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Abstract

In this thesis work we consider the problem related to the monitoring of de-
formations in pipes. These deformations can be caused by external agents
such as, for example, the pressure of the sea, in the case of underwater
pipelines, and geological settling phenomena. It is therefore necessary to de-
velop a procedure that allows us to evaluate these deformations in a short
time and continuously monitor the state of the pipes. For this purpose, the
case of two-dimensional geometries is considered first and the Finite Element
Method (FEM) is used, for which an appropriate general description is pro-
vided and, subsequently, we extend the case to the specific acoustic problem.
Given the need for a faster response from the pipes, we evaluate a new calcu-
lation method, the Hierarchical Model Reduction (HiMod) which allows to
obtain the same results by improving computational time without compro-
mising accuracy. This method is applied here for the first time to the linear
acoustic wave equation in 2D and 3D. The application is the computation of
the multimode scattering matrix for guided wave propagation in pipelines.
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Sommario

In questo lavoro di tesi consideriamo il problema relativo al monitoraggio di
deformazioni in tubi. Queste deformazioni possono essere causate da agenti
esterni quali, ad esempio, la pressione del mare, nel caso di condutture sot-
tomarine, e fenomeni di assestamento geologico. Si rivela quindi necessario
lo sviluppo di una procedura che ci permette di valutare queste deformazioni
in tempi brevi e tenere continuamente sotto controllo lo stato delle condut-
ture. A tale scopo, si considera dapprima il caso di geometrie bidimensionali
e si adopera il Metodo degli Elementi Finiti (FEM), del quale si fornisce
un’opportuna descrizione generale e, a seguire, estendiamo il caso al prob-
lema acustico specifico. Data la necessità di una risposta più veloce da parte
delle condutture, valutiamo un nuovo metodo di calcolo, la Riduzione Gerar-
chica di Modello (HiMod) che permette di ottenere gli stessi risultati miglio-
rando il tempo computazionale senza compromettere l’accuratezza. Questo
metodo viene applicato qui per la prima volta all’equazione lineare dell’onda
acustica in 2D e in 3D. L’applicazione è il calcolo della matrice di scattering
multimodale per la propagazione d’onda guidata nei tubi.
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Chapter 1

Acoustic Transformation

Our study is aimed at identifying and evaluating any deformations in pipes.
These deformations are due to external agents and a multimodal acoustic
analysis is used to achieve our goal. In particular, it is necessary to measure
the sound pressure at each point of the structure. We start directly from
the examination of the deformed geometry and, by adopting a coordinate
transformation, we perform the mapping of the structure to the reference
geometry, which would be the structure without any deformation. To better
clarify the procedure, which lies at the basis of the general problem, we start
from the definition of acoustic wave by providing the related equation [1].
For the original geometry, where the coordinates system is defined by r′, we
have that, given the pressure field p′(r′) in the frequency domain:

∇′p′ = −jωρ0v
′ (1.1)

jωp′ = −B0∇′ · v′ (1.2)

where v′ = v′(r′) is the velocity field, ρ0 is the average density and B0

is the average compression modulus which is defined as the density increase
caused by a compression. Eq. (1.1) is the linear Euler equation, whereas
eq. (1.2) represents continuity in the linear regime, connecting the motion
of fluid with its contraction and expansion. What we have to do now is
the following: we first define a coordinate transformation that converts the
original geometry to a uniform pipeline, then we introduce an anisotropic
material such that the wave equation in the transformed coordinate frame is
equivalent to that in the original frame. Finally we use an efficient method
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to solve the wave equation. We start with the transformation r′ → r(r′) with
Jacobian:

J =


∂x
∂x′

∂x
∂y′

∂x
∂z′

∂y
∂x′

∂y
∂y′

∂y
∂z′

∂z
∂x′

∂z
∂y′

∂z
∂z′

 (1.3)

It can be shown that the solution p[r(r′)], which is the pressure field of
the reference geometry, does not change, i.e. it is equivalent to p′(r′), using
the following anisotropic material in the transformed domain:

B = B0 det J (1.4)

ρ−1 = ρ−1
0

JJT

det J
= ρ−1

0 ρr
−1 = ρ−1

0 T (1.5)

Knowing that the equations related to the reference structure defined by
r are:

∇p = −jωρ0v (1.6)

jωp = −B0∇ · v (1.7)

these can be rewritten by replacing (1.4) and (1.5) in the following way:

ρr
−1 · ∇p = −jωρ0v (1.8)

jωp = −B0 det J∇ · v (1.9)

Considering the divergence and placing v0 =
√

B0

ρ0
:

∇ ·T · ∇p+
ω2

v2
0 det J

p = 0 (1.10)
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Subsequently, we rewrite it as:

∇ ·T · ∇p+ k2p = 0 (1.11)

where:

k2 = k2(r) =
ω2

v2
0 det J

=
k2

0

det J
(1.12)

T =
JJT

det J
(1.13)

It can be demonstrated that the pressure field associated with the trans-
formed geometry is equal to the pressure field of the deformed one and the
material used to make this equivalence is given by the transformation ma-
trix T which takes into account the Jacobian matrix. At this point, our
problem is to solve the wave equation in an undeformed pipeline filled with
an anisotropic material and a method that is very suitable for this type of
problems is the Finite Element Method (FEM).

In the next chapter, we describe the FEM starting initially from two-
dimensional geometries and from a general description of the procedure.
Next, we will see the specific acoustic case of our interest by specifying in
more details the equations seen previously in this chapter. Finally, we in-
troduce the HiMod method, which is a straightforward modification of FEM
that is particularly suitable to study wave propagation in waveguides with
smooth deformations, since it boosts the efficiency of FEM.
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Chapter 2

The Finite Element Method

The Finite Element Method is a numerical technique used for solving the
most common problems of engineering. It is a very important method be-
cause it gives us the approximate solutions to boundary-value problems for
partial differential equations.

The first development of the FEM dates back to 1941 and 1943 thanks
to the studied conducted by A. Hrennikoff [2] and R. Courant [3]. Although
these pioneers used different point of views in their approaches, they identi-
fied the most important point: mesh discretization of a geometrical contin-
uous domain into different subdomains. These subdomains are called finite
elements, in which the unknown function is represented by a series of inter-
polation functions with unknown coefficients.

Other important studies regarding the FEM were done in the 70s and
these can be found in the book ”An Analysis of the Finite Element Method”
written by G. Strang and G. Fix, published in 1973 [4]. In general, many
books have been written on the method [5−8] and thanks to the experiments
done, FEM is now one of the most used method for modeling physical systems
that are part of everyday reality.

The Finite Element Method is divided into different steps:

1. Mesh discretization of the domain
2. Choice of the interpolation function
3. Formulation of the system of equations
4. Solution of the system of equation

The discretization phase is the most important step because the way
into which the domain is divided is going to influence the computational
time and the accuracy of the results. The domain Ω is divided into smaller
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subdomains called Ωe where the superscript indicates the e-th element of the
domain subdivision. Naturally, the discretization can be done for 1D, 2D and
3D dimensional domain. In the 1D domain, the elements are short segments
which together create a line. In the 2D domain, the elements are usually
triangles. In 3D domain, the elements are tetrahedra, triangular prisms or
rectangular bricks. The basic 1D, 2D and 3D elements for modeling curved
lines or surfaces are line segments, triangles and tetrahedra respectively.

Figure 2.1: One-dimensional, two-dimensional and three-dimensional basic
finite elements

The problem can be solved by describing the unknown function u at
nodes associated with each element. To describe a node it is necessary to
know its coordinate values, the local number and the global number. The
local number indicates the position of the node in the element while the
global number gives its position in the system.

The second phase consists in the consideration of an interpolation func-
tion to approximate the solution within each element. The interpolation
function is a polynomial. After the selection of the interpolation function,
the unknown solution in each element is obtained.

The selection of the interpolation function is related to the accuracy of the
method. If an higher accuracy is required, it is necessary to choose an higher-
order interpolation function, so higher-order elements. We can improve the
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accuracy also by using smaller elements in the mesh so, considering a higher
mesh density.

The third and fourth step consist in the formulation and resolution of the
system of equations. There are two different procedures: the Ritz method
and the Galerkin method. In electromagnetics, these systems are usually
associated with scattering, radiation and also wave propagation in waveguides
and resonances in cavities.

Once we have solved the system of equations, we can then compute the
desired parameters such as capacitance, inductance, input impedance and
scattering or radiation patterns and display the result in form of curves [8].

In this chapter we will focus on the description of the Finite Element
Method in two-dimensional domains mainly considering linear triangular el-
ements: we will start from the definition of the boundary-value problem and
then get to the detailed analysis of the different steps of the method and
the characterization of more sophisticated higher-order and isoparametric el-
ements. After that, we will go into the specific case of the Finite Element
Method for measuring the sound pressure in the two-dimensional world: in
particular we will study a planar case that uses Cartesian coordinates and
a radial case that instead considers a system of polar coordinates. Finally,
we will discuss transformation acoustics also considering the case related to
quadrilaterals. All these procedures will lead us to the evaluation of sound
pressure values in the two-dimensional geometry and to the analysis of modal
behavior as a function of a certain frequency range. In particular, the values
of the S parameters will be extrapolated, the nature and properties of which
will be described in more details in the next chapter, for different geome-
tries and we will see what happens to these graphs by modifying for example
the type of elements used and the density of the mesh. The most important
thing will be to compare the graph of the S parameters related to a deformed
two-dimensional geometry with the same graph associated with the regular
geometry of the pipe, obtained after the transformation.
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2.1 Two-Dimensional Finite Element Method

2.1.1 The Boundary-Value Problem and the Variational
Formulation

Boundary-value problems refer to the modeling of physical systems and their
solution is fundamental for understanding the functioning of systems from a
mathematical point of view. In general, a boundary-value problem is identi-
fied by a differential equation of this type:

Lu = f (2.1)

where we have to deal with the boundary conditions on the domain con-
tour Γ. In the equation, L is a differential operator, f is the continuous
function and u is the unknown quantity.

Of course, the differential equation can be presented in different forms
based on the problem we are analyzing, while the boundary conditions range
from the Dirichlet and Neumann conditions to even more complicated con-
ditions. It is preferable to solve boundary-value problems analytically. How-
ever this way is possible only for very few cases such as wave propagation in
rectangular and circular waveguides or cavity resonance within rectangular
and cylindrical cavities. Most practical problems do not present any analyt-
ical method and that is why approximations have been adopted [8]. Among
these, we meet the Ritz and Galerkin methods which have been mentioned
previously.

The Finite Element Method has been widely used in the two-dimensional
case. To describe the FEM, it is necessary to define the boundary-value
problem, expressed by a second-order differential equation. From now on, we
will refer to [8] for the description of the FEM, adopting a similar formulation.
In this case, the second-order differential equation is given by:

− ∂

∂x

(
ax
∂u

∂x

)
− ∂

∂y

(
ay
∂u

∂y

)
+ bu = f in Ω (2.2)
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where u is the unknown function, ax, ay and b are known parameters
associated with the physical properties of the domain and f is the source or
excitation function.

The boundary conditions are given by:

u = u0 on Γ1 (2.3)

(
ax
∂u

∂x
x̂+ ay

∂u

∂y
ŷ

)
· n̂+ γu = t0 on Γ2 (2.4)

where Γ = Γ1 + Γ2 is the boundary enclosing the area Ω, n̂ is the normal
vector and γ, u0 and t0 are known parameters associated with the physical
properties of the boundary. The first boundary condition must be enforced
explicitly while the second is known as natural boundary condition which is
satisfied implicitly. When it turns out γ = 0, the second condition becomes
the Neumann boundary condition.

If there are discontinuities, the unknown function u has to satisfy the
continuity conditions:

u+ = u− on Γd (2.5)

(
a+
x

∂u+

∂x
x̂+ a+

y

∂u+

∂y
ŷ

)
· n̂ =

(
a−x
∂u−

∂x
x̂+ a−y

∂u−

∂y
ŷ

)
· n̂ on Γd (2.6)

where Γd represents the discontinuity interface: the superscript ”+” de-
notes that the observation point approaches Γd from the ”+” side, the super-
script ”−” denotes that the observation point approaches Γd from the ”−”
side.
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Figure 2.2: Two-dimensional domain with a discontinuity interface denoted
by Γd

The boundary-value problem presents an equivalent problem known as
variational problem [9]. It is represented by the following system of equa-
tions:

{
δF (u) = 0

u = u0 on Γ1
(2.7)

where:

F (u) =
1

2

∫∫
Ω

[
ax

(
∂u

∂x

)2

+ ay

(
∂u

∂y

)2

+ bu2

]
dΩ (2.8)

+

∫
Γ2

(γ
2
u2 − t0u

)
dΓ−

∫∫
Ω

fudΩ

If there are any discontinuities, it is necessary to add the continuity con-
ditions to the system considered above.
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2.1.2 Two-Dimensional Finite Element Method Calcu-
lation

After the definition of the boundary-value problem and the variational prob-
lem, we can analyze the basic steps of the FEM listed before for the two-
dimensional case. For simplicity, we consider linear triangular elements. As
it is already known, the first step is to divide the area domain Ω into a
number of two-dimensional elements, for example triangular elements. It is
important to underline that these elements should not overlap among each
other. All the elements are connected together via their vertices.

Figure 2.3: Subdivision of a circular, rectangular and irregular two-
dimensional domain into Finite Elements
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If we choose smaller elements, the results will be more accurate but there
will be also a growth in the memory demand and computing time. The
compromise would be to use smaller elements where the solution presents a
drastic variation and larger elements where the variation is less evident.

The elements and nodes can be labeled with integers for their recognition
inside the domain. In the case of linear triangular elements, each element is
associated with three nodes and each node has a local number that identifies
its position with respect to the element and a global number related to the
whole system. The global and local numbers, together with the number of the
element, will be linked thanks to an array. This array includes all information
concerning the elements and nodes. In addition to this array, it is necessary
to consider another one which relates the segments coincident with Γ2 with
their nodes. This array will be used to facilitate the incorporation of the
second boundary condition (2.4). Then, to impose the Dirichlet boundary
condition (2.3), we consider another vector that stores the global numbers
of the nodes that are located on Γ1. In addition to these data, others are
needed such as the coordinates values of the nodes in the domain, the values
of ax, ay, b and f for each element, the value of u0 for the nodes placed on
Γ1 and the values of γ and t0 for each segment with nodes on Γ2.

Figure 2.4: Example of subdivision of a two-dimensional domain

Once the domain has been discretized, the unknown function u within
each element has to be found. If linear triangular elements are used, the
unknown function u related to all the elements of the domain is defined as:
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ue(x, y) = αe1 + αe2x+ αe3y (2.9)

where αe1, αe2 and αe3 are unknown constant coefficients and e denotes the
e-th element of the domain.

If we impose (2.9) on the three nodes of each linear element, we obtain:

uei = αe1 + αe2x
e
i + αe3y

e
i (2.10)

uej = αe1 + αe2x
e
j + αe3y

e
j

uek = αe1 + αe2x
e
k + αe3y

e
k

where xe and ye are the coordinates of the nodes related to the e-th
element.

Solving the previous equations, we obtain the values of αe1, αe2 and αe3 and
consequently the unknown function ue expressed as:

ue(x, y) =
3∑

n=1

uenϕ
e
n(x, y) (2.11)

where ϕen(x, y) defines the interpolation functions. These functions
are given by:

ϕen(x, y) =
1

2Ae
(αe1n + αe2nx+ αe3ny) n = 1, 2, 3 (2.12)

where αe1n, αe2n, αe3n depend on the values of the coordinates of the e-th
element.

In (2.12), Ae is the area of the e-th element:
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Ae =
1

2

∣∣∣∣∣∣
1 xei yei
1 xej yej
1 xek yek

∣∣∣∣∣∣ (2.13)

The problem can be formulated by using one of the following methods
to obtain the system of equations: the Ritz method [10] or the Galerkin
method [11]. The first considers the homogeneous Neumann boundary
condition. This condition is a particular case of (2.4) in which γ = t0 =
0. The total variational functional is represented as the summation of the
variational functional of each element of the domain:

F (u) =
M∑
e=1

F e (ue) (2.14)

where M denotes the total number of elements.

