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Abstract

Numerical models have become popular in many engineering fields, even if they present
several limitations in terms of computational cost, making their usage often complicated
in practical circumstances.
The focus of this work is on overcoming these limitations by employing a non-parametric
regression method, namely the Gaussian process (GP) regression, with the aim of building
fast and reliable surrogate models. We test this method on some benchmark test cases in
order to investigate its performances in view of our application, i.e. a lumped parameter
closed-loop model for the whole circulatory network. This model is characterized by a
high number of parameters and outputs, making the usage of an anisotropic GP promis-
ing.
We show the effectiveness of the proposed method on two relevant contexts in uncertainty
quantification for cardiac modeling. First, we employ a GP based method to perform a
global sensitivity analysis on a lumped parameter closed-loop model for the hemodynam-
ics of the circulatory system. Second, we perform a Bayesian estimation of parameters
starting from noisy measurements of some scalar outputs by means of the Markov chain
Monte Carlo (MCMC) method. In both cases, the idea is to replace the high-fidelity
circulation model with the GP based surrogate model to perform all the numerical simu-
lations that would be otherwise computationally intense.
In this way, we will prove that our GP emulator is able to speed up the numerical simu-
lations reducing the computational time.

Keywords: Machine learning, Gaussian process, Circulation model, Global sensitivity
analysis, Bayesian parameter estimation, Markov chain Monte Carlo method





Abstract in lingua italiana

I modelli numerici sono diventati particolarmente popolari in molti campi dell’ingegneria,
anche se presentano diverse limitazioni in termini di costo computazionale, rendendo il
loro utilizzo spesso complicato in circostanze pratiche.
L’obiettivo di questa tesi è quello di risolvere tali limiti utilizzando un metodo di regres-
sione non parametrica, cioè la regressione del processo Gaussiano (GP), con l’obiettivo
di costruire modelli surrogati veloci ed affidabili. Testiamo questo metodo su alcuni casi
test per indagare le sue prestazioni in vista della nostra applicazione, cioè un modello
lumped parameter closed-loop per l’intera rete circolatoria. Questo modello è caratteriz-
zato da un elevato numero di parametri e output, rendendo incoraggiante l’utilizzo di un
GP anisotropo.
Dimostriamo l’efficacia del metodo proposto in due contesti molto importanti nella quan-
tificazione dell’incertezza per la modellazione cardiaca. Innanzitutto, utilizziamo un
metodo basato sul processo Gaussiano per eseguire un’analisi di sensibilità globale su
un modello lumped parameter closed-loop per l’emodinamica del sistema circolatorio. In
secondo luogo, eseguiamo una stima Bayesiana dei parametri partendo da misure rumor-
ose di alcuni output scalari mediante il metodo Markov chain Monte Carlo (MCMC).
In entrambi i casi, l’idea è quella di sostituire il modello matematico di circolazione con
il modello surrogato basato sul processo Gaussiano per eseguire tutte le simulazioni nu-
meriche che altrimenti risulterebbero computazionalmente costose.
In questo modo, proveremo che il nostro emulatore GP è in grado di velocizzare le simu-
lazioni numeriche riducendo il tempo computazionale.

Parole chiave: Machine learning, Processo Gaussiano, Modello di circolazione, Anal-
isi di sensibilità globale, Stima Bayesiana dei parametri, Metodo Markov chain Monte
Carlo
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Introduction

Numerical models have been successfully applied to many complex engineering fields with
the aim of studying the behaviour of systems whose mathematical models are too compli-
cated to provide analytical solutions. However, they are often limited in several contexts
because of the high computational costs associated with high-fidelity models based on
partial differential equations.
Some computational challenges may arise when considering the impact of uncertainty
on input and output variables of numerical models, such as in sensitivity analysis or in
inverse problems resolution. Indeed, they are contexts in which it is possible to quanti-
tatively study how the model response is affected by uncertainty or to better understand
the underlying phenomenon by highlighting the interactions between variables. Moreover,
a large number of simulations is usually required to perform reliable analyses.
One way to significantly reduce the computational cost of numerical models is to em-
ploy computationally cheap surrogate models instead of computationally expensive high-
fidelity models. The computational cost can be greatly reduced by exploiting surrogate
models, since the efforts required in building such a models are much lower than in the
usual approach in which the high-fidelity model is used [31].
In this framework, non-parametric regression methods have aroused significant interest,
since they are completely data-driven and do not need any explicit knowledge about the
functional relationship between variables. Gaussian process regression is one of such a
techniques; indeed, it is completely data-driven and provides a suitable Bayesian frame-
work for modeling [19]. Other Bayesian methods can also provide probabilistic predictions,
such as Bayesian artificial neural networks (ANN) [17], Bayesian linear regression [14] and
Bayesian least-squares support vector machines (LS-SVM) [27]. However, Gaussian pro-
cesses result particularly interesting for several reasons:

• they are able to specify prior distributions over functions;

• their implementation is flexible, since it only accounts for the optimization of co-
variance function hyperparameters;

• they provide a reasonable trade-off between computational costs and accuracy of
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predictions.

In this work, we aim to investigate these features of Gaussian processes in view of our ap-
plication, i.e. a lumped parameter closed-loop model for the simulation of the circulatory
system. This high-fidelity model was implemented by describing the hemodynamics as an
electric circuit, where the governing ordinary differential equations are solved by means of
a Runge-Kutta algorithm of 4th order [12]. However, even if this model is able to provide
reliable results, it appears inefficient when analyzing the impact of uncertainty on input
and output variables because of the high computational burden required. For this reason,
our goal is to prove that it is possible to perform reliable analyses and significantly reduce
the computational costs by employing Gaussian processes in place of this high-fidelity
circulation model.

Outline

This work is structured as follows:

• in Chapter 1 we provide an overview of the circulatory system and the definition of
the high-fidelity model used in hemodynamics to reproduce the whole circulatory
network for the numerical experiments;

• in Chapter 2 we highlight all the main characteristics of Gaussian processes by
addressing simple test cases with the aim of better understanding how to manage
them in more complex prediction problems, such as the circulation model mentioned
above;

• in Chapter 3 we employ Gaussian process predictions to solve problems related to
the context of uncertainty quantification, such as sensitivity analysis, which allows
us to rank the most influential input parameters;

• in Chapter 4 we exploit Gaussian process predictions to reduce the computational
effort required by the Markov chain Monte Carlo method, which is used to solve the
inverse problem for parameters estimation;

• in Chapter 5 we sum up the conclusions of this work, addressing its limitations and
possible future developments.



3

1| Modeling of the cardiovascular

system

In this chapter, we highlight the main characteristics of the high-fidelity circulation model
considered in this work. First, we provide a brief introduction to the anatomy and phys-
iology of the cardiovascular system (for more information, we refer to [26]); second, we
detail the model used for the hemodynamics of the whole circulatory network.

1.1. Circulatory system

The circulatory system is divided into the systemic circulation, in which the arteries carry
the oxygenated blood ejected by the left heart and the veins allow the non-oxygenated
blood to come back to the right heart, and the pulmonary circulation, in which the non-
oxygenated blood ejected by the right heart flows in the pulmonary arteries towards the
lungs and goes back (oxygenated) to the left heart through the pulmonary veins. All this
process is sustained by the heart which pumps the blood into arteries and veins, as shown
in Figure 1.1.
As reported in [7], both pulmonary and systemic circulations are composed by arteries,
veins and microvasculature. Arteries are responsible to carry the blood from the heart to
all the organs, whereas veins are the vessels that bring the blood from organs to the heart.
For what concerns the exchange of nutrients, oxygen and waste between circulation and
tissues, it is performed by microvasculature and capillaries.
The presence of muscular fibers in the heart tissue permits the contraction process which
sustains the circulation of the blood. In particular, the contraction creates a pressure wave
that propagates along the whole circulatory system by exploiting the elasticity properties
of largest arteries. This ability is named vessels compliance and is associated to the
smoothing of the blood flow guaranteeing an almost continuous exchange of oxygen with
the tissues (windkessel effect).
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Figure 1.1: Schematic representation of the cardiovascular system (image from [26]).

1.1.1. Anatomy and physiology of the heart

As pointed out in [7], the heart is internally divided into four chambers, two on the left
and two on the right, as shown in Figure 1.2. The upper chambers are called atria (where
the blood enters from the veins), whereas the lower chambers are called ventricles (where
we have the ejection to the arteries).
The cardiac valves separate atria by ventricles and ventricles by pulmunary trunk and
aorta. Valves do not allow blood backflow in ventricular contraction. In particular, we
have:

• the mitral valve in the left side of the heart;

• the tricuspid valve in the right side of the heart;

• the aortic valve at the exit of the left ventricle;

• the pulmonary valve at the exit of the right ventricle.

The conduction system plays a key role for the muscular contraction of the heart. Indeed,
it allows the propagation of the potential which is responsible of the heart contraction by
means of its main components, namely the sinoatrial node, often called the pacemaker,
the atrioventricular node and the Purkinje fibers network.
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Figure 1.2: Frontal section of the heart (image from [26]).

1.1.2. Cardiac cycle

As reported in [7], the cardiac cycle begins with the contraction of the atria and ends with
the ventricular relaxation, as shown in Figure 1.3. Two different moments are responsible
of the process total time: the systole, in which we have a contraction and thus a blood
ejection, and the diastole, in which we have a relaxation and thus a chamber filling.
During the cardiac cycle, we have that the pressure in heart chambers continuously rises
and falls. In particular, the difference of pressure between atria and ventricles makes the
atrioventricular valves open by pushing down the leaflets. In this way, since the blood
flows from the veins into the atria, it is possible to observe the atrial systole, which is
a contraction that ejects the blood to the ventricle. At this point, the atrioventricular
valves close and the atria start filling of blood, while ventricles begin their contraction
and, consequently, the ejection of blood into the circulation.
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Figure 1.3: Events occurring in the cardiac cycle (image from [3]).

As anticipated before, the contraction process is due to the electrical activity of the heart.
The sinoatrial node starts the excitation and the propagation of the signal through the
atria muscle fibers (atrial depolarization), inducing the contraction of the atria. Then we
have the propagation of the signal through the Purkinje fibers by means of the atrioven-
tricular node excitation. Here the conduction along the myocardial cells is significantly
slower, so that a homogeneous propagation of the electric potential along the wall of the
ventricle (ventricular depolarization) is guaranteed. In conclusion, the ventricular repolar-
ization concludes the systolic phase, leading to the relaxation of the ventricle (ventricular
diastole) in which the cardiac cycle finishes.
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1.2. 0D models in hemodynamics

As explained in [7], numerical modeling of the cardiovascular system is a computationally
expensive problem to be solved because of its highly complicated structure. In particular,
a complete simulation of the system, considering all the arteries, veins and capillaries,
would be unfeasible. For this reason, some high-fidelity reduced models can be introduced
in order to minimize the computational burden, such as 0D models or lumped parameter
models. These approaches, based on geometrical reduction, highly simplify the description
of the behaviour of spatially distributed physical systems, such as the circulation system,
by introducing discrete elements that approximate the behaviour of the whole system
under certain assumptions. Mathematically speaking, this simplification allows us to
turn the PDEs of the time and space dependent model of the physical system into ODEs
which depend only on time.
This kind of models is particularly popular to describe electric circuits; for this reason, it
is possible to establish an analogy between the circulatory network and an electric circuit,
as shown in Figures 1.4–1.5.

Figure 1.4: Electric analogy of the circulation system of ODEs (image from [7]).

The variables of this problem are:

• the blood flow rate Q, which plays the role of a current;

• the pressure P , which can be associated to an electric potential.

We also need to provide a physical meaning for the electric elements we typically find in
a circuit. Indeed, we have:

• the resistance R, which models the dissipation due to the fluid viscosity;

• the capacitance C, which models the vessel compliance due to the elasticity of the
wall;

• the inductance L, which models the inertial properties of the fluid;
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• the diode RV , which models the time dependent obstructions in the system (e.g.,
cardiac valves).

Figure 1.5: Elements commonly used in the circuital representation of the 0D model
(image from [7]).

