

EXECUTIVE SUMMARY OF THE THESIS

Analysis of the Usage of Specific Technologies in Android
Development

TESI DI LAUREA MAGISTRALE IN

COMPUTER SCIENCE AND ENGINEERING -

INGEGNERIA INFORMATICA

AUTHOR: ROBERT MEDVEDEC

ADVISOR: LUCIANO BARESI

ACADEMIC YEAR: 2021-2022

1. Introduction

Android devices make up more than two-
thirds of the smartphone market as of
2022. [1]
With the vast majority of the human
population in developed countries
owning such a device, applications that
run on smartphones are not only shaping
the way people use their phones but also
shape how everyone leads their lives.

Development of Android applications
ever since Android OS inception in 2008
has been rapidly evolving and quite often
rashly changing due to quick
technological advancements in both

mobile and computer hardware
capabilities. Defining the
the current state of Android development
and pinpointing the most used languages,
technologies, IDEs, architectural patterns,
and other elements have never been easy
tasks due to such rapid changes.
In recent years Android OS creators, a
consortium led by Google, managed to
slow down the evolution of the
development by sticking to a certain
approach and technologies, however good
or bad they might be in a general sense,
create some sort of stability in the Android
app development world. The thrust from
other developers to make development for
other systems, most notably iOS, as

Executive summary Name Surname

2

closely as possible connected to the
Android development goes hand in hand
with
Google’s intention and is further
stabilizing the technologies used. All of
this is to
allow developers to create better and more
innovative apps with their focus shifted to
execution rather than catching up with
recent technologies.

The goal of this work is to define the
current state of the most used technologies
in Android application development and
to provide the reader with enough
background to understand them. The
addition to main goal is to determine
which technologies are used the most
often but also to determine which
combination of them achieves the best
results when it comes to performance,
usability, and code readability. Based on
these results a snapshot of the current state
in Android development will be created
along with an approximation of what the
future of Android applications is going to
look like.

The research is done on the most
downloaded and rated open-source
applications that still have active
repositories and recent releases. Many of
these applications are used by big
companies and often function as
companion
apps for selling their main product.

2. Technological background

The first version of Android came out in
2008. It has always been characterized as a
widely available open-source operating
system for mobile devices. Being based on

Linux kernel the idea of being available for
such a big number of devices was existent
from the start. The initial versions were
very buggy and slow, didn’t work in the
same way on different devices, and didn’t
offer much support for application
development. In 14 years on the market
and 12 versions later the situation
changed, and the current Android 13 is
superior in many aspects to its direct
competitor iOS, while supporting
exponentially higher number of devices,
not only from the mobile world, and
having a great support both from the
development community and Google
itself. Applications are natively written in
Java or Kotlin and can use a number of
different technologies depending on the
intended use and functionalities.

3. Analysis

Twenty-seven open-source applications
have been used for the analysis, with their
respective repositories being located on
GitHub. Five main application categories
have been defined, which include some
apps that have multiple million
downloads on Google Play. The analyzed
categories are:
 Browsers (Brave, DuckDuckGo,

Fenix,Orbot)
 Commercial applications

(Bitwarden, Kickstarter,
Shadowsocks, Wikipedia,
Wordpress)

 Media players (Antenna, NewPipe,
Phonograph, Shuttle, Timber)

 Messaging and email (K9, QKSMS,
Signal, Telegram, Wire)

 Other (Google I/O, Habitica,
Materialistic, Muzei, Omni Notes)

Executive summary Name Surname

3

 Tech demo (Kotlin Pokedex,
NotyKT, Pokedex)

The analysis was done mostly on the
static segments of the application.
Individual analysis consisted of
recognizing the use and counting of the
following aspects:

 Application size
 Selected architecture
 Programming languages
 Used design patterns
 Presentation technology
 Google and external services

use
 Number of dependencies
 Android application

components used

The individual results were then
compared to the other applications of the
same ground and similar characteristics.
The analysis results are presented in the
following chapters by categories.

