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Abstract

Autonomous Vehicles are expected to penetrate the consumer market in

the near future, potentially resolving many of difficult traffic situations en-

countered by everyday travellers and increasing safety of travel.In order to

maximize their potential cooperation between vehicles offers a way to reach

agreements without relying on traffic rules. One of the most critical areas in

traffic is the urban intersection which requires efficient coordination strate-

gies.

This Thesis treats the problem of coordination at intersections in a dis-

tributed manner, where each vehicle is expected to compute its own tra-

jectory. The proposed algorithms employ branches of optimal control and

model predictive control in order to accomplish the safe passage of the vehi-

cles through the intersection space. Two algorithms are presented, one that

focuses on avoiding collisions in a distributed manner while the other aims

at using the infrastructure for coordination.

In the first algorithm, information is communicated between vehicles, where

each vehicle’s own MPC solves a constrained optimization problem to achieve

safe passage. The second algorithm is composed of two stages, the first stage

borrows from reservation based approaches and has an ’Intersection Man-

ager’ suggest times of arrival to the critical intersection space for vehicles

entering the greater intersection area, while the second stage is the employ-

ment of the first algorithm in a smaller constrained space to ensure the

ability to keep up with any changes in the environment.

While both algorithms achieve the required safe passage, comparison be-

tween the two shows that the second algorithm shows improvements in per-

formance, and robustness. Finally, a new priority scheme defining the cross-

ing order for vehicles is defined to allow for emergency vehicles. This scheme
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shows the room for improvement in current heuristics that are in use in the

literature when distributed approaches are employed to tackle the problem

at hand.

Keywords: Cooperative Autonomous Vehicles, Intersection Manage-

ment, Distributed Model Predictive Control,Optimal Control, Constrained

Optimization
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Chapter 1

Introduction

Autonomous vehicles have received increasing attention in the past years,

both in research and industry which has led to an increase in the devel-

opment of related technologies. Many of the leading automotive and tech-

companies are testing highly automated vehicles which they expect to pen-

etrate the market in the foreseeable future. This introduction is expected

to have a strong impact on society in general and on mobility trends specif-

ically.

In this thesis, the problem of vehicle coordination at urban intersections will

be discussed. This is an important issue since intersections at present are

considered both a bottleneck and a safety hazard. Hence, once vehicles are

automated, their coordination would offer an alternative to current traffic

light technologies as well as rules of passage in a manner that could improve

both safety and throughput.

1.1 Benefits of Autonomous Vehicles

The switch to AVs is highly motivated by various aspects including safety

and efficiency. More than 90% of all traffic related accidents can be traced

back to human error [1]. Efficiency on the other hand is more difficult to as-

sess. However, in recent years, urbanization has become a big global trend,

where a lot of people are transferring from rural areas to urban ones. In

Europe for instance the crossover was witnessed in 2014 and it is projected

that about 85% of the population will reside in urban areas by 2050[2].This



has led to a noticeable increase in congestion and in the average time an in-

dividual spends on the road.Highly autonomous vehicles could thus provide

a stimulus towards shared mobility which could ease the strain on the ex-

isting infrastructure and offer a resource efficient transportation-as-service

alternative to the current situation. Moreover, since AVs are not limited

by the decision processes of humans, there is a possibility that they can

be operated in a more energetically efficient manner, which could have big

ramifications on the traffic system’s energy demand[3].

1.2 Current Situation

The general public has been enthralled by the prospect of automated ve-

hicles in the last couple of years as technological development has put it

within reach.Self driving vehicles have been an attractive feature in the field

for long time. In fact, they can be traced as far back as 1930’s where an

automated traffic system was showcased by General Motors at the world

Fair [4].Progress continued slowly in the following decades with the major

events including demonstrations of autonomous functionalities on specially

designed roads in the 70’s [5] and some tests on public roads in the 80’s

[6]. Research on the topic continued in the 90’s when the ability of au-

tomated vehicles to travel thousands of kilometers was demonstrated by

various research projects [7]. The real boom however, started in the 2000s

when vehicles with what could really be described as autonomous capabil-

ities started to emerge. The 2007 Urban challenge is considered a major

milestone in this context, where interactions between different automated

vehicles was exhibited for the first time [8]. In that period, driver assis-

tance systems such as Adaptive Cruise Control and Lane-keeping Aids were

pushed to the market. In the last decade, ADAS (Advanced Driver Assis-

tance Systems) have been evolving rapidly where have seen higher levels of

autonomy allowing ”hands and feet off” driving at low speeds.Companies

such as Tesla, Volvo and Nissan have provided systems offering supervised

partial automation at higher speeds outside of the urban environment.

These automakers in addition to service providers such as Waymo,Zenuity,Uber

and Lyft are improving on these systems to provide solutions where little to

no driver supervision is provided.Such systems are estimated to reach the
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Figure 1.1: Tesla Vehicle with autopilot

Figure 1.2: Waymo (Previously Google

car)

consumers between 2020 and 2030 [9].

In addition, motivated by the increase of availability of wireless commu-

nication and potential improvements it offers to the autonomous vehicle’s

performance due to information sharing, Connected automated vehicles have

also been developing at the same time. These systems include cooperative

control where better decisions can be made through shared information, in

addition to cooperative perception where each vehicle can leverage the sens-

ing abilities of other connected vehicles to make more accurate maps of the

surrounding environment [10].

In this domain, vehicle platooning is one of the most popular sectors. Ap-

plications of this can be seen where CAVs drive with small inter vehicle

distance at highways, or in the cases with lane merging and changing. Pla-

tooning can also have an important role in Emergency Vehicle Response,

where when a platoon of vehicles encounters emergency vehicles such as Po-

lice cars or ambulances, their behavior should be modified to facilitate their

passage. Demonstrations of platooning include the European Sartre Project

[11] and the Grand Cooperative Driving Challenges in 2010s[12,13].

A problem that is within the scope of CAVs and which constitutes the

major work in this thesis is the issue of intersections in urban areas, where

vehicular automation offers a chance at major improvements in all aspects

ranging from safety to increasing through-put and reducing congestion.

1.3 Objective

The development of Cooperative Autonomous Vehicles aided by the ad-

vances in Artificial Intelligence and Control theory opens the door to com-
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pletely new approaches of management of traffic flow in cities.They offer

a solution to many of our current day problems such as the increase of

congestion in urban areas, accidents and fatalities. Traffic congestion and

automobile accidents are two of the main current day problems where in a

study of 85 cities in the United States, it was estimated that the annual

time wasted in traffic has increased since 1982 from 16 hours per capita to

46 hours per capita [14].Moreover, even with the incremental advances to

vehicle safety through the years, global automobile accidents account for

2.1% of all deaths [15]

Intersections necessitate the usage of a shared space which increases all

the risks previously mentioned. This is not to mention problems arising

from non-vehicle entities such as pedestrians and cyclists.Intersections thus

are the cause of 20% of all traffic related fatalities and to 40% of all injuries

in the EU [16].

The hazardous nature of intersections has lead to them being one of the

most regulated parts of the traffic network where often, a combination of

traffic lights,stop signals and right-of-passage rules apply.This heavy regu-

lation makes them a bottleneck for traffic flow increasing congestion and in-

creasing emissions and energy waste (through idling and varied accelerations

and deceleration) [17]. Often the solution quoted for this is the expansion

of the infrastructure, or to reshape it in a way to accommodate autonomous

vehicles. However, in the US alone there is currently over 300,000 traffic

signals which account for more than $82.7 Billion of investments [18], and

thus reshaping the network or expanding it would be the expensive solution

and cooperative vehicles can offer a better alternative in this case.

Cooperative Autonomous vehicles have the capability to interact with

their surroundings and communicate with data clouds. In this context, two

main modes of communication can be established, the vehicle to vehicle

(V2V) and the vehicle to Infrastructure (V2I). Alot of work has already

been done on regulating traffic in a centralized fashion that mainly relies

on regulating traffic from the global prespective. While this approach is

employed by a lot of researches and has shown its advantages over the ex-

isting traffic management systems [17], the decentralized approach which

relies on a mixture of V2V and V2I interfaces has been gaining a lot of
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support recently.This is due to the fact that it would allow researches to

account for non-cooperative entities within the intersection space (such as

legacy drivers), thus we have decided to tackle the intersection management

problem from this angle in order to formalize algorithms that would allow a

more efficient sharing of the space.

Figure 1.3: The problem

Figure 1.4: The possible solution

1.4 Structure of the Thesis

The Thesis will be structured as followed

Chapter 2 offers a brief theoretical summary of Optimization and Re-

laxation Algorithms, Optimal Control and Model Predictive Control. . .

Chapter 3 Presents the main challenges in the intersection manage-

ment problem, followed by the state of the art and a survey of the various

approaches already considered. . .

Chapter 4 Introduces the scenarios and models considered with a for-

mulation of the constraints . . .

Chapter 5 Offers a discussion of the results, and a comparison of two

implemented approaches . . .

Chapter 6 presents a conclusion and a discussion of possible future

works.
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Chapter 2

Prelimenaries

In this chapter we present a theoretical background on the most important

principles that are used throughout this thesis. The main references used

are [76–79]

2.1 On Optimization

This section gives a general recap of the theory of optimization, constrained

and unconstrained. It provides some definitions in addition to discussing a

couple of theorems that are integral to the work that has been accomplished.

2.1.1 Constrained and Unconstrained Optimization

We consider the general problem of the form :

min
x ∈ Rn

f(x)

s.t. gi(x) = 0,

hi(x) ≤ 0

(2.1)

Where x ∈ R f: Rn −→ R ; gi: Rn −→ R and hi : Rn −→ R. The

solution of the problem (3.1) above is a decision variable x that minimizes

the function f while satisfying the constraints g and h. This problem can

have various characteristics. Special classes that are relevant to this thesis

are Quadratic Programs (QPs) and Semi-definite Programs (SDPs).



We will begin our consideration with the unconstrained problem which

reduces to:

min
x ∈ Rn

f(x) (2.2)

Local and Global Optima

A multi-variable scalar function f(x) admits a minimum x* if f(x*) ≤ f(x*+

h). In the case that the values of h are small then the minimum is called

a local minimum. If the inequality holds for all values of h then x* is

considered a global minimum.

Necessary Conditions for Optimality

It is said that f(x) admits a stationary point ( maximum, minimum or in-

flection) at x* if the first partial derivatives of f(x) exist, and are finite and

∇f(x*) =
∂f

∂x
|x* = 0

In order to determine whether the stationary point is a maximum,minimum

or a saddle point it is then enough to check the sufficient condition:

Sufficient condition theorem

A Stationary point x* is an extremum point if the Hessian matrix evaluated

at x*, ∇2f(x*) is :

• ∇2f(x*) is positive definite then x* is said to be a local minimum

• ∇2f(x*) is negative definite then x* is said to be a local maximum

After defining the Necessary and Sufficient conditions for optimality for

the unconstrained case, we can move to the constrained case with equality

constraints which becomes of the form:

min
x ∈ Rn

f(x)

s.t. gi(x) = 0

(2.3)

For this purpose, it is important to define the Lagrangian duality and the La-

grangian multipliers. In order to move from the above form of the problem to

14



its dual, we need to augment the objective function with the vector contain-

ing the equality constraints. Here it is important the the m constraints can

be grouped in vector form where g(x) = [g1(x)g2(x)g3(x)...gm(x)]T . Each

of the constraints is then multiplied with a scalar variable λ which is called

the Lagrange multiplier. Thus the augmented objective function which is

now called the Lagrangian which is a function of both the n variables x and

the m variables λ:

L(x) = f(x) + λg(x) = f(x) +
i=m∑
i=1

λigi(x) (2.4)

Lagrange Multiplier Theorem

If at x* f(x) admits a local minimum satisfying the set of constraints g(x) =

0, and if the gradients ∇g(x) = [∇g1(x)∇g2(x)∇g3(x)...∇gm(x)]T are lin-

early independent, then there exists a unique vector, λ* = [λ1...λm] called

the Lagrange multiplier vector such that

• ∇f(x*) +
∑i=m

i=1 λi∇gi(x) = 0

• g(x*) = 0

The problem is thus equivalent to finding the unconstrained minima of

the Lagrangian. With the sufficient condition for the pair (x*,λ*) being that

the Hessian of the Lagrangian be positive definite.

We finally move to the generalized form of the problem (3.1) with both

equality and inequality constraints

min
x ∈ Rn

f(x)

s.t. gi(x) = 0 i ∈ 1....p,

hj(x) ≤ 0 ∀j ∈ 1....p

In order to begin with the solution of this problem, we begin by defining :

1. Feasible Set: Ω ⊂ Rn := {x ∈ Rn|g(x) = 0, h(x) ≤ 0} the set

containing all the variables x that satisfy both the equality and in-

equality constraints and thus are candidate points to be a solution f

the minimization problem.
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2. Active Constraint and Active Set: the inequality hi(x) is said to

be active at the bound where li(x) = 0. The active set, A(x) is the

set containing all the active constraints in h(x)

3. Linear Independence Constraint Qualification (LICQ): As

mentioned earlier in the definition of the necessary condition on opti-

mality all the gradients of the equality and inequality constraints in

the active set are linearly independent

4. A point x* is called a regular point if and only if the LICQ holds at

x*.

This enables us to define what is known as Karush-Kuhn-Tucker

Conditions (KKT): if If x* is a local minimizer to the problem (3.1) and

is a regular point, then:

∇f(x*) +
i=m∑
i=1

λi∇gi(x) +

j=p∑
j=1

µj∇hj(x) = 0 (2.5)

gi(x*) = 0 ∀i ∈ {1....m} (2.6)

hj(x*) ≤ 0 ∀j ∈ {1....p} (2.7)

µj ≥ 0 ∀j ∈ {1....p} (2.8)

µjhj(x) ∀j ∈ {1....p} (2.9)

In particular, (3.6),(3.7) require that x* is feasible in the primal prob-

lem (3.1), and are known as the primal feasibility conditions. Similarly,

(3.8) requires that x* is feasible in the dual problem and is known as the

dual feasibility condition. The conditions (3.5) and (3.9) are known as the

stationarity and complementarity conditions, respectively.Finally, a vector

(x*; λ*; µ*) that satisfies the set of equations above is known as a KKT-

point.Here it is important to note that the conditions above are necessary

but not sufficient, and thus a KKT-point is not always a stationary point of

(3.1).
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Sufficient Conditions for Optimality

If (x*; λ*; µ*) is a KKT-point for (3.1) and LICQ holds, x* is a local

minimum if:

νT∇2
xL(x, λ, µ)ν ≥ 0, (2.10)

∀ν ∈

{
ν 6= 0 | ∇xg(x)T ν = 0,∇xhA+(x)T ν = 0,∇xhA0(x)T νl ≤ 0

}
(2.11)

That is, L(x*; λ*; µ*) must be positive-definite in all the unconstrained

directions of x.

Importance of Convexity

It is difficult to verify the LICQ without previous knowledge of x*. How-

ever, the constraint qualification is always satisfied for problems where all

inequality constraints are convex functions and all equality constraints are

linear functions and at least one feasible vector x̃ exists strictly in the feasible

region which means that:

gi(x*) = 0 ∀i ∈ {1....m} hj(x*) ≤ 0 ∀j ∈ {1....p} (2.12)

Moreover, if the conditions above are satisfied, and x* is found to be a local

minimum of f(x) and f(x) is a convex function, then x* is also the global

minimum of f(x).