1.2.1. Lumped parameter closed-loop model

In order to model the hemodynamics of the whole circulatory network, we consider a
lumped parameter closed-loop model proposed in [21]. In particular,

• the systemic and pulmonary circulations are modeled with resistance-inductance-
capacitance (RLC) circuits, one for the arterial part and the other one for the venous
part;

• the four chambers are modeled by time-varying elastance elements;

• the four valves are represented as non-ideal diodes.

The variables of the system related to the heart chambers are listed below:

• pressure pRA(t), volume VRA(t) and elastance ERA(t) for the right atrium;

• pressure pLA(t), volume VLA(t) and elastance ELA(t) for the left atrium;

• pressure pRV(t), volume VRV(t) and elastance ERV(t) for the right ventricle;

• pressure pLV(t), volume VLV(t) and elastance ELV(t) for the left ventricle.

The elastaces vary in a limited range of values:

Ej(t) ∈ (Epass
j , Epass

j + Eact,max
j ), j ∈ {RA,LA,RV, LV}, (1.1)

where the minimum corresponds to the moment in which the chambers are at rest and
the maximum corresponds to the fully contracted case.
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Then we have the fluxes which are related to the valves:

• the mitral valve flux QMV(t);

• the aortic valve flux QAV(t);

• the tricuspid valve flux QTV(t);

• the pulmonary valve flux QPV(t).

For what concerns the systemic and pulmonary circulations, we can find four couples of
pressure and flux:

• pressure pPUL
VEN(t) and flux QPUL

VEN(t) for the pulmonary veins;

• pressure pPUL
AR (t) and flux QPUL

AR (t) for the pulmonary arteries;

• pressure pSYS
VEN(t) and flux QSYS

VEN(t) for the systemic veins;

• pressure pSYS
AR (t) and flux QSYS

AR (t) for the systemic arteries.

Notice that each variable is only time-dependent because of the geometric reduction of
the problem.
Finally, the heart valves are modeled with the use of non-ideal diodes:

Rj(p1, p2) =

Rmin, p1 < p2

Rmax, p1 ≥ p2
j ∈ {MV,AV,TV,PV}, (1.2)

where p1 and p2 denote the pressures ahead and behind the valve leaflets with respect
to the flow direction, whereas Rmin and Rmax are the minimum and maximum resistance
of the valves. In particular, one would have Rmin = 0 and Rmax = +∞ for an idealized
valve. By setting Rmin > 0, one has dissipation of mechanical energy taking place when
the blood flows through the opened valve. On the other hand, it is set Rmax < +∞
sufficiently large so that blood leakage is negligible when the valve is closed (for more
information about the lumped parameter closed-loop model, we refer to [4, 10]).
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Figure 1.6: 0D lumped parameter closed-loop model (image from [23]).
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Given these definitions, the circulation model is written as follows:

dVLA(t)

dt
= QPUL

VEN(t)−QMV(t)

dVLV(t)

dt
= QMV(t)−QAV(t)

dVRA(t)

dt
= QSYS

VEN(t)−QTV(t)

dVRV(t)

dt
= QTV(t)−QPV(t)

CSYS
AR

dpSYS
AR (t)

dt
= QAV(t)−QSYS

AR (t)

CPUL
AR

dpPUL
AR (t)

dt
= QPV(t)−QPUL

AR (t)

CSYS
VEN

dpSYS
VEN(t)

dt
= QSYS

AR (t)−QSYS
VEN(t)

CPUL
VEN

dpPUL
VEN(t)

dt
= QPUL

AR (t)−QPUL
VEN(t)

LSYS
AR

RSYS
AR

dQSYS
AR (t)

dt
= −QSYS

AR (t)− pSYS
VEN(t)− pSYS

AR (t)

RSYS
AR

LSYS
VEN

RSYS
VEN

dQSYS
VEN(t)

dt
= −QSYS

VEN(t)−
pRA(t)− pSYS

VEN(t)

RSYS
VEN

LPUL
AR

RPUL
AR

dQPUL
AR (t)

dt
= −QPUL

AR (t)− pPUL
VEN(t)− pPUL

AR (t)

RPUL
AR

LPUL
VEN

RPUL
VEN

dQPUL
VEN(t)

dt
= −QPUL

VEN(t)−
pLA(t)− pPUL

VEN(t)

RPUL
VEN

(1.3)

with t ∈ (0, T ). In order to close the system, some algebraic relations which use the
external pressure pEX are needed. The external pressure models the pressure exerted by
the other organs on the heart. For this reason, we use this value to obtain all the chamber
pressures. Moreover, we consider for each chamber j a volume V0,j such that the pressure
is only equal to the external contribution.



12 1| Modeling of the cardiovascular system

In this way, the following system is obtained:

pLV(t) = pEX(t) + ELV(t)(VLV(t)− V0,LV)

pLA(t) = pEX(t) + ELA(t)(VLA(t)− V0,LA)

pRV(t) = pEX(t) + ERV(t)(VRV(t)− V0,RV)

pRA(t) = pEX(t) + ERA(t)(VRA(t)− V0,RA)

QPV(t) =
pRV(t)− pPUL

AR (t)

RPV(pRV(t), pPUL
AR (t))

QAV(t) =
pLV(t)− pSYS

AR (t)

RAV(pLV(t), pSYS
AR (t))

QTV(t) =
pRA(t)− pRV(t)

RTV(pRA(t), pRV(t))

QMV(t) =
pLA(t)− pLV(t)

RMV(pLA(t), pLV(t))

(1.4)

For the discretization of this problem a Runge-Kutta algorithm of 4th order is used. How-
ever, we do not enter in the specific of this finite difference scheme (for more information,
we refer to [22]).
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2| Gaussian processes

Inferring a continuous function from a set of individual (observed or computed) data
points is a common task in scientific research [8]. However, not all the processes can
be well modeled by simple expressions. For this reason, instead of trying to understand
the dependence between inputs and outputs analytically, one may describe the relation
between variables by exploiting non-parametric regression methods which are completely
data-driven. Indeed, interpolation and regression techniques provide tools to "fill in the
space" between data points, resulting in a continuous function representation which, once
established, can be efficiently used for each new data point.
In this context, we investigate the performances of Gaussian process models, which have
become particularly popular for solving non-linear regression and classification problems
[30]. In particular, Gaussian processes are easily interpretable, avoid over-fitting by using
prior distributions and have good predictive performances in many empirical cases.

2.1. Gaussian process regression

Let f denote an (unknown) function which maps the input x ∈ X to the output y ∈ Y , i.e.
f : X → Y . As reported in [20], a Gaussian process is a collection of random variables, any
finite number of which has a joint Gaussian distribution. One of the main characteristics
of Gaussian processes is that they are completely identified by a mean function and a
covariance function. In particular, the mean function µ(x) provides the average of all the
functions at any point x of the input space, whereas the covariance function k(x,x′) sets
the correlation between the function values at different input points x and x′.
Given x,x′ ∈ X , the mean function µ(x) and the covariance function k(x,x′) of a real
process f(x) are defined as

µ(x) = E[f(x)],

k(x,x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))],
(2.1)
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so that the Gaussian process can be written as

f(x) ∼ GP(µ(x), k(x,x′)). (2.2)

As noticed in [20], the marginalization property is automatically fulfilled for a Gaussian
process, since, by definition, any of its finite collections of random variables are jointly
Gaussian. This means that, if the Gaussian process specifies, for instance, (y1, y2) ∼
N (µ,Σ), then also y1 ∼ N (µ1,Σ11) is specified, where

µ =

[
µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
. (2.3)

In order to better understand how Gaussian processes work, [20] provides a very simple
example based on the Bayesian linear regression model f(x) = ϕ(x)Tw with prior w ∼
N (0,Σ). In this case the mean and covariance become

E[f(x)] = ϕ(x)TE[w] = 0,

E[f(x)f(x′)] = ϕ(x)TE[wwT ]ϕ(x′) = ϕ(x)TΣϕ(x′),
(2.4)

so that f(x) and f(x′) are jointly Gaussian with zero mean and covariance function given
by k(x,x′) = ϕ(x)TΣϕ(x′).

2.2. Covariance functions

In this section, we want to discuss different choices of commonly used covariance functions
and examine their properties. Covariance functions are crucial ingredients in Gaussian
processes, since they encode our assumptions about the function we aim to model. Indeed,
they determine the shape, smoothness and other properties of the function of interest.
For instance, as reported in [20], covariance functions define the key concept of similarity
which states that points with inputs x close to each other are likely to have a similar
target value y. As a consequence, the prediction at a specific test point should be affected
by the closeness of training points at that point.

2.2.1. Properties and preliminary notions

As explained in [20], an arbitrary function with input pairs x and x′ will not be, in general,
a valid covariance function, since it must be symmetric and positive semidefinite.
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In particular, a function k : X × X → R is said to be symmetric if

k(x,x′) = k(x′,x). (2.5)

On the other hand, it is positive semidefinite if∫
X×X

k(x,x′)f(x)f(x′)dµ(x)dµ(x′) ≥ 0, (2.6)

for all f ∈ L2(X , µ), with µ that denotes a measure.
Notice that this kind of functions of two arguments mapping a pair of inputs x,x′ ∈ X
into R is called kernel; for this reason, we can also refer to covariance functions as kernel
functions.
In [20] some basic notions that could be useful to better understand the main properties
of the most commonly used covariance functions are provided. In particular,

• a stationary covariance function is a function of x − x′, thus it is invariant to
translations in the input space;

• an isotropic covariance function is a function only of |x− x′|, thus it is invariant to
all rigid motions;

• a dot product covariance function is a function of x · x′, thus it is invariant to a
rotation of the coordinates around the origin, but not translations in general.

2.2.2. Examples of covariance functions

Ideally, a user would specify a kernel that exactly encodes all the prior beliefs about the
properties of the function of interest. However, this is not always the case because the
strategy consists of selecting a kernel from a relatively small set of commonly used families
of covariance functions depending on the function that we want to model.
In this subsection, some examples of the most widely used covariance functions are given,
so that a generic selection criterion is provided.

Linear covariance function

The linear covariance function is one of the simplest covariance functions and is defined
as

k(x,x′;σ0) = σ2
0 + x · x′. (2.7)
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It can be simply obtained from linear regression by setting N (0, 1) priors on the coefficients
of x and a prior of N (0, σ2

0) on the bias.

Squared exponential covariance function

The most popular and used covariance function is the squared exponential covariance
function, also known as the exponentiated quadratic covariance function (or radial basis
function). It has the form

k(x,x′;σ, λ) = σ2exp

(
−∥x − x′∥2

2λ2

)
, (2.8)

where σ2 is called amplitude, that determines the average distance of our function away
from its mean, and λ is called length scale, which regulates the speed of decay of the
correlation among the points. For this specific covariance function, we can observe that
it tends to the amplitude value when inputs are very close, whereas it decreases as their
distance in the input space increases.

Rational quadratic covariance function

The rational quadratic covariance function is extremely similar to the squared exponential
one. Indeed, it is defined as

k(x,x′;σ, λ, α) = σ2

(
1 +

∥x − x′∥2

2αλ2

)−α

, (2.9)

where α > 0 is the scale mixture. The rational quadratic covariance function can be
interpreted as an infinite sum of different exponentiated quadratic covariance functions
with different length scales, where α has the role of determining the weighting between
different length scales. Moreover, when α → ∞, the rational quadratic covariance function
converges to the squared exponential covariance function.

Periodic covariance function

The periodic covariance function is mainly used to model periodic functions and is defined
as

k(x,x′;σ, λ, p) = σ2exp

(
− 2

λ2
sin2

(
π
∥x − x′∥

p

))
, (2.10)

where p represents the period.



2| Gaussian processes 17

Matérn class of covariance functions

The Matérn class of covariance functions is another popular choice. It is defined as

k(x,x′; ν, λ) =
21−ν

Γ(ν)

(√
2ν∥x − x′∥

λ

)ν

Kν

(√
2ν∥x − x′∥

λ

)
, (2.11)

where ν > 0 is the normalization constant and Kν is a modified Bessel function. The
Matérn class of covariance functions has two important properties. The first one is that,
when ν → ∞, it converges to the squared exponential covariance function. The second
one is that its expression significantly simplifies for ν = 3/2 and ν = 5/2:

k(x,x′;λ)ν=3/2 =

(
1 +

√
3∥x − x′∥

λ

)
exp

(
−
√
3∥x − x′∥

λ

)
,

k(x,x′;λ)ν=5/2 =

(
1 +

√
5∥x − x′∥

λ
+

5∥x − x′∥2

3λ2

)
exp

(
−
√
5∥x − x′∥

λ

)
.

