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1. Introduction
X-ray Absorption Spectroscopy (XAS) is a well
established non destructive method for deter-
mining both the oxidation state and the local
environment of a given element in a material
[1]. In X-ray Absorption Spectroscopy (XAS)
a core-electron is promoted into an empty elec-
tronic state above the Fermi level by absorp-
tion of an X-ray and, as such, XAS probes the
unoccupied density of states. The Near-Edge
(XANES) region of the spectrum is mostly sen-
sitive to the oxidation state of the absorber and
to the geometrical coordination of the ligands,
while the Extended region provides information
on the Fine Structure (EXAFS), i.e., the inter-
atomic distances of the first few coordination
shells around the absorber in both crystalline
and amorphous materials. Very informative are
XANES and EXAFS measurements at the K-
edges of 3d and L-edges of 5d transition metals,
which lie in the 5 − 15 keV energy range. The
flexibility of the technique allows the analysis of
samples of different nature (from solids to liq-
uid and gases) and can find applications in vari-
ous fields, finding fertile ground in basic physics
and chemistry as well as in studies on cultural
heritage. After the advent of synchrotron radi-

ation sources, XAS experiments are mainly per-
formed at synchrotron facilities because of the
obvious advantages offered by their light. How-
ever, the limited access to synchrotron beam-
time reduces and nearly excludes a large num-
ber of potentially important scientific researches
to be performed. It is precisely for this reason
that laboratory XAS spectrometers are consid-
ered, again generating interest within the scien-
tific community, also thanks to the development
of increasingly performing X-ray sources. In this
contest, the XAS instrument being designed by
the PoliMiX group is extremely welcome.

2. XAS in laboratory
The working principle of a XAS experiment
is schematized in Figure 1. A polychromatic
source emits a beam I0(E); each spectral com-
ponent of the incoming beam is differently ab-
sorbed by a sample of thickness t giving rise to
the transmitted radiation I(E). Simply by com-
parison between I(E) and I0(E) it is possible to
find the absorption coefficient µ(E) of the sam-
ple:

µ(E) =
1

t
ln

I0(E)

I(E)
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Figure 1: The spectral components of the in-
coming radiation I0 are differently absorbed by
a sample of thickness t due to the energy depen-
dency of the absorption coefficient µ(E).

It is known as Lambert-Beer Law. It is clear
how, in order to calculate this ratio, it is neces-
sary to distinguish the different spectral compo-
nents of the beam. To do that a crystal (ana-
lyzer) that exploits a Bragg reflection is used

E(θB) =
nhc

2d sin θB
(1)

where E is the energy selected by the monochro-
mator, d is the distance between its crystallo-
graphic planes, n is an integer number represent-
ing the order of the reflected harmonic and θB is
the angle that the polychromatic incident radia-
tion forms with the analyzer surface. Finally, a
detector is required to measure the intensity of
the different spectral components.

2.1. The Rowland Setup
Source, crystal and detector must be properly
placed in order to correctly work. In particu-
lar, we will focus our attention on the Rowland
geometry setup that features a bent crystal an-
alyzer which plays the double role of monochro-
matizing the incident radiation and focusing it
on the detector [2]. We preferred the Rowland
geometry to a dispersive setup because the use
of an ideally point-like detector enhances the
signal-to-noise ratio. The three elements must
be positioned on a circumference [3] with diame-
ter equal to the curvature radius R of the crystal
(see Figure 2). Since the energy selected by the
monochromator depends on the incidence angle
θB of the radiation on the crystal, two of the
three elements must be moved during an energy
scan.

Figure 2: Schematic representation of a scan in
energy: source (blue) and detector (red) must
move specularly with respect to the axis of the
crystal.

Within my thesis activity, I mostly focused on
the characterization and optimization of the en-
ergy resolving properties of the instrument. In
fact it is clear how the ability of the analyzer
to monochromatize the radiation has a direct
impact on the performances of the instrument.
Unfortunately, it is not possible to perfectly
monochromatize radiation for at least two rea-
sons:

1. Geometric aspects: because of the exten-
sion of the crystal and of the source, the
rays will not impinge the crystal at exactly
the same angle θB causing a broadening of
the reflected bandwidth that we will call ge-
ometric contribution to energy resolution;

2. Intrinsic aspects: a more complete treat-
ment of diffraction (dynamic theory of
diffraction) leads to modify equation 1
including the effects generated by multi-
planar reflections and by the curvature of
the crystal. These aspects are directly
linked to a broadening of the reflected band-
width that we will call intrinsic contribution
to energy resolution;

As the name suggests, the last contribution can-
not be avoided while, the geometric contribution
to energy resolution can be drastically reduced
optimizing the geometry of the instrument and
choosing properly the crystal. For this reason, a
large part of this thesis work is dedicated to the
analytical and simulated study of the geometric
contribution to energy resolution.
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Figure 3: Geometric resolution worsening of a
Johann Crystal. The Bragg angle is not exactly
the same all over the surface of the crystal even
for a point-like source.