2.1.2 Quadratic Programs

The optimization problem is classed as a (convex) quadratic program (QP)

if the objective function is (convex) quadratic, and the constraints are affine

[78]. A quadratic Program can thus be written in the form:

min
x

1

2
xTPx+ qTx+ r

s.t. Aeqx = beq,

Ax 4 b

(2.13)

Here, P ∈ Sn+, G ∈ Rmxn and A ∈ Rpxn. This means that we minimize a

quadratic function over a polyhedron as can be seen in the figure below .
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Figure 2.1: Geometric illustration of a quadratic program showing the feasible set which

is the shaded polyhedron and the contour lines of the objective function. The point x*

is the optimal point

Quadratic Programs are considered a special case of a more general class of

problems, Quadratically Constrained Quadratic Programs (QCQP) which

are of special interest in this thesis. A QCQP is thus formulated as:

min
x

1

2
xTP0x+ qT0 x+ r

s.t. Aeqx = beq,

1

2
xTPix+ qTi x+ r 4 0 i = 1....,m

(2.14)

The feasible region is no longer a polyhedron but an the intersection of

ellipsoids (if Pi < 0. In case the quadratic constraints are non-convex, the

QCQP problem becomes NP-Hard, and all known algorithms to solve them

have a complexity which grows exponentially with problem dimensions.

2.1.3 Semi-Definite Programs

A semidefinite program (SDP) minimizes a linear function of a variable

x ∈ Rn subject to a matrix inequality, its general form is as follows:

min
x

cTx

s.t. F (x) < 0
(2.15)

where

f(x) , F0 +
n∑
i=1

xiFi

The inequality sign means that F(x) is positive semi-definite and is called

a linear matrix inequality LMI[79]. Semi Definite programs are regarded
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as an extent ion of linear programs where component wise inequalities are

replaced by matrix inequalities. SDPs unify a large class of problems such as

linear and quadratic programs and is often employed in control engineering,

It is worthy to note that while SDPs are considered a richer and more

general class of problems than linear programs, they are not harder to solve

where they have polynomial worst-case complexity and perform very well in

practice.

Figure 2.2: Ven-Diagram of Program Hierarchy, showing the types of programs that

can be formulated as a Semi-Definite Program

2.1.4 Semi-Definite Relaxations

In order to solve the non-convex QCQPs defined earlier in the section, some

direct relaxations using semi-definite programming are used. This provides

a lower bound on the optimal value of them problem which will then be used

to find an approximate solution.

starting from the non-convex QCQP:

min
x

xTP0x+ qT0 x+ r

s.t. xTPix+ qTi x+ r 4 0 i = 1....,m
(2.16)

and using xTPx = Tr(P (xTx)) it can be re-written as

min
x

Tr(P0(X))0x+ qT0 x+ r0

s.t. Tr(Pi(X)) + qTi x+ ri 4 0 i = 1....,m,

X = xxT

(2.17)

this can be directly relaxed into a convex problem by replacing the last non-

convex equality constraint with a positive semi-definite constraint X−xxT <

19



0 which can be formulated as a Schur compliment to obtain:

min
x

Tr(P0(X))0x+ qT0 x+ r0

s.t. Tr(Pi(X)) + qTi x+ ri 4 0 i = 1....,m,[
X x

xT 1

]
< 0

(2.18)

This is strictly equivalent to the original problem if the Rank of the Schur

matrix is enforced to be 1, however that remains non-convex. The convex

relaxation does not enforce this rank constraint and thus only provides a

lower bound on the optimal value of the non-convex QCQP. However,since

it is formulated as an SDP it is easy to solve. [81]

Randomization Techniques

Since the relaxation Technique provides a lower bound on the optimal value

of the QCQP and does not give any particular clue on how to obtain ”good”

feasible points, additional work must be done in order to reach these points.

The semi-definite relaxation given in (3.18) produces a positive semi-definite

matrix ( The Schur Compliment) along with the lower bound on the objec-

tive. If this additional output is used, good approximate solutions, with in

some cases hard bounds on sub-optimality, can be found.

If x and X are the solutions to the relaxed program, then X−xxT or the

Schur compliment can be considered as the covariance matrix. Therefore, if

x is picked as a Gaussian variable with the distribution N (x,X−xxT ) then

by sampling x a sufficient number of times and keeping the best feasible

point, the non-convex QCQP will be solved on average over the distribution

meaning that the following is solved :

min
x

E(xTP0x+ qT0 x+ r0)

s.t. E(xTPix+ qTi x+ ri) 4 0 i = 1....,m
(2.19)

This would lead to obtaining a ”good” feasible point, if the program does

not include an equality constraint and we are able to directly project the

random samples onto the feasible set[81].
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2.2 Optimal Control

Optimal Control is the branch of control Engineering that aims to find a

control input for a dynamic system that minimizes a cost functional related

to the system state and control histories. The controlled dynamic system

can be expressed as a set of ordinary differential :

ẋ(t) = f(x, u, t) (2.20)

where u(t) : [t0tf ] −→ Rm is the control input and x(t) : [t0tf ] −→ Rn is the

state vector. It is assumed that starting from an initial condition x0 and

with a unique control history, only one state time history can be generated.

The optimal control problem formulation is thus :

min
u

Φ(x(tf , tf ) +

∫ tf

t0

L(x(t), u(t), t)dt

s.t. ẋ(t) = f(x, u, t),

x(t0) = x0

(2.21)

In some instances the final time tf can be an additional parameter to

optimize.A famous formulation that is often used is the minimum state and

control effort cost function which is put in quadratic form is :

x(tf )TP (tf )x(tf ) +

∫ tf

t0

(xTQx+ uTRu+ 2xTNu)dt

.

The equations of motion can be added as a constraint, where the aug-

mented cost functional becomes :

J̃ = Φ(x(tf , tf ) +

∫ tf

t0

(L(x(t), u(t), t) + λT (t)[f(x, u, t)− ẋ(t)])dt

Here the Lagrange multipliers λ(t) : [t0, tf ] −→ Rn are also called the costate

since they have the same size as the state.

In order to solve the problem at hand it is convenient to start with some

definitions, The Hamiltonian H = L(x(t), u(t), t)+λT (t)[f(x, u, t)] allows

us to re-write the problem in the following form :

J̃ = Φ(x(tf , tf )+

∫ tf

t0

(H(x(t), u(t), λ(t)t)dt−
∫ tf

t0

˙λ(t)x(t)dt +λT (t0)x(t0)−λT (tf )x(tf )
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A set of first-order necessary conditions can be obtained by nllifying the

first variation of the augmented cost functional obtaining:

• λ*(tf ) =
∂(φ(x*(tf ,tf )

∂x

T

• λ̇*(t) = −∂(H(x*,u*,λ*,t)
∂x

T

• ∂(H(x*,u*,λ*,t)
∂u

T
= 0

these equations should be solved together with the dynamic equation and

the initial conditions of the system to find the state vector, the adjoint

vector and the control inputs. One criticism of these approaches is that

the necessary conditions must apply along a specific trajectory, and thus

they obtain a local minimum that does not preclude the existence of other

optimizing paths. Here again can be seen the importance of having a convex

problem formulation.

2.3 Model Predictive Control

Model Predictive Control refers to a large class of control strategies that use

a model of the plant in order to obtain a control signal by minimizing an

objective function. The current control action is computed on-line rather

than using an offline computed control law. Model Predictive control has

developed to become the second most used type of control in industry after

the classical PID controller due to its ability to handle a wide range of sys-

tems and applications while integrating concepts from optimal control, and

stochastic control and applying them to both linear and non-linear systems[].

In general, an MPC controller uses at each sampling instant, the plant’s

current input and output measurements in addition to the current state and

the constraints on control action in order to

• calculate (predict), over a finite horizon, a future control sequence that

optimizes a cost function while taking into account constraints .

• Use the First control in the sequence as the plant’s input
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Figure 2.3: A figure demonstrating the operating principle of an MPC controller

This process is described in the figure below:

Despite its advantages, it has some drawbacks.The main disadvantages

are:

• The computational complexity of obtaining the required signal at every

iteration especially when constraints are included which makes it hard

to achieve real-time feasibility

• The theoretical complexity in guaranteeing stability and convergence.

(For more information refer to []).

• The need for an appropriate and accurate model of the process.

Figure 2.4: A comparison between the general controller scheme and the MPC scheme

The elements that go into the design on the MPC controller (aside from

the cost function and the prediction model) are [] the controller sample

time, the prediction and control horizons, the constraints and the weights.

The choice of these parameters is important as they affect the controller

performance and the computational complexity of the MPC algorithm.

The sampling time Ts determines the rate at which the controller exe-

cutes the control algorithm. This is of particular importance when distur-

bances come to play. If the sampling time is too large then the controller

can’t react to disturbances fast enough. On the other hand as the sampling
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time decreases the computational load increases and thus it is important to

find a compromise.

The prediction horizon Np indicates how much the controller looks ahead

into the future. The prediction horizon should be selected in order to cover

the significant dynamics of the system while not significantly increasing the

computational burden on the system to predict states which might be later

be affected by unaccounted for disturbances.

The Control Horizon Nu is the number time steps to which the calcu-

lated control input is used for the prediction, the inputs for Np−Nu remains

constant. As each control input is a decision variable for the optimizer, the

smaller the control horizon the lower the computational cost and less accu-

rate the predictions. For our application the control horizon is taken to be

equal to the prediction horizon.

Finally, constraints can be Incorporated on inputs, the rate of change

and outputs. These constraints can either be hard or soft constraints. There

should be a good balance between constraints on the input and those on the

output in order to ensure feasibility. Constraints can be added to achieve

the various objectives.

Implementation

We will proceed with describing the Linear MPC problem and its formu-

lation as this is the main controller used in our problem The model of the

system can be formulated as

xi(k + 1) = fi(xi(k), ui(k)) (2.22)

which under linear system assumption can be re-written to be

x(k + 1) = Axk +Buk (2.23)
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The MPC problem thus becomes:

minimize
ui

1

2
xTNPxN +

N−1∑
k=0

(
1

2
xTkQxk +

1

2
uTkRuk) (2.24a)

subject to

x(k + 1) = Axk +Buk, (2.24b)

yk = Cxk, (2.24c)

y ∈ χ , u ∈ Ui, , (2.24d)

y(N) ∈ Y ⊂ χ, , (2.24e)

x(0) = x0 (2.24f)

Where N is the prediction horizon and the problem becomes that of opti-

mizing the cost function,subject to model dynamics, bounds on states and

inputs in addition to bounds on terminal states.

If the states are grouped in X=[xT1 ,xT2 ,....xTN ] ∈ RnN and the control history

is likewise grouped in U=[uT0 ,uT1 ,....uTN ] ∈ RmN

Being an autonomous system, the states can be obtained knowing the initial

state and the control history,

xi = Aixo +
i−1∑
p=0

Ai−1−iBup i = 1, ...N (2.25)

the system equation thus can be written as

X = T̄ x0 + S̄U (2.26)

X =


x1

x2
...

xN

 =


A

A2

...

AN

x0 +


B 0 0 . . . 0

AB B 0 . . . 0
...

...
. . .

... 0

AN−1B AN−2B AN−3B . . . CB

U

Since the constraint is linear, it can be replaced in the cost function in order

to reduce the total number of variables to obtain

J = xT0 Y x0 + UTHU + 2xT0 qU (2.27)
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Similarly, the system outputs can be written as:

yi = CAixo +
i−1∑
p=0

CAi−1−iBup i = 1, ...N (2.28)

the system equation thus can be written as

Y = T̄yx0 + S̄yU (2.29)

Y =


y1

y2
...

yN

 =


CA

CA2

...

CAN

x0 +


CB 0 0 . . . 0

CAB CB 0 . . . 0
...

...
. . .

... 0

CAN−1B CAN−2B CAN−3B . . . CB

U

This means that the output can be re-written in the following form:

Y = T̄yx0 + S̄yU ≤


ymax

ymax
...

ymax

 = Ymax

which leads to :

S̄yU ≤ Ymax − T̄yx0

similarly,

−S̄yU ≤ −Ymax + T̄yx0

In addition to

U ≤ Umax −U ≤ −Umin

Leading to

GU ≤W − Sx0 (2.30)


S̄y

−S̄y
I

−I

U ≤


Ymax

−Ymin

Umax

Umin

 +


−T̄y
T̄y

0

0

x0
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This leads to the optimization problem described previously to be expressed

as

minimize
U

xT0 Y x0 + UTHU + 2xT0 qU (2.31a)

subject to

GU ≤W − Sx0, (2.31b)

x(0) = x0 (2.31c)

This formulation can be extended for reference tracking which is particularly

rel event to our application and will be employed in our problem as will be

described in the next chapter.

Applications in the Automotive Industry

Due to its flexibility, MPC is being implemented in the automotive field,

mainly for active safety purposes since it can merge the path planning prob-

lem with threat assessment and hazard avoidance. For instance, in [90]

used MPC along with the assumption that road lane data is available and

that road hazards have been located, and mapped ( which is possible due

to the use of various sensors) in order to safely navigate and avoid the ob-

stacle. Another interesting implementation has been used to account for

uncertainty in the traffic environment in [91] to simulate possible highway

scenarios. Moreover, when it comes to vehicle cooperation, MPC is con-

sidered an appropriate method these kind of problems since it allows for

the incorporation of anticipated trajectories of conflicting vehicles. To this

extent, it has been used quite rigorously in lane change scenarios [92] often

coupled with decision systems based on Game theory.

When it comes to the intersection management problem, while initial works

had been focused on hybrid systems theory [93] and multi-agent system

theory as in [94]. Recent approaches from the control industry formulated

the problem in OC terms as mentioned above and the move towards the

decentralization of the control is paving the way for MPC to be the main

controller used in these scenarios.
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Chapter 3

Cooperative Autonomous

Vehicles

In this chapter, we will begin introduction autonomous and cooperative ve-

hicle technologies. We will then introduce the various considerations that

can be taken into account while designing the intersection management con-

trol algorithm/strategy and by defining the assumptions taken by the re-

search community. Then,a classification of the implemented approaches will

be done based on the methods used. Here, the various components of the

system and their interactions will be thoroughly discussed.Finally, a brief

survey of the methodologies of the other implemented solutions will be done.

3.1 Autonomous Vehicle Technology

An Autonomous car is a classification of vehicles that are able to interact

with their surroundings without human input[19].These vehicles can com-

bine a range of technologies in order to perceive the environment(radar,GPS,computer

vision). For this purpose, advanced control systems are required in order

to identify the appropriate actions in the presence of a dynamic environ-

ment. The main functions of an autonomous car can be summed up in the

following:

• Perception

• Localization



• Planning

• Vehicle Control

• Systems Management

Figure 3.1: Typical Autonomous Vehicle system overview

Each of these sectors is challenging in its own respect. This requires a

decision-making hierarchy where at the highest level, a route is planned in

order to reach the desired location. This could be seen as a problem of

finding a minimum-cost path on a road network graph. This is followed

by a behavioral layer which decides on the manner the vehicle follows the

plotted path.A control system is required to ensure the correct execution of

the planned motion satisfying the appropriate constraints.