(2.12)

As explained in [20], it is also possible to combine or modify existing covariance functions
to make new ones. In particular, the sum of two kernels is a kernel as well. This con-
struction can be used, for instance, to add together kernels with different length scales.
Moreover, we also have that the product of two kernels is a kernel (for more information
about the covariance functions, we refer to [9, 13]).
As reported in [20], all of these families of covariance functions are characterized by a
number of free hyperparameters whose values need to be determined, even if it may not
be easy to specify all these aspects with confidence in practical applications. Therefore,
the choice of a suitable covariance function for a specific application is not simple, since
it comprises both the setting of the values of the hyperparameters and the selection of
the most appropriate one across different families depending on the process that we aim
to predict.

2.3. Predictive distribution

As explained in [20], the choice of the covariance function implies a distribution over
functions. This can also be observed in Figure 2.1, where, given the input values X∗,
three functions drawn from the Gaussian process prior distribution

f∗ ∼ N (0, K(X∗, X∗)) (2.13)
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are plotted. Notice that in (2.13) the covariance matrix K(X∗, X∗) is defined by using
the squared exponential covariance function (2.8) elementwise.

Figure 2.1: Three functions drawn at random from a GP prior, where the dots indicate
values of the output actually generated, whereas the two other functions have (less cor-
rectly) been drawn as lines by joining a large number of evaluated points (image from
[20]).

2.3.1. Prediction with noise free observations

As argued in [20], since we are not interested in drawing functions from the prior, the
information given by the training data are exploited. First, the simple case in which
the observations are noise free is considered. Given the training inputs and outputs
{xi, fi|i = 1, . . . , n} and the test inputs and outputs {x∗,j, f∗,j|j = 1, . . . , n∗}, the joint
distribution of the training outputs f and the test outputs f∗ according to the prior is
defined as [

f
f∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)

K(X∗, X) K(X∗, X∗)

])
. (2.14)

In order to obtain a suitable posterior distribution, a way to discard those functions
whose values do not correspond with the observations is needed. From a probabilistic
point of view, this is translated by conditioning the joint Gaussian prior distribution on
the training outputs to give

f∗ |X∗, X, f ∼ N (̄f∗, cov(f∗)), (2.15)

where

f̄∗ = E[f∗ |X∗, X, f] = K(X∗, X)K(X,X)−1f,

cov(f∗) = K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗).

(2.16)

(2.17)
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Figure 2.2 shows the results of these computations given five data points marked with a
"+" sign, where function values f∗ (corresponding to test inputs X∗) can be sampled by
evaluating the mean vector and the covariance matrix from (2.15).

Figure 2.2: Three random functions drawn from the posterior, i.e. the prior conditioned
on the five noise free observations indicated. The shaded area corresponds to the 95%
confidence region (image from [20]).

2.3.2. Prediction using noisy observations

As explained in [20], in real-life situations we only have access to noisy function values
y = f(x) + ϵ, where ϵ is an independent identically distributed Gaussian noise. As a
consequence, the prior on noisy observations becomes

cov(y) = K(X,X) + σ2
nI, (2.18)

where σ2
n represents the noise variance. The main difference with respect to the noise free

case is that a diagonal matrix is added because of the effect of the noise. Following the
same procedure adopted in (2.14), but accounting for the noise term, the joint distribution
of the observed values and the function values at the test points under the prior can be
written as [

y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2

nI K(X,X∗)

K(X∗, X) K(X∗, X∗)

])
. (2.19)

The predictive equations for Gaussian process regression in the noisy case are given by

f∗ |X∗, X,y ∼ N (̄f∗, cov(f∗)), (2.20)
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where

f̄∗ = E[f∗ |X∗, X,y] = K(X∗, X)[K(X,X) + σ2
nI]

−1y,

cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]

−1K(X,X∗).

(2.21)

(2.22)

For notation purposes, [20] proposes to introduce a compact form of notations K =

K(X,X) and K∗ = K(X,X∗). Similarly, it is possible to write k(x∗) = k∗ to denote the
vector containing the covariances between one test point x∗ and the n training points.
Therefore, for only one test point (2.20), (2.21) and (2.22) become

f∗|x∗, X,y ∼ N (f̄∗,V(f∗)), (2.23)

where

f̄∗ = kT
∗ [K + σ2

nI]
−1y,

V(f∗) = k(x∗,x∗)− kT
∗ (K + σ2

nI)
−1k∗.

(2.24)

(2.25)

As reported in [20], the mean prediction (2.24) is a linear combination of the observations
y. Moreover, it is possible to observe that (2.22), which is defined as the difference between
the prior covariance and a positive term representing the information about the function
given by the observations, does not depend on the outputs. The posterior covariance with
respect to the posterior distribution seen in Figure 2.2, is illustrated in Figure 2.3.

Figure 2.3: Posterior covariance between f(x) and f(x′) for the same data for three
different values of x′ (image from [20]).

2.4. Optimization of the hyperparameters

As we anticipated in Section 2.2.2, the choice of a suitable covariance function is strictly
related to the setting of the hyperparameters. This problem is treated by the training of
the Gaussian process, which consists of the maximization of the log marginal likelihood
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with respect to the hyperparameters [25]. In particular, the log marginal likelihood is
defined as

log p(y|X,θ) = −1

2
yTK−1

y y − 1

2
log|Ky| −

n

2
log 2π, (2.26)

where X represents the training inputs, y defines the noisy targets, θ is the vector con-
taining all the hyperparameters and Ky = Ky(θ) is the covariance matrix with respect to
the noisy outputs y. As explained in [20], the three terms of the log marginal likelihood
have specific roles. In particular, the first term measures the data fit, that is how well
the current kernel parametrization explains the dependent variable, while the second one
and the last one represent a complexity penalization term and a normalization constant
respectively.
In order to set the hyperparameters by maximizing the log marginal likelihood, its partial
derivatives with respect to the hyperparameters can be computed:

∂

∂θj
log p(y|X,θ) =

1

2
yTK−1

y

∂Ky

∂θj
K−1

y y − 1

2
tr

(
K−1

y

∂Ky

∂θj

)

=
1

2
tr

((
ααT −K−1

y

)∂Ky

∂θj

)
,

(2.27)

where α = K−1
y y. As noticed in [20], the computational burden required in computing the

log marginal likelihood (2.26) is predominantly due to the need to invert the Ky matrix.
However, standard methods for inversion of positive definite matrices can be used with a
required time O(n3) for a n×n matrix. Once K−1

y is known, only the computation of the
derivatives in (2.27) is needed, which requires time O(n2) per hyperparameter, since in
the first term the matrix-vector multiplications are computed first and in the trace term
only the diagonal terms of the product are needed. Therefore, the computational cost of
computing derivatives is relatively small and a gradient based optimizer can be used.

2.4.1. Variation of the hyperparameters

In this section, we report an example in [20] (Figures 2.4–2.5) with the corresponding
comments which is useful in order to explain the impact of varying the hyperparameters
on Gaussian process predictions and on the log marginal likelihood.
In this example the squared exponential covariance function in one dimension is consid-
ered:

ky(xi, xj;θ) = σ2exp
(
−(xi − xj)

2

2λ2

)
+ σ2

nδij, (2.28)

where θ = (λ, σ2, σ2
n)

T is the vector containing all the hyperparameters.
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(a) λ = 1

(b) λ = 0.3 (c) λ = 3

Figure 2.4: Panel (a) shows data generated from a GP with hyperparameters (λ, σ2, σ2
n) =

(1, 1, 0.1). Panels (b) and (c) show the predictions with hyperparameters (λ, σ2, σ2
n) =

(0.3, 1.08, 0.00005) and (λ, σ2, σ2
n) = (3, 1.16, 0.89) respectively. In all the plots, the shaded

area corresponds to the 95% confidence region (image from [20]).

Results for three different values of the length scale are reported in order to understand
the concepts of over-fitting and under-fitting. First, it is possible to observe in Figure 2.4a
the data generated from a Gaussian process with hyperparameters (λ, σ2, σ2

n) = (1, 1, 0.1),
where the shaded area represents the 95% confidence region and gets larger for test inputs
which are far from the training values.
Second, Figure 2.4b shows that over-fitting occurs if predictions with a shorter length scale
(e.g., λ = 0.3) are made on the data generated by the process with λ = 1. Concerning the
other two parameters, they are set in such a way that the marginal likelihood is optimized.
For this reason, the noise parameter becomes σ2

n = 0.00005. For instance, if the two data
points near x = 2.5 in the plots are considered, it is possible to observe that they provide
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completely different results depending on the value of the length scale. Indeed, for λ = 1

a similar function value with different noise is obtained, whereas for λ = 0.3 the noise
level is very low and a significant variation in the value of the function is detectable.
In conclusion, Figure 2.4c shows the occurrence of under-fitting for a greater value of the
length scale (e.g., λ = 3); indeed, the function is not able to take over the variations under
these assumptions and the result is a slowly varying behaviour affected by a lot of noise.
For what concerns the log marginal likelihood, Figure 2.5a illustrates how the data fit
decreases as the value of the length scale increases, since this results in a model which
presents difficulties in detecting the variations of the function. On the other hand, the
negative complexity penalty increases because the model gets less complex as the length
scale grows.
Figure 2.5b, instead, shows the dependence of the log marginal likelihood on the length
scale for different numbers of training values. In general, the log marginal likelihood tends
to be more peaked as the number of training points increases, since this implies a more
severe complexity term.

(a) (b)

Figure 2.5: Panel (a) shows a decomposition of the log marginal likelihood into its con-
stituents (data fit and complexity penalty) as a function of the length scale. Panel (b)
shows the log marginal likelihood as a function of the length scale for different sizes of
the training sets (image from [20]).

2.5. Diagnostics for Gaussian processes

Emulators (like Gaussian processes) are usually used as stochastic approximations of com-
putationally expensive simulators. However, their adoption requires a robust validation.
In particular, we consider throughout this work diagnostic methods, which represent a
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set of techniques to prove the quality of the statistical model, as a validation process. For
instance, they can be useful tools (with graphical or quantitative results) for assessing the
assumptions of the underlying model and can provide suggestions to improve its validity.
Therefore, by using diagnostic methods, we aim to investigate the best probability model
for describing the simulator [1].
As reported in [2], there are several metrics that can be adopted to test Gaussian process
emulators. One of the most commonly used is the root mean squared error (RMSE):

RMSE =

√∑n
i=1(yi − µi)2

n
, (2.29)

where µi represents the prediction of the Gaussian process and yi stands for the observed
output. Since it evaluates the mean squared difference between the emulator predictions
and the simulator outputs, which can be roughly seen as a measure of the "distance"
between observed outputs and predictions, then it is better to obtain a low value from
this method.
A different widely used diagnostic method which takes into account the uncertainty is
based on the individual prediction errors. The idea is always to somehow analyze the
differences between the observed simulator outputs and the Gaussian process predictions
at the same inputs. In particular, each standardized prediction error is considered as a
diagnostics:

Di =
yi − µi

σi

, (2.30)

where σi represents the predictive standard deviation of the Gaussian process. As ex-
plained in [2], in general, the individual standardized errors will have a standard Student-t
distribution if the uncertainty about the simulator is properly represented by the Gaussian
process. However, it tends to a standard normal distribution as the number of degrees of
freedom increases.
Some problems my arise if large individual standardized errors are found with an absolute
value greater than 3. Isolated extreme individual standardized errors may suggest a local
problem only for those validation points. If large individual standardized errors tend to
correspond to validation points that are close to training points, then there are some is-
sues of overestimation of the length parameters of the Gaussian process. This means that
the closeness to the training data points may influence the predictions too strongly. On
the other hand, the underestimation of the length parameters may be suggested if there
are small individual standardized errors.
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2.6. Numerical experiments

In this section, we test the efficiency of Gaussian processes in making predictions. We
start by analyzing their accuracy for a benchmark problem with a varying number of input
parameters. Once this efficiency is verified, we can proceed with the analysis of Gaus-
sian process capabilities in predicting the behaviour of the lumped parameter closed-loop
model for the circulation system.
All the numerical simulations considered in this work are performed in Python. In par-
ticular, Gaussian process is implemented by means of the open source Python library
TensorFlow with a squared exponential covariance function (for more information about
the GP implementation, see Algorithm 2.1). Once the kernel function is given, a prelim-
inary crucial step in Gaussian process regression is the choice of the initial values for the
hyperparameters. We chose the values proposed in TensorFlow documentation for the
benchmark problem, whereas the initial values of the hyperparameters in [28] are used
for the circulation system (see Tables 2.1–2.2 respectively).
For the high-fidelity circulation model we exploit the Python class circulation_closed_loop,
which is available in the GitHub repository1. In Tables 2.3–2.4 we report parameters and
outputs of the lumped parameter closed-loop model for the circulation system.

