
Politecnico Milano

Telecommunication Engineering

Master’s Degree in Internet Engineering

Discrete Event Simulation in

Vehicle-to-Vehicle Transmission Based on

Geometrical Channel Models

Supervisor:
Chiar.mo Prof Maurizio Magarini

Co-Supervisors:
Dott. Francesco Linsalata
Dott. Eugenio Moro

Master thesis of:
Nicolò Calzi

Student number:
903430

Academic Year 2020/2021

Contents

1 Introduction 4

1.1 Motivation . 4

1.2 Research Problem . 5

1.3 Research Methodology . 5

2 Technologies for Vehicular Communications 6

2.1 IEEE 802.11p . 6

2.1.1 Technical Specifications . 7

2.2 Intelligent Transport System . 9

2.2.1 Communicating Messages . 11

2.2.2 ETSI ITS-G5 . 13

2.3 Device-to-Device Technology . 15

2.3.1 D2D and 5G Networks . 16

2.3.2 D2D Applications . 17

2.4 Summary Background Technologies . 19

3 Vehicular Ad-hoc Networks 20

3.1 Features and Applications . 22

3.2 Routing Protocols . 25

3.3 RSUs Deployment . 26

3.4 Vehicle-to-Everything Communication Protocol 27

3.4.1 LTE and 5G - V2X Implementations 29

2

3.5 Internet of Vehicles . 31

3.6 Summary VANET Technology . 34

4 Geometry-based Efficient Propagation Model for Vehicle-to-Vehicle
Communication 36

4.1 Geometry-based Models . 36

4.2 Tool Features . 37

4.3 Path Loss Type: Free Space and Obstructed View 38

4.4 Summary Gemv2 Technology . 40

5 Frameworks and Tools Supporting the Discrete Event Simulator 42

5.1 OMNeT++ . 43

5.1.1 Model . 43

5.1.2 Structure . 44

5.1.3 Results . 45

5.2 Artery . 48

5.2.1 Features . 49

5.2.2 Architecture . 50

5.2.3 Middleware . 51

5.2.4 Environment Model . 51

5.2.5 Storyboard . 52

5.2.6 Gemv2 in Artery . 52

5.3 Inet . 53

5.3.1 Features . 53

5.4 Vanetza . 58

5.5 SUMO and TraCI . 59

5.5.1 Gemv2 in SUMO . 60

5.6 R-Trees structure . 60

5.7 Summary Frameworks and Tools Technologies 62

3

6 Simulation Environment 64

6.1 Simulation flow . 65

6.2 INI file, NED files and SUMO files . 67

6.2.1 Modifications to the code . 77

6.3 Launching from the terminal . 77

6.4 LinkType choice . 78

6.4.1 Gemv2 link type . 79

6.5 Graphical view . 79

6.5.1 Visualization in SUMO . 80

6.6 While running . 83

6.7 End of the simulation . 85

7 Numerical Results and Analysis 86

7.1 Parameters and Files Involved . 86

7.1.1 Fixed Parameters . 86

7.1.2 Changing Parameters . 87

7.1.3 .ANF file . 88

7.2 Values Types . 89

7.2.1 Browse Data: Vectors values 89

7.2.2 Browse Data: Scalars values . 90

7.2.3 Browse Data: Histograms values 91

7.3 Recorded Data . 91

7.3.1 Data not influenced by parameters 91

7.3.2 Data changing with parameters 96

7.4 Analysis . 98

7.5 Graphs . 101

7.5.1 Path Loss Type . 101

7.5.2 Passed Up Packets count . 102

7.6 Hypothesis . 103

4

8 Conclusions and Future Works 106

9 Ringraziamenti 110

A Installation Guide I

A.1 Introduction . II

A.1.1 Ubuntu 20.04 LTS . II

A.1.2 Suggestions . II

A.1.3 Synaptic . II

A.1.4 Git . III

A.2 OMNeT++ . III

A.2.1 Installing the Prerequisite Packages III

A.2.2 Downloading and Unpacking IV

A.2.3 Environment Variables . V

A.2.4 Configuring and Building . V

A.2.5 Verify the Installation . VI

A.2.6 Starting the IDE . VI

A.3 SUMO . VII

A.3.1 Installing the Prerequisite Packages VII

A.3.2 Installation . VII

A.4 Artery . VIII

A.4.1 Requirements . VIII

A.4.2 Cloning the Artery repository VIII

A.4.3 Create build directory . IX

A.5 Getting started . IX

A.5.1 Import Artery project . IX

5

List of Figures

2.1 Vehicle safety communication examples. 7

2.2 The channels available for IEEE 802.11p. 8

2.3 Standards and communication stack. 8

2.4 Schematic view about how ITS works. 11

2.5 System architecture for Cellular-VCS based on CAMs (BS broadcast)
and DENMs (D2D broadcast). The base station controls the commu-
nication. CAMs are processed on a server in the core network. 12

2.6 C-ITS protocol stack with ETSI ITS-G5 (ETSI EN 302 665). BTP
means basic transport protocol. 14

2.7 Cellular communication and D2D communication. Both single-hop and
multi-hop (including D2D relay) networks formed by D2D links are
shown. 15

2.8 D2D mechanism: the nearby communicating nodes open a direct link
to each other instead of communicate with the base station. 17

2.9 Scheme 1: Evolution of the mentioned Background technologies. . . . 19

3.1 An example of a VANET network. 21

3.2 Applications in VANET. 22

3.3 Important parameters in a VANET network. 23

3.4 Classification of the VANET Applications [1]. 23

3.5 Implementation of RSUs in a VANET network. 26

3.6 Vehicle connections in the V2X paradigm. 27

3.7 Cellular-5G VANET model. 30

3.8 IoV illustration. 31

6

3.9 Mutual relationship between IoV and big data. 32

3.10 Scheme 2: VANET technology. 34

4.1 Link types and propagation effects captured by Gemv2. White rectan-
gles represent vehicles, gray rectangles represent buildings. 39

4.2 Scheme 3: Gemv2 technology. 40

5.1 OMNeT++ model. 44

5.2 Relations of the files in OMNeT++. The example comes directly from
the files used in this work. 45

5.3 Artery architecture [2]. 50

5.4 Example of simulation running. Each vehicle has its range of trans-
mission (visualized as a cone) and the field-of-view (visualized as dash
lines). 52

5.5 INET-LayeredProtocolBase definition of signals. 55

5.6 INET-PhysicalLayer-Radio definition of signals and collected statistics. 55

5.7 Components, dependances and features of Vanetza’s tools. 58

5.8 The example shows an exchange of TraCI messages. 59

5.9 [a] R-Tree structure. 61

5.10 [b] Relationships between rectangles in the structure. 61

5.11 Scheme 3: Tools and Frameworks. 62

6.1 Simulation flow. 66

6.2 omnetpp.ini simulation file . 69

6.3 World.ned file: Design view. 70

6.4 World.ned file: Submodules. 70

6.5 World.ned file: Source view (C++ code). 71

6.6 Traci Manager. 72

6.7 Radio medium. 73

6.8 Physical Environment . 73

6.9 Static Nodes and Nodes. 74

6.10 LinkType.sumo.cfg. Here the LOS type is shown. 74

7

6.11 LinkType.net.xml. Here the LOS type is shown. 75

6.12 LinkType.rou.xml. Here the LOS type is shown. 76

6.13 LinkType.poly.xml. Here the NLOSf type is shown. 76

6.14 Modifications. 77

6.15 Simulation schema. 77

6.16 Gemv2 menù. 78

6.17 OMNeT++ graphical view. 79

6.18 LOS view: standard visualization. 80

6.19 LOS view: real-world visualization. 80

6.20 NLOSv view: real-world visualization. 81

6.21 NLOSb1 view: standard visualization. 81

6.22 NLOSb2: standard visualization. 82

6.23 NLOSf view: standard visualization. 82

6.24 RSU path. 83

6.25 Node path. 84

6.26 Target nodes. 84

7.1 Combinations of simulated parameters. 87

7.2 .anf file view. Here NLOSv type is shown. 88

7.3 ISO/OSI stack and the PassedUp/SentDown mechanism handling the
packets. 90

7.4 Counts of LOS/NLOS in LOS type. 92

7.5 Counts of LOS/NLOS in NLOSv type. 92

7.6 Counts of LOS/NLOS in NLOSf type. 92

7.7 Transmission state. 93

7.8 Arrival computation count. 93

7.9 Radio frame send count. 94

7.10 Radio mode count. 94

7.11 Reception computation count. 95

8

7.12 Transmission count. 95

7.13 SentDown. 96

7.14 Reception state. 96

7.15 PassedUp. 97

7.16 packetErrorRate. 97

7.17 Arrival computation count → Reception computation count. 98

7.18 Radio frame send count ==
∑

(countLOS + countNLOS). 99

7.19 rcvdPkFromHL == sentDownPK. 99

7.20 Transmission count ==
∑

(rcvdPkFromHL) ==
∑

(sentDown). 100

7.21 Path Loss Type graph. 101

7.22 PassedUpPk:count graph. 102

7.23 Tabulated values. 103

7.24 Scalar values - sentDownPk:sum(packetBytes). 104

7.25 Scalar values - sentDownPk:count. 104

7.26 Vectors values - sentDownPk:vector(packetBytes). 104

7.27 Analysis of Transmission values in the NLOSv file. 105

1

Chapter 1

Introduction

1.1 Motivation

Digital innovation is here and now.

