
Addressing Data Scarcity for
Machine-Learning-based Failure
Management in Microwave Net-
works

Tesi di Laurea Magistrale in
Telecommunication Engineering - Ingegneria delle
Telecomunicazioni

Author: Matteo Conci

Student ID: 964105
Advisor: Prof. Francesco Musumeci
Co-advisors: Nicola Di Cicco, Mëmëdhe Ibrahimi
Academic Year: 2022-23

i

Abstract

Failure management in communication networks is a critical issue nowadays, as a single
failure in the network can lead to service disruption for thousands or millions of users at
the same time. Therefore, preventing failures from occurring is a crucial task for network
operators to meet Service Level Agreements (SLAs) to its customers. For this purpose,
collecting and analyzing data generated from the continuous monitoring of network pa-
rameters and alarms have become crucial to construct historical knowledge of network
failures and drive future decisions on how to handle them. Nowadays, this analysis is
carried out by domain experts who, based on their experience, identify the failures and
engage proper countermeasures to mitigate them or to restore the service. The time re-
quired by humans to perform the analysis and engage the countermeasures is often not in
line with the stringent time constraint to restore the service after a failure imposed by the
SLAs. To overcome this problem, substantial help comes from Artificial Intelligence (AI)
and Machine Learning (ML), through which it is possible to automate and speed up the
whole network management process by leveraging all the data retrieved monitoring the
network. In our work, we consider failure management in microwave networks, focusing on
the failure-cause identification problem. Specifically, we use supervised machine learning
models to address the classification of hardware failures in microwave networks. These
models require large amount of labelled data to be trained, but gathering data from the
field in an expensive and time-consuming process, so it is necessary to devise approaches
that address the problem of having insufficient amount of data. This condition is known
as “data scarcity” and the main contribution of this work is to identify and compare dif-
ferent ML methodologies to address this problem, such as the generation of synthetic
data using Synthetic Minority Over-sampling TEchnique (SMOTE), the use of Transfer
Learning, the use of Auxiliary-Task Learning, and the use of Denoising Autoencoders.
Our numerical results show that, focusing the synthetic data generation on specific fail-
ure classes and deciding proper amounts of data to generate, SMOTE outperforms all
other methodologies.

Keywords: microwave networks, machine learning, failure management, hardware fail-

ii | Abstract

ures, data scarcity, SMOTE, transfer learning, auxiliary-task learning, denoising autoen-
coders

iii

Abstract in lingua italiana

La gestione dei guasti nelle reti di comunicazione è una tematica critica al giorno d’oggi,
poiché un singolo guasto nella rete può portare all’interruzione del servizio per migliaia o
milioni di utenti nello stesso momento. Pertanto, la prevenzione dei guasti è un compito
cruciale per gli operatori di rete, al fine di soddisfare i Service Level Agreement (SLA)
con i propri clienti. A tal fine, la raccolta e l’analisi dei dati generati dal monitoraggio
continuo dei parametri di rete e degli allarmi sono diventati fondamentali per costruire
una conoscenza storica dei guasti di rete e guidare le decisioni future su come gestirli. Al
giorno d’oggi, questa analisi viene effettuata da esperti del settore, che, sulla base della
loro esperienza, identificano i guasti e adottano le contromisure adeguate a mitigarli o
per ripristinare il servizio. Il tempo richiesto dall’uomo per eseguire l’analisi e adottare
le contromisure spesso non è in linea con i tempi stringenti di ripristino del servizio dopo
un guasto imposti dagli SLA. Per mitigare questo problema, un aiuto sostanziale viene
dall’Intelligenza Artificiale (AI) e dal Machine Learning (ML), grazie ai quali è possibile
automatizzare e velocizzare l’intero processo di gestione della rete sfruttando tutti i dati
recuperati monitorando la rete. Nel nostro lavoro prendiamo in considerazione la gestione
dei guasti nelle reti a microonde, concentrandoci sul problema dell’identificazione delle
cause dei guasti. In particolare, utilizziamo modelli di apprendimento automatico supervi-
sionato per affrontare la classificazione dei guasti hardware nelle reti a microonde. Questi
modelli richiedono una grande quantità di dati etichettati per essere addestrati, ma la
raccolta di dati dal campo è un processo costoso e che richiede tempo, quindi è necessario
ideare approcci che affrontino il problema della quantità insufficiente di dati. Questa con-
dizione è nota come “data scarcity” (scarsità di dati) e il contributo principale di questo
lavoro consiste nell’identificare e confrontare diverse metodologie di ML per affrontare
questo problema, come la generazione di dati sintetici utilizzando SMOTE (Synthetic
Minority Over-sampling TEchnique), l’uso di Transfer Learning, l’uso di Auxiliary-Task
Learning e l’uso di Denoising Autoencoders. I nostri risultati numerici dimostrano che,
concentrando la generazione di dati sintetici su specifiche classi di guasti e decidendo le
quantità di dati da generare, SMOTE supera tutte le altre metodologie.

Parole chiave: reti a microonde, apprendimento automatico, gestione dei guasti, guasti
hardware, scarsità di dati, SMOTE, transfer learning, auxiliary-task learning, denoising
autoencoders

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1
1.1 Thesis Contribution . 3
1.2 Thesis Outline . 3

2 Related Work 5
2.1 Use of Machine Learning in Microwave Networks 5
2.2 Data Scarcity in Communication Networks 7

3 Background 11
3.1 Microwave Network Technologies . 11
3.2 Machine Learning Methodologies . 14

3.2.1 Classification problems . 16
3.2.2 Classification Algorithms . 24

3.3 Hyperparameter Optimization . 35
3.3.1 XGBoost . 37
3.3.2 SVC . 37
3.3.3 ANN . 38

3.4 Methodologies to address Data Scarcity . 39
3.4.1 Data Augmentation . 39
3.4.2 Transfer Learning . 41
3.4.3 Auxiliary-Tasks Learning . 44
3.4.4 Denoising Autoencoders . 46

4 Failure-Cause Identification in Microwave Networks 49

4.1 Dataset Description . 49
4.2 Data Preprocessing . 54
4.3 Baseline Machine Learning Models . 58
4.4 Machine Learning methodologies to address Data Scarcity 63

4.4.1 Synthetic Minority Over-sampling TEchnique 63
4.4.2 Transfer Learning . 65
4.4.3 Auxiliary-Task Learning . 69
4.4.4 Denoising Autoencoders . 73

5 Numerical Results 77
5.1 Baseline Models . 77
5.2 Methodologies to address Data Scarcity . 78

5.2.1 SMOTE . 79
5.2.2 Transfer Learning . 80
5.2.3 Auxiliary-Task Learning . 81
5.2.4 Denoising Autoencoders . 82

5.3 Best Methodology to address Data Scarcity 82
5.4 SMOTE Analysis . 84

6 Conclusion and Future Developments 109

Bibliography 113

List of Figures 119

List of Tables 121

Acknowledgements 123

1

1| Introduction

Failure management in communication networks is a critical issue nowadays, as a single
failure in the network can lead to service disruption for thousands or millions of users at the
same time. Network failures can be distinguished according to their nature in hardware
failures, which are related to equipment malfunctioning as fan failure, power supply is-
sues, overheating, and in propagation-related failures, which are caused by environmental
reasons (i.e., atmospheric events, physical obstacles), as deep fading, interference, extra
attenuation. Regardless of their nature, preventing failures from occurring is a crucial
task for network operators to meet Service Level Agreements (SLAs) to its customers.

A combination of proactive measures and reactive measures can be undertaken in network
failure management. The former aim at ensuring network stability preventing service dis-
ruption by anticipating failure occurrence, the latter are used to quickly address failures by
activating recovery procedures to repair or substitute the failed equipment in the shortest
possible time. Proactive measures are typically implemented on-line by continuously mon-
itoring transmission-quality parameters, such as Bit-Error-Rate (BER), Signal-to-Noise
Ratio (SNR), signal strength, attenuation, delay, and others. An example of proactive
measure is failure prediction and early-detection, that aim to predict that a failure is
about to occur. Reactive measures are used to deal with hard failures and are typically
implemented off-line by leverage failure recovery information retrieved by network moni-
tors and/or alarms (e.g., which equipment as failed, etc.). Examples of reactive measures
are failure detection (i.e., recognize anomalies due to failure occurrences), failure-cause
identification (i.e., understand the actual cause of the failure), and failure localization
(i.e., identify where the failure occurred in the network).

Both proactive and reactive measures require collecting data generated from the continu-
ous monitoring of network parameters and alarms. In a network where a large amount of
data is available, the challenge is to analyze this data quickly so that the necessary actions
can be taken to avoid service interruption or to restore the service quickly. Nowadays,
this analysis is carried out by domain experts, who based on their experience identify the
failures and engage proper countermeasures to mitigate them or to restore the service.

2 1| Introduction

The time required by humans to perform the analysis and engage the countermeasures is
often not in line with the stringent time constraint to restore the service after a failure
imposed by the SLAs. To overcome this problem, substantial help comes from Artificial
Intelligence (AI) and Machine Learning (ML), through which it is possible to automate
and speed up the whole network management process by leveraging all the data retrieved
monitoring the network.

The most widely used ML techniques come from the field of supervised learning, which
require large amount of labelled data in order to learn “signatures” from it, that can be
then recognized in future occurrences of similar failures. In real network deployments,
limited amount of labeled data is available for training, as manual labeling is performed
by domain experts based on their knowledge and experience. So although failure analysis
is automated by ML techniques, the need to have a large amount of data to be labelled
remains. When there is not enough labelled data to efficiently train an ML algorithm, we
are facing the problem of data scarcity. To improve the performance of a supervised ML
algorithm affected by data scarcity, alternative ML methodologies can be adopted that
do not require new data to be labelled from the network.

In fact, in recent years ML has been used extensively to solve numerous problems in the
field of telecommunications, and in our case we apply it to address failure-cause identifica-
tion in microwave networks. As collecting data from the field is not cheap, in this work we
focus on finding various ML methodologies to solve the problem of the lack of abundant
data, a.k.a. “data scarcity”, in order to classify different types of hardware failures. We
make use of data provided by SIAE Microelettronica [38], an Italian company that man-
ufactures telecommunications equipment and specializes in microwave networks. SIAE
was responsible for collecting and classifying the alarms that occurred on the hardware
components of a microwave network into different classes of hardware failures. For some
of them, mainly due to the low frequency with which the faults occurred, we have only
limited information available. These classes are therefore affected by data scarcity prob-
lem, which results in greater difficulty in training ML algorithms to correctly classify such
faults. From network operators’ point of view, the use of ML algorithms that are poorly
trained in classifying these types of failures, even though they occur less frequently, has
serious consequences both from an economic point of view, as specialized maintenance
teams are sent to repair the wrong hardware components or at the wrong sites, and from
the point of view of costumers satisfaction, as the time to repair the fault will be increased
as a result.

To address the data scarcity problem we have investigated the following methodologies:
Synthetic Minority Over-sampling TEchnique (SMOTE), Transfer Learning, Auxiliary-

1| Introduction 3

Tasks Learning, and Denoising Autoencoders. Among the various methodologies ad-
dressed, we will focus on the use of synthetic data, which allows to automatically generate
new labelled data that we will use to improve the performance of the ML algorithms per-
forming failure-cause identification, in particular for the failure classes affected by data
scarcity.

1.1. Thesis Contribution

The main goal of this thesis is to address the data scarcity problem in the field of failure
management for microwave networks. More specifically, it addresses the issue of failure
identification for the hardware components of a microwave network. Specifically, the main
contributions of this work can be listed as follows:

• We model the hardware failure identification problem as a machine learning classi-
fication problem.

• We use different supervised learning models to identify classes (i.e., failure causes)
where classification performance is poor, showing the correlation between data
scarcity and poor model performance.

• We investigate different methodologies to deal with the data scarcity problem, to
understand which is the most appropriate for our scope.

• We conduct an in-depth analysis on synthetic data generation as a methodology
to address data scarcity, proposing a strategy to identify which classes to actually
generate synthetic data on and with what percentage.

1.2. Thesis Outline

The remainder of the thesis is organized as follows.

In Chapter 2 we present an overview of previous work on failure management in commu-
nication networks, on the use of machine learning in communication networks, and on the
use of synthetic data generation in communication networks.

In Chapter 3 we present the background knowledge on the microwave network application
domain and ML methodologies used to solve the failure-cause identification problem.

In Chapter 4 we describe the dataset and the processing phase we do on it. Then we
describe the pipeline we used to do classification with the basic models and with the
methodologies we defined to address the data scarcity problem.

4 1| Introduction

In Chapter 5 we present the dataset after the preprocessing phase and the performance
obtained with the baseline model and with the different methodologies proposed in chapter
4. We compare their performance and then we conduct an in-depth analysis on synthetic
data generation.

In Chapter 6 we conclude the thesis and identify possible future development of this
work.

5

2| Related Work

In this chapter we provide an overview on related work in the field of microwave com-
munication networks and Machine Learning applied to communication networks. In Sec-
tion 2.1, we concentrate on works that adopt ML in microwave networks emphasizing
those that relate to failure management, while in Section 2.2 we concentrate on works
that address the data scarcity problem in communication networks.

2.1. Use of Machine Learning in Microwave Networks

Several works have investigated the use of ML techniques applied to the field of microwave
networks. The following works focus on the specific topic of the failure management in mi-
crowave network. In [39] the authors give an overview on supervised and semi-supervised
learning approaches for automated failure-cause identification in microwave networks.
Using real-field data they firstly identify six categories of failure causes in microwave net-
works and show that supervised ML enables very accurate failure identification reaching
93% classification accuracy. Then, to solve the problem of limited amount of labeled data
available for training supervised ML models, they investigate a semi-supervised learning
approach to automate labeling procedure, based on autoencoders-like Artificial Neural
Networks, to combine the knowledge of the few manually-labeled data with large unla-
beled data. They show that data augmentation based on autoencoders can slightly im-
prove failure-cause identification only when Artificial Neural Networks or Support Vector
Machines are used, while accuracy slightly decreases when adopting Random Forest. In
[55] the authors propose an efficient multi-link faults location algorithm based on Hopfield
Neural Network (HNN). Exploiting network topology and the services information, they
modeled the relationship between fault set and alarm set and thanks to these information
the HNN analyze the uncertainty of faults and alarms and locate the failures’ position.
In [41] is presented a machine-learning-based proactive microwave link anomaly detection
system that exploits both performance data and network topological information to detect
microwave link anomalies that may eventually lead to actual failures. This system, called
PMADS, encode topological information into features and using a novel active learning

6 2| Related Work

algorithm, called ADAL, update continuously the detection model at low cost by first
applying unsupervised learning to separate anomalies as outliers from the training set.
Machine learning for anomaly detection and classification in cellular networks was studied
in [13], comparing different ML based techniques as decision trees, SVM, and neuronal
networks. The authors of [52] adopted Federated Learning (FL) to perform failure-cause
identification in microwave networks, emulating a multi-operator scenario in which one
operator has partial knowledge of failure causes during the training phase. They designed
an FL-based classification model using the FedAvg algorithm and applied it to automate
the identification of six different failure causes in microwave networks. Two recent works,
[3] and [4], use Explainable Artificial Intelligence (XAI) to explain machine learning mod-
els for failure identification in microwave networks. The first one shows that SHapley
Additive exPlanations (SHAP)-assisted feature selection allows reducing the number of
features more than tree-based feature selection approach, while achieving an improvement
in terms of model’s accuracy. The second one explore the use of SHAP and Local Inter-
pretable Model-agnostic Explanations (LIME) to address important practical questions
with the aim of achieving a trustable deployment of automated failure-cause identifica-
tion in microwave networks. The questions are: “Are the lists of most important features
the same among the ML models?”, “Which features are most influencing model’s decision
for each failure class and how?”, and “Can we determine why the model systematically
misclassifies instances of one class as instances of another particular class?”.

ML is also applied in microwave networks to address different topics than the failure man-
agement. In [7] the authors propose a survey on ML-based approaches for radio resource
management (RRM) in fifth-generation and beyond (5G/B5G) wireless cellular networks,
pointing out which ML algorithms should be used in different RRM sub-problems (e.g.,
unsupervised clustering algorithms in RN selection, DNNs in subcarrier allocation and
power management, etc.). In [50] ML-based approaches combined with software-defined
network are suggested as solutions for Handover (HO) management in the 5G HetNet
system, i.e., a system where small cells are suitable to operate by using mmWave due
to its short-range, while macrocells are liable to use long-range radio waves. In [18] the
authors applied a ML technique based on gradient boosting tree (GBT) to synthesis a
linear millimetre wave (mmWave) phased array antenna and estimate the phase values of
a 16-element array antenna to generate different far-field radiation patterns for various
5G mmWave transmission scenarios such as multicast, unicast, broadcast and unmanned
aerial vehicle (UAV) applications. In [32] the performance of a throughput based adaptive
beamforming framework in 5G massive multiple-input multiple-output (MIMO) millime-
ter wave cellular networks is evaluated with and without the aid of the ML. The results

2| Related Work 7

showed that ML-assisted beamforming framework can improve energy efficiency with re-
duced algorithmic complexity compared to the non-ML case, depending on the tolerable
amount of blocking probability. The authors in [5] used an unsupervised clustering ap-
proach to reduce latency and select which low power nodes in 5G networks should be
converted to fog nodes. ML is also applied to ensure and improve network security: in
[26] successful detection of known and unseen attacks using both anomaly and misuse de-
tection simultaneously has been reached building a real-time intrusion detection systems
based on Recirculation Neural Networks, while in [35] the naıve Bayes, k-nearest neigh-
bor and support vector machine classifiers has been used for prevent security problem and
solve network congestion caused from anomalies in the network traffic.

Unlike previous work, the novelty we introduce in this paper is the use of different ML
methodologies to solve the failure-cause identification problem in microwave networks to
classify hardware failures occurring on a microwave network of which there is little data
available. This problem is known as “data scarcity”, and related works on this topic are
introduced in the next section.