Hyperparameter Initial value Description

σ2 1.0 Amplitude

λ 1.0 Length scale

σ2
n 1.0 Noise variance

Table 2.1: Initial values of the squared exponential covariance function hyperparameters
for the benchmark problem.

Hyperparameter Initial value Description

σ2 0.1209 Amplitude

λ 0.0816 Length scale

σ2
n 0.0146 Noise variance

Table 2.2: Initial values of the squared exponential covariance function hyperparameters
for the circulation system.

1https://github.com/AlessandroPirozzi/Cardio_Circulation_UQ
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Algorithm 2.1 Gaussian process
1: Input: training inputs X, training outputs y and test inputs X∗

2: Output: hyperparameters θ = (λ, σ2, σ2
n)

T , Gaussian process mean function µ and
predictive standard deviations σ

3: Initialize the hyperparameters θ

4: for 0 ≤ i ≤ N do
5: Compute the loss function (2.26)
6: Update the hyperparameters θ using the Adam algorithm for first order gradient

based optimization with respect to the gradients in (2.27)
7: end for
8: Define the squared exponential covariance function with respect to the optimized

hyperparameters θ̂

9: Compute the mean function µ and the corresponding predictive standard deviations
σ by using (2.21)–(2.22)

2.6.1. One-dimensional benchmark problem

We start from the analysis of Gaussian process prediction performances in a one-dimensional
benchmark problem. In particular, we test Gaussian processes efficiency in different sit-
uations; in this way, we aim to highlight some important characteristics, such as the
accuracy improvement in predictions as the number of training values increases and the
effects of the noise on the observations. For this reason, we will consider 25, 50, 100 train-
ing points and 10−2, 10−3, 10−4 for the observations noise variance, whereas the number
of test values is always equal to 10000. The model output is given by the function

f(x) = sin(3πx), (2.31)

where x represents the input parameter.
In Figures 2.6–2.8 the dots represent the training values, while the solid blue line and the
red lines are the real function and the posterior predictive distribution obtained from the
Gaussian process regression respectively.
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Parameter Baseline Unit Description

Eact
LA, Eact

LV ,
Eact

RA, Eact
RV

0.07, 3.35,
0.06, 0.55

mmHg mL−1 LA/LV/RA/RV active elastance

Epass
LA , Epass

LV ,
Epass

RA , Epass
RV

0.18, 0.2,
0.07, 0.05

mmHg mL−1 LA/LV/RA/RV passive elastance

T contr
LA , T contr

LV ,
T contr

RA , T contr
RV

0.17, 0.25,
0.17, 0.25

s LA/LV/RA/RV contraction time

T rel
LA, T rel

LV,
T rel

RA, T rel
RV

0.17, 0.4,
0.17, 0.4

s LA/LV/RA/RV relaxation time

V0,LA, V0,LV,
V0,RA, V0,RV

4.0, 42.0,
4.0, 16.0

mL LA/LV/RA/RV reference volume

tdel
LA, tdel

LV,
tdel
RA, tdel

RV

0.9, 0.1,
0.9, 0.1

s LA/LV/RA/RV time delay

Rmin, Rmax
0.0075,
75006.2

mmHg s mL−1 Valve minimum/maximum
resistance

RSYS
AR , RSYS

VEN
0.64,
0.32

mmHg s mL−1 Systemic arterial/venous
resistance

RPUL
AR , RPUL

VEN
0.032116,
0.035684

mmHg s mL−1 Pulmonary arterial/venous
resistance

CSYS
AR , CSYS

VEN
1.2,
60.0

mL mmHg−1 Systemic arterial/venous
capacitance

CPUL
AR , CPUL

VEN
10.0,
16.0

mL mmHg−1 Pulmonary arterial/venous
capacitance

LSYS
AR , LSYS

VEN
0.005,
0.0005

mmHg s2 mL−1 Systemic arterial/venous
inductance

LPUL
AR , LPUL

VEN
0.0005,
0.0005

mmHg s2 mL−1 Pulmonary arterial/venous
inductance

Table 2.3: Parameters of the circulation model and associated baseline values.
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Parameter Unit Description

V min
LA , V max

LA mL
End systolic/end diastolic volume

of left atrium

pmin
LA , pmax

LA mmHg
Minimum/maximum pressure

in left atrium

V min
LV , V max

LV mL
End systolic/end diastolic volume

of left ventricle

pmin
LV , pmax

LV mmHg
Minimum/maximum pressure

in left ventricle

V min
RA , V max

RA mL
End systolic/end diastolic volume

of right atrium

pmin
RA , pmax

RA mmHg
Minimum/maximum pressure

in right atrium

V min
RV , V max

RV mL
End systolic/end diastolic volume

of right ventricle

pmin
RV , pmax

RV mmHg
Minimum/maximum pressure

in right ventricle

pSYS
AR,min, pSYS

AR,max mmHg
Minimum/maximum pressure
in systemic arterial circulation

Table 2.4: List of outputs of the circulation model.

We can observe how increasing the number of training values or reducing the noise of
the observations results in improved predictions. In particular, this improvement is sig-
nificantly relevant when the number of training values varies, whereas, since the value
10−2 for the observations noise variance is already low enough, no sharp improvements
are detected when reducing it. In any case, we can conclude that Gaussian processes are
characterized by a significant prediction ability, especially if combined with its irrelevant
required computational time, as shown in Table 2.5.

Training set Hyperparameters Predictions

∼ 0.01 s ∼ 9–14 s ∼ 67–105 s

Table 2.5: Computational time for each section of the process: generation of the training
set, optimization of the hyperparameters and predictions.
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(a) 25 training values

(b) 50 training values (c) 100 training values

Figure 2.6: Real function (2.31) and its posterior predictive distribution given by the
Gaussian process with 25, 50, 100 training values and 10−2 observations noise variance.
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(a) 25 training values

(b) 50 training values (c) 100 training values

Figure 2.7: Real function (2.31) and its posterior predictive distribution given by the
Gaussian process with 25, 50, 100 training values and 10−3 observations noise variance.
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(a) 25 training values

(b) 50 training values (c) 100 training values

Figure 2.8: Real function (2.31) and its posterior predictive distribution given by the
Gaussian process with 25, 50, 100 training values and 10−4 observations noise variance.

For what concerns the diagnostics, we can refer to the individual standardized errors.
Indeed, Figure 2.9 shows that the distribution of the individual standardized errors tends
to be a standard normal distribution as the number of training values increases. This is
coherent with what is explained in Section 2.5, namely that the uncertainty about the
simulator is properly represented by the Gaussian process.
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(a) 25 training values

(b) 50 training values (c) 100 training values

Figure 2.9: Distribution of the individual standardized errors with 25, 50, 100 training
values and 10−2 observations noise variance.

2.6.2. Anisotropic covariance functions

In this section, we motivate the need of considering an anisotropic nature for covariance
functions. Indeed, in all the numerical experiments we used the squared exponential
covariance function, which is by definition an isotropic covariance function (see Section
2.2.1). This is a suitable choice if we have to deal with the variation of only one parameter,
as in Section 2.6.1, or if the output varies uniformly in all the directions. However, if we
consider more than one varying input parameter, then an anisotropic covariance function
is required for better results (for more information, we refer to [29]).
In order to obtain an anisotropic version of the squared exponential covariance function,
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[20] proposes to rewrite (2.28) as

ky(xi, xj) = σ2exp
(
−1

2
(xi − xj)

TM(xi − xj)
)
+ σ2

nδij, (2.32)

where θ = ({M}, σ2, σ2
n)

T is a vector containing all the hyperparameters and {M} denotes
the parameters in the symmetric matrix M . Possible choices for the matrix M include

M1 = λ−2I, M2 = diag(λ)−2, M3 = ΛΛT + diag(λ)−2, (2.33)

where λ is a vector of positive values and Λ is a rectangular matrix D × k, k < D.
As we widely said in Section 2.2, the properties of the function that we want to model
inferred from the covariance function are strictly related to the values of the hyperparam-
eters. The interpretation of these hyperparameters is of great importance to understand
the obtained results. As reported in [20], the possible choices of M in (2.33) denote the
length scale for the squared exponential covariance function (2.32). Depending on the
used matrix, one can obtain different behaviours of the posterior predictive distribution.
In particular, M1 is the one used for the numerical experiments in the previous section,
whereas M2 allows us to consider an anisotropic nature of covariance functions, since
λ = (λ1, . . . , λD)

T represents the vector containing the length scales with respect to each
parameter. In conclusion, matrix M3 defines the factor analysis distance which, for high
dimensional data sets, allows to identify the k columns of the Λ matrix that represent the
directions in the input space with a special high relevance.
In Figure 2.10 functions drawn at random from Gaussian processes with a squared ex-
ponential covariance function for different choices of M are shown. In particular, Figure
2.10a shows the isotropic behaviour, whereas in Figure 2.10b the length scale is different
along the two input axes. Indeed, the function varies more rapidly with respect to x1

than the other input parameter x2. In conclusion, Figure 2.10c shows that the direction
of most rapid variation is perpendicular to the direction (1, 1).
Since the choice of an anisotropic covariance function aims to obtain better results, we
want to prove that this actually happens for a benchmark problem. We consider the
two-dimensional case with the model output which is given by the function

f(x) = sin(6µ2) + 0.1 cos(µ1) + sin(µ1) cos(3µ2)+

0.25 sin(µ3) + 0.6 cos(2µ4) + 0.5 cos(µ3) sin(µ4)+

sin(µ4) cos(µ8) + 0.3 cos(µ10) + 0.7 sin(µ11)+

0.1 cos(µ5) + sin(µ5) cos(µ12) + 0.25 sin(µ9)+

0.1 sin(µ6) cos(µ7),

(2.34)
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where x = (µ1, µ2, µ3, µ4, µ5, µ6, µ7, µ8, µ9, µ10, µ11, µ12)
T is the vector containing all the

input parameters, but only µ1 and µ2 vary (the others are fixed at zero).

(a) λ = 1

(b) λ = (1, 3)T (c) λ = (6, 6)T , Λ = (1,−1)T

Figure 2.10: Functions with two dimensional input drawn at random from noise free
squared exponential covariance function Gaussian processes, corresponding to the three
different distance measures in (2.33) respectively. In panel (a) the two inputs are equally
important, while in panel (b) the function varies less rapidly with respect to the second
input x2. In panel (c) the Λ column gives the direction of most rapid variation (image
from [20]).

We adopt the root mean squared error and the L∞ error as diagnostics in order to show
the improvements given by the anisotropic approach. Figure 2.11 shows how the posterior
predictive distribution changes as we modify the approach. Moreover, Table 2.6 explicitly
shows from a quantitative point of view that a significant decrease of the errors is obtained
passing from an isotropic covariance function, where the errors are extremely larger, to
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an anisotropic one, where acceptable values of the errors are registered.

(a) True function

(b) Anisotropic (c) Isotropic

Figure 2.11: Comparison between the true function (2.34) in panel (a) and its poste-
rior predictive distribution with 100 training values and 9000 test values by using the
anisotropic squared covariance function in panel (b) and the isotropic squared covariance
function in panel (c).