3.1.1 Levels of Autonomy

A classification was published in 2014 by SAE International in order to

classify vehicles on six different levels. This ranges from no automation (

requiring the presence of a driver at all times to full autonomy(where the

autonomous vehicle operates independently without the intervention of a

driver). In 2018, SAE updated the classification in J3016 20806 [20].These

levels are reported below as seen in the National Highway Traffic Adminis-

tration Website [21]

Level 0: The human does all the driving

Level 1: The driver and the automated system share the control of the
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vehicle.The driver should manage directly one of the braking/acceleration

and the steering. The suspensions are not managed by the driver. An ex-

ample of this is Adaptive Cruise Control (ACC), where the driver controls

the lateral dynamics while the system controls the speed. Another example

can be seen in the Parking Assistance, where the steering is controlled by

the system and the speed is controlled by the driver who is available to take

over control at any time. A final example is Lane Keeping Assistance.

Level 2: An advanced driver assistance system (ADAS) can control both

the steering and the breaking/acceleration simultaneously in certain inter-

vals.The human driver is required to be available to take control at any time

and to perform the rest of the driving task. As a matter of fact, the driver’s

hand is required to remain on the driving wheel during SAE2 driving in

order to confirm the driver’s ability to intervene when required.

Level 3: The quantum Leap: driver can safely turn his/her attention away

from the driving tasks ( they are allowed to text or read). The vehicle thus

handles situations requiring immediate response such as emergency braking.

The driver must still be available to take control withing a time that is spec-

ified by the manufacturer, when called upon by the vehicle. . In Europe the

Audi 8 has level 3 up until 60km/h but it is not legal everywhere.

Level 4: An Automated Driver Systems (ADS) is able to do all the driving

task by itself in addition to monitoring the driving environment(and thus

be capable of fulfilling the complete driving task). This kind of driving is

enabled only in limited spacial areas (geofenced) or in certain scenarios, like

traffic jams.Moreover, the vehicle should be able to safely abort the trip if

the driver can’t retake control.

Level 5: No human intervention is required. This is the vision for the new

mobility.

3.2 Cooperative Vehicles

Once a certain penetration rate of autonomous vehicles has been exceeded,

the opportunity to exploit coordination amongst vehicles arises. Autonomous

vehicles are still lacking in terms of their sensing and coordination capabili-

ties as they rely on on-board sensory data and on modeling the behavior of
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Figure 3.2: Levels of Autonomy

other vehicles. A summary of the Urban Grand Challenge [22] mentions that

the number of incidents involving autonomous vehicles could be reduced if

vehicles were capable of anticipating the actions of other vehicles.The con-

clusion there was that for autonomous driving to reach its full potential,

vehicles should be able to cooperate.

One sector which has fully backed the improvements that cooperation bring

is vehicle platooning. This field, relies on Vehicle to Vehicle (V2V) or Vehi-

cle to infrastructure (V2I) communication for the information sharing and

joint decision making where all vehicles in the platoon jointly choose safe

and efficient control policies [23]

3.2.1 Challenges

While cooperation has its benefits, cooperative vehicles face many challenges

which play a vital role when developing algorithms for vehicular coordina-

tion.

Communication

Communication is vital for CAV operation. A vehicle in a cooperative

scheme transmits packets of data containing speed,sensor readings and cur-

rent position to other vehicles through one of the two interfaces mentioned

earlier. This communication will be affected by the impairments associated

with wireless channels such as the inherent randomness and correlation of

the channel, interference due to simultaneous transmissions and limits in

communication range. This means that it is necessary to keep the commu-
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nication load low since it has been predicted that wireless channel congestion

will be one of the major challenges related to vehicular networks. The intro-

duction of 5G networks, with assumed reliability of 99% and status updates

of 100ms [24] ,is expected to help in many of the previously mentioned chal-

lenges.[25]

Sensing Challenges

Each vehicle’s knowledge of its current location and of its surroundings is

accompanied with uncertainty. This knowledge is based on data coming

from a range of sensors ( Cameras, Lidar, GNSS, IMUs ...) whose data is

corrupted by factors such as noise and clutter. Moreover, and the types

of sensors that each vehicle is equipped with vary, the accuracy of each

vehicle’s understanding of the traffic situation will vary. This would lead

to non-coherent uncertainties [26] which could be handled using methods

that require that an uncertainty description is communicated among the

involved vehicles,thus increasing the demand on the communication system.

Even in cases with perfect communication, it is difficult to associate each

vehicle’s local understanding to other vehicles’ understanding of the global

problem, this is referred to in the literature as data association problem and

is considered to be an NP-Hard problem[27].

Error Accumulation

This is related to the increase in error when packets are transmitted to other

vehicles. In a scenario where a vehicle has noisy or faulty signals, the errors

will be accumulated as they are transmitted within the network. A way this

can be handled is through comparison between vehicle data and using string

stability analysis.

Limits on Maximum Scalability

This problem is mainly concerned with the maximum number of vehicles

that the network can accommodate.For an algorithm to be good, it has to

be scalable, however a limit on scalability should be considered as an impor-

tant parameter. Since as the limit increases, all the previously mentioned

challenges are compounded.
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Cybersecurity

The security of vehicular networks is an important challenge, since the vehic-

ular network can be seen as a collection of networked sensors and computers

connected wirelessly either to the infrastructure (V2I) or to other vehicles

(V2V). This network should be safe from online attacks from intruders or

hackers to insure the safety of all vehicles in the network.[]

3.3 The Intersection Management Problem

Intelligent transportation systems are those which are able to leverage ad-

vances in information technology to solve current road traffic problems. As

mentioned in the introduction, one of the most regulated areas in traffic is

the intersection problem where vehicles must cooperate in order to share

a common resource. The inefficiency of the current human based model

is expected to become even more apparent as the global number of light

vehicles increases. Solving this problem by expanding the infrastructure is

considered undesirable and infeasible given the continued urbanization and

the associated increase in population density. This brings forward the op-

portunity of leveraging the types of autonomous vehicles mentioned above

where the two tracks are expected to merge forming a new large scale wire-

less networked control system [28]. In this system, vehicles would be able

to drive autonomously while leveraging their communication capabilities to

tackle problems such as the traffic intersection.

The problem of vehicular coordination is a popular topic in the research

community with most of the work coming after the seminal publications

[29, 30], the existing results are fairly recent with the majority of the work

being done in the last five years.

3.3.1 Initial Considerations

There are many consideration to be taken during the design of coordination

algorithms for the intersection problem [31]. To start with, the problem of

finding collision free paths for the number of vehicles passing through the

intersection is combinatoral [32]. The difficulty is emphasized when there
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are more than a few vehicles involved in the problem and when the con-

troller is designed in an optimal way. It must also be noted that there is no

one correct way to approach the problem of designing the control strategy,

as it includes various parameters which can have many combinations lead-

ing to different results.These parameters can include the location where the

problem is solved, the way the priority order is established, etc... There are

hence several plausible approaches that vary, from fully and partly central-

ized to distributed or decentralized ones.Finally, certain uncertainties can be

incorporated in the system in order to account for non-cooperative entities

(legacy drivers or cyclists etc.).

The problem of coordinating connected automated vehicles at intersec-

tions has been surveyed [33,34]. The governing contributions disregard non-

cooperative entities (legacy vehicles and pedestrians) and are focused on

settings where each vehicle is automated. A large part of this work has been

performed outside the control community and has relied heavily on tailored

heuristics [30, 35, 36]. Nevertheless, coordinating vehicles at an intersection

implies fundamentally a constrained optimal control problem (OCP), incor-

porating collision avoidance constraints,leading to optimized trajectories of

the vehicles.

3.3.2 Assumptions about Network and Topology

Nearly all the existing literature relies on the fact that vehicles are auto-

mated and communication impairments neglected. Moreover, sensing errors

and vulnerable road users(pedestrians cyclists) are never considered.This

thesis uses the same approach, however at the end it introduces a priority

scheme that aims at incorporating non-cooperative vehicles.

3.4 Classifications

A simplified way to classify the approaches taken to solve the problem is

to divide them into two categories, Centralized and Decentralized. In order

to correctly describe these two categories we have to begin by defining the

system components.
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3.4.1 System Components

Figure 3.3: Information Available to Each

Vehicle

The agents: Vehicles: each vehi-

cle i inside the intersection area, is

an agent with a pre-defined trajec-

tory defined as the set of states over

the planned time.The pre-defined

trajectories do not take into account

the other vehicles in the intersection

space. An example of the informa-

tion present to the vehicle can be

seen in the figure. More detailed ex-

planation of these parameters will be provided in later chapters.

The Intersection Manager is the entity/cyber agent that is responsible

for the intersection. The role of the IM varies along the spectrum between

completely centralized approaches and completely decentralized approaches.

Where in the former it has the difficult task of finding the collision free-

trajectories for the agents, while in the later its only task is relaying infor-

mation between vehicles in the intersection space. After defining the two

Figure 3.4: Sketch showing the role of the Intersection Manager

main players in the intersection scenario, we can proceed with the definition
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of the classes of algorithms.

3.4.2 The two Classifications and the spectrum

Fully Centralized Algorithms: are algorithms which rely on the Intersec-

tion Manager, in order to calculate the trajectories, and the passing orders

for all vehicles in the intersection space, this calculation has to be re-done

at every significant event occurrence (vehicle entering or leaving the inter-

section space).[29, 30,36–56]

For any initial configuration, arriving at a crossing order involves consider-

ing a multitude of feasible orders, an optimal crossing order can thus only

be achieved by a structured exploration of the different alternatives. This

makes the problem an NP-Hard problem [32] which drives research away

from such considerations

Fully Decentralized Algorithms: Here, each agent solves its own trajec-

tory planning problem based on the input it receives from other vehicles.

Unlike in the fully centralized approach crossing orders are most often based

on heuristics and approximations in order to reach results which are imple-

mentable in real systems. The closed loop controller must ensure that the

crossing order does not vary upon recalculation[31]

Different levels of centralization occur in literature however, with the role of

the intersection manager being more important the more we move towards

the fully centralized. And so, several schemes stand in the middle of both

ends of the continuum. For example, some approaches use the IM as a me-

diator to resolve conflicts - i.e, allowing the vehicles to locally compute the

actual control commands [29, 30, 36–43].While other formulations obtain a

solution through iterative procedures and allowing the computation to take

place on-board the vehicles [47–51].

3.5 Summary of Implemented Works

Early work tackling the problem focused on centralized reservation-based

algorithms [29, 30, 36, 37], whereby a vehicle would initially send a reserva-

tion request specifying the time frame it wishes to occupy the intersection
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Figure 3.5: A graphical Representation of the Spectrum Of Approaches

for. The IM then examines the request and would only grant access if no

conflict is detected with vehicles that have already requested times in the

intersection. If conflict is detected on the other hand, the IM would de-

mand a modification on the initial request. More recently, decentralized

approaches have borrowed on the concept of reservation to find their solu-

tion where collision free paths are generated through rule-based interaction

protocols.[57–60].

There were several alternative methods proposed to find the equivalent

of reservations, mainly through mixed-integer optimization [38,39], polling-

systems theory [40] or scheduling [41–43]. The solution here is computed

in two steps - the first being the resolving of potential collisions and the

second one being the computation of the vehicle motion profiles. The no-

tion of ”extensions of platooning” has also characterized another approach

[61, 62], where virtual platoons of existing vehicles on different lanes are

created. And it’s through a series of delicately selected coordinate trans-

formations that collisions are avoided - however,the virtual platoon features

vehicles kept at specified inter-vehicle distances. This approach hence solves

the coordination problem featured in standard and decentralized platooning

controllers.

With the optimization of the motion profiles of the vehicles at the fore-

front of the system, there has also been a number of algorithms based on

Optimal Control (OC) techniques serving this particular purpose as well.

The advantages range from the ability to incorporate various constraints -

such as actuator limitations - to the ability to optimize stated performance

objectives. These objectives differ from many non OC-based methods that

feature performance metrics only used to heuristically derive algorithms.

Nonetheless, most OC-based methods rely on heuristics since as mentioned

before, finding an optimal crossing order is classified as an NP-Hard prob-
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lem.Priority schemes will be discussed in more detail in a later section. The

approaches taken can be grouped as Sequential/Parallel or Simultaneous.

Starting with Sequential/Parallel schemes, the vehicles at the intersec-

tion are ranked according to priority, usually done based on variations of

first-come-first-serve (FCFS) policies. After the rankings are set, constraints

are set to be matched in order to prevent the collision of higher priority ve-

hicles and smaller Optimal control problems are solved, usually one per

vehicle. In schemes that are purely Sequential like [63, 64], also called the

”MPC0” alternative in [65] where the control actions of each vehicle is

solved according to a decision order which demonstrates in a way the pri-

ority of the vehicle. In this case, each vehicle solves its OCP based on the

solutions of the OCPs of others (which would already be solved and ready)

prior to it in the decision order to prevent collisions.

As for parallel schemes, the OCPs of the vehicles are based on trajec-

tory predictions of vehicles that are of higher priority which are calculated at

the previous sampling time. Along these lines, [66] proposes to use conser-

vative estimates, based on predicted trajectories resulting from maximum

breaking maneuvers. [65] pursues the ”MPC0” solution which is focuses

its predictions on constant velocities whereas [67] considers constant accel-

eration. Another approach used is when the predictions are based on the

trajectories of the higher priority vehicles taken from the preceding time

instant and is best used for receding horizon implementations ([?, 68–70]

and the so-called ”MPC1” alternative in [65]). This solution becomes close

to sequential scheme with delayed information exchange in the case where

the order of priorities is the same between two time instants. Sequential

and parallel schemes were combined in [71]where the FCFS policy is used

to build a crossing time schedule for the vehicles, followed by the parallel

solution of the vehicle OCPs to determine state and control trajectories.A

Final example which is the starting point of this thesis uses the predicted

trajectories of conflicting vehicles in order for each lower priority vehicle to

re-plan its trajectory while satisfying a collision avoidance constraint [72].

It is interesting to note that the sequential and parallel schemes differ in
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many areas such as the objective function considered, the motion models,

and the formulation of collision avoidance conditions but are similar in a

way that they both are considered ”greedy”.[73] The actions of the vehicles

seldom are in the interest of the intersection as a whole including other vehi-

cles, and instead are focused on limiting the risks on themselves, leaving the

responsibility of resolving dangerous maneuvers to lower priority vehicles.

The Sequential/Parallel schemes are not ideal in design but can be easily

installed in an almost completely decentralized fashion while maintaining

low and accurately predictable requirements on both computation and in-

formation exchange.

This can’t be said about implementations that utilize what is called

the simultaneous methods where the solution is found through joint opti-

mization of several vehicles’ trajectories. In order to avoid the combinatorial

complexity of finding the optimal crossing order heuristics are still employed

to determine the crossing order. Examples of these fixed order implementa-

tions can be found in [45–53].In other approaches, the coordinator provides

a crossing order which is dependent on a first guess, the vehicles then solve

their respective OCPs [53,54].

A few contributions attempt to solve the complete problem optimally by

simultaneously optimizing all aspects of the problem. For instance, both

[55] and the benchmark discussed in [56] consider mixed integer quadratic

programming (MIQP) formulations of the problem, returning both the op-

timal trajectories and crossing order.Such approaches find globally optimal

solutions but do not scale well computationally and thus can’t be used for

practical purposes.
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Chapter 4

Modelling of Cooperative

Autonomous Driving

Scenarios

In this chapter, the modelling of the intersection scenario is tackled, where

we will the intersection modelling, the vehicle motion models,in addition

to the planning of the initial trajectories, Finally, the collision avoidance

constraints and both the vehicle and the Intersection Management Model

Predictive Controllers will be presented.