2.2. Data Scarcity in Communication Networks

Authors in [10] introduce the problem of data scarcity, with the objective of understanding
how to generate sufficient amounts of labeled data when it is sparse in order to build effec-
tive ML models. They proposed two approaches for learning from data that is dominantly
unlabeled. In the first approach, the k-NN algorithm is applied to pre-label the unlabeled
data. A multilayer perceptron is then used to classify the pre-labeled data. In the second
approach, a prototypicality rule based on FCM is used to pre-label unlabeled data before
training the MLP classifier. They showed that unlabeled data enhances the accuracy of
the neural classifier. In [31] authors present an overview describes various semi-supervised
learning techniques for classifying data streams with limited labeled data. Specifically,
they used Decision Tree based techniques, Clustering based techniques, Ensemble based
techniques, Expectation Maximization (EM) techniques, and Graph based techniques.

To address data scarcity problem different methodologies can be applied. Some of them
are based on Data Augmentation, which involves generating additional data from the
existing data by applying transformations such as rotation, scaling, or flipping. This can
increase the size of the dataset and help to reduce the risk of overfitting. In [2] authors
proposed two Non Parametric Data Augmentations techniques to improve Deep-Learning
models for brain tumor segmentation. These techniques are the mixed structure regu-
larization (MSR) and shuffle pixels noise (SPN). Another data augmentation technique

8 2| Related Work

is “SMOTE” (Synthetic Minority Over-sampling Technique), which generates synthetic
examples of a class by interpolating between existing examples of that class. SMOTE has
been used in several works, as in [47] where the authors developed a machine learning
algorithms for the prediction of machine failures, using a synthesized dataset balanced
with the use of SMOTE, and in [57] where SMOTE was tested over the Three-phase Flow
Facility (TFF) , that is an experimental simulation object for the research on the fault
diagnosis of complex industrial processes. In [48] the authors proposed an approach to
suggest a value of the parameter k, used in SMOTE to define the neighborhood of sam-
ples to use to generate the synthetic samples, adopting a Natural Neighbor algorithm. In
[22] SMOTE has been compared with other techniques to understand which one performs
better over an imbalanced dataset. The authors of [44] proposed a hybrid method to
classify binary imbalanced data using SMOTE followed by Extreme Learning Machine
(ELM) is proposed. The authors in [6] proposed two novel SMOTE methods for solv-
ing imbalanced classification problems, known as Center point SMOTE (CP-SMOTE)
method and Inner and outer SMOTE (IO-SMOTE) method. The CP-SMOTE method
generates new samples based on finding several center points, then linearly combining
the minority samples with their corresponding center points. The IO-SMOTE method
divides minority samples into inner and outer samples, and then uses inner samples as
much as possible in the subsequent process of generating new samples. Instead authors
in [23] proposed a modified SMOTE approach called MSMOTE, which not only considers
the distribution of minority class samples, but also eliminates noise samples by adaptive
mediation.

Other methodologies to address data scarcity are based on transfer learning (TL), which
involves using a pre-trained model that has been trained on a larger dataset to initialize
the weights of a model for a smaller dataset. This can help to improve the performance
of the model by leveraging the knowledge learned from the larger dataset. This approach
has been used in [58], where with limited measurement data a TL ensemble model was
adopted for evaluating power transformer health conditions. Specifically, a target model
parameters are initialized with those of the source model and fine-tuned using the target
dataset, then a transfer strategy is proposed to decide what and where the diagnostic
knowledge should be transferred from the source domain to the target domain. Finally,
an ensemble model is built on the basis of a series of target models with different transfer
strategies, which can further alleviate the overfitting issue and improve the generalization
ability.

In [36] this methodology was combined with another methodology that is the data synthe-
sis, which involves creating synthetic data to supplement the existing data. In particular,

2| Related Work 9

TL was combined with the generative adversarial network (GAN) to investigates the prob-
lem of data scarcity in spectrum prediction. Other works investigated this methodology,
as in [25], where GAN was used to deal data scarcity problem in photonic-based microwave
frequency measurement. With GAN authors were able to augment the 75 sets of experi-
mental data into 5000 sets of data for training the model, effectively reducing the amount
of experimental data needed by 98.75%, and reducing frequency estimation error by 10
times. Another way to perform data synthesis is the use of Variational Autoencoders
(VAEs). They have been used in [43], to predict the performance of a double-T monopole
antenna, and in [20], to define a nonlinear model compression scheme for microwave data
inversion. ì

Another methodology that we can cite to address data scarcity is the use of Active learn-
ing, which involves selecting the most informative examples to label and adding them
to the dataset, rather than labeling all examples. This can help to reduce the cost of
labeling and improve the quality of the dataset by focusing on the most informative ex-
amples. This techniques was used in [21] where the authors make a perspective study on
overcoming the data scarcity in smart grid. The active learning strategy they proposed
provide a feasible solution for addressing the data scarcity challenge. In addition, they
give a discussion on current state-of-the-art and the limitations in previous work.

Different from the other works mentioned above, in this paper we try to compare different
methodologies for dealing with the data scarcity problem to classify different types of hard-
ware failures in microwave networks. We proposed a TL-based method, an Auxiliary-Task
Learning-based method, a Denoising Autoencoder-based method and finally a SMOTE-
based method for generating synthetic data. All these methods were compared with the
performance obtained from basic classifiers, such as XGBoost, Support Vector Classifier
and Artificial Neural Network, showing which are the most suitable and which are the
least suitable for addressing the data scarcity problem. Finally, a more in-depth study was
done on SMOTE, as it was found to be the best among the considered methodologies. A
final note on this work is that here, unlike most other work, SMOTE is used as a specific
technique for solving data scarcity problem and not as a specific technique for solving
class imbalanced problem.

11

3| Background

In this chapter we provide background information on technological and theoretical as-
pects covered in this thesis. Specifically, Chapter-3 is organized as follows: in Section 3.1,
we introduce the hardware components of a microwave network, in Section 3.2 we discuss
general principles of Machine Learning, with emphasis on classification problems and al-
gorithms used to deal with it. In Section 3.3 we describe the methods used to optimize
hyperparameters. Finally, in Section 3.4 we introduce the concept of “data scarcity” and
discuss several approaches that we used to address it.

3.1. Microwave Network Technologies

Figure 3.1: Basic components of a microwave link: Microwave Radio, Transmission Line,
and Antenna [16].

A microwave network is a communication network that uses microwave radio frequencies,
that range from 300 MHz to 300 GHz (1 m - 1 mm wavelength), to transmit and receive
data between two or more points [49]. Microwaves are characterized by high-frequency
and small wavelength. High frequency allows them to provide high-speed wireless con-
nections capable of sending and receiving voice, video, and data information. Microwave
connections have 30 times the bandwidth of the rest of the underlying radio spectrum.

12 3| Background

Instead, the small wavelength allows properly sized antennas to direct the waves into nar-
row beams that can be pointed directly at the receiving antenna, making this technology
suitable for point-to-point communications. This allows nearby microwave equipment to
use the same frequencies without interfering with each other, as low-frequency radio waves
do.

Figure 3.1 shows the basic structure of a microwave link, constituted by the following
three main building blocks:

• Microwave Radio: at each side of the microwave link we have a Microwave Ra-
dio typically with both transmission (TX) and receiving (RX) capabilities. On the
transmitter side the Microwave Radio is responsible of generating the analog sig-
nal, while on the receiving side it is responsible of demodulating the signal. The
Microwave Radio has three basic configuration used in microwave communications
systems [16]:

– Full Indoor : all active components are located inside a building or shelter,
allowing easy maintenance and upgrades, without requiring tower climbs, for
instance. Being farther from the antenna may introduce higher transmission
line losses than other configurations.

– Full Outdoor : all electronic devices are mounted outside, eliminating the need
and cost for indoor space. However, because they are located on the tower,
they can be difficult to access for maintenance or upgrades, requiring tower
climbs. In some cases, rooftop access mitigates this challenge.

– Split-Mount : electronic devices are distributed into an outdoor unit (ODU) and
indoor unit (IDU), eliminating transmission line losses with easy maintenance
of the IDU. However, it also combines the disadvantages of the other two
configurations by requiring indoor storage and tower climbs for the ODU. The
ODU is responsible for the signal generation, while the IDU is responsible
for receiving the microwave signals from the ODU, demodulating them, and
processing them into a form that can be used by the local network or devices.
In figure 3.2 an example of Split-Mount Microwave Equipment installation.
This is the configuration adopted in the microwave network used for this thesis
work.

3| Background 13

Figure 3.2: Split-Mount Microwave Equipment installation, with two possible configu-
ration: on the left side the "Separate Mount" configuration where the ODU is located
saparate from the Antenna, while on the right side the "Direct Mount" configuration
where the ODU is directly mounted behind the Antenna. [17]

• Transmission Line: it is the physical media connecting the radio and the directional
antenna. Because of the amount of signal loss they can introduce, the choice of
transmission line type is determined largely by the frequencies in use. The two
possible implementations are [16]:

– Coaxial Cable: is suitable in applications using frequencies up to—or just
above—2 GHz. Above this range, most lengths become too lossy to be of
practical use.

– Waveguide: is suitable for higher frequencies. Elliptical waveguide features
an elliptical cross section and can support frequencies up to around 40 GHz,
however it is rarely used in applications above 13 GHz.

To avoid the need for transmission line, frequently in the split-mount radio config-
uration the ODU is mounted directly to the antenna with a special interface plate,
as shown in figure 3.2 (Direct Mount).

• Antenna: is the device that transmits and receives electromagnetic waves. A mi-
crowave communication system usually uses directional antenna with parabolic
shape to allow the greatest focus of energy possible in a single beam. There are
different types of antennas, each characterized by:

– Gain: is a measure of the ability of an antenna to focus electromagnetic radia-

14 3| Background

tion in a particular direction, compared to an isotropic radiator (a theoretical
antenna that radiates equally in all directions). It is expressed as the ratio of
the radiation intensity in a given direction to the radiation intensity that would
be produced if the power accepted by the antenna were isotropically radiated
[1].

– Size: is the physical dimensions of an antenna dish. Larger antennas generally
have higher gain and can transmit signals over longer distances, but they may
be more difficult to install and may require more precise alignment. Smaller
antennas are typically easier to install and align, but they may have lower gain
and transmit signals over shorter distances.

– Directivity function: it describes how much power an antenna radiates in a par-
ticular direction compared to the power it would radiate if it were an isotropic
radiator. It is expressed as the ratio of the radiation intensity in a given di-
rection from the antenna to the radiation intensity averaged over all directions
[1].

For this thesis work, we focus on hardware failures affecting microwave networks. Thanks
to the use of a Network Management System (NMS) of SIAE Microelettronica, the net-
work infrastructure has been monitored, all the alarms have been recorded and classified
by domain experts. The next step, is the use of Machine Learning to train a classification
algorithm able to automatically classify these types of failures.

3.2. Machine Learning Methodologies

The goal of Machine Learning is to develop models that can extract information from
available data and make decisions or predictions based on the learned information. Ma-
chine learning algorithms are broadly categorized into the following learning strategies:

• Supervised learning : it consists of training a model based on “labeled” data, that
means the data set used for training consists of input data, also known as features,
and corresponding output data, also known as labels. The goal is to train a model
that can accurately map inputs to outputs, so that it can make accurate predictions
or decisions when presented with new unseen input data. Depending on the output
there are two main types of supervised learning problems:

– Regression problem :here the output to predict is a continuous numerical value.
Regression algorithms are used to predict the value of an unknown variable
based on input features. An example can be predicting the price of an house

3| Background 15

given some characteristics such as the size, the location, the floor, the number
of bedrooms, and other relevant features. Another example can be predicting
the temperature based on wind speed, atmospheric pressure, humidity, etc.

– Classification problem : here the output to predict is a discrete (or even “cat-
egorical”) value. Classification algorithms are used to classify input data into
different categories based on their features. Examples can be classify if a finan-
cial transaction is fraudulent or not fraudulent, or classify an email as spam or
not spam, or classify an object in one of the possible type of object.

• Unsupervised learning : consists in training a model based on “unlabeled” data,
that means the data set used for training consists only of input data, also known
as features. The goal of unsupervised learning is to discover hidden structures
or relationships in the data that can be used to gain insights, make predictions,
or inform decision-making. Unsupervised learning can be used for tasks such as
clustering, anomaly detection, and dimensionality reduction.

• Semi-Supervised learning : consists of training a model based on a combination of
“labeled” and “unlabeled” data, exploiting the characteristics of both supervised
and unsupervised learning. Semi-supervised learning is useful when labeled data is
limited or expensive to obtain; by incorporating unlabeled data into the training
process, the model can potentially learn more about the underlying structure of the
data and improve its performance on the labeled data.

• Self-Supervised learning : is a type of unsupervised learning, since it is based on
“unlabeled” data, where the model itself defined and solves a supervised learning
task based on the data it’s given. Given to the model only a training set of input
data, it has to find structure in the data in order to learn from it unobserved or
hidden part of the input data itself. The typical Self-Supervised learning model is
based on an artificial neural network composed of two network:

– Encoder: it translates the original high-dimension input x into the latent
low-dimensional representation c(x).

– Decoder: it reconstruct the input x from that representation c(x), with larger
and larger output layers.

An ANN with this structure is called Auto-Encoders [8]. Self-Supervised learning
can be summarize the into three general categories [37], as shown in Figure 3.3:

– Generative: train an encoder to encode input x into an explicit vector z and a
decoder to reconstruct x from z.

16 3| Background

– Contrastive: train an encoder to encode input x into an explicit vector z to
measure similarity.

– Generative-Contrastive (Adversarial): train an encoder-decoder to generate
fake samples and a discriminator to distinguish them from real samples (e.g.,
GAN).

Figure 3.3: Conceptual comparison between Generative, Contrastive, and Generative-
Contrastive methods [37].

• Reinforcement learning : here an agent learns to make decisions by interacting with
an environment, whit the goal of learning a policy, or a set of actions, that maximize
a reward signal over time, also known as the return. To reach this scope the agent
receives feedback in the form of rewards or punishments based on the actions it
takes in the environment.

In the following section, we detail classification as failure-cause identification falls in this
category of machine learning algorithms.

3.2.1. Classification problems

In this thesis we model the failure-cause identification as a classification problem. A
classification problem has the goal to learn a model that can assign a class or category
label to input data based on a set of labeled examples. There are two main types of
classification problems:

3| Background 17

• Binary Classification: with the goal of classifying input data into one of two classes
or categories, such as true/false or yes/no.

Figure 3.4: Data classification in two classes, i.e., red square or green circle.

• Multiclass Classification: with the goal of classifying input data into one of N-classes
or categories, such as different types of failure in microwave networks.

Figure 3.5: Data classification in 3-classes, i.e., red square, green circle or black hexagon.

18 3| Background

Figure 3.6: Machine learning project life cycle. The scope of machine learning engineering
is limited by the blue zone. The solid arrows show a typical flow of the project stages.
The dashed arrows indicate that at some stages, a decision can be made to go back in the
process [12].

As described in [12] and shown in Figure 3.6, a machine learning project life cycle consists
of the following stages:

1. Goal Definition: in this first phase usually a business analyst works with the client
and the data analyst to transform a business problem into an engineering project.
Once an engineering project is defined, the machine learning part can start. The first
task is the goal definition: is a specification of what a statistical model receives as
input, what it generates as output, and the criteria of acceptable (or unacceptable)
behavior of the model;

2. Data collection and preparation: in this phase firstly a consisting of input
data and corresponding output data (labels) is collected and then it is prepared (or
pre-processed) for the target problem.

• Data Collection: this phase is critical for the success of the ML tasks. A
successful data collection contains enough information that can be used for
modeling, has good coverage of what we want to do with the model, and
reflects real inputs that the model will see in production. It is as unbiased as
possible and not a result of the model itself, has consistent labels, and is big

3| Background 19

enough to allow generalization.

• Data Preparation: after data collection, the dataset to be suitable for the ma-
chine learning algorithms must be prepared/preprocessed. This preparation
phase could consist of feature analysis, dataset cleaning (outlier removal), han-
dling missing values, and performing other data transformations as needed,
like data augmentation and data partitioning in training set, validation set,
and test set. To obtain a good partition of your entire dataset into train-
ing, validation and test sets, the process of partitioning must satisfy several
conditions:

– Data was randomized before the split.

– Split was applied to raw data.

– Validation and test sets follow the same distribution.

– Leakage was avoided.

3. Feature Engineering: this phase is made of all the operations on the dataset that
will help the algorithm to learn and make accurate predictions. During this phase
feature selection, dimensionality reduction, feature scaling and normalization are
usually done.

4. Model Training: in literature an huge amount of classification algorithms are
available. The goal of this phase is selecting an appropriate machine learning model
for the problem at hand, based on factors such as the size of the dataset, the com-
plexity of the problem, and the desired prediction accuracy. The selected machine
learning model has two important components, that are the:

• Model parameters: are variables that define the model trained by the learning
algorithm. They are directly modified by the learning algorithm based on the
training data. The goal of learning is to find such values of parameters that
minimize the prediction error. Examples of parameters are weights (W) and
biases (b) in the equation of linear regression y = Wx+b, where x is the input
of the model, and y is its output (the prediction). However, not every ML
model is parametric, as Decision Trees and K-means.

• Model hyperparameters: are inputs of machine learning algorithms that in-
fluence the performance of the model. They are not learned by the model
during training, but instead are set before training begins and determine how
the model is trained. Example of hyperparameters are the maximum depth of

20 3| Background

the tree in the decision tree learning algorithm, the misclassification penalty in
support vector machines, k in the k-nearest neighbors algorithm, the learning
rate, batch size, and number of epochs, and many others.

In this phase to find the best configuration values for the learning algorithm (best
hyperparameters), the training and validation sets are used. There are available
different techniques for validating a model, all with the goal of generalize well the
results to new and unseen data. The choice of which technique to use depends on
factors such as the size of the dataset, the complexity of the algorithm, and the
available computing resources. The technique used in this work is known as K-
Fold Cross-Validation: it consists in splitting the data into k non-overlapping parts
or "folds", train the algorithm on k-1 folds, and validate its performance on the
remaining fold. This procedure is repeated k times, using each fold as the validating
set once. This can provide a more statistically unbiased estimate of the algorithm’s
performance, as it validates the algorithm on multiple subsets of the data. With
the Stratified K-Fold Cross-Validation is possible to apply on this techniques the
benefits carried by the stratification.

Figure 3.7: K-Fold Cross-Validation [33].

