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Abstract

Each audio recording contains a huge amount of forensic traces. In prin-
ciple, from the analysis of a speech recording, it is possible to extract
details that range from the estimation of the source device used for its
acquisition, to environmental characteristics. However, studies in the
acoustic analysis and audio forensic fields throw light on the lack of tools
for geometrical classification based on reverberant speech audio.
Despite acoustic analysis algorithms for estimating parameters like vol-
ume, reverberation time and enclosure type (e.g. small room, hall, sta-
dium) were investigated in the literature, there is still room for improve-
ment.

This study aims at widening the set of possible room parameters
which can be considered for audio analysis. In detail, it introduces the
topic of room shape classification based on reverberant speech signals.

The proposed methodology fixes some volume and reverberation time
bands to enhance the performances of the shape classifiers and to estab-
lish a relationship among volume and geometry estimation performances.
To do so, either a preliminary volume or a reverberation time estimation
is performed to retrieve a band index estimate. Depending on the band
index estimate, we retrieve the best shape classification model. Such es-
timator is used to prove whether a speech signal has been acquired in a
room of a certain shape.

Our research shows promising results even in the reverberant speech
study case. However, we observe some difficulties in dealing with rooms
of small size.
Future work might consider introducing accurate free decay region ex-
tractors or using time-aware neural networks.



Sommario

Ogni acquisizione audio contiene grandi quantità di tracce forensi.
Dall’analisi di registrazioni vocali è possibile estrarre sia informazioni
relative al dispositivo con qui l’acquisizione è effettuata che informazioni
sulle caratteristiche dell’ambiente in cui la registrazione è effettuata. In
ogni caso, gli studi nei campi di analisi acustica ed audio forense gettano
luce sull’assenza di tools per la classificazione geometrica basata su seg-
nali vocali riverberanti.
Nonostante nella letteratura siano stati indagati algoritmi di analisi acus-
tica per stimare parametri come volume, tempo di riverberazione e tipo
di ambiente (p.es. se una piccola stanza, una hall od uno stadio), c’è
ancora vasto margine di miglioramento.

Questo studio mira ad amplicare l’insieme dei parametri di una stanza
che possono essere presi in considerazione per effettuare un’analisi audio.
In dettaglio, introduce l’argomento di classificazione della forma di una
stanza basata su segnali vocali riverberanti.

Il metodo proposto fissa delle bande di volume e di tempo di river-
berazione per migliorare le performance dei classificatori di forma e per
stabilire una relazione tra le metriche nella stima del volume e nella stima
della geometria.
Per poterlo fare, volume e tempo di riverberazione sono stimati in via
preliminare per determinare la stima di un indice di banda. Dipendente-
mente da questo indice, siamo in grado di determinare il miglior modello
per la classificazione della forma. Questo stimatore è usato per asserire
se un segnale vocale sia o meno stato acquisito in una stanza di una de-
terminata forma.

La nostra ricerca mostra risultati promettenti anche nel caso di seg-
nali vocali riverberanti. In ogni caso, riscontriamo difficoltà nel gestire
stanze di piccole dimensioni.
Futuri sviluppi potrebbero contemplare l’introduzione di estrattori di re-
gioni di decadimento libero accurati o, ancor meglio, l’uso di time-aware
neural networks.
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1
Introduction

The purpose of this master thesis is to provide a methodology for the
classification of the shape of a room environment starting from a rever-
berant speech signal.
Our work might have a multiplicity of applications, however the most rel-
evant ones can be found in the acoustic analysis and audio forensics fields.

Speaking about acoustic analysis, we might refer to room imaging and
to the related room geometry inference techniques adopted for it. Such
techniques exploit the reverberant properties of audio files to perform a
room model reconstruction. Indeed, the geometry of an enclosure affects
the way in which sound is perceived. The reflective behavior of sound-
waves in air and their affection on audio signals have been extensively
described in [5, 6, 7, 8].
The existing methods for room imaging [2, 3, 9, 10] are complex, therefore
we might think of a simplified break-down strategy for the geometrical
model retrieval. The floor plan shape and the shape variables could be
estimated, for instance.
Other possible applications regard the currently existing field synthesis
techniques. They could be extended to automatically adapt the speakers
output depending on room parameters estimates to improve the surround
experience of the listeners.

Changing perspective, we can also consider the audio forensics study
field. Following this branch we take into account the integrity checking
techniques. These algorithms are focused on proving whether an audio
file has been compromised for malicious sake. For example it might be
useful to certify whether an audio track has been truly acquired in a cer-



Chapter 1. Introduction 2

tain environment for legal purposes. Alternatively, if the environmental
properties of a recording are detected as changing overtime, the consid-
ered audio document could have been forged.
Nowadays, the main environmental parameters which are considered are
the reverberation time T60 [1, 11], the type of acoustic environment
[12, 13, 14] (e.g. small room, hall, stadium) and the room spatial volume
[15]. Our work goes in the direction of augmenting the set of environ-
mental characteristics which might be considered. To do so, we introduce
a shape estimator.

In our work we estimate the room volume and the T60 parameters
using a couple of different architectures for the estimators. These es-
timators are based on recent works [15, 16]. However, many different
approaches for estimating such properties have been proposed in the past.

In detail, our approach is structured according to the following out-
line. Firstly, we present a data generation framework which allows the
generation of the datasets which are fundamental for the validation of the
algorithmic pipeline. Such datasets are generated via simulation because
we could not find datasets labeled with rooms shapes.
In a second step, we adopt a solution which works per bands. Either
a preliminary volume or reverberation time estimation is performed to
retrieve a band index estimate. Then, given the band index estimate, we
consider a set of specific estimators trained on volume or reverberation
time bands and we choose the best estimator for the shape classification
depending on the band index estimate. We perform the classification
task by considering two different architectures for the specific in-band
estimators to compare their performances.
The results reported from the application of our methodology to rever-
berant speech signals show promising results. We observe a classification
performance improvement getting higher as the volume of the considered
rooms enlarges.
Our proposal accounts for a variety of advantages. Mainly, using a band
approach we are able to gain estimation accuracy and to establish a re-
lationship among volume and shape classification performance. Further-
more, we introduce a new room parameter among the ones considered by
audio forensics. This implies the need of new efforts by malicious parties
in manipulating audio data.
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This thesis is organized as follows.

In the second chapter (Chapter 2), we are going through the litera-
ture related to room geometry inference and room parameters estimation
techniques. We start from the concept of reverberation: we begin with
the definition of reverberant signal and we analyze the relationship of re-
verberation with the environment. Afterwards, we describe related state
of the art works which are linked to reverberation parameters and room
parameters estimation in an audio forensics frame. Considering the ge-
ometrical purpose of our research, we also dig into documents related
to room geometry inference, discovering the absence of a statistical tool
capable of estimating the floor plan shape of an inner-space. Finally, we
provide a brief walk-through in the theory of deep learning techniques to
put the ground for the comprehension of the whole work of thesis.

In Chapter 3, we give a formal problem formulation and we describe
our methodology developed to solve it. In detail, the methodology en-
compasses our band-based algorithmic pipeline for room shape estima-
tion.

Chapter 4 contains details about the simulations for data generation,
the experiments and the resulting reports of our method implementation
for the problem resolution.

In the end, within the context of conclusions, Chapter 5 exposes the
summary of the results of our research and puts forward possible devel-
opments for future improvements and extensions.



2
State of the Art

and Theoretical Background

This chapter introduces the core topic of reverberation and the models
which are useful for the comprehension of our work of thesis.
Furthermore, in this chapter we highlight the purpose of room geome-
try estimation, its relevance, its complexity and the potentialities of our
approach. In detail, our work could be used both in the audio forensics
field for integrity checking and in the acoustic analysis field for room
reconstruction.
Finally, we glance in some theoretical aspects of artificial neural networks.

2.1 Reverberation and spatial cues
The reverberation is the physical phenomenon describing the propagation
of a sound-wave (in space and time) in relation with the boundaries of
the surrounding space.
Indeed, the wave might impinge against walls, being reflected or scattered
around. As a simplification, in our work we are going to neglect scattering
and to model reflection and absorption as independent on frequency.
Considering the environment among source and destination as a Linear
Time-Invariant (LTI) system, its acoustic response can be described by
the room impulse response, which affects the sound perceived at the
listener location.
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2.1.1 Reverberant signals
The signal received from a microphone in position m is the sound played
by a source in position s on which is applied the effect of the room
between source and microphone. Let xs(t) be the signal emitted by the
source and hs→m(t) be the effect of the room, then the signal received by
the microphone in ideal conditions is:

ym(t) = (xs ∗hs→m)(t) =

∫︂ +∞

−∞
xs(t

′)hs→m(−t′ + t)dt′ (2.1)

where ∗ is the 1D convolution operator.
Such signals can either be directly acquired from a physical setup with
loudspeakers and microphones, in which case the recorded signal would
encode even the equipment response, or digitally generated given the
knowledge of the Room Impulse Response (RIR).

2.1.2 Room impulse response
The RIR is an audio signal which encodes the room acoustical behavior
in between a pair of points belonging to the environment.
In its simplest form, the RIR can be described as the superposition of
delayed peaks, each of which with a different amplitude, acquired at
the fixed receiver position with a fixed transmitter position. The phase-
shift of each peak mainly depends on the space traveled by the wave
or reflected wave to reach the microphone, while the amplitude depends
primarily on the number of reflections on the path and on the absorption
of each reflector.

Figure 2.1: RIR temporal regions

As can be seen in Figure 2.1, the density of peaks in a RIR increases
with time. Such an enhancement of density is related to the number of
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replicas reaching the receiver. The longer the elapsed time, the more the
reflections which are intercepted.
A RIR acquired in a polyhedral geometry (with no convexity in it) can
be fairly divided in three regions:

1. Direct path echo: appears at the Time of Flight (ToF) instant,
which in terms is proportional to the distance in between the source
and the microphone (given stable environmental conditions);

2. Early reflection echoes: encode the time-shifts related to the first
reflections of the wave hitting against the walls. This region en-
codes relevant spatial cues related to the perception of space around
the listener, including the shape of the room;

3. Late reverberation tail: encoding the time-shifts related to the
higher order reflections.

For what concerns convex geometries, the visibility of source and receiver
cannot be ensured, therefore the direct path echo might be missing.
The impulse response measures the temporal behavior of a LTI system
among an input and an output point. The RIR among spatial points can
be expressed as:

hs→m(t) = h(t | s,m) =
i=+∞∑︂
i=0

αiδ(t− τi) (2.2)

where s and m represent respectively the known source and microphone
positions, τi is the time lag at which the ith echo is received and αi is
an amplitude attenuation factor. In the digital domain, fixed a sampling
frequency, h is a finite tapped delay-line approximating the real infinite
response.
The RIRs signals can be either physically acquired or obtained via algo-
rithmic simulation.

2.1.2.1 Physical acquisition

In the past, the RIRs were acquired fixing the position of omni-directional
microphones in a room and emulating a pulsive input signal for the spa-
tial LTI system. This signal, coming from the explosion of balloons or
from the firing of blank pistols, resembled a Dirac signal. Therefore,
it allowed to measure the response from source to microphones. Other
approaches exploited a loudspeaker (emitting either Maximum Length
Sequence (MLS), Exponential Sine Sweep (ESS) or other signals) and a
microphone, both independently moving in space, followed by appropri-
ate deconvolutive techniques.
Nowadays, the applied techniques are in principle similar to the ones
adopted in the past, but they exploit also new technological improve-
ments. Indeed, dodecahedron loudspeakers and directional and sound-
field microphones are used for multi-channel playbacks and acquisitions.
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What is more, the acquisition procedures are steering towards the us-
age of loudspeakers and microphone arrays capable of synthesizing and
analysing soundfields by encoding weights of spherical harmonics pat-
terns (lower and higher order Ambisonics techniques).
We recall that our aim is to estimate unconventional geometries (consid-
ering other room shapes aside the rectangular one). To our knowledge
the existing datasets containing RIRs have been acquired in rooms of
different sizes generally with a rectangular floor plan, thereby it is worth
digging into methods for simulating RIRs.

2.1.2.2 Virtual generation

The following techniques for RIRs generation belong to the geometrical
acoustic modeling techniques category and can be exploited in a hybrid
fashion to build the full response. Although in Equation 2.2 we gave an
Infinite Impulse Response (IIR) definition of the RIR, with full response
we mean a sufficiently long digital Finite Impulse Response (FIR) ap-
proximating the former one.

Early reverberation

Image-Source Model For Allen and Berkley in [5], the Image-
Source Model (ISM) allows to discard the usage of counter-intuitive
algorithms for the computation of a RIR, preferring instead an image
method.