Nowadays, every technological company is running to be the leader in a specific market
branch with products and services to be sold to other companies. To do so, a fast
transition to the digitalisation of each and every of such items is needed and a bunch
of new technologies is already expanding their role influencing the market.

Not only the concept of typical transmissions on a cable, wireless or optic network is
considered, but the spread of mobility is leading to the connection of all the devices
in order to create a completely connected world where everything can communicate
an information.

In this work, starting from a general overview of the technologies involved (from the
wireless project IEEE 802 to the Device-to-Device communication and its integration
with LTE cellular network and 5G, from Intelligent Transport System to the Internet
of Things) we will move to the Internet of Vehicles and its concepts of intelligent
nodes (indeed cars, trucks and every other type of vehicles connected to an internet
network) able to transmit whichever data to other nodes, to an infrastructure or to a
pedestrian walking around.

We will see the concepts that aim to the creation of a specific network for this purpose,
the so called Vehicular Ad-Hoc Network, its pros and cons and why there was the
need for specific tools running different scenarios in order to study how a vehicle can
store information to be communicated to others.

4

We will finally move to the tool used for this work, the geometrical model that adds
features regarding the link type used in the simulation.
We will see the Gemv2 tool analysing how a software specifically created for such
simulation runs and produces results that can be reported to the concept of a real
situation.

The main purpose of this work is to see what an already existing software specifically
created to simulate a real-world scenario performs, analysing which results it can give
to the end user. We will see how the vehicular communication behaves and what are
the differences proposed when running on a free-space scenario or an high density
scenario, being it due to high number of other vehicles or due to different obstructing
objects.

1.2 Research Problem

When analysing a scenario there are fixed costs that are hardly handle if after all it
finds out the proposed solution is not implementable. Plus, not all the conditions are
easily replicable for all the possible scenarios we can find in the real world and not all
traffic conditions can be found in the same site chosen for the analysis.

That is why the developers prefer to simulate different scenarios and traffic conditions
on a simulator where, with a few changes in its code, can replicate what happens while
physically running with a vehicle in such situations.

The used simulation scenarios gives an almost perfect account regarding what’s there
outside.

1.3 Research Methodology

The methodology involved for this work is the one attributable to what explained
in ”Motivation” section: from a general overview of the theoretical concepts, to the
study of the Gemv2 tool used.

We will see how Gemv2 works, which files cooperate to the final result, the bunch of
frameworks and other tools that are behind what the user sees on the screen; we will
see how to launch the program and how to handle modules or modifications to the
code.

At the end, we will analyse the results given and we will make some assumptions and
hypothesis when using an already existing tool specifically created for this purpose.

5

Chapter 2

Technologies for Vehicular
Communications

The main purpose of the first chapter is to give a general overview regarding the
technical background and features attributable to vehicular communication. The
specific aspects of any arguments not directly related with vehicular communication
are not treated in this work but only mentioned when appropriate.

2.1 IEEE 802.11p

Starting from the very beginning, the ”802” is the project coming from the Institute
of Electrical and Electronics Engineers (IEEE) that aim to develop all the standards
needed when working on a generic network, being it a LAN, a WPAN, a Token Ring
net etc..

Our interest in this work is focused on the ”.11p” implementation, the branch that
gives support to all the technologies requested on a Wireless LAN (standard IEEE
802.11), and then, going deeper, on all the specifics with the aim of enhance the
Vehicular Communication, a relatively new way of transmission while driving a
vehicle (standard IEEE 802.11p). This additional document takes the name of Wire-
less Access in Vehicular Environment (WAVE), a standardization process originated
from the allocation of the Dedicated Short Range Communications (DSRC) spectrum
band in the United States and adapted to European standards.[3]

6

Figure 2.1: Vehicle safety communication examples.

IEEE 802.11p (also known as IEEE 820.11p WAVE) gives the basics required by the
vehicular communication which includes not only vehicle-to-vehicle transmission but
also vehicle-to-infrastructure and roadside units exchange of information in a high-
speed an efficient way, due to the rapidly varying scenario. All these features will be
explained later on in the dedicated sections.

2.1.1 Technical Specifications

Here, a brief introduction to the main characteristics of the IEEE 802.11p standard
is given but without going into detail.

The IEEE 802.11p physical layer is based on the Orthogonal Frequency Division
Multiplexing (OFDM) combined with a convolutional code. Since the vehicular chan-
nel varies rapidly with the environment surrounding the vehicles, some improvements
have been made to the time-domain and frequency-domain parameters (the first have
been doubles while the second have been halved).[4]

The IEEE 802.11p MAC layer skips some of the typical features of the stuck, such
as authentication, association, and data confidentiality services which are not used.
The layer uses the Enhanced Distributed Channel Access (EDCA) to implement a
differentiation scheme in the Quality of Service (QoS) requested. It typically uses
channels of 10 MHz bandwidth in the 5.9 GHz band, from 5.850 to 5.925 GHz (these
essential features will lead us through all the work), basing the division on the Dis-
tributed Coordination Function (DCF) that, in turn, make uses of the Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA) algorithm. The spectrum of
WAVE is allocated in the upper 5 GHz range (see Fig. 1) and the division sees one slot

7

for Accident Avoidance, two slots for Service Channels, one slot for the Controlling
and one last slot for high power and long range transmission. The different channels
cannot be used simultaneously and each station continuously alternates between the
Control Channel and one of the Service Channels or the Safety Channels.[5]

Figure 2.2: The channels available for IEEE 802.11p.

The listening period of the algorithm depends on the type of message that could
be a Cooperative Awareness Message (CAM) or a Decentralized Event Notification
Message (DENM), better explained later on.

The IEEE 802.11p standard is thus limited to MAC and PHY layers, adding its own
features to the already existing levels of the stack; Pay attention, as we can see in
the following picture, it does not substitute but indeed it is integrated with the other
technologies because it is meant to work with them and not to substitute them.

Figure 2.3: Standards and communication stack.

8

2.2 Intelligent Transport System

The term Intelligent Transport System (ITS) refers to the integration of fields
such as telecommunications, electronics and IT with everything related to the in-
telligent transports, from planning and designing to the managing of the physical
transport itself. The aim is to improve the road safety (for vehicles, people and
goods) and the quality of service given, with special attention on current issues such
as the respect for natural resources and environment.

With the concept of ”Smart City” transmuting cities into digital societies, making
the life of its citizens easy in every aspects, Intelligent Transport System becomes
the indispensable component among all. ITS’s goal is to achieve traffic efficiency
by minimizing traffic problems, spreading traffic information through the network in
order to make people take the best choice based on the information received.[6]

The use is not just limited to traffic congestion control and information, but also to
road safety and efficient infrastructure usage. It varies depending on the technologies
applied, from basic management systems such as satellite navigation, traffic light
control systems or speed detectors, up to advanced applications integrating real-time
data from various external sources, such as meteorological information, bridge de-icing
systems and so on.

In fact, some example of applications where it is likely to find the integration with
ITS are [7]:

• Traffic Mobility and Management Control: vehicle’s transit and stopover,
traffic viability, electronic payments, emergency management, traffic lights mon-
itoring and penalties;

• Advanced Vehicle Control: vision support, collision avoidance systems,
intelligent cruise control systems, vehicle monitoring, automatic driving, au-
tonomous and assisted navigation systems;

• Advanced Information spreading System: traffic and travel information
systems, public transport information systems, remote assistance;

• Public Transport Management: localization, deposit management schemes,
integrated payment systems, call service management;

• Handling of the Freight Transport: support to the logistics, resource man-
agement systems, Vehicle and cargo management systems, dangerous goods
management.