The functional related to each element is denoted as:

F e (ue) =
1

2

∫∫
Ωe

[
ax

(
∂ue

∂x

)2

+ ay

(
∂ue

∂y

)2

+ b (ue)2

]
dΩ (2.15)

−
∫∫

Ωe

fuedΩ

If we substitute (2.11) into the equation and differentiate F e with respect
to uem, yields:

∂F e

∂uem
=

3∑
n=1

uen

∫∫
Ωe

(
ax
∂ϕem
∂x

∂ϕen
∂x

+ ay
∂ϕem
∂y

∂ϕen
∂y

+ bϕemϕ
e
n

)
dΩ

−
∫∫

Ωe

fϕemdΩ (2.16)

with m = 1, 2, 3
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In matrix form, this is indicated as:

{
∂F e

∂ue

}
= [Ke] {ue} − {re} (2.17)

where the elements of the matrix Ke and of the vector re are provided by
the following integrals:

Ke
mn =

∫∫
Ωe

(
ax
∂ϕem
∂x

∂ϕen
∂x

+ ay
∂ϕem
∂y

∂ϕen
∂y

+ bϕemϕ
e
n

)
dxdy m, n = 1, 2, 3

(2.18)

rem =

∫∫
Ωe

fϕemdxdy m = 1, 2, 3 (2.19)

The system of equations can be found: it is expressed as the summation
over all the triangular elements, into which the domain is partitioned, of the
derivatives of the subfunctional F e respect to the unknown function ue. The
stationarity requirement on F is imposed:

{
∂F

∂u

}
=

M∑
e=1

{
∂F e

∂ue

}
=

M∑
e=1

([
Ke
]
{ue} − {re}

)
= {0} (2.20)

The matrix Ke and the vector re are assembled to find the matrix and
the vector associated to the entire domain:

[K] =
M∑
e=1

[
Ke
]

(2.21)

{r} =
M∑
e=1

{re} (2.22)
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So, the system of equations can be written compactly as:

[K] {u} = {r} (2.23)

The derivation of the system assumed that u satisfies the homogeneous
Neumann boundary condition on Γ2. We can now extend the analysis to the
general case in which γ 6= 0 and t0 6= 0. It is necessary to add an extra term
to the functional F (u) expressed as:

Fc (u) =

∫
Γ2

(γ
2
u2 − t0u

)
dΓ (2.24)

Assuming that Γ2 comprises N segments, Fc (u) can be rewritten with a
summation:

Fc (u) =
N∑
s=1

F s
c (us) (2.25)

where F s
c denotes the functional linked to the s-th segment of the surface

examined.

The unknown function u within each segment is approximated in a way
similar to the unknown function within each triangular element of the entire
domain studied:

us =
2∑

n=1

usnϕ
s
n (2.26)

where:

ϕs1 = 1− ξ ϕs2 = ξ (2.27)
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and ξ is the normalized distance measured from node 1 to node 2 on the
s-th segment.

Following the same mathematical steps adopted to find the derivative of
F e, the derivative of the functional associated to the s-th segment is obtained:

∂F s
c

∂usm
=

2∑
n=1

usn

∫ 1

0

γϕsmϕ
s
nl
sdξ −

∫ 1

0

t0ϕ
s
ml

sdξ (2.28)

where ls is the length of the s-th segment.

In matrix form the above expression becomes:

{
∂F s

c

∂us

}
= [Ks] {us} − {rs} (2.29)

with the elements of Ks and rs given by:

Ks
mn =

∫ 1

0

γϕsmϕ
s
nl
sdξ m, n = 1, 2 (2.30)

rsm =

∫ 1

0

t0ϕ
s
ml

sdξ m = 1, 2 (2.31)

The general system of equations is given by the union of all the derivatives
calculated on the triangular elements into which the domain is splitted and
all the derivatives evaluated on the segments that form the contour:

{
∂F

∂u

}
=

M∑
e=1

{
∂F e

∂ue

}
+

N∑
s=1

{
∂F s

c

∂us

}
= (2.32)

=
M∑
e=1

([
Ke
]
{ue} − {re}

)
+

N∑
s=1

([
Ks
]
{us} − {rs}

)
= {0}
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Now that the system has been set up, it can be solved by imposing the
Dirichlet boundary condition for the nodes on Γ1.

After considering the Dirichlet boundary condition, the system will give
us the unknowns um. There are several methods for solving the system which
are divided into two large groups: direct methods and iterative meth-
ods [12]. The former are based on the Gaussian elimination and guarantee
a correct solution to the system, the latter start from an initial guess and
then minimize the residual error through various iterations. Usually, the
iterative methods provide an approximate solution with some degree of ac-
curacy. Then, there are other iterative methods that instead are able to
give an exact solution after a certain number of iterations. Both methods
have advantages and disadvantages so, the choice of the method depends
on the problem we are interested into. We will describe these methods in a
more detailed way later. It is necessary to keep in mind that the choice of
the method is fundamental because it influences the efficiency of the Finite
Element Method.

2.1.3 Higher-Order Elements

Once the method has been established, the next step is how to improve the
accuracy. In Finite Element Method, two different approaches are commonly
taken into account: one consists to split out the elements into smaller ele-
ments, the other uses higher-order elements.

A quadratic triangular element has six nodes, three of which are located
in the center of its sides while the others are represented by the vertices.

In this case, the unknown function related to the e-th element is expressed
as:

ue(x, y) = αe1 + αe2x+ αe3y + αe4x
2 + αe5xy + αe6y

2 (2.33)
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Figure 2.5: Quadratic triangular element

where the six coefficients αe1, α
e
2, ..., α

e
6 are solved by imposing this equa-

tion at the six nodes:

ue(x, y) =
6∑

n=1

uenϕ
e
n(x, y) (2.34)

ϕen are the interpolation functions of the e-th element and they depend
on Len functions expressed as:

Len(x, y) =
1

2Ae
(αe1n + αe2nx+ αe3ny) n = 1, 2, 3 (2.35)

These functions are the same as the interpolation functions defined in the
linear case and they can be examined by considering any point P within a
triangular element. The area of the triangle defined by this point and nodes
2 and 3 is:

A1 =
1

2

∣∣∣∣∣∣
1 x y
1 xej yej
1 xek yek

∣∣∣∣∣∣ (2.36)
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From the expression of the area, it can be found that:

Le1 =
A1

Ae
=

1

2Ae
(αe11 + αe21x+ αe31y) (2.37)

We can do the same by looking at the other two areas formed by P . This
leads to:

Le2 =
A2

Ae
=

1

2Ae
(αe12 + αe22x+ αe32y) (2.38)

Le3 =
A3

Ae
=

1

2Ae
(αe13 + αe23x+ αe33y) (2.39)

Once the interpolation functions have been constructed, one can obtain
the elemental matrix Ke and the elemental vector re by using a numerical
integration. A common integration scheme is Gaussian quadrature. For an
integral evaluated on a triangular element:

∫∫
Ωe

F (Le1, L
e
2, L

e
3) dxdy =

Mq∑
m=1

AewmF (Le1m, L
e
2m, L

e
3m) (2.40)

where (Le1m, L
e
2m, L

e
3m) are the sampling points and wm are the weights.

2.1.4 Isoparametric Elements

As mentioned in the previous paragraph, the most important advantage of
higher-order elements is that for a certain accuracy, they can use larger el-
ements and smaller number of unknowns. However, elements with straight
lines cannot model curved domains precisely. This problem can be overcome
by using isoparametric elements which present curved lines.
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One can define a set of barycentric coordinates which are more suitable
respect to the cartesian ones to describe curved sides. It is important to
define a mapping between xy-plane and ξη-plane: the first illustrates an
element with curved lines while the second represents a regular element with
straight sides.

Figure 2.6: Two-dimensional element with curved sides in the xy-plane and
its transformation in the ξη-plane

The domain transformation is pointed out by the Jacobian matrix J:

J =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
(2.41)

To introduce the concept of isoparametric elements, we can start con-
sidering triangular elements with curved sides in the xy-plane. Using the
quadratic transformation, one can obtain:

x = α1 + α2ξ + α3η + α4ξ
2 + α5ξη + α6η

2 (2.42)

y = α
′

1 + α
′

2ξ + α
′

3η + α
′

4ξ
2 + α

′

5ξη + α
′

6η
2 (2.43)

The unknown coefficients can be found by applying these two equations
to the six nodes of the element. We obtain:
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x =
6∑

n=1

xnϕ
e
n (ξ, η) (2.44)

y =
6∑

n=1

ynϕ
e
n (ξ, η) (2.45)

The mapping defined by (2.44) and (2.45) describes the geometry accu-
rately to second order. One can achieve more accurate mappings by using
higher-order mappings.

After the mapping of the element in the ξη-plane, it is useful to express
the unknown function u in terms of ξ and η. In the quadratic case:

ue (ξ, η) =
6∑

n=1

uenϕ
e
n (ξ, η) (2.46)

The interpolation functions depend on the regular domain and they can be
identified starting from the interpolation functions associated to the deformed
domain. It is necessary to point out the derivatives of these functions in the
ξη-plane to show the elements of the Ke matrix and of the re vector:

∂ϕem
∂ξ

=
∂ϕem
∂x

∂x

∂ξ
+
∂ϕem
∂y

∂y

∂ξ
(2.47)

∂ϕem
∂η

=
∂ϕem
∂x

∂x

∂η
+
∂ϕem
∂y

∂y

∂η
(2.48)

These equations can be written as:

{
∂ϕe

m

∂ξ
∂ϕe

m

∂η

}
= (J)

{
∂ϕe

m

∂x
∂ϕe

m

∂y

}
(2.49)

where J is the Jacobian matrix defined above.

The definition of isoparametric elements can be considered also regarding
quadrilaterals.
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Figure 2.7: Quadrilateral linear and quadratic elements with curved sides in
the xy-plane and their transformations in the ξη-plane

A quadrilateral with straight lines is defined in the ξη-plane in this way:

x =
4∑

n=1

xnϕ
e
n (ξ, η) (2.50)

y =
4∑

n=1

ynϕ
e
n (ξ, η) (2.51)

A quadrilateral element can be found out also through a biquadratic
transformation. The transformation functions are:

ϕen (ξ, η) = ϕen (ξ)ϕen (η) (2.52)

22



Starting from the interpolation functions, as it has already been seen
in the case of triangular elements, one can define the elements of the Ke

matrix and of the re vector through the Jacobian matrix which determines
the domain transformation.

2.2 Application to the Acoustic Field

2.2.1 The Helmholtz Equation

As discussed previously, the Finite Element Method is one of the most com-
mon methods for describing and solving various problems in the engineering
field. Our interest is directed to the field of acoustic waves. The goal is to
calculate the sound pressure in different points of a pipe affected by geo-
metrical deformations to identify them and to monitor the condition of the
duct. Therefore we use the acoustic transformation and obtain the structure
of the duct without deformation. In this case, the second-order differen-
tial equation which defines the boundary-value problem is delineated by the
Helmholtz equation. Implemented by the German physicist Hermann von
Helmholtz (1821-1894), a pioneer in acoustics, electromagnetism and physi-
ology, the Helmholtz equation is used to study physical problems involving
partial differential equations (PDEs) in both space and time. It describes a
time-independent form of the wave equation and it can be carried out from
the linear continuity equation and the linear Euler equation [1]. Given
p (r) the pressure at a particular point r, one can obtain:

∇p = −jωρ0v (2.53)

jωp = −B0∇ · v (2.54)

where v is the fluid speed, ρ0 is the rest density and B0 is the compression
modulus.

Applying the divergence to the first equation, we find:
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∇2p = −jωρ0

(
−jωp
B0

)
(2.55)

and this yields the Helmholtz equation:

∇2p+ k2p = 0 (2.56)

where:

k = ω

√
ρ0

B0

=
ω

v0

(2.57)

k is the wavenumber. It is known as the spatial frequency of a wave
measured in cycles per unit distance.

The Helmholtz equation must be accompanied by boundary conditions
in order to be solved. The most common is the hard boundary condition
given by:

∂p

∂v
= 0 (2.58)

There are also non-homogeneous boundary conditions in which the pres-
sure value or its derivative are taken as known values. These terms act as
sources.
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2.2.2 Finite Element Method for measuring the Sound
Pressure

To solve the Helmholtz equation, the FEM is used. The Helmholtz equation
is expressed as sum of integrals:

∫
S

∇ψ · ∇pdS − k2

∫
S

ψpdS =

∫
∂S

ψ
∂p

∂v
dl (2.59)

The last integral illustrates the known term and it is a contour integral.
f = ∂p

∂v
is the source or excitation function which can be also equal to zero.

The parts of the domain where the source function is nonzero are the ports.

2.2.3 Analysis of the Sound Pressure in the Planar
Case

Of course, also in the acoustic waves field, it is necessary to adopt one of the
two methods seen in the general case (Ritz method or Galerkin method) to
formulate and solve the system. The pressure p, associated with a particular
element into which the domain is divided, is provided by the summation of
the product between the pressure related to all the element nodes and some
functions related to the nodes called interpolation functions:

p =
N∑
n=1

pnϕn (2.60)

Therefore the pressure pn corresponds to the unknown function uen and
ϕn is the interpolation function seen previously in the description of FEM.
Using Galerkin’s method, the system of equation to solve, in matrix form, is
given by:

(
A− k2B

)
p = C (2.61)
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where A = [Am,n], B = [Bm,n], C = [Cm,1] and:

Am,n =

∫
S

∇ϕm · ∇ϕndS =

∫
S

(
∂ϕm
∂x

∂ϕn
∂x

+
∂ϕm
∂y

∂ϕn
∂y

)
dS (2.62)

Bm,n =

∫
S

ϕmϕndS (2.63)

Cm,1 =

∫
∂S

ϕmfdl (2.64)

The elements of the matrices A and B correspond to the elements of the
matrix Ke

mn of the general case evaluated previously, while the elements of
the vector C match with the elements of the vector rem.

This leads to:

p =
(
A− k2B

)−1
C (2.65)

Once the coefficients have been obtained, it is therefore possible to express
the pressure related to each element of the domain.

2.2.4 Analysis of the Sound Pressure in the Radial
Case

One can analyze also the problem from the cylindrical coordinates point of
view. Cylindrical coordinates are a generalization of two-dimensional polar
coordinates to three dimension by adding a height z. These coordinates are
defined by ρ which is the distance between the origin and the projection
of a chosen point in xy-plane, by φ known as azimuth which is the angle
between ρ and the reference direction on the xy-plane and by z which is the
distance from the xy-plane to the chosen point in the space. The presence
of ρ which is, in simple terms, the radius of the cylinder, and of the angle φ
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which defines the base surface of the cylinder, cause this analysis to define a
rotary behavior.

Figure 2.8: Cylindrical coordinates

In this case we have dV = ρdρdφdz and dS = ρdρdφ, the volume ele-
ment and the surface element respectively. The pressure p delineating every
element of the domain, is given by the same expression of the planar case:

p =
N∑
n=1

pnϕn (2.66)

The elements of matrix A, B and of the vector C are:

Am,n =

∫
V

∇ϕm · ∇ϕndV = 2π

∫ (
∂ϕm
∂ρ

∂ϕn
∂ρ

+
∂ϕm
∂z

∂ϕn
∂z

)
ρdρdz (2.67)

Bm,n = 2π

∫
ϕmϕnρdρdz (2.68)
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Cm,1 = 2π

∫
ϕmfρdρ (2.69)

With these new matrix expressions, we can now determine the pressure
at each point of the domain as in the planare case.

2.2.5 Acoustic Transformation

As we have already mentioned, our aim is the determination of sound pressure
in geometries affected by deformations and their transformation into regular
domains. The first transformation is linked to the mapping of a triangle into
another. The reference geometry is defined by the coordinates x and y while
the deformed one is managed by x′ and y′.

Figure 2.9: Mapping of a deformed triangle in the x′y′-plane to the reference
one in the xy-plane

This mapping yields:

r′ = T
′
λ (2.70)
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where T
′

is a matrix specified by:

T
′
=

 x′1 x′2 x′3
y′1 y′2 y′3
1 1 1

 (2.71)

We can calculate the inverse matrix as follows:

(
T
′
)−1

=
1

det T
′

 y′2 − y′3 x′3 − x′2 x′2y
′
3 − x′3y′2

y′3 − y′1 x′1 − x′3 x′3y
′
1 − x′1y′3

y′1 − y′2 x′2 − x′1 x′1y
′
2 − x′2y′1

 (2.72)

Now the mapping can be expressed more linearly:

r = T
(
T
′
)−1

r′ = τr′ (2.73)

where r′ shows the system connected to the deformed geometry, r imple-
ments the reference geometry and τ is the transformation.