There are other possible techniques for validating a model, as:

• Holdout Validation: it consists in splitting the training set into training and
validation set and use the last one to test the algorithm’s performance after it
has been trained on the training set with a configuration of hyperparameters.
To get better performance we can use on it the stratification, that allows to
maintain in both the train and validation set the same distribution of classes

3| Background 21

The main advantage of holdout validation is that it allows the algorithm to be
tuned on a separate validation set, which helps to prevent overfitting to the
training data.

• Leave-one-out cross-validation (LOOCV): it is a special case of cross-validation
where k is set to the number of data points (N), making the algorithm training
on all but one of the data points (N-1), and validating its performance on the
left-out point. This methods can be computationally expensive, but it can
provide a less biased estimate of the algorithm’s performance than other vali-
dation techniques such as k-fold cross-validation, especially when the dataset
is small.

• Bootstrapping Validation: it consists in combining bootstrapping and holdout
validation techniques. In this way we can get estimating of the algorithm’s
performance with less variance than in holdout validation. The main difference
with respect to K-Fold Cross-Validation is that in Bootstrapping Validation,
doing resampling with replacement can lead to have the same point repeated
in the training set, or used in more than one test sets. This is not possible
using the K-Fold Cross-Validation techniques.

5. Model Evaluation: the performance of the trained model is evaluated on the test
set, that is the part of the dataset that has not been used during the model training
phase, so it contains labelled data that have never been seen by the model. To
assess the performance, different metrics calculated over the test data can be used:
the most widely used are accuracy, precision, recall, and f1-score. These metrics
can be calculated through the confusion matrix, that summarizes how successful the
classification model is at predicting examples belonging to various classes. Figure 3.8
shows the confusion matrix used for multiclass classification: it is a table where on
one axis there is the class that the model predicted (usually the x axis), on the other
axis there is the actual label (usually the y axis), and the cells represent the number
of samples that fall into each of these categories:

• True positive (TP): the model correctly predicts that a sample belongs to the
positive class.

• True negative (TN): the model correctly predicts that a sample belongs to the
negative class.

• False positive (FP): the model predicts that a sample belongs to the positive
class when it actually belongs to the negative class.

22 3| Background

• False negative (FN): the model predicts that a sample belongs to the negative
class when it actually belongs to the positive class.

Figure 3.8: Confusion Matrix for Multiclass Classification

Once the confusion matrix is built we can calculate the different performance metrics
as:

• Accuracy: it is defined as the ratio between the correctly classified samples
to the total number of samples, i.e., (3.1):

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

Intuitively, accuracy measures how well the model can correctly classify both
positive and negative instances in a dataset.

Its complement is called Error Rate (ERR) and is calculated as EER = 1-
Acc. It represents the number of misclassified points in both side positive and
negative class.

• Precision: it is the ratio of true positive predictions to the overall number of
positive predictions, i.e., (3.2):

Precision =
TP

TP + FP
(3.2)

Intuitively, precision measures how well the model can correctly identify pos-

3| Background 23

itive instances without falsely labeling negative instances as positive. A high
precision score indicates that the model is making fewer false positive predic-
tions, which can be useful in applications where false positives are costly.

• Recall: it is the ratio of true positive predictions to the overall number of
positive examples, i.e., (3.3):

Recall =
TP

TP + FN
(3.3)

It is also known as sensitivity or true positive rate and intuitively it measures
how well the model can identify all positive instances in the dataset, without
missing any positive instance. A high recall score indicates that the model is
making fewer false negative predictions, which can be useful in applications
where it is important to identify all positive instances.

• F1-Score: it is an harmonic mean of precision and recall and provides a
balance between these two metrics, i.e., (3.4):

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(3.4)

Intuitively, F1-score measures the trade-off between precision and recall, and
provides a single value that summarizes the overall performance of the model.
A high F1-score indicates that the model is able to achieve both high precision
and high recall, which can be useful in applications where both false positives
and false negatives are costly.

However, especially when the classes are imbalanced or when the cost of false pos-
itives and false negatives is different, considering just one metric alone may not be
the best choice, so for this reason they are usually compared together.

Once, the metrics results on the test set are available, it is necessary to validate
them, using the techniques described above, but considering the train and test sets
instead of the train and the validation sets. This will allow to get an error rate on
the considered performance metrics that are as near as possible to the real error
rate of the model.

6. Model Deployment: in this phase the trained model is ready to be inserted in the
production environment, where it can be employed by the users to make predictions
on new, unseen data. A trained model can be deployed in various ways. It can be
deployed on a server, or on a user’s device. It can be deployed for all users at once,

24 3| Background

or to a small fraction of users.

7. Model Serving: in this phase the machine learning model can be served in either
batch mode, when it is applied to large quantities of input data, or on-demand mode
either a human client or a machine.

8. Model Monitoring: in this phase the model is monitored to make sure that it is
served correctly, and the performance of the model remains within acceptable limits.

9. Model Maintenance: during this phase the model that is in the production en-
vironment is regularly updated to correct possible prediction errors, thanks to the
availability of new training data, and in general to be always "fresh" and so useful
to the clients.

3.2.2. Classification Algorithms

In literature many supervised learning algorithms for solving classification problems are
available. In this section are described the ones used in the thesis, focusing on the theory
behind them.

XGBoost (eXtreme Gradient Boosting)

eXtreme Gradient Boosting (XGBoost) is a gradient boosting algorithm that uses decision
trees ensembles as base learners, i.e., an individual learner of the ensemble, to iteratively
improve the predictions of the model. To understand this definition let analyse the key
concepts of XGBoost: decision trees ensembles and gradient boosting.

Figure 3.9 shows the structure of a decision tree model, where each internal node represents
a feature, each branch represents a decision, and each leaf node represents a class label. An
instance is classified by starting at the root node of the tree, testing the feature specified
by this node, then moving down the tree branch corresponding to the value of the feature
in the given example. This process is then repeated for the subtree rooted at the new
node. In this way, tree-based methods partition the feature space into a set of rectangles,
where in classification problem at each rectangle a label is assigned.

3| Background 25

Figure 3.9: Decision tree example.

The training process for a decision tree can be summarized as follows:

1. Start with the entire training dataset at the root node of the tree.

2. Select a feature or attribute that best separates the data into different classes or
categories. This is done by calculating a splitting criterion for each feature, such as
Gini impurity, Entropy and Information Gain.

3. Split the data into two or more subsets based on the selected feature and the splitting
criterion.

4. Create a new internal node for the selected feature, and add child nodes for each
subset created in step 3.

5. Repeat steps 2-4 for each child node, until a stopping criterion is met. The stopping
criterion may be based on a predefined maximum depth of the tree, a minimum
number of samples required to split a node, or a minimum improvement in the
splitting criterion.

6. Assign a class label or a numeric value to each leaf node based on the majority class
label or the average numeric value of the samples in the node.

Decision trees can be prone to overfitting if they are too complex, and may not perform
well on datasets with imbalanced class distributions or noisy data. Therefore, it is impor-
tant to use regularization techniques, such as pruning, to prevent overfitting and improve
the generalization performance of the decision tree. Pruning involves removing nodes
from the tree that do not improve its predictive performance on the validation dataset.
There are two types of pruning:

26 3| Background

• Pre-pruning : involves stopping the growth of the tree based on a stopping criterion,
such as a maximum depth, a minimum number of samples required to split a node,
or a minimum improvement in the splitting criterion.

• Post-pruning : involves growing the tree to its maximum size and then removing
nodes from the bottom up based on their impact on the validation error.

Figure 3.10 shows another way to deal with bias and overfitting that is the use of decision
tree ensembles, which combines several decision trees to produce better predictive per-
formance than utilizing a single decision tree. The main principle behind the ensemble
model is that a group of weak learners come together to form a strong learner.

Figure 3.10: Decision tree ensambles.

Two popular methods to combine a set of decision trees are bagging and boosting:

• Bagging : stands for bootstrap aggregating and is the techniques used in Random
Forest (RF). It consists in randomly sampling with replacement the initial training
dataset to derive a set of training datasets used each to grow a decision tree. The set
of decision trees forms a decision tree ensemble whose predictions can be aggregated
(via mean, median, etc.) to obtain better prediction performance. This technique
is shown in Figure 3.11

3| Background 27

Figure 3.11: Bagging techniques.

This helps improves model performance minimizing the variance and overfitting,
because it avoids the model over-optimizing to any single dataset.

• Boosting : consists in adding trees to correct the errors (also called residuals) made
by existing tree. Trees are added sequentially until no further improvements can
be made. Figure 3.12 shows an example of this technique. Starting with a single
training dataset it is used to grow a single decision tree. Afterward, the training
dataset is re-weighted so that records with incorrectly predicted targets receive more
weight. The new training dataset, then trains another decision tree. Re-weighting
and training processes are repeated until a set of decision trees are built. The set of
decision trees forms a decision tree ensemble whose predictions can be aggregated
(via mean, median, etc.) to obtain better prediction performance.

28 3| Background

Figure 3.12: Boosting techniques.

This helps improves model performance minimizing the bias and underfitting.

These are the general concepts upon which XGBoost is built. Specifically XGBoost works
in this way:

1. Model initialization: XGBoost starts by initializing a single decision tree as the
base model. The trees used by XGBoost are a bit different than the traditional
ones. They are called CART trees (Classification and Regression trees) (3.13) and
instead of containing a single decision in each “leaf” node, they contain real-value
scores of whether an instance belongs to a group. After the tree reaches max depth,
the decision can be made by converting the scores into categories using a certain
threshold.

Figure 3.13: Cart (Classification and Regression trees) [15].

3| Background 29

2. Loss computation: the loss function L is shown in (3.5) and is used by XGBoost
to measure the difference between the predicted values and the true values of the
target variable in the training set.

L =
N∑
i=1

l(yi, ŷi) (3.5)

where yi is the true value of the target variable for the i-th sample, and ŷi is the
predicted value of the target variable for the i-th sample. The function l is a differ-
entiable loss function that measures the difference between the true and predicted
values, such as squared loss, logistic loss, or hinge loss.

3. Gradient and Hessian computation: XGBoost computes the gradient and the
Hessian of the loss function with respect to the predicted values, as in (3.6) and
(3.7) respectively. These values are used to optimize the objective function during
the training process.

gi =
∂l(yi, ŷi)

∂ŷi
(3.6)

and
hi =

∂2l(yi, ŷi)

∂ŷ2i
(3.7)

4. Tree growing: XGBoost fits a decision tree to the negative gradient values −gi,
where each leaf node of the tree represents a predicted value. XGBoost uses the
Hessian values hi to compute the weights of the leaf nodes, which can be interpreted
as a measure of the uncertainty of the predictions.

5. Model updating: XGBoost adds the new decision tree to the ensemble using
Gradient Boosting, that does not generate subsequent trees through re-weighting
the training data but rather through a gradient descent algorithm to minimize the
loss L on training set when adding new models.

6. Repeat: steps 2 to 5 are repeated until the desired number of trees are added to
the ensemble or until the loss stops decreasing.

7. Make prediction: to make a prediction, the model uses the values of the features
to traverse the decision trees and compute the weighted sum of the leaf node values.
Mathematically, the predicted value of the k-th tree fk(x) can be computed by
recursively adding the predictions of the previous trees, as in (3.8):

fk(x) = fk−1(x) + hk(x) (3.8)

30 3| Background

where hk(x) is the prediction of the k-th tree for input x.

In summary, XGBoost is a gradient boosting algorithm that uses decision trees as base
learners to iteratively improve the predictions of the model. It optimizes the model pa-
rameters by minimizing a differentiable loss function using gradient descent, and updates
the model by fitting new decision trees to the negative gradients of the loss function.
XGBoost, works via approximations that make gradient boosting more computationally
efficient than standard gradient boosting. XGBoost strengths are its the ability to han-
dle large datasets with a mix of categorical and numerical features, its speed, its ability
to handle missing data and the presence of several regularization techniques to prevent
overfitting, such as L1 and L2 regularization and early stopping.

SVC (Support Vector Classifier)

Support Vector Classifier (SVC) is a specific type of SVM (Support Vector Machine) that
is optimized for classification tasks with linearly separable data. The goal of SVC is to
find the optimal hyperplane that separates the data into different classes by maximizing
the margin, that is the maximum distance between data points of different classes. Taking
as example a binary classification problem in a 2-dimensional space (2 features) as shown
in Figure 3.14, the hyperplane is a line and the two classes can be separated by an infinite
number of lines.

Figure 3.14: Linear hyperplane between two classes [40].

The points that are closer to the hyperplane are called support vectors because they

3| Background 31

influence the position and orientation of the hyperplane. Using the support vectors is
possible to maximize the margin of the classifier. In SVC the loss function that is used to
maximize the margin is the hinge loss. Figure 3.15 shows the optimal hyperplane found
between two classes.

Figure 3.15: Optimal hyperplane between two classes [40].

Once the optimal the hyperplane is found, it can be used to make predictions on new,
unlabeled data by determining which side of the hyperplane the data point falls on.

Mathematically speaking, the hyperplane is defined as in (3.9):

wTx+ b = 0 (3.9)

where w is defined as weights, x as the observations and b as bias.

The support vectors are defined as in (3.10):

wTx+ b = 1 (3.10)

The model training consists in find the optimal hyperplane that is the one that maximize
the margin. To maximize the margin it is necessary to minimize ||w|| (the Euclidean norm
of the weight vector), with the condition that there are no datapoints between the support
vectors. This is a constrained optimization problem that can be solved by the Lagrangian
multipler method. It is also a quadratic problem, so the surface is a paraboloid, with just

32 3| Background

a single global minimum.

SVC can work also with non linearly separable data, thanks to the use of kernel functions
that transform the data into a higher-dimensional space where it can be linearly separable.
Some common kernel functions used in SVC are radial basis function (RBF), polynomial,
and sigmoid. The type of kernel to use depends on the specific problem and data, so the
kernel function is one of the hyperparameter that must be choose in SVC.

ANN (Artificial Neural Network)

Artificial Neural Network (ANN) is a this type of model is inspired by the structure and
function of the human brain, particularly in how neurons are connected and communicate
with each other. Figure 3.17 shows a specific architecture of Neural Network, that is
Fully-Connected Neural Networks, where it is possible to distinguish the base elements
that compose an ANN:

• Neurons: a neuron, also called perceptron, corresponds to circles and boxes in the
representation and it is the basic element of the ANN. A perceptron receives in
input a vector of real-valued inputs, calculates a linear combination of them, adds
a baising term, then an activation function is applied to the net input to produce
the output. An activation function maps any real input into a usually bounded
range, often 0 to 1 or -1 to 1, and can be linear or nonlinear; common activation
functions are: linear or identity, hyperbolic tangent, logistic, threshold, gaussian,
etc.. In figure 3.16 a simple non linear perceptron with logistic activation function
is represented:

3| Background 33

Figure 3.16: Simple non linear perceptron with logistic activation function [45].

The perceptron’s output (O) can be defined as in (3.11):

O = f(net) = f(W̄ .X̄) = f(
n+1∑
j=1

WjXj) = f(
n∑

j=1

WjXj + θ) (3.11)

where X̄ is the input vector, W̄ is the weight vector associated to the arrows, f is
the activation function and θ is the bias, that is a tunable parameter that allows
the network to make predictions that are not solely dependent on the input data.

• Layers: a layer is a group of interconnected neurons that receive the input data,
perform a computation on that input, and then produce an output. Layers are
stacked on top of each other to form the overall network architecture. There are
different types of layers:

– Input Layer: it is the first layer of the network and so the one that receives
the input data. Each neuron that compose this layer represents a feature or
attribute of the input data. From the input layer the input data are passes the
first hidden layer.

– Hidden Layer: between the input layer and the output layer there be one or
more hidden layers. Each neuron in a hidden layer receives inputs from the
previous layer and applies an activation function to produce an output. The
output of each neuron in a hidden layer is passed as input to the neurons in
the next layer, that can be another hidden layers or the final output layer. An

34 3| Background

ANN with two or more hidden layers is called DNN (Deep Neural Network).

– Output Layer: it is the final layer of the network and so the one that produces
the final result. Each neuron in the output layer represent one predicted values
or class.

The number and size of the layers in a neural network can vary depending on the
specific problem being solved and the complexity of the input data.

• Connections: between neurons there are connections, represented by the arrows
in figure 3.17, that determine how the information flows through the network. Each
connection is characterized by a weight, that represents its strength, and during the
training process this weight is adjusted to improve the accuracy of the network.

Figure 3.17: Artificial Neural Network architecture [11].

To train an ANN is necessary to define a cost function, that is a mathematical
function that measures the difference between the predicted output and the real
output (so the error) for the entire training set (while a loss function measures the
error for a single training example), and an optimization algorithm such as gradient
descent to minimize it. Depending on the type of problem it must be solved there
are different cost function that can be used. For example a common cost function for
binary classification problems is the binary cross-entropy, for regression problems is
the mean squared error and for multi-class classification problems is the categorical
cross-entropy. The training process consists in:

1. Initialize the weights and biases of the neurons in the network with random

3| Background 35

values

2. Forward Propagation: the input data is propagated from the input layer of the
network, through all the hidden layers and finally to the output layer where
the predicted output is computed.

3. The network predicted output is compared to the expected output (ground
truth) using the loss function.

4. Back Propagation: the error is propagated back through the network, and the
weights and biases are adjusted based on the error gradient. This involves
computing the derivative of the loss function with respect to each weight and
bias in the network.

5. The weights and biases are updated using an optimization algorithm such as
stochastic gradient descent. This involves multiplying the gradient by a learn-
ing rate and subtracting the result from the current weight or bias value.

6. Steps 2-5 are repeated for many iterations or epochs until the network converges
to a good solution.

Once the network is trained, it can be used to make predictions on new, unseen
data.

3.3. Hyperparameter Optimization

As introduced in the previous section, hyperparameters are all the parameters that cannot
be learned by a ML model directly from the input data, but they must be set before
training the model. Hyperparameter optimization is the process of selecting the best set
of hyperparameters for a machine learning algorithm, that are the ones that will give the
best performance of the model on the test set. This process will help to improve model
performance, as it can find the best configuration for the model, which can result in better
accuracy, faster convergence, and better generalization to new data. It can also help to
reduce the training time by finding the best configuration for the model that requires
fewer training epochs or less computational resources.