3. Choice of the crystal
An appropriate choice of the crystal is certainly
the first step to improve the energy resolution
of the spectrometer. The most commonly used
curved crystals are called Johann-type crystals
and their monochromating properties are rep-
resented in Figure 3: as shown, a generic inci-
dence angle away from the optical axis slightly
differs from the central one (green). This in-
evitably leads to an unwanted worsening of the
energy resolution that becomes more and more
relevant as θB decreases. The origin of this effect
lies in the fact that the reflections do not occur
exactly on the Rowland circle (dashed circum-
ference) but away from it. On the other hand,
however, the fact that the curvature radius of
the crystal is two times that of Rowland’s cir-
cle is necessary as dictated by the equation of
mirrors. The only way to overcome this prob-
lem is to shape the surface of the crystal in such
a way that it fits in every point the Rowland’s
circle. The Johansson-type crystal thus obtained
and represented in Figure 4 perfectly cancels Jo-
hann’s aberrations. For this reason, despite the
higher cost, we opted for this solution.
However, the reasoning made up to now is re-
ferred to the simplified two-dimensional case
shown in Figure 4. Considering the ideal case
in which source and detector are point-like it
is clear that a rotational symmetry around the

Figure 4: The crystallographic planes of a Jo-
hansson crystal are represented in red. In
dashed red the portion of crystal to be removed
starting from a Johann-type crystal. The graph-
ical simulation undoubtedly shows how the in-
cidence angles are equal over the entire surface
of the crystal and how the radiation is focused
exactly in one point.

axis passing through them exists (see Figure 4).
The ideal crystal surface will therefore be ob-
tained simply by rotating the two-dimensional
set-up around this axis. However, one thing is
immediately evident: the position of the axis
(more precisely its distance from the center of
the analyzer) changes with Bragg angle. The
ideal crystal should therefore have a toroidal
shape in which the meridional radius is fixed and
equal to the diameter of the Rowland circle while
the sagittal radius must be dynamically changed
during the scan. The first idea that might come
to mind is to take a crystal with fixed merid-
ional curvature Rm and change the sagittal one
(Rs) by applying a variable torque to the ana-
lyzer during the scan. This procedure, however,
is technically unfeasible. A more realistic ap-
proach is to approximate the ideal crystal sur-
face by a set of independent cylindrical stripes of
finite width whose relative positions can be dy-
namically adjusted as a function of Bragg angle
(see Figure 5). All the following considerations
will therefore refer to one of such stripes, i.e. to
a cylindrical Johansson type crystal.
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Figure 5: Five cylindrical stripes that approxi-
mate the ideal toroidal shape. While Rm (merid-
ional radius) is fixed, Rs (sagittal radius) should
be changed during the scan.

4. Geometric contribution to
energy resolution

Both the cylindrical analyzer and the finite size
of the source will have an impact on the energy
resolution of the spectrometer. An analytical
approach will be followed by the results obtained
by ray tracing simulations with the dual purpose
of providing accurate results and validating the
analytical calculations.

4.1. The analytical approach
In order to take into account only the analyzer
contribution to the energy resolution, a point-
like source is assumed to start with. The first
result obtained is the relationship that expresses
the deviation ∆θa of the incidence angle with
respect to the Bragg angle as a function of the
length l and height z coordinates of the crystal:

∆θa = tan θB

(
z2

2(R sin θB − l cos (θB − l
R))

2

)

(2)

This result is of particular interest since, unlike
what is reported in literature [4], it also takes
into account the effects caused by the length of
the crystal. In order to estimate the average
geometric contribution of the analyzer it is nec-
essary to properly weight ∆θa by its probability

Figure 6: Graphical view of the probability
pa(∆θa)d∆θa under the hypothesis of uniform
irradiation of the analyzer. The probability, for
a ray, to fall in the interval d∆θa red (yellow)
is represented by the ratio between the two red
(yellow) areas and the analyzer surface (gray).
The probability decreases moving away from the
center of the analyzer in the z direction.

distribution, i.e. by the number of rays that hit
the analyzer under that angular deviation. The
probability distribution is easily found through
geometric considerations and is reported below:

pa(∆θa) =
R
√
sin θ cos θ√
2∆θa · Z

∝ 1√
∆θa

(3)