Figure 2.2: ISM application example

In Figure 2.2, we show some of the first (Mi) and second (Mj,k for
j̸=k) order Image-Sources (ISs) generated from the primary source S1
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and affecting the listeners L1,2 by impinging against an ordered set of
walls w.
The soundfield within the boundaries, at the listener’s position, can be
approximated by the superposition of the direct field and the field com-
ing from the secondary sources which are out of the room emitting the
same signal of the primary source. Explained away the delay factors in
Equation 2.2 due to the distance of each primary or secondary source
with respect to the receiver, we are left with the attenuation factors.
The wave generated from the reflector at the bouncing point is going to
have lower energy because of the wall energetic absorption. This loss is
accumulated along the path at each reflection, resulting in a final peak
amplitude perceived at the destination.
Interestingly enough, fixed a desired sampling rate Fs for the RIR and
the number of reflectors of a given geometry W , the computational time
follows tcomp∈O(W o) for o a variable maximum order of reflection. As a
consequence, the longer the desired response, the greater the maximum
order and the computational cost. A similar issue can be found also in
[17] for arbitrary polyhedra.
Apart from optimizations for the shoebox shaped room, which allow to
save time, we forsee the need of another approach for the approximate
generation of responses in rooms of different geometries.

Beam Tracing In the beam tracing algorithms category, we can
find approaches close to the ISM approach (or to the ray tracing approach
described in the following paragraph).

Figure 2.3: Beam tracing example

As we can see from Figure 2.3, these algorithms are based upon the
firing of beams (volumetric objects, generally of pyramidal or conical
cross-section) in different spatial directions from the source position, in
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order to determine possible mirroring paths.
With respect to ISM, the goal is to reduce the computational cost for the
calculation of the early reflections, by limiting the growth of ISs. Simi-
larly to ISM, in these approaches the number of beams increases at each
reflection, however, for efficiency, the number of beams is minimized by
pruning the ISs tree as soon as possible.
The early implementations are discussed by Funkhouser et al. in [6, 18] to
construct an auralization system considering both reflections and diffrac-
tion.
F. Antonacci et al. in [7, 19] present a tracing technique from the visi-
bility standpoint and apply a parametrization, so that a beam in 2D is
represented by a segment in a dual space (the ray space), thus reducing
the dimensionality of the problem and gaining in performance.
Further solutions based on beam tracing can be adopted to emulate later
reflections. However, they are generally poorer than ray tracing imple-
mentations in accuracy and resources consumption.

Late reverberation

Ray Tracing Whereas the ISM provides an exact geometrical so-
lution that consists of all of the specular reflection paths, the premises of
ray tracing methods are different. Instead of looking for all the paths de-
terministically, this class of methods is stochastic and performs a Monte
Carlo sampling of possible reflection paths, leading to the introduction
of relevant approximations (that we consider acceptable for the modeling
of the reverberant tail).

Figure 2.4: Ray tracing example

In Figure 2.4, a set of rays is cast from the source with a certain
initial spatial distribution. The rays do bounce against the walls until
they reach the listener.
As reported in [8] by Vorländer, each ray carries energetic information
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encoded per-band and, depending on the materials of the walls, the en-
ergetic content is altered until the contribution of each band decreases
underneath a certain threshold, therefore leading to the ray negligibility.
What is more, we can imagine that the receiver should be a sphere-like
spot and not a point as highlighted in [20, 21].

2.1.2.3 Reverberation time

The Reverberation Time (RT) is a time quantity characterizing the decay
time of a sound within an environment. It is, in fact, the time interval
required to a sound to evanish or, more specifically, the interval required
to the sound pressure level to dacay underneath a predefined threshold.
The RT can be estimated from theoretical formulations given the knowl-
edge of room properties or inferred starting from an audio signal (a RIR
or a reverberant signal).

Theoretical formulations In some cases, the RIR might be unknown,
while environmental information (such as room shape, shape variables
and volume) is known. In such cases, the RT can be estimated exploiting
either Sabine’s or Eyring’s formulas.

Sabine’s formula Under the assumption that the traveling wave
does not hit the room reflectors at the same time, the Sabine’s formula
[22] can be exploited to estimate the RT. It corresponds to

T60 =
24 ln(10)

c

V∑︁W
i=1 aiSi

(2.3)

where ai and Si are respectively the energetic absorption and surface of
the ith reflector, c is the speed of sound in air and V is the volume of the
room.

Eyring’s formula Under the assumptions that the traveling wave
does hit the room reflectors all at the same time and that all the surfaces
share the same absorption coefficient, the following Eyring’s formula [23]
can be exploited to estimate the RT.

T60 = −
24 ln(10)

c

V

S ln(1− a)
(2.4)

where a = 1
W

∑︁W
i=1 ai and S =

∑︁W
i=1 Si.
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Schroeder’s integration The very first attempt of estimating the RT
from a RIR was performed by Schroeder in 1965 [24].

Starting from the definition of Energy Decay Curve (EDC):

h(EDC)(t) =

∫︂ +∞

t

h2(t′)dt′ (2.5)

where h is an impulse response and

h
(EDC)
dB (t) = 10 log10(h

(EDC)(t))− 10 log10(h
(EDC)(0)), (2.6)

the T60 could be derived as:

T60 = argmin
t∈R

{h(EDC)
dB (t) ≤ −60} (2.7)

or, to gain robustness, substituting h
(EDC)
dB in Equation 2.7 with ĥ

(EDC)
dB ,

where the latter is a linear interpolation of the former.
The above expressions can be easily translated in the digital domain.

2.2 Audio forensics and integrity checking
The RT estimation techniques with many other audio parameter esti-
mation strategies can be wrapped in a general framework for integrity
checking within the context of audio forensics.
The integrity checking field focuses on the retrieval of information from a
given document or file to check whether it has been affected by a content
modification performed by unauthorized third parties. As a consequence,
the intention is to check if an audio file has been modified introducing
malicious or undesired content.
To give an intuition, in a simple scenario we might have at our disposal
an audio file of which some acoustical properties are declared. We would
like to be able to certify the reliability or unreliability of such declared
parameters performing some tests.

2.2.1 Reverberation time inference
As a first audio parameter we consider the RT. As said, it can be es-
timated by performing measurements on the RIR, exploiting theoreti-
cal formulas given information of the acquisition environment or, for in-
stance, applying algorithms on speech audio signals. The forensics field
is focused on the latter option.

2.2.1.1 Reverberation time estimation from speech signals
based on sub-band decomposition

In [1], the authors perform inference on the T60 by performing a sub-band
decomposition of a speech signal and extrapolating a set of Free-Decay
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Figure 2.5: FDR samples from an energetic spectrum [1]

Regions (FDRs) from each sub-band. The sub-bands are determined
extending what described by Vieira in [25].

As shown in Figure 2.5, an energetic time-frequency spectrum E(t, ωk)
(t on the horizontal axis is the time and conceals a frame index, ωk on
the vertical one represents frequency bins) of a reverberant speech signal
is considered, and a set of FDRs is extracted from each band considering
bundles of consecutive frames with decreasing energy. The regions which
are too short under a temporal perspective or with a negligible energetic
content are discarded.
A final T60 estimate is evaluated for each region, then the final T̂60 is eval-
uated as a linear combination of applications over T̂

(k)
60 band estimates.

2.2.1.2 Learning estimation techniques

Statistical learning approaches aim at retrieving an I/O relation (model)
for solving complex problems by looking for patterns in the data. They
are based on convex optimization applied on high-dimensional spaces.
The main methods for RT estimation do differ mainly for exploited
feature-sets, architecture and problem typology, either regressive or cat-
egorical. Here we briefly report some references (in a non exhaustive
fashion) which are worth to be mentioned.
Xiong et al. in [11] exploit a two-dimensional Gabor Filter-Bank (Gabor-
FB) over a Mel-scaled Spectrogram to extract a feature-set which is then
fed to a Multi-Layer Perceptron (MLP) architecture for a 7-band-split T60

classification. A similar work [26] from an ACE challenge extends the ar-
chitecture to perform a classification also on the Direct-to-Reverberation
Ratio (DRR) and again a further work [27] considers both RT and Early-
to-Late Reverberation Ratio (ELR) employing Gammatone Filter-Banks
(γ-FBs) to build the feature-set. In [28], instead, a time-aware Recurrent
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Neural Network (RNN) is used.

2.2.2 Acoustic environment identification
As mentioned, beyond RT, there is a great variety of room parameters
which can be estimated to determine integrity. An example is to esti-
mate over-time whether an audio signal has been acquired within a small
room, a studio, a church, a hall, a concert room etc. with Acoustic En-
vironment Identification (AEI) methods.
Results in this direction were initially drawn by Peters, Lei and Fried-
land in [12] where feature-maps built upon reverberant signals coming
from certain room classes were used to train different Gaussian Mixture
Models (GMMs) (one model per class). For them, the feature-map is con-
stituted by a time dependent set of Mel-Frequency Cepstral Coefficients
(MFCCs) and the predicted class is selected with a strategy depending
on the GMMs results.
In [13], Malik proposes an alternative approach to FDRs extraction pre-
senting an Automatic Decaying-Tail Selection algorithm to extract decay
regions by retrieving peak and valley markers from the velocity of the en-
ergetic profile derived from the input signal. Depending on the selected
regions, a couple of environmental parameters are estimated through a
Maximum Likelihood statistical model and are then exploited to identify
the ambience.
A paper by Moore, Brookes and Naylor [29] formulates a statistical room-
print model based on an octave-band analysis of the reverberation time
retrieved from real RIRs. Henceforth, in this case, the identification is
performed with a T60-estimate-based strategy. T60 estimates are retrieved
from a third-octave-band representation and are used to fit a statistical
model for the identification.
For M. Marković and J. Geiger in [14], a variety of baseline classification
systems for Acoustic Scene Classification (ASC) (see AEI) are compared
and a reverberation-based algorithmic pipeline is introduced to extend
commonly adopted feature-sets.

2.2.3 Spatial volume inference
Further experiments related to room parameters inference can be found in
the literature. In the past, the volume estimation issue was addressed as
a classification problem by splitting a considered volume range in bands.
Here we’d like to mention [15], in which Genovese et al. attempt in esti-
mating the room volume with a regressive approach exploiting a Convo-
lutional Neural Network (CNN) architecture.
In this work, a set of real RIRs acquired in shoebox-shaped rooms is aug-
mented with simulated data trying to reach an almost uniform volume
distribution. A reverberant speech set is retrieved from the set of re-
sponses and the one of anechoic voices. What is more, a realistic second



Chapter 2. State of the Art and Theoretical Background 14

noise source within the room is modeled.
From the reverberant signals, a set of 25 feature vectors is extracted in
order to build a feature-map to be fed to a CNN architecture. Such vec-
tors provide a compressed representation of the initial signal, which is
primarily relevant for the problem, secondarily useful to reduce memory
consumption and, again, beneficial to enhance the training speed.

2.2.4 Shape variables inference
In similarity with the volume inference case, we might think of perform-
ing a direct estimation to retrieve the shape variables of a room. (i.e. for
the shoebox room, width, height and depth).
In [30], D. Marković exploits a single RIR to assess a shape variables
inference with a generative search. Contrary to previous works, his esti-
mation is based upon the knowledge of a single response.
Here, the room shape (either with rectangular or L-shaped floor plan),
the position of a loudspeaker and a microphone are fixed a-priori to ac-
quire a RIR. Then, this response is compared with a template in order to
minimize a loss function with a Genetic Algorithm (GA). The mentioned
loss function is designed in order to minimize the distance among corre-
sponding peaks within the real and template responses, by performing a
search within the shape variables space of the given room.
An alternative approach going in the data-driven direction by Yu and
Kleijn [31] exploits a corpus of RIRs and a 1D CNN to address the same
problem with a three-output regressor.
Here, noticeably, the real strength of the network is the ability of deter-
mining useful features in an automated fashion, with a learning procedure
which increases in abstraction.

2.3 Room reconstruction methods
After this brief walk-through into audio forensics, we highlight the lack of
a tool capable of recognizing the shape of a room (e.g. with a rectangular,
L-shaped or house-shaped floor plan). In the literature there are various
papers and articles focusing on a geometry reconstruction. However we
believe that new methods based on learning techniques may give new
clues on the room acoustics field.