Hyperparameter optimization is typically done with the following steps:

1. Definition of hyperparameter space: this is the set of all the hyperparameters we
want to search, specifying the range of values that each hyperparameter can take.

2. Chosen of a search method: is the method used to explore the hyperparameter

36 3| Background

space. They will be described in the next.

3. Model training and evaluation: for each set of hyperparameters, the model is trained
on the training set and evaluated on the validation set to obtain a performance
metric, such as accuracy or mean squared error. In this phase it is also possible to
used K-fold cross-validation to obtain a more accurate performance metric.

4. Selection of the best hyperparameters: the sets with best performance metric is
selected to train the final model on the entire training set.

To select the best hyperparameters there are several search methods [9], the one used
in this work is called HyperOpt. HyperOpt is based on “Bayesian Optimization” and
supported by the SMBO (Sequential Model-Based Global Optimization) methodology
adapted to work with different algorithms such as: Tree of Parzen Estimators (TPE),
Adaptive Tree of Parzen Estimators (ATPE) and Gaussian Processes (GP). In bayesian
optimization the performance of a model for a given set of hyperparameters are predicted
using a probabilistic approach through a method known as surrogate optimization. A
surrogate function is an approximation of the objective function (i.e., the model’s perfor-
mance metric) as a function of the hyperparameters. The most commonly used surrogate
model is the Gaussian Process (GP). Another key component in this method is the acqui-
sition function, a function that, based on the surrogate model’s predictions, quantifies the
usefulness of a set of hyperparameters. There are different types of acquisition functions
all with the goal of balancing exploration and exploitation in different ways, i.e., they
seek to explore the unexplored regions of the hyperparameter space (exploration) while
also exploiting the promising regions (exploitation). This method can efficiently explore
the hyperparameter space and converge to the optimal set of hyperparameters with fewer
evaluations.

Other search methods are:

• Manual Search: in manual search the hyperparameters are set manually by the user
based on their experience, intuition, or prior knowledge of the problem. Here there
is no optimization due to the use of a search algorithm.

• Grid Search: in grid search all the hyperparameters defined by the users are test by
the search algorithm, so the model is trained and evaluated for each combination of
hyperparameters in the search space.

• Random Search: in random search, instead of evaluating all the combination of
hyperparameters defined by the users, a random combinations of them are used to
find the best solution.

3| Background 37

• Genetic Algorithms : in the genetics algorithm there are chromosomes encoding the
hyperparameters, and a population of chromosomes is iteratively evolved through
selection, mutation, and crossover operations. The fitness function is the perfor-
mance of the model for a given set of hyperparameters.

The choice of search method depends on the size of the hyperparameter space, the com-
putational resources available, and the complexity of the model.

For each classification algorithm introduced in Section 3.2.2, an hyperparameter space
has been defined, as presented in the following.

3.3.1. XGBoost

Hyperparameter search for XGBoost model focuses on the following hyperparameters [56]:

• learning_rate: also known as eta, is the step size shrinkage used in update to
prevents overfitting. After each boosting step, we can directly get the weights of
new features, and eta shrinks the feature weights to make the boosting process more
conservative.

• max_depth: is the maximum depth of a tree. Increasing this value will make the
model more complex and more likely to overfit. Beware that XGBoost aggressively
consumes memory when training a deep tree. The default value is 6, the range is
[0, ∞] and 0 indicates no limit on depth.

• n_estimators : is the number of boosting stages to perform. Gradient boosting is
fairly robust to over-fitting so a large number usually results in better performance.
The default value is 100, the range is [1, ∞].

• subsample: is the subsample ratio of the training instances. Setting it to 0.5 means
that XGBoost would randomly sample half of the training data prior to growing
trees and this will prevent overfitting. Subsampling will occur once in every boosting
iteration. The default value is 1, the range is (0, 1].

• gamma: also known as min_split_loss, is the minimum loss reduction required to
make a further partition on a leaf node of the tree. The larger gamma is, the more
conservative the algorithm will be. The default value is 0, the range is [0, ∞].

3.3.2. SVC

Hyperparameter search for Support Vector Classifier model focuses on the following hy-
perparameters [46]:

38 3| Background

• kernel : specifies the kernel type to be used in the algorithm. If none is given, ‘rbf’
(radial basis function) will be used. If a callable is given it is used to pre-compute
the kernel matrix from data matrices; that matrix should be an array of shape
(n_samples, n_samples).

• gamma: is the kernel coefficient for ‘rbf’, ‘poly’ (polynomial) and ‘sigmoid’. If
gamma = ’scale’ (default) is passed then it uses 1/(n_features * X.var()) as value
of gamma, if gamma=‘auto’ is passed then it uses 1/n_features.

• C : is the regularization parameter. The strength of the regularization is inversely
proportional to C. Must be strictly positive. The penalty is a squared l2 penalty.

3.3.3. ANN

Hyperparameter search for Artificial Neural Network model focuses on the following hy-
perparameters [27], [28], [29], [30]:

• activation: is the node function used to produce its output, and can be linear or
non-liner.

• layers : are the internal (hidden) layers of multilayer networks, the ones between the
input layer and output layer. They learn to represent intermediate features that
are useful for learning the target function and that are only implicit in the network
inputs.

• ratio_input : this parameter is used to establish how many neurons are there in the
first layer.

• epochs : is the number of epochs to train the model. An epoch is an iteration over
the entire X and y data provided.

• batch: is the number of samples per gradient update. The default value for the
learning rate is 32.

• learning_rate: for this work we used as optimizer Adam. Adam optimization is a
stochastic gradient descent method that is based on adaptive estimation of first-
order and second-order moments. The default value for the learning rate is 0.001.

• dropout_rate: is the fraction of the input units to drop in from the Dropout layer.
The Dropout layer randomly sets input units to 0 with a frequency of rate at each
step during training time, which helps prevent overfitting. Inputs not set to 0 are
scaled up by 1/(1 - rate) such that the sum over all inputs is unchanged.

3| Background 39

• l2_value: is a layer weight regularizers that allow to apply penalties on layer param-
eters or layer activity during optimization. These penalties are summed into the loss
function that the network optimizes. The L2 regularization penalty is computed as:
loss = l2 * reduce_sum(square(x)). The default value for the learning rate is 0.01.

3.4. Methodologies to address Data Scarcity

When there is an insufficient amount of data available to train a machine learning model
we are facing data scarcity. There are several methodologies to address this problem, we
report here the ones used for this work.

3.4.1. Data Augmentation

Class imbalance occurs when one class in a dataset has significantly fewer samples than
the other classes. The first step in handling class imbalance is to compute the imbalance
ratio I.R [44], [47], as seen in the following equation (3.12):

I.R. =
#(Smaj)

#(Smin)
(3.12)

where #(Smaj) represents the frequency of samples in the majority class and #(Smin)

represents the frequency of samples in the minority class. The goal is to resample the
classes such that there is equibalance between the majority and minority classes with
I.R.= 1.

Depending on the imbalance ratio I.R, two different alternatives can be adopted to achieve
balance:

• if I.R. is low, then undersampling can be performed by reducing the number of
samples of the major class.

• if I.R. is high, then undersampling should be avoided as there will be a loss in data
when a large number of majority class samples are removed. Instead, oversampling
deals with synthesizing samples of the minority class in order to match the number
of samples of the majority class.

Since we deal with a dataset characterized by an high I.R. values, we will adopt an
oversampling technique named Synthetic Minority Over-sampling TEchnique (SMOTE)
[14]. It is a data augmentation technique used in machine learning to address the problem
of class imbalance. Data augmentation is the process of increasing training dataset size

40 3| Background

and diversity generating new data samples from existing data. The aim is to improve the
performance and generalization of machine learning models by exposing them to more
diverse examples.

SMOTE works by creating synthetic samples from the minority class, that is over-sampled
by taking each minority class sample and introducing synthetic examples along the line
segments joining any/all of the k minority class nearest neighbors. Depending upon the
amount of over-sampling required, neighbors from the k nearest neighbors are randomly
chosen. Synthetic samples are generated in the following way, as in equation (3.13):
compute the difference between the feature vector (sample) under consideration (xi) and
its nearest neighbor (xzi), multiply this difference by a random number between 0 and 1
(λ), and add it to the feature vector under consideration. This process is repeated for
identified feature vector.

xnew = xi + λ ∗ (xzi − xi) (3.13)

This causes the selection of a random point along the line segment between two specific
features, as shown in Figure 3.18. This approach effectively forces the decision region of
the minority class to become more general.

Figure 3.18: Over-sampling generation [24].

By creating new synthetic samples, SMOTE effectively increases the size of the minority

3| Background 41

class and helps to balance the class distribution. This can improve the performance of
machine learning models by reducing bias towards the majority class and increasing the
accuracy of the model on the minority class. However, it is possible to customize SMOTE
to generate synthetic data over user-defined classes. It is important to note that SMOTE
should only be used on training data and not on the test data, as it can lead to overfitting.

3.4.2. Transfer Learning

The concept of transfer learning was introduced to the field of educational psychology
by psychologist C.H.Judd, who argued that transfer learning is the result of generalizing
experience gained on one activity to another activity. For example, a person who has ex-
perience playing the piano will learn faster to play another instrument, such as the guitar,
than a person who has never played an instrument, as both are musical instruments that
share some common knowledge. An important requirement is that there be a connection
between two learning activities, otherwise this process can be unsuccessful. For example,
a person who can play an instrument cannot use this knowledge of his or her to learn to
drive a car [59].

The concept of knowledge transfer is also applied in the field of machine learning where,
unlike in traditional machine learning models which are trained from scratch, here the
knowledge acquired by a model on one or more source tasks is transferred to a target
task, as shown in Figure 3.19.

Figure 3.19: Different learning processes between (a) traditional machine learning and (b)
transfer learning [42].

42 3| Background

This methodology, called Transfer Learning (TL), finds wide application in domains where
having insufficient data for training is an inescapable situation. Therefore, this method-
ology can be used to solve the problem of data scarcity by transferring knowledge gained
from a model in a source domain, where a lot of labelled data are available, to a target
domain, where little training data are available, relaxing the assumption that training
data and test data must be independent and identically distributed (i.i.d).

To define formally TL, we need to introduce the concept of domain and task [59]:

• A domain D is composed of two parts, that are a feature space X and a marginal
distribution P(X), where X denotes an instance set, which is defined as X = {x|xi

∈ X, i = 1, . . . , n }. In other words, D = {X, P(X)}.

• A task T consists of a label space Y and a decision function f , that is, T = {Y, f}.
The decision function f is an implicit one, which is expected to be learned from the
sample data.

Formally TL is defined as: given some/an observation (s) corresponding to mS ∈ N+ source
domain(s) and task(s), and some/an observation(s) about mT ∈ N+ target domain(s) and
task(s), transfer learning utilizes the knowledge implied in the source domain(s) to improve
the performance of the learned decision functions on the target domain(s).

Pan et al. in their survey on TL [42] categorize TL under three subsettings, as shown in
Figure 3.20:

• Inductive transfer learning : in this setting the target task is different from the source
task, regardless of whether the source and target domains are the same or not. Here,
is required to have some labeled data in the target domain to induce an objective
predictive function to use with target data. Depending on the presence or absence of
labeled data in the source domain, we can further categorize the inductive transfer
learning setting into two cases:

– if a lot of labeled data in the source domain are available, then the inductive
transfer learning setting is similar to the multitask learning setting, where
multiple learning tasks are solved at the same time.

– if no labeled data in the source domain are available, then the inductive trans-
fer learning setting is similar to the self-taught learning setting, where semi-
supervised learning is combined with TL.

• Transductive transfer learning : in this setting the source and target tasks are the
same, while the source and target domains are different. Here, no labeled data in

3| Background 43

the target domain are available while a lot of labeled data in the source domain are
available.

• Unsupervised transfer learning : in this setting the target task is different from but
related to the source task. Here, there are no labeled data available in both source
and target domains in training. The scope is to solve unsupervised learning tasks
in the target domain, such as clustering, dimensionality reduction, and density es-
timation.

Figure 3.20: Different settings of transfer [42].

By their natures, artificial neural networks are well suited for transfer learning. In [51],
Tan et al. identify four different approaches to implementing transfer learning with deep
neural networks that are:

• Instances-based deep transfer learning : here partial instances from the source do-
main are selected, weighted and assigned as supplements to the training set in the
target domain.

• Mapping-based deep transfer learning : here the instances from the source domain
and target domain are mapped into a new data space on which the deep neural
network is trained.

• Network-based deep transfer learning : here is reused partial network that pre-trained
in the source domain, including its network structure and connection parameters,
transfer it to be a part of deep neural network which used in target domain, as in

44 3| Background

Figure 3.21.

Figure 3.21: Network-based deep transfer learning schema [51].

This is the approach that we will used in Section 4.4.2, to address the problem of
data scarcity.

• Adversarial-based deep transfer learning : here adversarial technology inspired by
generative adversarial nets (GAN) are introduced to find transferable representa-
tions that is applicable to both the source domain and the target domain.

3.4.3. Auxiliary-Tasks Learning

Auxiliary-Tasks Learning was firstly introduced by Liebel and Korner in [34], as an exten-
sion of Multi-task Learning. The goal of Multi-Task Learning is to learn several outputs
from a single input simultaneously, finding a common representation in the earlier layers
of the network and completing the individual jobs in their own single-task branches at
the later phases of the network, as in Figure 3.22. This is typically implemented as an
encoder-decoder structure, where each atomic task represents a specialized decoder to
the representation provided by the common encoder. While each type of label favors the
learning of certain features in the common part, some of them can be exploited by other
tasks as well. This structure can thus help to boost the performance of the atomic tasks.

3| Background 45

Figure 3.22: Multi-Task Learning Network structure with 3 main-task [53].

In Auxiliary-Task Learning, the main-tasks, i.e., the single-task producing the required
output, are flanked by the auxiliary-task, that are easy to learn tasks of minor importance.
The main-tasks and the auxiliary-tasks loss function are then combined into a final multi-
task loss function, that allow to benefit from both contributions, as shown in Figure 3.23.
The final loss function is a weighted sum of the losses for each task, where the weights
determine the relative importance of each task. During training, the model updates its
parameters to minimize this overall loss.

46 3| Background

Figure 3.23: Auxiliary-Task in Multitask-Learning with 2 main-task and 2 auxiliary-task.

There are two main benefits from training the model on multiple tasks:

1. The model is forced to learn more generalizable characteristics that can be used on
other tasks and new data. This can lessen the possibility of overfitting and enhance
the model’s generalizability.

2. The model can learn more from the same amount of data. This is particularly useful
in applications where data is scarce or expensive to obtain. This is the reason why
we will adopt this technique in Section 4.4.3.

3.4.4. Denoising Autoencoders

To understand what a denoising autoencoders is, we must first introduce the concept of an
autoencoder. An autoencoder (AE) is a self-supervised learning model trained to encode
the input x into some representation c(x) so that the input can be reconstructed from that
representation. Hence the target output of the auto-encoder is the auto-encoder input

3| Background 47

itself. Autoencoders present an efficient way to learn a representation of the input data,
which helps with tasks such as dimensionality reduction or feature extraction.

A denoising autoencoder (DAE) [54] is an AE that receives as input corrupted data by
adding noise. There are several ways to add noise to the input data in a DEA, one of them
is to chose for each input a fixed random number of components and force their value
to 0, while the others are left untouched. Another approach can be, in case of binary
features, to flip the values for a fixed random number of components of each input, while
the others are left untouched. The aim is to reconstruct the original data removing the
noise. In order to do so, the latent space of this self-supervised method must learn not only
a compressed representation of the features but also the structural relationships within
them. Figure 3.24 shows an illustration of denoising autoencoder model architecture.

Figure 3.24: Denoising autoencoder model architecture.

Denoising autoencoders (DEAs) can help address data scarcity by leveraging unsuper-
vised learning, which does not require labeled data, to learn to extract useful features or
representations of the data, which can be used for downstream tasks. This is the reason
why we will adopt this methodology in Section 4.4.4.

49

4| Failure-Cause Identification in

Microwave Networks

In this chapter we describe failure-cause identification in microwave networks. The chapter
is organized as follows: we first describe the dataset in Section 4.1, then we discuss the
data preprocessing phase in Section 4.2. We describe the baseline machine learning models
used in this work in Section 4.3, and finally we detail the methodologies used to address
data scarcity in Section 4.4.

4.1. Dataset Description

In this work, we make use of data provided by SIAE Microelettronica [38], an Italian
company that manufactures telecommunications equipment and specializes in microwave
networks. This dataset is a collection of hardware failures states taken from a real mi-
crowave network, where devices alarms status is monitored by a Network Management
System (NMS) with 15-minutes intervals. During the entire monitored period, 1051 hard-
ware failures have been recorded considering windows of 15 minutes (900 seconds), fea-
tured by the information of all alarms states in the windows. To perform data labelling,
these failures events have been analysed by domain experts and labelled in 4 macro-
categories, i.e., the ones in Table 4.1, and 22 micro-categories of failures, as presented in
Table 4.2. Due to confidentiality reasons, we do not report the description of the specific
failures and alarms, and instead provide a masked representation.

50 4| Failure-Cause Identification in Microwave Networks

MACRO-
CATEGORY

DATA
POINTS

0 402

1 314

2 70

3 265

Table 4.1: Macro-categories of hardware failures and number of data points in each macro-
category.

4| Failure-Cause Identification in Microwave Networks 51

MACRO
CATEGORY

MICRO
CATEGORY

DATA
POINTS

0 0 13

0 1 7

0 2 21

0 3 8

0 4 264

0 5 89

1 0 87

1 1 6

1 2 130

1 3 91

2 0 29

2 1 20

2 2 2

2 3 15

2 4 2

2 5 1

2 6 0

2 7 1

3 0 43

3 1 39

3 2 150

3 3 33

Table 4.2: Micro-categories of hardware failures and number of data points in each micro-
category.

Figure 4.1 shows a description of the dataset used in this thesis: it consists of 1051
rows (i.e., 1051 different failure events) each characterized by the following information,
distributed across 168 columns of the dataset1:

1Note that, due to confidentiality reasons, we provide a synthetic, non-detailed description of the used
alarms.