Once the mapping has been obtained, the reference coordinates can thus
be performed:

x = τxxx
′ + τxyy

′ + τ 13 (2.74)

y = τ yxx
′ + τ yyy

′ + τ 23 (2.75)

The transformation is governed by the Jacobian matrix:

J =

 τxx τxy 0
τ yx τ yy 0
0 0 1

 (2.76)
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where:

τxx = x1
(y′2 − y′3)

det T
′ + x2

(y′3 − y′1)

det T
′ + x3

(y′1 − y′2)

det T
′ (2.77)

τxy = x1
(x′3 − x′2)

det T
′ + x2

(x′1 − x′3)

det T
′ + x3

(x′2 − x′1)

det T
′ (2.78)

τ yx = y1
(y′2 − y′3)

det T
′ + y2

(y′3 − y′1)

det T
′ + y3

(y′1 − y′2)

det T
′ (2.79)

τ yy = y1
(x′3 − x′2)

det T
′ + y2

(x′1 − x′3)

det T
′ + y3

(x′2 − x′1)

det T
′ (2.80)

In conclusion, the matrix T which defines the transformation can be
pointed out:

T =
JJT

det J
=

1

det J

 τ 2
xx + τ 2

xy τxxτ yx + τxyτ yy 0
τxxτ yx + τxyτ yy τ 2

yx + τ 2
yy 0

0 0 1

 (2.81)

where:

det J = τxxτ yy − τxyτ yx (2.82)

2.2.6 Transformation on Quadrilaterals

Now suppose we have a quadrilateral having the following coordinates:
(
x′i, y

′
1,i

)
,(

x′i, y
′
2,i

)
,
(
x′i+1, y

′
1,i+1

)
,
(
x′i+1, y

′
2,i+1

)
. The goal is to convert it into another

quadrilateral showing these new points: (xi, y1), (xi, y2), (xi+1, y1), (xi+1, y2).
In addition, it is pointed out that:

x′i = xi (2.83)
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x′i+1 = xi+1 (2.84)

where i determines the point and the region between i and i + 1. These
formulas imply that the transformation affects only the y side.

Figure 2.10: Mapping of a quadrilateral into another

The equation that express this change of geometry is the following:

y =
y′ − y′1
h′

h (2.85)

where h = y2 − y1 denotes the height of the resulting quadrilateral and
h′ = y′2 − y′1 stands for the height of the deformed one.

The two values along the y direction associated to the deformation are
achieved thanks to a procedure known as linear interpolation. It is one of
the simplest interpolation method. To interpolate means to estimate a par-
ticular value of a function starting from certain known values of the function.
With the linear interpolation any pair of adiacent point is simply joined by
a segment. In general, denoting the known values as (xi, yi) and (xi+1, yi+1),
the linear interpolation function can be finally written:
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y = f (x) =
xi+1 − x
xi+1 − xi

yi +
x− xi
xi+1 − xi

yi+1 = yiXi + yi+1Xi+1 (2.86)

Figure 2.11: Linear interpolation to estimate the value of the point P starting
from A and B points

Employing this function, we find the values that characterize the height
of the quadrilateral:

y′1 = y′1,iXi + y′1,i+1Xi+1 (2.87)

y′2 = y′2,iXi + y′2,i+1Xi+1 (2.88)

Substituting these values into (2.85):

y =
y′ − y′1,iXi − y′1,i+1Xi+1

h′iXi + h′i+1Xi+1

h (2.89)

The inverse transformation is given by:
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y′ = y

(
h′iXi + h′i+1Xi+1

)
h

+ y′1,iXi + y′1,i+1Xi+1 (2.90)

After getting these expressions, the elements of the Jacobian matrix are
thus identified:

Jyy =
∂y

∂y′
=

h

h′iXi + h′i+1Xi+1

(2.91)

Jyx =
∂y

∂x′
=

[ (
y′1,i − y′1,i+1

)
h′iXi + h′i+1Xi+1

−
(
y′ − y′1,iXi − y′1,i+1Xi+1

)(
h′iXi + h′i+1Xi+1

)2

(
h′i+1 − h′i

)] h

∆i

(2.92)

The Jacobian matrix can be finally expressed:

J =

 1 0 0
Jyx Jyy 0
0 0 1

 (2.93)

where the determinant is:

det J = Jyy (2.94)

The matrix T that describes the transformation on quadrilaterals is thus
obtained:

T =
JJT

det J
=

1

det J

 1 Jyx 0
Jyx J2

yx + J2
yy 0

0 0 1

 (2.95)
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2.2.7 Anisotropic Case

In the previous two sections we have seen how the acoustic transformation
takes place in the two-dimensional domains. In particular, we have evaluated
the mapping between a deformed triangle and a regular one and we have done
the same also considering quadrilaterals. Defining the elements that make up
the mesh and therefore allowing us to perform the geometric transformation
is of fundamental importance. The accuracy of the results depends on the
elements we are going to use and on their properties. As we have already seen,
the transformation is based on linear interpolation and our task is to find an
approximation between the values of the deformed structure and the same
values related to the regular structure and we want the convergence between
these values to be equal to zero. To satisfy this request, it is necessary to
emphasize that the considered element must be anisotropic. In the isotropic
mesh case, if we want to have a smaller mesh along one of the two directions,
we have to deal with smaller equilateral triangles. However, in the anisotropic
case, if we want smaller elements along a direction, we can modify their shape
by going to stretch them. These triangles are able to cover a larger area
respect to the equilateral triangles within our geometry [13]. Furthermore,
the analysis of an anisotropic mesh is also convenient from the computational
point of view because it requires the use of a smaller quantity of elements
given their ability to spread within the structure.
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Chapter 3

Guided Propagation of Sound

The Finite Element Method is one of the most important methods that are
used for the detailed analysis of the behavior of a system. In particular,
we have used it to determine the different sound pressure points inside a
deformed pipe with consequent transformation of the geometry. Sound is a
set of pressure waves and it can propagate through various media. During
their propagation, waves can be reflected, refracted or attenuated by the
medium. All media have three properties which affect the behavior of sound
propagation [14]:

- The speed of sound which is given by the relationship between density and
pressure
- The motion of the medium
- The viscosity of the medium which determines the rate at which sound is
attenuated

What we are interested into is the propagation of sound waves in partic-
ular regions. In this chapter we will therefore describe guided propagation
from a general point of view, in particular we will discuss the rectangular
and the circular waveguide whose parameters will help us to determine the
solution of our problem and then consider the multimode acoustics which is
based on the modal analysis of the geometry from the acoustic point of view.
We will evaluate the importance of normalization and the main concepts of
impedance and scattering matrix and then conclude the chapter with the
definition of acoustic power and its importance in calculating the pressure at
the ports.
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3.1 A General Description of Guided Propa-

gation

The study of guided propagation is based on the analysis of waves that
propagate in cylindrical regions. The cylindrical region, delimited by walls
that can be metallic, is known as a waveguide. The name is linked to the
ability to guide the wave along the axis of this region.

Figure 3.1: Examples of waveguides

The waves that propagate along a structure are characterized by an ex-
ponential dependence on the direction of propagation, which we assume is
indicated by x: e∓γx, where γ is known as the propagation constant. The
propagation constant defines the phase and amplitude of each component of
the wave. Guided propagation has the following characteristics:

- The transverse dimensions of the guide must be in the order of the wave-
length and the frequency at which we operate must be positive
- The fields that can be propagated with the exponential law described above
are particular field configurations known as modes. For this reason, guided
propagation is also called modal propagation

To examine these modes and their properties, it is necessary to consider
also the boundary conditions. Given the difficulty of obtaining a direct solu-
tion, we must consider a set of auxiliary functions called potentials [15]. The
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different types of modes are specified with subscripts. These are integers rep-
resented as m and n and can take values from 0 to infinity. The combination
of these two integers defines a particular field configuration. In particular,
the mode defined with subscript equal to 00 is known as the fundamental
mode. For each mode there is a lower frequency limit. This is known as the
cut-off frequency. Below this frequency no signals can propagate along the
waveguide.

In reality, there are waveguides of different types and shapes. The rect-
angular waveguide is probably the most used due to its simplicity and good
electromagnetic properties and it is employed in many applications.

Figure 3.2: Rectangular guide

In this case, the potential function is:

ϕ (x, y) = X (x)Y (y) (3.1)

Starting from this function, it is possible to calculate X and Y :

X = A cos (kxx) +B sin (kxx) (3.2)
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Y = C cos (kyy) +D sin (kyy) (3.3)

where:

kx =
mπ

Lx
m = 0, 1, ... (3.4)

ky =
nπ

Ly
n = 0, 1, ... (3.5)

kx and ky introduce the eigenvalues linked to the x and y direction re-
spectively while m and n are the integers which represent the possible com-
binations of modes. The generic mode i is therefore associated with a pair
(m,n). Considering an arbitrary constant Cmn, we can write:

ϕi (x, y) = ϕmn (x, y) = Cmn cos
mπx

Lx
cos

nπy

Ly
(3.6)

kmn =

√(
mπ

Lx

)2

+

(
nπ

Ly

)2

(3.7)

γmn =

√(
mπ

Lx

)2

+

(
nπ

Ly

)2

− k2 (3.8)

where kmn is the eigenvalue associated with each pair of integers that
define the modes, γmn is the propagation constant and k is the wavenumber
[15].

Another type of guide particularly used is the circular one [15]. It is
employed to propagate circular polarization signals, to feed circular horns
and it is widely used especially with regards to antennas.
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Figure 3.3: Circular guide

As for the rectangular guide, we write the potential function:

ϕ (ρ, φ) = Jm (kmnρ)

[
cos (mφ)
sin (mφ)

]
(3.9)

where Jm specifies a group of functions known as Bessel functions.

Bessel functions are a set of mathematical functions derived around 1817
by the German astronomer Bessel [16]. Nowadays, these functions are spent
for the description of many physical phenomena including the flow of heat
in a cylinder and the motion of fluids. The zeros of Bessel functions are
known and therefore also the zeros of the derivatives of these functions will
be known. From the values of these zeros, we can find the expression of the
eigenvalues kmn:

kmn =
χ
′
mn

R
(3.10)

where χ
′
mn is the n-th zero of J

′
m and R is the radius of the circular guide.
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Figure 3.4: Values of the zeros of Bessel functions

The potential function will become:

ϕ (ρ, φ) = AmnJm

(
χ
′
mn

R
ρ

)[
cos (mφ)
sin (mφ)

]
(3.11)

where Amn is an arbitrary constant.

Finally, the propagation constant is expressed as follows:

γmn =

√(
χ′mn
R

)2

− k2 (3.12)
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3.2 Multimode Acoustics

After having described the concept of guided propagation and some of its
properties and characteristics, it is now possible to specify the particular
case related to sound propagation in pipes. Modes in circular pipes can be
classified according to the two indices, also mentioned in the previous section:
m, known as the azimuthal index, and n, which is the radial one. As before,
the potential function is found out, in this case it is a pressure wave:

pmn (ρ, φ) = AmnJm

(
χ′mn
R

ρ

)[
cos (mφ)
sin (mφ)

]
(3.13)

where R is the radius of the pipe, χ′mn is the n-th zero of the derivative
of Jm and Amn are normalization constants such that:

∫
S

p2
mndS = 1 (3.14)

Introducing the expression of the eigenvalues related to the modes as
kmn = χ′mn

R
, the propagation constant is calculated:

γmn =
√
k2
mn − k2 (3.15)

where k = ω
v

is the wavenumber. Dealing with sound waves, the speed v
is the speed of sound [17].

The fundamental mode is the most important mode and it is the only
capable of propagating in the absence of the other modes. In this case, the
fundamental mode is given by m = 0 and n = 0 and conventionally χ

′
00 = 0.

However, a generic mode propagates along the axial direction, assumed to
be z, as e−γmnz.

In general, wave propagation can be described as an electrical circuit
characterized by a certain voltage and a certain current value. In the sound
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field, voltage equals pressure, while current equals sound speed [1]. The
relationship between pressure and sound velocity is given by the linear Euler
equation that we have already expressed in the previous chapter:

∇p = −jωρ0v (3.16)

where ρ0 is the rest density.

The component of the speed of the sound wave directed along the direc-
tion of propagation z is given by the following expression:

vz = − 1

jωρ0

∂p

∂z
(3.17)

The pipe in which the sound wave will flow, represents a cavity. The
sound pressure in any cavity is closely related to the atmospheric pressure
p0, in more details, to the pressure that we find inside the cavity in total
absence of sound field:

p (z) = p0e
−γz (3.18)

Deriving the pressure with respect to space and substituting the result
into (3.17), we find out:

vz =
γ

jωρ0

p (3.19)

We get the relationship between pressure and speed, which, referring to
electronics, corresponds to the link between voltage and current. In an elec-
tronic circuit, the ratio between voltage and current is known as impedance.
Impedance performs the total opposition to alternating current by an elec-
tronic circuit [18]. In the sound field case, it is a constant related to the prop-
agation of sound waves in an acoustic medium. The reciprocal of impedance
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is admittance. Therefore, the ratio between speed and pressure can be
determined and gives birth to the wave admittance:

Y =
γ

jωρ0

(3.20)

In case we are dealing with the fundamental mode, in which the eigenvalue
is equal to zero, the propagation constant is γ = j ω

v
and the wave admittance

will be simplified:

Y =
1

vρ0

(3.21)

The expression of the wave admittance will prove to be fundamental for
the calculation of the pressure. It is therefore necessary to pay careful atten-
tion.

3.2.1 Normalization

Previously, we pointed out the pressure wave equation. This depends on a
series of normalization coefficients Amn for which it results:

∫
S

p2
i dS =

∫
S

p2
mndS = 1 (3.22)

where i is the index of the generic mode associated to the pair (m,n).

The normalization constants are therefore expressed as [17]:

Amn =
1√

2π
∫ R

0
ρJ2

m (kmnρ) dρ
if m = 0 (3.23)
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Amn =
1√

π
∫ R

0
ρJ2

m (kmnρ) dρ
if m > 0 (3.24)

In evaluating our geometry, using the FEM procedure and referring in
particular to the radial case as described in the previous chapter, we will
consider Bessel functions but with the azimuthal index m = 0 [1]. At each
port yields:

p =
(
F+

0 + F−0
)
Q0 +

∑
n=1

(
F+
n + F−n

)
QnJ0 (k0nρ) (3.25)

vz =
k

ωρ0

(
F+

0 − F−0
)
Q0 +

∑
n=1

γ0n

jωρ0

(
F+
n − F−n

)
QnJ0 (k0nρ) (3.26)

where p is the sound pressure, vz is the sound speed in the direction of
propagation, Q0 and Qn are the normalization components referred to a null
radial index and to any radial index respectively and finally we find F+

0 and
F+
n which describe the incident wave flowing in the pipe and F−0 and F−n

characterizing the reflected wave.

The normalization is such that:

2πQ2
n

∫ R

0

ρJ2
0 (k0nρ) dρ = 1 (3.27)

From this expression, the normalization constants are thus derived:

Q0 =
1√
πR2

(3.28)

Qn =
1√

2π
∫ R

0
ρJ2

0 (k0nρ) dρ
(3.29)
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Our analysis also concerns a planar case, which therefore is modeled by
using a set of Cartesian coordinates and it is defined by a rectangular two-
dimensional structure. To describe the normalization, we must consider the
definition of rectangular guide. The generic mode is expressed by an index
i and it is associated with a function cos

(
iπs
L

)
where L is the length of the

port and s is a curvilinear coordinate defined on the port that varies from 0
and L. The eigenvalue, as it happens for the rectangular guide, is given by
the following expression:

ki =
iπ

L
(3.30)

At each port, we obtain the pressure and the sound velocity:

p =
∑
n

(
F+
n + F−n

)√εn0

L
cos
(nπs
L

)
(3.31)

vz =
∑
n

γn
jωρ0

(
F+
n − F−n

)√εn0

L
cos
(nπs
L

)
(3.32)

where:

εn0 =

{
1 if n = 0
2 otherwise

(3.33)

The term under root is used to have the normalization, in fact it results:

∫ L

0

(√
εn0

L
cos
(nπs
L

))2

ds = 1 (3.34)
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3.2.2 Voltage and Current Matrices

Previously, we have mentioned that the pressure analysis within a pipe can
be interpreted in a more general way as a circuit analysis in which voltage
and current are the parameters to be evaluated. This similarity leads us to
model pressure and velocity at each domain port so that they depend on
voltage and current values [17]. In formulas:

p (x, y, z′) =
∑
i

pi (x, y)
[
V +
i e
−γiz′ + V −i e

γiz
′
]

(3.35)

vz (x, y, z′) =
∑
i

vzi (x, y)
[
I+
i e
−γiz′ + I−i e

γiz
′
]

= (3.36)

=
∑
i

γi
jωρ0

pi (x, y)
[
V +
i e
−γiz′ − V −i eγiz

′
]

where γi
jωρ0

= Yi is the wave admittance, z′ is a coordinate that enters

into the ports, V +
i and V −i are the incident and reflected voltage waves re-

spectively and finally I+
i and I−i are the current waves. At the first port it

turns out z = z′ while at the other port we have z = −z′.