4.1 The Intersection and the Intersection Man-

ager

The intersection is a highly regulated area with vehicles following a set of

rules and patterns for crossing, in this section we will define the intersection

space, the zones inside the intersection space.Finally, we will introduce the

Intersection Manager (IM) its various roles throughout the thesis and the

different crossing rules that dictate the right of passage for vehicles.

4.1.1 Intersection Area Modelling

The main emphasis of this thesis will be on Non-signalized four way intersec-

tions where the space considered encompasses the Conflict Area (the central



zone) in addition to a 100 meter radius. We are considering the single lane

scenario, but the multiple lane scenario is also feasible. Each lane has a

width of 3.7 meters in each direction as per [72].

The intersection is made up of lanes and conflict zones, each properly la-

belled as can be seen in Figure 4.1.The lane labels allow the intersection

manager to be able to place each vehicle in its corresponding location. Con-

flict Zones signify areas in the intersection in which collision may occur, they

are labeled for time suggestion purposes as will be elaborated on later.

Finally the intersection is divided into two ’Zones’:

Figure 4.1: Schematic of modelled intersection space

• The Suggestion Zone: Upon entry to the intersection area and up to

50m away from the the center of the intersection. When the Inter-

section Manager is functioning as negotiator, the vehicles receive time

suggestions for entering the intersection area while in this zone.

• The Conflict Avoidance Zone: It is the area within 50m of the center

of the intersection, the Intersection Manager’s role in this zone is to
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simply relay information (Distances) between vehicles.

4.1.2 The Intersection Manager

As mentioned in Chapter 1, the vehicle communication is either be in the

form of Vehicle to Vehicle (V2V) or Vehicle to Infrastructure (V2I). In this

thesis we will be focusing on the Vehicle to infrastructure mode of com-

munication. The node in the system that represents the infrastructure is

called the ’Intersection Manager’ and its role varies on the type of control

algorithm implemented.

• For the completely decentralized algorithm, the main role of the inter-

section manager is to create the priority list which dictates the crossing

order in addition to relaying the information received from the various

vehicles

Figure 4.2: Schematic showing role of Intersection Manager in Decentralized approach

• In the hybrid algorithm which is influenced by reservation based algo-

rithms, the IM in addition to its previous role has the task of suggesting

to the vehicles upon their entry to the intersection space the time of

arrival to the conflict zones. It can be seen as a node which receives

proposed times of arrival and based on the priority scheme selected for
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deciding crossing order and the safety time, modifies the request and

suggests a new time to the vehicle to ensure safe passage.

The intersection manager thus at all times has as available information the

ones shown in the figure 4.3, where each is a data structure which groups

vehicles based on:

• Vehicles which will pass through each conflict point

• Vehicles in each intersection zone

• Vehicles on each lane

• All Vehicles in the intersection space

Figure 4.3: IM stored Information

4.1.3 Priority Schemes

As mentioned earlier, various heuristics are implemented in order to obtain

the vehicle priorities while passing the intersection space, below is a sum-

mary of the main heuristics implemented in the literature. In this thesis

the intersection manager uses variants of the First Come First serve and the

Time To React schemes to determine the crossing order.

Overpass

This is the benchmark scenario where no coordinating action is taken and is

equivalent to the separation of roads. However due to the figures discussed

in the introduction, implementing such infrastructure is highly expensive

and unlikely.
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Traffic Light

A fixed-cycle traffic light controller serves as a surrogate for an actual traffic

light. It is mainly used in cases with human or non-cooperative autonomous

vehicles and forms the second benchmark. Red/Green light alternate every

Cycle Time Tc. It is assumed however that each vehicle knows the trajectory

of the vehicles ahead of it in the lane. This approach can be extended to

engulf the scenario with both autonomous and legacy vehicles, where Instead

of physical lights, Traffic regulations in regards to right of passage order

priority when a legacy driver in cases where a legacy driver is involved (ie.

Left turning vehicles concede to straight traveling vehicles, first come first

serve at intersection space etc.) An assumption is made in this case that the

position of the legacy vehicle is known at all time instances (T) which is a

strong assumption. It however becomes a soft one in case the Legacy vehicle

is switched to a non-cooperative autonomous vehicle. Such a scenario would

be a good gauge for any alternative priority scheme in comparison to the

current situation in non-traffic light managed intersections.

Parallel/Sequential

A priority ranking of the variables is decided, The solution is then obtained

by solving a single optimization problem per vehicle, where conditions are

employed to avoid collision with higher priority vehicles. The priority rank-

ing is usually based on a heuristic such as first come first serve which will be

discussed later. In sequential schemes,the vehicles compute their solutions

in sequence following a decision order which implicitly reflects priority. Par-

allel schemes on the other hand use data provided by higher priority vehicles

at the last iteration in order to produce the current time control input. One

main argument against this approach is that it offers a ”greedy solution”

where no vehicle makes a decision that improves the intersection scenario

at its own cost. As a consequence, the effort required to resolve difficult

conflict is pushed to the lowest priority vehicle.

First Come First Serve/Fixed Order

This is a formulation of the parallel approach mentioned above where each

vehicle solves its own MPC problem conceding position to all vehicles already
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inside the intersection zone. Thus the latest vehicle has to give way to all

others already inside the intersection. A clear and coherent representation

of the algorithm is present in [75]. Including Traffic light incorporation to

include legacy drivers.

Time To React

This is a variant of the fist come first serve approach mentioned above that

assigns a quantity treact to each vehicle which is calculated for each vehicle

i as:

tireact =
distance to collision point

average velocity until collision point
(4.1)

For each two conflicting vehicles then, the one with more time to react

concedes passage to the one which has more time to react, and thus obtaining

a lower position on the priority list. In our thesis, each vehicle then has its

own priority list which is a binary array. For a vehicle i in the scenario:

• A priority value of 1 for the other vehicle ID means that vehicle i

should concede passage

• A priority value of 0 means that vehicle i does not consider the other

vehicle in its decision process

4.2 Initial Trajectories and Motion Model

Non-signalized intersections traditionally rely on the interaction between

drivers through eye contact for safe passage, due to the lack of controlling

facilities. Through inter-vehicular communication, driver interactions are

easier and more accurate providing information of vehicles that may be out

of the line of sight or blocked. Moreover, an intersection is highly regulated

with vehicles generally following set patterns for crossing ( travel routes, re-

gardless of signal existence). Vehicles from different directions with separate

trajectories can be seen to follow ”predefined routes” as shown in figure 4.1

[33].

This assumption is always used in literature, which mainly focuses on

straight trajectories. In this thesis, turning agents will be considered as

well. Possible collisions can thus be identified by the intersection manager
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Figure 4.4: Illustration of possible paths taken while passing an intersection [33]

through a knowledge of initial and target lanes in addition to expected time

of arrival to the intersection. Moreover, due to the critically of the space

it is assumed without loss of generality, that risky driving behavior is not

present in these scenarios (overtaking, lane changing) and that before and

after the intersection area, typical collision avoidance techniques are used

(Adaptive Cruise Control), which allows us to limit the number of vehicles

to four when simulating the scenario.

4.2.1 Initial Pre-planned Trajectories

As mentioned above, the initial trajectories for crossing the intersection can

be considered pre-defined in the intersection space. For generating these

trajectories, the ”Trajectory and Scenario Generation” feature of Matlab’s

Automated driving toolbox [81] was used.

Vehicles and Vehicle Trajectories

Each Vehicle has dimensions as reported in the table 4.1.Its pre-planned tra-

jectory is specified through specifying way-points to the MATLAB function

trajectory() which generates clothoid based continuous trajectories and al-

lows the specification of velocity, and orientation at each way-point[82].This
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allows for the generation of a reference velocity profile for trajectory track-

ing application. An example of the way-points and the generated speed

reference can be seen in Figures 4.5 and 4.6

Vehicle Length 4.7 meters

Vehicle Width 1.8 meters

Vehicle Height 1.4 meters

Table 4.1: Table of Vehicle Properties

Figure 4.5: Way-points specified for Left-Turning Vehicle

Figure 4.6: Way-points specified for Left-Turning Vehicle
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4.2.2 Motion Models

There are various motion models to describe the motion of ground vehicles,

with varying accuracy. The most detailed ones combine longitudinal and

lateral motion with power-train models, suspensions and tires which prove

to be accurate under various conditions [22,23]

The intersection problem however, does not require such level of modelling

as intersections in general are not placed in roads of high curvature and out

of the ordinary driving behavior or overtaking are not common occurrences.

Therefore, lateral vehicle dynamics are of less importance in this context

and thus in both this thesis, and the majority of other works on the topic,

the ”Vehicles on Rails” Assumption is employed without loss of generality.

Assumption 4.1: (Vehicles on Rails) Vehicles inside the intersection space

move along pre-defined trajectories and do not change lanes. All lateral

tracking is handled by a low level controller.

To this extent, various models are used in the literature. We will begin

by recalling them then highlighting the one used in this thesis and motivat-

ing our choice.

General Model

Based on the assumption stated above, each vehicle’s state xi(t) : R→ Rni

in the intersection scenario is then seen as xi(t) = [pi(t), vi(t), x̃i(t)] . Here

pi(t) can be considered as the position of the vehicle i’s center of mass along

its corresponding pre-planned trajectory, vi(t) is the scalar velocity along

the path and x̃i(t) can be seen as the state which can be seen to describe

either the acceleration or the power train dynamics. Therefore, using the

control input ui(t) : R → Rmi , the vehicle’s motion can be described by a

set of ordinary differential equations.

ẋi(t) = fi(xi(t), ui(t)), (4.2)

hi(xi(t), ui(t)) ≤ 0 (4.3)

Where both fi(t) : Rnxm → Rni and hi(t) : Rnxm → Rni are continu-

ously differentiable functions describing the states and the constraints on
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the states ( actuation, velocity). Where in this thesis, as in all of the works

on the topic the velocities are constrained to be positive (ie. no reverse

motion).

Kinematic Model

A famous model which can often be found in the literature is the double

integrator model with input bounds. This only considers the kinematics

and models the vehicle through series of integrators where the scalar input

ui(t) enters as the end. such that

Fi(xi,k, ui,k,∆t) =

[
1 ∆t

0 1

]
xi,k +

[
1/2∆t2

∆t

]
ui,k,

amini ≤ ai ≤ amaxi vi(t) ≥ 0 ∀t

(4.4)

Dynamic Models

A minor adjustment allows us to model different vehicle behaviors and thus

consider heterogeneous networks by varying the actuation dynamics taking

into account the vehicles’ dynamic ability to accelerate and decelerate. This

is introduced by the following model.

ẋi =


0 1 0

0 0 ci

0 −di −ai

xi,k +


0

0

bi

ui,k, (4.5)

with ai, bi, ci > 0 and di ≥ 0 for i = 1...N where N denotes the number

of vehicles. The first two state variables can be considered to be the posi-

tion and the velocity while the third state component can be seen as the

actuator state where ai can be seen to characterize the speed of actuation.

The constant di in the cases where it is not zero, signifies that the actu-

ator is influenced by the velocity, thus creating an internal feedback loop.

It is also assumed that the velocities are the only output variables, where

C =
[
0 1 0

]
Here, the lower the time constant Ta, the faster the actua-

tion dynamics.Finally,in order to be utilized in a model predictive control

setting, the model is discretized using a Zero-Order Hold technique in order
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to obtain.  ẋi,k+1 = Ai,kxi,k +Bi,kui,k

yi,k = Ci,kxi,k
(4.6)

By employing this model, distinction between vehicles based on actuation

times can be done without delving into power train dynamics which are not

important for this application.

Electric Vehicle Power Train Dynamics

Electric Vehicles are possibly the future and thus vehicle power trains can

be considered. For EVs the moving force for the vehicle is a function of

the total gear ratio and the torque generated by the electric motor. The

equations of motion can thus be written as

ṗ(t) = v v̇(t) =
1

m
[F c(u(t), x(t)) + F r(u(t), x(t)]

and

F c(u(t), x(t)) = Gτ(x(t), u(t));

is the propulsion force mentioned above, while G is the gear ratio and tau is

the supplied motor torque. While F r(u(t), x(t)) are the restrictive external

forces such as friction. However, the power train dynamics can be assumed

to be fast enough to be ignored leading to similar system to the dynamic

model discussed before[74]

In this thesis we chose to employ the dynamic model, neglecting the effect

of velocity on actuation speed. The model of vehicle k’s dynamics used is

the following:

ẋi =


0 1 0

0 0 1

0 0 −1/Tak

xi,k +


0

0

1/Tak

ui,k, (4.7)

with the state vector x = [p(t), v(t), a(t)] where p(t) can be though of as the

position along the trajectory of vehicle k,and v(t), a(t) are respectively. the

velocity and acceleration along the local trajectory. The constant Tak is used

to summarize each vehicle’s drive-train dynamics reflecting each vehicle’s

unique ability to accelerate and decelerate. The velocity is the system’s only
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output variable and in order to be used in a model predictive framework,

the continuous time model above can be discretized using zero-order hold

techniques to obtain the Linear time invariant system of form:xi+1 = Axi +Bui

yi = Cxi

This knowledge is then inputted into an initial trajectory planner which

uses the reference velocity generated using the way-points in addition to the

system dynamics and initial position to generate the local planned trajec-

tory. Each vehicle then has the information shown in Figure 4.7.Please note

that the first center of the first encountered conflict zone is the origin for

the local trajectory. This is done for simplicity. Moreover the vehicle would

transmit only a subset of the available information.

Figure 4.7: Local Vehicle Information

• To the intersection Manager: The data transmitted to the in-

tersection Manager is: [Current Lane ID, Average Velocity, Collision

Points ID, Target Lane ID, Planned Entry]

• To other Vehicles: Distances to Common conflict zone as predicted

throughout the prediction horizon.

This is done in order to minimize the amount of information shared between

vehicles in order to decrease the strain on the network and to minimize

the effect of potential cyber attacks ( No vehicle knows the other vehicles’

positions).

51



Optimal Control Formulation of Initial Trajectory Planning

As mentioned earlier, in order for the vehicle to plan the initial trajectory

and obtain information such as the Planned Time of Entry, an optimal

control formulation of the reference speed tracking is implemented in order

to obtain the trajectory in local coordinates. The problem is stated as the

classical Boltza formulation:

minimize
ui

1

2
P (x(tf )− xfref )2 +

1

2

∫ tf

t0

Q(v(t)− vref (t))2 +Ru(t)2dt

(4.8a)

subject to

ẋ = Ax+Bu, (4.8b)

umin ≤ u(t) ≤ umax (4.8c)

Where P is the terminal gain matrix, Q is the reference tracking matrix and

R is the control gain matrix. A and B are the state matricies mentioned

above and the actuation constraints are umin = −5m/s2 and umax = 5m/s2.

For a more detailed analysis of the choice of actuation constraints please refer

to Appendix A.

Figure 4.8: Comparison between Waypoint Generated Velocity and locally Planned

Trajectories

Figure 4.9: Evolution of Local Trajectory for a Turning Vehicle
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4.3 Decentralized Problem Formulation

As previously mentioned, the scenario mainly considers a single four-way

intersection with the following simplifying assumptions:

• All vehicles are fully autonomous (disregard of legacy drivers)

• At most one vehicle is approaching from each direction

• All vehicles are equipped with the communication capabilities

• Data that is sent at time k is available to at instant k+1

Figure 4.10: Schematic Describing the scenario [72]

We then define the

set of agents in the in-

tersection space as A =

{1, ...., NA} each having

a model as described in

the earlier section and

equipped with its own

trajectory tracking MPC.