2.3.1 Spatial maps building
D. Aprea, F. Antonacci, A. Sarti and S. Tubaro in [2], perform experi-
ments to estimate a polar map indicating the walls of the enclosure. To
do so, they fix a single microphone in a room and they change repeatedly
the position of a loudspeaker in space. At each repetition, they perform
an acquisition. Changing the loudspeaker position, depending on the re-
flector, the position of the first order IS changes accordingly. We define
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the point of reflection as the intersection of the wall with the segment
linking microphone and image source. For the experiments, completely
absorbing floor and ceiling are assumed.
Let xs(t) be the signal of a speaker in a certain position acquired by a
microphone and sp(t) be a template signal. The template signal is de-
fined as the convolution of the source signal with a simulated RIR for
a single reflector orthogonal to the segment from the microphone to the
point of reflection p on the wall.
Defining ms(p) = ⟨xs, sp⟩ as the cross-correlation with all the template
signals, the polar map is m(p) = Es[ms(p)], where Es is the expectation
operator over the speaker positions. The point of reflection is estimated
as p̂ = argmax

p
{m(p)}.

Introducing more reflectors, the superposition of the maps results in the
following map.

Figure 2.6: Room reflectors polar map [2]

Figure 2.6 shows the polar map in which peaks indicate the position
of the first order points of reflection with respect to the microphone.
Hence, the map allows to retrieve the floor plan geometry.
A further work [32] assumes no knowledge of the source signal and ex-
ploits more speakers and receivers. As a first step, the secondary sources
locations are estimated. From the cross-correlation of pairs of signals
incoming from the microphones, an experimental Time-Difference of Ar-
rival (TDoA) matrix is computed obtaining τ(ri, rj).
At the same time, a template TDoA matrix from a generic point in
space to each couple can be determined as τtpl(ri, rj;x). Then, defin-
ing the cross-correlation between the TDoA matrices as Rxi,xj

(τtpl), the
cartesian likelihood map is a combination of such estimation functions
Rxi,xj

over all unique (i, j) microphone couples.
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2.3.2 Common tangent algorithm
In the works which led to [3], F. Antonacci et al. fix a microphone
and move a speaker at known positions. The playback signal is known,
the devices are synchronized, and a single reflector is considered. Each
source-microphone pair has an associated RIR which embeds the Time
of Arrival (ToA) of the first-order reflection. Given the ToA, the source
and the microphone positions, an ellipse can be described. Such ellipse
is the space of possible reflective points.

Figure 2.7: Ellipses from COTA algorithm [3]

By considering all the ellipses (Figure 2.7), we can uniquely identify
two linear reflectors as their common tangent lines. To do so, the sets of
bundle lines tangent to each ellipse are intersected to obtain two estimate
lines resulting from an optimization (the COmmon-TAngent (COTA)
algorithm considers a line parametrization to cope with errors). The
basic method is revised to gain robustness using the Hough transform
and further extended to use ellipsoids in order to deal with 3D spaces.

2.3.3 Euclidean distance matrix based algorithm
In [9], the authors first assume to be in a polyhedral room with a variety
of walls. They use a minimum of 4 microphones to estimate the geom-
etry. What is more, the source position is estimated exploiting TDoAs,
while the receivers position is known.
It is the first relevant case in which all the walls are considered in one shot
from the beginning, therefore the RIRs do encode the first-order reflection
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incoming from all the reflectors. This implies the need of disambiguat-
ing the first-order reflection contributions coming from a wall or from
another (echo-labeling problem). This is addressed using a Euclidean-
Distance Matrix (EDM).
Basically, an EDM is squared, symmetric, contains positive values and
zeros on the main diagonal. Such positive values are the squared dis-
tances of each microphonic couple. From the RIR of each microphone,
the ToA of early reflections (possible image source distances) are con-
sidered, and the EDM is augmented with each combination of distances.
Within the set of augmented EDMs, a test is accomplished to retain the
sole real EDMs, i.e., the sole ToA grouping combinations related to a
single image source. The authors are left with a set of image sources
related to their ToAs in each RIR.
To retrieve the geometry, the non-first-order image sources are filtered
out with a strategy and the first-order ones are exploited to apply an
inverse-ISM algorithm.

2.3.4 Reflector search methods
As reported by Crocco, Trucco and Del Bue [10], their work goes in the
direction of neglecting knowledge about the position of sources and re-
ceivers. A convex polyhedral room, with known number of walls and
where sources and receivers are distributed, is considered. The playback
of the speakers is a chirp signal. A matched filter is adopted to extract
peaks from the recordings. From each source-receiver couple, a set of
signal ToAs is extracted. Then, by exploiting a matricial approach, the
positions of sources and receivers are inferred, together with times of
emission and offset.
After the exclusion of approaches requiring excessive computational ef-
fort, a greedy iterative approach is proposed to retrieve the reflectors and
to build the room model.

2.4 Audio descriptors
Moving towards a theoretical introduction of neural networks, we cannot
omit a digression into data processing. The pre-processing is a stage in
which data is transformed to obtain a feature representation which is
useful for the network.
With feature we might either refer to a property of the environment
where the input was acquired or a parameter of the input signal itself or
a characteristic alternative representation of the signal.
Some standard audio features which can be extracted from a digital audio
signal s[n] with temporal index n are:

• Discrete Fourier Transform (DFT): describes the magnitude and
phase in frequency of a signal excerpt obtained windowing the ini-
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tial audio signal. Let w[n] be a window of a certain type with
length Lwin and hop size Lhop, then sr[n] = s[n]w[n− rLhop] is the
excerpt for r the frame index.
Fixing the excerpt r0, its DFT is:

Sr0 [k] = |Sr0 [k]| ej∠Sr0 [k] = F{sr0 [n]}[k] (2.8)

where F is the DFT functional in Nfft frequency bins (indexed k)
defined as:

F{sr0 [n]}[k] =
Nfft−1∑︂
n=0

sr0 [n]e
−jωkn (2.9)

where sr0 is assumed zero-padded until Nfft samples and ωk =
2π

Nfft
k is the normalized frequency wrt the sampling frequency at

which s was acquired.

• Short-Time Fourier Transform (STFT): describes magnitude and
phase in frequency of an excerpts sequence.
Then, for Nfr number of frames within s, the STFT is the concate-
nation of DFTs over consecutive frames:

S[r, k] = Sr[k] = |Sr[k]| ej∠Sr[k] = F{sr[n]}[k] (2.10)

• Mel-scaled Spectrogram: represents in an alternative way the mag-
nitude of the STFT by logarithmically scaling the frequency axis
(following the Mel scale) and dB scaling the magnitude values.

• Filter-Bank: is a set of parallel filters each of which dividing the
frequency range of the input signal in contiguous frequency bands.
The STFT can be regarded as a special case of Filter-Bank (FB) in
which the linearly distributed frequency bins represent the bands.
Depending on the needs, we might opt for the STFT to give a
representation of the signal or for a FB with fewer and wider bands
but preserving the temporal resolution.
A special case of FB is the γ-FB which tries to reproduce the human
ear logarithmic functioning. The frequency band centers sometimes
follow the ERB scale.

• Cepstum (Cepst): gives a further spectral visualization of the spec-
trum over lth quefrencies [s] and is defined as:

ζr0 [l] = F−1{ ln( |Fsr0
| ) + j∠Fsr0

}[l] (2.11)

Even the Cepst vector can be generalized to obtain a time-varying
cepstral map.
The Mel-Frequency Cepstrum (MFC), scales the frequency axis of
an inner power spectrum to be in Mel-scale and exploits a Discrete
Cosine Transform (DCT) as outer transform.
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• Envelope (ENV): describes the upper or lower amplitude profile of
a signal as:

ϵ[n] =
√︁

s2[n] +H(s[n]) (2.12)
where H is the Hilbert transform functional which can be seen as
the application of an Hilbert filter over the signal via convolution.

2.5 Artificial neural networks and deep
learning

To quickly summarize what we’ve written so far, dealing with a shape
classification problem can valuably affect both the audio forensics field
and the room imaging one. In fact, in the first case we underscore the
absence of a room shape recognition tool and in the second case we shall
deal with complex algorithms which we aim at automatize and fasten.
Nowadays, the research is increasingly moving towards the usage of sta-
tistical learning models to cope with supervised and unsupervised prob-
lems. With this work of thesis we would like to investigate the potential
of supervised Deep Learning (DL) techniques applied to the task of room
floor plan classification, choosing among three different shape classes.
The DL techniques are based upon Artificial Neural Networks (ANNs):
they try to find the best solution in a search space exploiting an ar-
chitecture in which nodes are interconnected. Such architectures try to
emulate the brain behavior: the nodes represent the neurons, while the
connections in the architectural graph represent synapses. The nodes are
grouped into layers, the more the layers, the deeper the network and the
greater is its ability to abstract concepts.
The network complexity must be attently evaluated. Models which re-
sult too simple tend to have great error because they have a bias which is
misleading for the learning and visualization of patterns. We shall notice
that the term "bias" is adopted also in cognitive psychology to describe the
propensity to believe as truthful a certain personal belief depending on a
flawed logic generally based upon a small set of observations (prejudice,
generalization);
On the other hand, too complex models might require expensive re-
sources, wide datasets, and fail anyways while considering the noise in
the data as relevant for the problem.

2.5.1 Supervised problems and loss function
Essentially, the supervised problems for which we have data, are problems
in which the input x (e.g. a 1D audio signal or 2D image signal) and the
output y are known across the whole sampleset (of length |D|), while the
I/O relation is unknown.
The loss function describes the distance between two variables while
time passes by (the discrete time instants at which the loss is updated
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are ordinarily the uth training epochs).
In general we can write the loss funcion as:

Ly,ŷ[u] (2.13)

where the two pedix variables are omogeneously either scalar or encoded
label vectors: y is a set of groung-truth target values drawn from the
real distribution p and ŷ contains the samples drawn from the estimated
distribution q (modeled by the estimator).
The goal of these learning techniques is to retrieve an I/O model which
minimizes the loss.
For sake of notation compactness, let us fix an epoch u = u0.

2.5.1.1 Regression

In the regression problem, the variables (y, ŷ) are a set of scalar values
representing a feature of the input sample x, and are generally rounded
to some decimal units.
Depending on the scale of the target values y, different loss functions
might be chosen in order to spread and remark the variables differences.
Nevertheless, we are going to consider the most commonly used loss
functions for the regressive scenario: the Mean Absolute Error (MAE)
and the Mean Squared Error (MSE).
We define the error as:

e = y − ŷ (2.14)
where for the ith sample the error is ei = yi − ŷi.

Loss functions The MAE averages the distances of ground and pre-
dicted samples. It is defined as:

Ly,ŷ = MAE(y, ŷ) = E[|e|] = 1

|D|

|D|∑︂
i=1

|ei| (2.15)

and it represents the range around the prediction in which, in average,
is possible to find the expected value.

The MSE averages the squared-distances of ground and predicted sam-
ples. It is defined as:

Ly,ŷ = MSE(y, ŷ) = E[e2] = E2[e] + σ2
ŷ =

1

|D|

|D|∑︂
i=1

e2i (2.16)

and it encompasses the contribution of the estimator bias and variance.
To be thorough, Equation 2.16 should also include the acquisition irre-
ducible error.
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2.5.1.2 Classification

For what concerns the classification scenario, instead, the variables are
a set of labels identifying the class of a sample. Such labels are encoded
into integer class identifiers or categorical identifiers.
The most ordinary loss for classification problems is the Cross-entropy
(H). Even the Kullback-Leibler Divergence (KLD) is sometimes used to
measure the distance between the cross-entropy H and the discrete en-
tropy of the true distribution p.

Loss functions Considering p (see ground-truth y) and q (see estimate
ŷ) the true and estimated distributions over a support of classes Γ such
that yi ∼ p(Γ) and ŷi ∼ q(Γ), the cross-entropy is defined as:

Ly,ŷ = H(p, q) = −Ep[log2(q)] = −
∑︂
G∈Γ

p(G) log2(q(G)) (2.17)

and measures the average number of bits needed to encode a symbol
G ∈ Γ with an encoder build upon q. Therefore, H is a measure of the
estimator uncertainty.
Depending on the number of classes |Γ| we might opt for a binary cross-
entropy function. What is more, the type of encoding adopted for the
target value, whether with an integer class identifier or a categorical iden-
tifier, affects the usage of sparse categorical cross-entropy or categorical
cross-entropy losses.

Other metrics The confusion matrix C = {ci,j} ∈ M|Γ|×|Γ| where i
indexes ground values and j indexes predictions, organizes the counting
of the predicted classes depending on the ground values: ci = q(Γ | D(i)).
Such matrix highlights the number of samples which are correctly clas-
sified (ci,i) and the distribution of the misclassified samples.

From the confusion matrix, the accuracy

ACC =

∑︁
i∈{1,...,|Γ|} ci,i

|D|
(2.18)

can be derived. A high accuracy measures and sums up the goodness of
the estimator.