9

ITS has now become a multidisciplinary conjunctive field of work and thus many
organizations around the world have developed solutions to provide ITS applications
to meet the needs. In fact, the application of ITS is widely accepted and used in
many countries nowadays.

An interesting example about the integration of Intelligent Transport System with
citizens life is coming from the city of Glasgow; here, ITS gives regular information
to the daily commuters about public buses, timings, seat availability, current location
of the bus, time taken to reach a particular destination, next location of the bus and
the density of passengers inside the bus.

But how does ITS work? The Traffic Management Centre (TMC) is the vital unit
of ITS, administered by the transportation authority. Here all data is collected and
analyzed for further operations and control management of the traffic in real time.
The process includes:

• Data Collection: The data here is collected via vary hardware devices that
lay the base for further ITS functions. These devices are Automatic Vehicle
Identifiers, GPS based automatic vehicle locators, sensors, camera etc. The
hardware mainly records the data like traffic count, surveillance, travel speed
and travel time, location, vehicle weight and delays.

• Data Analysis: The data that has been collected and received is processed
in various steps and further altered and pooled for analysis in order to predict
traffic scenario to be delivered appropriately to users.

• Data Transmission: Rapid and real-time info communication is the key to
proficiency in ITS implementation. Traffic-related announcements are transmit-
ted to travelers through internet, SMS or onboard units of vehicle.

• Traveler Information: Travel Advisory Systems (TAS) is used to inform
about transportation updates to the traveling user. The system delivers real-
time information like travel time, travel speed, delay, accidents on roads, change
in route, diversions, work zone conditions etc. This information is delivered by
a wide range of electronic devices like variable message signs, highway advisory
radio, internet, SMS and automated cell.

10

Figure 2.4: Schematic view about how ITS works.

2.2.1 Communicating Messages

When talking about ITS, there are two types of messages that an ITS station can
forward to the communicating nodes in order to support vehicular safety and traf-
fic efficiency applications, giving continuous status information about surrounding
vehicles and asynchronous notification of events [8].

(1) Cooperative Awareness Message (CAM)

(2) Decentralized Environmental Notification Message (DENM)

The need of a standardization in the message mechanism comes from the issue arising
in vehicular communication, that is a continuous and periodic status exchange be-
tween nodes regarding status of vehicles or of the roadside unit, locations, IDs, speed,
etc.. and the need of asynchronous notifications from one node to another that may
not be in range in the instant of the transmitted message.

The CAM is a periodic message that an ITS node forward in broadcast to all other
nodes in range (single hop from the source node) when a security situation arises, such
as when the vehicle is started or whenever there is a change in the location or speed
status. In this way, the receiving station is aware of other vehicles in the proximity
knowing its positions, movement and other relevant characteristics that may have been
transmitted. Thus, the message will contain: (i) ID of the transmitting node, (ii) type

11

of station to which it is linked, meaning a mobile station or if it is a public/private
authority or anything else, (iii) position of the node, from latitude and longitude to
height and (iv) all sort of characteristics coming from the standard.

The DENM is generated every time the ITS station sees a relevant event to be noti-
fied in order to aware all the other nodes in the range of the event (e.g. a security issue
situation or the transit of an emergency vehicle). This message handles the lifetime
of the event: the ID generated by the source station could be re-used to eventually
update the event or to inform new nodes entering the area about the event that is
occurring; if the source node exits the area, a new station could take the ID of the
event and handle it with new updates. The event usually contains the detection of the
the awareness situation (e.g. vehicle breakdown, traffic jam, etc.), the position of the
area, the detection time of the event and the expected expiring time of it. the area
over which the DENM message should be disseminated and the frequency to which
the message is forwarded [8].

Figure 2.5: System architecture for Cellular-VCS based on CAMs (BS broadcast) and
DENMs (D2D broadcast). The base station controls the communication. CAMs are
processed on a server in the core network.

In the figure above we can better see the connection that occur from messages to clas-
sical communication mechanism such as the cellular and the D2D broadcast, in the
specific the CAM message is associated with cellular network while the DENM mes-
sage is associated with the D2D mechanism (this technology will be better explained
in the dedicated section) [9].

The CAM message (which is a Base Station broadcast transmission) and the DENM

12

message (the D2D broadcast mechanism) are alternated in a Round Robin algorithm
implementation; DENM messages have a higher scheduling priority w.r.t. CAM mes-
sages due to their safety application in the scenario.

2.2.2 ETSI ITS-G5

The ascending spread of Intelligent Transport System is possible thanks to the ex-
pansion of other related technologies with the same purpose of improving quality of
citizens life through an increasingly whole network where every device in range can
communicate with all the others, that is mobile device or vehicle or even infrastruc-
ture.

Various forms of wireless communication technologies have been proposed for Intelli-
gent Transport Systems. In the USA, they developed a short-range communication
mechanism (below 500mt) called Dedicated Short Range Communication (DSRC)
while the European Telecommunication Standard Institure (ETSI) created its own
vehicular communication paradigms as a certified standard common to all the Eu-
ropean Nations, the ETSI ITS-G5 standard. Both the specifications are made from
the Wi-Fi standard IEEE 802.11p protocol and, starting from it, other technologies
can be implemented alongside to enable new features (e.g. extend the range of these
protocols using ad hoc mobile networks or wireless mesh networks, using the Device-
to-Device technology or the combination of Cellular 5G and LTE technologies).

We can say ETSI ITS-G5 is an extension of the general WiFi standard 802.11p
WAVE modified and optimized to operate in a dynamic automotive environment
[10]; it makes use of the high mobility tools, it delivers safety messages in the 5.9
GHz channel specifically allocated for vehicle communication applications, it gives a
bunch of new features to the already existing protocols introducing a sort of vehicular
communication protocol stack, like for example the implementation of a specific set
of messages that vehicles use to communicate each other.

Cooperative-ITS (C-ITS) can be reported as the technology that strengthens ETSI
ITS-G5 with a series of tools in charge of supporting the connectivity between vehicles,
vehicles and roadside infrastructure, traffic signals as well as with other road users;
ETSI ITS-G5 is therefore a set of C-ITS tools that aim to achieve the inter-vehicle
communications in a reliable and efficient way [11].

13

Figure 2.6: C-ITS protocol stack with ETSI ITS-G5 (ETSI EN 302 665). BTP means
basic transport protocol.

Other specifications can be strongly found in the Control Channel and Service Channel
inside the device containing an ITS-G5 technology, the so called ITS-G5 STA; the
device shall operate outside the context of a Businness Support System (BSS) typical
of the classical devices [12].

14

2.3 Device-to-Device Technology

Device-to-device (D2D) communication can be seen as the technology behind ev-
ery transmission that occurs without involving a network infrastructure, such as an
access point or a base station, and thus allowing user equipments (UEs) in close
proximity to communicate using a direct link. The main purpose is to reduce the
time taken by the conventional transmission enabling ultra-low latency communica-
tion period and boosted data rate, resulting in an improvement of throughput, energy
efficiency, delay and fairness [13].

Figure 2.7: Cellular communication and D2D communication. Both single-hop and
multi-hop (including D2D relay) networks formed by D2D links are shown.

We can say Device-to-Device refers to the communication between closed devices
which can be cell phones or even vehicles, with the spreading advancement of tech-
nologies where everything, a vehicle indeed, is connected to a network [14]. Various
implementations deriving from the fifth generation (5G) wireless network communica-
tion, such as short-range wireless technologies (like Bluetooth, WiFi Direct and LTE
Direct) and vehicle-to-vehicle paradigm, can be used to enable D2D communication;
alternatively, D2D can be used to bring advanced features to such technologies.

An interesting example is the combination of D2D with the continuing growing tech-
nology of the Internet of Things (IoT) resulting in the so called Internet of Vehicles
(IoV): here, a vehicle connected to a wireless network can advertise nearby vehicles
before it changes street, lane on a highway or when it accelerates or slows down. This
is the already mentioned vehicle-to-vehicle paradigm that it will be dealt later on.