52 4| Failure-Cause Identification in Microwave Networks

• an identifier of the link where the failure has occurred.

• the failure date and time.

• 164 alarms raised on the network components used in the failed link. For each
alarm, a value ranging from 0 (alarm not triggered) to 900 (alarms triggered for 900
seconds) is provided, representing the number of seconds the alarm was on during
a 15-minutes window.

• two labels corresponding to the failure macro-category and micro-category, respec-
tively.

4| Failure-Cause Identification in Microwave Networks 53

F
ig

ur
e

4.
1:

P
or

ti
on

of
ra

w
da

ta
se

t.
A

ll
th

e
se

ns
it

iv
e

in
fo

rm
at

io
n

lik
e

al
ar

m
s

na
m

e,
lin

ks
na

m
e

an
d

ti
m

es
ta

m
ps

ha
ve

be
en

re
m

ov
ed

du
e

to
co

nfi
de

nt
ia

lit
y

re
as

on
s.

54 4| Failure-Cause Identification in Microwave Networks

4.2. Data Preprocessing

As described in Chapter 3.1, once the data collection phase is over, the dataset must
be prepared to be suitable for the machine learning algorithms. During this phase the
following actions were carried out on the raw dataset:

• Link ID and failure date/time information have been removed because they do not
provide useful information for the objective of this thesis work.

• All columns containing alarms always set to 0 have been removed, because they do
not carry relevant information for the classification task.

• All rows belonging to a class with a number of occurrences (number of hardware
failures) less than 6 have been removed. This dataset truncation has been performed
in order to have at least one occurrence in each fold when applying stratified K-Fold
Cross-Validation with k=5.

• Information regarding the macro and micro category into which each failure is clas-
sified has been merged into a new category that encompasses them both (Table 4.3).

• The features (X), i.e., the alarms, have been split from the label (y), i.e., the classes
of failure.

• All features have been converted from [0,900] to binary features with the following
meaning:

– 0: alarm not triggered over the entire 15-minutes window.

– 1: alarm triggered for at least one second over the entire 15-minutes window.

4| Failure-Cause Identification in Microwave Networks 55

MACRO
CATEGORY

MICRO
CATEGORY

CATEGORY
DATA

POINTS

0 0 0 13

0 1 1 7

0 2 2 21

0 3 3 8

0 4 4 264

0 5 5 89

1 0 6 87

1 1 7 6

1 2 8 130

1 3 9 91

2 0 10 29

2 1 11 20

2 3 12 15

3 0 13 43

3 1 14 39

3 2 15 150

3 3 16 33

Table 4.3: Mapping between “MACRO CATEGORY” and “MICRO CATEGORY” into
the new “CATEGORY” label obtained after data preprocessing. Column “CATEGORY”
reports all new 17 labels used for the classification task and for each label we show the
number of data points in the dataset in the column “DATA POINTS”.

Figure 4.2 shows the resulting dataset after the preprocessing phase: it consists of 1045
rows (i.e., 1045 different failure events) each characterized by the following information,
distributed across 100 columns of the dataset2:

• 99 alarms raised on the network components used in the failed link. For each alarm,
a value of 0 (alarm not triggered) or 1 (alarms triggered) is provided. The values of
these columns along the 1045 rows are the features “X”.

• one label corresponding to the failure category. The values of this column along the
2Note that, due to confidentiality reasons, we provide a synthetic, non-detailed description of the used

alarms.

56 4| Failure-Cause Identification in Microwave Networks

1045 rows represent the ground-truth label “y”.

The goal of this thesis is to develop ML models able to correctly classify a hardware
failure in microwave networks in one of these 17 categories (see Table 4.3). As can be
observed from the column “DATA POINTS” of this table, the dataset is affected by data
scarcity, since most categories have very few data points compared to the classes with
highest numbers of data points.

4| Failure-Cause Identification in Microwave Networks 57

F
ig

ur
e

4.
2:

P
or

ti
on

of
th

e
pr

oc
es

se
d

da
ta

se
t.

A
ll

th
e

se
ns

it
iv

e
in

fo
rm

at
io

n
lik

e
al

ar
m

sn
am

e
ha

ve
be

en
re

m
ov

ed
du

e
to

co
nfi

de
nt

ia
lit

y
re

as
on

s.
.

58 4| Failure-Cause Identification in Microwave Networks

4.3. Baseline Machine Learning Models

In this section we present the baseline ML models used in this thesis, and described
in Chapter 3.2.2, i.e., eXtreme Gradient Boosting (XGBoost), Support Vector Classifier
(SVC) and Artificial Neural Network (ANN). These models are used to determine the
baseline performance, i.e., Accuracy, Precision, Recall and F1-score, that we aim to en-
hance using the methodologies presented in Chapter 4.4. Figure 4.3 shows the pipeline
we used to develop these models, including the following main building blocks to perform
failure-cause identification:

1. BLK-1: we split the dataset (Figure 4.2) in 5 folds using Stratified k-fold Cross-
Validation to validate the aforementioned performance metrics.

2. BLK-2: we used the train set for the hyperparameters optimization; each hyper-
parameter set chosen is cross-validated using Stratified k-fold Cross-Validation to
optimize the chosen performance metric that is the accuracy.

3. BLK-3: we tested the output models (referred to as best models in the figure), i.e,
the ones trained on the train set with the best set of hyperparameter found, on the
test set. We then stored the performance metrics obtained on this split.

4. BLK-4: at the end of the five iterations, we computed the average performance
metrics for each model.

4| Failure-Cause Identification in Microwave Networks 59

F
ig

ur
e

4.
3:

B
as

el
in

e
M

od
el

s
pi

pe
lin

e
w

it
h

hy
pe

rp
ar

am
et

er
s

op
ti

m
iz

at
io

n.

60 4| Failure-Cause Identification in Microwave Networks

For each model, an hyperparameter space has been defined as presented in Chapter 3.3.
We used the described pipeline in Figure 4.3 to train the baseline models, obtaining for
each of the five training set splits an optimal set of hyperparameters, as shown in Table 4.4
for XGBoost, in Table 4.5 for SVC, and in Table 4.6 for ANN.

HYPER-
PARAMETER

SEARCH
SPACE

SET 1 SET 2 SET 3 SET 4 SET 5

learning_rate
[1, 0.9, 0.7, 0.5,
0.3, 0.1, 0.05]

0.05 1 0.1 0.5 0.9

max_depth
[2, 4, 6, 8, 10,
12, 14, 16, 18,

20]
16 4 6 16 8

n_estimators
[50, 100, 150,

200, 250]
200 150 200 150 250

subsample
[0.1, 0.3, 0.5,
0.7, 0.9, 1]

0.9 0.7 1 1 1

gamma
[0, 0.01, 0.03,

0.05]
0.03 0 0 0 0.03

Accuracy 0.93 0.92 0.93 0.93 0.94

Table 4.4: Five sets of hyperparameters obtained for XGBoost classifier on the 5 training
splits.

HYPER-
PARAMETER

SEARCH
SPACE

SET 1 SET 2 SET 3 SET 4 SET 5

kernel
[’linear’, ’poly’,
’sigmoid’, ’rbf’]

sigmoid linear linear rbf sigmoid

gamma [’auto’, ’scale’] auto scale scale auto auto

C
[1, 10, 1000,

10000]
10000 1 10000 1000 1000

Accuracy 0.93 0.93 0.93 0.93 0.95

Table 4.5: Five sets of hyperparameters obtained for SVC classifier on the 5 training
splits.

4| Failure-Cause Identification in Microwave Networks 61

HYPER-
PARAMETER

SEARCH
SPACE

SET 1 SET 2 SET 3 SET 4 SET 5

activation
[’leaky_relu’,
’elu’, ’gelu’,

’relu’]
elu relu gelu relu

leaky_
relu

layers [1, 2, 3] 1 2 1 3 1

ratio_input
[0.25, 0.5, 1,

1.25]
0.25 1.25 0.25 1 1.25

epochs
[10, 25, 40, 55,

70, 95]
55 40 40 70 95

batch [8, 16, 32, 64] 64 16 8 32 32

learning_rate
[0.1, 0.05, 0.01,

0.001]
0.5 0.01 0.001 0.001 0.01

dropout_rate [0.1, 0.15, 0.20] 0.1 0.1 0.2 0.15 0.1

l2_value [1e-4, 1e-3] 0.001 0.001 0.001 0.001 0.001

Accuracy 0.85 0.86 0.86 0.85 0.87

Table 4.6: Five sets of hyperparameters obtained for ANN classifier on the 5 training
splits.

The average results that we obtain considering for each baseline model the best sets of
hyperparameters on the 5 training splits are presented in Chapter 5.1.

For each baseline model we analyzed the obtained five sets of hyperparameters to extract
from them the best set of hyperparameters that will be used as optimized hyperparameters
for the models in SMOTE Analysis presented in Chapter 5.4. The criteria used to select
the value of each hyperparameter to include in the best set is the following:

• if one of the values tested is predominant, i.e., it is present in the most of the sets,
that is the value we selected. An example is the max_depth value or subsample
value chosen for XGBoost, as shown in Table 4.4

• if we have two predominant value pairs, we select the one that is associated with a
higher accuracy value. An example is the n_estimators value chosen for XGBoost,
as shown in Table 4.4.

• if no predominant value is present, we selected the median value. An example is
the learning_rate value chosen for XGBoost, as shown in Table 4.4. In case of

62 4| Failure-Cause Identification in Microwave Networks

categorical hyperparameters, e.g., activation functions, we select the one that is
associated with a higher accuracy value.

Following this criteria, the resulting best baseline models are the following:

HYPER-
PARAMETER

DEFAULT
VALUE

OPTIMIZED
VALUE

learning_rate 0.3 0.5

max_depth 6 16

n_estimators 100 200

subsample 1 1

gamma 0 0

Table 4.7: Best hyperparameters selected for XGBoost model.

HYPER-
PARAMETER

DEFAULT
VALUE

OPTIMIZED
VALUE

kernel rbf sigmoid

gamma scale auto

C 1 1000

Table 4.8: Best hyperparameters selected for SVC model.

HYPER-
PARAMETER

DEFAULT
VALUE

OPTIMIZED
VALUE

activation - relu

layers - 1

ratio_input - 1.25

epochs - 40

batch 32 32

learning_rate 0.001 0.01

dropout_rate - 0.1

l2_value 0.01 0.001

Table 4.9: Best hyperparameters selected for ANN model.

4| Failure-Cause Identification in Microwave Networks 63

4.4. Machine Learning methodologies to address Data

Scarcity

In this section we show the methodologies used to address data scarcity. We will present
Synthetic Minority Over-sampling Technique, Transfer Learning, Auxiliary-Task Learning,
and Denoising Autoencoders.

4.4.1. Synthetic Minority Over-sampling TEchnique

In this section we apply Synthetic Minority Over-sampling Technique, in shorten SMOTE,
that is the data augmentation methodology presented in Chapter 3.4.1, to our classifica-
tion problem. With this methodology our goal is to address the data scarcity problem
enriching the preprocessed dataset with synthetic data generated by SMOTE. We used
this enriched dataset to train the Baseline Models, i.e., XGBoost, SVC and ANN.

Figure 4.4 illustrates the proposed pipeline for this methodology:

1. BLK-1: we split the dataset (Figure 4.2) in 5 folds using Stratified k-fold Cross-
Validation to validate the aforementioned performance metrics.

2. BLK-2: on the train set we applied SMOTE, obtaining a new train set composed
by real data and synthetic data.

3. BLK-3: we used the synthetic train set for the hyperparameters optimization; each
hyperparameter set chosen is cross-validated using Stratified k-fold Cross-Validation
to optimize the chosen performance metric that is the accuracy.

4. BLK-4: we tested the Best SMOTE Models, i.e., XGBoost, SVC and ANN trained
on the Synthetic Train Set with best set of hyperparameter, on the test set. We
stored the performance metrics obtained on this split.

5. BLK-5: at the end of the five iterations, we computed the average performance
metrics for each model.

64 4| Failure-Cause Identification in Microwave Networks

F
igure

4.4:
SM

O
T

E
pipeline.

4| Failure-Cause Identification in Microwave Networks 65

4.4.2. Transfer Learning

In this section we apply the Transfer Learning methodology presented in Chapter 3.4.2
to our classification problem. The goal of applying Transfer Learning is to address data
scarcity by first training an ANN model to classify macro-categories and then re-training
a TL model derived from it, able to classify the 17 defined categories of hardware failures.
We expect that the previous knowledge on the macro-categories classification, will help
the TL model in the 17 defined categories classification.

Figure 4.7 illustrates the proposed pipeline for this methodology:

1. BLK-1: to train the TL model, first we needed to train an ANN model for the macro
classification and then from it we derived the TL one for the micro classification.
This required adding the original column “Macro Category” to the dataset presented
in Figure 4.2. We split this dataset in 5 folds using Stratified k-fold Cross-Validation
to validate the chosen performance metrics for the models, that are: accuracy,
precision, recall and F1-score.

2. BLK-2: we used the train set with the macro-categories labels for the hyperpa-
rameters optimization of the model for the macro-categories classification. The
hyperparameter space is the one we defined for ANN in Chapter 3.3, and each hy-
perparameter set chosen is cross-validated using Stratified k-fold Cross-Validation
to optimize the chosen performance metric that is the accuracy.

3. BLK-3: we gave to the create extractor function the output model called Best
Macro Model (Figure 4.5a) i.e, the one trained on the train set with the best set
of hyperparameter found. The function removed its output layer, i.e., the one that
gives in output one of the four macro categories, and outputted a model called
Extractor (Figure 4.5b).

66 4| Failure-Cause Identification in Microwave Networks

(a) Example of Best Macro Model.

(b) Example of Extractor.

Figure 4.5: On top is shown an example of ANN used to classify macro-categories, while
on bottom the extractor derived from it, i.e., the same ANN model without the output
layer.

We gave the input train and test features to the Extractor that predicted a new
features space, i.e. a new train set and test set.

4. BLK-4: we used the new train set with the micro-categories label for the hyper-
parameters optimization of the model for the micro-categories classification. The
hyperparameter space is the one we defined for ANN, and each hyperparameter
set is cross-validated using Stratified k-fold Cross-Validation to optimize the chosen
performance metric that is the accuracy.

5. BLK-5: we tested the output model called Best TL Model (Figure 4.6), i.e., the
one trained on the train set with best set of hyperparameter, on the new test set.
We stored the performance metrics obtained on this split.

4| Failure-Cause Identification in Microwave Networks 67

Figure 4.6: Example of Best Transfer Learning Model

6. BLK-6: at the end of the five iterations, we computed the average performance
metrics for the model.

68 4| Failure-Cause Identification in Microwave Networks

F
igure

4.7:
Transfer

Learning
pipeline

w
ith

hyperparam
eters

optim
ization.

4| Failure-Cause Identification in Microwave Networks 69

4.4.3. Auxiliary-Task Learning

In this section we apply the Auxiliary Learning methodology presented in Chapter 3.4.3
to our classification problem. With this model our goal is to deal data scarcity by training
an ANN model composed of two branches:

• auxiliary task branch: is the one able to classify the macro-categories.

• primary task branch: is the one able to classify the micro-categories.

Once these two branches are trained, their loss functions are combined, as in equation
(4.1):

result_loss = primary_loss+ λ ∗ auxiliary_loss (4.1)

where the primary_loss is the output loss of the primary task (micro-categories classi-
fication), the auxiliary_loss is the output loss of the auxiliary task (macro-categories
classification), and λ is a new hyperparameter of the model that establishes the weight to
be attributed to the computed auxiliary_loss. We expect that this defined loss function
will benefit from the auxiliary loss to enhance the classification on the 17 categories of
hardware failures.

Figure 4.8 shows an example of Auxiliary Task model created using this methodology: it
shows an ANN that has an input layer with 99 neurons, a dense layer with 123 neurons,
a dropout layer with 123 neurons, and then the network is split into two branches. The
left branch is used for the primary task, i.e. micro-category classification, and is made
of a dense layer with 62 neurons, a dropout layer with 62 neurons, a dense layer with
41 neurons and the final output layer with 17 neurons. The right branch is used for the
auxiliary task, i.e. macro-category classification, and is made of a dense layer with 62
neurons, a dropout layer with 62 neurons, and the final output layer with 4 neurons.

70 4| Failure-Cause Identification in Microwave Networks

Figure 4.8: Example of Auxiliary-Task model, the left branch is used for the primary task,
i.e. micro-category classification, while the right branch is used for the auxiliary task, i.e.
macro-category classification.

To realize this type of model, it is necessary to create a subclass of the Keras Model [19]
redefining the init function, the call function, the train_step function and the test_step
function.

Figure 4.9 illustrates the proposed pipeline for this methodology:

1. BLK-1: to train the network branch for the macro-category classification, we

4| Failure-Cause Identification in Microwave Networks 71

needed to add the original column “Macro Category” to the dataset presented in
Figure 4.2. We split this dataset is split in 5 folds using Stratified k-fold Cross-
Validation to validate the chosen performance metrics for the models, i.e., accuracy,
precision, recall, and F1-score.

2. BLK-2: we used the train set for the hyperparameters optimization of the model.
The hyperparameter space is the one defined for ANN in the section above, plus the
hyperparameter lambda which values tested for this thesis work are: [0.3, 0.5, 0.7,
0.9, 1.0, 1.2, 1.5]. Each hyperparameter set is cross-validated using Stratified k-fold
Cross-Validation to optimize the chosen performance metric that is the accuracy.

3. BLK-3: we tested the output Best Auxiliary-Task Model, i.e., the one trained on the
train set with best set of hyperparameter, on the test set. We stored the performance
metrics obtained on this split.

4. BLK-4: at the end of the five iterations, we computed the average performance
metrics for the model.

72 4| Failure-Cause Identification in Microwave Networks

F
igure

4.9:
A

uxiliary-Task
Learning

pipeline
w

ith
hyperparam

eters
optim

ization.