2.5.2 Network architecture
So far we discussed about the best-fitting loss for a problem typol-
ogy. The network parameters space defined by the architecture is loosely
mapped onto the loss function, hence the loss minimization procedure
corresponds to building trajectories into the parameters space looking
for the optimal parameters vector, i.e. for the optimal estimator.
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Figure 2.8: Example of NN architecture

Let us exploit Figure 2.8 to be clear: here we can see a Deep Neural
Network (DNN) with a depth of five and with four Fully-Connected (FC)
layers. Each FC layer contains a certain amount of neurons (so called FC
because each of them receives and sends connections from each neuron
of the previous layer to each neuron of the following one).
The input layer has a dimensionality which matches the one of the input
tensor. It is followed by a set of hidden layers which abstract a latent
representation of the input datum.
Finally, there is the output layer which may contain a single neuron or a
multiplicity of them. The role of the output layer is to give a predicted
value ŷi in case of regression or a set of a-posteriori likelihood confidences
q(yi = G |x) (∀G ∈ Γ) in case of classification.

Figure 2.9: Example of CNN architecture

A slightly more complex example of architecture could be the CNN
in Figure 2.9.
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CNNs are habitually split in two main blocks:

1. A first block has the role of abstracting functional features from
the input signal;

2. A second block is a FC sub-architecture (e.g. a MLP) which ex-
ploits the highlights of the preceeding block to perform the task;

2.5.2.1 Features abstraction layers

As brought up before, Neural Networks (NNs) can autonomously abstract
features from an input signal. Bearing in mind that CNNs can be used
also for 1D and 3D application, they are widely used to frame relevant
portions of 2D images (with a certain representation convention, e.g.
NHWC). That’s why we think they are a good toy example to imagine the
concepts of features extraction. Going back to our foregoing narration,
here we are going to consider a convolutional abstraction block as an
example.
The most common layer types which take part to this block are:

1. 2D-Convolution layer: this layer is the one that really evidences
the portion of images that are relevant for the task. It is made-up
by a certain number of cells which are bi-dimensional filters (aka
kernels) of a certain size. The weights of each kernel are learned
during the training phase. The output of a convolutional layer
(indexed by l) is a set of images (one per kernel) where each image
O

l,r
(from filter r) is the result of the 2D convolution ∗ applied to

input image X and filter W
l,r

operands (with an optional stride:
directional hop size);

O
l,r

= X ∗W
l,r

(2.19)

2. 2D-Pooling layer: this layer has a down-sampling role and does
not introduce learnable parameters. Depending on the pool size
and on the type of layer, whether max or average pool, a 2D down-
sampling is performed retaining the max or average of each pooling
block. This layer follows a convolution layer. The conv-pooling
sub-structure is repeated as many times as needed;

3. Flatten layer: is the final layer preceding the FC block and has the
role of flattening the incoming tensor into a 1D vector.

Learnable audio front-end Another specific example about features
generalization is reported by Zeghidour et. al in [16] where LEarnable
Audio Front-end (LEAF) is presented. LEAF is a deep neural front-end
for a CNN audio classifier which dynamically adapts a parametric 2D
representation of an input signal while the network undergoes the train-
ing.
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Firstly, the audio signal x is filtered with a complex Gabor-FB with a
fixed number of bands and retaining the squared modulus of the output
signal. Here each filter has two parameters: band center and band-width;
Then, a low-pass pooling is performed introducing one low-pass filter
(with gaussian kernel) per band. This pool layer is parametrized by the
filter band;
Finally, a Per-Channel Energy Normalization (PCEN) compression is
performed by normalizing the time-frequency representation with an ex-
ponential moving average filter similarly to what was done by the authors
of [33].
The authors test their front-end network with an audio classifier based
on a lite EfficientNet. Specifically, they opt for the least complex net-
work, EfficientNet-B0. The EfficientNets have been introduced by Tan
and Le in [4] as CNNs improving the performances of state of the art
convolutional neural networks with the need of fewer parameters.

2.5.2.2 Fully-connected layers and neural activation

Considering the second macro-block, instead, the output of each neuron
(of layer l, indexed by r) is constrained by an activation function a which
receives a combination of applications over each input of the neuron itself.
Each input is the output of a neuron of layer l− = l−1 indexed by ρ. The
concept of activation is transversal to layers of whichever kind, however
we give an explanation here for sake of clarity.

ol,r = al(bl,r) where bl,r =
∑︂
ρ

wl−,ρ,r ol−,ρ,r (2.20)

Here the weight w∗,∗,∗ is scalar.
Relevant examples of activation functions can be:

• Rectified Linear Unit (ReLU): causes the neuron to fire bl,r iff bl,r >
0 (practical for the output of regressive problems over a positive
support);

• Sigmoid: is a soft unit-step function. If the unit-step fires 1 iff
bl,r > 0, the sigmoid considers input fluctuation and models a cer-
tainty (practical for the output of classification problems);

2.5.3 Training and parameters optimization
via back-propagation

Given a supervised problem for which we have labeled data, the loss
function and an architecture, we shall start training to determine the
optimal weights for our estimator. This procedure is performed using
the training data to learn patterns and the validation data to evaluate
the goodness of the model on unseen data. Finally, the test data is used
to have a final clue on the overall quality of the trained model.
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Figure 2.10: Example of GD solution - (w,L(w)) in black

Let us assume to have the datasetD = Dtrain

⋃︁
Dval

⋃︁
Dtest = {(xi, yi)}

where the samples are retrieved with a noise-prone measurement from the
true distribution. Let us assume to have an architecture with initial pa-
rameters state w = w0 and a Gradient Descent (GD) optimizer with an
initial Learning Rate (LR) η = η0. Figure 2.10 represents the loss among
true data and predictions in the parameters space for a simple problem
during a learning epoch.
Considering this first epoch, there are many steps in which splits (batches)
of the training set are considered. For each sample, the Back-Propagation
(BP) procedure computes the gradient of the loss with respect to each of
the parameters (using the chain rule) going backwards from the output
to the input layers and leading to the update of the parameters following
the equation:

w← w − η
∂L(y(x), ŷ(w|x))

∂w
(2.21)

When the gradient decreases, the parameters are left almost unchanged
and an optimum has been found.
In case the loss function exhibited local minima, as in figure, beginning
the learning with a small LR, given an unlucky initial state, might lead
to sub-optimal solutions. Hence, initially the LR is set to a quite high
value (wider descent step) to increase the chance of reaching the global
optimum and is then decreased overtime following a certain logic. There-
fore, there could be a dependence like η(u) which reduces the training
loss fluctuations overtime.
Aside GD for BP, other possible gradient optimizers are Stochastic Gra-
dient Descent (SGD), RMSprop, Adaptive Moment Estimation (Adam)
etc.
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2.5.4 Validation and hyper-parameters optimization
The validation set retrieved from the whole dataset is often used to man-
ually alter the architecture complexity to prevent over-fitting.
The architectural parameters, for example depth, number of neurons in
each layer, activation of neurons in a layer together with LR and many
other knobs are hyper-parameters. The automated assembly of a NN
architecture for a problem (via hyper-parameters tweaking) is an active
field of research which evidently involves dealing with the bias-variance
trade-off. Even if we do not report it here, we tried to improve some of
our results following the work of Xiao et al. [34] in this direction. In
their work, they adopt a Variable Length Genetic Algorithm (VLGA) to
build a CNN architecture optimized for a classification task.

2.5.5 Test and Grad-CAM feature spotlights
The relevance of the features derived from an input vector via processing
or convolutional abstraction can be emphasized with a variety of instru-
ments. Some of such instruments require to absorb parameters (e.g.
Attention layers), other can be put to use during the test phase.
An example of these latter tools is Gradient-based Class Activation Map-
ping (Grad-CAM), presented by Selvaraju et al. in [35]. Essentially, for
each class, the spotlight map called the heat map, is the weighted su-
perposition of the activation maps coming from a number of consecutive
convolutional layers, from a starting one going to the output score (before
the softmax deformation) for the same class. The class weight for the
activation map of each layer is computed as the Global Average Pooling
(GAP) of the gradient of the output score with respect to the activation
map.
Let us try to give an intuitive explanation by considering a network
already trained for an animal recognition task. Given a new sample,
perhaps we’d like to highlight a dog in such image.

Figure 2.11: Grad-CAM spotlighting example
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Grad-CAM is capable of highlighting the dog (i.e. the portion of the
input image relevant for the task) through an heat map. Such map can
be resized and superposed to the input image to create a view like the
one in Figure 2.11.

2.6 Conclusive remarks
In this chapter we gave an overview of all the concepts on which we
are going to operate in the following chapters. Starting from the defini-
tion and retrieval of audio signals and room impulse responses, we went
through the discussion of environment parameters estimation focusing
on the lack of a shape inference technique based on learning techniques.
Then, we gave a condensed introduction of data processing and DL the-
ory to clarify its applicability in our case of study.
In the following chapter we are going to propose our method for the
classification of an environment shape based on mono speech signals.



3
Proposed Method

In this chapter we formally present the problems of estimating three
room parameters: the spatial volume, the reverberation time and the
floor shape.
Then, we describe our solution pipeline in which we present two ap-
proaches for estimating the acoustic environment properties. The first
one aims at retrieving a preliminary estimation of either the room volume
or the reverberation time. These problems have been often addressed in
the literature. The second approach tackles the problem of room shape
classification, which is less investigated in the literature.
Finally, we are going to draw some remarks on the chapter also putting
forward possible architectural improvements.

3.1 Problem formulation

Let x(in)[n] ∈ RN be a digital anechoic audio signal of length N sampled
at Fs. Morover, let us consider a room space R = ⟨Γ,ΛΓ⟩ where Γ is the
set of possible room shapes and ΛΓ is the space in which exist the room
class variables for all the classes.
To better explain the meaning of ΛΓ, let G ∈ Γ be a room shape, then ΛG

is the space of the room parameters fixed the shape G, and λG ∈ ΛG is
an instance point of such space. Let r = ⟨G, λG⟩ ∈ R be a room sample,
for which vertices, shape G(r) and volume V (r) are defined.
Let s ∈ R3,m ∈ R3, (s,m) is a source-microphone pair fixed in r so that
|m− s| belongs to a constrained range.
Let h

(r)
s→m[n] ∈ RM be a RIR of length M acquired at Fs into room r

with an associated T60 estimation.
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Then, from the digital implementation of Equation 2.1, we obtain
x
(r)
m [n] ∈ RN+M−1.

x(r)
m [n] = (x(in)

s ∗h(r)
s→m)[n] =

m=+∞∑︂
m=−∞

x(in)
s [m]h(r)

s→m[−m+ n] (3.1)

where ∗ is the discrete 1D convolution operator. From the considerations
above (V, T60, G) can be inferred.

Figure 3.1: An acquisition setup scenario

In Figure 3.1, we represent a setup scenario in which we fix a source
(red dot) and a microphone (red cross) for the signal acquisition.
With a notational abuse, let x be the reverberant signal or a compact
representation of it.
Starting from the reverberant signal, we would like to retrieve the best
estimate for the room shape class. To do so, we are going to use either a
preliminary volume or a preliminary reverberation time estimator.

Volume regression In the volume regression scenario, we want to
design an estimator for the volume V , using as input a reverberant audio
signal. If we assume to know the relation (x, V (x)), where V is the
volume of the room in which the x signal is acquired, we search for an
estimator MV which approximates V (x) with V̂ = MV (x).

Reverberation time regression In the T60 regression scenario, we
want to design an estimator for the reverberation time T60, using as input
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a reverberant audio signal. If we assume to know the relation (x, T60(x)),
where T60 is the reverberation time within a room in which the x signal
is acquired, we search for an estimator MT60 which approximates T60(x)
with the estimate T̂60 = MT60(x).

Shape classification In the shape classification scenario, we strive
for evaluating the optimal estimator for the room shape class G. If we
consider known (x,G(x)), where G is the shape of the room in which x
has been acquired, we then look for the estimator Mg so that Ĝ = Mg(x)
provides the estimate of G(x).

3.2 Solution pipeline
Our problem is to estimate in the most accurate way the shape of a room
starting from a reverberant signal.
To do so, we combine the usage of a group of estimators. Some esti-
mators allow to retrieve a preliminary estimation of the volume and of
the reverberation time depending on the input signal. The other ones
are specific estimators which have been trained and optimized either on
a volume or on a T60 band for the shape classification task. Each band
is identified by an index b and with the preliminary estimation we are
able to retrieve a band index estimate b̂ for the specific estimators. We
decide to work on a band-basis to provide the best room shape estimate.
Indeed, the results of our experiments show that an estimator focused on
a certain band has better performances.
Once we have chosen the specific estimator, we apply it to the input
signal to retrieve an estimate.