3.1 Application complexity and
size

When looking at the final numbers,
several different conclusions can be
drawn. In the analysis of twenty-seven
apps, only four of them are bigger than
100MB when installed, with the average
size after installation being 58MB.

The biggest of the four are two browser
apps, Fenix and Brave. This is to be
expected since browsers contain a full
stack of code and have extensive features
that include a lot of different libraries. The
other two big apps are Signal the
messaging app and Kickstarter mobile
version. Signal, similar to browser apps,
contains several layers of full-stack

architecture and implements many
security features in the messaging system.
Kickstarter as an app is very exhaustive
has a large number of different screens
and offers many unique features to the
users.

Table 3.1: Application size table

Small

(<
50MB)

Medium
(50-100

MB)

Large
(>100MB)

App count 17 6 4

Avg. app
install size

24MB 75MB 179MB

Code size (in
MB)

7MB 32MB 36MB

Kotlin apps
size

21MB 77MB 179MB

Java apps
size

26MB 81MB 179MB

Avg. num. of
dependencies

30 41 70

Avg. num of
screens

10 27 21

Avg. num of
activities

13 47 40

Avg. num. of
fragments

18 48 70

The final conclusion from all of the data is
that the application install size mainly
increases with the high number of
dependencies, with the number of
Activities, Fragments, screens,
programming language, and code size
being much less of a factor.
Despite a limited number of Compose
applications, it can be determined that
they are on average bigger than Views
(XML) apps, mainly due to increased
number of dependencies needed to
support Compose UI.

Executive summary Name Surname

4

3.2 Programming language

Thirteen out of twenty-seven analyzed
apps use Kotlin as their primary language,
with another four currently in the
transition phase where most of the code is
still written in other languages, mainly
Java. Only one application doesn’t use
these languages with C# being
represented once as a primary language.

Table 3.2: Programming languages used table

Java Kotlin C/C++ Other

Primary
language

13 13 0 1 (C#)

Secondary
language

5 2 4
2 (Scala,
Python)

Three of the apps made a full transition
from Java in the previous years and use
minimal to no Java code, with another
three still using some Java code. Mozilla
Fenix (Firefox) is the only large app that
has made a full transition to Kotlin. This
can be attributed to the large team that
Mozilla has as well as the wide popularity
among the developer community which
helped out with the coding during the
process.

Java is still a number one programming
language for Android, but Kotlin is
rapidly taking over. All of the apps newer
than 2017 are written in Kotlin and many
older ones are being translated to Kotlin
from Java.

3.3 User interface (UI)

Considering that Jetpack Compose is a
relatively new technology that completely
changes the way the UI works it is to be
expected that it hasn’t completely caught
on yet. Unlike making the transition from
Java to Kotlin, the transition from Views to
Compose is much harder to be done
gradually. Views and Compose do not
mesh very well together, even though it is
possible, but the whole idea behind
Compose and the way it works requires
completely different architecture.

Figure 3.1: UI technology usage distribution

Out of all the analyzed apps, only two of
them are using Jetpack Compose. One of
those is an additional app having a
Compose version next to the Views one
NotyKT, and the other one already
mentioned, refactored Mozilla Fenix
(Firefox). Despite Compose being on the
market for a few years now and having a
stable version for more than a year, no
applications seem to catch on.
It is even less likely that the other non-
open-source apps have transitioned to it as
it would take a lot of working hours for the
whole operation, without any direct
benefits for the user.

Views
(XML)
96%

Compose
4%

UI TECHNOLOGY

Executive summary Name Surname

5

3.4 Google libraries and services

Many applications use a large number of
native and non-native services developed
by Google in order to improve the app
dependability and shorten the
development time. A number of
developers seems to be trusting Google
almost completely with their application,
but data shows that there are still some
who prefer other services and libraries
that provide more freedom and
complexity.

Table 3.3: Libraries and DI usage table

Library
Number of

apps using it

Room (Google) 13

ProGuard/R8 25

Dagger 5

Dagger – Hilt (Google) 6

Koin 3

One of the main Google services is
Firebase, which offers a range of different
components to help users with many
aspects of app development. These
components are less complex than their
non-Google counterparts but are still used
quite extensively.