4| Failure-Cause Identification in Microwave Networks 73

4.4.4. Denoising Autoencoders

In this section we apply the Denoising Autoencoders methodology presented in Chap-
ter 3.4.4 to our classification problem. Our goal is to address data scarcity by training
a Denoising Autoencoders able to learn useful features representations without the need
for labels. The latent space of this self-supervised method, receiving corrupted features
as input, must learn not only a compressed representation of the features but also the
structural relationships within them. On our dataset, we expect that this model will be
able to learn the relationship between the alarms, understanding relationships like:

• if alarm “a” or set of alarms “A” are on, also alarm “b” or set of alarms “B” are on.

• if alarm “a” or set of alarms “A” are off, also alarm “b” or set of alarms “B” are off.

• if alarm “a” or set of alarms “A” are on, alarm “b” or set of alarms “B” are off.

• if alarm “a” or set of alarms “A” are off, alarm “b” or set of alarms “B” are on.

Figure 4.12 illustrates the proposed pipeline for this methodology:

1. BLK-1: we split the dataset (Figure 4.2) in 5 folds using Stratified k-fold Cross-
Validation to validate the chosen performance metrics for the models, that are:
accuracy, precision, recall and F1-score.

2. BLK-2: we gave the feature in the train set to the add_noise function that outputs
a corrupted train set, i.e., for each data point in the train set flipping from 0 to 1
and vice versa a random 30% of features (in our case 30 random features over 99).

3. BLK-3: we gave to the function create_extractor a Denoising Autoencoder (DAE)
model (Figure 4.10a) trained to reconstruct the original train set from the corrupted
one. The function removed its decoding layers, i.e., the ones used to reconstruct the
original train set, and outputted a model called Extractor (Figure 4.10b).

74 4| Failure-Cause Identification in Microwave Networks

(a) Example of Denoising Autoencoders (DAE).

(b) Example of Extractor.

Figure 4.10: On top is shown an example of DAE model used to reconstruct the original
train set from the corrupted one, while on bottom the extractor derived from it, i.e., the
same DEA model without the decoding layers.

We gave the input train and test features to the Extractor, that predicted a new
features space, i.e. a new train set and test set.

4. BLK-4: we used the new train set for the hyperparameters optimization of the
model. The hyperparameter space is the one defined for ANN, and each hyper-
parameter set is cross-validated using Stratified k-fold Cross-Validation to optimize
the chosen performance metric that is the accuracy.

BLK-5: we tested the output model called Best DAE Model (Figure 4.11), i.e., the
one trained on the train set with best set of hyperparameter, on the test set. We
stored the performance metrics obtained on this split.

4| Failure-Cause Identification in Microwave Networks 75

Figure 4.11: Example of Denoising Autoencoder Model.

5. BLK-6: at the end of the five iterations, we computed the average performance
metrics for the model.

76 4| Failure-Cause Identification in Microwave Networks

F
igure

4.12:
D

A
E

pipeline
w

ith
hyperparam

eters
optim

ization.

77

5| Numerical Results

In this chapter we discuss illustrative numerical results of the methodologies discussed in
Chapter 4. We show numerical results when utilizing the baseline models, i.e., XGBoost,
SVC and ANN, and when utilizing methodologies adopted to address data scarcity, i.e.
Synthetic Minority Over-sampling Technique (SMOTE), Transfer Learning, Auxiliary-
Task Learning and Denoising Autoencoders.
Chapter-5 is organized as follows: in Section 5.1 we evaluate the performance of the
baseline models, while in Section 5.2 we evaluate the impact of the methodologies adopted
to address data scarcity, and in Section 5.3 we select which is the best best methodologies
to address data scarcity. Finally, in Section 5.4 we provide a detailed analysis on SMOTE
approach to evaluate its impact on the specific failure classes considered in this study, in
order to assess in which conditions it is more convenient for a certain class to perform
data augmentation by generating synthetic data.

5.1. Baseline Models

In this section we present results obtained for each baseline models described in Chap-
ter 4.3, i.e., XGBoost, SVC and ANN, using the pipeline in Figure 4.3.

78 5| Numerical Results

Figure 5.1: Accuracy, Precision, Recall and F1-score for the baseline models, i.e., XG-
Boost, SVC and ANN, optimized on each of the 5 dataset splits.

Figure 5.1 shows performance results in terms of Accuracy, Precision, Recall and F1-
score for XGBoost, SVC, and ANN. We can observe that SVC outperforms the other
classifiers on all the considered metrics, and XGBoost in turn performs better than ANN.
As expected, SVC and XGBoost perform better than ANN, because the latter usually
requires large amounts of data for effective training.

These are the baseline performance on Accuracy, Precision, Recall, and F1-score metrics
that we aim to enhance adopting the methodologies presented in Chapter 4.4.

5.2. Methodologies to address Data Scarcity

In this section we present the results obtained for each methodology adopted to address
data scarcity as described in Chapter 4.4, i.e., SMOTE, Transfer Learning, Auxiliary-
Task Learning and Denoising Autoencoders. The results that are presented are the ones
obtained using the pipeline in Figure 4.4 for SMOTE, in Figure 4.7 for TL, in Figure 4.9
for Auxiliary-Task Learning, and in Figure 4.12 for Denoising Autoencoders.

5| Numerical Results 79

5.2.1. SMOTE

Figure 5.2: Accuracy, Precision, Recall and F1-score for SMOTE models, i.e., XGBoost,
SVC and ANN, optimized on each of the 5 dataset splits.

Figure 5.2 shows performance results in terms of Accuracy, Precision, Recall and F1-
score for XGBoost, SVC, and ANN trained with synthetics data generated by SMOTE.
We can observe that the use of synthetics data has a very significant impact on the ANN,
which improves in all the considered performance metrics with respect to the baseline
performance. The ANN performance are now comparable with the one obtained using
XGBoost. We can also note that the highest metric obtained is the precision, i.e., the
number of true positive predictions divided by the total number of positive predictions,
which is improved for XGBoost and ANN, while is almost the same for SVC. This result is
due to the fact that SMOTE oversampling the minority class can help the classifier better
learn the characteristics of the minority class and reduce the number of false positive
predictions made by the classifier. Instead, we can observe that for XGBoost and SVC
we have a significant drop in recall performance score, i.e., the number of true positive
predictions divided by the total number of actual positive samples in the dataset. This
is due to the fact that SMOTE oversampling the minority class can introduce synthetic
samples that may not accurately represent the true distribution of the minority class. As
result, the classifier may learn to overfit to the synthetic samples and not generalize well
to new, unseen samples from the minority class. This can lead to a higher number of

80 5| Numerical Results

false negative predictions, which in turn can decrease the recall of the classifier. So, while
SMOTE leads generally to an increase in the precision, similarly it leads to a decrease in
the recall. The increase in accuracy and decrease in recall affects the F1-score: for ANN
we have a significant increase in F1-score since there is an increase in both precision and
recall, while for XGBoost there is an increase in precision but a comparable decrease in
recall so we have the same F1-score, while for SVC, since it decreases both in precision
and recall we consequently have a decrease in F1-score.

5.2.2. Transfer Learning

Figure 5.3: Accuracy, Precision, Recall and F1-score obtained using a ML model built
on Transfer Learning (“TL”) methodology, optimized on each of the 5 dataset splits. Its
performance are compared with the ones got for the ANN Baseline model (“BASELINE”)
and with the ones got trying to classify the macro categories before doing the transfer
learning task (“MACRO”).

Figure 5.3 shows performance results in terms of Accuracy, Precision, Recall and F1-
score for the ML model built using the Transfer Learning methodology presented in
Chapter 4.4.2. As shown in the pipeline in Figure 4.7, to train the TL model firstly we
trained an ANN model able to classify the macro-categories. The results we obtained
with this model are the ones presented as “MACRO” in Figure 5.3. As expected, we can
observe that this model performs better than the baseline one, because this classification

5| Numerical Results 81

task is easier than the ones on the micro-categories, due to the higher number of data
points for each macro-category (see Table 4.1). Then, with the procedure explained in
Chapter 4.4.2, we obtained the results for the micro-categories classification with the TL
model, that are presented as “TL” in Figure 5.3. As we can see, these results are worst
than the baseline ones and this can due to the task complexity or to the overfitting over
the macro-classification.

5.2.3. Auxiliary-Task Learning

Figure 5.4: Accuracy, Precision, Recall and F1-score obtained using a ML model built
on Auxiliary Task Learning (“ATL”) methodology, optimized on each of the 5 dataset
splits. Its performance are compared with the ones got for the ANN baseline model
(“BASELINE”).

Figure 5.4 shows performance results in terms of Accuracy, Precision, Recall and F1-
score for the ML model built using the Auxiliary-Task Learning methodology presented
in Chapter 4.4.3. As shown this methodology improved the model performance in all the
considered metrics, this is because of the contribution that the auxiliary task, i.e., the
classification on the macro-categories, is making on the loss function for the classification
on the micro-categories.

82 5| Numerical Results

5.2.4. Denoising Autoencoders

Figure 5.5: Accuracy, Precision, Recall and F1-score obtained using a ML model built
on Denoising Autoencorders (“DAE”) methodology, optimized on each of the 5 dataset
splits. Its performance are compared with the ones got for the ANN Baseline model
(“BASELINE”).

Figure 5.5 shows performance results in terms of Accuracy, Precision, Recall and F1-
score for the ML model built using the Denoising Autoencoders methodology presented
in Chapter 4.4.4. The showed results are the one obtained using on each dataset split the
best hyperparameters found through HyperOpt. As we can see this methodology brings
no performance improvements on all the considered metrics. The reason may be due to
overfit problem to the training data, because of model complexity or the training data is
too small.

5.3. Best Methodology to address Data Scarcity

In this section we identify which is the best methodology to address data scarcity among
those tested. As observed from the results in the previous section, TL and DAE turn out
to be inefficient for this purpose. Instead, both SMOTE and Auxiliary-Task Learning
(ATL) methodologies have led to better results than the ones obtained using the baseline
models (Figure 5.6).

5| Numerical Results 83

Figure 5.6: Comparison between Accuracy, Precision, Recall and F1-score obtained us-
ing ANN baseline model (“BASELINE”), a ML model built on Auxiliary-Task Learning
(“ATL”) methodology, and a ML model built on “SMOTE” methodology.

At this stage, to figure out which is the best one, we will use the per-class F1-score metric.
We decided to choose F1-score as per class metric because we have an unbalanced class
distribution, which makes accuracy unreliable, preferring metrics as precision and recall.
The reason why we chose F1-score is because it is a trade-off between precision and recall,
providing a single value that summarizes the overall performance of the model.

Figure 5.7: Comparison between per-class F1-score values obtained using ANN baseline
model (“ANN”), a ML model built on Auxiliary-Task Learning (“ATL”) methodology and
a ML model built on SMOTE methodology.

Figure 5.7 shows the comparison between the F1-score values of the ANN baseline model
and the ones obtained applying ATL and SMOTE methodologies. We can observe that

84 5| Numerical Results

on the classes that are characterized by a low number of data points in general the highest
per-class F1-score is obtained using SMOTE. This is true for class 0, 1, 2, 3, 10, 13, and
14, while only for class 7, 11, and 12 the opposite is true.

From these results we get that SMOTE is the most suitable technique to deal with data
scarcity, so in the next section we propose an in-depth analysis of this methodology.

5.4. SMOTE Analysis

In the previous section we showed that SMOTE methodology was the best one to address
data scarcity. In this section we provide an in-depth analysis of this methodology to
evaluate its impact on the specific failure classes considered in this study. Our goal is
to assess in which conditions it is more convenient for a certain class to perform data
augmentation by generating synthetic data. For this purpose we used the per-class F1-
score given by the Best Baseline Models, i.e., XGBoost, SVC and ANN, initialized with the
optimized hyper-parameters found in the previous section (Table 4.7, Table 4.8, Table 4.9),
to understand how the data scarcity problem is impacting this performance parameter.
We decided to adopt the Best Baseline Models, because they are already optimized models
and this will allow us to not provide for the optimization of hyperparameters during this
analysis.

5| Numerical Results 85

Figure 5.8: Performance results in terms of Accuracy, Precision, Recall and F1-score for
the Best Baseline models, i.e., XGBoost, SVC and ANN with the best hyperparameter
configurations.

Figure 5.8 shows the results obtained with Best Baseline Models on the considered metrics,
i.e., accuracy, precision, recall, and F1-score. As we can see, all the Best Baseline Models
exploiting the best hyperparameter configurations perform almost the same as or even
better than the Baseline Models, i.e., the ones where we do hyperparameters search on
each split. This shows the validity of the criterion explained in Chapter 4.3 for choosing
the best hyperparameters. As we got for the baseline models, also with the Best Baseline
Models the results obtained with SVC are better than the ones obtained with XGBoost
that in turn are better than the ones obtained with ANN.

Figure 5.9: Per-class F1-score values for the Best Baseline Models, i.e., XGBoost, SVC
and ANN with the best hyperparameter configurations.

Figure 5.9 shows the per-class F1-score given by the Best Baseline Models that will be

86 5| Numerical Results

used to evaluate the SMOTE performance to address data scarcity during this analysis.
We can observe that classes with low F1-score performance are also those with fewer data
points, e.g. class 1, 2, 3, 7, 13, 14 and 16. This shows us how the problem of data scarcity
manifests itself on models’ performance.

The first step of this analysis is to identify a metric that, based on the per-class F1-score,
defines the criticality of the single class, i.e. how poor is the performance score on that
class. The chosen metric is the first and second quantile score computed on the per-class
F1-score given by the three Best Baseline Models. In particular, we assigned a color to
each class according to its F1-score value and the quantiles, following this criteria:

• RED: if F1-score is below than or equal to first quantile (<=25%). This means that
the class is considered as very critical.

• ORANGE: if F1-score is below than the second quantile (<50%). This means that
the class is considered as critical.

• GREEN: if the F1-score is greater than or equal to the second quantile (=>50%).
This means that the class is considered as not critical.

Once we had for each class the colors given by the considered classifiers, we assigned a
global class color according to the following criteria:

• If the tree classifiers give a unique class color, that is the global color we assigned
to that class.

• If the three classifiers give two different class colors, we assigned as global class color
to that class the predominant one, i.e., the one given by largest number of classifiers.

• If the tree classifiers give a different class color, we assigned as global class color to
that class the orange color.

Since we had 3 Best Baseline Models and 17 classes of hardware failures, we got 51 F1-
score values overall, as shown in Figure 5.9. On these values we computed the first and
second quantile, which turned out to be 0.812 and 0.931, respectively. Following the
approach explained, we gave a global color to each class, as shown in Figure 5.10, i.e.:

• RED: classes 1, 3, 7, and 13.

• ORANGE: classes 2, 11, 14, and 16.

• GREEN: classes 0, 4, 5, 6, 8, 9, 10, 12, and 15.

5| Numerical Results 87

F
ig

ur
e

5.
10

:
F
1-

sc
or

e
va

lu
e

fo
r

ea
ch

cl
as

s
of

ha
rd

w
ar

e
fa

ilu
re

an
d

ea
ch

B
es

t
B

as
el

in
e

M
od

el
,
i.e

.,
X

G
B

oo
st

,
SV

C
an

d
A

N
N

w
it

h
th

e
be

st
hy

pe
rp

ar
am

et
er

co
nfi

gu
ra

ti
on

s.
E

ac
h

cl
as

s
ha

s
a

co
lo

r
as

si
gn

ed
as

ex
pl

ai
ne

d
in

th
e

le
ge

nd
s.

88 5| Numerical Results

Comparing the global color of the classes with their number of data points, we notice
that:

• All classes marked as green, except for class 0, 10 and 12, have a relatively high
number of data points.

• All classes marked as red, except for class 13, have a relatively low number of data
points.

• All the classes marked as orange are the ones with an intermediate number of data
points.

As a main takeaway from this analysis, we observe that, in most cases, there is a correlation
between data scarcity and classification performance.

We used this class classification to define two “sampling strategies” by which SMOTE will
be applied:

• Critical-classes: which considers only the critical classes, i.e., the ones that have
RED or ORANGE as global class color.

• All-classes: which considers all the classes independently from the global class
color assigned.

Given the global colors for each class and these two strategies, we find that:

• Classes 1, 2, 3, 7, 11, 13, 14 and 16 are the ones considered critical by the “Critical-
classes” strategy.

• Classes 0, 4, 5, 6, 8, 9, 10, 12 and 15 are the ones considered not critical by “Critical-
classes” strategy.

With the purpose of identifying the amount of synthetic data to be generated on the
classes, we established four “percentages” of synthetic data generation, i.e, “12%”, “35%”,
“50%” and “65%”, where each percentage represents the number of data points, i.e., real
data points plus synthetic data points, in the train set of a specific class. We computed
these percentages taking as reference the class with the highest number of data points,
i.e. class 4 with 264 samples (Table 4.3). In particular, each percentage has the following
meaning:

• 12% corresponds to 32 data points in the train set.

• 35% corresponds to 93 data points in the train set.

• 50% corresponds to 132 data points in the train set.

5| Numerical Results 89

• 65% corresponds to 172 data points in the train set.

Combining the strategies, i.e., “Critical-classes” and “All-classes”, and the percentages
above, we obtain the following “combinations” are obtained:

• Critical-classes 12%: classes 1, 2, 3, 7, and 11 now have 32 data points in the
train set.

• Critical-classes 35%: classes 1, 2, 3, 7, 11, 13, 14, and 16 now have 93 data points
in the train set.

• Critical-classes 50%: classes 1, 2, 3, 7, 11, 13, 14, and 16 now have 132 data
points in the train set.

• Critical-classes 65%: classes 1, 2, 3, 7, 11, 13, 14, and 16 now have 172 data
points in the train set.

• All-classes 12%: classes 0, 1, 2, 3, 7, 10, 11, and 12 now have 32 data points in
the train set.

• All-classes 35%: classes 0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, and 16 now have
93 data points in the train set.

• All-classes 50%: classes 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 16 now have
132 data points in the train set.

• All-classes 65%: classes 0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, and 16 now
have 172 data points in the training set.

Figure 5.11 shows the number of real data points and synthetic data points in the train
set on all the classes for all the combinations described above.

90 5| Numerical Results

F
igure

5.11:
N

um
ber

of
real,synthetic

and
overalldata

points
in

the
train

set
on

each
class

for
each

com
bination

of
strategy

and
percentage.

5| Numerical Results 91

For each combination, we obtained the following results:

(a) XGBoost results with SMOTE “Critical-classes” strategy.

