = new Guest("Max","Payne", "zaphod@mail.com");

Guest savedGuest = guestService.registerGuest(guest);

assertThat(savedGuest.getPassportNo()).isNotNull();

}

}

5.4.2 System Test with LOG table

In order to monitor the performance and availability of our application we
need to implement a logging mechanism. We use the logging mechanism for

42

troubleshooting issues and to make decisions about maintenance tasks.
Some of the required functionalities of a logging system are listed below:

• Distinction between front-end and back-end application for logging er-
rors/exceptions.

• Each application writes its own log using internal API, making sure
that user requests are not blocked while logs are being written.

• The logging API collects log information produced by the application
and sends it to the log database table.

We need to take into consideration that our application is using multi tier
architecture, hence logs are separated by type of application. The decision
of persisting logs into separate database tables or on a local log file located
on the web application server depends on the level of autonomy and access
given to developers by system administrator.

Another factor to consider is the number of concurrent requests to a
certain database for accessing data (READ, WRITE operations) and the
impact of log writing operations in case the log table is located on the same
database server. We have decided on a log table located on the same server
as our main database server, since the number of requests is not considerably
large, later on this can be changed by adding a separate log server.

LOG4J is a reliable, fast and flexible logging framework (APIs) written
in Java, which is distributed under the Apache Software License.

We use LOG4J to identify and collect exceptions occurring during an API
call to our "ApiController". LOG4J allows modification of layout of the log
message, persistence in database and/or local file. In addition we can set
level of log, allowing for easy identification and categorization of events. A
log request of level p in a logger with level q is enabled if p >= q. For the
standard levels, we have ALL < DEBUG < INFO < WARN < ERROR <
FATAL < OFF. In order to log information into our database we need to
create a LOG table. The SQL code below indicates the structure our LOG
table.

43

CREATE TABLE LOGS

(USER_ID VARCHAR(20) NOT NULL,

DATED DATE NOT NULL,

LOGGER VARCHAR(50) NOT NULL,

LEVEL VARCHAR(10) NOT NULL,

MESSAGE VARCHAR(1000) NOT NULL

);

We also need to modify the LOG4J.properties file. This file contains
settings which LOG4J uses to persist log data into the LOG table.

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration>

<appender name="DB" class="org.apache.log4j.jdbc.JDBCAppender">

<param name="url" value="jdbc:mysql://localhost/BOOKINGDB"/>

<param name="driver" value="com.mysql.jdbc.Driver"/>

<param name="user" value="root"/>

<param name="password" value="****"/>

<param name="sql" value="INSERT INTO LOGS

VALUES(’%x’,’%d’,’%C’,’%p’,’%m’)"/>

<layout class="org.apache.log4j.PatternLayout">

</layout>

</appender>

<logger name="log4j.rootLogger" additivity="false">

<level value="DEBUG"/>

<appender-ref ref="DB"/>

</logger>

</log4j:configuration>

Now LOG4J is ready to persist log information. We can modify our
"ApiController" by adding a logger which detects SQL Exception and persists
it into our LOG table.

44

import org.apache.log4j.Logger;

import java.sql.*;

import java.io.*;

import java.util.*;

@RequestMapping("/api")

@RestController

public class ApiController{

@Autowired

private final GuestRepository;

/* Get actual class name to be printed on */

static Logger log = Logger.getLogger(ApiController.class.getName());

@GetMapping("/guests")

List<Guest> all() throws IOException,SQLException{

try {

return repository.findAll();

} catch (SQLException e){

log.debug("ERROR");

}

}

The same principles shown above is applied to the other methods inside
"ApiController". We can set the log level shown in the above code to "DE-
BUG" or "INFO" in case we need to debug our code or retrieve a variable.
The lines below show the actual result of execution of above code.

mysql > select * from LOGS;

+--------+------------+--------------+-------+---------+

| USER_ID| DATED | LOGGER | LEVEL | MESSAGE |

+--------+------------+--------------+-------+---------+

| root | 2019-05-13 | ApiController |ERROR | ERROR |

+--------+------------+--------------+-------+---------+

1 row in set (0.00 sec)

45

5.4.3 Debugger tools

Now that we have seen the bug tracing via LOG table for our back-end
application, we examine available tools to debug and test our front-end ap-
plication.