15

2.3.1 D2D and 5G Networks

The upcoming 5G network is expected to support aggregate data rates 1000 times
faster than the current 4G network. The spectral efficiency and energy efficiency
should be 10 times higher than those of 4G network, with an end-to-end latency
around 1 ms [14].

5G network will bring a large amount of new technologies, including Device-to-Device
communication; D2D is fundamental to 5G thanks to its dedicated short-range link
where each link can operate concurrently with the others, improving network capac-
ity and avoiding interference. Moreover, D2D can enable other technologies strictly
related to 5G such as heterogeneous network and massive-MIMO, implementations
that will not be explained here in the provided but which serve to improve spectral
efficiency and data rates.

D2D is now working with a dedicated channel named Dedicated Short-Range Com-
munications (DSRC), which can be referred as an implementation of standard Wi-Fi
specification 802.11p, the traditional wireless access in automotive industry. The lim-
itations are greatly growing since first year of cooperation, that is why new paradigms
have been created taking an important role in the advancement of such technology.

Cellular-Vehicle-to-Everything (C-V2X) is the new area involving the strong
characteristics of D2D and its agile way of acting with 5G together with the recent
paradigm of vehicle communications. C-V2X is often used to reference classical cel-
lular communication, taking the name of LTE-V2X [?].

The implementation of D2D in cellular networks not only improves performance but
also solves some of the problems of such networks:

(a) Synchronization, helping a UE selecting the time slot and frequency slot that
best fits its area in a more efficient way (talking about energy-efficient) in the
communication with other peers, both directly in range or not;

(b) Peer discovery, implementing an efficient method to discover other nearby
UEs quickly and with low power consumption;

(c) Mode selection, choosing between cellular and D2D among the set of candi-
dates UE that could implement D2D communication taking into account best
performance objective like spectral efficiency, low latency, transmitting power
and minimum QoS at receiver;

(d) Resource (radio) allocation, to maintain the direct link in the D2D pairs
(here D2D provides the algorithms to be used);

(e) Interference management, with a precise scheduling to lower down the inter-
ference occurring in cellular and D2D when sharing frequencies. The D2D pro-
posed algorithms involve optimization problems to balance transmitting power
and required QoS;

16

(f) D2D mobility, working with dynamic users and not only static ones;

(g) Pricing, to maintain a stable direct link charging, at the same time, services
to users;

(h) Security, guaranteeing privacy and anonymity of users.

In conclusion, D2D is another enabling technology for 5G networks but, in contrast
to others, it works in cohesion with and not only as part of 5G. An intelligent im-
plementation that lightens the network at the cost of more sophisticated algorithms
[15].

When two devices are connected to the same cell, they release from the network and
connect to each other on a direct link.

Figure 2.8: D2D mechanism: the nearby communicating nodes open a direct link to
each other instead of communicate with the base station.

This technology will impact considerably the vehicular communication providing in-
formation about traffic condition, accidents, roads conditions, thus enhancing quality
of driving for users.

2.3.2 D2D Applications

The applications where nowadays we can see a D2D communication are numerous and
include those systems where a large amount of data needs to be transferred quickly
with a short range connection. In addition to the above-mentioned applications to
support 5G, here are some other examples specifics of D2D [14]:

17

• Local data services: D2D supports local data services through unicast, group-
cast and broadcast transmissions. Examples include:

(a) Information sharing, through D2D links to transfer files, audios and videos
with higher data rates and lower energy than those in conventional cellular
channels.

(b) Data and computation offloading, where a device with a good Internet
connectivity can act as an hotspot to which data is offloaded/cached from
the BS and from which other devices may download data using D2D links.

• Coverage extension: when a UE encounters poor signal quality while con-
necting to the Base Station, it can find a better link to the BS connecting with
another or others UEs in a closer position (or better conditions when consid-
ering mountainous environment) to the BS; the UEs acting as relays compose
a multi-hop communication or a parallel-paths communication of collaborative
devices.

(a) Emergency communications can be considered special case of coverage
extensions. In case of natural disasters (hurricanes, earthquakes, etc..)
the traditional communication network may not work due to the damage
caused; a network can be established via D2D multi-hop communication
to the closer working BS.

• Machine-to-machine (M2M) communication: it is an enabling technol-
ogy for Internet-of-Things (IoT) since it affords ultra low latency time and,
thus, real-time responses. A particular application is vehicle-to-vehicle (V2V)
communication where D2D links can be utilized to share information between
neighboring vehicles quickly and offload traffic efficiently, as well as vehicle-to-
infrastructure (V2I) and vehicle-to-pedestrian (V2P) communication.

18

2.4 Summary Background Technologies

In the scheme below are shown all the technologies mentioned in chapter 2:

Figure 2.9: Scheme 1: Evolution of the mentioned Background technologies.

19

Chapter 3

Vehicular Ad-hoc Networks

Classical networks are considerably far away from their first developments; from ca-
ble to optical to wireless networks, they experienced an enormous growth in their
deployments and applications in everyday life.

One of the biggest achievement is, without any doubt, the displacement from wired/
wireless and centralized networks to wireless decentralized networks and then to
mobile decentralized networks, where ”decentralized” means that there is no longer
need for an infrastructure to run correctly (fixed routers and/or access points to be
linked to the network) but every node in range is in charge to forward information to
other nodes in a dynamic way (one time, the selected node can be part of the trans-
mission, another time the same node could be the final receiver of the transmission).
The new technology can be referred to a Wireless Ad-hoc NETwork (WANET) or a
Mobile Ad-hoc NETwork (MANET).

Focusing on MANET, the key role is the independent movement of each device which
compose the network and thus the continuously changing link from device to device;
from this, there are some challenges to go through: each device must continuously
maintain the information update about real-time routing status of the network and
about the status of each node in range, each sharing limited communicating band-
width to do not overlap the signals, all of that considering a highly dynamic changing
topology.

With the progresses of new technologies where everything is connected to a network,
even vehicles are becoming increasingly important in the spread of the information
to the point that a specific branch of MANET has been specialized in vehicular
communication; that is how Vehicular Ad-hoc NETwork (VANET) is born.

VANET is a particular case of wireless multihop network, that has the constraint of
fast topology changes due to the high node mobility, where nodes are indeed vehicles

20

on a street [16].

Figure 3.1: An example of a VANET network.

VANET enables a wide range of applications (see fig. 3.2), such as prevention of
collisions, safety, blind crossing, dynamic route scheduling, real-time traffic condition
monitoring, etc. Moreover, it provides Internet connectivity to vehicular nodes. The
key is to install sensors on the vehicles and make them communicate with sensors
on other vehicles, sensors on the infrastructure (the so called Roadside units) and
sensors on the devices of people; in this way, the driver is always updated regarding
the surrounding environment while he is driving.

21

Figure 3.2: Applications in VANET.

Going a step back in the previously mentioned technologies, VANET is the network
giving support to the Intelligent Transport System (ITS). While ITS has the role
to improve road safety and traffic efficiency offering services [17], VANET gives the
physical tools (sensors on vehicles) to apply ITS’s purpose. The common goal is
the full concept of smart cities and that is where ITS + VANET together with the
Internet of Things (IoT) want to go in the early future.

3.1 Features and Applications

The high dynamic varying scenario in which a vehicle is running, implies that infor-
mation cannot be stored for a long time because it would take up space for more
relevant information in the new portion of scenario where the vehicle has come. The
contents of the information produced and consumed by vehicles has local and limited
relevance in terms of time (explicit lifetime and limited temporal scope), space (local
validity, limited spatial scope and local interest), and agents involved (important to
agents in a limited area around the vehicle) [18].

We can expect that communication between nodes has never happen before and will
never happen again after first contact, as well as they can communicate for a limited
period of time in most of the cases [19].

22

In the table below, some of the areas where information is applied are shown:

Figure 3.3: Important parameters in a VANET network.

Moreover, the key concept is the centricity of the information and not of the source.
The content is important, the source is not since the same data can be transmitted
by each node independently.

Taking into account specifics aspects of VANET, several definitions have been provide
by different authors [20].

Biggest and most important division can be seen in the fig. 3.4 where VANET ap-
plications can be divided between Safety (as situation awareness applications and
safety messaging applications, including spreading an alarm or warning with the aim
of avoiding danger and reducing risk) and Non Safety (as comfort driving, enhancing
of the driving process and traffic information systems, including information about a
new product or business or the shortest path to a destination) applications.