Figure 3.2: Solution pipeline

Figure 3.2 contains the core logic of our work.
MGb̂

, is the best model for the retrieval of the best shape estimate Ĝ.
MGb̂

∈ S
(voice,V )
G , where S

(voice,V )
G is a set of estimators for shape classifi-

cation, each of which focuses on a different volume band.
As mentioned, b̂ is an index which represents the volume band on which
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a model has been trained. Our models are parametrized on a specific
band and with b̂ we choose the best one. b̂ is retrieved from a coarse
estimation of the volume of the room.

Digging deeper, another band index estimate can be retrieved de-
pending on the T̂60 estimate through MT60 . That’s why we parametrized
S
(sw1,sw2)
G to reference models. The ones trained on different input sig-

nals (among rir, reverberant white noise or reverberant speech signals)
are chosen via sw1 as in Figure 3.2. And a sub-set of these is obtained
via sw2 by considering the domain on which the band subdivision is per-
formed (a volume band subdivision or a T60 band subdivision).
The reverberation time band subdivision is similar to the volume band
subdivision and uses the coarse MT60 model in Figure 3.2 to retrieve the
band index estimate which might be used as an alternative to the one
obtained with MV .
What is more, to have a clue on the usefulness of features, we experi-
mented the usage of Grad-CAM.

In the following, we provide additional details in terms of analysis of
our proposal.

Preliminary volume estimation Speaking about the MV prelimi-
nary estimator, it has the role of retrieving a coarse volume estimation.
The ground-truth volume property is retrieved from the room instance
associated to the signal acquired in it.

Preliminary reverberation time estimation MT60 is treated sim-
ilarly to MV . However, for whichever kind of input signal (sw1), the
T60 considered as ground value is calculated on the RIR from which the
signal derives.

Specific in-band estimators and their selection The overall vol-
ume range for which we have room examples is considered to be split in
a number I of disjoint volume sub-ranges: the volume bands. Given the
V̂ estimate coming from the preliminary estimation, we can choose one
of the specific models trained specifically for that volume band.
Parallelly, the same considerations hold for the branch which considers
T̂60 = MT60(x).

3.2.1 Architectures for the estimators
For what concerns the estimators, we adopted a data driven approach
because of the complexity of our study case. We used a couple of differ-
ent CNN architectures. The first architecture puts at use a deterministic
front-end for the computation of features, while the second one has a
learnable front-end. For the preliminary volume estimation, we exploited
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the deterministic front-end architecture, while for the room shape esti-
mation we compared the two architectures.

3.2.1.1 Room Geometry Inference - Deterministic front-end
Architecture

In this section we are going to fill the pending narrative gaps of Section 2.4
and Section 2.5.2 describing part of the estimation techniques used in the
proposed solution.
First, we compute a compact 2D representation of audio signals through
a pre-processing stage. Later, such 2D representation is fed to a neural
architecture similarly to what done in [15] to retrieve volume and shape
estimations.

Data pre-processing and input pipeline The feature map repre-
sentation is evaluated on an adaptation of each reverberant signal. A
segment of length N is obtained from the original signal using a rectan-
gular window. The adapted signal x of length N is the superposition of
the segment with a thermal noise (of -120dB deviation). The thermal
noise is used to grant the log-energy computability (see below). The fea-
tures are computed from the adapted signal.
A feature-map contains a subset of the listed features.

• A γ-FB sub-map parametrized by (B1, Fs, Flo, Fhi, Lwin, Lhop):
Γ : N|B1−1 × N|Nfr(Lwin,Lhop)−1 → R
where B1 is the number of desired ERB-scaled bands within [Flo, Fhi],
Lwin and Lhop are the window parameters for the log-energy com-
putation and Nfr is the number of rth frames of the input signal
on which a log-energy coefficient E(log)

r = ln(
∑︁Lwin−1

j=0 x2
r[j]) is com-

puted;

• A DFT vector parametrized by (Fs, Fhi, Nfft):
φ : N|Nfft−1 → R calculating the DFT on 2Nfft points and re-
turning half of the magnitude spectrum. The DFT is computed on
a downsampled version of x determined to have Fhi as maximum
frequency to fit the final image shape;

• A magnitude sorted DFT vector φ
ms

which retrieves an ascendent
ordering of the previous vector;

• A Cepst vector with parameters (Fs, Fhi, Nquef ):
ζ : N|Nquef−1 → R on Nquef quefrencies, of which the magnitude is
retained (see DFT feature vector downsampling);

• An ENV vector depending on (Fs, Lwin, Lhop):
ϵ : N|Nfr(Lwin,Lhop)−1 → R (see γ-FB log-energy compression);

• The time domain signal with a dependence on (Fs, Lwin, Lhop):
χ : N|Nfr(Lwin,Lhop)−1 → R (see γ-FB log-energy compression).
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From the subset above, a bi-dimensional feature map is computed by
stacking the mentioned features.
Once the maps are built on all the input signals, constituting an ideal
tensor of shape (N,H,W,C) = (|D|, B1 + 5, Nfr, 1), a min-max normal-
ization is performed to coherently scale each feature sub-map/vector in
the [0, 1] range. The procedure leads to a representation reported in
Figure 3.3.

Figure 3.3: A normalized feature-map example

In particular, in Figure 3.3 we can observe a feature map built on
a reverberant speech signal with quite small windows. On the horizon-
tal axis we find the indices representing log-energy temporal frames or
frequencies or quefrencies, while on the vertical one we represent the fea-
tures.
Some feature vectors have very slight variation from the average, there-
fore their contribution is almost invisible in the figure.

Network architecture As explained in Section 2.5.2.1, the feature
extraction block is common in both the regression and classification sce-
narios. Actually, what changes is the output FC layer.
The input batch traverses a batch normalization layer. There the nor-
malization of the batch is performed to improve the network stability.
Then, the tensors traverse a series of ConvPool blocks. Afterwards, a
dropout regularization is performed and finally the FC block is reached.
A description of the layers functioning is available in Section 2.5.2.1.
This architecture has been trained within the regression context to have
a preliminary estimator of the volume and of the reverberation time. In
addition, in the classification scenario, it has been trained for the in-band
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room shape classification.
The feature extraction block is represented in Figure 3.4.

Figure 3.4: Network feature extraction block
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The following Figure 3.5 represents the output block of the architec-
ture with deterministic front-end.

(a) Regressive block (b) Classification block

Figure 3.5: Network FC block

The 3.5a and 3.5b blocks respectively use ReLU and Softmax activa-
tions.

3.2.1.2 Room Geometry Inference - Learnable front-end Ar-
chitecture

In our second proposal, the specific estimators belonging to the pipeline
are built by filling the gaps of Section 2.5.2 and of the LEAF paragraph
in Section 2.5.2.1.
In detail, we make use of a front-end network to compute an alternative
representation of audio signals. The front-end network is connected to a
standard back-end architecture, following the example in [16], to define
the desired estimators.

Network architecture In this case, the neural architecture back-end
is extended by introducing a front-end block.

Figure 3.6: LEAF front-end

Differently from the architecture with deterministic front-end, this
architecture has been trained only within the classification context for
the in-band room shape classification to improve some poor results of the
aforementioned alternative.

Learnable audio front-end Here, fixed B2 the number of Gabor-
FB bands, the Gabor filtering stage introduces 2B2 parameters: center
frequency and bandwidth of each of the B2 filters.
Then, the gaussian low-pass stage introduces the cut-off frequency of
each gaussian filter (one per band, B2 parameters).
Finally, the sPCEN stage introduces 4B2 parameters for an overall amount
of 7B2 trainable parameters.
The functioning of this front-end architecture has been more extensively
explained in Section 2.5.2.1.
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Follows an example of feature-map retrieved using LEAF.

Figure 3.7: A LEAF feature-map example

Concerning Figure 3.7, on the horizontal axis we find temporal frame
indices, while on the vertical one we find frequency band indices.

Back-end Similarly to what done by the authors of [16], we choose
the lite EfficientNet-B0 as a standard back-end architecture for our work.

Figure 3.8: EfficientNet-B0 architecture [4]

Figure 3.8 has been extracted from the official reference [4] of Tan
and Le and summarizes the network architecture.
Each Stage of the network wraps a certain number of layers #Layers.
The Mobile inverted Bottleneck Convolutional (MBConv) stage has been
defined in [36]. There k stands for the kernel size of the depthwise convo-
lution layer belonging to the block. Finally, Resolution and #Channels
represent the shape of the output tensor for each given Stage.
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3.3 Conclusive remarks
In this chapter we described the problem formulation and the complete
architecture of our proposed solution.
As far as the problem formulation is involved, we gave a description of
the regression and classification problems applied to our scenario.
For what concerns the proposed solution, we analyzed our algorithmic
pipeline to determine the best specific in-band shape estimator depend-
ing on a coarser volume or reverberation time estimation.



4
Simulations, Tests and Results

In this chapter we give details about the experimental setup and the
results obtained using the proposed method.
First, we introduce our data generation framework designed to deal with
big amount of data in a structured fashion. The framework is used for
the generation of the datasets.
Then, we illustrate the details related to the experimental setup used for
the validation stage.
Afterwards, we are both going to give details about our architectures and
to analyze the results of our method implementation on the generated
data.
Finally, we are drawing some observations and hypotheses based upon
our experimental results.

4.1 Data generation framework
The data driven method described in the previous chapter requires the
availability of a large dataset. To the best of our knowledge, a RIR
dataset labeled with floor shapes does not exist. Therefore, we create an
ad-hoc dataset to validate the proposed method. In the next section we
describe the data model and creation pipeline.

4.1.1 Room shapes and data model
The data model is built to fit the Pyroomacoustics (PRA) python pack-
age [37] and extend it to automate the construction of some room classes.
Concerning Figure 4.1 and Figure 4.2, they represent Unified Modeling
Language (UML) class diagrams which summarize the structure of our
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data model. There, the blocks represent classes, while the arrows repre-
sent inheritance.

Figure 4.1: Sample spaces model

A GriddableSpace is a space on which a grid can be constructed. A
SamplableSpace, instead, is a space from which samples can be extracted.
The 2D ShapeSpace class is an abstract descriptor of the space containing
floor plan maps built from vertices. With floor plan map we mean the
2D geometry from which a 3D room can be constructed via extrusion. In
a similar way, RoomSpace describes the space containing all the possible
rooms.
To gather the instances of a certain class, the room variables for each
class can be limited to obtain realistic rooms. What is more, a step is
fixed to have a discrete number of possible values for each class variable.
For example, if we consider a room with a rectangular shape, each of
its variables (width, height and depth) can be limited to a range. At
the same time, a space can be sampled to extract a certain number of
instances from the grid.

Figure 4.2: Sample model

The GriddableSample class exposes the method which allows to re-
trieve a grid of points within a room. Similarly, SamplableSample al-
lows to retrieve a certain number of points coming from the grid. Cor-
nerableSample defines the abstract method which allows to retrieve the
spatial vertices of a room. Finally, the methods encoded by Wallable-
Sample permit the retrieval of the set of walls of the room (as a set
of PRA pyroomacoustics.wall.Wall instances). RoomSample schema-
tizes the properties of an instance extracted from a RoomSpace instance
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through sampling. The sampling procedure fixes the variables encoded
by the classes which inherit from RoomSample. These classes do not ap-
pear in the diagram of Figure 4.2 for sake of compactness, however they
are specific implementations of RoomSample for the geometries which we
consider in our experiments: RectangleRoomSample with a rectangular
floor plan, LRoomSample with an L-shaped floor plan and HouseRoom-
Sample with a House-shaped floor plan. Finally, the variables belonging
to the specific room class are exploited to retrieve the above mentioned
properties, for instance the volume, the room vertices, the room walls
and their surface.
A room sample can be newly meshed to retrieve all the geometrical points
belonging to an admitted region. Otherwise it can be sampled to retrieve
some examples from the grid.
The above model describes the data structure of each room sample. The
samples can be generated with the volume factory.

4.1.2 Volume factory
Let a class, a volume range, a volume bandwidth and a number of desired
room samples for each band in the range be given. In this context, with
volume bandwidth we identify a narrow slice of the volume range in
which we count a constant number of room samples (the desired ones).
With the volume factory, we retrieve the number of desired samples for
each bandwidth within the range by performing an exhaustive search in
the room sub-space related to the geometry class. This allows to have
an almost uniform volume distribution for the rooms sample-set in the
overall range.

