
EXECUTIVE SUMMARY OF THE THESIS

A State Observer Design for a Direct-Drive Wind Energy Conversion
System

LAUREA MAGISTRALE IN ELECTRICAL ENGINEERING - INGEGNERIA ELETTRICA

Author: MATTEO DEPONTI

Advisor: PROF. ROBERTO PERINI

Co-advisor: DR. DEJAN PEJOVSKI

Academic year: 2022-2023

1. Introduction
In recent years, renewable energy sources have
come under increasing attention, mainly due to
environmental concerns about global warming
and de-carbonization policies. Among them,
wind energy is becoming competitive with con-
ventional sources of energy, with a cumula-
tive installed capacity continuously increasing
worldwide. In Wind Energy Conversion Sys-
tems (WECS), Permanent Magnet Synchronous
Generators (PMSGs) are usually implemented
in the so-called Type 4 configuration, where the
generator is connected to the grid via a fully-
rated power converter, constituting a Variable
Frequency Drive (VFD).
In a drive system, the shaft’s finite stiffness al-
lows torsional oscillation between each rotat-
ing mass: if a torsional natural frequency is
excited, a mechanical resonance condition oc-
curs. Without a proper mitigation technique,
torsional vibrations cause fatigue stress in the
drive train and reliability issues.
Several methods to mitigate torsional vibra-
tions can be found in the literature. Among
them, PI-based State Space control enhances
the capability of a PI control implementing a
state observer, which is a mathematical model

that, based on the available system measure-
ments, provides an estimate of the system’s
state variables.
This thesis aims at designing a state observer
for a two Degree-of-Freedom (DOF) drive sys-
tem comprising a Permanent Magnet Syn-
chronous Generator (PMSG) directly connected
to a wind turbine. The mechanical and electri-
cal models of the system are derived first. Two
state observers will be proposed, each with its
own formulation and performance analysis.

2. System Definition

Figure 1: Two-Degree-of-Freedom (DOF) sys-
tem sketch; subscript t stands for turbine, while
1 refers to the rotor of the PMSG
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The two Degree-of-Freedom (DOF) system is
outlined in Figure 1.

Table 1: PMSG and turbine parameters

PMSG and turbine parameters

Pn [MW ] ; Tn [Nm] 1.0 ; 561∗103
Vn,ph [V ] ; In [A] 435 ; 713
fn [Hz] ; ΨPM [Wb] 14.73 ; 8.147
poles (p) ; np = p

2
104 ; 52

Rs [mΩ] ; Ls [mH] 14.59 ; 4.321
Dout,stator [mm] ; Dout,rotor [mm] 5586 ; 5262
Kshaft = K1 [Nm

rad
] 1.2∗1011

Jturbine = Jt [kgm2] ; Jrotor = J1 [kgm2] 3∗106 ; 3.36∗106

Neglecting the damping torque term, the equa-
tions of motion of the unforced mechanical sys-
tem are: {

Jtω̇t +K1(θt − θ1) = 0
J1ω̇1 −K1(θt − θ1) = 0

(1)

By considering a simple harmonic motion as a
solution of the two differential equations, the
following system’s natural frequencies can be
found:

|fres| =
∣∣∣ωres
2π

∣∣∣ = [
0

302.45

]
[Hz] (2)

The system mathematical model comprises the
mechanical and electrical models in per unit
(p.u.) form: the first one includes the equa-
tions of motion with the forcing terms, while
the second one is defined by the dq stator volt-
age equations of the PMSG. Taking into consid-
eration that:
• θ̇t = ωb,mechωt ;
• θ̇1 = ωb,mechω1 ;
• the measurements of θ1, isd and isq are

available from the system, denoted with
letter y;

• the damping torque term is neglected;
the system of differential equations can be de-
fined through the following:

θ̇t = ωb,mechωt

θ̇1 = ωb,mechω1

ω̇t = − K1

2HtTn
(θt − θ1) +

Tt

2HtTn

ω̇1 = K1

2H1Tn
(θt − θ1)− Telm

2H1Tn

˙isd = −rs ωb

ls
isd + ωbisqω1 +

ωb

ls
vsd

˙isq = −rs ωb

ls
isq − (ωbisd +

ωb

ls
ψPM )ω1+

+ωb

ls
vsq

y1 = θ1

y2 = isd

y3 = isq

(3)

All the variables are expressed in p.u., so to
have them of the same order of magnitude.
Now, let us assume that the PMSG is fed by a
3-phase Voltage Source Converter (VSC) with
Pulse Width Modulation (PWM) with:
• modulation frequency ratio: mf = fsw

fc
=

33 where:
◦ fsw is the switching frequency;
◦ fc is the carrier signal frequency;

• the VSC operates in linear modulation and
produces only voltage harmonics of order:

hv = m mf + n | m ∈ N, n ∈ Z

where:
◦ if m is even then n is odd;
◦ if m is odd then n is even;

• the fundamental angular frequency of the
stator voltage ωfund corresponds to the ro-
tor electrical angular frequency ωr,el:

ωfund = ωr,el =
p

2
ωr,mech

with ωr,mech rotor mechanical angular fre-
quency;

Based on [6], the torque harmonic of order hT
produced by the stator voltage harmonic com-
ponent hv is given by:
• hT = hv − 1 if hv = 6k + 1 | k ∈ N;
• hT = hv + 1 if hv = 6k − 1 | k ∈ N;
• no torque is produced if hv = 3k | k ∈ N;

In the Campbell diagram, the forcing terms’
frequencies acting on the system, i.e. the torque
harmonics’ frequencies, are plotted together
with the system’s natural ones, in [Hz], as a
function of the machine rotating speed, usually
in [rpm]. For this system, the diagram is shown
in Figure 2.

Figure 2: Campbell diagram showing the VSC
produced torque harmonics which excite the
resonance frequency of the system in the oper-
ating region
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From the diagram is clear how the following
voltage harmonic orders are able to generate a
torque exciting the system’s natural frequency
in the operating region:

• hv = 31, 29 → hT = 30;
• hv = 37, 35 → hT = 36;
• hv = 67, 65 → hT = 66;

3. Non-Linear Extended State
Observer

In [3], a state observer for a Single-Input Single-
Output (SISO) system in integral chain form
with large uncertainty is defined, hence for a
system of the kind:

ẋ1(t) = x2(t);
ẋ2(t) = x3(t);
...
ẋn(t) = f(t, x1, x2, ..., xn) + w(t) + u(t);
y = x1

(4)

where w(t) ∈ R is an external disturbance and
f : Rn+1 → R a possibly unknown system
function. Defining the extended state and its
derivative as:{

xn+1(t) = f(t, x1, x2, ..., xn) + w(t);
ẋn+1 = h(t)

(5)

and substituting (5) in (4), the following ex-
tended state system is obtained:

ẋ1(t) = x2(t);

ẋ2(t) = x3(t);

...

ẋn(t) = xn+1(t) + u(t);

ẋn+1 = h(t)

y = x1

(6)

Finally, the Extended State Observer (ESO)
takes the form:

˙̂x1(t) = x̂2(t)− α1g1 (ŷ1 − y1) ;
˙̂x2(t) = x̂3(t)− α2g2 (ŷ1 − y1) ;

...
˙̂xn(t) = x̂n+1(t)− αngn (ŷ1 − y1) + u(t);
˙̂xn+1 = −αn+1gn+1 (ŷ1 − y1)

ŷ1 = x̂1

(7)

where αi i = 1, ..., n, n + 1 are the observer
gain coefficients and g(.) : R → R is a func-
tion that can be chosen linear or nonlinear: in

the first case, the observer is called Linear Ex-
tended State Observer (LESO), while in the sec-
ond case Non-Linear Extended State Observer
(NLESO).
As can be seen in (3), in ˙isd and ˙isq equations
two nonlinear terms appear:
• ωbisqω1;
• ωbisdω1.