As a first consideration

we need to ensure that ev-

ery agent i ∈ A passes

the intersection safely (

by respecting the safety

distance set by the intersection manager).To accomplish that, we define the

subset Aic ⊂ A including all vehicles with whom there might be a chance of

conflict.

Aic = { l | l 6= i ∧ sic,l 6=∞, } (4.9)

we thus define the value of the coordinate sic,l which is the position along

the trajectory of the center of the conflict zone between agent l and agent

i.In case no such conflict zone exists, we define this quantity as sic,l =∞
We then define the distance between any two vehicles [ i , l ] in the inter-

section area as:

dl =

| si − sic,l | + | sl − slc,i |, slc,i, s
i
c,l 6=∞

∞ otherwise
(4.10)
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This is equivalent to stating that the distance between the agents is the sum

of their absolute distances to the shared conflict zone or infinite in case there

isn’t a shared conflict zone. The collision avoidance constraint can then be

expressed as:

dil,(k+j)|k ≥ dsafety,(k+j)|k (4.11)

4.3.1 Local Vehicular MPC problem

Each vehicle uses a discrete-time private vehicle model to solve its con-

strained trajectory tracking MPC problem:

minimize
ui

Hp∑
j=0

δ−ji Qi(v
i
ref,[k+j|k] − v

i
[k+j|k])

2 + Si∆u
i,2
[k+j|k] +Riu

i,2
[k+j|k]

(4.12a)

subject to

xi(j + 1) = fi(xi(j), ui(j)), (4.12b)

ui ∈ Ui, , (4.12c)

xi ∈ χi, , (4.12d)

dil,(k+j)|k ≥ dsafety,(k+j)|k ∀l ∈ Aic, (4.12e)

1

Hp + 1

j=HP∑
j=0

vik+j|k ≥ v̄mean ∀si ∈ [dbrake, si,out] (4.12f)

The terms Q,R,and S penalize deviating from the reference, the control

effort, and the jump in control effort respectively. The exponential term

that accompanies the reference tracking can be seen as an aggressiveness es-

timator. This term is often used in multi-agent negotiation scenarios where

δ is a number ∈ [0, 1]. The closer δ is to 1 the more farsighted the agent is

where if δ is close 0 the agent would only want to follow the reference for the

short term and deviation from the reference in future instances is penalized

less.The subscripts ’i’ for the gains signify that vehicles can have different

gain values.This is another way in which different vehicles and driver behav-

iors is simulated in the thesis.

The first constraint is the system dynamics, the second constraints limits

the admissible accelerations to −9m/s2 ≤ u ≤ 5m/s2.These values of ac-
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celerations where chosen to permit us to achieve good braking performance

without touching on the limits of stability. For a review of slip dynamics

and braking we refer the reader to [89]. The third constraint is on the states,

specifically on the velocity where the car is to only drive forwards and to

always drive at a velocity lower than the speed limit.The last constraint is

for feasibility purposes and it ensures that upon reaching the conflict area

the prediction horizon covers the vehicle’s crossing of the conflict area. This

is to ensure that the safety constraint is satisfied throughout the vehicle’s

crossing of the conflict area. v̄mean is the mean velocity that ensures the

vehicle’s crossing within the prediction horizon and is computed by dividing

the remaining distance until the exit of the conflict zone by the prediction

horizon:

v̄mean =
| si − si,out |

Hp
∀si ∈ [dbrake, si,out]

• dbrake is the distance needed for the vehicle to come to a complete stop

before entering the intersection from its reference velocity.

• ci,out marks the exit from the conflict area and it is when the vehicle

is at a distance equal to the safety distance away from the last conflict

zone center.

Remark: Please note that in this thesis, we assume that priority entails

right of passage and thus the speed limit is set to 110% of the reference

velocity at each time instant. This approach has been sometimes called

’greedy’ in the literature when centralized approaches have been employed.

However as mentioned in Chapter 2, finding an optimal crossing order cen-

trally allowing for greater vehicle accelerations is a NP hard problem.

4.3.2 Convex Relaxation of Collision Avoidance Constraint

The collision Avoidance problem for each vehicle can be stated simply as:

Each vehicle should ensure that it passes within a specified safety distance

of vehicles that are of higher priority. Vehicles thus don’t have to worry

about vehicles with lower priority, which decreases the computational effort

on each vehicle but leads to the solution being sub-optimal in the sense that

vehicles don’t accelerate above their reference velocities in the intersection
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zone, but rather only concede passage.This however is a correct portrayal of

safe driving as seen from the human driving behavior and is thus a correct

modelling of the situation.

The collision avoidance constraint as stated before is:

dil,(k+j)|k ≥ dsafety,(k+j)|k ∀l ∈ Aic

by introducing the definition of dl,(k+j) the constraint can be reformulated

to become:

| si − sic,l | + | sl(k+j)|k − s
l
c,i |≥ dsafety,(k+j)|k ∀l ∈ Aic (4.13)

This constraint can be then be separated into a part that is strictly de-

pending on local vehicle information and another that is transmitted to the

vehicle.

| si − sic,l |≥ dsafety,(k+j)|k− | sl(k+j)|k − s
l
c,i | ∀l ∈ Aic (4.14)

For this constraint to be efficiently solved using a numeric solver, there are

two approaches according to [83]

1. Replace every absolute value constraint with a mixed-integer linear

constraint.

2. Transform every absolute value constraint into a quadratic one.

Each approach has its pros and cons, however in order not to increase the

number of optimization variables we chose transform the constraint to a

quadratic one. This however imposes a limit to the region in which the

constraint can be used. We see then that the constraint becomes:

(si − sic,l)2 ≥ (dsafety,(k+j)|k − dlc,i(k+j)|k)
2

∀l ∈ Aic : dsafety,(k+j)|k ≥ dlc,i(k+j)|k
(4.15)

One shortcoming of this approach is that it is only active when the other

vehicle is within the safety distance of the collision point at any point in its

prediction horizon. This might lead to complications in a priority scheme

such as FCFS where the constraint becomes active too late, this can be seen

if a vehicle i enters after j and thus has to concede entry, vehicle i however
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enters with a higher velocity and reaches the conflict area before vehicle

j. The constraint here is activated too late and in some instances collision

can’t be avoided . In the time to react priority scheme this is not a problem

as the vehicle with a higher priority arrives within the activation zone prior

to the one that is conceding position.This is addressed and corrected in

our time suggestion control algorithm that will be elaborated on later. We

thus obtained a non-convex quadratically constrained quadratic program

formulation of our MPC problem. We will now perform a semi-definite

relaxation to obtain a convex semi-definite program formulation of the same

problem.

Semi-Definite Relaxation

The reference tracking linear MPC problem with a prediction horizon of N

steps, can be reformulated as seen in Chapter 3, to become of the form:

minimize
ui

1

2
uT (SyQyS

T
y +R)u + (xT0 Ty −R)QySyu (4.16a)

subject to

Gu ≤W + Sx0, (4.16b)

dil,(k+j)|k ≥ dsafety,(k+j)|k ∀l ∈ Aic (4.16c)

Where u is the control action R is the reference and Y the output (velocity)

we have:

Ty =


CA

CA2

...

CAN



Sy =


CB 0 0 0 . . . 0

CAB CB 0 . . . 0
...

...
. . .

... 0

CAN−1B CAN−2B CAN−3B . . . CB


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G =


Sy

−Sy
I

−I



W =


Ymax

−Ymin
Umax

−Umin


Where A,B,and C are the LTI matrices from the state space model.If the

avoidance constraint at an instant in the horizon is formulated to have the

form:

0.5xTPkx+ qTk x+ rTk rk ≤ 0 (4.17)

while the states can be written in terms of the initial time and the control

as:

x = T̄ x0 + S̄u (4.18)

Then the constraint can be reformulated to become

0.5(T̄ x0 + S̄u)TPk(T̄ x0 + S̄u) + qTk (T̄ x0 + S̄u) + rTk rk ≤ 0

0.5uT P̄ku+ (xT0 T̄
TPk + qTk )S̄u+ 0.5(xT0 H̄kx0) + qTk T̄ x0 + rTk rk ≤ 0

where P̄k = S̄TPkS̄ H̄k = T̄PkT̄

(4.19)

Moreover, in order to make the problem convex the semi-definite relaxation

is applied to obtain:

0.5Tr(P̄kU) + q̄Tk u+ r̄Tk r̄k ≤ 0

s.t Schur =

[
U u′

u 1

]
< 0

(4.20)

Where r̄ includes all the constant terms (with those relating to the initial

condition) and T̄ ,S̄ are equivalent to Ty,Sy without the elements being mul-

tiplied by the output matrix C. This solves the original problem in the case

Rank(Schur) = 1.However, in the case where this criterion is not satisfied,

which means that a sub-optimal or even infeasible solution of the original
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problem is obtained, We employ a randomization algorithm based in order to

obtain a good estimate of the optimal solution.Evaluating the rank numeri-

cally is computationally heavy, which is why we consider that the rank-1 con-

dition is satisfied if the second largest singular value σ2(Schur) ≤ σ2,threshold
The problem thus becomes of the form of a semi-definite program:

minimize
ui

1

2
Trace(U(SyQyS

T
y +R)) + (xT0 Ty −R)QySyu (4.21a)

subject to

Gu ≤W + Sx0, (4.21b)

0.5Tr(P̄kU) + q̄Tk u+ r̄Tk r̄k ≤ 0 ∀l ∈ Aic : dsafety,(k+j)|k ≥ dlc,i(k+j)|k,
(4.21c)

1

Hp

∑
(Tyx0 + SyU) > vmean (4.21d)

Randomization Algorithm

We consider the solutions u* and U* of the previous relaxed program and

define as a covariance the matrix U* − u*u*T . Then, by drawing ran-

dom samples from the random variable with a Normal distribution ũ ∈
N (u*, U −u*u*T ) we would be solving the original problem on average over

this distribution [72]. In order for the random variable picked to be ac-

cepted, it has to also satisfy the various constraints. In the randomization

algorithm and to loosen the feasibility set in order to decrease the number of

random samples picked by softening the constraints on safety distance and

maximum velocity, allocating respective costs for their violation as

Jviol = k1*

Hp∑
n=1

εds + k2*

Hp∑
n=1

εv

The costs k1 and k2 can be seen as a measure of how much violation over

the interval is deemed acceptable. The values used are k1 = 106, k2 = 103.

Where εds is the violation of the safety distance at each sampling instant (

zero if not violated) and εv is the violation of the maximum velocity (zero

if not violated).

The randomization algorithm is then as follows:
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Algorithm 1: Randomization Algorithm to estimate optimal so-

lution
Result: ũ(.|k)*, c̃min

ũ(.|k)* = u(.|k)* , c̃min = cost(x0, u(.|k)*); ←− Initialize ;

for n = 1 to Nsamples do

ũ(.|k) = mvnrnd(N (u*, U − u*u*T )) ←− Pick random sample

if Constraints are satisfied then

c̃ =cost(x0, ũ(.|k)) ←− Calculate sample cost;

if c̃ ≤ c̃min then

c̃min = c̃, ũ(.|k)* = ũ(.|k) ←− Assign new optimal values;

end

end

end

Function cost(x0, u(.|k)*):

c̃ = J(x0, u(.|k)*)+Jviol(x0, u(.|k)*) ←− Evaluate cost

return c̃

This control algorithm is the starting point of the thesis, were we will

demonstrate its ability to guarantee safe passage for various number of ve-

hicles, considering different scenarios. However, to address its shortcomings

we also introduce the hybrid algorithm which makes use of the Intersection

Manager in order to suggest times to arriving vehicles.

4.4 The Hybrid Algorithm: Time Suggestion

The completely decentralized approach solves the problem at hand under a

specific framework and priority scheme.However, we have noticed that there

is room of improvement, especially if the Intersection Manager is better

utilized, while keeping the framework decentralized. This comes in order to

improve the following aspects:

1. The completely decentralized approach is triggered when the higher

priority vehicle is within a safety distance from the conflict zone during

the prediction horizon. This does not pose a problem when a safety

scheme such as the Time to React is employed, since it assures that the

higher priority vehicle arrives in the activation space before the lower
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priority vehicle. In schemes such as the first come first serve, this is

not taken into consideration, and the decentralized approach might be

triggered too late that no feasible solution can be found. Having a

way that assures the feasibility of the solution is thus needed in such

a high risk environment under all priority schemes.

2. Even in the Time to React scheme when a feasible solution of possible,

due to the late activation of the safety constraint a high jump in the

control action is expected,having a way that would decrease this jump

is encouraged for comfort and fuel consumption purposes.

We thus introduce a way to use the intersection manager without increasing

the strain on the network. In [], a negotiation algorithm between the vehicles

through the intersection manager is implemented in order to arrive at times

of arrival to the intersection space that would assure safe passage. This

is highly similar to the reservation based algorithms employed early in the

literature, it however puts a large strain on the network through requiring

the continuous communication between vehicles until a solution is reached.

Instead we implement a similar approach while taking advantage of the

presence of the collision avoidance algorithm that would be triggered close

to the conflict area. The algorithm elaborated below, is triggered whenever

a new vehicle enters the intersection space, or more specifically, the ’Time

Suggestion Zone’.

Algorithm 2: Time Suggestion upon Vehicle Entry Algorithm

Entering Vehicle: send entry data;

Intersection Manager

Get Conflict Points;

Form conflict set Ac;
Calculate Priorities Request Data from Vehicles in ’Time

Suggestion zone’;

Calculate time suggestions for vehicles ’Time Suggestion zone’;

Broadcast suggested times to vehicles ’Time Suggestion zone’;

Vehicles in ’Time Suggestion Zone’

Re-plan Trajectories based on local MPCs;
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The data sent by the entering vehicle is:

• Current Position/Average Velocity based on priority scheme.

• Lane information ( Current lane, Target Lane).

• Planned time of arrival to conflict zones.

Based on this information, the intersection manager creates the set of ve-

hicles with who there might be conflict, it then calculates the priority list.

Based on the priority list and the available information received from the

vehicles in the ’Time Suggestion Zone’ the Intersection manager then calcu-

lates the new suggested times of arrival to the conflict zones and broadcasts

this information to the vehicles who re-plan their trajectories based on their

local MPCs.

4.4.1 Calculation of Suggested Times:

In order to improve the performance and the system and taking into con-

siderations that vehicles enter the intersection zone sequentially, a method

that borrows from the spot reservation technique is introduced to suggest to

the vehicles the time at which they should enter the intersection space. The

Intersection Manager formulates the problem of finding the crossing times

as a quadratic program.

minimize
tref

(tref − tsug)TQ(tref − tsug) + cT (tref ) (4.22a)

subject to

tref,i + ts,i+1 ≤ tref,i+1 (4.22b)

Here Q weighs the variation between the time presented by the vehicle

for the crossing and that suggested by the IM.tref is the time that will be

suggested by the IM to the vehicles while tsug is the already planned time

sent by the vehicles to the IM. The constraint makes sure that a safety

time is kept between the arrival of two vehicles to the same conflict zone.