4.1.3 RIRs and reverberation time factory
RIRs generation Speaking about the generation of the RIRs in a
room, we observe that PRA provides an implementation of the ISM al-
gorithm. It is important to highlight that ISM algorithm reaches very
high computational complexity for rooms with shape different from the
common shoebox. In fact, to obtain an impulse response of, for instance,
T60 = 2s in a room of quite high volume (e.g. 1000m3), it is necessary to
select a high maximum order (e.g. 20 or 30, modeling as relevant for the
generation all the ISs within a maximum distance from the microphone).
While the computation in shoebox rooms for quite high maximum or-
der and volume can be optimized, the same does not hold for different
shapes, where the computational time for one room might require even
weeks.
For these reasons, we adopted an hybrid solution involving ISM to model
early-reverberation and ray-tracing to model the reverberant tail, a trade-
off between response quality and computational cost.
Given a room sample generated with the volume factory, its sampling
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allows to select spatial points over which the response is computed, also
parameterised by walls absorption coefficient and on desired T60.

Reverberation time factory Let us consider a room with control-
lable absorption behavior, a target T

(tgt)
60 with a maximum acceptable

temporal error Tϵ. Assuming that |m− s| is constrained, we consider the
walls absorption coefficient as our parameter for controlling the measured
T

(meas)
60 ∈ T

(tgt)
60 ∓ Tϵ.

To do so, we perform a GD search in the absorption coefficient space,
considering the distance among T

(meas)
60 and T

(tgt)
60 as our loss gradient.

We start with an average absorption coefficient estimated from the in-
version of Equation 2.3. Then T

(meas)
60 is measured from the response.

The measurement at each iteration is performed using interpolation over
Equation 2.7 on a third-octave-band basis and weighting the estimates
with the sub-band energy normalized by the overall energy. If the tem-
poral error is below the maximum acceptable error, the exit condition is
matched. Otherwise, the absorption coefficient is updated depending on
the loss gradient and the iterations continue.
This factory allows to generate RIRs with a T60 belonging to a certain
range starting from the rooms set generated with the volume factory.

4.1.4 Generative framework
Considering the fact that we were going to deal with big amount of data,
we have built a framework for data storage.
The advantages of such data storage framework can be summarized in
the points below.

• prevention of data inconsistency;

• prevention of data mix-up;

• storage of an experimental history;

• lower RAM consumption during data generation.

Figure 4.3: Generative framework wrap-up
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To sum up, the computation block computes either serially or with
multi-threading the handler function with the related parameters on each
of the example files contained in the relative input folder (i_dir_path).
Such input files are split among threads to grant load-balancing. The ex-
amples resulting from the computation are stored in the output directory
(o_dir_path, relative to the output directory base path o_dir_path_base),
which name depends on input and parameters of the computation block.
Each output file stores relational references to input signals, some compu-
tational parameters, output signal and optionally further characteristic
values.
The main drawback here is the overhead introduced by I/O operations,
however we can consider it as negligible while generating big amount
of data. Other approaches based on more structured data sources (e.g.
NoSql DB [38]) could be considered.

4.2 Experimental setup and datasets
In this section we illustrate the implementation deatils relative to data
generation framework. For what concerns the experimental setup, we
start from the generation of rooms and to constrain the search, we fix
the room space step and each class variable range. Moreover, we define a
volume range which is split in volume bands in which a number of rooms
must be found. We highlight that our almost exhaustive implementation
can be easily extended to perform a search with a GD method.
Then, for each room, a certain number of RIRs is retrieved by randomly
fixing a source s ∈ R3 and a microphone m ∈ R3 so that |m − s| ∈
[0.8, 1.5]m.
Furthermore, during the acquisition of the RIRs with ISM and ray-
tracing, a V range is re-mapped in a T60 range to obtain the desired T

(tgt)
60 s

as references for the measured values (more details in Section 4.1.3).
Here, fixed the source-microphone distance, the walls absorption is our
main toy parameter to obtain rooms of a certain volume with a desired
(and possibly realistic) reverberation time.
Finally, our study signals (reverberant white noises dataset and reverber-
ant speeches dataset) are retrieved performing convolution between the
RIRs in our responses set (generated with PRA) and randomic source
input signals. If the desired source signal is a white noise, a random
signal is generated for each response. Otherwise, if the desired source
signal is an anechoic input speech signal, for each RIR a random sample
is extracted from ∼7K audio signals belonging to the "CMU_ARCTIC"
databases [39].

4.2.1 Rooms and setups
The generation of the rooms is constrained to be quite realistic. In table
Table 4.1 we summarize the parameters for rooms construction.
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Parameter Parameter value
Floor map variables range [3, 20]m
Floor map variables step 0.2m

Room height range [3, 6]m
Volume range [50, 1050]m3

Generation volume bandwidth 50m3

Samples per generation volume bandwidth 63

Table 4.1: Rooms generation parameters

In Figure 4.4 we observe the volume distribution considering all the
samples resulting from the search.

Figure 4.4: Volume distribution given the room class

An amount of 1260 unique rooms is extracted for each class, there-
fore we consider 3780 rooms. As visible, the volume distribution is almost
uniform to avoid an unbalanced dataset.

As a following step, we would like to retrieve approximately 10K RIRs
from each room class, therefore for each class we perform 8 acquisitions
per room from a source to a microphone. However, we would like to
underline the fact that the number of extracted rooms, the number of
acquisitions per room and the number of sources (with related input
signals) and microphones per acquisition can be modified.
In Figure 4.5 we report some examples of setup in which we color in green
the projection in the 2D plane of the admissible region in which spatial
samples can be extracted.
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(a) In a RectangleRoomSample

(b) In a LRoomSample

(c) In a HouseRoomSample

Figure 4.5: Setup examples

The admissible region is the hull containing green points which dis-
tance from the walls is of at least 1m. This distance is selected to prevent
the loss of first order peaks in the response, especially if we had consid-
ered co-located source and receiver. The sampling frequency is fixed to
Fs = 16KHz. In the admissible regions examples in Figure 4.5, we drew
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sources as red dots and microphones as red crosses.
Given the setup parameters, we obtain 30240 unique setup configurations
(from which the RIRs are retrieved).

4.2.2 RIRs and reverberant signals
The above configurations allow to create an equal amount of responses
and acquired signals (|D| = 30240). If, for instance, we parametrized
two microphones per acquisition instead of one, we would have ∼30K
response tensors in the associated experimental folder (with source, mi-
crophone, time axes), but ∼60K mono microphone signals in the folder
related to the acquisition handler for the current parameters.

For what concerns our description in Section 4.1.3 about the rever-
beration time manipulation, we decided to map our whole volume range
in a T

(tgt)
60 range from 0.5s to 2.5s so that the absorption coefficients are

not too high. In this way, the room samples corresponding to the volume
distribution are not too far away from the room samples corresponding
to the reverberation time distribution. We fix Tϵ = 0.05s as maximum
acceptable error for the measured T

(meas)
60 relative to the target T

(tgt)
60 .

What is more we adopted an hybrid ISM and ray-tracing approach to
compute the responses. We fixed the maximum order of reflection for
ISM to 10.

Figure 4.6 considers the whole RIRs set and shows the overall dis-
tribution of two properties: the length in samples and the T60. Given
the great number of samples per room class, we have proof that such
distributions follow the same flat profile when considering each class sep-
arately. The advantage of digitally generating our data performing a
search is that we have control on the desired distribution of the prop-
erties. The volume of examples obtained by randomly sampling a room
space instance would be positively skewed, thus leading to the need of
applying a transformation on the target (e.g. log(y) or 3

√
y) to normalize

its distribution.
However, we must take in account that it is not strictly necessary to
have a normally distributed target variable for training. The prediction
residuals must be normally distributed, instead. Indeed, we opt for ap-
proximately uniformly distributed targets and in the regressive scenario
we are going to check for the error normality.
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(a) Distribution of the lengths

(b) Distribution of the T
(meas)
60 s

Figure 4.6: Properties distribution of the whole RIRs set

In Figure 4.6a the length variable is expressed in samples, remember-
ing that for us Fs = 16KHz, while in Figure 4.6b the variable is expressed
in seconds.
From the entire RIRs set, the reverberant signals are obtained convolving
each response with a random source audio signal. As mentioned, each
response belonging to the set is convolved with a random unique white
noise or with a random anechoic speech from the CMU dataset to obtain
reverberant white noises and reverberant speech signals respectively.
In the following, we present an analytical report of the reverberant sig-
nals.
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4.2.2.1 Reverberant audio signals analysis

RIRs examples In Figure 4.7, Figure 4.8 and Figure 4.9 we show some
examples of RIRs acquired in rooms of different shapes with increasing
volume.

(a) V ∈ [50, 100]m3

(b) V ∈ [100, 700]m3

(c) V ∈ [700, 1050]m3

Figure 4.7: RIRs - RectangleRoomSample
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(a) V ∈ [50, 100]m3

(b) V ∈ [100, 700]m3

(c) V ∈ [700, 1050]m3

Figure 4.8: RIRs - LRoomSample
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(a) V ∈ [50, 100]m3

(b) V ∈ [100, 700]m3

(c) V ∈ [700, 1050]m3

Figure 4.9: RIRs - HouseRoomSample

For the dataset construction, we observe that for these samples and
in most cases the response length and the measured T60 become higher
when the volume increases, but in general this is not always true. Our
framework allows to map whichever volume range in whichever reverber-
ation time range.
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White noise examples In Figure 4.10, Figure 4.11 and Figure 4.12
we show a relevant extract of reverberant white noises together with their
Mel-scaled spectrogram representation.

(a) Resulting signal

(b) Related Mel-spectrogram

Figure 4.10: White noises - RectangleRoomSample - V ∈ [50, 100]m3
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(a) Resulting signal

(b) Related Mel-spectrogram

Figure 4.11: White noises - LRoomSample - V ∈ [100, 700]m3
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(a) Resulting signal

(b) Related Mel-spectrogram

Figure 4.12: White noises - HouseRoomSample - V ∈ [700, 1050]m3

Into Figure 4.10, Figure 4.11 and Figure 4.12 we observe the reverber-
ant white noise signals mj resulting from the convolution of an anechoic
white noise si and a response hsi,mj

.
Such signals are acquired in rooms of different shape and different vol-
ume.
From the Mel-spectrograms we can glance at the sound decay behavior
in the time-frequency domain.
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Speech examples Following the outline of the previous paragraph, we
report also samples of reverberant speech signals.

(a) Resulting signal

(b) Related Mel-spectrogram

Figure 4.13: Voices - RectangleRoomSample - V ∈ [700, 1050]m3
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(a) Resulting signal

(b) Related Mel-spectrogram

Figure 4.14: Voices - LRoomSample - V ∈ [100, 700]m3
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(a) Resulting signal

(b) Related Mel-spectrogram

Figure 4.15: Voices - HouseRoomSample - V ∈ [50, 100]m3

Similarly to the observations of the previous paragraph, into Fig-
ure 4.13, Figure 4.14 and Figure 4.15 we observe the reverberant speeech
signals mj resulting from the convolution of an anechoic speech si and a
response hsi,mj

.
Such signals are acquired in rooms of different shape and different vol-
ume.
From the Mel-spectrograms we glance at the sound decay behavior in the
time-frequency domain.
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4.2.3 Datasets
The samples that we just analyzed come from one of the three datasets
(one per signal type) that we built for our research. The main properties
included in our final version of the datasets are the signal itself, the
volume of the room in which the signal is acquired, the related T60 and
the label of the room shape class.

Splits Each dataset of |D| = 30240 samples is split in training, vali-
dation and test sets. The training set contains 70% of the samples, the
validation set contains 20% of them and the test set contains the remain-
ing samples. Depending on the band subdivisions, the main dataset is
dynamically filtered while the split percentages are unvaried.

Band subdivisions As mentioned, the dataset for each source signal
type contains ∼30K samples. To understand the relation among volume
or T60 and shape we decide to analyze the behavior of a set of shape
estimators (S(sw1,sw2)

G in Figure 3.2). Each of them has been trained
on different input signals and either on a volume or reverberation time
band.
The Vmod or Tmod module selects MGb̂

∈ S
(sw1,sw2)
G depending on the

preliminary estimation coming from the previous computational block.
At the moment, the training of the specific estimators is performed on
the bands represented in Table 4.2.

V-bands [m3] RT-bands [s]
[50, 250] [0.5, 0.9]
[450, 650] [1.3, 1.7]
[850, 1050] [2.1, 2.5]

Table 4.2: Band splits

Within each dataset, we decide to perform a filtering to retrieve ∼6K
samples for a certain property in a certain band. As for the preliminary
estimation, these samples are split in training, validation and test sets.
Each split still follows an almost uniform distribution although we have
less samples at our disposal.