Moreover, the NLESO is defined for a linear
Single-Output system in integral chain form.
The following operations are performed in or-
der to obtain a system mathematical model
suitable for an NLESO design:
• through a small perturbation approach,

the system is linearized around the nom-
inal working point;

• the Multi-Input Multi-Output (MIMO)
system is divided into Multi-Input Single-
Output (MISO) subsystems;

• an NLESO is designed for each subsys-
tem and the final state variables’ esti-
mates are reconstructed through a relative-
degree approach.

3.1. System Linearization

The generic state variable x(t) can be split
into the sum of a continuous steady-state term
x0 and an oscillating one (small perturbation)
∆x(t):

x(t) = x0 +∆x(t) (8)

Now, applying this concept to (3), splitting it
with respect to the continuous and oscillating
terms (∆), isolating the latter one, and assum-
ing that for a generic state variables xi and
xj : |∆xi∆xj | << |xi0∆xj | | i, j, the following
small perturbations (∆) system is obtained:

∆̇θt = ωb,mech∆ωt
˙∆θ1 = ωb,mech∆ω1

˙∆ωt = − K1

2HtTn
(∆θt −∆θ1)

˙∆ω1 = K1

2H1Tn
(∆θt −∆θ1)−

−np(Ibψb)ψPM

2H1Tn
∆isq

˙∆isd = −rs ωb

ls
∆isd + ωbω10∆isq+

+ωbisq0∆ω1 +
ωb

ls
∆vsd

˙∆isq = −rs ωb

ls
∆isq − ωbω10∆isd+

−ωb

ls
ψPM∆ω1 +

ωb

ls
∆vsq

∆y1 = ∆θ1

∆y2 = ∆isd

∆y3 = ∆isq

(9)

It must be noticed that:
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• ω10 =
ωn,mech

ωb,mech
;

• isd0 = 0 (Max. Torque per Ampere);
• isq0 =

Telm,0

np(Ibψb)ψPM
;

System (9) can be represented in matrix form:

∆̇x = ∆A∆x+∆B∆u
∆y = ∆C∆x

where:

∆x =


∆θt
∆θ1
∆ωt
∆ω1

∆isd
∆isq

 ;

∆u =

[
∆vsd
∆vsq

]
;

∆y =

 ∆θ1
∆isd
∆isq

 .
3.2. Subsystem Decomposition

In the form shown in (9), the system is in a
Multi-Input Multi-Output (MIMO) form. To
design an NLESO, the system is decomposed
in three different Multi-Input Single-Output
(MISO) subsystems; the procedure can be sum-
marized as follows:

1. create three identical subsystems, each one
defined by one of the three outputs in ∆y
of system (9)

• in this way three subsystems are ob-
tained, in the form:

∆̇x = ∆A∆x+∆B∆u
∆yi = ∆Ci∆x

| i = 1, 2, 3 ;

2. check that each pair (∆Ci ,∆A) is observ-
able [1], which is a necessary condition for
the state observer realization:

• if not, find the non-observable state
variables applying the kernel to the
Observability Matrix [2] and reshape
the subsystem of interest’s matrices
accordingly;

• verify that the newfound subsystem
is observable;

3. define the subsystems’ final shape in ma-
trix form:

∆̇xi = ∆Ai∆xi +∆Bi∆u
∆yi = ∆Ci∆xi

| i = 1, 2, 3 ;

Finally, the three MISO subsystems’ state
variables and output are:

Subsystem 1

∆x1 = ∆x; ∆y1 = ∆θ1 ;

Subsystem 2 and 3

∆x2 = ∆x3 =


∆θt −∆θ1

∆ωt
∆ω1

∆isd
∆isq

 ;
∆y2 = ∆isd ;

∆y3 = ∆isq ;

3.3. Relative Degree Analysis

In [7], a systematic procedure for distributed
state estimation in nonlinear systems is pre-
sented. Particularly, a relative degree analysis,
with which the closeness between states and
outputs can be evaluated, is provided. Based
on this analysis, it is assumed that the closer the
state to the output used as the observer input,
the more accurate the estimation of the state
variable.
A generic MISO system can be expressed in the
form: {

ẋ = f(x) + g(u)
y = h(x)