Error Isotropic Anisotropic

RMSE 0.1077 0.0671
L∞ error 0.4339 0.2220

Table 2.6: Root mean squared error and L∞ error in the isotropic and anisotropic cases.
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2.6.3. Multi-dimensional benchmark problem

Once we proved the efficacy of the anisotropic covariance function, we decide to use the
squared exponential covariance function with M2 from (2.33) in the multi-dimensional
problem, since we want the length scales to be different for all the parameters.
The model output is given by the function

f(x) = sin(3µ2) + 0.1 cos(µ1) + sin(µ1) cos(µ2)+

0.25 sin(µ3) + 0.6 cos(2µ4) + 0.5 cos(µ3) sin(µ4)+

sin(µ4) cos(µ8) + 0.3 cos(µ10) + 0.7 sin(µ11)+

0.1 cos(µ5) + sin(µ5) cos(µ12) + 0.25 sin(µ9)+

0.1 sin(µ6) cos(µ7),

(2.35)

where x = (µ1, µ2, µ3, µ4, µ5, µ6, µ7, µ8, µ9, µ10, µ11, µ12)
T is the vector containing all the

input parameters. Notice that, for simplicity, the output is generated by a superposition
of oscillating functions, so that all the input parameters have baseline value equal to zero
and variate in [−1, 1].
We test the prediction efficiency of Gaussian process regression in four different cases with
9000 test values:

• Case 1: 100, 500, 1000, 2000 training values with 2 varying parameters;

• Case 2: 100, 500, 1000, 2000 training values with 4 varying parameters;

• Case 3: 100, 500, 1000, 2000 training values with 8 varying parameters;

• Case 4: 100, 500, 1000, 2000 training values with 12 varying parameters.

For each numerical experiment we fix the non-varying input parameters at their baseline
value and test the reliability of the Gaussian process posterior predictive distribution by
means of the diagnostic methods based on the computation of the root mean squared
error and the L∞ error.
We can observe both from a graphical and quantitative point of view the errors behaviour
in Figure 2.12 and in Table 2.7 respectively. As we expected, the errors increase as the
number of parameters gets larger (e.g., the RMSE increases from 0.0685 with 100 training
values and 2 parameters to 0.2672 with 100 training values and 12 parameters), since
more varying input parameters implies a more complex behaviour to be predicted. On
the other hand, we can observe that errors tend to decrease when the number of training
values increases (e.g., the L∞ error decreases from 0.7559 with 100 training values and 4
parameters to 0.1604 with 2000 training values and 4 parameters). However, this forces
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us to deal with an increase of the required computational time, which nevertheless is not
too penalizing (see Table 2.8).

(a) RMSE

(b) L∞ error

Figure 2.12: Behaviour of the root mean squared error and L∞ error for the benchmark
problem as the size of the training sample varies.
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N° of parameters

N° of training values Error 2 4 8 12

100
RMSE 0.0685 0.1902 0.2058 0.2672

L∞ error 0.3370 0.7559 0.6299 0.8973

500
RMSE 0.0395 0.1114 0.1144 0.1872

L∞ error 0.1089 0.4775 0.4832 0.7273

1000
RMSE 0.0348 0.0610 0.0767 0.1157

L∞ error 0.0937 0.3028 0.3165 0.5298

2000
RMSE 0.0348 0.0351 0.0446 0.1055
L∞ error 0.0925 0.1604 0.2673 0.4141

Table 2.7: Root mean squared errors and L∞ errors for the benchmark problem as the
size of the training sample varies.

Training set Hyperparameters Predictions

∼ 0.03–0.09 s ∼ 13–7835 s ∼ 21–58 s

Table 2.8: Computational time for each section of the process: generation of the training
set, optimization of the hyperparameters and predictions.

We can conclude that a similar trend is recognizable for all the cases, but the higher the
variability of the output, the more demanding the training of the Gaussian process.

2.6.4. Multi-dimensional circulation model

We finally perform the same analysis presented in the previous section on the high-fidelity
circulation model (1.3)–(1.4). We expect a general trend of the results similar to that of
the benchmark problem.
Also in this case we test the prediction efficiency of Gaussian process regression in four
different cases (see Table 2.9) with 9000 test values, whereas the considered output is in
Table 2.10.
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Case Parameters

Case 1 RSYS
AR , CSYS

AR

Case 2 RSYS
AR , CSYS

AR , Eact
LV , Epass

LV

Case 3
RSYS

AR , CSYS
AR , Eact

LV , Epass
LV ,

T contr
LV , T rel

LV, tdel
LA, tdel

RA

Case 4
RSYS

AR , CSYS
AR , Eact

LV , Epass
LV ,

T contr
LV , T rel

LV, tdel
LA, tdel

RA,
RSYS

VEN, RPUL
VEN, CSYS

VEN, CPUL
VEN

Table 2.9: Varying input parameters of the circulation model considered in the four cases.

Parameter Unit Description

pmax
LV mmHg Maximum pressure in left ventricle

Table 2.10: Output of the circulation model used for diagnostics of the Gaussian process.

Figures 2.13–2.16 show that the prediction efficiency of the Gaussian process posterior pre-
dictive distribution improves as the number of training values increases (e.g., the RMSE
decreases from 0.2285 with 100 training values and 8 parameters to 0.0698 with 2000
training values and 8 parameters). On the other hand, it is possible to detect a worsening
of the predictions as the number of varying parameters gets larger (e.g., the L∞ error in-
creases from 0.0946 with 100 training values and 2 parameters to 0.8019 with 100 training
values and 12 parameters). However, even if a more complicated model implies a worse
prediction ability of the Gaussian process, an improvement is always noticeable increasing
the number of training values. These results are coherent with those of the benchmark
problem and can also be observed in Figure 2.17 and Table 2.11, which report both the
graphical and quantitative trend of the errors respectively. The only difference concerns
the computational time which significantly increases, above all for the generation of the
training set and the optimization of the hyperparameters (see Table 2.12).
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(a) 100 training values (b) 500 training values

(c) 1000 training values (d) 2000 training values

Figure 2.13: Behaviour of Gaussian process predictions with respect to the high-fidelity
model observations with 100, 500, 1000 and 2000 training values as 2 parameters variate.
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(a) 100 training values (b) 500 training values

(c) 1000 training values (d) 2000 training values

Figure 2.14: Behaviour of Gaussian process predictions with respect to the high-fidelity
model observations with 100, 500, 1000 and 2000 training values as 4 parameters variate.
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(a) 100 training values (b) 500 training values

(c) 1000 training values (d) 2000 training values

Figure 2.15: Behaviour of Gaussian process predictions with respect to the high-fidelity
model observations with 100, 500, 1000 and 2000 training values as 8 parameters variate.
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(a) 100 training values (b) 500 training values

(c) 1000 training values (d) 2000 training values

Figure 2.16: Behaviour of Gaussian process predictions with respect to the high-fidelity
model observations with 100, 500, 1000 and 2000 training values as 12 parameters variate.
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(a) RMSE

(b) L∞ error

Figure 2.17: Behaviour of the root mean squared error and L∞ error for the circulation
model as the size of the training sample varies.
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N° of parameters

N° of training values Error 2 4 8 12

100
RMSE 0.0463 0.1558 0.2285 0.2508

L∞ error 0.0946 0.7601 0.7625 0.8019

500
RMSE 0.0207 0.1313 0.1460 0.1448

L∞ error 0.0357 0.4065 0.4296 0.6474

1000
RMSE 0.0141 0.0706 0.0719 0.0823

L∞ error 0.0279 0.2436 0.2619 0.2902

2000
RMSE 0.0132 0.0176 0.0698 0.0821
L∞ error 0.0243 0.0690 0.2200 0.2783

Table 2.11: Root mean squared errors and L∞ errors for the circulation model as the size
of the training sample varies.

Training set Hyperparameters Predictions

∼ 101–1923 s ∼ 31–13561 s ∼ 14–25 s

Table 2.12: Computational time for each section of the process: generation of the training
set, optimization of the hyperparameters and predictions.
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3| Forward uncertainty

quantification

Mathematical models can be highly complex, making the relationships between inputs
and outputs difficult to understand. In this context, model parameters are either directly
measured or indirectly calibrated using experimental data. However, every experimental
measurement is subject to variability. In particular, we can distinguish between intrinsic
variability, which is inferred from inherent randomness, and extrinsic variability, which
is related to the natural differences between individual samples. These variabilities are
responsible of the uncertainty for a certain measured quantity, which results in some lim-
itations on our confidence in the response of the model.
As reported in [15], mathematical models either treat inputs as quantities with a deter-
ministic value, generating outputs that are deterministic as well, or are subject to an
uncertainty in the inputs, which results in uncertain model outputs. This concept is illus-
trated in Figure 3.1, where two inputs are combined to produce an output by considering
both the deterministic and the uncertainty affected approaches. The first one is illustrated
with grey lines for I1, I2, O, which show that deterministic inputs result in a fixed value
of the output. On the other hand, the uncertainty on the inputs is expressed by assigning
a distribution to each input, as shown by the black lines, and results in uncertainty in the
output as well. As explained in [15], it is also possible to observe that different effects on
the model output distribution are highlightable depending on the chosen input distribu-
tions. Indeed, it is illustrated that doubling the width of the first input distribution (red
line) or producing a similar change for the second input distribution (blue line) does not
affect the output distribution in the same way.
This process for considering the impact of input uncertainties on outputs is called forward
uncertainty quantification (UQ) (for more information about the uncertainty quantifica-
tion, we refer to [18]).



48 3| Forward uncertainty quantification

Figure 3.1: Illustrative example which shows how model inputs and outputs can be char-
acterized as probability distributions rather than fixed values (image from [15]).

3.1. Sensitivity analysis

A related concept is the sensitivity analysis, which quantifies how sensitive model outputs
are with respect to changes in model inputs. It can be used to determine a criterion to
rank the most influential input parameters and, conversely, to identify which of them do
not have a strong effect on a specific output.
As reported in [18], sensitivity analysis approaches can be divided in two groups: local and
global methods. Basically, local methods are employed to analyze the impact of a single
input parameter and are called local because the partial derivatives of the output with
respect to input parameters are performed at a specific point in the parameter space.
On the other hand, global methods examine the sensitivity with regard to the entire
parameter distribution. They are able to provide more information about the model than
local ones, since the input parameters are varied simultaneously [11].

3.1.1. Sobol indices

In this work, we consider a variance-based global sensitivity method which describes the
amount of output variance generated from the variation of each parameter [24]. We will
focus on the concept of Sobol indices, which relies on the following functional decom-
position scheme reported in [16]. Suppose that the output of a deterministic process is
governed by an unknown function f : Rd → R with inputs x = (x1, . . . , xd)

T . Since the
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exact value of the input parameters is unknown, each parameter is considered as a random
variable and the associated uncertainty is described in terms of probability distributions.
This makes the model output Y a random variable as well, even if f is deterministic.
Therefore,

Y = f(X), (3.1)

where now the input X = (X1, . . . , Xd)
T consists of d statistically independent random

variables with known distributions. The functional decomposition scheme is reported as
follows:

Y = f(X) = f0 +
d∑

i=1

fi(Xi) +
∑
i

∑
j>i

fij(Xi, Xj) + · · ·+ f1,...,d(X), (3.2)

where f0 is a constant. The remaining 2d − 1 elementary functions have zero mean and
are orthogonal (mutually uncorrelated) with each other:

E[fi(Xi)] = 0,

E[fi(Xi)fj(Xj)] = 0, ∀i ̸= j,

(3.3)

(3.4)

with i, j ⊆ D = {1, . . . , d}. Applying the variance operator on both sides of (3.2), it is
possible to obtain

V(Y ) =
d∑

i=1

Vi +
∑
i

∑
j>i

Vij + · · ·+ V1,...,d, (3.5)

where

Vi = V(fi(Xi)) = VXi
(EX∼i

[Y |Xi]),

Vij = V(fij(Xi, Xj)) = VXi,Xj
(EX∼i,j

[Y |Xi, Xj])− Vi − Vj

(3.6)

(3.7)

and the other terms are similarly defined. The notation X∼i (X∼i,j) is used to indicate
the set of all the input factors excluding Xi (Xi and Xj).
The Sobol indices are defined as

Si =
Vi

V(Y )
,

Sij =
Vij

V(Y )
,

...