(b) XGBoost results with SMOTE “All-classes” strategy.

Figure 5.12: Accuracy, Precision, Recall and F1-score results obtained training the Best
XGBoost Baseline Model, i.e., XGBoost with the best hyperparameter configuration, with
synthetic data using the defined strategies (“Critical-classes” in (a) or “All-classes” in (b))
and percentages (“12%”, “35%”, “50%” or “65%”). Its performance is compared with that
of the Best XGBoost Baseline Model (“BASELINE”) and that of the “SMOTE” model
without the use of strategies and percentages.

92 5| Numerical Results

(a) SVC results with SMOTE “Critical-classes” strategy.

(b) SVC results with SMOTE “All-classes” strategy.

Figure 5.13: Accuracy, Precision, Recall and F1-score results obtained training the Best
SVC Baseline Model, i.e., SVC with the best hyperparameter configuration, with synthetic
data using the defined strategies (“Critical-classes” in (a) or “All-classes” in (b)) and
percentages (“12%”, “35%”, “50%” or “65%”). Its performance is compared with that of
the Best SVC Baseline Model (“BASELINE”) and that of the “SMOTE” model without
the use of strategies and percentages.

5| Numerical Results 93

(a) ANN results with SMOTE “Critical-classes” strategy.

(b) ANN results with SMOTE “All-classes” strategy.

Figure 5.14: Accuracy, Precision, Recall and F1-score results obtained training the Best
ANN Baseline Model, i.e., ANN with the best hyperparameter configuration, with syn-
thetic data using the defined strategies (“Critical-classes” in (a) or “All-classes” in (b)) and
percentages (“12%”, “35%”, “50%” or “65%”). Its performance is compared with that of
the Best ANN Baseline Model (“BASELINE”) and that of the “SMOTE” model without
the use of strategies and percentages.

Referring to results in Figure 5.12, Figure 5.13 and Figure 5.14, we can see that:

• In most cases synthetic data help to improve the global performance of the baseline
models. In particular, we can observe how models trained with SMOTE on the
various combinations of strategy and percentages perform better than the model
trained with SMOTE without the use of them. A striking example are the results
obtained with XGBoost, where we can observe that the performance of SMOTE
without the use of combinations is even worse than the performance obtained with
XGBoost model trained without synthetic data. Instead, using some of the pro-

94 5| Numerical Results

posed combinations the results are improved. This allows us to say that in order
to achieve better performance with SMOTE, it is necessary to find a criterion in
data generation, both in terms of classes on which to generate synthetic data and
in terms of percentages of synthetic data to generate.

• Generally, the use of “All-classes” strategy performs better than the “Critical-classes”
strategy, and this tells us that in order to improve the overall performance of the
classifiers, it is not enough to consider only the critical classes in generating the
synthetic data, but also all the others in order not to get the dataset unbalanced
again towards the critical classes.

• Generally, the highest performance is obtained when considering low percentages
of synthetic data, i.e., “12%” and “35%”, while moving to higher percentages, i.e.,
“50%” and “65%”, the performance drops. This is due to the fact that using high
percentages of synthetic data brings us closer to the default behavior of SMOTE,
which, as we saw in the previous section, leads to an overfit on the synthetic samples,
and consequently the model do not generalize well to new, unseen samples from the
minority class. This can lead to an high number of false negative prediction and so
in the decrease in recall and F1-score. This is why these results show that generally,
using SMOTE with combinations of strategies and low percentages, allow to reach
better performance than using SMOTE without them.

To assess in which conditions it is more convenient for a certain class to perform data
augmentation by generating synthetic data and with which percentages of synthetic data
generated, we analyzed the per-class F1-score. The second step of this analysis is to
compare the per-class F1-scores obtained through the use of the defined combinations
with the one given by the Best Baseline Models. The results are shown in Figure 5.15
for XGBoost, in Figure 5.16 for SVC, and in Figure 5.17 for ANN. For each class, if the
F1-score value is higher than the one obtained using the Best Baseline Model, we highlight
the value in bold and assign the color to that class and combination, i.e., green, orange or
red. The last row named “BEST COMBINATIONS” reports the combination of strategies
to add synthetic data and the percentage reflecting the number of synthetic data added,
with the new class color given by the color associated to these combination. For each
class, the “BEST COMBINATIONS” are assigned considering the highlighted values and
their color, following this criteria:

• If a combination enabled a class to improve to a green color, we report those strate-
gies, i.e., ‘Critical-classes” or “All-classes”, and percentage of added data, in “BEST
COMBINATIONS” row.

5| Numerical Results 95

• If no combination enabled a class to improve to a green color, we report the com-
binations associated to the highest F1-score values in “BEST COMBINATIONS”
row.

• If there are no highlighted values, we let “BEST COMBINATIONS” empty, because
none of the combinations of adding synthetic data points, enabled to improve F1-
score.

96 5| Numerical Results

F
igure

5.15:
P
er-class

“B
E

ST
C

O
M

B
IN

A
T

IO
N

S”
for

SM
O

T
E

on
X

G
B

oost.

5| Numerical Results 97

F
ig

ur
e

5.
16

:
P
er

-c
la

ss
“B

E
ST

C
O

M
B

IN
A
T

IO
N

S”
fo

r
SM

O
T

E
on

SV
C

.

98 5| Numerical Results

F
igure

5.17:
P
er-class

“B
E

ST
C

O
M

B
IN

A
T

IO
N

S”
for

SM
O

T
E

on
A

N
N

.

5| Numerical Results 99

From these results we can observe that, generally, adding synthetic data to the train set
is improving the per-class F1-score values. In particular, we highlight the following:

• XGBoost: found “BEST COMBINATIONS” for 7 out of 17 classes. Considering
critical classes, i.e., the ones in ORANGE and RED in row “CLASS”, we improved
the F1-score values of:

– class 7 : from 0.4 (RED) to 0.733 (RED).

– class 15 : from 0.925 (ORANGE) to 0.944 (GREEN).

– class 16 : from 0.812 (RED) to 0.876 (ORANGE).

As a result, the number of critical classes for XGBoost is reduced from 7 to 6.

• SVC: found “BEST COMBINATIONS” for 9 out of 17 classes. Considering the
critical classes, i.e., the ones in ORANGE and RED in row “CLASS”, we improved
the F1-score values of:

– class 1 : from 0.0 (RED) to 0.133 (RED).

– class 3 : from 0.793 (RED) to 0.96 (GREEN).

– class 11 : from 0.905 (ORANGE) to 0.971 (GREEN).

– class 16 : from 0.858 (ORANGE) to 0.891 (ORANGE).

As a result, the number of critical classes for SVC is reduced from 8 to 6.

• ANN: we found “BEST COMBINATIONS” for 11 out of 17 classes. Considering the
critical classes, i.e., the ones in ORANGE and RED in row “CLASS”, we improved
the F1-score values of:

– class 0 : from 0.853 (ORANGE) to 0.893 (ORANGE).

– class 1 : from 0.0 (RED) to 0.213 (RED).

– class 2 : from 0.769 (RED) to 0.807 (RED).

– class 3 : from 0.667 (RED) to 0.9 (ORANGE).

– class 12 : from 0.893 (ORANGE) to 0.92 (ORANGE).

– class 14 : from 0.818 (ORANGE) to 0.841 (ORANGE).

– class 16 : from 0.827 (ORANGE) to 0.886 (ORANGE).

As a result, the number of critical classes for ANN is not changed, but we have
significant improvements on F1-score of critical classes.

100 5| Numerical Results

This analysis allowed us to looked deeper into SMOTE methodology, understanding that
it is a valid methodology to address the data scarcity problem, but to give better and sat-
isfactory results, one must carefully choose the classes on which to generate the synthetic
data and also understand the amount of synthetic data to be generated on those classes.
The evidence that for each classifier there are combinations of strategies and percentages
that allow for better results on the F1-score of critical classes, prompted us to ask whether
it is possible to find for each class a combination of strategy and percentage that allows
for improvements regardless of the type of classifier used, a.k.a “BEST COMBINATION”.

5| Numerical Results 101

F
ig

ur
e

5.
18

:
SM

O
T

E
be

st
co

m
bi

na
ti

on
fo

un
d

fo
r

ea
ch

cl
as

s
an

d
ne

w
gl

ob
al

cl
as

s
co

lo
r.

102 5| Numerical Results

Figure 5.18 summarizes, in the rows “XGBoost”, “SVC” and “ANN”, the “BEST COMBI-
NATIONS” we obtained with the respective color. From the color assigned in row “BEST
COMBINATION”, we can notice that with this procedure we were able to reclassify the
classes with these new global class colors (previous global class colors are the ones reported
in row “CLASS”):

• RED: classes 1, 7, and 13.

• ORANGE: classes 2, 14, and 16.

• GREEN: classes 0, 3, 4, 5, 6, 8, 9, 10, 11, 12, and 15.

Comparing the previous with the new global class colors, we can appreciate that the
number of critical classes is decreased from 8 to 6.

In row “BEST COMBINATION” we report the best combinations we found using the
criteria in Figure 5.19.

Figure 5.19: Schema on how to choose the best combination for each class.

This procedure aimed to identify the best per-class combination. Once they have been

5| Numerical Results 103

identified, for each class we first read the strategy found, to understand if on a class we
needed to generate synthetic data or not (Figure 5.11), and than read the percentages of
data which in the case should be generated. For example, for class 0 the best combination
is “Critical-classes 12%” and this tell us that we do not need to generate synthetics data
for class 0 as it is not a critical class and so it is not considered by “Critical-classes”
strategy. Instead, for class 1 the best combination found is “All-classes 35%” and since
“All-classes” strategy considers class 1, we need to generate synthetic data on that class
with a percentage of “35%”, so bringing the number of data points in the train set to 93.
Taking this reasoning over all classes we obtained the following results:

Figure 5.20: Accuracy, Precision, Recall and F1-score results obtained training the Best
Baseline “XGBoost” models without synthetic data, with synthetic data using “SMOTE”
and with synthetic data using SMOTE with the best combination found “SMOTE ANAL-
YSIS”.

104 5| Numerical Results

Figure 5.21: Per-class F1-score values obtained training the Best Baseline “XGBoost”
models without synthetic data, with synthetic data using “SMOTE” and with synthetic
data using SMOTE with the best combination found “SMOTE ANALYSIS”.

Figure 5.22: Accuracy, Precision, Recall and F1-score results obtained training the Best
Baseline “SVC” models without synthetic data, with synthetic data using “SMOTE” and
with synthetic data using SMOTE with the best combination found “SMOTE ANALY-
SIS”.

5| Numerical Results 105

Figure 5.23: Per-class F1-score values obtained training the Best Baseline “SVC” models
without synthetic data, with synthetic data using “SMOTE” and with synthetic data using
SMOTE with the best combination found “SMOTE ANALYSIS”.

Figure 5.24: Accuracy, Precision, Recall and F1-score results obtained training the Best
Baseline “ANN” models without synthetic data, with synthetic data using “SMOTE” and
with synthetic data using SMOTE with the best combination found “SMOTE ANALY-
SIS”.

106 5| Numerical Results

Figure 5.25: Per-class F1-score values obtained training the Best Baseline “ANN” models
without synthetic data, with synthetic data using “SMOTE” and with synthetic data using
SMOTE with the best combination found “SMOTE ANALYSIS”.

Looking at these final results, we can conclude by stating that generating synthetic data
through SMOTE helps to improve classification on classes affected by data scarcity, as long
as we understand on which classes and with what percentages to generate the synthetic
data. In particular we have the following improvements:

• for XGBoost we obtain these per-class F1-score improvement on the classes we had
identified as critical:

– 2 : from 80.4% to 82.2%, corresponding to an increase of 1.8%.

– 3 : from 60% to 93.3%, corresponding to an increase of 33.3%.

– 7 : from 26.7% to 53.3%, corresponding to an increase of 26.6%.

– 11 : from 87.6% to 92.1%, corresponding to an increase of 4.5%.

– 13 : from 70.9% to 71.8%, corresponding to an increase of 1.9%.

– 14 : from 83.3% to 85.9%, corresponding to an increase of 2.6%.

• for SVC we obtain these per-class F1-score improvement on the classes we had
identified as critical:

– 11 : from 89.3% to 92.1%, corresponding to an increase of 2.8%.

– 13 : from 67.4% to 69.4%, corresponding to an increase of 2%.

• for ANN we obtain these per-class F1-score improvement on the classes we had
identified as critical:

– 2 : from 78.8% to 80.1%, corresponding to an increase of 1.3%.

– 3 : from 60% to 80.0%, corresponding to an increase of 20.0%.

– 13 : from 68.5% to 71%, corresponding to an increase of 2.5%.

5| Numerical Results 107

– 14 : from 78.1% to 84.4%, corresponding to an increase of 6.3%.

These results show us how our proposed procedure for selecting classes and percentages
actually enhances the overall results, improving the F1-score of the classes characterized
by a low number of data points and thus of those affected by data scarcity.

109

6| Conclusion and Future

Developments

In this thesis, we investigated the problem of data scarcity when performing failure man-
agement in microwave networks using Machine Learning (ML). More specifically, we con-
sidered data from a real microwave network, and performed failure-cause identification,
i.e., aim at discriminating different causes of hardware failures given the status of equip-
ment failure in a certain time frame. Motivated by the poor classification performance,
obtained with state of art ML classifiers, in particular for some failure classes scarcely
represented in the dataset, we aim at improving classification performance by adopting
different strategies, such as SMOTE, Transfer Learning (TL), Auxiliary Task Learning
(ATL), and Denoising Autoencoders (DAE).

The main takeaways from the use of these methodologies are:

1. The use of TL or DAE does not improve the data scarcity problem. In fact, with
TL we obtained an F1-score of 78.8% and with DAE an F1-score of 84.5%, while
with the baseline classifier we obtained an F1-score of 89.4%.

2. The use of SMOTE or ATL does improve the data scarcity problem. In fact, with
SMOTE we obtained an F1-score of 92.6% and with ATL an F1-score of 92.3%,
while with the baseline classifier we obtained an F1-score of 89.4%.

3. Analyzing the per-class F1-score obtained with SMOTE and ATL, we observed that
with SMOTE we have higher F1-score improvement on classes characterized by few
points than with using ATL.

Overall, the results show that SMOTE outperforms all other methodologies, so as last
contribution of this work we have done an in-depth analysis of this methodology. Using
per-class F1-score as metric, we proposed a method to identify the critical classes on
which to go and generate the synthetic data and then defined two strategies to be applied
to SMOTE. The first generates synthetic data only on the classes identified as critical,
while the second does not distinguish between critical and noncritical classes. Then, we

110 6| Conclusion and Future Developments

proposed different synthetic data generation percentages, and by combining the strategies
and percentages we obtained new performance results. The main takeaways from this
analysis are:

1. Regardless of the ML classifier considered, in most cases synthetic data help to
improve the performance of this classifier.

2. There are combinations of strategies and percentages that allow to achieve better
results than apply SMOTE without the use these combinations.

3. Generally, generating synthetics data on all the classes performs better than gener-
ating it only on critical classes. This tells us that to improve the overall performance
of the classifiers, in generating the synthetic data it is not enough to consider only
the critical classes but it is necessary to consider all classes, in order not to get the
dataset unbalanced again towards the critical classes.

4. Generally, the highest performance is obtained when considering low percentages of
synthetic data while moving to higher percentages the performance drops.

Based on these takeaways, we proposed a method for identifying on which classes to gener-
ate synthetic data and what amount of synthetic data to generate on them, ragardless the
classifiers adopted. From these results we concluded by stating that generating synthetic
data through SMOTE helps to improve classification on classes affected by data scarcity,
as long as we understand on which classes and with what percentages to generate the
synthetic data. Considering the final per-class F1-score results, we found that the model
that experiences the most improvement using our strategy is XGBoost, for which there
are F1-score improvements on 6 of the 8 identified critical classes.

As possible future work, we plan to investigate the following research directions:

• Evaluate the use of other variants of SMOTE, such as SVMSMOTE, KMeansS-
MOTE, BorderlineSMOTE, and similar other approaches.

• Combine the different methodologies used in this work, such as SMOTE and Auxiliary-
Task Learning to aim improving further the classification performance.

• Evaluate the use of other methodologies to generate synthetics data, such as Gen-
erative Adversarial Networks and Variational Autoencoders.

• Make use of XAI (eXplainable AI) frameworks, as SHARP and LIME, to investigate
the root-cause of misclassified classes. XAI can be used to develop interpretable
models that can help users understand how the model works and how it arrived at
its predictions. This can be used to create explanations for the original data, that

6| Conclusion and Future Developments 111

can be used to create new examples, through a data augmentation technique, that
are similar to the original data.

113

Bibliography

[1] Ieee standard for definitions of terms for antennas. IEEE Std 145-2013 (Revision of
IEEE Std 145-1993), pages 1–50, 2014. doi: 10.1109/IEEESTD.2014.6758443.

[2] H. B. Atya, O. Rajchert, L. Goshen, and M. Freiman. Non parametric data augmen-
tations improve deep-learning based brain tumor segmentation. In 2021 IEEE Inter-
national Conference on Microwaves, Antennas, Communications and Electronic Sys-
tems (COMCAS), pages 357–360, 2021. doi: 10.1109/COMCAS52219.2021.9629083.

[3] O. Ayoub, N. Di Cicco, F. Ezzeddine, F. Bruschetta, R. Rubino, M. Nardecchia,
M. Milano, F. Musumeci, C. Passera, and M. Tornatore. Explainable artificial in-
telligence in communication networks: A use case for failure identification in mi-
crowave networks. Computer Networks, 219:109466, 2022. ISSN 1389-1286. doi:
https://doi.org/10.1016/j.comnet.2022.109466. URL https://www.sciencedirect.

com/science/article/pii/S138912862200500X.

[4] O. Ayoub, F. Musumeci, F. Ezzeddine, C. Passera, and M. Tornatore. On using
explainable artificial intelligence for failure identification in microwave networks. In
2022 25th Conference on Innovation in Clouds, Internet and Networks (ICIN), pages
48–55, 2022. doi: 10.1109/ICIN53892.2022.9758095.