The problem is then expressed in matrix form:

V± =


V ±1
V ±2
...
V ±N

 I± =


I±1
I±2
...
I±N

 (3.37)

From this expression, the general voltage and current matrices are ob-
tained:

V = V+ + V− (3.38)

I = I+ + I− (3.39)
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We can therefore determine the impedance matrix:

V = ZI (3.40)

Finally, we impose the condition of absence of velocity at each point of
the domain and the pressure term pj for each mode and each port that we
are going to consider. Then, we test the result with the normalized functions
pi previously analyzed. The generic term Zij is thus obtained by imposing
pj as a velocity at the ports:

Zij =

∫
Si

pi (x, y) ptotj (x, y, zport) dS (3.41)

3.2.3 Scattering Matrix

In the previous paragraph, we identified the matrices that define voltage and
current as the sum of incident and reflected waves:

V = V+ + V− (3.42)

I = I+ + I− =
V+

Zc

− V−

Zc

(3.43)

where Zc is known as the characteristic impedance. It is the most impor-
tant parameter for a waveguide and it is represented as the ratio of magnitude
of voltage and current waves in an infinite transmission line at zero reflection
wave condition.

Now we introduce the following normalized variables [19]:

v =
V√
Zc

(3.44)
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i =
√

ZcI (3.45)

a =
V+

√
Zc

=
√

ZcI
+ (3.46)

b =
V−√

Zc

=
√

ZcI
− (3.47)

where a and b point out the incident and reflected normalized waves
respectively. It yields:

a =
v + i

2
=

1

2
√

Zc

[V + ZcI] (3.48)

b =
v − i

2
=

1

2
√

Zc

[V − ZcI] (3.49)

All the elements in these equations are column vectors whose number of
rows equals the number of ports we have. In our case, there are two ports
and one can therefore manage the elements a1 and b1 referred to the first
port and a2 and b2 associated with the second one. It turns out:

b1 = S11a1 + S12a2 (3.50)

b2 = S21a1 + S22a2 (3.51)

where Sij determines the elements of an S matrix known as scattering
matrix. The scattering matrix combines incident and reflected waves. It is
what allows us to describe the properties of complicated networks. Thanks
to the scattering matrix, it is possible to know the amount of signal that
is transmitted from one port to the other and the amount of signal that is
reflected. The scattering matrix requires the definition of a characteristic
impedance for each port and can be represented as follows:

S =

[
S11 S12

S21 S22

]
(3.52)
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Its components constitute the S parameters. In general, these param-
eters describe the input-output relationship between ports in an electrical
system. In particular, S11 term represents the contribution of the reflected
wave b1 due to the incident wave a1 at port 1, S12 expresses the contribution
of the reflected wave b1 due to the incident wave a2 at port 2, S21 is the term
related to the contribution of the reflected wave b2 due to the incident wave
a1 at port 1 and finally S22 is the contribution of the reflected wave b2 due
to the incident wave a2 at port 2. In formulas:

S11 =
b1

a1

∣∣∣∣
a2=0

(3.53)

S12 =
b1

a2

∣∣∣∣
a1=0

(3.54)

S21 =
b2

a1

∣∣∣∣
a2=0

(3.55)

S22 =
b2

a2

∣∣∣∣
a1=0

(3.56)

Figure 3.5: Scattering parameters in a two port network

The concept of scattering parameters is closely related to the concept of
power: for example, the term S12 is known as the power transferred from
port 1 to port 2. So, in general, Sij is the power transferred from port i to
port j. S parameters are performed as functions of frequency and vary with
frequency variation. In our case, we want to calculate the S parameters to
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identify the behavior of a deformed pipe under the stimulation of a sound
wave and to observe what happens in function of a certain frequency range.
In practice, the most commonly quoted parameter is S11. This term shows
how much power is reflected and it is known also as reflection coefficient.
For example, if S11 = 0 dB, then all the power is reflected and nothing is
radiated. The more the dB value goes below the 0 dB, the more the power
is transmitted.

3.2.4 Voltage Scattering Matrix

Returning to the definition of voltage matrix as the sum of the voltage in-
cident matrix and reflected matrix, it is possible to express the scattering
matrix as the ratio between the reflected voltage matrix and the incident one
[17]. It turns out:

V− = SV+ (3.57)

The scattering matrix can be also called ”voltage” scattering matrix and
it can be represented with the subscript v. It is necessary to make this
clarification in order to not confuse it with the ”power” scattering matrix
that we will consider next.

From (3.40), we obtain:

V+ + V− = Z
(
I+ + I−

)
= ZYc

(
V+ −V−

)
(3.58)

where Yc is the diagonal matrix of wave admittances Yi. By replacing
the voltage scattering matrix formula in the previous equation, yields:

(U + Sv) V+ = ZYc (U− Sv) V+ (3.59)
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where U is the identity matrix. Because of the arbitrariness of V+, one
gets:

U + Sv = ZYc (U− Sv) (3.60)

Solving for Sv, we obtain the voltage scattering matrix:

Sv = (ZYc + U)−1 (ZYc −U) (3.61)

Practically, this matrix specifies the relationship between the different
incident and reflected voltage values that we find at the two ports of the
domain but it is not able to give us complete information about the problem
we are interested into.

3.2.5 Power Scattering Matrix

So far we have dealt with the voltage scattering matrix. This matrix is
representative but it cannot give us the same amount of information as the
power scattering matrix. When the main interest is in the power relationship
between the various circuits in which the sources are not correlated, the
voltage waves are not considered the best independent variables to be used
for the analysis. A different concept of waves is introduced, which is that
of power waves. These waves are defined by the power scattering matrix
[17]. The coefficients of this matrix in square magnitude represents relative
reflected powers. We can therefore determine the acoustic power associated
with each mode:

P+
i =

1

2

∫
S

V +
i pi

(
I+
i vzi

)∗
dS =

1

2
Y ∗i
∣∣V +
i

∣∣2 ∫
S

|pi|2 dS =
1

2
Y ∗i
∣∣V +
i

∣∣2 (3.62)

51



The power is connected to the other quantities analyzed and it is generally
expressed as the product between the voltage and the current. For each mode,
it turns out:

∣∣W+
i

∣∣2 = V +
i I

+
i (3.63)

where the superscript ”+” refers to the incident wave. This term produces
the peak power. It is the maximum power that the power supply can sustain
for a short time. By applying the square root and multiplying and dividing
by the voltage root, we obtain a new expression for the term W+

i which
represents the square root of the peak power associated with each generic
mode denoted by the i index:

W+
i =

√
|Yi|V +

i (3.64)

At this point, the acoustic power is calculated as follows:

P+
i =

1

2

∣∣W+
i

∣∣2 (3.65)

All those coefficients that correspond to the modes that do not propagate,
do not contribute to the power calculation.

To better understand the topic of power scattering matrix, it is necessary
to start from the definition of voltage scattering matrix mentioned previously.
Knowing that:

V− = SvV
+ (3.66)

Substituting the following expression into (3.66):

V± =
√
|Zc|W± (3.67)
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It is found:

√
|Zc|W− = Sv

√
|Zc|W+ (3.68)

W− =
√
|Yc|Sv

√
|Zc|W+ = SpW

+ (3.69)

Finally, we derive the relationship between the power and the voltage
scattering matrix:

Sp =
√
|Yc|Sv

√
|Zc| (3.70)

The elements of the two matrices are therefore related by:

Sp(i,j) =
√
|Yi|Sv(i,j)

√
|Zj| (3.71)

Starting from the voltage scattering matrix and from the definition of
wave impedance and admittance, we obtain the matrix that expresses the
bonds between powers. The power waves are more suitable quantities than
the conventional traveling waves.

3.2.6 Measuring the Pressure

In the previous chapter, we described the Finite Element Method to analyze
different pressure values in particular geometries. For this measurement and
to determine the behavior of our object, we considered the voltage scatter-
ing matrix first and then the power scattering matrix, which offers us more
information about it. Once this matrix and its elements have been found, it
is possible to calculate the total scattered pressure [17]:
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psca (x, y) =
∑
i

V −i pi (x, y) = V +
j

∑
i

Sv(i,j)pi (x, y) (3.72)

Knowing that:

Sv(i,j) =
√
|Zi|Sp(i,j)

√
|Yj| (3.73)

One can obtain:

psca (x, y) = V +
j

√
|Yj|

∑
i

Sp(i,j)
√
|Zi|pi (x, y) (3.74)

For the purpose of computing the pressure, the term V +
j

√
|Yj| can be

omitted since it is just a scaling factor.

Therefore, all the results that we are going to obtain following the steps of
the FEM method of the previous chapter will be related also to the concepts
of scattering matrix, propagation and modal analysis. The S parameters that
describe the behavior of the domain are obtained as a function of frequency.
The analysis of the modes and of the pressure waves propagation of the two-
dimensional Finite Element Method is now clearer. In the next chapter, we
will study a new calculation method for the description of the deformed geom-
etry and its transformation, which will replace the Finite Element Method.
It is a method still being tested which allows us, however, to obtain a more
efficient resolution in terms of computational time. This speeding up will be
especially useful when we will investigate the three dimensions.
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Chapter 4

Hierarchical Model Reduction

So far, we have described the two-dimensional finite element technique to
solve the Helmholtz equation and to find the pressure values of the sound
wave of our interest. However, the different models we can study, can be ex-
tremely complex, especially when we are dealing with the three-dimensional
case, and, as a consequence, the computational costs become very high. In
order to accelerate the numerical simulation, we can personalize standard
methods, such as the Finite Element Method, to achieve particular features
to figure out the solution. To solve this problem, a new method has been
adopted, known as Hierarchical Model (HiMod) reduction [20, 21]. The
basic idea is to consider the axial and the transverse directions in different
ways: a one-dimensional finite element discretization is used for the axial
direction, while different modal bases are used for the transverse ones.

Figure 4.1: One-dimensional Finite Element Method on the axial direction

Doing this, we obtain the reduction of the two-dimensional or three-
dimensional problem to a one-dimensional problem. This reduces the size
of the problem while still ensuring accuracy [22]. This method is called
”hierarchical” because the selection of the number of the modes can be hi-
erarchically performed [23]. The number of modes can be selected with an a
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priori approach and the basis functions collected, incorporate the information
on the boundary conditions. Selection of the modal basis is crucial in this
context [24]. We will start analyzing Bessel polynomials for measuring the
sound pressure in pipes, then we will see the results obtained by considering
other basis functions, thus underlining the importance of the choice.

However, this approach has been evaluated in various fields such as the
medical one and in details, to develop models for the circulatory system in
patients with coronary artery disease [25]. Other study fields concern oil
pipelines, internal combustion engines and river systems [21].

This new method was mainly tested for domains with straight lines but
it is important to examine more complex geometries that have smooth lines
and therefore come closer to the problems of reality. One of the limitations
of this procedure relies in fact on the rectilinear nature of the centerline
defining the axial direction of the domain. As a matter of fact, for curved
pipes, the method consists of a mapping of the centerline with a straight
line [26]. HiMod reduction is however motivated by the simplicity of one-
dimensional Finite Element Method and of the representation of pipes with
a generic centerline.

In this chapter, we will see how to apply this new method to the two-
dimensional case: we will start with the general geometric description of the
domain and then we will determine the pressure at each point of the domain,
both considering the planar case, which involves Cartesian coordinates, and
the radial case, where polar coordinates are employed.

4.1 Geometric Setting of the Domain

Suppose Ω ⊂ Rd is the domain of the problem, where d can be equal to 2 or
3 and represents the dimension of the domain. We assume that the domain
can be performed as:

Ω = ∪x∈Ω1D
{x} × γx (4.1)

where Ω1D is the one-dimensional supporting fiber and γx is the transverse
fiber associated with the generic point x ∈ Ω1D.
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The supporting fiber is the x axis while γx is the transverse direction
centered at x. The dimension of γx is related to the dimension of Ω : when
Ω ⊂ Rd, γx ⊂ Rd−1.

The axial direction associated with Ω1D is dominant with respect to the
transverse ones. In fact we can consider Lx � Ly, Lz, where Lx, Ly and Lz
are the lengths of the three dimensions of the domain [22].

Figure 4.2: Example of a three-dimensional domain

For each x ∈ Ω1D, we can introduce a mapping between the original
domain and the reference one we want to obtain with the transformation:

ψx : γx → γ̂x (4.2)

Hereafter, we choose Ω1D = (0, Lx) and γx = γ = (0, Ly) for the two-
dimensional case and γx = γ = (0, Ly) × (0, Lz) for the three-dimensional
one.

In particular, we have assumed that Ω1D is a curve where x is a curvilinear
abscissa, while fibers γx represent regular functions of x.
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Ω is the image of Ω̂ = [0, Lx]×γ, so we can express the global map of the
domain as:

Ψ : Ω→ Ω̂ (4.3)

where Ω is the original domain and Ω̂ is the transformed domain.

The deformed domain is represented as:

Ω = Ω1D × γx (4.4)

while the reference domain will be:

Ω̂ = Ω̂1D × γ̂x (4.5)

With the transformation, we get the new supporting fiber Ω̂1D, which is
a straight line, and γ̂x, the new transverse fiber of the same dimension as γx.

Figure 4.3: A physical domain of interest mapped to the reference cylindrical
domain
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In our case, the original geometry is given by a deformed pipe. It is
therefore a cylindrical domain with variable radius. This geometry must be
transformed into a regular cylinder. A simple approach is to map the circle
into a square: in this way, we can perform the calculations by referring to the
Cartesian coordinates. However this procedure lacks accuracy especially with
regard to the vertices and the contours. An approach that uses a cylindrical
structure is therefore more suitable from this point of view. This is also
quite obvious given the geometric shape of a pipe. However, the spectral
approximation of partial differential equations in polar coordinates suffers
from several issues resulting from the conversion from the Cartesian frame.

Regularity and boundary condition enforcement add requirements to the
spectral basis to use. The selection of a basis function is thus very difficult
[24]. What we want to do is to find out which are the modal functions that
present the best conditions for our problem to be tested.

4.2 Model Reduction

Now we want to formulate the reduced model. We introduce the function
space V1D ⊆ H1(Ω1D) on Ω1D, such that the related functions vanish on
Dirichlet boundaries. On the transverse fiber, we set a modal basis {ϕk}k∈N ∈
H1(γx). These functions will be such that:

∫
γ̂x

ϕi (y)ϕj (y) dy = δij ∀i, j ∈ N (4.6)

There are different choices for these modal bases and we will specify them
later.

Through the combination of the function space and the modal functions,
we can define the reduced space:

Vm =

{
vm(z) =

m∑
k=1

vk(Ψ1(z))ϕk(Ψ2(z)) vk ∈ V1D

}
(4.7)
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where m ∈ N is a priori fixed number. For the orthonormality of the
basis we also have:

vk (Ψ1 (z)) =

∫
γx

vm (Ψ1 (z) ,Ψ2 (z))ϕk (Ψ2 (z)) dΨ2 (z) k = 1, ...,m (4.8)

To build a basis, two different procedures can be considered [24]:

1) The ”top-down” approach in which we can construct directly the basis
function through the solution of a Sturm-Liouville eigenvalue (SLE) problem
together with homogeneous boundary conditions. The Sturm-Liouville the-
ory is based on the analysis of the behavior of the eigenvalues and on the
consideration of the eigenfunctions in the function space.

2) The ”bottom-up” approach in which we can construct the basis by
operating separately on the coordinates. To do this, there are several proce-
dures discussed [27].