(10)

Let us start defining matrix F as:

F =
∂f

∂x
= [ F1 F2 ... Fn ] (11)

where Fi | i = 1, ..., n are column vectors.
Another useful concept to be introduced is the
Lie derivative [4] of h(x) along Fi | i = 1, ..., n,
defined as:

LFi
h(x) ≜

∂h(x)

∂x
∗ Fi(x) (12)

The closeness between the output y and the
generic subsystem variable xi ∈ x | i = 1, ..., n
is evaluated by calculating Di:

Di =



0 if ∂h
∂xi

̸= 0

1 if
{

∂h
∂xi

= 0

LFi
h(x) ̸= 0

di if


∂h
∂xi

= 0

LFi
Lk−1
f h(x) = 0 | k = 0, 1, ..., di − 1

LFi
Ldi−1
f h(x) ̸= 0

∞ if di → ∞

The lower Di the closer is the state variable
xi | i = 1, ..., n to the output y.
This analysis is applied to each subsystem; the
different values of Di can be found in Table 2.
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Table 2: Relative degrees between the state
variables and each subsystem’s output

Subsystem 1 Subsystem 2 Subsystem 3

i = 1, ..., n1 i = 1, ..., n2 i = 1, ..., n3

∆x1 D1i ∆x2 D2i ∆x3 D3i

∆θt 2 ∆θt − ∆θ1 2 ∆θt − ∆θ1 2

∆θ1 0

∆ωt 3 ∆ωt 3 ∆ωt 3

∆ω1 1 ∆ω1 1 ∆ω1 1

∆isd 3 ∆isd 0 ∆isd 1

∆isq 2 ∆isq 1 ∆isq 0

The overall procedure is summarized in the
block scheme of Figure 3.

Figure 3: simple block scheme of the steps
taken from subsystem decomposition to esti-
mates reconstruction.

3.4. NLESO definition

An NLESO has to be defined for each subsys-
tem. A requirement is to have a system in inte-
gral chain form, thus a state variable transfor-
mation is needed, that is to find an invertible
matrix Ti | i = 1, 2, 3 for each subsystem such
that:

zi = Ti∆xi (13)

The three transformed MISO subsystems take
the form:

zi = Azizi +Bzi∆u
yi = Czizi

| i = 1, 2, 3

Now, considering:
• number of inputs: p = 2;

•

Bz =


Bz11 Bz12
Bz21 Bz22
... ...
Bzn1 Bzn2

 ;

each MISO transformed subsystem takes the
form:

ż1 = z2 +Bz11u1 +Bz12u2;
ż2 = z3 +Bz21u1 +Bz22u2;
...
żn = f (z1, ..., zn) +Bzn1u1 +Bzn2u2;
y = z1

(14)

where n = 6 for Subsystem 1 and n = 5 for
Subsystems 2 and 3. Following the definition
of extended state in (5), an NLESO can be de-
signed:

˙̂z1 = ẑ2 +Bz11u1 +Bz12u2−
−β1g(ŷ − y);

˙̂z2 = ẑ3 +Bz11u1 +Bz12u2−
−β2g(ŷ − y);

...
˙̂zn = ẑn+1 +Bz11u1 +Bz12u2−
−βng(ŷ − y);

˙̂zn+1 = ĥ− g(ŷ − y);

ŷ = ẑ1

(15)

where the ẑi represents the state estimations
and βi are the observer gain coefficients, with
i = 1, ..., n, n+ 1.
The observer correction term is chosen as the
product between the β coefficients and the non-
linear function g(e1) | e1 = ŷ − y:

g (e1) =

{
e1
δ1−α |e1| ≤ δ
|e1|α sign(e1) |e1| > δ

| α, δ ∈ R+

By taking the difference between z − ẑ, the ob-
servation error system is obtained:

ė1 = e2 − β1g (e1)
ė2 = e3 − β2g (e1)
ėn = en+1 − βng (e1)

˙en+1 = (ĥ− h)− βn+1g (e1)
ŷ − y = e1

(16)