Figure 3.4: Classification of the VANET Applications [1].

23

After this initial subdivision, we can make a differentiation based on the types of
applications, according to their aim. This will lead us to two definitions, that can be
considered as separate paradigms or working in cohesion:

• First category:

1. General Information Services

2. Vehicle Safety Information Services

3. Individual Motion Control

4. Group Motion Control

• Second category:

1. Active Road Safety apps

2. Traffic Efficiency and Management apps

3. Commercial apps

Without going into detail, we can say that each application brings advantages and/or
disadvantages, that’s why there is a need of cohesion for each of them and not a
strong differentiation. Every single application imposes diverse requirements on the
supporting technologies, leading to a number of challenges in order to reach data
dissemination in the network. The main research challenges to be considered for data
dissemination include [21]:

• Scalability: focusing on scalable data dissemination, the goal is to reduce data
redundancy by detecting traffic density;

• Security and Trust: During data dissemination, integrate a security mecha-
nism is necessary to be accepted by costumers. On the other hand, integrating
security schemes could increase the delay of message arrival and so it must be
necessary to reach a fair tradeoff between pros and cons;

• Quality of Service and Traffic Characterization: these are additional
important issues to be addressed by data dissemination, since different types of
applications are expected to have different QoS requirements;

• Node Cooperation: nodes are willing to cooperate and allow the use of their
resources to provide connectivity for other nodes, but this assumption might not
always be valid and some nodes could make use of services available by other
nodes while not allowing similar use of their resources by the same nodes;

24

• Simulation: The computational cost of implementing data dissemination schemes
and applications leads the future development to a strong simulation test-bed
environment, addressing traffic models on a high levels of complexity to simulate
realistic traffic scenarios and realistic driving behavior.

We will see later on how the increasing complexity and difficulties and so the migration
on simulated scenarios has raised the need of more powerful tools in order to reach
every single request in an efficient way; that is how we will introduce the study of
Gemv2 work.

3.2 Routing Protocols

A routing protocol is obviously required in VANET as well as any other network in
order to forward data on a pre-selected route and also to maintain that route while
transmitting and then recovering it when errors occur.

The routing protocols are classified as proactive, reactive and hybrid [22]. VANET
makes use of a mix of these 3 routing protocols, each of them with a different task
to perform and, in the specific, it uses [a] Proactive routing protocols to maintain
and update information on routing between nodes, [b,c] Reactive routing protocols
to process route request.

In the detail:

• OLSR (Optimized Link State Routing Protocol): it is an optimized protocol
for mobile networks applicable to vehicular communication where it is in charge
of the exchanging of the topology information with other nodes in the network
acquiring firmness on the link state algorithm so that the route will be available
immediately when needed. Control messages are forwarded by those nodes
designated as multi point relay in the network, comprising also traffic congestion
in the process.

• AODV (Ad-hoc On Demand Distance Vector): after a on-demand definition of
the correct path, the source node can send data do the destination node passing
through each connected nodes in between; the source node will broadcast a
Route Request to find a route to the destination node that, on the contrary,
will send a Route Reply when receiving the packet. The protocol will also
maintain route information helping the broadcast of the messages when a node
will need the same route, or part of it, again.

• DSR (Dynamic Source Routing): sending of the data when needed by first ap-
plying for route discovery and route reply using an unique IDs and occasionally
sending a Route Error if needed. The difference with the previous protocol is
that here it is used by VANET to maintain network information to be sent to
roadside unit regarding traffic density.

25

It still holds the paradigms of the IEEE 802.11p as routing layer of the network.

3.3 RSUs Deployment

When considering a vehicular scenario, not only vehicles and pedestrian’s devices play
an important role in the transmission of the data, but sensors are installed in several
other instruments alongside streets and roads taken by drivers; there are sensors on
traffic lights, street lights and along the highway.

A Road Side Unit (RSU) is a DSRC (Dedicated Short Range Communications)
transceiver that is mounted along a road or pedestrian passageway [23], with the
aim of collect real-time data from moving vehicles and then transmit it to traffic
information centres for further analysis [17].

Each RSU is connected to several devices in range (see fig. 3.5) to which transmits
information regarding traffic conditions, safety warnings messages, weather conditions
and so on with many and many other data. Here in this work, only this general main
aspect is treated.

Figure 3.5: Implementation of RSUs in a VANET network.

26

3.4 Vehicle-to-Everything Communication Protocol

Along with the great growth of ITS and its application, it raised the necessity to
develop a specific standard for vehicular transmission, especially when talking about
the communication protocol to be involved. The key word is ”standard” meaning that
every partner needs the same standard paradigm to be able to communicate with all
the other devices.

A specific WiFi mode (from the family standard of the IEEE 802.11p basis) operating
in the 5.9 GHz frequency band, enables ad hoc communication and the direct exchange
of information among vehicles in their vicinity, including the communication between
vehicles and the roadside infrastructure (or unit). This approach is commonly referred
to as Vehicle-to-Any or Vehicle-to-Everything (V2X) communication [24].

V2X communication protocol has four main subdivision (see fig. 3.6):

• Vehicle-to-Vehicle (V2V)

• Vehicle-to-Infrastructure (V2I)

• Vehicle-to-Pedestrian (V2P)

• Vehicle-to-Network (V2N)

Figure 3.6: Vehicle connections in the V2X paradigm.

27

The division is self-explanating and it is based on the type of device to which the
communicating vehicle is linked to. V2X communication enables a wide range of
applications [24].

At the beginning, they were categorized into four groups:

(a) Active road safety

(b) Cooperative traffic efficiency

(c) Co-operative local services

(d) Global Internet services

In all these applications it is assumed that the duration of time for the driver to react
is at most in the range of 1 second, so the applications were tolerant to packet loss
since the same information is repeatedly transmitted by other vehicles in a redundant
way. After this first deployment, connected driving has received great attention in
industry and the technology saw a great expansion, bringing new fields of application:

(e) Assistance to driver

(f) Automated driving

(g) Cooperative maneuvering with safety margin

(h) Sharing of the planned trajectory

(i) Help in driving tasks such as steering, accelerating and decelerating

V2X works in a fully distributed way meaning that there is no need for a solid network
behind it and there is no need for coordination with an infrastructure; data is directly
exchanged among the communicating vehicles in range with a very small delay and a
high data rate.

VANET makes use only of the V2V and V2I paradigms while the principles of V2P are
mostly used by other technologies. V2V communication is by far the most complex to
implement [25] due to the high mobility given by each nodes involved, thus vehicles;
while when communicating with an infrastructure or pedestrian the mobility is only to
be considered for the source node (that still it is a vehicle), in V2V also the receiving
nodes involve a scenario that is continuously changing with the movement of the
vehicle. In this case, communication can be either direct from source to destination
in a single-hop ”network”, or can serve intermediate nodes on its path in a multi-hops
”network”; from multi-hop comes the difficulty of the implementation: there is a need
for an efficient routing protocol.

In general, there are some strong features that are always to be considered when
working on a V2V scenario:

28

(a) the high mobility of vehicles

(b) the very high dynamicity of connections

(c) the reduced duration of communication links

(d) the congestion of the communication channels during packet relaying and re-
transmissions

(e) the unpredictable characteristics of the environment (interference, obstacles,
other vehicles, tunnels, ...)

(f) the embedded energy capacity

3.4.1 LTE and 5G - V2X Implementations

With the growth of the already existing technologies and the spreading of the new
ones, also vehicular communication had been adapted and incorporated with the
cellular systems to better use all their and its potential. VANET and its paradigm
of V2X has been adapted to work in cohesion with the Long Term Evolution
(LTE) system enabling a fast deployments of all its services; not only that, the Third
Generation Partnership Project (3GPP), which is in intended to encompass all
the different features in the same usable way, has made a specific standard for LTE-
based V2X services and, from 2016, it is continuously expanding the properties of
LTE systems to give a better and better experience to the end user. It took the name
LTE eV2X [26].

The cooperation with the automotive industry led the LTE system to work with New
Radio (NR) solutions, creating a new branch of V2X-based solutions called NR-V2X
that complement the LTE eV2X service.