By considering the second procedure, two scalar problems are solved: one
for the angular component and the other for the radial one. The radial basis,
determined as {ξn (r̂)}∞n=0 , is therefore obtained and we can use it to denote
the two-dimensional spectral basis [24]:

ϕ̂k

(
r̂, θ̂
)

= ϕ̂sin,cos
j,n

(
r̂, θ̂
)

= ξn (r̂)

 cos
(
jθ̂
)

sin
(
jθ̂
) (4.9)

where the superscript is referred to the trigonometric function analyzed
and j, n are the two indices that highlight the dependence of the basis func-
tions.

As mentioned above, the basis functions {ξn} can be of different types
depending on the problem we are dealing with. These functions are polyno-
mials that will be analyzed in details when we will discuss the results related
to the HiMod two-dimensional radial case.
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4.3 Hierarchical Model Reduction Evaluation:

Planar Case

As we have already said, HiMod reduction was implemented to increase the
computational efficiency of the FEM.

In the two-dimensional case, both the supporting fiber and the transverse
one are in one dimension. In fact, we will have Ω ⊂ R2 and γx ⊂ R1.

After the transformation done by following the steps described before,
the domain is a rectangle with height h and length equal to the length of
the original domain [1]. We can define the transformation with the matrix
T which turns out to be the same matrix specified for the transformation
in the two-dimensional Finite Element Method. By considering for example
y as the transverse direction and z as the axial direction which defines the
direction of propagation:

T =

[
Tyy(y, z) Tyz(y, z)
Tzy(y, z) Tzz(y, z)

]
(4.10)

with Tzy = Tyz.

The pressure can be expressed as:

p (y, z) =
∑
q

cqpq (y, z) =
∑
m

∑
n

cm,nϕm (y)un (z) (4.11)

where ϕm are the modal functions defined as Am cos mπy
h

and un are the
elements obtained from the FEM of the axial direction.

By using the one-dimensional FEM for the axial direction, the segment
over the z direction will be divided into N elements. Therefore, it is necessary
to match each index q with a pair (m,n) such that m = mq and n = nq.
Now it is possible to determine the A and B matrices needed to figure out
the pressure at every point of the domain.

The elements of matrix B are:
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B (p, q) =
∑
i

A(z)w
(z)
i unp (zi)unq (zi) β (zi) (4.12)

where:

β (zi) =
∑
k

A(y)w
(y)
k

ϕmp
(yk)ϕmq

(yk)

det J (zi, yk)
(4.13)

The elements of matrix A are:

A(p, q) = Ayy(p, q) + Ayz(p, q) + Azy(p, q) + Azz(p, q) (4.14)

where:

Ayy(p, q) =
∑
i

A(z)w
(z)
i unp(zi)unq(zi)αyy (zi) (4.15)

Ayz(p, q) =
∑
i

A(z)w
(z)
i unp(zi)

∂unq

∂z

∣∣∣∣
zi

αyz(zi) (4.16)

Azy(p, q) =
∑
i

A(z)w
(z)
i

∂unp

∂z

∣∣∣∣
zi

unq(zi)αzy(zi) (4.17)

Azz(p, q) =
∑
i

A(z)w
(z)
i

∂unp

∂z

∣∣∣∣
zi

∂unq

∂z

∣∣∣∣
zi

αzz(zi) (4.18)

Now we can express the α coefficients:

αyy(zi) =
∑
k

A(y)w
(y)
k Tyy(zi, yk)

∂ϕmp

∂y

∣∣∣∣
yk

∂ϕmq

∂y

∣∣∣∣
yk

(4.19)

αyz(zi) =
∑
k

A(y)w
(y)
k Tyz(zi, yk)

∂ϕmp

∂y

∣∣∣∣
yk

ϕmq
(yk) (4.20)
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αzy(zi) =
∑
k

A(y)w
(y)
k Tzy(zi, yk)ϕmp

(yk)
∂ϕmq

∂y

∣∣∣∣
yk

(4.21)

αzz(zi) =
∑
k

A(y)w
(y)
k Tzz(zi, yk)ϕmp

(yk)ϕmq
(yk) (4.22)

The numerical integration has been used. It is the approximate com-
putation of an integral using numerical techniques. It can be called also
quadrature. We can recall that the gaussian quadrature is given by:

∫
S

f(x, y)dS ' A

Q∑
q=1

f(xq, yq)wq (4.23)

where A is the area of the considered element and wq represent the weights
related to the various contributions.

In the expressions of the elements of the two matrices, we have seen A(z),
A(y), zi and yk:

A(z) =
Lz
2

(4.24)

A(y) =
h

2
(4.25)

zi = ξi
Lz
2

+
za + zb

2
(4.26)

yk = ξk
h

2
+
h

2
(4.27)

where Lz is the length of each segment into which z is divided through
the one-dimensional FEM, h is the height of the transverse direction, ξi and
ξk are the integration points related to the axial and transverse direction
respectively.
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4.4 Hierarchical Model Reduction Evaluation:

Radial Case

In the two-dimensional radial case we have a similar situation. In this case,
we have the parameter ρ instead of y to represent the transverse direction.
The transformation matrix T is given by:

T =

[
Tρρ(ρ, z) Tρz(ρ, z)
Tzρ(ρ, z) Tzz(ρ, z)

]
(4.28)

with Tzρ = Tρz.

The pressure p related to the domain is:

p(ρ, z) =
∑
q

cqpq(ρ, z) =
∑
m

∑
n

cm,nϕm(ρ)un(z) (4.29)

As before, ϕm expresses the modal functions and un are the elements
related to the dominant direction of the domain.

The elements of the matrices A and B are calculated by using the nu-
merical integration:

B(p, q) =
∑
i

A(z)w
(z)
i unp(zi)unq(zi)β(zi) (4.30)

Aρρ(p, q) =
∑
i

A(z)w
(z)
i unp(zi)unq(zi)αρρ(zi) (4.31)

Aρz(p, q) =
∑
i

A(z)w
(z)
i unp(zi)

∂unq

∂z

∣∣∣∣
zi

αρz(zi) (4.32)

Azρ(p, q) =
∑
i

A(z)w
(z)
i

∂unp

∂z

∣∣∣∣
zi

unq(zi)αzρ(zi) (4.33)

Azz(p, q) =
∑
i

A(z)w
(z)
i

∂unp

∂z

∣∣∣∣
zi

∂unq

∂z

∣∣∣∣
zi

αzz(zi) (4.34)
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where:

β(zi) = 2π
∑
k

A(ρ)w
(ρ)
k ρk

ϕmp
(ρk)ϕmq

(ρk)

det J(zi, ρk)
(4.35)

αρρ(zi) = 2π
∑
k

A(ρ)w
(ρ)
k ρkTρρ(zi, ρk)

∂ϕmp

∂ρ

∣∣∣∣
ρk

∂ϕmq

∂ρ

∣∣∣∣
ρk

(4.36)

αρz(zi) = 2π
∑
k

A(ρ)w
(ρ)
k ρkTρz(zi, ρk)

∂ϕmp

∂ρ

∣∣∣∣
ρk

ϕmq
(ρk) (4.37)

αzρ(zi) = 2π
∑
k

A(ρ)w
(ρ)
k ρkTzρ(zi, ρk)ϕmp

(ρk)
∂ϕmq

∂ρ

∣∣∣∣
ρk

(4.38)

αzz(zi) = 2π
∑
k

A(ρ)w
(ρ)
k ρkTzz(zi, ρk)ϕmp

(ρk)ϕmq
(ρk) (4.39)

ρk, zi, A
(ρ), A(z) are obtained by considering different quadrature rules

such as, for example, Gauss quadrature rule or Simpson quadrature rule. If
Gauss rule is used, we can find that:

ρk = ξk
ρb − ρa

2
+
ρa + ρb

2
(4.40)

zi = ξi
Lz
2

+
za + zb

2
(4.41)

A(ρ) =
ρb − ρa

2
(4.42)

A(z) =
Lz
2

(4.43)

The quadrature rules related to the axial and the transverse direction
can be also different. For example, we can use the Gauss quadrature for the
dominant direction and the Simpson quadrature for the transverse one and
viceversa.
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Chapter 5

Two-Dimensional Case
Numerical Results

In the previous chapters, we described the two-dimensional finite element
calculation procedure which can be used for the simulation of any physical
phenomenon using mathematical steps. In particular, our analysis focuses on
the computation of the acoustic pressure in different points of a cylindrical
pipe in order to identify any geometric deformations. Thanks to our study,
we can continuously monitor the status of these structures. After having
determined the Finite Element Method case in details, we went on to examine
a new calculation method, still under study, known as Hierarchical Model
Reduction. This method allows us to obtain an optimization regarding the
calculation time. In this chapter, we will evaluate the results obtained with
both the FEM and the new HiMod method and then we will determine the
comparison between the results obtained in both cases with the resolution of
any problems. In particular, we will deal with the convergence problem of
the S curves between the HiMod radial case and the Finite Element Method
without transformation of the geometry. Our goal will be to find the modal
functions that make these curves overlap as much as possible and that the
convergence is guaranteed. Finally, we will draw the necessary conclusions
and try to understand the advantage obtained by using the HiMod procedure
compared to the Finite Element Method.
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5.1 Two-Dimensional FEM Numerical Results

We start with the analysis of a deformed two-dimensional domain of this
type:

Figure 5.1: Example of deformed geometry

By adopting this geometry and by applying the Finite Element Method,
one can therefore observes how the discretization and the division of the
structure into triangles takes place. Of course, by changing the density value
of the mesh, the triangulation will undergo changes. For example, by con-
sidering a higher density value, we will have a denser mesh and consequently
an increase in the accuracy of the results but also an increase in the memory
demand.
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Figure 5.2: Mesh discretization with a density value = 10

Figure 5.3: Mesh discretization with a density value = 20
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Starting from the computation of the two-dimensional planar case, after
having carried out the acoustic transformation by using the formulas show
in the previous chapters, we come to the final results. In this case, we obtain
the scattering parameter S11 to perform the modal analysis and therefore
to understand the behavior of the structure, at each point, subject to the
pressure. If we want, we can also represent the other scattering parameters
in the plot. As we have already mentioned before, the S parameters are
expressed as a function of frequency. For example, one can consider a range
from 1Hz to 200Hz and observe the performance of the curve in the FEM case
without transformation and in the FEM case with geometry transformation
and overlap the two curves.

Figure 5.4: S11 curves overlap between the FEM case without transformation
and with transformation of the geometry

In figure 5.4, we can see the superposition of the two curves S11 for a den-
sity value equal to 10 and quadratic triangular elements for the discretization
and we can note that they overlap almost perfectly. By increasing the order
of the elements, the overlap is even more precise.
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The degree of accuracy also increases by increasing the density value of
these elements. We can numerically evaluate the correctness of the overlap
by figuring out the error curve as a function of frequency:

Figure 5.5: Logarithmic error curves for linear, quadratic and cubic elements

In figure 5.5, we note that by evaluating higher-order elements, the error
decreases for all the frequencies considered except for the lower ones where
the curves related to the quadratic and cubic elements have more or less the
same values.

The two-dimensional geometries of our interest may also present differ-
ent deformations with respect to the one just considered. One can study a
deformation that displays the following model:
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Figure 5.6: Example of a geometry deformed by a bulge at its center

In this example, all the considerations made in the previous case are valid,
that is, by increasing density and by using cubic elements for the mesh, we
obtain more rigorous results. This statement is also proven by the error
curve.

Figure 5.7: S11 curves overlap in the FEM case considering a geometry with
a bulge at the center
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By examining this type of geometry, which has a central deformation
characterized by a bulge, we obtain the overlap shown in figure 5.7. As
the previous example, the figure shows the curves for quadratic triangular
elements. Also in this case, we can see how the overlap between the curves
is perfect.

After highlighting the acoustic transformation in the two-dimensional
FEM planar case, it is possible to make the same assessments also for the
radial case. By choosing any two-dimensional domains, we note that the
accuracy increases hand in hand with the increase in the values of the pa-
rameters mentioned above. We can analyze a geometry similar to that of
figure 5.1 with a density value equal to 10. The mesh discretization and the
structure have the following design:

Figure 5.8: Structure of the deformed pipe with its mesh discretization
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As before, we evaluate the overlap between the S11 curves:

Figure 5.9: S11 curves overlap considering linear triangular elements for the
discretization

Figure 5.10: S11 curves overlap considering quadratic triangular elements for
the discretization
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We have demonstrated also for the radial case that the accuracy of the
results increases by using higher-order elements for triangulation. In the
figures above, we have in fact determined the overlap in case of linear and
quadratic elements and it is obtained that with quadratic elements, the fi-
nal result is far better. Clearly in the second case, the calculation time is
slightly higher and it will be even more higher using cubic elements but ob-
taining more precise results at the expense of a longer operating time is a
fair compromise.

We can also check out another geometry that raises the following struc-
ture:

Figure 5.11: Deformed pipe with a bulge at its center and its mesh discretiza-
tion
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The solution is given by the following graph:

Figure 5.12: S11 curves overlap related to the pipe with a bulge at the center

In conclusion, by using the FEM for both planar and radial cases, a perfect
overlap of the curves representing the scattering parameters is obtained. In
all the cases considered, we have analyzed the S11 parameter which represents
the quantity of the sound wave reflected at port 1.

At this point, after analyzing the s curves, we can display the elements
of the transformation matrix and, based on their values, understand how the
acoustic transformation takes place. Dealing with the geometry of figure 5.1,
we carry out the following plot:

75



Figure 5.13: Deformed geometry, geometry mesh after transformation, Txx,
Tyy, Txy, dJ

The figure 5.13 shows that the values of the elements Txx, Tyy and Txy
are respectively 1, 1 and 0 where the geometry undergoes no transformation.
The values change near the deformation where we apply the acoustic trans-
formation and then find a stability within the deformation itself. Practically,
the values are not steady when we employ the modification of the structure
to then stabilize on a single value different from the starting one (except
Txy which returns to 0) once the contour change has been applied. Further-
more, the values of the elements of T depend on the mesh density and also
on the frequency range considered: the denser the mesh and the wider the
frequency range, the more the T values will change because the complexity
of the problem calculation increases.
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For the geometry of figure 5.6, it turns out:

Figure 5.14: Second example of deformed geometry, geometry mesh after
transformation, Txx, Tyy, Txy, dJ

The same considerations made in the previous example apply.
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5.2 Two-Dimensional HiMod Numerical Re-

sults

In the previous section, we analyzed the results related to the S parameters,
obtained as a function of a certain frequency range, in relation to the Fi-
nite Element Method. In particular, we have seen that for all the examples
considered, both for the two-dimensional planar case and radial case, the
overlap between the s curve associated with the FEM considered without
any transformation of the geometry and the FEM with the transformation,
is more and more precise with the growth of parameters such as, for example,
the mesh density that generates the domain and the order of the elements
considered which can be linear, quadratic or cubic. The main problem of the
FEM, as already mentioned previously, is given by the fact that, especially in
the case of more complex geometries, it turns out to be obsolete in terms of
computational efficiency. For this reason, we decided to evaluate the HiMod
method, whose characteristics have already been illustrated.

By evaluating the same two-dimensional domain shown previously in fig-
ure 5.1, we can notice, as regards the planar case, that the computational
time is significantly reduced and this allows us to optimize the monitoring
of the deformation and solve any problems in time faster. Also according
to the HiMod method, the considerations made previously regarding the pa-
rameters, such as the mesh density and the order of the elements, apply. In
general, the overlap between the s curve linked to the case without transfor-
mation and that of the HiMod case is almost perfect.
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Figure 5.15: S11 curves overlap in HiMod with linear triangular elements

Figure 5.16: S11 curves overlap in HiMod with quadratic triangular elements
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Figure 5.17: S11 curves overlap in HiMod with cubic triangular elements

In figures 5.15, 5.16 and 5.17 the overlaps between the curves S11 relating
to linear, quadratic and cubic triangular elements respectively are shown.
As in the FEM case, it turns out that by using higher-order elements, the
solution will be more accurate. In the examples, we can also notice the differ-
ent simulation times both in FEM and HiMod. In particular, as previously
stated, the computational time using HiMod turns out to be much faster
and the timing difference is recognized mostly by increasing the order of the
elements. Considering, for example, cubic elements, we observe HiMod a
simulation time equal to half the FEM simulation time. These properties
can also be seen by examining other examples. Considering the geometry in
figure 5.6, we obtain the following result:
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Figure 5.18: S11 curves overlap in HiMod related to a pipe with a bulge in
the center

The figure 5.18 shows the overlap by analyzing a mesh density value of 10
and cubic elements. We can therefore conclude by saying that considering a
two-dimensional geometry, with the HiMod method we obtain the result we
were looking for and these are achieved in much less time. With the HiMod
method we are therefore able to optimize the calculations.