The safety time is a property of the system and is not based on the vehicle

preference. Since the intersection manager plays the role of traffic regulator,

it has the freedom of adjusting the safety time depending on the level of
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traffic where it can be increased in case of light traffic and decreased in

case of congestion. The safety time is calculated keeping in mind the safety

distance and each vehicles average predicted speed (v̄k) as:

ts,k =
dsafety
v̄k

(4.23)

4.4.2 Trajectory Re-Planning

The suggested time is then sent to each vehicle which re-plans its trajectory

according to the suggestions of the manager through what we call the re-

planning Optimal Control problem which can be formulated as:

minimize
1

2
(x(tsug)− xc)TPi(x(tsug)− xc) +

1

2

∫ tf

ti

Q∆V +R∆U

(4.24a)

subject to

umin ≤ u ≤ umax, (4.24b)

0 ≤ vi ≤ speedlimit (4.24c)

The terminal cost introduced to the Planning Algorithm assures that the

trajectory is modified to take into account the time suggestion of the in-

tersection manager. The terminal cost weighing matrix is a function of the

variation between the previously planned time and the one that is suggested,

in this way the more the vehicle is close to collision, the more it will work

to follow the suggestion of the intersection manager.Where P is updated at

each round of suggestions to be

Pi(κ) = εi|tref,i − tsug,i| (4.25)

The choice of the constant εi depends on the priority scheme being followed

in addition to the aggressiveness of the vehicle. For example, if the priority

scheme employed is First-Come First-Serve, then the value of epsilon is

predicted to be larger than that when a Time to React Priority Scheme is

employed. This way, the Intersection Manager plays the role of regulating

traffic with minimal computation done centrally.
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Chapter 5

Discussion of Results

In this chapter, we will present and discuss the results of the coordination

algorithms discussed in the previous chapters. We will begin by validating

the collision avoidance controller for two vehicles, while discussing the effect

of the various parameters present in the Vehicle’s local MPC. We will then

perform an uncertainty analysis in-order to obtain and tune controllers ca-

pable of handling different types of uncertainty. We will show the results of

the decentralized coordination algorithm on similar and different vehicles in

different scenarios while highlighting the room for improvement. Next, we

will introduce the hybrid algorithm in two modes, re-planning based on first

point of entry and re-planning based on complete trajectory, while compar-

ing these modes to the completely decentralized approach and highlighting

the improvements. Finally, We introduce a new priority scheme allowing for

the inclusion of an emergency vehicle in the scenario, we then compare the

different applied schemes and their application via the designed algorithms

while highlighting the advantages of the hybrid control strategy.

5.1 Decentralized Coordination

In this section we present and discuss the results obtained applying the

completely decentralized approach. Starting from the 2-Vehicle cases ( 4-

way Intersection, and Y-Junction Merging), moving to the full 4-Vehicle

case.



Figure 5.1: Scenario with planned trajectories

5.1.1 Two-Vehicle Collision Avoidance

We begin our analysis by considering the collision avoidance between two

vehicles, we will show case the ability of the controller to avoid collision by

simulating two road scenarios.

4-Way Intersection

We will be considering the scenario shown in Fig.5.1 , the various parameters

chosen are presented in Table. 5.1. we assume that the planned velocities

are constant through-out the vehicle’s trajectory for a straight trajectory.

The point corresponding to the (0,0) position is the collision point of the

two trajectories.

Safety Distance 9.5 m

Vehicle 1 Initial Position (0,-113.95 m)

Vehicle 1 Planned Velocity 13.9 m/s

Vehicle 2 Initial Position (110.15 m, 0);

Vehicle 2 Planned Velocity 13.9 m/s

(Q,R, S, δ) (1, 1, 0.2, 1)

Table 5.1: A table listing the parameters used in the simulated scenario
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We begin our analysis with vehicles sharing the same parameters, in later

sections we will discuss different cases.As discussed in the previous chapter,

in the decentralized approach the Time to React is used in order to obtain

the crossing order. In this scenario :

TTR1 =
113.94

13.9
= 8.1978seconds

TTR2 =
110.15

13.9
= 7.9245seconds

The reason why these initial conditions were chosen is to simulate the be-

havior of two vehicles entering the intersection space within a short time of

each other. The velocity Profiles generated after the simulation can be seen

below.

Figure 5.2: Velocity and Acceleration of Vehicle 2 through the scenario

The first thing to observe is that the crossing order is respected, where

we have that Vehicle 1 gave way to Vehicle 2 as it had the greater time to

react. We also notice that the velocity variation wasn’t big, and safe passage

for two vehicles arriving at very close times to the collision point initially is
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Figure 5.3: Velocity and Acceleration of Vehicle 1 through the scenario

guaranteed ( as can be seen by observing Figure 5.4) without stopping, out-

lining the advantages cooperative vehicles would have over human driving.

From the figure of the headways, we observe that the velocity modification

Figure 5.4: Headway Between the Two Vehicles during the simulation
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was necessary to obtain a headway greater than that required for safety. The

next step was to analyze the control signal generated, in order to understand

whether actuation is required at a high frequency. From the graph of the

acceleration, we notice that there is no sharp jumps, but to get a clearer un-

derstanding we perform a wavelet analysis of the control signal From Figure

Figure 5.5: The wavelet transform of the Control Signal of Vehicle 1

5.5 We can observe that the highest frequency element in the control signal

has a frequency in the neighborhood of 1Hz and corresponds to the first

time the controller is triggered. We can therefore safely say that the control

signal does not contain any high frequency components that might exceed

the actuation speed. Moreover, being a real time problem, our sampling

frequency is higher than twice the highest reported frequency. Allowing for

calculation and execution of control action during the sampling period.

Y-Junction

We next move to the case of a Y-Junction which is a lane merging scenario.

We decided to employ this scenario and divert from the 4-way intersection

in order to:

• Show the flexibility off the proposed collision avoidance controller and

its applicability to various scenarios

• Show the behavior of a curving vehicle
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• Outline that the controller works in different priority schemes as will

be shown in what follows

We begin by outlining the scenario which can be seen in the figure below:

Figure 5.6: Y-Junction Scenario with Planned Trajectories

Initial conditions and control parameters are presented in the table 5.2. Un-

like in the previous scenario, the planned velocity can’t be assumed constant

throughout the interval for both vehicles. The velocity profile for the turn-

ing vehicle is thus 1 as shown in figure 5.7. As for the priority, and since in

Figure 5.7: Way-point generated Reference speed for Merging Vehicle
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Safety Distance 9.5 m

Vehicle 1 Initial Position (106 m, 87.2 m)

Vehicle 2 Initial Position (-2 m, 140 m );

Vehicle 2 Planned Velocity 13.9 m/s

(Q,R, S, δ) (1, 1, 0.2, 1)

Table 5.2: A table listing the parameters used in the simulated scenario

this section it is defined at the initiation of the scenario and kept constant,

we chose to follow the rules of traffic allowing for the vehicle on the main

road to pass first. This serves to show the applicability of the controller to

different schemes, a topic which will be detailed in later sections. Reported

below are the generated velocities and accelerations for different imposed

safety distances.

Figure 5.8: Velocity and Acceleration of Merging Vehicle through the scenario

From the graphs above, we can observe from the acceleration plots two

main sinusoidal components, the one which corresponds to the braking for

the turning maneuver while the second smaller and earlier one corresponds

to the braking for collision avoidance, Moreover, it can be seen that the

level of braking and thus the decrease in velocity is dependent on the safety

distance. Moreover, we observe that the vehicle on the main road does not

alter its velocity which is in accordance to the mode of functionality of the

controller outlined in the previous chapter.
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Figure 5.9: Velocity and Acceleration of on main Road

The values of the head-ways corresponding to the three different safety dis-

tances are reported in the figures below:

Figure 5.10: Plot of the Variation of Headway between Vehicles(Safety Distance =

8.5m)

Figure 5.11: Plot of the Variation of Headway between Vehicles(Safety Distance =

9.5m)
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Figure 5.12: Plot of the Variation of Headway between Vehicles(Safety Distance =

10.5m)

It can be seen that the safety distance is always kept, and that in all of the

reported cases if not for the clash avoidance controller, collision would have

occurred as can be seen by the distance between vehicle going below the

minimum safety in the non-controlled case.

As mentioned earlier, in the response of the system two main harmonics

can be clearly observed, one could further see this by plotting the control

signal as a function of time in addition to the wavelet transform of the sig-

nal to analyze the response in the frequency domain and make sure that

the sampling time is sufficient to capture the required information, and that

the frequency of the control signal is within the actuation range. The plots

below correspond to the case with a minimum safety distance of 10.5m: As

Figure 5.13: Control signal for

safety distance = 10.5m)

Figure 5.14: Scalogram of the

wavelet plot of the control signal)

can be seen, we have two main components one from t=6s to t=14s at a fre-

quency of 0.5 Hz. While the second lower frequency component component
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is reported in the time interval of t= 7s to t=12s with frequency component

of around 0.1 Hz It can be noticed that both are below half the sampling

frequency and thus the Shannon condition is satisfied for both instances.

5.1.2 Four Vehicle Scenarios

In this section we extend the approach of the previous section to the 4 vehicle

scenario, where we will simulate the 4-way intersection scenario taking into

account all 4 vehicles. In the beginning we will discuss the case of 4 identical

vehicles travelling at identical speeds, then we will study the case of different

vehicles.

Scenario with Four Identical Vehicles

As with the previous section we begin with a description of the scenario,

and the initial conditions. However we will stick to analyzing one safety

distance, leaving the analysis of different safety distances to the next sec-

tion. The modelled scenario, along with the vehicle way-points can be seen

in Fig 5.16. We have four straight travelling vehicles and one vehicle that

is attempting a left turn. In a non-controlled scenario, as will be seen later

collision is expected between the three straight-traveling vehicles.

Figure 5.15: Planned Paths for the 4 vehicles scenario
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In this first modelled 4-way scenario, it was our intention to test the ability

of the controller to adapt, the positions and velocities of the previously con-

sidered vehicles were kept the same, while we added the other two vehicles

in a way so that the vehicle approaching from the top would collide with

the vehicle coming from the right if no control was applied, while having the

vehicle coming from the left at a distance close enough for conflict to ensue

if the other vehicles slow down. In this way it is possible to observe how the

controller reacts to other vehicles changing their planned trajectories. Since

this was the main emphasis of this scenario, the controller gains and planned

velocities were the same for all vehicles. All the significant parameters are

reported in the table below:

Safety Distance 9.5 m

Vehicle 1 Initial Position (0,-113.95 m)

Vehicle 2 Initial Position (110.15 m, 0);

Vehicle 3 Initial Position (-3.7 m , 110.85 m);

Vehicle 4 Initial Position (-122.5 m , -3.7 m)

Planned Velocity 13.9 m/s

(Q,R, S, δ) (1, 1, 0.5, 1)

Table 5.3: A table listing the parameters used in the simulated scenario

The resulting velocity and acceleration profiles are summarized in the fol-

lowing plots, presented in order of entry to the intersection: From the

Figure 5.16: Velocity and Acceleration Vehicle 3 (Top,Red)
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Figure 5.17: Velocity and Acceleration Vehicle 2 (Right, Yellow)

velocity and acceleration plots of Vehicle 2, it is clearly seen that in fact,

the vehicle was able to react to its counterpart with higher priority where

braking initiates at 3.25 seconds from the beginning of the simulation. More

interestingly, is the reaction of Vehicle 1 which is reacting to the change in

the behavior of vehicle 2. It can be seen that at time 3.5 seconds, the vehicle

initiates its braking as in the case of two vehicles, a spike is then observed

which is due to the change in the plan of Vehicle 2 (arriving to Vehicle 1

at the consequent time-step). The final result is an increased braking as

the priority order is kept constant throughout the scenario, which leads to

a velocity decrease greater than that observed in the two vehicle case.

Figure 5.18: Velocity and Acceleration Vehicle 1 (Down, Purple)
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Figure 5.19: Velocity and Acceleration Vehicle 4 (Left, Blue)

From the response of the left turning vehicle it can be seen that un-

planned braking takes place in the neighborhood of 4 seconds from the start

of the simulation as a reaction to vehicle 1 slowing down. The scenario thus

proves the ability of the controller to handle the full intersection scenario in

addition to showing the adaptive nature of the Model predictive controller

and its ability to react to unplanned behaviors which puts it in an advanta-

geous position when compared to traditional reservation based algorithms

Figure 5.20: Plot of the Headway between all Vehicles throughout the simulation with-

out Control
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Figure 5.21: Plot of the Headway between all Vehicles throughout the simulation with

Applied Control

5.1.3 Non-Identical Vehicles

The next step is to simulate the scenario with non-identical vehicles in order

to establish the generality of the approach. We thus chose to simulate the

previous scenario with vehicles having different parameters reported in the

Table 5.4:

Safety Distance 9.5 m

(Ta1,Q1,R1,S1,δ1) (0.1,0.6,1,0.5,1)

(Ta2,Q2,R2,S2,δ2) (0.5,1,1,0.2,0.7)

(Ta3,Q3,R3,S3,δ3) (0.3,1,1,1,1)

(Ta4,Q4,R4,S4,δ4) (0.2,5,1,1,1)

Table 5.4: A table listing the controller parameters for the different vehicles used in the

simulated scenario

We will analyze the difference in behavior from the nominal case for each

vehicle. Starting from the left turning vehicle 4, where the only parame-

ter which was modified from the nominal scenario is the value of the gain

multiplying the variation from the reference velocity. It could thus be seen

that the reference profile is more accurately followed at the expense of an

increase in the braking done by the vehicle as can be seen in the sharp peak

at 8.5 seconds.
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Figure 5.22: Velocity and Acceleration Vehicle 1

Figure 5.23: Velocity and Acceleration Vehicle 2

As the behavior of the vehicles 2 and 1 are linked they will be discussed

simultaneously, Looking at vehicle 2’s acceleration plot we notice two sepa-

rate braking instances highlighted by the red boxes, this comes due to the

decrease in the parameter δ coupled with the increase in the actuation time

constant Ta. The vehicle thus would prefer to brake later than in the nom-

inal case (4 seconds) but due to actuation limitations, it performs a smaller

braking maneuver in order to be able to accomplish the avoidance. What is

remarkable is that this delayed braking influences the behavior of vehicle 1,

which at 4 seconds from the start of the simulation performs braking similar

to that observed in the nominal case, however due to the second instance
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Figure 5.24: Velocity and Acceleration Vehicle 4

of braking of vehicle 2, the second braking valley in the acceleration plot of

Vehicle one is lower and wider than in the nominal case. From the analyzed

behaviors, it can thus be concluded that:

1. The collision avoidance Predictive Controller is capable of handling

sudden changes in behavior ( Vehicle 1’s reaction to the delayed brak-

ing of Vehicle 2)

2. Collision is avoided taking into consideration the lag term in the model

3. Having a single non-cooperative entity decreases the efficiency of the

whole system

Figure 5.25: Evolution of Head-ways for the non-Identical Vehicles
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5.1.4 Controller Tuning and Uncertainty Analysis

As can be seen from the previous results, the collision avoidance controller

is capable of handling various values of the minimum required distance. It

is thus of interest to correctly estimate the values of the control parameters

that would be able to handle different kinds of uncertainty such as those

that arrive from position sensors and mis-modelling. In this section we

will begin by outlining the effect of the parameter δ in the Vehicle’s MPC

and why it could be of particular interest in this study. We will perform

an uncertainty analysis in order to obtain the set of controller parameters

suitable for different values of actuation times.