The cooperation of the two technologies gave the basis for some vehicle platooning
applications and, most important, for limited automated driving applications. This
first approach has nowadays a strong implementation in V2X services and the combi-
nation of these technologies with the 5G networks leads to faster application services,
better communication protocols, fully automated driving applications, better support
to connected mobility and road safety applications, in general it fulfills the concepts
of smart cities and intelligent transportation. The requirements fully satisfies the
needs of VANET networks for a stringent reliability, low latency, high data rates and
larger communication ranges even in a high traffic density scenario, handling the rapid
mobility of vehicles and the required QoS for each application service.

In VANET, 5G technology is usually implemented first to establish the Vehicle-to-
Infrastructure (V2I) and Vehicle-to-Pedestrian (V2P) connections (see fig. 3.7). In an
urban environment, it is reasonable to have a big number of pedestrians w.r.t. RSU
giving the system the possibility to choose the best device for the transmission. The
pedestrian’s mobiles will be the gateways of the connection and choosing the best one
will improve the data transmission efficiency.

29

To support dynamic network management mechanism, a cluster is formed before
starting the transmission in order to prevent non-necessary connection outside the
usefull range of connection.

Figure 3.7: Cellular-5G VANET model.

Once the clusters are formed, both V2V and D2D mechanism can be used to achieve
the communication goals and to reach the exact messages dissemination it is needed
in the simulation.

30

3.5 Internet of Vehicles

The most dominant issue when dealing with the exponential growth of vehicles is the
rising number of road accidents that can occur everyday. We have seen that with
the spreading technologies that are rising nowadays, there are plenty of methods to
overcome to the problem assuring efficiency when dealing with road security but, of
course, everything is running at the speed of light and the technologies need an update
as soon as it is possible.

In this fast scenario, the concept of Internet of Vehicles (IoV) came into being.
The conventional VANET technology is evolved to the Internet of Vehicles in a way
to do not only provide traffic security while driving, but as a system where each
vehicle is seen as an intelligent object, equipped with sensors, computing facilities,
control units and storage units and is connected to any entity (other vehicles, RSUs,
stations, cloud, etc..) by exploiting the concept of the Vehicle-to-everything (V2X)
communications [27].

IoV is thus a dynamic mobile communication system between vehicles and resources
with high controllability, operability and credibility which is expected to provide
real-time road traffic information, protect the travel comfort, and improve the trans-
portation efficiency [28].

Figure 3.8: IoV illustration.

31

The deployment of the IoV will lead the technology of VANET a step further, closer
to the implementation with the cellular 5G technology allowing more advanced appli-
cations to optimize traffic control, sharing more exact information quickly, enabling
assisted and autonomous driving, and many more. Each vehicle will generate a con-
tinuous flood of data in constant growth; not a simple issue to deal with but something
to take into account when deploy the methods. IoV is massively working with Big
Data concept since modern vehicle consumes and generates large amount of data to
compute the information needed. Not merely this way to see the view, but reversely
also the fact that nowadays Big Data are easily accessible and analysable is something
that can help in the spreading of the IoV concept.

The major challenge that IoV has to go through with Big Data (see fig. 3.9) is that
the information could arrive from multiple sources and at different time each to an-
other. For example, the safety data, such as motion status or brake alert, should be
transmitted from one vehicle to its neighbors with stringent low packet loss rate and
end-to-end transmission delay, while the infotainment data could be transmitted from
vehicles to the RSUs connected with a longer delay tolerance [29].

Figure 3.9: Mutual relationship between IoV and big data.

Moreover, we should remember that data are coming from moving vehicles and are
forwarded to moving vehicles, without any (possibly) loss and information integrity
in the transmission. The coverage scale of Iov is therefore addressed to the large
propagation range and to the high signal penetration capability in order to reach

32

each device in a wide area. The data may (most of the times) require different QoS
while transmitted, meaning different propagation delays and transmission data rates,
with a need of massive management to be implemented. In general, we can say that
IoV requires high bandwidth to be able to implement all the services it is mention to
support.

Furthermore, each vehicle will be a kind of server for people to implement the parallel
technology of the Internet-of-Things (IoT), whose devices on the road are increas-
ing exponentially in the last years. It is no more a secret that IoV and IoT will be the
technologies that will dominate the market in the coming years and their cooperation
will support any type of industry that based its expansion on communications.

33

3.6 Summary VANET Technology

In the scheme below are shown all the technologies mentioned in chapter 3:

Figure 3.10: Scheme 2: VANET technology.

34

Chapter 4

Geometry-based Efficient
Propagation Model for
Vehicle-to-Vehicle
Communication

4.1 Geometry-based Models

When dealing with mathematical problems there could be the need for a method
that uses shapes to better understand the elements that are involved in the situ-
ation. Geometric modeling is that part of math which making use of algorithms
for the mathematical description of these elements, which are indeed any kind of
shapes necessary for the computational counts. The shapes used are two-dimensional
(in technical drawing) or three-dimensional (in computer design SW), but a general
definition can be seen as whichever volumetric model with finite dimension able to
describe the model in the best possible way.

A geometry-based model can be adapted also in the vehicular communication by
defining those shapes similar to real-world scenario: we are talking about the commu-
nicating nodes taken at a certain moment, i.e. communicating vehicles; we are talking
about all types of obstructions that can occur during communication, whether they
other vehicles, buildings or foliage on the streets simulating traffic conditions.

The geometry-based model used in our scenario takes into account the vehicle-to-
vehicle communication and fits perfectly with the use of VANET as the network
topology at the basement.

36

It is the Geometry-based Efficient propagation Model for Vehicle-to Vehicle
communication (Gemv2).

Before entering in the detail of the tool, it is better to understand the reasons why
VANET needs this implementation to work.

We have said VANET facilitates the development of the Intelligent Transport System
and its role in supporting the Internet of Vehicle’s services to which VANET is evolving
to; it is nowadays fully integrated with the 5G technology, it takes advantages from
Device-to-Device paradigm to reach the correct Safety Message dissemination in the
scenario, making use of the V2X (focus on V2V and V2I) as the communication
method for the purpose.

So why there is a need for something different to fully exploit the advan-
tages of such network? First, it has to be considered the high cost of deployment
for a traffic scenario that involve a massive use of vehicles and objects in the simula-
tion; then, there is no account for specific link conditions, let’s say that the concept of
obstructing/non-obstructing objects in the path is only consider in the theory, thus
not all the traffic conditions are really take into account. Last, the already existing
models currently used in VANET cannot utilize geographic descriptors to enable spe-
cific features of the V2V communication. These are the reasons why to fully simulate
a real traffic scenario, VANET and GEMV2 are used in cohesion on a SW simulator
(OMNeT++, explained later on).

4.2 Tool Features

When dealing with Gemv2 [30], there are some features to take into account:

• it models the outlines of objects in the model and use them to differentiate traffic
condition based on a link classification: Line-of-sight (LOS) and Non-LOS
(NLOS) are introduced;

• calculates the signal variations in the communication capturing both small-scale
and large-scale signal variations (due to the high dynamic nature oh vehicular
simulation) and using different propagation methods, such as Path-loss model,
diffraction/reflection characteristics, shadowing or fading communication;

• it considers different urban scenarios and environments: urban, suburban, high-
way, open space, etc..

• it uses external tools to simulate real-world scenarios and GPS locations of
vehicles: SUMO and OpenStreetMap software;

• it stores the outlines of the shapes used, being them vehicles, buildings, foliage,
etc.. in a custom structure: the R-Trees structure;

37

• it exports the visualization of the simulation to KML format, CVS file (a format
similar to the Excel file) or SQL database;

• it can be used in MATLAB or OMNeT++ software, depending on the operating
system (the OMNeT++ implementation works better under a Linux environ-
ment).

4.3 Path Loss Type: Free Space and Obstructed
View

When simulating a real world scenario it has to be taken into account the environment
in which vehicles are running, and so the scenario where we are working on. Since
vehicles have relatively low heights of the antennas mounted on them (it cannot
go so high even when considering a van or a truck), it is reasonable to say that the
connection between the communicating vehicles will be obstructed by obstacles, either
static (buildings, hills, foliage) or mobile (other vehicles on the road) [31].

It is reasonable to say that a significant portion of the communication will be lost
and it is important to create a methodology to better understand this impact in the
transmission and how it makes the signal worst than the original.