5.2.1 Convergence Problem

Once we have found the solution regarding the two-dimensional planar case
by using HiMod, we do the same for the radial case. In the radial case,
the modal bases are expressed in a different way respect to the planar case.
However, if in the planar case everything went smoothly, here instead we
notice a problem related to the convergence between the s curve in the two-
dimensional FEM in which we don’t have any transformation of the domain
and the same curve obtained with the two-dimensional HiMod reduction. In
fact, if we consider the radial case that deals with Bessel functions, we can
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clearly identify the lack of convergence for any value of parameters consid-
ered.

Figure 5.19: Convergence problem in the two-dimensional HiMod radial case

We have examined the geometry of figure 5.8 with quadratic elements and
Bessel functions. In this case we note the lack of convergence at the frequency
that hover around 141 and 142Hz. If, for all the results previously evaluated,
a perfect overlap between the two curves was observed both for the FEM and
HiMod planar cases and both in the case of quadratic and cubic elements (the
linear elements do not show a perfect overlap given their extreme simplicity),
now we note that also handling with quadratic elements, the overlap is not
respected. The optimal result we would like to obtain is the perfect overlap
between these two curves as happened in the comparison between the s curves
in the FEM radial case and in the planar HiMod case. To try to achieve the
perfect overlap, we have examined other modal functions different from the
Bessel ones. In particular, we have tested a group of polynomials known
as Chebyshev polynomials. The Chebyshev polynomials are a sequence of
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orthogonal polynomials related to De Moivre’s formula. They have many
properties and they are useful in various areas such as the approximation
field [28]. We usually distinguish between Chebyshev polynomials of the first
kind denoted as Tn and Chebyshev polynomials of the second kind denoted
as Un. The Chebyshev polynomials are polynomials of degree n. The first
few Chebyshev polynomials of the first kind are:

T0 (x) = 1 (5.1)

T1 (x) = x

T2 (x) = 2x2 − 1

T3 (x) = 4x3 − 3x

T4 (x) = 8x4 − 8x2 + 1

T5 (x) = 16x5 − 20x3 + 5x

Starting from these equations, we can also define their derivatives. In
general:

T
′

0 (x) = 0 (5.2)

T
′

1 (x) = 1

T
′

k+1 (x) = 2Tk (x) + 2xT
′

k (x)− T ′k−1 (x)

where k = 0, 1, 2, ..., n.
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Figure 5.20: Chebyshev polynomials of the first kind Tn(x)

Figure 5.21: Derivatives of Chebyshev polynomials of the first kind T
′
n(x)
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The Chebyshev polynomials can be described also by the following sys-
tem:

Tn(x) =


cos(n arccosx) |x| ≤ 1
cosh(nar coshx) x ≥ 1

(−1)n cosh(nar cosh(−x) x ≤ −1
(5.3)

To choose the Chebyshev polynomial of our interest, it is important that
the derivative of this function is equal to zero in 0 and in R which are the
ends of our domain. We can choose for example the Chebyshev polynomials
related only to even indices, with a translation on the x axis. From the
properties of these functions:

T2n(x) = Tn(2x2 − 1) (5.4)

so:

T2n(x2 − 1) = Tn(2x4 − 4x2 + 1) (5.5)

which represent the Chebyshev polynomials we are going to use. In the
radial case, x = ρ

R
.
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Figure 5.22: Chebyshev polynomials of the first kind T2n(x2 − 1)

Figure 5.23: Derivatives of Chebyshev polynomials of the first kind T
′
2n(x2−1)
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The transverse functions obtained are given by the following expression:

ϕn (ρ) =
1√

2π
∫ R

0
ρT 2

n

(
2
(
ρ
R

)4 − 4
(
ρ
R

)2
+ 1
)
dρ

Tn

(
2
( ρ
R

)4

− 4
( ρ
R

)2

+ 1

)
(5.6)

After the evaluation of Chebyshev polynomials to describe the transverse
direction of the domain, we have considered also the Zernike polynomials.
Zernike polynomials were implemented by Zernike in 1934 [29]. These math-
ematical functions are used to describe wavefront data. In particular, they
are applied to fit irregular and non-rotationally symmetric surfaces over a
circular region. The fields in which these functions are employed concern
mostly atmospheric turbulence, corneal topography and interferometer mea-
surements. Zernike polynomials present different advantages: they are or-
thogonal over the continuous unit circle and they efficiently represent com-
mon errors related to the optics field. Zernike polynomials are used not only
for the observation of certain kinds of aberrations, but also for a complete
representation of any wavefront, which can be also very complex. In general,
Zernike polynomials are defined as:

Zj
n (ρ, θ) = Rj

n (ρ)

{
sin (jθ)
cos (jθ)

(5.7)

where ρ is the radial distance, θ is the azimuthal angle, Rj
n (ρ) is the radial

function, j is the index describing the azimuthal frequency and n represents
the order of the radial polynomial [30].

These functions are also known as 1-sided Jacobi basis because they de-
rive from the Jacobi polynomials and in general, are given by the following
expression:

( ρ
R

)j
P 0,j

n−j
2

(
2
( ρ
R

)2

− 1

)
(5.8)
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where P 0,j
n−j
2

is the Jacobi polynomial of degree n−j
2

and order (0, j).

Thanks to the orthogonality constraint, these polynomials oscillate mostly
near ρ

R
= 1, and consequently, the roots move closer and closer to the outer

boundary for a fixed degree and by increasing j, allowing for longer time
steps. In our particular case, the index j seen before is null.

As before, we want to consider polynomials which show a derivative equal
to zero in 0 and R. A function with these characteristics is provided by the
polynomials with even subscript and a translation on the axis ρ

R
:

P2n

(( ρ
R

)2

− 1

)
(5.9)

Figure 5.24: Zernike polynomials Zn(x) = P2n(x2 − 1)
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From this basis set, the transverse functions are obtained:

ϕn (ρ) =
1√

2π
∫ R

0
ρP 2

2n

((
ρ
R

)2 − 1
)
dρ

P2n

(( ρ
R

)2

− 1

)
(5.10)

In both cases where we exploit Chebyshev and Zernike polynomials, a
normalization is applied:

2πQ2
n

∫ R

0

ρT 2
n

(
2
( ρ
R

)4

− 4
( ρ
R

)2

+ 1

)
dρ = 1 (5.11)

2πQ2
n

∫ R

0

ρP 2
2n

(( ρ
R

)2

− 1

)
dρ = 1 (5.12)

where:

Qn =
1√

2π
∫ R

0
ρT 2

n

(
2
(
ρ
R

)4 − 4
(
ρ
R

)2
+ 1
)
dρ

(5.13)

Qn =
1√

2π
∫ R

0
ρP 2

2n

((
ρ
R

)2 − 1
)
dρ

(5.14)

Once we have analyzed these functions, we can use them to find the final
solution. Considering the geometry seen in figure 5.8 and cubic triangular
elements as elements of the domain discretization, we obtain the following
curves:
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Figure 5.25: Comparison between S11 curves in the two-dimensional FEM
radial case and HiMod radial case with Bessel, Chebyshev and Zernike func-
tions

From the figure, we can see that the s curves linked to the Chebyshev and
Zernike polynomials, which are superimposed on each other, tend to approach
the FEM s curve, while the curve associated with the Bessel functions has
worse results in terms of convergence.

By examining also the geometry of figure 5.11, we can make the same
statements and, always dealing with cubic elements, we figure out:
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Figure 5.26: Second example of comparison between S11 curves in the two-
dimensional FEM radial case and HiMod radial case with Bessel, Chebyshev
and Zernike functions

In conclusion, we succeeded in our aim of obtaining better results than
those given by analyzing the Bessel functions. By studying the nature of these
two new polynomials and by using their translated versions, we approached
the FEM curve without transformation.

91



Chapter 6

Extension to the
Three-Dimensional Case

So far, the two-dimensional case has been evaluated. We first evaluated the
Finite Element Method, considering a planar case and, in particular, a ge-
ometry characterized by a rectangle with different deformations and then we
transformed it into a regular structure. We did the same considering the po-
lar coordinates. After the detailed description of the Finite Element Method,
the new HiMod reduction method has been implemented, because it is able
to provide the same results but in less computational time and, in particular,
we have focused on the problem of the convergence of the curves by repre-
senting the modes in the radial case and we have examined several modal
functions to find a better result. Hence, some physical problems can be ap-
proximated with a mathematical model in one or two dimensions. However,
it is now necessary to expand our study to the three dimensions because,
all existing physical problems can be classified in space. When a one- or
two-dimensional representation is not possible, it is necessary to consider the
three-dimensional case. In this chapter we will describe the basics of the Fi-
nite Element Method in three dimensions by following the steps provided in
[8] , just to better understand the analysis of a three-dimensional structure,
then we will go through the description of the 3D HiMod reduction, still in
the experimental phase, to figure out its advantages as regards the evaluation
of the sound pressure in pipes affected by deformations.
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6.1 Three-Dimensional Finite Element Method

6.1.1 The Boundary-Value Problem and the Variational
Formulation

The boundary-value problem is defined by the following second-order differ-
ential equation:

− ∂

∂x

(
ax
∂u

∂x

)
− ∂

∂y

(
ay
∂u

∂y

)
− ∂

∂z

(
az
∂u

∂z

)
+ bu = f in V (6.1)

The boundary conditions that accompany the above equation are:

u = u0 on S1 (6.2)(
ax
∂u

∂x
x̂+ ay

∂u

∂y
ŷ + az

∂u

∂z
ẑ

)
· n̂+ γu = t0 on S2 (6.3)

where S = S1 + S2 denotes the surface enclosing the volume V while n̂
is the normal vector.

The variational problem [9] equivalent to (6.1) is performed by the fol-
lowing system of equations:

{
δF (u) = 0

u = u0 on S1
(6.4)

where:

F (u) =
1

2

∫∫∫
V

[
ax

(
∂u

∂x

)2

+ ay

(
∂u

∂y

)2

+ az

(
∂u

∂z

)2

+ bu2

]
dV (6.5)

+

∫∫
S2

(γ
2
u2 − t0u

)
dS −

∫∫∫
V

fudV
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If ax, ay and az present discontinuities inside the volume, u satisfies the
continuity conditions given by:

u+ = u− on Sd (6.6)

and

(
a+
x

∂u+

∂x
x̂+ a+

y

∂u+

∂y
ŷ + a+

z

∂u+

∂z
ẑ

)
·n̂ =

(
a−x
∂u−

∂x
x̂+ a−y

∂u−

∂y
ŷ + a−z

∂u−

∂z
ẑ

)
·n̂ on Sd

(6.7)

where Sd represents the discontinuity interface, the superscript ”+” de-
scribes the observation point that approaches the interface from the ”+” side
and the superscript ”−” describes the observation point that approaches the
interface from the ”−” side. The continuity conditions, naturally, are valid
for both the boundary-value problem and the variational one.

Figure 6.1: Three-dimensional domain with a discontinuity interface denoted
by Sd
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6.1.2 Three-Dimensional Finite Element Method Cal-
culation

After the delineation of these two problems, the different steps of Finite El-
ement Method in the three-dimensional case can be described. In this case,
the geometrical domain is composed by a volume and this volume must be
divided into a number of smaller volume elements, as, for example, tetrahe-
dral elements. Consequently, the surface S is divided into different triangular
elements. Once the mesh has been generated, it is necessary to consider the
unknown function u in each element of the subdivision. This function is
expressed by:

ue (x, y, z) = αe1 + αe2x+ αe3y + αe4z (6.8)

The coefficients αe1, α
e
2, α

e
3 and αe4 are obtained by applying (6.8) to the

element nodes.

uei = αe1 + αe2x
e
i + αe3y

e
i + αe4z

e
i (6.9)

uej = αe1 + αe2x
e
j + αe3y

e
j + αe4z

e
j (6.10)

uek = αe1 + αe2x
e
k + αe3y

e
k + αe4z

e
k (6.11)

uel = αe1 + αe2x
e
l + αe3y

e
l + αe4z

e
l (6.12)

From these equations, one can achieve the coefficients given above in
function of the nodes coordinates and express the volume of each tetrahedral
element:

V e =
1

6

∣∣∣∣∣∣∣∣
1 1 1 1
xei xej xek xel
yei yej yek yel
zei zej zek zel

∣∣∣∣∣∣∣∣ (6.13)
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After finding the values of the coefficients and substituting them into
(6.8), we obtain:

ue(x, y, z) =
4∑

n=1

uenϕ
e
n(x, y, z) (6.14)

where ϕen(x, y, z) represent the interpolation functions. They are given
by:

ϕen(x, y, z) =
1

6V e
(αe1n + αe2nx+ αe3ny + αe4nz) n = 1, ..., 4 (6.15)

Now, the problem can be formulated through two different methods: the
Ritz method [10] or the Galerkin method [11].

For simplicity, we consider the special case of γ = t0 = 0. The functional
F (u) can be found through the summation of all the functionals related to
each element of the domain subdivision:

F (u) =
M∑
e=1

F e(ue) (6.16)

where M is the total number of elements. The functional associated to
each element is expressed as:

F e(ue) =
1

2

∫∫∫
V e

[
ax

(
∂ue

∂x

)2

+ ay

(
∂ue

∂y

)2

+ az

(
∂ue

∂z

)2

+ b (ue)2

]
dV

−
∫∫∫

V e

fuedV (6.17)

Substituting (6.14) into (6.17) and deriving with respect to uem, the result
is:
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∂F e

∂uem
=

4∑
n=1

uen

∫∫∫
V e

(
ax
∂ϕem
∂x

∂ϕen
∂x

+ ay
∂ϕem
∂y

∂ϕen
∂y

+ az
∂ϕem
∂z

∂ϕen
∂z

+ bϕemϕ
e
n

)
dV

−
∫∫∫

V e

fϕemdV (6.18)

with m = 1, ..., 4

This can be written in matrix form:

{
∂F e

∂ue

}
= [Ke] {ue} − {re} (6.19)

where the elements of the matrix Ke and of the vector re are expressed
as the following integrals:

Ke
mn =

∫∫∫
V e

(
ax
∂ϕem
∂x

∂ϕen
∂x

+ ay
∂ϕem
∂y

∂ϕen
∂y

+ az
∂ϕem
∂z

∂ϕen
∂z

+ bϕemϕ
e
n

)
dV

m, n = 1, ..., 4 (6.20)

rem =

∫∫∫
V e

fϕemdV m = 1, ..., 4 (6.21)

Starting from (6.19), it is advisable to join the tetrahedra that divide the
geometry and impose the stationarity condition on F to derive the system. In
simple terms, we take the derivatives related to all the tetrahedral elements
and we sum them together to obtain the general result:

{
∂F

∂u

}
=

M∑
e=1

{
∂F e

∂ue

}
=

M∑
e=1

([
Ke
]
{ue} − {re}

)
= {0} (6.22)

We can also consider that:
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[K] =
M∑
e=1

[
Ke
]

(6.23)

{r} =
M∑
e=1

{re} (6.24)

These expressions yield the compact form of the system:

[K] {u} = {r} (6.25)

In the case of γ 6= 0 or t0 6= 0, we must add the surface integral to the
functional:

Fc (u) =

∫∫
S2

(γ
2
u2 − t0u

)
dS (6.26)

The surface S2 is composed by N triangular elements. The functional Fc
can be written as:

Fc (u) =
N∑
s=1

F s
c (us) (6.27)

where F s
c represents the functional linked to the s-th triangle of the surface

considered. The unknown function u within each triangular element can
be expressed in a way similar to the unknown function related to the e-th
tetrahedral element:

us =
3∑

n=1

usnϕ
s
n (6.28)

Doing the same algebraic steps followed to find the derivative of F e, one
can find that:
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∂F s
c

∂usm
=

3∑
n=1

usn

∫∫
Ss

γϕsmϕ
s
ndS −

∫∫
Ss

t0ϕ
s
mdS (6.29)

where Ss illustrates the surface of the s-th triangle.