Table 3.4: Firebase services usage table

Firebase service
Number of

apps using it

Cloud Messaging 8

Analytics 6

Crashlytics 6

Remote Config 4

Any 15

3.5 Architectural and design
patterns

The most popular architecture among the
apps is the MVVM. This is in no way
connected with Compose, which is almost
exclusively used with MVVM, as almost
no apps use it. MVVM has gradually taken
over the market and is most often found as
a recommended architecture in guides
and tutorials. There are no clean
architecture usages, which could be
attributed to the fact that it rarely works
well with medium and large apps due to
bad scalability.

Transition from MVC through MVP to
MVVM is also visible from the numbers as
only two applications are using MVC,
with seven using MVP, and thirteen using
MVVM. Seven applications are still in the
transition phase or are just using more
than one pattern to better suit the needs.

Table 3.5: Architecture patterns usage table

Architecture patterns
Number of

apps using it

MVC 2

MVP 7

MVVM 13

Hyrbid 5

Developers seem to be following modern
trends as MVVM is the most modern
architectural pattern and is the most
adapted to the newest methods in
programming and libraries such as
Jetpack Compose.

Almost all of the most popular design
patterns have been featured in majority of

Executive summary Name Surname

6

the apps. The developers are clearly using
the advantages they bring in faster
development and dependably code. The
most common design patterns are
Singletons, Adapters, Builders,
Dependency injection, State, and Iterator.

4. Conclusions

The ultimate goal of the work was to find
out which technologies are being used the
most from the open-source applications.
The conclusion can be made that while
Google is pushing hard for all of the new
technologies, like Kotlin, Jetpack, and
Firebase to be implemented into all of the
applications, some of the technologies still
haven’t made the breakthrough.
Kotlin as a programming language and
MVVM as an architecture are slowly
taking over the spot as the most common
technologies mainly to the vast
improvements they have brought when
compared to their predecessor. Google
native services are also being used quite
often and most of the design patterns can
be found in all of the applications.
However, the developers still have not
caught on to the Jetpack Compose train
and are sticking to the older View with
XML approach with no real indication that
this might change in the near future.

It appears that developers are more than
glad to learn new approaches and adapt to
new technologies if they offer substantial
advantages to their development, which
could ultimately bring only the highest
quality updates to the development and
allow for making of the highest quality
applications.

Based on Kotlin and Android Jetpack
usage with regards of their first

appearance in the Android world several
years back, it appears that most of the
developers are likely to make the switch to
Jetpack Compose somewhere in the next
few years, which would be three to five
years after the first stable release in 2022.
Google’s hard push for many of its
services paid off and it would be a surprise
if they didn’t repeat this success with
Compose, providing developers with a
very quality programming experience that
will lead to better and quicker application
development.

5. Bibliography

[1] "https://gs.statcounter.com/os-market-

share/mobile/worldwide," 2022. [Online].
[2] H. J. V. Gamma, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-
Wesley, 1994.

[3] C. K. Bass, Software Architecture in Practice
(2nd Edition), Addison-Wesley, 2003.

[4] Kouraklis, MVVM in Delphi, Berkeley, CA:
Apress, 2016.

6. Acknowledgements

I dedicate this work and my whole tenure
in Milan to the one person without whom
I would have probably never had come
here, Ricardo. And of course, to the people
without whom my time in Milan would
have been lame – Andrea, Angelo, Emma,
Francesca, Franco, George, Gosia, Heitor,
Ivana, Kristina, Laura, Margot, Martìn,
Pedro, Philipp, Rebeka, Sanja, Theresa,
Tom, and most importantly, Toma, just to
name a few.

	1. Introduction
	2. Technological background
	3. Analysis
	3.1 Application complexity and size
	3.2 Programming language
	3.3 User interface (UI)
	3.4 Google libraries and services
	3.5 Architectural and design patterns

	4. Conclusions
	5. Bibliography
	6. Acknowledgements