Secnha Inspector is a debugging tool for troubleshooting and improving
performance of Ext JS applications. Since Secnha Inspector is a proprietary
tool developed by Sencha we will not go through details of this tool in this
report.

As an alternative we can debug our front end application, using developer
tools found in modern browsers.

Image shown in A.2 illustrates developer tools used to print some infor-
mation on the debug console.

There are two ways to debug JavaScript code.

1. The first way, is to place console.log() in the code and see the value of
the log, which will be printed in the console of the development tool.

2. The second way is by using breakpoints in the development tool. Fol-
lowing is the process.

• Open the file in all the available scripts under script tag.

• Now place a breakpoint to the line you want to debug.

• Run the application in the browser.

• Now, whenever the code flow will reach this line, it will break the
code and stay there until the user runs the code by keys F6 (go
to the next line of the code), F7 (go inside the function) or F8
(go to the next breakpoint or run the code if there is no more
breakpoints) based on the flow you want to debug.

• You can select the variable or the function you want to see the
value of.

• You can use the console to check the value or to check some
changes in the browser itself.

46

Chapter 6

Conclusion and future work

Throughout this Report we discussed how to design a booking platform web
application from a software engineering point of view. We discussed frame-
works used inside Software companies in order to manage a group of soft-
ware developers working on various parts of the software. After that we have
seen dominant architecture for designing Web Applications and how different
frameworks incorporate that architecture in order to make the code resusable
and more efficient, as well as a logical separation between different parts of
the code. Some of guidelines which were used during the development pro-
cess came directly from User Experience research which we have included as
part of this report. In addition we had to design a secure website therefore
the usage of commonly tested platforms such as Spring and ExtJS helped
us achieve that goal. Although this report summarizes the main aspects of
developing a software solution from scratch, we had to sacrifice some details
and technical perspectives which were not related to the main topic of this
paper. One area that seems fruitful for further research and development is
usage of Mobile Development platforms in order to further extend the avail-
ability and accessibility of the application, since websites by nature run on
browsers and mobile platforms provide more robust tools for user interaction
which leads to creation of a superior user experience. Another area which
requires further studying is the usage of cross platform frameworks for de-
velopment of digital platforms. These cross platform frameworks reduce the

47

development workload by providing ready to use modules which work across
variety of devices. In recent years Google and Facebook created their own
cross platform development frameworks in form of Facebook REACT and
Google Flutter. Considering the attractive nature of these frameworks for
developers, the impact of such frameworks on digital platform development
requires additional research.

48

Appendix A

Application Screens

49

Figure A.1: Bookings page
Image illustrates Bookings management screen for platform administrator

user.

Figure A.2: Warning message for Booking details page
Image illustrates a warning message, indicating some information is missing

from a booking detail.

50

Figure A.3: Search Booking
Image illustrates Booking Search functionality for platform administrator

user.

Figure A.4: Property Owner(Agency) list
Image illustrates a list of Property Owners already registered, for the

platform administrator user.

51

Figure A.5: Property Owner Association
Image illustrates Property Owner association page for the platform

administrator user.

Figure A.6: Guest Profiles
Image illustrates list of Guests (profiles) for the platform administrator

user.

52

Figure A.7: Properties List
Image illustrates list of properties registered for the platform administrator

user.

Figure A.8: Check In/Check out Management
Image illustrates Check-In Check-Out management screen for platform

administrator user.

53

Bibliography

[1] Jean-Charles Rochet and Jean Tirole. «Platform Competition in
Two-Sided Markets». In: Journal of the European Economic Associ-
ation 1 (Feb. 2003), pp. 990–1029. doi: 10.1162/154247603322493212.

[2] Alfonso Lamadrid de Pablo. «The double duality of two-sided mar-
kets». In: Swedish Competition Pros and Cons conference (Feb.
2014), p. 5. url: https://antitrustlair.files.wordpress.
com/2015/05/the-double-duality-of-two-sided-markets_

clj_lamadrid.pdf.