Driver Aggressiveness Parameter

In order to account for driver aggressiveness, or vehicle non-cooperativeness

which could be a setting in an automated vehicle or a way of accounting for

legacy drivers, the weighing term δ was used in each vehicle’s local MPC.

The term delta was used as what is commonly referred to in multi-agent

systems and negotiation schemes as the Bellman discount factor. In such

schemes, it is often used to show that a delay in obtaining a reward results

in a discounted utility. In our case however, and as it is used in a mini-

mization framework rather than a maximization one, the value delta weighs

future deviations from the reference velocity less than immediate ones, thus

resulting in delayed braking behaviour as can be seen in Figure 5.25.

This thus can be used to showcase aggressive driving behavior or to high-

light the delayed reaction of the human driver which relies on vision in order

to pass the intersection and thus initiates braking at a later time than the

cooperative vehicle receiving distance measurements at all time instants.

A rough comparison between traversed trajectories of vehicles having δ = 1

and δ = 0.5 while keeping the other parameters fixed, as shown below. We

first construct a cost function penalizing :

• Variation form reference Velocity (Time Costs)

• Jumps in Acceleration (Comfort Cost)

• Maximum absolute values of acceleration (Energy Costs)
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Figure 5.26: Velocity and Acceleration Variation due to Change in aggressiveness

to form :

Jδi =
1

2
∆V 2

max +
1

2
∆a2max +

1

2
a2max (5.1)

The brake down of the costs is reported in Table 5.5:

Cost Cooperative Non-Cooperative

Time 1.2146 6.7421

Comfort 0.3103 2.0096

Energy 1.1186 3.3131

Total 2.6435 12.0648

Table 5.5: Breakdown of costs associated with different aggressiveness/cooperativeness

levels

From this simple comparison alone, the advantages of far-sightedness and

cooperation is apparent where the costs for passing the intersection in the

cooperative (δ = 1) case are almost six times lower than those associated

with the ”non-cooperative”/”aggressive” behavior.

System Performance Analysis

In this section we try to demonstrate the effect that the power dynamics,

summarized as a first order lag element and characterized by the actuation

time constant Ta which reflects each vehicle’s ability to accelerate and de-

celerate, have on the response.
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Different actuation actuation time constants can be due to different types

of engines, or power-train architecture. In the figures below is a graph of

the different behaviors vehicles with different actuation speeds have while

going through the 2-Vehicles in an Urban four-way intersection discussed in

the previous section: It can be seen that the higher the actuation speed, the

Figure 5.27: Velocity and Acceleration Variation due to Change in Actuation Speed

steeper the acceleration, while as the actuation speed decreases the curves

become smoother. This smoothness of the response however comes at the

expense of greater acceleration values for a longer period of time as can be

seen the figure.

Measurement Uncertainty

Vehicles rely on sensory input from various sensors in order to localize them-

selves in their environment,however all measurements are subject to a range

of uncertainties and a robust control system should be able to safely avoid

collision while taking into account a margin of error in the distances with

the other vehicle. For this purpose we have simulated the 4-Vehicles in an

Urban four-way intersection scenario while taking into account different val-

ues of safety distances. This variation in the safety distance serves as a sink

for the error in the distances communicated to the vehicle.

Remark: A detailed overview of the different kind of sensors, and their

respective uncertainties can be found in [87,88]
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Model Uncertainty

Due to the simplified model of the system, the power train dynamics are

summarized in the actuation time constant Ta, to add a level of robustness

to the controller design, it was thus necessary to simulate the scenarios

above for different values of actuation time constants in order to reach a set

of controllers that would be applicable to a wide range of vehicles and that

could deal with variations in the actuation speeds (either due to the simple

modelling of the actuation dynamics or due to errors in the modelling).

Controller Tuning and Parameter Selection

In order to come up with a robust design, for the criteria mentioned above,

it was necessary to simulate the intersection scenario with similar vehicles

while varying the following parameters:

• Driving Aggressiveness δ ∈ (0, 1)

• Penalty on Acceleration Jumps S ∈ (0, 0.5)

• Safety Distance

• Actuation Time Constant Ta ∈ [0.1, 1]

We first began our analysis by checking the sets of parameters that would

satisfy the safety conditions for the various considered values of the varied

parameters. For each value of the minimum distance, In the figures 5.18,5.19

we show for each set of parameter values if the safety distance condition is

satisfied (Blue) or not (Red) for safety distances 8.5,9.5 m.

This clearly shows how the slower the actuation of the vehicle, the fewer

the number of acceptable controller parameters that are capable of reaching

this objective, since for slowly reacting vehicles, highly aggressive driving

behaviour coupled with high cost on jumps in acceleration would render the

problem infeasible since the collision avoidance constraint is activated in a

restricted region of the intersection space that would entail certain limits

on actuation in for safety to be achieved. This variation in the number of

acceptable parameter values is plotted in the bar graph below for different

safety distances.
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Figure 5.28: Condition Satisfaction as a function of Parameter values (Safety Distance

= 8.5m)

Figure 5.29: Condition Satisfaction as a function of Parameter values (Safety Distance

= 9.5m)

Being the total number of considered combinations of parameter values

for each actuation time 50 for each safety distance two major observations

can be made looking at the above bar diagram:

• There exists a set of parameter values that satisfies the safety condition

for all values of safety distances and actuation times
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Figure 5.30: Bar Diagram showing the total number of acceptable Controller Parameters

as a function of Actuation Speed for various Safety Distance)

• As the safety distance increases, the number of parameter values that

are applicable increases or stays constant, this again highlights one

area of improvement of this control approach. Since with a greater

safety distance the controller is triggered earlier and thus has a greater

time to satisfy the constraints.

Based on these observations, we decided to first collect all the values of

the controller gains that satisfy the safety condition for all values of actuation

times and safety distances considered which would be the basis of the robust

controller design. We then will perform a comparison of the performances of

these controllers based on a min-max cost function in order to come up with

a set of parameters that in a way optimize the considered cost function.

After the collection of the suitable parameters, and to get a sense of the

effect that each of the varied parameters has, the variation of the following

Variables was plotted:

1. Minimum Velocity

2. Minimum Acceleration ( Maximum Breaking)

3. Maximum Acceleration

4. Maximum Jerk (Comfort)
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Since Actuation time and safety distance are parameters of the system

and not of the controller, and since the values of the parameters chosen

were satisfactory for all actuation times and safety distances, the values

mentioned above are taken as the mean values among all considered actua-

tion times. Plots of the variations for different safety distances are reported

below:

Figure 5.31: Plots of the maximum variation from reference velocity (right) and the

maximum jump in acceleration (left) as a function of chosen controller gains

Figure 5.32: Plots of the maximum values of acceleration (right) and the minimum

ones (left) as a function of chosen controller gains

The plots of the achieved safety margins can be interpreted in two ways,

one way is to consider the deviation as a positive which results in an added

level of safety or as a disadvantage where it would be optimal to have vehicles

achieve the safety distance exactly to have a faster running flow of traffic.

Based on either consideration, the cost function was adjusted to arrive at

the desired ”optimal” parameters.
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From the reported figures, it is clear to observe a trend in behavior of

the various considered variables, regardless of the considered safety distance,

lumping the cost for all considered safety distances is thus a reasonable

step.A cost function was then constructed that would enable us to under-

stand the overall performance at each data point :

Cost = ±α∆Dsafetyi +βmax(∆V )i+ζmax(a)i−ηmin(a)i+γmax(|∆(a)|)i
(5.2)

Where ∆Dsafety is the distance from the Dsafety parameter i, ∆V is the

variation from the reference velocity and a is the acceleration and the con-

stants α, β, ζ, η and γ are weighing constants. The goal was to obtain a

Pareto Optimal Set of Parameters through finding a set that would be the

minimum at all Safety Distances From the above plots, what is observed is

Figure 5.33: Plots of the lumped costs in both positive and negative effect of safety

margin

that in both cost functions, the cost increases as δ increases, however when

it comes to the cost on the jump in acceleration, what can be observed is

that the optimal value is for S= 0.3 which is in the middle of the considered

values. The effect S has on the cost is however not as noticeable as that of

the term δ

5.2 The Hybrid Algorithm

In this section, the role of the intersection manager first discussed in Chapter

4.4 will be elaborated on, showing the inputs and outputs of the manager
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in addition to discussing the trajectory re-planning of the entering vehicles

and the effect of the terminal cost, which will have a major role in the

application of the First Come First Serve Priority Scheme. Then being the

main contribution of this report, the advantages of the hybrid algorithm will

be highlighted by comparing it to the previously discussed controller.

5.2.1 Introduction

In the decentralized approach, the Intersection Manager’s role was mainly

relaying information among the vehicles, however in the hybrid scenario its

role is greatly increased where it has to:

1. Calculate the crossing order based on received information

2. Suggest Arrival time to the various conflict regions for all vehicles

3. Keep track of vehicles in the intersection space ( Possible Conflicts,

Target Lanes, Position in the intersection space)

Stage 1: Localization and Forming Property List

When a vehicle then enters the intersection space, It transmits the current

lane and the target lane along with the predicted time of arrival to the

intersection space from the vehicle’s local trajectory planning. Based on this

information, the Intersection manager localizes the vehicle in the scenario,

it predicts the conflict zones through which it will pass, request information

from vehicles in the ’Time Suggestion Zone’ and order the information in as

seen in Table 5.6:

It is important to note that the time of arrival and Safety Time (calculated

Vehicle ID Current Position Time of Arrival Safety Time

1 -98 42 3

3 -76.42 34 3

4 -70.13 33 4

Table 5.6: Example of the Input of the Priority List and Time suggestion Algorithm

based on Equation 4.23) are in discrete time steps rather than actual time.

The current position is only requested in case of the First Come First Serve

Scenario in order to limit the amount of private information for security
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purposes. The Vehicle IDs used in this scenario are simple integers without

loss of generality, but alpha-numeric strings can also be used.

Stage 2 : Time Suggestion

The input information is thus processed in order to rank the vehicles based

on the priority criterion ( First Come First Serve, Time To React ...). The

table is reshaped to rank the vehicles in the desired order and the information

is sent to the time suggestion optimizer, which based on the current time

of arrival sent by the vehicles and the respective safety times calculated the

suggested Times of Arrival generating the output Data in the form presented

in Table 5.7

Vehicle ID Time of Arrival Safety Time Suggested Time Time Difference

4 33 4 33 0

3 34 3 37 3

1 42 3 42 0

Table 5.7: Example of the Output of the Priority List and Time suggestion Algorithm

Stage 3: Trajectory Re-planning

After receiving the time suggestion from the Intersection Manager, each ve-

hicle acts on the information in order to generate a re-planned trajectory

based on the Trajectory planning Optimal Control Problem stated in 4.4.2.

An example of the re-planned trajectories can be seen in Figure 5.33 It is

Figure 5.34: Re-planned Velocities For Vehicles 1 and 2 in the 5.1.2 Identical Vehicle

Scenario, P = 0.1

however important to note that, this variation in velocity is based on each
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vehicle’s trajectory planner, namely it is directly related to the gain P as-

sociated with the variation from the suggested time. This term is left as a

free variable which is also influenced by the aggressiveness/cooperativeness

of the vehicle.In the first come first serve scenario, and as it required major

modification of the planned trajectory, the cost term is put to higher values

than in other priority schemes.

It should also be noted that the trajectory re-planning does not guarantee

the collision-free passage of the vehicles through the intersection as the con-

straint is a soft one and there is no continuous feedback with the intersection

manager to guarantee convergence to the suggested time. The role of the

Intersection manager is thus to help the vehicle’s adjust in order facilitate

the avoidance of collisions in a more efficient manner as will be shown in

what follows.

5.2.2 Two Vehicle Scenario Comparison

We begin our analysis of the Hybrid control algorithm by analysing the im-

provements it has in the two vehicle scenario, by comparing it to the already

analyzed behaviors. We, and for avoiding repetition will only compare the

behavior of the Y-Junction scenario since more insight will be obtained for

the urban intersection scenario in the four vehicle case.

Since the same scenario is analysed, we refer the reader to Figure 5.6 and

table 5.2 for a description of the scenario. The resulting behavior of the

merging vehicle is reported in Figure 5.35.

It is clear to see the advantage of the (minimal) early braking action, where

the minimum velocity achieved in greater than that in the scenario without

re-planning. The greatest improvements however, are seen in the accelera-

tion plots where early breaking of 0.2637 m
s2

magnitude results in a smoother

response having peaks of lower magnitudes. The ’smoothness of motion’ is

perhaps better observed by looking at the wavelet plots of the response.

The difference from the nominal case is apparent where the amplitude of

the frequency components is decreased and the range of frequencies due to

the collision avoidance braking is decreased from around 0.5Hz to 0.3Hz. It

is important to note that the frequency of the applied control action is not

only important for the practical purposes but also for comfort purposes.
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Figure 5.35: Plots showing achieved Velocity and Acceleration Profiles for both algo-

rithms

Figure 5.36: Plots of the Control Signal and corresponding wavelet Transform Spectro-

gram

5.2.3 Four Vehicle Comparison

It has been mentioned in earlier chapters that the previously discussed algo-

rithm exhibits some weaknesses and shows areas for improvements. We thus

in what follows will begin by showing the performance improvement of the

hybrid algorithm over the Collision Avoidance one, by simulating the same

scenario in the ’Four Way Urban Intersection Identical Vehicles’ Scenario.

We will then simulate a different scenario in both the ’Time to Collision’

and ’First Come First Serve’ priority schemes comparing the outputs of the

controllers and comparing the efficiencies of the priority schemes.

91



Performance Comparison

In the development of the hybrid algorithm, we had to consider various

possible approaches when expanding the problem from the two vehicle case

to the four vehicle case. In order not to overly strain the network, we

investigated the following possible methods:

• Re-plan trajectory based on the first entry point: In this way only the

first entry point is considered in the time suggestion algorithm of the

intersection manager.

• Re-plan trajectory based on the first occupied point of entry: In con-

trast with the previous approach, the time suggestion algorithm takes

into consideration the first conflict point that will be passed by other

vehicles in the ’Time Suggestion Zone’.

• Re-plan based on all conflict areas: In this algorithm the time sug-

gestion loops over all possible conflict areas and suggests times to all

affected vehicles in the ’Time Suggestion Zone’.

Remark: It should be noted that time suggestion occurs only to vehicles

within the ’Time Suggestion’ Zone by design, as we don’t want the two

controllers to work at the same time which might lead to unpredicted errors.

The sizes of the zones were selected on the basis of the considered safety

distance.

We begin our comparisons by plotting the velocities and accelerations for

all vehicles in the considered scenario ( We refer the reader to Figure 5.15

and Table 5.3 for scenario topology and Initial conditions).

We begin by discussing the response of vehicle 4, which upon entry has only

vehicle 1 (Coming from the top) in the ’Suggestion Zone’. We notice that

its response is thus very similar to the case without the time suggestion

application when the ’Entry Point’ method is used, This also leads to a

similar response from vehicle 2.

This motivated us to explore the possibility of using the ’First Occupied

Point of Entry’ For time suggestion. This allows vehicle 4 to consider Vehicle

1 which is not at its entry point, the modified response can be seen plotted in

pink in Figure 5.37. Due to a small braking action upon entry, the required

braking for avoiding collision is reduced, moreover this translates to lower
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effort required from Vehicle 2 as can be seen in figure 5.38.