The concept of Line-of-sight (LOS) and Non-Line-of-sight (NLOS) is introduced. A
LOS condition occurs when the two communicating vehicles have no obstacles between
them, thanks to the fact that most probably they are running on the same straight
lane meeting each other (reverse driving way) or going in the same direction. A
NLOS condition occurs when something it is in between the direct path pf the two
communicating vehicles, being it static or dynamic. Of course, during a transmission,
a single node (vehicle) can experience both LOS and NLOS conditions multiples
time, that’s way it is important to introduce an appropriate counts when running a
simulation.

Moreover, it is important to distinguish the different ”types” of NLOS conditions the
vehicles has encountered because each of them has different parameters that are used
to make further computations (i.e. scattering, propagation, reflections, etc..). The
Non-Line-of-sight is so divided in:

• NLOSv: Non-LOS due to the obstruction from other vehicles in the path;

• NLOSb: Non-LOS due to buildings in the scenario;

• NLOSf : Non-LOS due to the foliage on the path (vegetation such as trees,
bushes, shrubbery, etc..).

38

Another aspect to consider when working on real scenario is the scenario itself, mean-
ing the environment in which the considered vehicle is running; there are scenarios
where we will experience an higher counts of vehicles running and obstructing the
connection, there are other scenarios where the impact of buildings if more significant
w.r.t. to other obstructing objects. And, not negligible feature, different obstacles
lead to different behaviour of the transmission being it a direct/reflected/diffracted
path. The figure 4.1 shows the conditions offered by Gemv2 in which we can being
when simulating:

Figure 4.1: Link types and propagation effects captured by Gemv2. White rectangles
represent vehicles, gray rectangles represent buildings.

We can mainly divide the distinguishing in four areas [31]:

• Highway: only NLOSv is considered in a high mobility environment (obstruct-
ing vehicles are moving);

• Parking lot: again, only NLOSv is considered but here obstructing vehicles
are mostly still;

• Suburban area: wide streets are typically lined with small buildings and trees,
with some occasional crests or blind corners;

• Urban canyon: streets cut through dense blocks of tall buildings that affect
the transmission.

When running a simulation, sometime also the Time of the day is taken into account;
in fact, the same scenario gives different LOS or NLOS conditions if evaluated in rush
hours or night hours.

39

4.4 Summary Gemv2 Technology

In the scheme below are shown all the technologies mentioned in chapter 4:

Figure 4.2: Scheme 3: Gemv2 technology.

40

Chapter 5

Frameworks and Tools
Supporting the Discrete
Event Simulator

In this chapter it is shown the whole set of Frameworks and Tools supporting the
simulation of VANET and its expansion using Gemv2. They are not explained in
deep detail since some of them (e.g. OMNeT++) would need pages to fulfill every
argument.

The detail about how to install the every mentioned tools to be used in the simulation
to run correctly are shown in the appendix at the end of the work.

42

5.1 OMNeT++

OMNeT++ is a discrete event network simulator software providing to the user all
the modules necessary to compose a real world scenario [32].

Tools and modules available from OMNeT++ are coded in C++ language and the
user can add his own features if a new implementation from an already existing one is
needed. Different modules, or entities (users, packets, vehicles in this work) commu-
nicate with each other through a message exchange system, the basic principle of the
simulator. A complete suite of libraries is given to the user to perform simulations in
different environments and conditions.

The main areas where OMNeT++ is used include: network protocols, queuing sys-
tems, multiprocessor systems with parallel tasks, evaluation of the performance of
a complex system such that of vehicular communication with different agents and
objects involved [33].

From here, it starts an overview about the OMNeT++ structure (see fig. 5.1).

5.1.1 Model

An OMNeT++ work is called ”project” and every project follows the same model
when opened in the simulator:

• Modules: each part of the project is a set of different modules with a specific
task to be performed.

(a) Simple module: active component of the model that perform one or more
specific tasks;

(b) Compound module: a set of Simple Modules performing more complex
tasks.

• Messages: the way how modules communicate each other;

• Connections: link from one module to another used for the transmission of
messages;

• Gates: doors from where a connection is established;

• Network: the series of Simple and Compound Modules of the project.

43

Figure 5.1: OMNeT++ model.

5.1.2 Structure

As done for the model, also the structure of the project has a fixed definition for each
simulation. In order to run a simulation, these components must always be present
(see fig. 5.2):

Network Description (NED) file
Definition of the network and of the modules (both simple and compounds), set up and
managing of the connections between modules, initialization of the module’s gates.
This can be done through a graphical view or acting directly on the C++ source code.

Source (.cc) file
The source file contains all the logic of the project. In particular, it defines the classes
used by the modules initializing the functions that will be called by them. It imports
libraries available from the Header (.h) file. Moreover, it defines and initializes
two fundamental methods for the exchange of messages: the ”initialize” method to
create the message and perform actions on it and the ”handle” method to manage
the message during its lifecycle.

Network Configuration (.INI) file
Sets parameters and configures the behaviour of the simulation, both for single and
common variables. It sets up the parameters used by the modules (size, range, posi-
tion, etc..), sets up of the simulation parameters (number of repetition of an event,
timer, etc..), enable/disable of the records for what concerning the collected statistics
and results of the simulation.

44

The combination of these files lead to a complete project that can now be run.

Figure 5.2: Relations of the files in OMNeT++. The example comes directly from
the files used in this work.

5.1.3 Results

At the end of the simulation it is possible to analyse the results that have been stored
[34][35].

5.1.3.1 What it is stored

The system is able to record vector or scalar values by default, then also histograms
can be recorded if enabled in the .INI file.

• Output vectors are time series data, recorded from modules or channels. They
are used to record parameters such as delays, times related to packets or queues,
states, packet drops, etc..;

• Output scalars are summary results, integer or real numbers, representing
summary statistics as counts, maximums/minimums, standard deviations, sums,
etc..;

• Output histograms are recorded as collection of more scalar results. Most of
the time, rates are recorded here.

45

5.1.3.2 How to record results

There are essentially two possible ways to record results:

Declared statistics
This method combines the signal mechanism and the NED properties. Statistics about
what it must be recorded are declared in the NED files with @statistic property, then
the correct module emits a @signal that is heard by the statistic and then uploaded
with the value.

Direct result recording
This other method needs the user knowledge of the C++ language since it acts di-
rectly on the code using the simulation libraries. Statistic results are collected in
class variables inside modules, then a call to the functions is performed invoking the
recordScalar() or recordVector() functions; using the classes cStdDev it is possible to
store summary statistics like mean, standard deviation, min/max, etc.. while with
other histogram-like classes (cHistogram, cPSquare, cKSplit, etc..) it is possible to
record distributions of values.

5.1.3.3 Enable/disable the records

Now that the values are recorded, the user can decide to see it or not via the en-
able/disable functions from the .INI file.

(a) All recording from a @statistic can be enabled/disabled together using the
statistic-recording option;

(b) Recording of a scalar or a statistic object can be controlled with the scalar-
recording option;

(c) Recording of an output vector can be controlled with the vector-recording op-
tion;

(d) Recording of the bins of a histogram object can be controlled with the bin-
recording option.

The method to enable/disable would be:
module-path.statistic-name.statistic/scalar/vector/bin-recording = true/false

Example of usage:
**.queueLength:max.scalar-recording = true

Another method is to tell the system which modes must be recorded, where ”modes”

46

could be all (count, mean, max, vector), - (none of that), or a combination using - or
+ (-vector, +histogram).

Example:
**.result-recording-modes = all, -vector, +histogram

The collected results are stored in the Results folder. OMNeT++ provides a graphical
interface for the analysis of such results:

Result Analysis (.ANF) file
Default results can be retrieved in scalar (.sca) and vector (.vec) files, but with some
C++ command lines it is possible to export them in a tabular file (.csv) or in a
SQLdatabase. Besides scalar and vector files, also a log file can be created containing
all the significant events occur during the simulation.

Opening the scalar and vector files simultaneously, the .anf file is created. Here it is
possible to act on the recorded values defined by the signals emitted and the related
collected statistics. Through the Browse Data button it can be shown the vectorial
and scalar data recorded, as well as the histogram data from which it is possible to
plot the results on a graph. Through the Dataset button it is possible to create
pre-defined functions to work on the data and create extra information coming from
an equation or a combination of different data.

47

5.2 Artery

Before introducing Artery, some words have to be spent about ”Veins”.

Vehicles in Network Simulation (Veins) is an open source network simulation
framework specifically created for vehicular communication, giving simulation models
and tools to be executed on an event-based network simulator (e.g. OMNeT++),
while interacting with a road traffic simulator (e.g. SUMO), taking care of setting
up, running, and monitoring of the simulation [36] (see fig. 5.3).