(3.8)

(3.9)

where Si is the first order (or main) effect of Xi, Sij is the second order effect of (Xi, Xj)

(which represents the contribution of interaction between Xi and Xj on the model output
uncertainty without their individual effects), and so on. By definition of Sobol indices,
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the following condition is obtained:

d∑
i=1

Si +
∑
i

∑
j>i

Sij + · · ·+ S1,...,d = 1. (3.10)

The first order Sobol index Si is of great significance; indeed, it reflects the direct contri-
bution of Xi on the total variance V(Y ) and is used as a measure of importance of Xi.
As reported in [16], the first order Sobol index can be also interpreted as the expected
reduction in the total variance V(Y ) when Xi is fixed to a constant. This can be shown
by using the law of total variance (for more information, we refer to Appendix A):

Si =
VXi

(EX∼i
[Y |Xi])

V(Y )
=

V(Y )− EXi
[VX∼i

(Y |Xi)]

V(Y )
. (3.11)

However, the first order Sobol index does not account for the interactions among param-
eters. For this reason, one may verify the importance of a parameter in determining a
certain quantity of interest also accounting for the interactions among parameters, by
resorting the total order Sobol index, defined as

ST
i =

V(Y )− VX∼i
(EXi

[Y |X∼i])

V(Y )
=

EX∼i
[VXi

(Y |X∼i)]

V(Y )
, (3.12)

where VX∼i
(EXi

[Y |X∼i]) stands for the first order effect of X∼i, i.e. all the factors but
Xi.
As explained in [16], only the first and total order indices are generally considered for
sensitivity studies in practical circumstances. The main effects are typically used in order
to provide the ranking of the input parameters according to their contribution to the total
variance of the output. On the other hand, the total effects are useful where insignificant
inputs are set to a given value over their range of uncertainty. In particular,

• the condition ST
i = 0 means that Xi is a non-influential parameter;

• if ST
i is almost zero, then Xi can be fixed to any value in its range without changing

the value of the output variance.

Finally, the following relation holds between the first and total effect indices given that
the input parameters are independent:

d∑
i=1

Si ≤ 1 ≤
d∑

i=1

ST
i . (3.13)
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3.2. Numerical tests

In this section, we combine together some important tools of the variance-based global
sensitivity analysis, such as the first order Sobol indices, and the Gaussian process regres-
sion discussed in Chapter 2. We aim to provide a sufficiently accurate posterior predictive
distribution from GP regression to compute the first order Sobol indices by means of the
open source Python library SALib.
We perform this analysis for the high-fidelity circulation model in the four cases reported
in Table 2.9, where the output is the one in Table 2.10. The idea is to prove that it is
possible to obtain a reliable ranking of the input parameters with respect to the predic-
tions by comparing these results with those obtained in the high-fidelity model.
In Tables 3.1–3.2 we can observe that the first order Sobol indices are approximately
equivalent to the ones obtained with the high-fidelity model when the number of input
parameters is sufficiently small. This result is in line with what we observed in Section
2.6.4, where the Gaussian process posterior predictive distribution proved to be particu-
larly efficient whatever it was the size of the training sample.

N° of training values

Parameter 100 500 1000 2000 High-fidelity model

RSYS
AR 0.7173 0.7105 0.7117 0.7118 0.7113

CSYS
AR 0.2833 0.2908 0.2898 0.2896 0.2901

Table 3.1: First order Sobol indices with 2 parameters as the number of training values
varies with respect to the ones obtained with the high-fidelity model.

N° of training values

Parameter 100 500 1000 2000 High-fidelity model

RSYS
AR 0.2846 0.3759 0.3657 0.3674 0.3644

CSYS
AR 0.0694 0.1403 0.1448 0.1418 0.1437

Eact
LV 0.0720 0.0639 0.0628 0.0629 0.0618

Epass
LV 0.3872 0.3944 0.4071 0.4079 0.4057

Table 3.2: First order Sobol indices with 4 parameters as the number of training values
varies with respect to the ones obtained with the high-fidelity model.
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On the other hand, we know that the situation becomes complicated when many varying
input parameters are involved. For this reason, we expect that the ranking of the input
parameters with respect to Gaussian process predictions tends to approach the real one
in a sharper way as the number of training values increases.
Tables 3.3–3.4 show that the values of the first order Sobol indices significantly change
for some parameters from the lowest number of training values to the greatest one (e.g.,
Epass

LV passes from 0.3854 with 100 training values to 0.4298 with 2000 training values for
the case with 12 parameters). This can also be observed in Figures 3.2–3.5, where pie
and Pareto charts are provided in order to highlight the behaviour of parameters ranking
as the number of training values varies.
We can observe that the reliability of the sensitivity analysis performed on Gaussian
process predictions is rather low for a small number of training values. For instance,
Figures 3.4–3.5 show that the order of parameters with a lower impact on the output
considerably changes from the case with minimum number of training values to the case
with maximum number of them. However, these charts suggest that it is always possible
to obtain a significant improvement by increasing the size of the training set.

N° of training values

Parameter 100 500 1000 2000 High-fidelity model

RSYS
AR 0.3277 0.2871 0.2885 0.2900 0.2861

CSYS
AR 0.1307 0.1222 0.1278 0.1198 0.1219

Eact
LV 0.0564 0.0664 0.0590 0.0602 0.0595

Epass
LV 0.3843 0.3898 0.4092 0.4106 0.3987

T contr
LV 0.0496 0.0418 0.0443 0.0491 0.0487

T rel
LV 0.0273 0.0321 0.0317 0.0298 0.0301

tdel
LA 0.0010 0.0015 0.0209 0.0118 0.0223

tdel
RA 0.0010 0.0086 0.0075 0.0015 0.0066

Table 3.3: First order Sobol indices with 8 parameters as the number of training values
varies with respect to the ones obtained with the high-fidelity model.
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N° of training values

Parameter 100 500 1000 2000 High-fidelity model

RSYS
AR 0.3137 0.3025 0.3031 0.2966 0.2976

CSYS
AR 0.1021 0.1023 0.0979 0.0962 0.1032

Eact
LV 0.0615 0.0758 0.0659 0.0710 0.0697

Epass
LV 0.3854 0.4236 0.4322 0.4298 0.4244

T contr
LV 0.0556 0.0218 0.0337 0.0169 0.0291

T rel
LV 0.0218 0.0182 0.0217 0.0211 0.0225

tdel
LA 0.0076 0.0084 0.0032 0.0080 0.0206

tdel
RA 0.0031 0.0034 0.0000 0.0049 0.0041

RSYS
VEN 0.0246 0.0222 0.0259 0.0173 0.0182

CSYS
VEN 0.0010 0.0006 0.0010 0.0023 0.0001

RPUL
VEN 0.0144 0.0160 0.0182 0.0171 0.0160

CPUL
VEN 0.0008 0.0028 0.0009 0.0002 0.0035

Table 3.4: First order Sobol indices with 12 parameters as the number of training values
varies with respect to the ones obtained with the high-fidelity model.

This situation is a consequence of what we observed in Figures 2.15–2.16; indeed, if the
number of training values is not sufficient to guarantee a good reliability of Gaussian
process predictions, then the root mean squared error and the L∞ error are not negligible
and a less accurate estimation of the indices is obtained. However, the situation can be
extremely improved by increasing the number of training values.
We can conclude that the improvement of the accuracy of the Gaussian process predictions
and the estimation of the first order Sobol indices depend on the size of the training set, in
the sense that better results are observable by increasing the number of training samples,
but with a trade-off in terms of computational cost (see Table 2.12).
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(a) 100 training values (b) 2000 training values

(c) High-fidelity model

Figure 3.2: Comparison between pie charts with respect to Gaussian process predictions
for the minimum/maximum number of training values and the one obtained from the
high-fidelity circulation model in the case with 8 parameters.
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(a) 100 training values (b) 2000 training values

(c) High-fidelity model

Figure 3.3: Comparison between Pareto charts with respect to Gaussian process predic-
tions for the minimum/maximum number of training values and the one obtained from
the high-fidelity circulation model in the case with 8 parameters.
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(a) 100 training values (b) 2000 training values

(c) High-fidelity model

Figure 3.4: Comparison between pie charts with respect to Gaussian process predictions
for the minimum/maximum number of training values and the one obtained from the
high-fidelity circulation model in the case with 12 parameters.



3| Forward uncertainty quantification 57

(a) 100 training values (b) 2000 training values

(c) High-fidelity model

Figure 3.5: Comparison between Pareto charts with respect to Gaussian process predic-
tions for the minimum/maximum number of training values and the one obtained from
the high-fidelity circulation model in the case with 12 parameters.
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4| Parameter estimation under

uncertainty

In this chapter, we want to replicate a procedure for the Bayesian parameter estimation
reported in [24], with the difference that here we replace the ANN reduced-order model
by the Gaussian process. The goal is to demonstrate that Gaussian processes are able to
provide a reliable estimate of the unknown parameters taking into account the associated
uncertainty.

4.1. Bayesian parameter estimation

As explained in [24], the patient-specific personalization of the circulation model requires
the estimation of several parameters starting from clinical measurements. However, not
all the required scalar quantities are usually available for this purpose and, when present,
they are affected by noise.
For this reason, the Markov chain Monte Carlo method is exploited, which is a Bayesian
method that allows us to solve the inverse problem (i.e. estimating the parameters x ∈ X
from the outputs y ∈ Y) estimating the impact of the noise that affects the measurement
of the quantities of interest and that reflects in uncertainty on parameters (for more in-
formation, we refer to [5]).
As reported in [24], this method is able to provide the probability distribution of the
parameters given the observations (denoted by y); in particular, it is based on the com-
putation of the credibility for each parameters combination, which is strictly related to
the uncertainty on measurements. This uncertainty is encoded by the covariance matrix
Σ, which is associated to the noise on the observations, and the prior distribution on
parameters πprior(x), which provides important prior information about parameters.
Given these assumptions, we can refer to the observations as

y = f(x) + ϵexp, (4.1)
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where f : X → Y represents the map between parameters and outputs and ϵexp ∼ N (0,Σ)
denotes the experimental measurement error. Based on Bayes’ theorem, the posterior
distribution of parameters is given by

πpost(x) =
1

Z
N (y|f(x),Σ)πprior(x), (4.2)

where the normalization constant Z is defined as

Z =

∫
X
N (y|f(x′),Σ)dπprior(x′). (4.3)

In practice, an approximation of the posterior distribution (4.2) can be provided by ex-
ploiting the MCMC method, which results significantly useful to reduce the computational
burden. Indeed, it generates a non-intrusive method which analyzes a large number of
model evaluations for different parameter values with the aim of providing a suitable ap-
proximation of the posterior distribution.
As proposed in [24], since the MCMC method only needs the evaluations of the map
f : X → Y , it is possible to use Gaussian processes instead of the high-fidelity circulation
model in order to reduce the computational time. However, this implies that a further
error must be taken into account. Indeed, if we denote by f̃ the approximation of the
high-fidelity model by the Gaussian process, then

f(x) = f̃(x) + ϵGP, (4.4)

where ϵGP ∼ N (0,ΣGP) is the approximation error obtained by considering the Gaussian
process evaluations instead of the high-fidelity circulation model outputs. It follows that

y = f̃(x) + ϵGP + ϵexp, (4.5)

where the two sources of error can be assumed independent. The independence assump-
tion is crucial, since it allows us to take into account the error introduced by the Gaussian
process in the parameter estimation procedure by simply adding it to the measurement
error. Indeed, it is possible to write Σ = ΣGP +Σexp, where ΣGP represents the Gaussian
process covariance matrix (it encodes the error introduced by the usage of Gaussian pro-
cess predictions) and Σexp is the experimental error covariance matrix mentioned above.
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4.2. Numerical tests

Numerical tests are performed by means of the open source Python library UQpy. The
Bayesian inverse problem is solved by exploiting the MCMC method. We consider 500
samples per chain, a jump of 5 samples and a burn-in of 500 samples, with a number of
chains equal to 5.
As pointed out in [24], the procedure used to prove the capability of Gaussian processes
to accelerate the estimation of parameters can be summarized as follows:

• we perform a simulation with the high-fidelity circulation model from which we
derive a set of observations y to which we add a synthetic measurement noise;

• we employ the Gaussian process instead of the high-fidelity circulation model in the
Bayesian estimation of parameters performed by means of the MCMC method;

• we validate the obtained results with respect to the values used to generate the
observations.