The ’smoothest’ and least demanding responses however, were observed in

the Re-plan All’ Approach where all possible conflict points are considered

by the Intersection manager for suggesting the times, this leads to very

small and minimal braking from the vehicles, as can be seen by looking at

the cyan plots in the before mentioned figures. As for vehicle 3, minimal

Figure 5.37: Plot comparing responses for Vehicle 4 (Right, Yellow)

Figure 5.38: Plot comparing responses for Vehicle 2 (Down, Purple)

differences between the responses can be observed, mainly due to the fact

that little deviation from the reference trajectory is required for the safe

passage through the intersection space.
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Figure 5.39: Plot comparing responses for Vehicle 3 (Right, Blue)

Analysing the time response of the vehicles is however not sufficient, we

thus produce the response in the time frequency domain using the wavelet

transform. In the figures below, only the responses of the ’Occupied Point

of Entry’ and the ’Re-plan All’ approaches are reproduced, as they are the

responses with most promise.

Figure 5.40: Spectrogram of the wavelet transform for the Occupied Entry Point (Right)

and Replan All (left) for Vehicle 4

Looking at the time-frequency plots for vehicle 3, for the Occupied Point

of entry method it is seen that the dominant frequency band during the brak-

ing maneuver is between 0.6 and 1.2 Hz, for the ’Re-plan all’ (RA) method

however, the band is 0.4 Hz to 0.8 Hz which can be translated to a softer
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motion profile. As the ’Occupied Point of Entry’ (OPE) method shows very

similar response to the collision avoidance response (with shorter peaks in

the acceleration graph) the improvements (RA) has over (OPE) can be ex-

tended to the other approaches discussed earlier.

The most significant improvement can be observed in Figure 5.41, where

Figure 5.41: Spectrogram of the wavelet transform for the Occupied Entry Point (Right)

and Re-plan All (left) for Vehicle 2

the most dominant frequency changes from 1.2Hz to 0.4 Hz, this occurs due

to spreading the needed braking over a long period which leads to avoiding

excessive late braking.

The results both in the time and frequency domains show the performance

related improvements that the Hybrid algorithm has over the Collision

Avoidance once. It is however also of interest to be able to achieve the

desired safe passage regardless of the considered priority scheme, which is

not always the case for the collision avoidance controller.

The last performance check was to check the range of actuation time con-

stants Ta for which the controller was capable of achieving the desired out-

come. The simulation was carried out for the same set of parameters studied

in Section 5.1.4 and the outcomes are shown in Figure 5.43. It can be seen

that the set of parameter values that achieve the desired outcome is greater

than in the previously considered case for the entire range of Ta considered.

In fact the simulations ended in success for all the considered values, proving

the Hybrid approach to me more robust.
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Figure 5.42: Plots showing the improved ability of the Re-plan All Hybrid method at

achieving safety for all Ta

First Come First Serve Priority Scheme

In this section, we aim to show that on its own, the collision avoidance

controller is not capable of satisfying the First come First Serve Priority

Scheme.This is important since human legacy drivers in urban 4-way inter-

sections often rely on a passage rule that is similar to the First Come First

Serve Priority Scheme, thus for any integration between cooperative vehicles

and legacy driving, it should be possible to enforce the crossing order on the

basis of the human drivers.

Our scenario is simulated using the normal 4-way urban intersection set-

ting, however the initial conditions of the vehicles have changed from the

previously modelled scenarios and are summarized in the following table :

From the table we can see that the order of entry is [2,3,1,4]. The

Safety Distance 9.5 m

Vehicle 1 Initial Position (0, - 113.95m) Planned Velocity 15 m/s

Vehicle 2 Initial Position (110.15m, 0) Planned Velocity 13.9 m/s

Vehicle 3 Initial Position (3.7m, 110.85m) Planned Velocity 12.5 m/s

Vehicle 4 Initial Position (122.5m, 3.7m) Planned Velocity 13.9 m/s to 5m/s

Table 5.8: Table showing the initial conditions for the considered Scenario

priority ranking based on the Time to React is however [1,3,2,4]. It is

thus important to see if the controllers are able to force the crossing or-
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der, knowing that vehicle 2 arrives within a safety distance of the con-

flict area at a time when vehicle 3 is already inside the intersection zone.

Collision Avoidance Controller Results:

We can see that Vehicle 2 doesn’t not deviate from its reference velocity,

Figure 5.43: Time Response of Vehicles 2 and 3

Figure 5.44: Time Response of Vehicle 1

Figure 5.45: Time Response of Vehicle 4
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which means that it does not concede its position to vehicle 3, since vehicle

3 arrives within a safety distance of the conflict region at a very late time.

On the other hand, Vehicle 1 concedes entry to Vehicle 2 as can be seen

from the time response (Fig. 5.44). Safe Passage however was achieved as

the safety distances was kept as can be seen from Figure 5.46. No emer-

gency braking was done since the controller for Vehicle 2 did not predict any

violation of the safety distance which could not be avoided throughout the

vehicle’s motion.

Figure 5.46: Achieved Head-ways with FCFS Priority Scheme,CA controller

Hybrid Control Algorithm Results

Figure 5.47: Time Response of Vehicle 2

What can be seen from the results,besides the smoothness of the response
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Figure 5.48: Time Response of Vehicle 1

Figure 5.49: Time Response of Vehicle 3

Figure 5.50: Time Response of Vehicle 4

is that the crossing order follows that of the Priority scheme, where signif-

icant deceleration is observed in Vehicles 1 and 2. Vehicle 2 thus brakes

allowing Vehicle 3 to pass while Vehicle 1 concedes to both vehicles. It is

also noteworthy that the suggestion does not on its own guarantee the safe

passage, where the collision avoidance controller is triggered at t = 5 sec-
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onds for vehicle 2 while it is also triggered at t =5.25 for vehicle 1. We can

finally observe that safe passage was achieved satisfying the minimum safety

distance constraint (Fig. 5.51).

Figure 5.51: Achieved Head-ways with FCFS Priority Scheme,Hybrid Control Algorithm

Conclusion

From the preceding analysis, it can be clearly observed that the Hybrid Al-

gorithm provides improvements in various areas over the Collision avoidance

controller alone.

1. It allows for early adjustment of behavior which leads to a lower devia-

tion from target velocity and a smoother response improving comfort.

2. It improves performance for the various considered actuation time con-

stants Ta and head-ways increasing the robustness of the system.

3. It provides regulation for passing order when needed

5.3 Comparison of Priority Schemes

In previous sections the priority schemes employed were not analysed, and

due to the fact that passing order can be enforced by the Hybrid algorithm,

it is of interest to compare the results coming from the various priority

schemes.In this section we will begin by introducing a variant of the Time to
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Collision scheme which allows for the consideration of an emergency vehicle,

we will then compare the three schemes (First Come First Serve, Time to

Collision, TTCEM) based on the scenario employed in the preceding section

. We will only be using the Hybrid Algorithm since it proved its advantage

over the Collision Avoidance controller alone.

5.3.1 Time To Collision - Emergency Vehicle

In a cooperative vehicle scenario, it should be considered the cases with

emergency vehicles, they in the setting should take priority over the rest.

This motivated a variation of the Time to collide priority scheme. Recall

that the safety distance was defined in (4.23) as:

ts,k =
dsafety
v̄k

We thus use this definition to define the region in space in which cars should

concede to the emergency vehicle. The reasoning is that if another vehicle is

inside the intersection space and is potentially in conflict with the emergency

vehicle, it should be the one to concede passage. The new Time to React

for the emergency vehicle is calculated as:

TTREm = TTR0 − ts,em (5.3)

In this sense all vehicles who plan on arriving within a time period of the

safety time (i.e. vehicle which might lead to the emergency vehicle slowing

down to concede entry) would have to prioritize the emergency vehicle which

leads to minimizing the emergency vehicle’s need to decrease its own velocity.

This is done through adding the type parameter to the vehicle class which

is sent in the packet to the Intersection Manager, if the type is detected to

be ’Emergency’, (5.3) is used to calculate the time to React and update the

priority lists.

We simulated the same scenario discussed in Table 5.8, while specifying the

type of Vehicle 2 to be an emergency vehicle. In this way, Vehicle 3 should

concede to Vehicle 2 (the opposite is true for the normal TTR case).

We notice that again the priority was followed and the control signals were

not excessive while keeping the minimum required safety distance(Fig 5.54).
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Figure 5.52: Time Response of Vehicles 2 and 3 and employing the EMTTR priority

scheme

Figure 5.53: Time Response of Vehicles 1 and 4 employing the EMTTR priority scheme

Figure 5.54: Achieved Head-ways with EMTTR Priority Scheme,Hybrid Control Algo-

rithm

5.3.2 Priority Scheme Comparisons

In this section, we will compare the outputs of the main priority schemes in

this thesis, for the last discussed scenario. To do so, we first report the time
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response of the Vehicles when the Time To React Scheme is employed We

Figure 5.55: Time Response of Vehicles 2 and 3 employing the TTR priority scheme

Figure 5.56: Time Response of Vehicles 2 and 3 employing the TTR priority scheme

Figure 5.57: Achieved Head-ways with TTR Priority Scheme,Hybrid Control Algorithm

can see that the crossing order again changed with respect to the previously
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considered schemes. We thus compared the outputs to see which of the

approaches is more efficient. We thus employed two cost functions to help

us quantify the results.

The first cost function is a minmax function of the form:

4∑
i=1

max(vi−vrefi)+
4∑
i=1

maxai+
4∑
i=1

|minai|+
4∑
i=1

4∑
j=1

minHeadwayij−Dsafety

(5.4)

which is a collective cost over all the vehicles taking into consideration how

much the vehicles are deviating from the reference velocity, the maximum

acceleration s and deceleration in addition to the deviation from the safety

distance. The costs for the three schemes are reported in Table 5.9

Scheme Cost

TTR 35.347

TTREM 40.8479

FCFS 50.0689

Table 5.9: Costs associated with the various schemes following the minmax Cost for-

mulation

It could thus be seen that the TTR scheme entails a much lower cost

than the FCFS, which motivated its use in the cooperative vehicle scenarios.

We also used the cost term which is often used in the literature to evaluate

the efficiency of the applied control, and is a measure of how much each

vehicle is giving up in terms of velocity :

M =

4∑
i=1

µi =

4∑
i=1

tf∑
t=0

1− vactual
vref

(5.5)

It is interesting to see that the emergency variant of the TTR performed

Scheme M

TTR 16.9764

TTREM 6.8964

FCFS 31.47

Table 5.10: Caption

the best in this metric. This shows one disadvantage of the distributed
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approaches, which is the reliance on a heuristic for the calculation of the

crossing order. This shows that possible modification for the widely used

TTR approach which takes into consideration the number of vehicles that

would react in response to the variation in the behavior of each vehicle would

possibly lead to an improvement in performance.
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Chapter 6

Conclusions and Future

Works

6.1 Conclusion

This thesis has studied a distributed algorithm for the coordination of con-

nected and autonomous vehicles at intersections. The problem is formulated

based on an individual vehicle basis, where each vehicle is computing its own

trajectory in order to guarantee the collective safe passage.

The first proposed algorithm, based on a completely decentralized approach

performed well in scenarios including 2 or and 4 vehicles. This showed the

ability of the discussed algorithm to be generalized for problems such as

highway lane merging. Some room of improvement was present when it

came to enforcing crossing order (which is desirable in the non-fully coop-

erative scenarios).

Being a collective problem, we therefore added a level of centralization

through the second discussed algorithm which allows a higher level of coordi-

nation between vehicles prior to activation of a collision avoidance controller.

This showed improvements over the completely decentralized approach, in

performance and robustness while also allowing to enforce a strict crossing

order.



6.2 Future Works

Throughout the development and discussion of our results, we mentioned

and often addressed some of the main issues that are still open in this area

of research, we now will summarize them highlighting areas of improvement

and possible future works:

Robustness to perception and localization Uncertainties:

In this thesis, we performed a simple robustness analysis that takes into con-

sideration, measurement uncertainties and model uncertainties. We found

out the second proposed algorithm satisfied the safety condition for a range

of model uncertainties along and a range of safety distances ( this range was

assumed to account for measurement uncertainties).

The distance to the intersection, usually found by combining maps with

an absolute positioning system (GNSS) is highly sensitive to disturbances,

therefore more in depth analysis and construction of control algorithms that

are provably robust to positional uncertainties should be constructed in or-

der to ensure safety. It is important to note that such algorithms are an

open question in literature.

Inclusion of Legacy Drivers and non-cooperative entities:

This thesis along with the majority of the literature focus on completely

autonomous and cooperative driving scenarios. While autonomous vehicles

are expected to penetrate the market in the next decade, reaching a full au-

tonomous setting will still take more time. It is therefore of practical impor-

tance to extend the fully cooperative algorithms to include non-cooperative

entities.

In this thesis we included the aggressiveness term to account for driver ag-

gressiveness and possible non-cooperativeness can also be expanded in the

second algorithm by showing no compliance to the suggested times. Our al-

gorithms can be expanded to include legacy drivers if correct prediction mod-

els of driver behaviors and aggressiveness can be used to generate predicted

velocities for legacy drivers. The current literature in this aspect [84,84,86]

can predict the direction of travelling (straight, left-turning, right-turning).

Accurate velocity predictions would require an aggressiveness estimation
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based on historic data along from previous and current trips and is a much

more involved task.

Including human drivers also means that priority schemes that follow human

traffic laws are important for seamless integration, for this task, our second

algorithm was capable of correctly enforcing the order of passage based on a

first come first serve priority scheme which is very similar to current traffic

laws. We also proposed a priority scheme which takes into consideration

emergency vehicles giving them precedence over the rest of vehicles in the

scenario. This law was correctly enforced by our second algorithm, a similar

scheme giving non-cooperative entities priority can be employed when the

number of automated vehicles on the roads reaches high percentages.

Multiple intersections:

Current works in the literature along with this thesis focus on a 4-way ur-

ban intersection setting, in real life scenarios the traffic grid is constructed of

many intersections, and other traffic components. A coordination algorithm

that would be able to take into consideration, the traffic flow maximizing

throughput of the whole traffic network would lead to much more efficient

roads. This however would increase the complexity of the optimization prob-

lem and might be infeasible for real-time applications.Swarm Intelligence

and Formation Control methods can be used for these purposes if fully co-

operative scenarios are considered.

Improved Heuristic Priority Schemes:

In this thesis, we presented a priority scheme that takes into consideration

emergency vehicles, in the analysis of a scenario it was shown that the out-

put of that scheme out-performed currently used heuristics. This shows one

area of weakness for distributed approaches, where the crossing order due

to heuristics does not always yield an optimal result. Supervised or Re-

inforcement learning techniques can be used in this area in order to come

up with optimal crossing orders based on certain inputs (number and types

of vehicles, velocities, traffic congestion at target lanes) that would lead to

improvements on current results.
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Cyber Security

Communication of private information between vehicles remains important

for the feasibility of a coordinated scenario, this information can be cor-

rupted or used for malicious purposes, for this reasons, further consideration

should be taken to consider different kinds of attacks.

We thus see, looking at the possible areas of improvement, why the topic of

this thesis has been popular in the last couple of years, on a personal level

we aim to in the future validate the simulation results experimentally, while

expanding the network to include more than 4 vehicles and multiple inter-

sections. The most pressing area of improvement is involving legacy drivers

and considering robustness to measurement uncertainties which should be

the next steps in any future work.
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