[5] E. Balevi and R. D. Gitlin. Unsupervised machine learning in 5g networks for low
latency communications. In 2017 IEEE 36th International Performance Computing
and Communications Conference (IPCCC), pages 1–2, 2017. doi: 10.1109/PCCC.
2017.8280492.

[6] Y. Bao and S. Yang. Two novel smote methods for solving imbalanced classification
problems. IEEE Access, 11:5816–5823, 2023. doi: 10.1109/ACCESS.2023.3236794.

[7] I. A. Bartsiokas, P. K. Gkonis, D. I. Kaklamani, and I. S. Venieris. Ml-based radio
resource management in 5g and beyond networks: A survey. IEEE Access, 10:83507–
83528, 2022. doi: 10.1109/ACCESS.2022.3196657.

[8] Y. Bengio. Learning deep architectures for ai. Foundations, 2:1–55, 01 2009. doi:
10.1561/2200000006.

https://www.sciencedirect.com/science/article/pii/S138912862200500X
https://www.sciencedirect.com/science/article/pii/S138912862200500X

114 | Bibliography

[9] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl. Algorithms for hyper-parameter
optimization.

[10] A. Bouchachia. On the scarcity of labeled data. In International Conference on
Computational Intelligence for Modelling, Control and Automation and Interna-
tional Conference on Intelligent Agents, Web Technologies and Internet Commerce
(CIMCA-IAWTIC’06), volume 1, pages 402–407, 2005. doi: 10.1109/CIMCA.2005.
1631299.

[11] F. Bre, J. M. Gimenez, and V. D. Fachinotti. Prediction of wind pressure coefficients
on building surfaces using artificial neural networks. 2017.

[12] A. Burkov. Machine Learning Engineering. True Positive Inc., 2020.

[13] P. Casas, P. Fiadino, and A. D’Alconzo. Machine-learning based approaches for
anomaly detection and classification in cellular networks. 04 2016.

[14] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: Synthetic
minority over-sampling technique. 2011. doi: 10.1613/jair.953.

[15] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. 2016.

[16] Commscope. Microwave communication basics. Commscope, 2017.

[17] DAEnotes. Digital microwave communication equipment.
URL https://www.daenotes.com/electronics/microwave-radar/

digital-microwave-communication-equipment.

[18] S. Danesh, A. Araghi, M. Khalily, P. Xiao, and R. Tafazolli. Millimeter wave phased
array antenna synthesis using a machine learning technique for different 5g applica-
tions. In 2020 International Symposium on Networks, Computers and Communica-
tions (ISNCC), pages 1–5, 2020. doi: 10.1109/ISNCC49221.2020.9297196.

[19] fchollet. The functional api, 2019-2020. URL https://keras.io/guides/

functional_api/.

[20] R. Guo, Z. Lin, M. Li, F. Yang, S. Xu, and A. Abubakar. A nonlinear model
compression scheme based on variational autoencoder for microwave data inversion.
IEEE Transactions on Antennas and Propagation, 70(11):11059–11069, 2022. doi:
10.1109/TAP.2022.3195553.

[21] W. Guo, X. Zha, K. Qian, and T. Chen. Can active learning benefit the smart grid?
a perspective on overcoming the data scarcity. In 2019 IEEE 2nd International

https://www.daenotes.com/electronics/microwave-radar/digital-microwave-communication-equipment
https://www.daenotes.com/electronics/microwave-radar/digital-microwave-communication-equipment
https://keras.io/guides/functional_api/
https://keras.io/guides/functional_api/

| Bibliography 115

Conference on Electronics and Communication Engineering (ICECE), pages 346–
350, 2019. doi: 10.1109/ICECE48499.2019.9058539.

[22] H. He and E. A. Garcia. Learning from imbalanced data. IEEE Transactions on
Knowledge and Data Engineering, 21(9):1263–1284, 2009. doi: 10.1109/TKDE.2008.
239.

[23] S. Hu, Y. Liang, L. Ma, and Y. He. Msmote: Improving classification perfor-
mance when training data is imbalanced. In 2009 Second International Work-
shop on Computer Science and Engineering, volume 2, pages 13–17, 2009. doi:
10.1109/WCSE.2009.756.

[24] T. imbalanced-learn developers. Over-sampling, 2019-2020. URL https://

imbalanced-learn.org/stable/over_sampling.html#smote-adasyn.

[25] M. A. Jabin, Q. Liu, and M. P. Fok. Generative adversarial network for data aug-
mentation in photonic-based microwave frequency measurement. In 2022 IEEE In-
ternational Topical Meeting on Microwave Photonics (MWP), pages 1–4, 2022. doi:
10.1109/MWP54208.2022.9997615.

[26] P. Kachurka and V. Golovko. Neural network approach to real-time network intrusion
detection and recognition. In Proceedings of the 6th IEEE International Conference
on Intelligent Data Acquisition and Advanced Computing Systems, volume 1, pages
393–397, 2011. doi: 10.1109/IDAACS.2011.6072781.

[27] Keras. Model training apis, 2023. URL https://keras.io/api/models/model_

training_apis/.

[28] Keras. Dropout layer, 2023. URL https://keras.io/api/layers/

regularization_layers/dropout/.

[29] Keras. Layer weight regularizers, 2023. URL https://keras.io/api/layers/

regularizers/.

[30] Keras. Adam, 2023. URL https://keras.io/api/optimizers/adam/.

[31] R. V. Kulkarni, S. H. Patil, and R. Subhashini. An overview of learning in data
streams with label scarcity. In 2016 International Conference on Inventive Compu-
tation Technologies (ICICT), volume 2, pages 1–6, 2016. doi: 10.1109/INVENTIVE.
2016.7824874.

[32] S. Lavdas, P. Gkonis, Z. Zinonos, P. Trakadas, and L. Sarakis. Throughput based
adaptive beamforming in 5g millimeter wave massive mimo cellular networks via

https://imbalanced-learn.org/stable/over_sampling.html#smote-adasyn
https://imbalanced-learn.org/stable/over_sampling.html#smote-adasyn
https://keras.io/api/models/model_training_apis/
https://keras.io/api/models/model_training_apis/
https://keras.io/api/layers/regularization_layers/dropout/
https://keras.io/api/layers/regularization_layers/dropout/
https://keras.io/api/layers/regularizers/
https://keras.io/api/layers/regularizers/
https://keras.io/api/optimizers/adam/

116 | Bibliography

machine learning. In 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-
Spring), pages 1–7, 2022. doi: 10.1109/VTC2022-Spring54318.2022.9860566.

[33] S. learn developers. Cross-validation: evaluating estimator performance. URL https:

//scikit-learn.org/stable/modules/cross_validation.html.

[34] L. Liebel and M. Körner. Auxiliary tasks in multi-task learning, 2018.

[35] K. Limthong and T. Tawsook. Network traffic anomaly detection using machine
learning approaches. In 2012 IEEE Network Operations and Management Sympo-
sium, pages 542–545, 2012. doi: 10.1109/NOMS.2012.6211951.

[36] F. Lin, J. Chen, G. Ding, Y. Jiao, J. Sun, and H. Wang. Spectrum prediction based on
gan and deep transfer learning: A cross-band data augmentation framework. China
Communications, 18(1):18–32, 2021. doi: 10.23919/JCC.2021.01.002.

[37] X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and J. Tang. Self-supervised
learning: Generative or contrastive. IEEE Transactions on Knowledge and Data
Engineering, 35(1):857–876, 2023. doi: 10.1109/TKDE.2021.3090866.

[38] S. Microelettronica, 1952. URL https://www.siaemic.com/index.php.

[39] F. Musumeci, L. Magni, O. Ayoub, R. Rubino, M. Capacchione, G. Rigamonti,
M. Milano, C. Passera, and M. Tornatore. Supervised and semi-supervised learn-
ing for failure identification in microwave networks. IEEE Transactions on Network
and Service Management, 18(2):1934–1945, 2021. doi: 10.1109/TNSM.2020.3039938.

[40] OpenCV. Introduction to support vector machines. URL https://docs.opencv.

org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html.

[41] L. Pan, J. Zhang, P. P. Lee, M. Kalander, J. Ye, and P. Wang. Proactive microwave
link anomaly detection in cellular data networks. Computer Networks, 167:106969,
2020. ISSN 1389-1286. doi: https://doi.org/10.1016/j.comnet.2019.106969. URL
https://www.sciencedirect.com/science/article/pii/S1389128619307662.

[42] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10):1345–1359, 2010. doi: 10.1109/TKDE.
2009.191.

[43] K. Peng and F. Xu. Optimization of antenna performance based on vae-bpnn-pca.
In 2022 International Conference on Microwave and Millimeter Wave Technology
(ICMMT), pages 1–3, 2022. doi: 10.1109/ICMMT55580.2022.10023171.

[44] R. Rustogi and A. Prasad. Swift imbalance data classification using smote and

https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/cross_validation.html
https://www.siaemic.com/index.php
https://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
https://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
https://www.sciencedirect.com/science/article/pii/S1389128619307662

| Bibliography 117

extreme learning machine. In 2019 International Conference on Computational In-
telligence in Data Science (ICCIDS), pages 1–6, 2019. doi: 10.1109/ICCIDS.2019.
8862112.

[45] W. S. Sarle. Neural networks and statistical models. SAS Users Group International
Conference, 1994.

[46] scikit-learn developers. sklearn.svm.svc, 2007 - 2023. URL https://scikit-learn.

org/stable/modules/generated/sklearn.svm.SVC.html.

[47] S. Sridhar and S. Sanagavarapu. Handling data imbalance in predictive maintenance
for machines using smote-based oversampling. In 2021 13th International Conference
on Computational Intelligence and Communication Networks (CICN), pages 44–49,
2021. doi: 10.1109/CICN51697.2021.9574668.

[48] C. Srinilta and S. Kanharattanachai. Application of natural neighbor-based algo-
rithm on oversampling smote algorithms. In 2021 7th International Conference on
Engineering, Applied Sciences and Technology (ICEAST), pages 217–220, 2021. doi:
10.1109/ICEAST52143.2021.9426310.

[49] M. Steer. Fundamentals of Microwave and RF Design (Third Edition). NC State
University, 2019. doi: https//doi.org/10.5149/9781469656892.

[50] S. Sönmez, I. Shayea, S. A. Khan, and A. Alhammadi. Handover management for
next-generation wireless networks: A brief overview. In 2020 IEEE Microwave Theory
and Techniques in Wireless Communications (MTTW), volume 1, pages 35–40, 2020.
doi: 10.1109/MTTW51045.2020.9245065.

[51] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu. A survey on deep transfer
learning, 2018.

[52] T. Tandel, O. Ayoub, F. Musumeci, C. Passera, and M. Tornatore. Federated-
learning-assisted failure-cause identification in microwave networks. In 2022 12th
International Workshop on Resilient Networks Design and Modeling (RNDM), pages
1–7, 2022. doi: 10.1109/RNDM55901.2022.9927592.

[53] K.-H. Thung and C.-Y. Wee. A brief review on multi-task learning. 2018. doi:
10.1007/s11042-018-6463-x.

[54] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing
robust features with denoising autoencoders. pages 1096–1103, 01 2008. doi: 10.1145/
1390156.1390294.

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

118 6| BIBLIOGRAPHY

[55] B. Wang, H. Yang, Q. Yao, A. Yu, T. Hong, J. Zhang, M. Kadoch, and M. Cheriet.
Hopfield neural network-based fault location in wireless and optical networks for
smart city iot. In 2019 15th International Wireless Communications & Mobile Com-
puting Conference (IWCMC), pages 1696–1701, 2019. doi: 10.1109/IWCMC.2019.
8766627.

[56] xgboost developers. Xgboost parameters, 2022. URL https://xgboost.

readthedocs.io/en/stable/parameter.html.

[57] Y. Xu, X. Cheng, W. Ke, Q.-X. Zhu, Y.-L. He, and Y. Zhang. Smote-based fault
diagnosis method for unbalanced samples. In 2022 IEEE 11th Data Driven Control
and Learning Systems Conference (DDCLS), pages 682–686, 2022. doi: 10.1109/
DDCLS55054.2022.9858365.

[58] S. Zhang, X. Hu, Z. Liu, L. Sun, K. Han, W. Wang, and F. M. Ghannouchi. Deep
neural network behavioral modeling based on transfer learning for broadband wireless
power amplifier. IEEE Microwave and Wireless Components Letters, 31(7):917–920,
2021. doi: 10.1109/LMWC.2021.3078459.

[59] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He. A
comprehensive survey on transfer learning, 2019.

https://xgboost.readthedocs.io/en/stable/parameter.html
https://xgboost.readthedocs.io/en/stable/parameter.html

119

List of Figures

3.1 The basic components of a microwave link 11
3.2 Split-Mount Microwave Equipment installation 13
3.3 Generative, Contrastive, and Generative-Contrastive Self-supervised learning 16
3.4 Binary Classification . 17
3.5 Multiclass Classification . 17
3.6 Machine Learning project life cycle . 18
3.7 K-Fold Cross-Validation [33]. 20
3.8 Confusion Matrix for Multiclass Classification 22
3.9 Decision tree example. 25
3.10 Decision tree ensambles. 26
3.11 Bagging techniques. 27
3.12 Boosting techniques. 28
3.13 Cart (Classification and Regression trees) [15]. 28
3.14 Linear hyperplane between two classes [40]. 30
3.15 Optimal hyperplane between two classes [40]. 31
3.16 Simple non linear perceptron with logistic activation function [45]. 33
3.17 Artificial Neural Network architecture [11]. 34
3.18 Over-sampling generation [24]. 40
3.19 Different learning processes between (a) traditional machine learning and

(b) transfer learning [42]. 41
3.20 Different settings of transfer [42]. 43
3.21 Network-based deep transfer learning schema [51]. 44
3.22 Multi-Task Learning Network structure with 3 main-task [53]. 45
3.23 Auxiliary-Task in Multitask-Learning . 46
3.24 Denoising autoencoder model architecture. 47

4.1 Portion of the raw input dataset . 53
4.2 Portion of the processed dataset . 57
4.3 Baseline Models pipeline with hyperparameters optimization. 59
4.4 SMOTE pipeline. 64

120 | List of Figures

4.5 Best Macro Model and its Extractor . 66
4.6 Example of Best Transfer Learning Model 67
4.7 Transfer Learning pipeline with hyperparameters optimization. 68
4.8 Example of Auxiliary-Task model . 70
4.9 Auxiliary-Task Learning pipeline with hyperparameters optimization. . . . 72
4.10 Denoising Autoencoders Model and its Extractor 74
4.11 Example of Denoising Autoencoder Model. 75
4.12 DAE pipeline with hyperparameters optimization. 76

5.1 Baseline models results . 78
5.2 SMOTE models results . 79
5.3 Transfer Learning performance results . 80
5.4 Auxiliary-Task Learning performance results 81
5.5 Denoising Autoencorders performance results 82
5.6 Auxiliary-Task Learning vs SMOTE performance results 83
5.7 Auxiliary-Task Learning vs SMOTE per-class F1-score values 83
5.8 Best Baseline models results . 85
5.9 Best Baseline models per-class F1-score. 85
5.10 Classes color . 87
5.11 SMOTE Combinations . 90
5.12 XGBoost global results with SMOTE . 91
5.13 SVC global results with SMOTE . 92
5.14 ANN global results with SMOTE . 93
5.15 Per-class “BEST COMBINATIONS” for SMOTE on XGBoost. 96
5.16 Per-class “BEST COMBINATIONS” for SMOTE on SVC. 97
5.17 Per-class “BEST COMBINATIONS” for SMOTE on ANN. 98
5.18 SMOTE best per-class combination . 101
5.19 Schema on how to choose the best combination for each class. 102
5.20 XGBoost final results . 103
5.21 XGBoost final f1-score values . 104
5.22 SVC final results . 104
5.23 SVC final f1-score values . 105
5.24 ANN final results . 105
5.25 ANN final f1-score values . 106

121

List of Tables

4.1 Macro-categories of hardware failures . 50
4.2 Micro-categories of hardware failures . 51
4.3 Mapping between Macro-category , Micro-category and Category 55
4.4 XGBoost hyperparameters sets . 60
4.5 SVC hyperparameters sets . 60
4.6 ANN hyperparameters sets . 61
4.7 XGBoost baseline model best hyperparameters. 62
4.8 SVC baseline model best hyperparameters. 62
4.9 ANN baseline model best hyperparameters. 62

123

Acknowledgements

I would like to thank Professor Francesco Musumeci, who gave me the opportunity to
work with him and finish my course of study. A big thank you also to Nicola and Mëm
who supported me during the development and writing of the thesis.

I want to thank my family who supported and spurred me to always give my best and
focus on my priorities during these years of work and study.

I want to thank my girlfriend Valeria who believes in me and my abilities more than I do.
She always has faith in me and with her motivation and fortitude she always encourages
me to give my best and never give up.

I want to thank all the university colleagues I have met during this journey, for all the
days spent together studying or making projects.

Finally, an important thank you goes to all my former work colleagues who always en-
couraged and motivated me by appreciating my effort as a student worker. Along with
them, a big thank you to my former managers and current managers who have always
tried to facilitate the reconciliation of my work and university life.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Thesis Contribution
	Thesis Outline

	Related Work
	Use of Machine Learning in Microwave Networks
	Data Scarcity in Communication Networks

	Background
	Microwave Network Technologies
	Machine Learning Methodologies
	Classification problems
	Classification Algorithms

	Hyperparameter Optimization
	XGBoost
	SVC
	ANN

	Methodologies to address Data Scarcity
	Data Augmentation
	Transfer Learning
	Auxiliary-Tasks Learning
	Denoising Autoencoders

	Failure-Cause Identification in Microwave Networks
	Dataset Description
	Data Preprocessing
	Baseline Machine Learning Models
	Machine Learning methodologies to address Data Scarcity
	Synthetic Minority Over-sampling TEchnique
	Transfer Learning
	Auxiliary-Task Learning
	Denoising Autoencoders

	Numerical Results
	Baseline Models
	Methodologies to address Data Scarcity
	SMOTE
	Transfer Learning
	Auxiliary-Task Learning
	Denoising Autoencoders

	Best Methodology to address Data Scarcity
	SMOTE Analysis

	Conclusion and Future Developments
	Bibliography
	List of Figures
	List of Tables
	Acknowledgements