Following exactly the same approach for the
source contribution to energy resolution is pos-
sible to find

∆θs ≃ − sy
R sin θB

(4)

where sy represents the meridional coordinate of
a generic point of the source. An important re-
sult is that the sagittal coordinate sz has a negli-
gible impact on the resolution of the spectrome-
ter. In analogy to what was done previously, it is
possible to calculate the probability distribution
associated to ∆θs, taking into account the fact
that the intensity of the source has a Gaussian
profile. The resulting probability distribution is
also a Gaussian:
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ps(∆θs) = C · exp
[
−R2 sin2 θB(∆θs)

2

2σ2
y

]
(5)

The last step to complete the theoretical treat-
ment of the geometric contribution is to evaluate
simultaneously the effects of the analyzer and of
the source. It is demonstrated that the total
angular deviation ∆θg is given by:

∆θg ≃ ∆θa +∆θs

Since ∆θa and ∆θs are decoupled and indepen-
dent, the overall probability distribution is ob-
tained by convolving the probability distribu-
tions of ∆θa and ∆θs, that is

pg(∆θ) =

∫
pa(∆θ −∆θ′)ps(∆θ′)d∆θ′ (6)

Our analytical results are then compared to nu-
merical simulations in the following.

4.2. Ray-tracing simulation
The first purpose of the simulations was there-
fore to validate the calculations made. For this
reason, simulations were initially carried out by
decoupling the contributions deriving from the
source and from the analyzer. Figure 7a rep-
resents a simulation referred to the analyzer
contribution while Figure 7b a simulation re-
ferred to the source contribution. Both simu-
lated graphs show a perfect agreement with the
respective probability densities predicted by the
theory (Equations 3 and 5). The agreement be-
tween the analytical calculation above and the
numerical simulations is extremely satisfactory
and confirms our intellectual control on the geo-
metric contributions to energy resolution of the
spectrometer.
The overall geometric contribution to energy res-
olution is reported in Figure 8 for a Ge[220] Jo-
hansson (R = 50 cm) crystal of 10 × 1 cm2 and
considering a source with FWHM along the two
axes respectively equal to 35 µm and 300 µm.
The Ge[440] and Ge[660] reflections can be di-
rectly deduced from Figure 8 multiplying respec-
tively by 2 or 3 both axes:

(a) Analyzer probability distribution pa at θB = 75°

(b) Source probability distribution ps at θB = 75°

Figure 7: Frequency distributions simulated re-
spectively with a point source and a 10 × 1
cm2 analyzer and with a Gaussian source 35 ×
300 µm2 (FWHM2) and a point-like analyzer.
Ge[220] reflections are here considered.

Figure 8: The FWHM of the total geomet-
ric contribution to energy resolution is here re-
ported as a function of the Bragg energy EB.
The Ge[220] reflection for a Johansson (R =
50 cm) crystal of 10×1 cm2 surface and a Gaus-
sian source of 35×300 µm2 (FWHM2) are con-
sidered.
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Figure 9: FWHM of the overall energy resolu-
tion of the spectrometer considering a Johansson
(R = 50 cm) crystal of 10× 1 cm2 surface and a
source of 35× 300 µm2 (FWHM2).

5. Overall energy resolution
Considering in addition the intrinsic contribu-
tion to energy resolution simulated through tb-
calc software [5] it was thus possible to estimate
the overall resolution of the spectrometer for the
reflection Ge[220] and the following two harmon-
ics (see Figure 9). Thanks to the partial over-
lap between different reflections we can cover the
entire energy spectrum from EB = 3keV up to
EB = 14 keV keeping the overall energy reso-
lution below 2 eV. The most critical point of
the whole scan is paradoxically around EB =
6keV where we must reach θB = 29° in order to
reach the overlap with the Ge[440] reflection at
θB = 75°.

6. Conclusions
We designed a user-friendly laboratory XAS
spectrometer covering the 3 − 15 keV energy
range with an energy resolution below 3 eV aim-
ing at limiting its costs and minimizing its di-
mensions. In order to achieve these challenging
goals, an in-depth study was carried out on the
shape of the crystals and on the geometric con-
tribution to energy resolution. We selected a
Johansson-type cylindrically bent analyzer with
curvature radius R = 50 cm and dimensions
10× 1 cm2 exploiting also the reflections of the
first and second harmonics of Ge[220]. The de-
sign will soon be completed and will be followed
by the purchase of the necessary pieces and the
subsequent construction of the instrument.
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