We consider a pair of parameters, namely (RSYS
AR , CSYS

AR ), which are the systemic arterial
resistance and the systemic arterial capacitance respectively, whereas the remaining ones
are fixed at their baseline value. For parameters under investigation we prescribe a value
that is slightly different from the baseline one, such as RSYS

AR = 0.52 mmHg s mL−1 and
CSYS

AR = 1.5 mL mmHg−1. We run a simulation with respect to these values of parame-
ters using the high-fidelity circulation model and select some quantities of interest, which
consist of the minimum and maximum arterial pressures. We voluntarily choose these
outputs in order to make this test as close as possible to real-life problems. Indeed, the
goal is to provide a reliable estimate of the mentioned parameters, which cannot be easily
measured, starting from outputs that, conversely, can be measured in a non-invasively
way, as in this case.
The goal is to demonstrate that Gaussian process emulators are able to estimate the
parameters and quantify the uncertainty associated with this estimate, reducing the com-
putational effort. As we anticipated before, this can be done by exploiting the MCMC
method for the Bayesian parameters estimation starting from noisy measurements of the
minimum and maximum arterial pressures. The measurement errors are added as artificial
noises with zero mean and variance σ2

exp = {1.0, 0.1, 0.01} mmHg2 over the output values
given by the high-fidelity model. For the unknown parameters a uniform prior is given
with respect to the ranges used to train the Gaussian process, namely RSYS

AR ∈ [0.32, 0.96]

mmHg s mL−1 and CSYS
AR ∈ [0.6, 1.8] mL mmHg−1. Then we set Σ = ΣGP + Σexp, where

the experimental error covariance matrix is given by Σexp = σ2
expI, whereas the Gaussian
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process covariance matrix is diagonal with entries on the main diagonal given by the ob-
servations noise variances obtained from the optimization of the GP hyperparameters.
Figure 4.1 shows the obtained results for the posterior distribution πpost on the parameters
pair (RSYS

AR , CSYS
AR ) as the noise level varies. The red line defines the 90% credibility region,

whereas the exact value of the parameters, is marked with a "star" sign.

(a) σ2
exp = 1.0 mmHg2 (b) σ2

exp = 0.1 mmHg2

(c) σ2
exp = 0.01 mmHg2

Figure 4.1: Posterior distribution on the parameters pair (RSYS
AR , CSYS

AR ) (prescribed values
RSYS

AR = 0.52 mmHg s mL−1 and CSYS
AR = 1.5 mL mmHg−1) computed by means of the

MCMC method with the Gaussian process for σ2
exp = {1.0, 0.1, 0.01} mmHg2.

We notice that for each value of the measurement noise, the credibility region contains
the exact value of the parameters and, as expected, for larger values of the noise, the
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size of the credibility region increases, since the estimate is more uncertain. Moreover,
it is possible to detect from the output of Bayesian parameter estimation if there is a
correlation among the estimated parameters. Indeed, a straight shape of the credibility
region is showed in Figure 4.1, which implies a no strong correlation between RSYS

AR and
CSYS

AR . However, if we consider a different pair of parameters, namely (RSYS
AR , Eact

LV ), where
Eact

LV ∈ [1.675, 5.025] mmHg mL−1 represents the active elastance of the left ventricle, then
a different behaviour is observable. Indeed, Figure 4.2 shows an oblique shape of the
credibility region which may intend a higher correlation between parameters.

Figure 4.2: Posterior distribution on the parameters pair (RSYS
AR , Eact

LV ) (prescribed values
RSYS

AR = 0.52 mmHg s mL−1 and Eact
LV = 4.1 mmHg mL−1) computed by means of the

MCMC method with the Gaussian process for σ2
exp = 1.0 mmHg2.

A more quantitative analysis of how well the posterior distribution is able to estimate the
parameter values by solving the inverse problem with a Gaussian process based approach
can be performed through the mean value and the maximum a posteriori (MAP) reported
in Table 4.1. Indeed, it is possible to observe that both these indicators tend to the pre-
scribed value of the parameters pair (RSYS

AR , CSYS
AR ) as the measurement noise decreases,

proving the efficiency of the obtained posterior distribution.
To prove the efficacy of Gaussian processes in reducing the computational burden required
by the Bayesian inverse problem, we can compare the obtained results with the poste-
rior distribution on parameters produced by the same approach with the high-fidelity
circulation model.
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Parameter Indicator σ2
exp = 1.0 σ2

exp = 0.1 σ2
exp = 0.01

RSYS
AR

Mean 0.5160 0.5216 0.5191

MAP 0.5171 0.5224 0.5197

CSYS
AR

Mean 1.4851 1.4977 1.5042

MAP 1.4515 1.4995 1.5059

Table 4.1: Mean and MAP indicators of the posterior distribution on the parame-
ters pair (RSYS

AR , CSYS
AR ) (prescribed values RSYS

AR = 0.52 mmHg s mL−1 and CSYS
AR = 1.5

mL mmHg−1) computed by means of the MCMC method with the Gaussian process for
σ2

exp = {1.0, 0.1, 0.01} mmHg2.

Figure 4.3 shows this comparison between the output of Bayesian parameter estimation
with respect to the parameters pair (RSYS

AR , CSYS
AR ) achieved by exploiting the high-fidelity

circulation model and the one obtained with the GP based approach. It is possible to
observe that the size of the credibility region in the high-fidelity case is slightly smaller for
each value of the measurement noise. However, this does not represent an advantageous
trade-off if compared with the GP based approach, since it results in a computationally
expensive method (see Table 4.2) with no substantial improvements, especially as the
measurement noise gets larger.

Gaussian process based approach High-fidelity circulation model

∼ 1153 s ∼ 13728 s

Table 4.2: Computational time required for Bayesian parameter estimation by exploiting
Gaussian processes and the high-fidelity circulation model.

The computational time required using the high-fidelity circulation model in the MCMC
method is actually ten times that of the Gaussian process based approach. We pass from
almost 4 hours to about 20 minutes of simulation with Gaussian processes, obtaining
results which are overall comparable with those achieved with the high-fidelity circulation
model. Therefore, we can conclude that the computational effort required to perform the
Bayesian parameter estimation significantly reduces if Gaussian process predictions are
used, also obtaining reliable results.
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(a) σ2
exp = 1.0 mmHg2

(b) σ2
exp = 0.1 mmHg2

(c) σ2
exp = 0.01 mmHg2

Figure 4.3: Posterior distributions on the parameters pair (RSYS
AR , CSYS

AR ) (prescribed values
RSYS

AR = 0.52 mmHg s mL−1 and CSYS
AR = 1.5 mL mmHg−1) computed by means of the

MCMC method with the high-fidelity model (on the left) and the Gaussian process for
σ2

exp = {1.0, 0.1, 0.01} mmHg2.
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Several analyses can be performed to understand how effective Gaussian processes are in
reducing the overall computational burden preserving a significant reliability of predic-
tions. As we mentioned in Chapter 2, one of the main characteristics of Gaussian processes
is that, once suitably trained, they are able to provide the mean and the corresponding
variance of the modeled function for each data point. This means that a different error
estimate associated to the usage of Gaussian process predictions can be encoded by this
variance for each value of the input parameters.
Instead of considering a fixed Gaussian process covariance matrix as in Figure 4.1, we
propose to employ a varying diagonal matrix with entries on the main diagonal given by
the predictive variances of the Gaussian process for each set of input parameters. The
goal is to verify if it is possible to improve the Gaussian process based approach for the
Bayesian parameter estimation by taking full advantage of Gaussian process properties.
Figure 4.4 shows the posterior distributions with respect to the parameters pair (RSYS

AR , CSYS
AR )

for the cases mentioned above.

(a) Fixed GP error (b) Varying GP error

Figure 4.4: Posterior distributions on the parameters pair (RSYS
AR , CSYS

AR ) (prescribed values
RSYS

AR = 0.52 mmHg s mL−1 and CSYS
AR = 1.5 mL mmHg−1) computed by means of the

MCMC method with the Gaussian process considering a fixed GP error in panel (a) and
a varying GP error in panel (b) for σ2

exp = 1.0 mmHg2.

Figure 4.4a is equivalent to Figure 4.1a, whereas Figure 4.4b shows the output of the
Bayesian parameter estimation with a measurement noise σ2

exp = 1.0 mmHg2 considering
that GP error varies for each value of the input parameters. Notice that, even if this
procedure allows us to exploit the predictive variances given by the Gaussian process,
there are not considerable improvements. Moreover, this approach results even more
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penalizing than the one with fixed GP error computationally speaking. Indeed, as shown
in Table 4.3, the computational time required using a varying GP error is twice what we
would obtain considering a fixed GP error.

Fixed GP error Varying GP error

∼ 1153 s ∼ 2312 s

Table 4.3: Computational time required for Bayesian parameter estimation by exploiting
Gaussian process predictions with a fixed GP error and a varying GP error.

All the numerical tests seen so far assume that the Gaussian process is already trained.
The training process is performed taking into account what we observed in Section 2.6.4;
indeed, Figure 2.13 showed that reliable predictions are obtained whatever the size of the
training set was. However, we decided to perform a training procedure with 500 training
samples in all the numerical tests to obtain an optimal balance between prediction per-
formance and computational effort.
Now we compare the results obtained from the Bayesian parameter estimation with a
Gaussian process based approach considering different sizes of the training set. In partic-
ular, we test if it is possible to obtain a suitable posterior distribution on the parameters
pair (RSYS

AR , CSYS
AR ) even if a Gaussian process trained in a low data regime is considered,

namely with 60 training samples.
Figure 4.5 shows these results with respect to those in Figure 4.1 with measurement noise
σ2

exp = {1.0, 0.1} mmHg2. Notice that, for σ2
exp = 1.0 mmHg2, the GP trained in a low

data regime is able to provide an output which is comparable with that of the GP ob-
tained with 500 training samples. Some issues arise when the measurement noise gets
smaller, as shown in Figure 4.5d. Indeed, we get that the credibility region does not
contain the exact value of parameters. This is due to the fact that a GP trained in a low
data regime is much less sensitive to these changes and, as a consequence, an inaccurate
result is obtained, as shown in Table 4.4.
However, we have a further decrease of the computational time required for the Bayesian
parameter estimation when such a GPs trained in a low data regime are used, as shown
in Table 4.5. This allows us to conclude that a GP obtained with a small number of
training samples can be efficiently used when high measurement errors are assumed, but,
conversely, it provides a less accurate Bayesian parameter estimation for lower values of
σ2

exp.
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(a) GP with 500 training samples for σ2
exp = 1.0

mmHg2
(b) GP with 500 training samples for σ2

exp = 0.1

mmHg2

(c) GP with 60 training samples for σ2
exp = 1.0

mmHg2
(d) GP with 60 training samples for σ2

exp = 0.1

mmHg2

Figure 4.5: Posterior distributions on the parameters pair (RSYS
AR , CSYS

AR ) (prescribed values
RSYS

AR = 0.52 mmHg s mL−1 and CSYS
AR = 1.5 mL mmHg−1) computed by means of the

MCMC method with a Gaussian process trained with 500 training samples (upper panels)
and considering a Gaussian process trained in a low data regime (lower panels) for σ2

exp =

{1.0, 0.1} mmHg2.