In matrix form, the above expression is:

{
∂F s

c

∂us

}
= [Ks] {us} − {rs} (6.30)

The elements of the matrix Ks and of the vector rs are given by the
following integrals:

Ks
mn =

∫∫
Ss

γϕsmϕ
s
ndS (6.31)

rsm =

∫∫
Ss

t0ϕ
s
mdS (6.32)

To include Fc into the system, it is necessary to take the sum of all the
derivatives of F s

c , after considering the stationarity condition, and to add the
summation to the expression of the derivative of F respect to u:

{
∂F

∂u

}
=

M∑
e=1

{
∂F e

∂ue

}
+

N∑
s=1

{
∂F s

c

∂us

}
= (6.33)

=
M∑
e=1

([
Ke
]
{ue} − {re}

)
+

N∑
s=1

([
Ks
]
{us} − {rs}

)
= {0}

The final system is represented as in the two-dimensional problem and it
can be solved for u after imposing the Dirichlet boundary condition.
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6.1.3 Higher-Order Elements

So far, linear tetrahedral elements have been considered. Now, we can define
higher-order elements related to the three-dimensional case as we did for the
two-dimensional case. We start considering a point P inside a tetrahedral
element and denoting Vn as the volume of the element defined by P . We
define the following expression:

Len(x, y, z) =
Vn
V e

(6.34)

This function is the same as the linear interpolation functions specified in
the linear elements case. The values of the function Ln denote a point inside
a tetrahedral element and they are called volume coordinates. Starting
from (6.34), we can define the interpolation functions also for quadratic or
cubic elements.

Figure 6.2: Linear, quadratic and cubic tetrahedral elements

Once we have the interpolation functions, the elemental matrix Ke and
the vector re can be calculated by using the quadrature rules for the tetra-
hedron such as the Gaussian one [31]:

∫∫∫
V e

F (Le1, L
e
2, L

e
3, L

e
4)dV =

Mq∑
m=1

V ewmF (Le1m, L
e
2m, L

e
3m, L

e
4m) (6.35)
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where Le1m, L
e
2m, L

e
3m, L

e
4m are the sampling points and wm are the weights.

6.1.4 Isoparametric Elements

Such as the two-dimensional case, the barycentric coordinates, defined here
by the triad (ξ, η, ς), are more suitable than the cartesian ones to describe
curved geometries and lines and they give a more accurate modeling of the
surfaces. This can be managed by first transforming an arbitrarily shaped
element with curved sides in the xyz-space into a regularly shaped element
with straight sides in the ξηζ-space. The transformation is performed by
using the following formulas:

x =
Ne∑
m=1

xmϕ
e
m (ξ, η, ζ) (6.36)

y =
Ne∑
m=1

ymϕ
e
m (ξ, η, ζ) (6.37)

z =
Ne∑
m=1

zmϕ
e
m (ξ, η, ζ) (6.38)

where Ne denotes the number of element nodes.

In this case, the elemental matrix and the vector are evaluated in the
ξηζ-space. Therefore, it is necessary to express the integrands in terms of ξ,
η and ζ. This can be done in a way similar to the two-dimensional problem
by using the Jacobian matrix to change variables:


∂ϕe

m

∂x
∂ϕe

m

∂y
∂ϕe

m

∂z

 = (J)−1


∂ϕe

m

∂ξ
∂ϕe

m

∂η
∂ϕe

m

∂ζ

 (6.39)
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where:

J =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

 (6.40)

The interpolation functions will present different expressions according to
the type of elements used to discretize the domain. These will be employed to
derive the respective derivatives and thus to change the variables considering
the Jacobian matrix above.

Figure 6.3: Quadratic tetrahedral and hexahedral elements in the xyz-space
and their transformation in the ξηζ-space

Through the Finite Element Method, it is therefore possible to analyze
various problems of everyday reality. In particular the method is used for
all those situations where it is not possible to reduce the problem to smaller
dimensions. However, if the Finite Element Method was somewhat slow
already in the two-dimensional case, all the more so for the three-dimensional
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case. This is why it is important to evaluate the HiMod method also for 3D
problems, to improve efficiency and speed up calculations.

6.2 Hierarchical Model Reduction in the Three-

Dimensional Case

As previously mentioned, the Hierarchical Model (HiMod) reduction is a
method introduced to effectively solve different engineering problems related
to fluid dynamics [32] and also to the propagation of the sound pressure.
With the two-dimensional case, we have already seen that by applying the
HiMod method, the computational costs have decreased considerably com-
pared to the Finite Element Method and, even more so, it will be for the
three-dimensional case. In fact, one of the main difficulties of the 3D FEM
is given by the use of a large number of elements to obtain accurate results.
This implies a large number of equations to solve and many unknowns.

Considering the planar case, after the transformation, the domain is a
parallelepiped with an height hy, a length and a thickness equal to that of the
original domain. The transformation acts at every point of the parallelepiped
and it can be defined through a matrix T. In the general case, it is given by:

T =

 Txx(x, y, z) Txy(x, y, z) Txz(x, y, z)
Tyx(x, y, z) Tyy(x, y, z) Tyz(x, y, z)
Tzx(x, y, z) Tzy(x, y, z) Tzz(x, y, z)

 (6.41)

with Tyx = Txy, Tzx = Txz, Tzy = Tyz.

Therefore, the pressure will depend on three coordinates:

p(x, y, z) =
∑
q

cqpq(x, y, z) =
∑
l

∑
m

∑
n

cl,m,nϕl(x)ϕm(y)un(z) (6.42)
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where ϕ are the modal functions associated to the transverse directions:
along the x direction we have the thickness while along the y direction we
have the height of the domain. The transverse functions are expressed as:

ϕl = Al cos
lπx

hx
(6.43)

ϕm = Am cos
mπy

hy
(6.44)

un are the one-dimensional FEM elements in which the dominant direc-
tion of the domain is divided.

The lattice is therefore a segment directed along the z direction divided
into N elements. Therefore each index q will correspond to a triad (l,m, n)
and one can obtain l = lq, m = mq and n = nq.

The elements of the matrices A and B are thus determined:

B(p, q) =
∑
i

A(z)w
(z)
i unp(zi)unq(zi)β(zi) (6.45)

where:

β(zi) =
∑
j

∑
k

A(x)A(y)w
(x)
j w

(y)
k

ϕlp(xj)ϕlq(xj)ϕmp
(yk)ϕmq

(yk)

det J(zi, xj, yk)
(6.46)

A(p, q) = Axx(p, q) + Axy(p, q) + Axz(p, q) + Ayx(p, q) + Ayy(p, q) + Ayz(p, q)

+Azx(p, q) + Azy(p, q) + Azz(p, q) (6.47)

where:

Axx(p, q) =
∑
i

A(z)w
(z)
i unp(zi)unq(zi)αxx(zi) (6.48)
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Axy(p, q) =
∑
i

A(z)w
(z)
i unp(zi)unq(zi)αxy(zi) (6.49)

Axz(p, q) =
∑
i

A(z)w
(z)
i unp(zi)

∂unq

∂z

∣∣∣∣
zi

αxz(zi) (6.50)

Ayx(p, q) =
∑
i

A(z)w
(z)
i unp(zi)unq(zi)αyx(zi) (6.51)

Ayy(p, q) =
∑
i

A(z)w
(z)
i unp(zi)unq(zi)αyy(zi) (6.52)

Ayz(p, q) =
∑
i

A(z)w
(z)
i unp(zi)

∂unq

∂z

∣∣∣∣
zi

αyz(zi) (6.53)

Azx(p, q) =
∑
i

A(z)w
(z)
i

∂unp

∂z

∣∣∣∣
zi

unq(zi)αzx(zi) (6.54)

Azy(p, q) =
∑
i

A(z)w
(z)
i

∂unp

∂z

∣∣∣∣
zi

unq(zi)αzy(zi) (6.55)

Azz(p, q) =
∑
i

A(z)w
(z)
i

∂unp

∂z

∣∣∣∣
zi

∂unq

∂z

∣∣∣∣
zi

αzz(zi) (6.56)

The α coefficients are represented with two summations: one related to
the transverse direction x and the other to the transverse direction y:

αxx(zi) =
∑
j

∑
k

A(x)A(y)w
(x)
j w

(y)
k Txx(zi, xj, yk)

∂ϕlp
∂x

∣∣∣∣
xj

∂ϕlq
∂x

∣∣∣∣
xj

ϕmp
(yk)ϕmq

(yk)

(6.57)

αxy(zi) =
∑
j

∑
k

A(x)A(y)w
(x)
j w

(y)
k Txy(zi, xj, yk)

∂ϕlp
∂x

∣∣∣∣
xj

ϕlq(xj)ϕmp
(yk)

∂ϕmq

∂y

∣∣∣∣
yk

(6.58)

αxz(zi) =
∑
j

∑
k

A(x)A(y)w
(x)
j w

(y)
k Txz(zi, xj, yk)

∂ϕlp
∂x

∣∣∣∣
xj

ϕlq(xj)ϕmp
(yk)ϕmq

(yk)

(6.59)
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αyx(zi) =
∑
j

∑
k

A(x)A(y)w
(x)
j w

(y)
k Tyx(zi, xj, yk)ϕlp(xj)

∂ϕlq
∂x

∣∣∣∣
xj

∂ϕmp

∂y

∣∣∣∣
yk

ϕmq
(yk)

(6.60)

αyy(zi) =
∑
j

∑
k

A(x)A(y)w
(x)
j w

(y)
k Tyy(zi, xj, yk)ϕlp(xj)ϕlq(xj)

∂ϕmp

∂y

∣∣∣∣
yk

∂ϕmq

∂y

∣∣∣∣
yk

(6.61)

αyz(zi) =
∑
j

∑
k

A(x)A(y)w
(x)
j w

(y)
k Tyz(zi, xj, yk)ϕlp(xj)ϕlq(xj)

∂ϕmp

∂y

∣∣∣∣
yk

ϕmq
(yk)

(6.62)

αzx(zi) =
∑
j

∑
k

A(x)A(y)w
(x)
j w

(y)
k Tzx(zi, xj, yk)ϕlp(xj)

∂ϕlq
∂x

∣∣∣∣
xj

ϕmp
(yk)ϕmq

(yk)

(6.63)

αzy(zi) =
∑
j

∑
k

A(x)A(y)w
(x)
j w

(y)
k Tzy(zi, xj, yk)ϕlp(xj)ϕlq(xj)ϕmp

(yk)
∂ϕmq

∂y

∣∣∣∣
yk

(6.64)

αzz(zi) =
∑
j

∑
k

A(x)A(y)w
(x)
j w

(y)
k Tzz(zi, xj, yk)ϕlp(xj)ϕlq(xj)ϕmp

(yk)ϕmq
(yk)

(6.65)

As in the two-dimensional case, we used the numerical integration. The
formulas which present the quadrature, provide the integration points and
the weights necessary to determine A(z), A(x), A(y), zi, xj and yk:

A(z) =
Lz
2

(6.66)

A(x) =
hx
2

(6.67)
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A(y) =
hy
2

(6.68)

zi = ξi
Lz
2

+
za + zb

2
(6.69)

xj = ξj
hx
2

+
hx
2

(6.70)

yk = ξk
hy
2

+
hy
2

(6.71)

where Lz is the length of each segment into which the direction z is
divided using the one-dimensional FEM, hx and hy are the thickness and the
height of the three-dimensional domain respectively. ξi, ξj and ξk are the
integration points associated to the three directions.

6.2.1 Three-Dimensional Domain Transformation

We have shown the formulas that allow us to calculate the matrices A and B
for the general three-dimensional HiMod case. In these formulas, we used the
elements of the transformation matrix T to determine the components we
need. For simplicity, we evaluate the case where the transformation concerns
only the height of the parallelepiped. This means that the transformation
will be:


x = x′

y = y′(x′, y′, z′)
z = z′

(6.72)

Suppose we have a parallelepiped defined by the following coordinates:(
x′j, y

′
1,i,j, z

′
i

)
,
(
x′j, y

′
1,i+1,j, z

′
i+1

)
,
(
x′j+1, y

′
1,i,j+1, z

′
i

)
,
(
x′j+1, y

′
1,i+1,j+1, z

′
i+1

)
,
(
x′j, y

′
2,i,j, z

′
i

)
,(

x′j, y
′
2,i+1,j, z

′
i+1

)
,
(
x′j+1, y

′
2,i,j+1, z

′
i

)
,
(
x′j+1, y

′
2,i+1,j+1, z

′
i+1

)
. This solid must

be transformed into another, which corresponds to its undeformed version.
The new system of coordinates will be: (xj, y1, zi), (xj, y1, zi+1), (xj+1, y1, zi),
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(xj+1, y1, zi+1), (xj, y2, zi), (xj, y2, zi+1), (xj+1, y2, zi), (xj+1, y2, zi+1). Know-
ing that the transformation only concerns the y direction, yields:

x′j = xj (6.73)

x′j+1 = xj+1 (6.74)

z′i = zi (6.75)

z′i+1 = zi+1 (6.76)

The geometric transformation related to the y direction is given by:

y =
y′ − y′1
h′y

hy (6.77)

where h′y = y′2 − y′1.

The two different points of the y direction in the deformed geometry are
calculated through a procedure known as bilinear interpolation. It is an
extension of the linear interpolation method adopted in the two-dimensional
case for interpolating functions of two variables, y = f (x, z), on a rectangular
grid. Bilinear interpolation considers four vertex values, one on each edge of
a rectangular cell, in order to obtain an approximate value inside the cell.
The basic idea is to perform the linear interpolation first in one direction and
then in the other direction [33].

We first calculate the linear interpolation in the x direction which gives:

f(x, zi) =
xj+1 − x
xj+1 − xj

f(xj, zi) +
x− xj
xj+1 − xj

f(xj+1, zi) (6.78)

f(x, zi+1) =
xj+1 − x
xj+1 − xj

f(xj, zi+1) +
x− xj
xj+1 − xj

f(xj+1, zi+1) (6.79)
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Then we proceed by interpolating in the z direction:

f(x, z) =
zi+1 − z
zi+1 − zi

f(x, zi) +
z − zi
zi+1 − zi

f(x, zi+1) (6.80)

Combining these three equations, it results in the desired estimate for
y = f(x, z):

y = f(x, z) =
xj+1 − x
xj+1 − xj

zi+1 − z
zi+1 − zi

f(xj, zi) +
x− xj
xj+1 − xj

zi+1 − z
zi+1 − zi

f(xj+1, zi) +

+
xj+1 − x
xj+1 − xj

z − zi
zi+1 − zi

f(xj, zi+1) +
x− xj
xj+1 − xj

z − zi
zi+1 − zi

f(xj+1, zi+1) (6.81)

Figure 6.4: Bilinear interpolation

Now, we can apply this formula to find the expression of y′1 and y′2 which
define the height of the deformed geometry:
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y′1 = y′1,i,jXjZi + y′1,i+1,jXjZi+1 + y′1,i,j+1Xj+1Zi + y′1,i+1,j+1Xj+1Zi+1 (6.82)

y′2 = y′2,i,jXjZi + y′2,i+1,jXjZi+1 + y′2,i,j+1Xj+1Zi + y′2,i+1,j+1Xj+1Zi+1 (6.83)

h′y = y′2 − y′1 = (6.84)

= h′y,i,jXjZi + h′y,i+1,jXjZi+1 + h′y,i,j+1Xj+1Zi + h′y,i+1,j+1Xj+1Zi+1

Replacing these equations in the expression of the transformation:

y =
y′ − y′1,i,jXjZi − y′1,i+1,jXjZi+1 − y′1,i,j+1Xj+1Zi − y′1,i+1,j+1Xj+1Zi+1

h′y,i,jXjZi + h′y,i+1,jXjZi+1 + h′y,i,j+1Xj+1Zi + h′y,i+1,j+1Xj+1Zi+1

hy

(6.85)

The inverse transformation is:

y′ = y
h′y,i,jXjZi + h′y,i+1,jXjZi+1 + h′y,i,j+1Xj+1Zi + h′y,i+1,j+1Xj+1Zi+1

hy
+(6.86)

+y′1,i,jXjZi + y′1,i+1,jXjZi+1 + y′1,i,j+1Xj+1Zi + y′1,i+1,j+1Xj+1Zi+1

Once the expression of the inverse transformation is obtained, the Ja-
cobian matrix can be constructed. The elements of the Jacobian matrix
associated to the three-dimensional case with only the transformation along
y, are given by the following equations:

Jxx =
∂x

∂x′
= 1 (6.87)
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Jxy =
∂x

∂y′
= 0 (6.88)

Jxz =
∂x

∂z′
= 0 (6.89)

Jyx =
∂y

∂x′
= (6.90)