Now, defining Γ(e1) = g(e1) − e1, (16) can
rewritten as::

ė1 = e2 − β1e1 + β1 (−Γ (e1))

ė2 = e3 − β2e1 + β2 (−Γ (e1))

. . .
ėn = en+1 − βne1 + βn (−Γ (e1))

en+1 = (ĥ− h)− βn+1e1+

+βn+1 (−Γ (e1))

ŷ − y = e1

(17)
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Finally, if:
• Γ(e1) is a Lipschitz nonlinearity that satis-

fies a sector condition;
• the β-coefficients for each MISO subsys-

tem’s observer are chosen such that:
◦ (Ae,Be) controllable:
◦ (Ce,Ae) observable;

the observation error system represents a
Lur’e problem and absolute stability can be
guaranteed by applying the circle criterion [4].

3.5. Simulation Results

The main objective of the simulation is to as-
sess the estimation performance of the state ob-
server when the mechanical system is subject to
torsional vibrations. For this reason, the simu-
lation analysis is divided into three steps:

1. operation in ideal conditions, i.e. no volt-
age harmonic injection;

2. operation in perturbed conditions through
the injection of a voltage harmonic at a fre-
quency fdist far from the system’s natural
frequency;

3. operation in perturbed conditions through
the injection of a voltage harmonic at a fre-
quency fres that excites the system’s natu-
ral frequency;

The turbine and PMSG rotor angular speed
trends and the reference ωref are displayed in
Figure 4.

Figure 4: Simulation speeds’ trends

The plots regarding the angular position ∆θt
and ∆θ1 are shown in Figure 5 and 6.

Figure 5: ∆θt true value and estimate compari-
son (top) and observation error e1 = ∆θt − ∆̂θt
(bottom) at steady state

Figure 6: ∆θ1 true value and estimate compari-
son (top) and observation error e2 = ∆θ1− ∆̂θ1
(bottom) at steady state

The estimation for ∆θt provided by the NLESO
is characterized by a relatively big estimation
error: the estimated variable has strong oscil-
lations which are not present in the real value.
On the other hand, the estimation of ∆θ1 ap-
pears to be more accurate, probably because
this state variable is Subsystem 1’s observer in-
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put.
Some final considerations can be made about
the NLESO. First of all, the state observer is sta-
ble. Moreover, the NLESO provides the most
accurate estimates for the state variables that
are also the subsystems’ observers’ inputs. On
the other hand, the NLESO’s estimation perfor-
mance is highly influenced by the presence of
disturbances, as it is shown by the high obser-
vation errors when a voltage harmonic is in-
jected. Moreover, the state observer design is
quite cumbersome and the computational bur-
den required to estimate several state variables
for three different subsystems can be consid-
ered another limiting factor.

4. Luenberger-based Lipschitz
Observer

By isolating the nonlinear terms present in (3),
i.e. define a nonlinear function Φ(x, t), and
rewriting the same system in matrix form, the
following representation is obtained:

ẋ =Ax+Φ(x, t) +Bu

y =Cx
(18)

x =


θt
θ1
ωt

ω1

isd
isq

 ;

u =

 Tt
vsd
vsq

 ;

y =

 θ1
isd
isq

 ;

Φ(x) =


0
0
0
0

ωbisqω1

−ωbisdω1

 .

Under the hypothesis that:
• Φ(x, t) is a Lipschitz function with Lips-

chitz constant γ;
• the pair (C,A) is observable.

a Luenberger state observer can be defined as
[5]:

˙̂x = Ax̂+Bu+Φ(x̂, t) + LC (x− x̂)

ŷ = Cx̂
(19)

where L is the observer gain matrix, to be
found solving the Lyapunov equation for P =
PT > 0:[

AT + βI
]
P+P

[
AT + βI

]T
= −2CTC

where β is a constant satisfying:

β > γ

and finally computing:

L = P−1CT

For system (18):
• γ = 189.80 → β = 190;
•

L =


190.03 0 −2.65
190.09 0 −7.01
5.97 0 −488.12
36.85 0 −2990.41

0 186.62 0
−7.01 0 756.54

 .