Alternatively, we could have exploited our factories to extract more
samples for a narrow volume band (instead of considering range and sub-
bands), map them in a desired narrow reverberation time band, produce
a final different dataset for the training of each specific specific model.
Following this alternative procedure, the pro would be the presence of
many more samples in each band, while the primary con would be the
time consumption.
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4.2.4 Front-end parameters definition
We described the details which are foundation for the generation of our
datasets. We are left with the description of the initialization parameters
of our estimators architectures.

RGIDA For what concerns Room Geometry Inference - Deterministic
front-end Architecture (RGIDA), used for the preliminary volume es-
timation and for shape classification, we used the parameters reported
below in Table 4.3.

Feature Parameters Parameters value
Γ (B1, Fs, Flo, Fhi, Lwin, Lhop) (20, 16000, 50, 2000, 32, 16)

φ (Fs, Fhi, Nfft) (16000, 500, Nfr)

φ
ms

() ()

ζ (Fs, Fhi, Nquef ) (16000, 500, Nfr)

ϵ (Fs, Lwin, Lhop) (16000, 32, 16)
χ (Fs, Lwin, Lhop) (16000, 32, 16)

Table 4.3: RGIDA front-end parameters

Depending on the signal type and on the maximum length of the
signals belonging to each dataset, the parameters in Table 4.3 might
undergo slight variations.
We remind that Nfr has been defined in the pre-processing paragraph
of Section 3.2.1.1 and depends on the maximum length of the signals
belonging to a certain type and both on Lwin and Lhop.

RGILA As far as Room Geometry Inference - Learnable front-end Ar-
chitecture (RGILA) is involved, apart from other specific parameters
mainly inherited from [16], we set B2 = 128 filters for the Gabor-FB.

4.2.5 Back-end parameters and metrics definition
In this section we are giving some specifications about the losses, met-
rics and optimizers used for the training of the networks in the different
scenarios.
We highlight that such parameters might undergo slight variations de-
pending on the specific cases.
All the estimators do exploit Adam optimizer and train over 1000 epochs
considering early stopping as soon as there are no performance improve-
ments. The batch size is fixed to 64 or 32 depending on the number of
training examples.

4.2.5.1 RGIDA

Preliminary estimators The preliminary regressors do minimize a
MSE loss as described by Equation 2.16. Furthermore, a MAE metric is
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considered.
In Table 4.4 we present the initial network parameters.

Parameter Parameter value
Initial LR 1× 10−3

LR reduction factor on plateau 0.2
Plateau patience 10

Significative loss variation 100m6 (V) / 0.01s2 (RT)
Early-stopping patience 33

Table 4.4: Initial RGIDA parameters for preliminary estimators

Specific estimators The specific classifiers do minimize a H cross-
entropy loss as described by Equation 2.17. What is more, a confusion
matrix metric is taken into account.
In Table 4.5 we summarize the initial network parameters.

Parameter Parameter value
Initial LR 1× 10−1

LR reduction factor on plateau 0.1
Plateau patience 30

Significative loss variation 0.01
Early-stopping patience 93

Table 4.5: Initial RGIDA parameters for specific estimators

4.2.5.2 RGILA

Specific estimators The main parameter for the specific RGILA shape
estimators is the initial LR fixed to 1× 10−4.

4.3 Experiments and results
Explained the different aspects of data generation, of the evaluation setup
and of the architectures initialization, we are going to compare the re-
sults obtained from the experiments conducted with estimators based on
RGIDA (Section 3.2.1.1) and RGILA (Section 3.2.1.2) for shape estima-
tion.
Firstly, we are going to analyze the results of the RGIDA preliminary
estimators for volume and reverberation time depending on the input
signal type. Then, we are going to compare the results of the classifica-
tion task for both the RGIDA and RGILA architectures depending on
source signal type and volume or reverberation time band subdivision.
Finally, we are going to provide some insights into the features useful for
our classification task with Grad-CAM.
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4.3.1 Preliminary estimators
In this section we are going to report the performances of the estimators
which allow to retrieve the in-band estimators. For the training, in this
case, we use the whole dataset for each signal type and we split it into
training, validation and test sets. The goal of preliminary estimators is
to perform regression on either volume or reverberation time. To do it,
the sole RGIDA architecture has been used and a MSE loss is minimized.

4.3.1.1 Volume prediction

In detail, we are going to cover the block MV of Figure 3.2.
In Table 4.6 we report the performances of our preliminary volume esti-
mators considering three types of signals, the RIRs, the reverberant white
noises and the reverberant speeches. Such performances are retrieved on
the validation set.

RGIDA regression metrics RIRs White noises Voices
MAE [m3] 27 75 143
MSE [m6] 2422 12139 31959

Table 4.6: Preliminary volume estimation metrics per signal type

From the summary table we see that we obtain better results from
the RIRs. The performances degrade when we take in account the re-
verberant speech signals. This is due to the hardness introduced by the
convolution and to the characteristics of the input signals that we con-
sider.

Reverberant speech signals details As expected, we observe that
our estimator based on RGIDA encounters increasing hardness while fac-
ing the problem with the different signals.
For completeness, below we show some more details of the behavior of
the architecture on speech signals.
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Figure 4.16: Preliminary volume estimation on vocal signals - Prediction sam-
ples

In Figure 4.16 we show some ground-truth volume samples coming
from the test dataset (red) compared with their prediction (green).

Figure 4.17: Preliminary volume estimation on vocal signals - Predictions
spread

In Figure 4.17, instead, we observe that the spreading of the predicted
values with respect to the ground-truth values does increase when the
volume grows.



Chapter 4. Simulations, Tests and Results 61

Although we are not going to include an extensive report here, from
our experiments we see that the same observation seems to hold true also
for the specific in-band volume estimators: the greater the volume, the
harder the volume prediction and the easier the shape classification.
This might depend on the problem, on the number of samples per band,
on the quality of our simulated responses, or on many other factors.
Furthermore, we observe that in the case of preliminary volume predic-
tion on signals other than voice, the spreading is less pronounced and
the dependence on the volume is slighter.

(a) MAE

(b) MSE

Figure 4.18: Preliminary volume estimation on vocal signals - Losses samples
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Finally, for what concerns the training phase, in Figure 4.18 we would
like to report the loss functions overtime over both the training (red) and
validation (green) sets, while the LR decreases.

4.3.1.2 Reverberation time prediction

In detail, we are going to cover the block MT60 of Figure 3.2.
In Table 4.7 we report the performances of our preliminary RT estimators
considering three types of signals, the RIRs, the reverberant white noises
and the reverberant speeches. Such performances are retrieved on the
validation set.

RGIDA regression metrics RIRs White noises Voices
MAE [s] 0.06 0.04 0.09
MSE [s2] 0.009 0.005 0.015

Table 4.7: Preliminary RT estimation metrics per signal type

Reverberant speech signals details We observe that, our estimator
based on RGIDA has more difficulty in facing the problem for speech
signals.
For completeness, below we show some more details of the behavior of
the first architecture on speech signals.

Figure 4.19: Preliminary RT estimation on vocal signals - Prediction samples

In Figure 4.19 we show some ground-truth T60 samples coming from
the test dataset (red) compared with their prediction (green). In this
case, our prediction error is pretty much reduced.
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Figure 4.20: Preliminary RT estimation on vocal signals - Predictions spread

Contrary to what observed in the volume estimation scenario, it is
interesting to notice from Figure 4.20 that the spreading of the predicted
values is way more reduced and better follows the ground values.
This holds true even in the case of reverberant speech signals.
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(a) MAE

(b) MSE

Figure 4.21: Preliminary RT estimation on vocal signals - Losses samples

In conclusion, in Figure 4.21 we report the loss functions overtime
while the LR decreases.
Contrary to the volume case, the T60 regression seems a simpler task.
This conclusion is quite intuitive and is partly proved by the fact that
the predictions are better spread around the true values. We also observe
that, in this case, the validation curve (green) lies underneath the training
one. Considering the vast amount of samples used for the preliminary
estimation and the balanced dataset (i.e. almost uniform distribution of
the target T60 in the dataset splits), we hypotize that this trend might be
due to a strong affection of the regularization (performed by the dropout
layer during the training) on the current estimation task.
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4.3.2 Shape Classification - In-volume-band specific
estimators

In this section we are going to dig into the S
(sw1,V )
G specific estimators.

Speaking about the in-band estimators, we recall that the whole range of
the volume variable is [50, 1050]m3, while the bands that we are consid-
ering are [50, 250]m3, [450, 650]m3 and [850, 1050]m3. The competence
of these estimators is to perform shape classification on a volume-band
basis. To do it, we compare the RGIDA and RGILA architectures and a
H categorical cross-entropy loss is minimized.
This subsection compares the architectures at the variation of signal type
and specific volume band.

Using RIR signals Here we compare the performances of both the
architectures over the impulse responses with estimators trained on sep-
arate and increasing volume-bands.

(a) RGIDA

(b) RGILA

Figure 4.22: Specific in-volume-band shape classification on RIR signals -
V ∈ [50, 250]m3
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(a) RGIDA

(b) RGILA

Figure 4.23: Specific in-volume-band shape classification on RIR signals -
V ∈ [450, 650]m3
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(a) RGIDA

(b) RGILA

Figure 4.24: Specific in-volume-band shape classification on RIR signals -
V ∈ [850, 1050]m3

ACC [%]
V-band [m3] RGIDA RGILA

[50, 250] 75 65
[450, 650] 88 50
[850, 1050] 89 52

Table 4.8: Specific in-volume-band shape classification on RIR signals -
RGIDA vs RGILA comparison

From the results of Table 4.8 we observe that the RGIDA architecture
performs better than the RGILA one.
In particular, it seems harder for the architecture with LEAF front-end to
dicriminate among rectangular and L-shaped classes for great volumes.
This might be due to the nature of its pooling and compression strategies
leading to a less informative representation.
Interestingly enough, we also observe that the shape estimation task
for the RGILA performs better for wider rooms (i.e. increasing volume):
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greater volumes lead to a wider early reverberation region in the response
with peaks which are more separated and patterns which are more easily
recognizable.
We detect that the rectangular room requires more effort for the recogni-
tion. What is more, to lower volume bands correspond poorer accuracy
results.

Using reverberant white noise signals Here we compare the per-
formances of both the architectures over the reverberant noises with es-
timators trained on separate and increasing volume-bands.

(a) RGIDA

(b) RGILA

Figure 4.25: Specific in-volume-band shape classification on white noise signals
- V ∈ [50, 250]m3
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(a) RGILA

(b) RGILA

Figure 4.26: Specific in-volume-band shape classification on white noise signals
- V ∈ [450, 650]m3
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(a) RGIDA

(b) RGILA

Figure 4.27: Specific in-volume-band shape classification on white noise signals
- V ∈ [850, 1050]m3

ACC [%]
V-band [m3] RGIDA RGILA

[50, 250] 69 56
[450, 650] 75 63
[850, 1050] 80 52

Table 4.9: Specific in-volume-band shape classification on white noise
signals - RGIDA vs RGILA comparison

As for the previous input signal, we have evidence of a performance
improvement as the volume expands for the first proposed RGIDA ar-
chitecture. In this case, though, the second RGILA network seems more
confused by the rectangular and House-shaped classes.
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Using reverberant speech signals Here we compare the perfor-
mances of both the architectures over the reverberant voices with es-
timators trained on separate and increasing volume-bands.

(a) RGIDA

(b) RGILA

Figure 4.28: Specific in-volume-band shape classification on vocal signals -
V ∈ [50, 250]m3
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(a) RGIDA

(b) RGILA

Figure 4.29: Specific in-volume-band shape classification on vocal signals -
V ∈ [450, 650]m3
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(a) RGIDA

(b) RGILA

Figure 4.30: Specific in-volume-band shape classification on vocal signals -
V ∈ [850, 1050]m3

ACC [%]
V-band [m3] RGIDA RGILA

[50, 250] 38 46
[450, 650] 58 59
[850, 1050] 67 53

Table 4.10: Specific in-volume-band shape classification on vocal signals
- RGIDA vs RGILA comparison

In this case, there is a performance enhancement as the volume gets
bigger, however, for what concerns the first volume band, the accuracy
of RGIDA is worse than the one of RGILA.
Again, similarly to the noisy case, RGILA seems more confused among
rectangular and House-shaped rooms.
A relevant observation which can be moved is that with reverberant
voices, the L and House-shaped rooms can be easily recognized, while
there seems to be no clue which allows to discriminate them from the
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rectangular shape.

To summarize, what is common to all the source signals is a greater
difficulty in the classification of the rectangular shape room and an ac-
curacy improvement which follows the volume growth for all the classes.
What differences them, instead, is a greater complexity of the speech
signal type with respect to the other ones.
A motivation to this latter behavior could be found in the characteris-
tics of the vocal signals. Indeed, a speech signal has a great variability
in time and new spoken words might mask the reverberant content of
previous words in certain frequency bands. In addition, the frequency
content of the voice at the end of a word, generating a complete decay
region, might not be sufficient for the stress of room modes which might
be informative for the task.