=

[
(y′1,i,j − y′1,i,j+1)(zi+1 − z) + (y′1,i+1,j − y′1,i+1,j+1)(z − zi)

h′y,i,jXjZi + h′y,i+1,jXjZi+1 + h′y,i,j+1Xj+1Zi + h′y,i+1,j+1Xj+1Zi+1

−

−
(
y′ − y′1,i,jXjZi − y′1,i+1,jXjZi+1 − y′1,i,j+1Xj+1Zi − y′1,i+1,j+1Xj+1Zi+1

)
(h′y,i,jXjZi + h′y,i+1,jXjZi+1 + h′y,i,j+1Xj+1Zi + h′y,i+1,j+1Xj+1Zi+1)2

·

·((h′y,i,j+1 − h′y,i,j)(zi+1 − z) + (h′y,i+1,j+1 − h′y,i+1,j)(z − zi))
] hy

∆i∆j

Jyy =
∂y

∂y′
=

hy
h′y,i,jXjZi + h′y,i+1,jXjZi+1 + h′y,i,j+1Xj+1Zi + h′y,i+1,j+1Xj+1Zi+1

(6.91)

Jyz =
∂y

∂z′
= (6.92)

=

[
(y′1,i,j − y′1,i+1,j)(xj+1 − x) + (y′1,i,j+1 − y′1,i+1,j+1)(x− xj)

h′y,i,jXjZi + h′y,i+1,jXjZi+1 + h′y,i,j+1Xj+1Zi + h′y,i+1,j+1Xj+1Zi+1

−

−
(y′ − y′1,i,jXjZi − y′1,i+1,jXjZi+1 − y′1,i,j+1Xj+1Zi − y′1,i+1,j+1Xj+1Zi+1)

(h′y,i,jXjZi + h′y,i+1,jXjZi+1 + h′y,i,j+1Xj+1Zi + h′y,i+1,j+1Xj+1Zi+1)2
·

·((h′y,i+1,j − h′y,i,j)(xj+1 − x) + (h′y,i+1,j+1 − h′y,i,j+1)(x− xj))]
hy

∆i∆j

Jzx =
∂z

∂x′
= 0 (6.93)

Jzy =
∂z

∂y′
= 0 (6.94)

Jzz =
∂z

∂z′
= 1 (6.95)
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Therefore the Jacobian matrix will be:

J =

 1 0 0
Jyx Jyy Jyz
0 0 1

 (6.96)

and the determinant:

det J = Jyy (6.97)

We can derive the transformation matrix, the elements of which will have
to be replaced to obtain the matrices A and B previously seen:

T =
JJT

det J
=

1

det J

 1 Jyx 0
Jyx J2

yx + J2
yy + J2

yz Jyz
0 Jyz 1

 (6.98)
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Chapter 7

Three-Dimensional Case
Numerical Results

In the previous chapter, we have generally expressed the Finite Element
Method in the three-dimensional case. As in the two-dimensional case, we
have evaluated all the various steps that make up this method, including the
most important one which is the domain discretization. As we have already
seen, in the three-dimensional case, the elements that constitute the subdi-
vision are mainly tetrahedra of different order. However, given the fact that
this method takes many steps and a lot of computational time to solve the
problems in the two-dimensional case, in the 3D case, even more so, it in-
volves even slower calculations and a considerable operational difficulty. For
this reason, we immediately considered the HiMod method that allows us to
obtain the scattering parameters analysis in relation to the deformations eval-
uation in cylindrical structures by calculating the sound pressure values at
the various points. In this chapter, we will therefore start from the evaluation
of different three-dimensional structures and we will compare the deformed
three-dimensional domain with the deformation-free reference domain and,
observing the scattering parameters curves as a function of frequency, we will
draw the necessary conclusions. In particular, we will consider geometries
that present deformations only along y and those types of geometry whose
deformation causes the entire domain to be asymmetrical.
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7.1 Three-Dimensional HiMod Numerical Re-

sults

As a first example of three-dimensional geometry, we can consider the fol-
lowing structure:

Figure 7.1: Example 1 of 3D deformed geometry

This structure shows a deformation only along the height and appears to
be slightly asymmetrical, presenting a smaller deformation on one side than
the other. We can also depict 3D geometry after acoustic transformation:
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Figure 7.2: Three-dimensional reference structure

After having displayed the geometry, we want to observe the compari-
son between the S11 curves. The curve related to the transformation-free
structure is obtained through the simulation software Comsol while the Hi-
Mod scattering curve is reached with Matlab. By studying a frequency range
between 1Hz and 200Hz, we obtain the following graph:
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Figure 7.3: S11 curve comparison between Comsol 3D FEM and HiMod

We analyze the case of quadratic elements, mesh density equal to 14 and
a number of transversal modal functions equal to 25. In figure 7.3 we can
see the behavior of the two curves. The overlap is almost perfect except for
the frequencies starting from about 120Hz where the curves start to diverge.
This divergence is partly due to the fact that Comsol makes a different de-
composition of the three-dimensional geometry and therefore analyzes it in
a different way compared to Matlab. In this case, although we are consider-
ing an asymmetric geometry and therefore more complex to identify than a
symmetric domain, we still obtain that the approximation provided by Hi-
Mod manages a convergence quite well to the general solution of the problem
implemented by FEM.
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Now, we can show a structure of this type:

Figure 7.4: Example 2 of 3D deformed geometry

This structure has a fairly considerable deformation on one side while on
the other the surface is flat. As in the previous case, we therefore consider
an asymmetric surface. The solution to the problem is given by the following
graph:
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Figure 7.5: S11 curve comparison between Comsol 3D FEM and HiMod

In this case, the convergence between HiMod and FEM seems to be less
precise than in the previous case and this is given in part by the increase
in asymmetricity of the domain. In the previous case, the structure had
a slightly deeper deformation on one side and the domain was thus almost
symmetrical. Now, the asymmetricity of the figure is visible to the naked
eye and this affects the final result. As before, we note that the convergence
decreases for frequencies starting from about 120Hz.
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Appendix A

Solution Procedures for FEM
and HiMod Reduction Method

So far, we have evaluated the two methods that allow us to solve the most
varied engineering problems: the Finite Element Method, which boasts many
studies behind it, and the newer Hierarchical Model reduction method. Af-
ter going through the description of the approaches, both as regards the
two-dimensional and the three-dimensional case, and having highlighted the
advantages of the HiMod method, we can now analyze the different algo-
rithms necessary to find the solution to these problems, and in particular,
the algorithms which can be adopted to pick up the sound pressure values in
cylindrical structures affected by deformations.

The general final system is given by:

Ax = b (A.1)

where A is a non-singular square matrix, x is the unknown vector to
determine and b is the known vector. Connecting to our problem, the matrix
A include the difference A − k2B while the vector b is the known term
expressed previously as C and the unknown x is the pressure.

Having discussed this, the question is now how to extract the values of
the system. In this chapter, we will discuss several algorithms which include
decomposition methods, frontal and multifrontal methods and conjugate and
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biconjugate methods. We will focus mainly on the LU decomposition method
which is the one adopted to achieve the pressure results and then report the
other techniques only from a general point of view.

A.1 LU Decomposition Method

The methods can be classified into two groups: direct methods and iter-
ative methods [12]. At the basis of the direct methods lies the Gaussian
elimination. Among these procedures we find the decomposition meth-
ods. The most important is the LU decomposition method. Introduced by
Alan Turing in 1948 [34], this method can be used to solve many systems:
in an electronic circuit it can be used to derive the value of the current, or
it can be applied to extrapolate the sound pressure values in a waveguide
as in our case. LU decomposition is a very efficient technique because it
requires less computational time than other resolution methods, however, in
certain situations, it suffers from a problem known as iteration cycling [35].
In general, LU decomposition is particularly suitable for all those problems
that can be represented in matrix form: the approach is in fact designed as
the factorization of a matrix in the product of two matrices. In this case, the
matrix A defined before represents the matrix to be divided. It turns out:

A = LU (A.2)

where L is a lower triangular matrix and U is an upper triangular matrix.

The solution can be reached through two steps. First we have to solve:

Ly = b (A.3)

and then:

Ux = y (A.4)
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A forward substitution procedure is used to find y:

y1 =
b1

l11

(A.5)

yi =
1

lii

(
bi −

i−1∑
j=1

lijyj

)
i = 2, 3, ..., n (A.6)

A backward substitution procedure is used to find x:

xn =
yn
unn

(A.7)

xi =
1

uii

(
yi −

n∑
j=i+1

uijxj

)
i = n− 1, n− 2, ..., 1 (A.8)

The multiplication between the matrices L and U that leads us to have
the matrix A, is illustrated in details as follows:



l11

l21 l22

l31 l32 l33

. . .

. . .

. . .
ln1 ln2 ln3 ... lnn





u11 u12 u13 ... u1n

u22 u23 ... u2n

u33 ... u3n

.

.

.
unn


(A.9)

=



a11 a12 a13 ... a1n

a21 a22 a23 ... a2n

a31 a32 a33 ... a3n

. . . .

. . . .

. . . .
an1 an2 an3 ... ann


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From this matrix product we obtain the following elements:

li1u1j + li2u2j + ...+ lijujj = aij i ≥ j (A.10)

li1u1j + li2u2j + ...+ liiuij = aij i < j (A.11)

For simplicity we consider:

uii = 1 i = 1, 2, ..., n (A.12)

So, in conclusion, this algorithm can be approximated in the following
way:

uii = 1 i = 1, 2, ..., n (A.13)

lij = aij −
j−1∑
k=1

likukj i ≥ j (A.14)

uij =
1

lii

(
aij −

i−1∑
k=1

likukj

)
i < j (A.15)

After obtaining the elements that determine the decomposition, the sys-
tem can be solved for y and x:

y1 =
b1

l11

(A.16)

yi =
1

lii

(
bi −

i−1∑
j=1

lijyj

)
i = 2, 3, ..., n (A.17)

xn = yn (A.18)

xi = yi −
n∑

j=i+1

uijxj i = n− 1, n− 2, ..., 1 (A.19)
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A process similar to LU decomposition is figured out by LDLT decompo-
sition. The only difference is given by the fact that the matrix A is symmet-
ric. In conclusion, comparing to the complex algorithm to be analyzed, LU
decomposition method has a simple computation. It turns out to be very
mechanical and the algorithm has a very compact form. LU is particularly
effective especially in case of small problems [36] but it is also very good for
solving large sparse nonsymmetric linear systems [37].

A.2 Other Methods

Other decomposition methods are represented by the frontal and multifrontal
methods. These are procedures suitable for solving large systems with low
memory demand [38]. They refer to the assembly of the matrices related
to the elements of the domain to obtain the total system matrix and then
carry out the Gaussian elimination. In practice, an array consisting of a set
of equations, slides along the matrix. The matrix that is generated is called
frontal matrix. The advantages of this method concern the low memory
usage. However, this method is characterized by a low rate of estimation of
the results. The multifrontal method is an improvement of the frontal one
that uses several fronts at the same time. This method can be managed only
considering the parallel computing. It is mainly used in presence of large-
scale problems that require more memory [8]. Of course, large problems will
include higher factorization costs. To overcome this obstacle, it is necessary
to consider this new method that allows us to evaluate all fronts in parallel.
These fronts can be chosen using several algorithms such as minimum degree
[39]. During the procedure, the method causes total factorization to be
considered as a partial factoring of smaller matrices.

In addition to the direct methods, iterative methods can be employed
for the solution of the system. Among these, the most common are the
conjugate gradient method and the biconjugate gradient method. The con-
jugate gradient method was invented by Hestenes and Stiefel around 1951
[40]. Generally, it is implemented for very large systems where it is not prac-
tical to solve with a direct method. The method yields an exact solution
when the number of iterations is equal to the number of equations that de-
fine the system. In theory, it converges to solution in n steps, but due to
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numerical round-off errors, can take more than n steps. In some situations,
it is however possible to obtain a good approximation for a number of steps
� n. One of the most important features of the conjugate gradient method
is that the solution improves at each iteration. Compared to direct meth-
ods, the conjugate gradient method is less reliable regarding the data [41].
The biconjugate gradient method is an expansion of the conjugate gradient
method that also covers complex symmetric systems. It was developed by
Lanczos in 1952 [42]. Unlike the conjugate gradient method, the residual
error may also not decrease with each iteration, so the solution may not im-
prove. In particular, the error can grow in some steps and then decrease.
This represents the major difference between the conjugate and biconjugate
gradient methods. The main advantages of the biconjugate gradient method
respect to the simple conjugate gradient method are that the former operates
only one matrix-vector product whereas the latter needs two and that the
former converges much faster than the latter. In addition, the biconjugate
gradient method involves one third the number of iterations that are needed
by the conjugate gradient method for the same degree of accuracy. All these
considerations make the biconjugate gradient method at least 5 times faster
than the simple conjugate gradient method [8].
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Conclusions and Future Works

In this thesis work, the aim was to evaluate and monitor deformations in
pipelines that can be caused by different external agents. The identification
of these deformations was carried out through the development of an acous-
tic simulator based on the Finite Element Method (FEM). Practically, we
defined a coordinate transformation that allowed us to convert the deformed
structure into a uniform deformation-free domain. Next, we considered an
anisotropic material in such a way that the sound pressure values assessed at
each point of the transformed structure were equal to the pressure values of
the original structure. We first evaluated a two-dimensional problem where
we checked out the comparison between the scattering parameters related
to the deformed structure and the same parameters related to the regular
structure without deformation. This evaluation was done both for the pla-
nar and the radial cases. The latter is based on a system of polar coordinates
that make the analysis define a rotary behavior. Through multimodal analy-
sis, the similarities between the two scattering curves were extrapolated and
it turned out that the curves overlap almost perfectly. The results show
that the accuracy of this overlap is related to the density of the elements
that form the domain and to the type of elements considered, which can be
linear, quadratic or cubic. The denser the mesh and the higher order the
elements, the more correct the results will be, at the expense of an increase
in computational time and memory demand.

After evaluating the FEM, we decided to study an alternative method,
the Hierarchical Model Reduction (HiMod) that allows us to decrease the
calculations and, consequently, to provide us with the same results in much
shorter times. This method was implemented for an efficient resolution of
the partial differential equations (PDEs) defined in structures that have a
dominant direction, therefore it proved to be suitable for our case. Always
referring to the two-dimensional case, we considered structures with different
deformations for both the planar and the radial cases. As for the latter, we
ran into the convergence problems and we could see how the choice of the
transversal modal basis is very important and greatly influences the final re-
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sult. Dealing with Chebyshev and Zernike polynomials, we have noticed how
these functions improve the convergence of the S curves with respect to the
simple Bessel functions where the convergence rate is low. Furthermore, for
all the cases considered, we noticed a great improvement from the computa-
tional point of view. This upgrade is mainly recognized by checking out high
levels of mesh density and cubic elements, that is, higher-order elements. In
this case, the computational time turns out to be about half of the time taken
to obtain the results with the FEM.

The study then extended to three-dimensional structures. After provid-
ing a brief description of the FEM for this type of domains, we moved on
to determine the pressure values and the convergence between the scatter-
ing curves evaluating the HiMod method. In particular, the comparison was
made between the s curves related to deformed geometries, with a deforma-
tion only along the height, using the software Comsol and the s curves related
to 3D transformed geometries according to HiMod method using Matlab. In
the evaluation of three-dimensional geometries, we focused on asymmetric
structures because they are more difficult to analyze and we obtained that
the convergence rate is quite high except for some frequencies and this is
due to the fact that Comsol tends to discretize the domain in a totally dif-
ferent way from Matlab. In all the results obtained, it emerged that the
computational time using HiMod was significantly reduced, in particular,
using Comsol 3D FEM, the time was around 80 s while using HiMod, the
simulation was performed in about 8 s, so we got that HiMod is 10 times
faster than the standard FEM.

In conclusion, after carrying out these analyzes, it is possible to affirm
that the HiMod method allows a great improvement for both two-dimensional
and three-dimensional cases and provides the desired results in much shorter
times while maintaining a high degree of accuracy ensuring a faster moni-
toring of the state of the pipes. Despite these great improvements, the road
ahead is still long and more investigations are required especially regarding
the 3D case. In particular, more complex 3D structures could be inspected,
that is, structures that present a greater degree of asymmetricity and the
comparison between the s curves could be evaluated to observe the conver-
gence rate. As for the 2D case, however, the problem of convergence linked
to the choice of modal functions could be further investigated by trying other
types of polynomials different from those considered by us and observing the
behavior of the curves.
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