4.1. Observation Error BIBO stability

In [5] there is no detailed demonstration to
prove the observation error stability in case of
the simple condition β > γ: therefore, a deeper
analysis is needed to assess whether the sys-
tem is at least Bounded Input Bounded Output
(BIBO) stable. In this way, it is possible to check
if the observer has an unstable behavior due to
the nonlinear terms.
Subtracting (19) from (18), the observation er-
ror system dynamic system is obtained:

ė = ẋ− ˙̂x =

= (A− LC) e+ [Φ(x, t)−Φ(x̂, t)]

= Aee+Φe(x̂,x, t)

By looking at the nonlinear term Φe(x̂,x, t) as
an input disturbance, it can be seen as:

Φe(x̂,x, t) =



0
0
0
0

ωbisqω1 − ωb îsqω̂1

−ωbisdω1 + ωb îsdω̂1

 =

= BΦeuΦe =


0 0
0 0
0 0
0 0
ωb 0
0 ωb


[

isqω1 − îsqω̂1

−isdω1 + îsdω̂1

]
(20)

The observation error transfer function is de-
fined as:

Ge(s) =
e(s)

uΦe(s)
= (sI−Ae)

−1
BΦe (21)

Now, recalling the Bounded Input Bounded
Output (BIBO) stability property of a system
[2] , the observation error dynamics system is
BIBO stable if a bounded input uΦe leads to a
bounded output ye = e. Considering that:

7
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• the input uΦe consists of the subtraction of
the same Lipschitz function operating with
two different variables, i.e. x and x̂, which
belong to a bounded domain given by the
operating region of the system;

• limx̂→x uΦe = limx̂→xΦe (x, x̂) → 0;
• the magnitude of each element of Ge(s) is

bounded in the frequency domain;
the observation error dynamics system can be
assumed BIBO stable.

4.2. Simulation results

To properly compare the two state observers
defined in this thesis, the two simulation setups
are kept the same: in this way, each observer is
tested under the same operating conditions.

Figure 7: Speeds used in the simulation

Figure 8: θt true value and estimate comparison
(top) and observation error e1 = θt−θ̂t (bottom)
at steady state

Figure 9: θ1 true value and estimate compar-
ison (top) and observation error e2 = θ1 − θ̂1
(bottom) at steady state

The angular positions θt and θ1’s graphs are
shown in Figure 8 and 9: the observation er-
ror for both the state variables θt and θ1 tends
quickly to a small value that oscillates around
zero. The worst estimation is given during
the mechanical resonance phenomenon, with a
small error at steady state.
Based on the simulation results, some final re-
marks can be made. Also in this case the state
observer is stable, but now more accurate es-
timates are provided for all the state variables
compared to the NLESO case. The observer
performance decreases during mechanical res-
onance conditions, while it is less affected by
a generic disturbance such as the voltage har-
monic injection at frequency fdist. In this case,
the state observer design is much easier than
the NLESO and it deals with the nonlinear
MIMO system. Further analysis regarding the
observer’s stability is required.

5. Conclusions
A two Degree-of-Freedom (DOF), comprising
a Permanent Magnet Synchronous Generator
(PMSG) directly connected to a Wind Turbine,
was considered. Two different state observers
were presented, considering as measured vari-
ables only the PMSG rotor position and the
stator current’s direct and quadrature compo-
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nents. When considering the electrical model
of the system, some nonlinear terms appear.
First, a Non-Linear Extended State Observer
(NLESO) working on a linearized model of the
system was proposed. The results can be sum-
marized as follows:

• the design of this observer type appears
to be quite complex and cumbersome, al-
though it was possible to prove the abso-
lute stability of the observation error;

• the estimates have a low level of accuracy,
especially during torsional vibrations.

Then, a Luenberger-based Lipschitz Observer
was proposed:

• its design is less complex than the previ-
ous observer and it deals directly with the
nonlinear system. Further investigation
regarding its stability is required;

• the observer can provide accurate esti-
mates of all the state variables and it is
more robust to generic disturbances.
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