Finally, we would like to mention our unfortunate attempt while try-
ing to improve our results in the first volume or RT band with RGIDA.
We tried to alter the feature-maps content by retaining the sole γ-FB
since we assumed it to be most relevant feature for our task.

We tried to consider the final portion of 4s of each audio signal (this
should not be a strict constraint for the first volume band because the
considered reverberation time is much lower than 4s: we did so to limit
memory consumption) while maintaining the bank range in [50, 2000]Hz
or changing it to [50, 4000]Hz and enhancing in both cases the filters
density (from 20 to 30 bands).
We also reduced the log-energy window size to Lwin = 8 and the hop size
to Lhop = 4 to soften the compression.
Furthermore, we augmented the initial LR for the network to prevent the
possibility to get stuck in local minima.

And again, we tried considering binary classifiers on each possible
couple of classes with the hope of improving the results on such critical
band. We desired to search for a weighting strategy over binary distribu-
tions to retrieve an improved distribution for the three-classes case, but
even the binary classifiers could not provide any advantage. Hence, we
were not able to improve the results.
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4.3.3 Shape Classification - In-RT-band specific es-
timators

In this section we are going to dig into the S
(sw1,T60)
G specific estimators.

Speaking about the in bands estimators, we recall that the whole range
of the T60 variable is [0.5, 2.5]s, while the bands that we are considering
are [0.5, 0.9]s, [1.3, 1.7]s and [2.1, 2.5]s. The goal of these estimators is to
perform shape classification on a RT-band basis. To do it, we compare
the RGIDA and RGILA architectures and a H categorical cross-entropy
loss is minimized.
This subsection compares the architectures at the variation of signal type
and specific reverberation time band.

Using RIR signals Here we compare the performances of both the
architectures over the impulse responses with estimators trained on sep-
arate and increasing RT-bands.

(a) RGIDA

(b) RGILA

Figure 4.31: Specific in-RT-band shape classification on RIR signals - T60 ∈
[0.5, 0.9]s
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(a) RGIDA

(b) RGILA

Figure 4.32: Specific in-RT-band shape classification on RIR signals - T60 ∈
[1.3, 1.7]s
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(a) RGIDA

(b) RGILA

Figure 4.33: Specific in-RT-band shape classification on RIR signals - T60 ∈
[2.1, 2.5]s

ACC [%]
RT-band [s] RGIDA RGILA

[0.5, 0.9] 74 68
[1.3, 1.7] 83 47
[2.1, 2.5] 86 48

Table 4.11: Specific in-RT-band shape classification on RIR signals -
RGIDA vs RGILA comparison

Our comments, in this case, are similar to the ones of the first para-
graph of Section 4.3.2.
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Using reverberant white noise signals Here we compare the per-
formances of both the architectures over the reverberant noises with es-
timators trained on separate and increasing RT-bands.

(a) RGIDA

(b) RGILA

Figure 4.34: Specific in-RT-band shape classification on white noise signals -
T60 ∈ [0.5, 0.9]s
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(a) RGIDA

(b) RGILA

Figure 4.35: Specific in-RT-band shape classification on white noise signals -
T60 ∈ [1.3, 1.7]s
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(a) RGIDA

(b) RGILA

Figure 4.36: Specific in-RT-band shape classification on white noise signals -
T60 ∈ [2.1, 2.5]s

ACC [%]
RT-band [s] RGIDA RGILA

[0.5, 0.9] 65 57
[1.3, 1.7] 77 59
[2.1, 2.5] 79 56

Table 4.12: Specific in-RT-band shape classification on white noise sig-
nals - RGIDA vs RGILA comparison

Our comments, in this case, are similar to the ones of the second
paragraph of Section 4.3.2, apart from the fact that for T60 values be-
longing to the last band the rectangular room seems equally confused
for the L-shaped and the House-shaped ones by the estimator built on
RGILA.
Furthermore, we report that in the case of T60 ∈ [0.5, 0.9]s for RGIDA,
with the feature-map described in the methodology within the first para-
graph of Section 3.2.1.1, we obtained a 35% accuracy versus the current
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65% obtained by considering the sole γ-FB feature-map and a filter den-
sity of 30 bands.

Using reverberant speech signals Here we compare the perfor-
mances of both the architectures over the reverberant voices with es-
timators trained on separate and increasing RT-bands.

(a) RGIDA

(b) RGILA

Figure 4.37: Specific in-RT-band shape classification on vocal signals - T60 ∈
[0.5, 0.9]s
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(a) RGIDA

(b) RGILA

Figure 4.38: Specific in-RT-band shape classification on vocal signals - T60 ∈
[1.3, 1.7]s
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(a) RGIDA

(b) RGILA

Figure 4.39: Specific in-RT-band shape classification on vocal signals - T60 ∈
[2.1, 2.5]s

ACC [%]
RT-band [s] RGIDA RGILA

[0.5, 0.9] 36 52
[1.3, 1.7] 57 60
[2.1, 2.5] 66 56

Table 4.13: Specific in-RT-band shape classification on vocal signals -
RGIDA vs RGILA comparison

Our comments, in this case, are similar to the ones of the third para-
graph of Section 4.3.2, aside the fact that RGILA tends to confuse a
rectangular room for a House-shaped one for smaller T60s and rectangu-
lar for L-shaped ones in the third considered reverberation time band.
Even in this case we tried to better the feature-set for RGIDA, but we
could not gain any boost.
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A couple of words are worth to be spent on the comparison of specific
shape classifiers parametrized either on volume or reverberation time.
We remark that the observation for the volume and reverberation time
bands are similar. However, the general results coming from the volume
band analysis demonstrate higher accuracy and lower confusion.

4.3.4 Grad-CAM feature spotlights
In this section we put at work the Grad-CAM instrument explained in
Section 2.5.5 to gain some insights into the usefulness of features for the
specific shape classificators based on RGIDA.
Such architecture outperforms RGILA in almost all the cases.

4.3.4.1 Using RIR signals

Figure 4.40: An heat-map built on a RIR feature-map

Figure 4.40 represents an heat-map retrieved with Grad-CAM during
the analysis of some RIR test signals.
Such image can be considered as a combination of activation maps re-
trieved from the network for a specific sample. If we superposed this
image to the related input RGIDA feature-map, we would highlight the
portions of the original feature-map which are relevant for our classifica-
tion task.
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From Figure 4.40 we can observe that the most part the informative
content is spread in the initial part of the response in the whole range of
frequency bands. However, considering the response from which feature-
map and heat-map are determined, the network considers as relevant even
echoes which are not strictly belonging to the early region. In particular,
a good portion of the tail seems relevant in the envelope feature vector.
From other samples at our disposal, we can claim that even the features
which appear irrelevant in Figure 4.40, are actually relevant.
Furthermore, extending our knowledge about the importance of lower-
frequencies for the volume estimation task, for the shape classification
task, even higher frequency modes of the rooms are involved.
This means that also higher frequency bands are useful for the task.
We might also allege that Grad-CAM is spotting some spikes in each band
(echo patterns in the reverberant signals) which help the NN distinguish
among the classes.

4.3.4.2 Using reverberant white noise signals

Figure 4.41: An heat-map built on a reverberant white noise feature-map

The analysis of the reverberant noise signal highlights a narrow com-
ponent in the attack phase as important.
Once again the classifier agilely finds possible repetitive patterns in the
signal reverberation.
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4.3.4.3 Using reverberant speech signals

Figure 4.42: An heat-map built on a reverberant voice feature-map

For what concerns the voices, we find that both attack and release
related to each spoken word might influence our estimate.
In this case, the most relevant feature seems to be the γ-FB. In it, echoing
repetitions due to reverberation appear to be detected by Grad-CAM.

4.4 Conclusive remarks
In this chapter we have evaluated the proposed methodology through
simulations and experiments.
We’ve first built our datasets, then we provided the estimators for pre-
liminary volume and T60 estimation and specific shape prediction.
There, we discovered that the strain for the volume estimation increases
as the volume raises.
On the other hand, the shape classification retrieval seems simpler with
greater volumes or reverberation times.
Depending on the input signal type, we obtain better performances with
RIRs and white noises, while we evidence greater efforts with voices for
both the preliminary and specific estimations.
Considering the specific shape classifiers, the RGIDA architecture pro-
posal overcomes the results of RGILA in all the cases, aside for the first
volume and reverberation time with speech signals.

For what concerns the case of reverberant voices, neglecting the pre-
liminary estimator, the first volume/RT band cannot be correctly classi-
fied.
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This might be due to a way too brief reverberation. It might be inter-
esting to investigate the mapping of the volume range of certain volume
bands in longer reverberation times.

With Grad-CAM we observed that, as expected, the early reflections
contain a good part of the informative content which results useful for
the classification. However, it seems that even part of the diffuse tail
carries information for the neural network.



5
Conclusions and Future Works

5.1 Conclusions
This work of thesis proposes a methodology for inferring the floor plan
shape of a room starting from a reverberant speech signal. To our knowl-
edge this work shows great novelty, indeed we could not find other works
with a similar aim starting from the mono audio hypothesis. The pur-
pose of this research is mainly focused on audio forensics and integrity
checking, but interesting implications might affect also the room recon-
struction field and the soundfield rendering techniques adopted by loud-
speaker systems.
The devised methodology is based on a learning strategy which adopts
and compares two CNN architectures to build the estimators performing
the classification task. Such architectures are inspired to the literature.
Here we proposed the estimation of an unstudied room parameter. The
main advantages are related both to the room acoustics field and to the
audio forensics one.
Indeed, the introduction of a new integrity technique requires greater
efforts in camouflaging recorded audio signals, therefore requiring new
skills to be acquired by malicious attackers. The forgery of a room shape
requires much more analysis and endeavour than the falsification of either
the reverberation time or the volume. However, it is evident that sofisti-
cated dereverberation techniques followed by synchronous superpositions
of anechoic signals and re-spatialization could put in serious trouble the
most advanced forensics instruments.
In addition, as far as the experiments are concerned, we observe our ar-
chitectural solution based on RGIDA has better performances than the
RGILA in almost all the cases. Furthermore, the coarse volume esti-
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mation performances do decrease for greater volumes, while the coarse
reverberation time estimation performance does not seem to have a de-
pendence on the RT itself. Speaking about the shape classification, we
observe that to bigger volumes or reverberation times do correspond bet-
ter performances. However, especially in the reverberant voice scenario,
we observe that the rectangular room classification undergoes difficulties
which might be due to the rectangular floor room peculiar modal super-
positions.
Having that said, we claim that the proposed approach has shown promis-
ing results both in simulations and in experiments, apart from the case
of small rooms.

5.2 Future Works
It is easy to see that our solution pipeline can be used on fragments of
audio files of some seconds (the assumption of the availability of a speech
signal of some minutes is not so strict) as demonstrated during the ex-
periments. The segment samples from an original track can be exploited
to obtain a time-dependent shape confidence profile. Then, neglecting
the probability distributions with an entropy above a certain threshold,
we retain significant estimates. From their analysis, we can check for
incoherent segments.
As mentioned, replacing a fixed segmentation with functioning FDRs
would be beneficial, both in terms of resources consumption and in com-
pleteness of the input pipeline for both architectures.
As far as data generation is concerned, an optimized finite RIR gen-
eration algorithm would be worthwhile. At this regard, a hybrid beam
tracing - ray tracing technique could be investigated to improve the qual-
ity of the responses and to reduce the generation computational costs. A
physically acquired dataset of responses could be used to test our solver.
Furthermore, the results could be improved expanding the feature-set of
the primary RGIDA architecture. Indeed, considering other reverberation-
related or phase-related features (e.g. STFT phase) or cepstral maps
could help greatly. The drawback here is that the feature-maps sizes
would considerably increase, thus implying greater memory consumption.
A trade-off should consider once again the usage of decay regions, espe-
cially in the case of small rooms, in which the temporal resolution seems
crucial. For what concerns RGIDA, a good idea would be to consider
such regions and their representations without log-energy compression.
Going to the estimators, hyper-parameters optimization is worth to be
more deeply investigated. What is more, it would be of great interest
to generate a binary dataset of real and spliced tracks in which environ-
ments of different shapes and volumes do contribute to each audio signal.
Then, the research could move towards the usage of time-aware neural
networks (for example Long Short-Term Memory (LSTM) RNNs).
For what concerns the room imaging field, we might consider speech sig-
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nals, then think of retrieving a shape class and of estimating such class
variables to build an approximate 3D model of the enclosure.
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