[3] Jean-Charles Rochet and Jean Tirole. «The RAND Corporation
Two-Sided Markets : A Progress Report». In: 2005.

[4] M Munger. «Coase and the ‘sharing economy.In Forever Contem-
porary, ed. Cento Veljanovski». In: 2015, pp. 187–209.

[5] Fiona Greig Diana Farrell. «The OnlinePlatform Economy Has
Growth Peaked?» In: JPMorganChase Institute (Feb. 2016), p. 4.
url: https://www.jpmorganchase.com/corporate/institute/
document/jpmc-institute-online-platform-econ-brief.pdf.

[6] Colin M. Gray et al. «The Dark (Patterns) Side of UX Design».
In: Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems. CHI ’18. Montreal QC, Canada: Association for
Computing Machinery, 2018, pp. 1–14. isbn: 9781450356206. doi:
10.1145/3173574.3174108. url: https://doi.org/10.1145/
3173574.3174108.

54

https://doi.org/10.1162/154247603322493212
https://antitrustlair.files.wordpress.com/2015/05/the-double-duality-of-two-sided-markets_clj_lamadrid.pdf
https://antitrustlair.files.wordpress.com/2015/05/the-double-duality-of-two-sided-markets_clj_lamadrid.pdf
https://antitrustlair.files.wordpress.com/2015/05/the-double-duality-of-two-sided-markets_clj_lamadrid.pdf
https://www.jpmorganchase.com/corporate/institute/document/jpmc-institute-online-platform-econ-brief.pdf
https://www.jpmorganchase.com/corporate/institute/document/jpmc-institute-online-platform-econ-brief.pdf
https://doi.org/10.1145/3173574.3174108
https://doi.org/10.1145/3173574.3174108
https://doi.org/10.1145/3173574.3174108

[7] Yao-Wen Huang and D. Lee. «Web Application Security—Past,
Present, and Future». In: Jan. 2005, pp. 183–227. doi: 10.1007/0-
387-24006-3_12.

[8] Dave Wolf and A. Henley. «What Is MVC?» In: Dec. 2017, pp. 23–
25. isbn: 978-1-4842-3194-4. doi: 10.1007/978-1-4842-3195-1_5.

[9] Stephen Kaisler and Frank Armour. «Design Patterns». In: Jan.
2002. isbn: 9780471028956. doi: 10.1002/0471028959.sof089.

[10] Joanna Patrzyk et al. «Towards A Novel Environment For Simu-
lation Of Quantum Computing». In: Computer Science 16 (Jan.
2015), p. 103. doi: 10.7494/csci.2015.16.1.103.

[11] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. «REST-
ful Web Services vs. "Big" Web Services - Making the Right Ar-
chitectural Decisions». In: Apr. 2008, pp. 805–814. doi: 10.1145/
1367497.1367606.

55

https://doi.org/10.1007/0-387-24006-3_12
https://doi.org/10.1007/0-387-24006-3_12
https://doi.org/10.1007/978-1-4842-3195-1_5
https://doi.org/10.1002/0471028959.sof089
https://doi.org/10.7494/csci.2015.16.1.103
https://doi.org/10.1145/1367497.1367606
https://doi.org/10.1145/1367497.1367606

	Dedication
	Acknowledgments
	Summary
	Abstract
	Introduction
	Context
	Problem Statement
	Proposed Solution
	Thesis Structure

	Background
	Relevant Methodologies Used
	Agile Software Development
	Scrum

	Relevant Technologies
	Three tier architecture
	Spring for Web applications
	Sencha Ext-JS

	Related work
	Designing Web Application Platform
	Software Modelling
	Use Case Diagram
	Class Diagram
	Business Process Modeling Diagram

	Implementation
	Design patterns
	MVC
	MVVM

	RESTFUL Web Services
	JSON
	Testing & Validation:
	Unit Testing with JUnit
	System Test with LOG table
	Debugger tools

	Conclusion and future work
	Application Screens
	Bibliography