4| Parameter estimation under uncertainty 69

GP with 500
training samples

GP with 60
training samples

Parameter Indicator σ2
exp = 1.0 σ2

exp = 0.1 σ2
exp = 1.0 σ2

exp = 0.1

RSYS
AR

Mean 0.5160 0.5216 0.5132 0.5285

MAP 0.5171 0.5224 0.5144 0.5277

CSYS
AR

Mean 1.4851 1.4977 1.4263 1.4302

MAP 1.4515 1.4995 1.4130 1.4258

Table 4.4: Mean and MAP indicators of the posterior distribution on the parameters pair
(RSYS

AR , CSYS
AR ) (prescribed values RSYS

AR = 0.52 mmHg s mL−1 and CSYS
AR = 1.5 mL mmHg−1)

computed by means of the MCMC method with a Gaussian process trained with 500
training samples and considering a Gaussian process trained in a low data regime for
σ2

exp = {1.0, 0.1} mmHg2.

GP with 500 training samples GP with 60 training samples

∼ 1153 s ∼ 412 s

Table 4.5: Computational time required for Bayesian parameter estimation by exploiting
Gaussian process predictions with a Gaussian process trained with 500 training samples
and a Gaussian process trained in a low data regime.
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5| Conclusions and future

developments

In this work, we aimed to point out the properties and performances of Gaussian pro-
cesses, highlighting the role of covariance functions.
In Chapter 2 we tested the accuracy/efficiency balance of Gaussian processes and pro-
posed some diagnostic methods to prove their reliability in simple benchmark problems
and for a more complex circulation model. We observed that Gaussian processes are a
powerful tool in making predictions also thanks to the fact that they are easily inter-
pretable and not particularly computationally demanding.
This last feature makes them computationally cheap surrogate models for problems in the
context of uncertainty quantification (see Chapter 3). Indeed, we successfully employed
Gaussian processes in sensitivity analysis to rank the most influential input parameters
without accounting for the high-fidelity circulation model.
In Chapter 4 we also proved that Gaussian processes are able to provide reliable results
when used in place of the high-fidelity circulation model in solving the inverse problem
for parameters estimation by means of the Markov chain Monte Carlo method.
In general, we can conclude that Gaussian processes provide accurate estimates in sensi-
tivity analysis and in Bayesian parameter estimation reducing the computational burden
that would be otherwise too high if the same analyses were carried out by means of the
high-fidelity circulation model.
Some issues may arise when the number of varying input parameters is large; indeed, we
proved that the complexity of the problem increases as the number of parameters grows
and a worse Gaussian process posterior predictive distribution is obtained if not suitably
trained. This reflects in the computation of the first order Sobol indices, as shown in
Section 3.2. However, this problem is successfully overcome by increasing the number
of training values, even if this leads to pay something in terms of computational cost.
Moreover, this is not always possible in real-life problems; indeed, it may happen that a
sufficiently large amount of data is not available for practical difficulties.
For what concerns possible future developments, we propose a list of interesting sugges-
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tions:

• analysis of how Gaussian processes behave for different numerical models, testing
their reliability as the complexity of the model increases;

• modification of the Sobol indices computation by taking into account the uncertainty
of Gaussian process predictions;

• parallelization of the procedures for the sensitivity analysis and the Markov chain
Monte Carlo method;

• employment of Gaussian process based methods in multifidelity approaches for com-
bining information between different fidelity models.



73

Bibliography

[1] Y. Al-Taweel. Diagnostics and Simulation-Based Methods for Validating Gaussian
Process Emulators. Master’s thesis, School of Mathematics and Statistics, 2018.

[2] L. S. Bastos and A. O’Hagan. Diagnostics for Gaussian Process Emulators. Techno-
metrics, pages 1–24, 2009.

[3] J. G. Betts. Anatomy and Physiology. OpenStax College, 1 edition, 2013.

[4] P. J. Blanco and R. A. Feijòo. A 3D-1D-0D Computational Model for the Entire
Cardiovascular System. Computational Mechanics 24, pages 5887–5911, 2010.

[5] S. P. Brooks. Markov chain Monte Carlo method and its application. The Statistician,
pages 69–100, 1998.

[6] G. Casella and R. L. Berger. Statistical Inference. McGrawHill, 2 edition, 2002.

[7] M. Corti. Effects of Atrial Fibrillation on Left Atrium Haemodynamics: A Patient
Specific Computational Fluid Dynamics Study. Master’s thesis, School of Industrial
and Information Engineering, 2021.

[8] V. L. Deringer, A. P. Bartók, N. Bernstein, D. M. Wilkins, M. Ceriotti, and G. Csányi.
Gaussian Process Regression for Materials and Molecules. Chemical Reviews, pages
10073–10141, 2021.

[9] D. Duvenaud. The Kernel Cookbook: Advice on Covariance functions, 2014. URL
https://www.cs.toronto.edu/~duvenaud/cookbook/.

[10] M. Hirschvogel, M. Bassilious, L. Jagschies, S. M. Wildhirt, and M. W. Gee. A
monolithic 3D-0D coupled closed-loop model of the heart and the vascular system:
Experiment-based parameter estimation for patient-specific cardiac mechanics. In-
ternational Journal for Numerical Methods in Biomedical Engineering, pages 1–22,
2017.

[11] T. Homma and A. Saltelli. Importance measures in global sensitivity analysis of
nonlinear models. Reliability Engineering and System Safety, pages 1–17, 1996.

https://www.cs.toronto.edu/~duvenaud/cookbook/


74 | Bibliography

[12] F. Liang and H. Liu. A Closed-Loop Lumped Parameter Computational Model for
Human Cardiovascular System. JSME International Journal, pages 484–493, 2005.

[13] E. F. Mameo. Applications of Gaussian Processes in quantitative finance. Master’s
thesis, School of Industrial and Information Engineering, 2021.

[14] T. Minka. Bayesian Linear Regression, 2000. URL https://www.microsoft.com/

en-us/research/publication/bayesian-linear-regression/.

[15] G. R. Mirams, P. Pathmanathan, R. A. Gray, P. Challenor, and R. H. Clayton.
Uncertainty and variability in computational and mathematical models of cardiac
physiology. The Journal of Physiology, pages 6833–6847, 2016.

[16] H. Mohammadi, P. Challenor, and C. Prieur. Variance-based global sensitivity analy-
sis of numerical models using R, 2022. URL https://arxiv.org/pdf/2206.11348.

pdf.

[17] R. M. Neal. Bayesian Learning for Neural Networks. Springer New York, 1 edition,
1996.

[18] S. Pagani. Reduced-Order Models for Inverse Problems and Uncertainty Quantifica-
tion in Cardiac Electrophysiology. PhD thesis, School of Industrial and Information
Engineering, 2017.

[19] R. Ranjan, B. Huang, and A. Fatehi. Robust Gaussian process modeling using EM
algorithm. Journal of Process Control, pages 125–136, 2016.

[20] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

[21] F. Regazzoni, M. Salvador, P. C. Africa, M. Fedele, L. Dedè, and A. Quarteroni. A
cardiac electromechanical model coupled with a lumped-parameter model for closed-
loop blood circulation. Part I: model derivation. Mox Reports, pages 1–23, 2020.

[22] F. Regazzoni, M. Salvador, P. C. Africa, M. Fedele, L. Dedè, and A. Quarteroni. A
cardiac electromechanical model coupled with a lumped-parameter model for closed-
loop blood circulation. Part II: numerical approximation. Mox Reports, pages 1–35,
2020.

[23] F. Regazzoni, C. Vergara, L. Dedè, P. Zunino, M. Guglielmo, R. Scrofani, L. Fusini,
C. Cogliati, G. Pontone, and A. Quarteroni. Modeling the effect of COVID-19 disease
on the cardiac function: a computational study. MOX Reports, pages 1–17, 2020.

[24] F. Regazzoni, M. Salvador, L. Dedè, and A. Quarteroni. A machine learning method

https://www.microsoft.com/en-us/research/publication/bayesian-linear-regression/
https://www.microsoft.com/en-us/research/publication/bayesian-linear-regression/
https://arxiv.org/pdf/2206.11348.pdf
https://arxiv.org/pdf/2206.11348.pdf


5| BIBLIOGRAPHY 75

for real-time numerical simulations of cardiac electromechanics. Computer methods
in applied mechanics and engineering, pages 1–26, 2022.

[25] E. Schulz, M. Speekenbrink, and A. Krause. A tutorial on Gaussian process re-
gression: Modelling, exploring, and exploiting functions. Journal of Mathematical
Psychology, pages 1–16, 2018.

[26] D. Shier, J. Butler, and R. Lewis. Hole’s Human Anatomy and Physiology. Mc-
GrawHill, 12 edition, 2010.

[27] P. Sollich. Bayesian methods for support vector machines: evidence and predictive
class probabilities. Machine Learning 46, pages 21–52, 2002.

[28] N. Ulapane, K. Thiyagarajan, and S. Kodagoda. Hyper-Parameter Initialization for
Squared Exponential Kernel-based Gaussian Process Regression, 2020. URL https:

//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9248120.

[29] F. Vivarelli and C. K. I. Williams. Discovering hidden features with Gaussian pro-
cesses regression. Advances in Neural Information Processing Systems, pages 613–
619, 1999.

[30] A. G. Wilson, D. A. Knowles, and Z. Ghahramani. Gaussian Process Regression
Networks, 2011. URL https://arxiv.org/pdf/1110.4411.pdf.

[31] Z. Zhou, Y. S. Ong, P. B. Nair, A. J. Keane, and K. Y. Lum. Combining Global and
Local Surrogate Models to Accelerate Evolutionary Optimization. IEEE Transactions
on Systems, Man, and Cybernetics, pages 66–76, 2007.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9248120
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9248120
https://arxiv.org/pdf/1110.4411.pdf




77

A| Appendix A

In this appendix we report the proof of the law of total variance used in (3.11) and a
preliminary result useful for its derivation, that is the law of total expectation [6].

Proposition A.1 (Law of total expectation). If X is a random variable whose expected
value E[X] is defined and Y is any random variable on the same probability space, then

E[X] = E[E[X|Y ]], (A.1)

i.e. the expected value of the conditional expected value of X given Y is the same as the
expected value of X.

Proof. Let (Ω,F , P ) be a probability space on which two sub σ-algebras G1 ⊆ G2 ⊆ F
are defined. For a random variable X on such a space, the smoothing law states that if
E[X] is defined, then

E[E[X|G2]|G1] = E[X|G1]. (A.2)

Indeed, since a conditional expectation is a Radon-Nikodym derivative, verifying the
following two properties establishes the smoothing law:

1. E[E[X|G2]|G1] is G1-measurable;

2.
∫
G1

E[E[X|G2]|G1]dP =
∫
G1

XdP , for all G1 ∈ G1.

The first of these properties holds by definition of the conditional expectation. In order
to prove the second one, we can write

min

(∫
G1

X+dP,

∫
G1

X−dP

)
≤ min

(∫
Ω

X+dP,

∫
Ω

X−dP

)
= min(E[X+],E[X−]) < ∞

(A.3)

because E[X] is defined by assumption. Therefore,
∫
G1

XdP is defined and the second
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property holds since G1 ∈ G1 ⊆ G2 implies∫
G1

E[E[X|G2]|G1]dP =

∫
G1

E[X|G2]dP =

∫
G1

XdP. (A.4)

In the special case when G1 = {∅,Ω} and G2 = σ(Y ), the smoothing law reduces to

E[E[X|Y ]] = E[X]. (A.5)

Proposition A.2 (Law of total variance). If X and Y are random variables on the same
probability space and the variance of Y is finite, then

V(Y ) = E[V(Y |X)] + V(E[Y |X]). (A.6)

Proof. The law of total variance can be proved by using the law of total expectation.
First of all, we recall that

V(Y ) = E[Y 2]− E[Y ]2 (A.7)

from the definition of variance. Again, from the definition of variance and applying the
law of total expectation, we have

E[Y 2] = E[E[Y 2|X]] = E[V(Y |X) + E[Y |X]2]. (A.8)

Now we rewrite the conditional second moment of Y in terms of its variance and first
moment and apply the law of total expectation on the right hand side:

E[Y 2]− E[Y ]2 = E[V(Y |X) + E[Y |X]2]− E[E[Y |X]]2

= E[V(Y |X)] + (E[E[Y |X]2]− E[E[Y |X]]2).
(A.9)

Finally, we can recognize the terms in the parentheses as the variance of the conditional
expectation E[Y |X]:

V(Y ) = E[V(Y |X)] + V(E[Y |X]). (A.10)
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