Veins is designed to serve as an execution environment for user written code, which
typically includes an application, created for the needs of a simulation; the framework
is in charge of modeling lower protocol layers and node mobility, taking care of the
setting up of the simulation, collecting results during and after the simulation. It
contains a lot of pre-defined simulation models that can be used on a simulation or
not, it is not mandatory to use them all at the same time.

As an extension of Veins, in 2014 Artery born.

Veins put emphasis on WAVE protocol, which is the U.S. counterpart of the ITS-G5
developed in Europe (both coming from the IEEE 802.11p project). Starting from
this division and from the fact that Artery framework works primarily on European
standard, Artery took the name just as an association of names between the veins
and the arteries of a human body.

As a general definition, Artery enables V2X simulations based on ETSI ITS-G5
protocols. Single vehicles can be equipped with multiple ITS-G5 services through
Artery’s middleware, which also provides common facilities for these services. Some
basic services, such as Cooperative Awareness (CAMs) and Decentralized Notification
(DENMs), are already included [37].

Even if Artery is an extension of Veins, in the years it is grown as a separate framework
leaving the necessity to be added to a complete Veins environment to run. Nowadays,
Artery can be run without Veins when the radio model from INET framework is
emplied as explained later on. It is possible to install Artery framework on a network
simulator, OMNeT++ in this work, and let it run with the external extensions of
INET and others directly without the need to call them every time a simulation is
performed. Further details on how to install it can be found in the Appendix.

48

5.2.1 Features

Artery framework [38] enables the V2X mechanisms in a simulation environment,
the Cellular-V2X protocols and the V2X applications, providing the communication
links, the interfaces for the nodes, the message communication mechanisms, the set
of features to work with 5G mobile networks and the instruments to pass from one
cellular mode to another (mode 3 and mode 4 of the 3GPP standards) dynamically.
It provides a complete set of components to integrate the different part of a vehicular
transmission, such as vehicle mobility, the environment in which vehicles are running,
the radio environment for the communications, the V2X services and communication
protocols with a strong separation between the facilities. It also gives support for
those features that have to be implemented with an external tools (e.g. those coming
from INET framework) without any notices for the user that has to be do nothing to
use them.

Artery supports three modes in a common scenario, switching from one to another in
a dynamic way: (i) uplink/downlink, (ii) network-assisted sidelink mode 3 and (iii)
out-of-coverage sidelink with distributed resource allocation and management mode
4. In this way, the simulation takes a more realistic condition of vehicle mobility,
using both up/downlink transmission in a scenario where it can go from network
coverage (mode 3) to out-of-coverage (mode 4), supporting also the network-assisted
D2D when needed.

Artery gives modularity to its layers, which are clearly separated each other and
communicate using an exchange of messages mechanism:

(a) The user-plane layers are implemented as simple modules and encapsulated into
compound modules in OMNeT++, called Network Interface Card (NIC);

(b) The control-plane acts as an independent layer that communicates through mes-
sages;

(c) Traffic model scenario of V2X (i.e. V2V as major paradigm used here but
also the others) are developed through the use of road traffic simulator such as
SUMO, constructed inside the simulator (OMNeT++);

(d) The link path that a vehicle experiences is given by Gemv2, implemented in
Artery as a separate environment can be run autonomously;

(e) The message mechanism used is the already cited CAM and DENM system;

(f) The support for an heterogeneous traffic enables both IP-based and non-IP-
based transmissions;

(g) The conventional scheduling schemes are implemented: Round Robin, Deficit
Round Robin, Maximum Carrier over Interference, Proportional Fair queuing.

The implementation design consists of two floors: on the lower floor, there are the
Cellular-V2X protocols including the Access Modules, the Control Plane with

49

the Radio Resource Control (RRC), the Mode-switching Control Module, the
User Plane, the Physical Module Component (PHY) (information about antenna
power, channels, cells, etc..), the Medium Access Control Module (MAC), the Packet
Data and Convergence Protocol (PDCP) (to connect components between Cellular-
V2X and network) and the Radio Link Control (RLC) (for the multiplexing/de-
multiplexing of MAC units). On the upper floor is used to generate and receive V2X
messages and make available the usage of the ITS facilities.

5.2.2 Architecture

Running one of Artery’s tool (i.e. Gemv2 in this work), two programs are launched
simultaneously working hand-in-hand during the simulation [2].

On one side is the (vehicle) traffic simulator, thus SUMO. It reads a configuration
file at start, which refers to XML files defining the road network, the traffic demand
(where and how many vehicles are on their way etc..), and optionally miscellaneous
polygons describing the outline of building or vegetation.

On the other side is the event simulator giving the environment where the simulation
is running, thus OMNeT++. It executes a target file (run-gemv2), it launches the
TraCI manager responsible for launching the SUMO process and connecting the traffic
command interface via TCP. Then, Artery retrieves the mobility parameters of SUMO
vehicles via this TraCI connection for each SUMO simulation step.

Figure 5.3: Artery architecture [2].

50

5.2.3 Middleware

The Middleware can be described as a central hub module mounted on each vehicle
in charge of provide V2X services (applications) dynamically during the simulation,
such as giving the lifecycle of V2X modules, forwarding of V2X messages from lower
layers, sharing facilities among services thus allowing one module to get access in
another module [39]. The services are created according to an XML configuration
file.

One important task of the Middleware is to store a so call ”LocalDynamicMap” for
saving the received CAMs messages in order to be able to forward them again in
the case a new station come in range during the simulation right after the previous
sending station (the one which first transmitted the message) has already gone at the
time the new station come.

Another important task is to give access to vehicle data such as position, speed, etc..
or to compute an hypothetical path to provide through the VehicleDataProvider.

5.2.4 Environment Model

Each vehicle in the simulation is equipped with sensors attached to the front, rear,
left or right of its body which are in charge of understand how many and which
other vehicles are in the range and in the field-of-view for a transmission. Ranges
and field-of-views can be configured individually, but usually they are defined in the
path-loss file inside Gemv2 link type’s files; buildings and other vehicles can block the
line-of-sights [40].

In the figure 5.4 we can see vehicles running in the environment filled with blue color;
each vehicle has a cone which define the range on transmission, while line-of-sights
are drawn as dashed lines in the same colour as the corresponding sensor cone. Static
objects such as buildings and foliage (not present here) are coloured in green.

51

Figure 5.4: Example of simulation running. Each vehicle has its range of transmission
(visualized as a cone) and the field-of-view (visualized as dash lines).

Each vehicle has its LocalEnvironmentModel, which is the vehicle’s local perspective
on the environment. The local environment model is composed of a set of sensors
where filter rules are defined by XML files similarly to what happen in the Middleware.

5.2.5 Storyboard

The Storyboard module is necessary due to the dynamic behaviour of vehicles during
the simulation: traffic density varies, traffic jams may build up, weather conditions
affect the speeds, vehicles run in different direction, accidents can occur and SUMO
has no notification of such changes; all these changes are modeled in the Storyboard
[41]. Multiple stories can be registered, each consisting of different conditions and
related effects, alone or as a combinations of different events.

5.2.6 Gemv2 in Artery

The C++ implementation of Gemv2 has been written from scratch by Thiago C.
Vieira (Universidade Federal do Parana - UFPR) and Raphael Riebl (Technische
Hochschule Ingolstadt - THI). However, Mate Boban’s Matlab code and Artery’s

52

C++ version share some ideas, such as the usage of R-trees. While the Matlab
implementation computes received power for each communication pair per time step at
once, in Artery the signal attenuation per transmission is computed by implementing
INET’s IPathLoss interface. Hence, you can only use Gemv2 with the INET radio
model at the moment [42].

5.3 Inet

INET Framework is a simulator specifically designed for communication networks.

INET is a set of protocols and models useful when there is the need to try an already
existing network or a new one, maybe trying new paradigms and scenarios. It provides
models for network layer (TCP, UDP, IPv4, IPv6, OSPF, etc..), wired and wireless link
layer protocols (Ethernet, PPP, IEEE 802.11, etc..), support for mobility, MANET
protocols, DiffServ, MPLS with LDP and RSVP-TE signalling, application models,
and many others [43]. Its primary concept is the communication between modules
by messages. Its single components are combined to form more complex modules
working together, that could be hosts for the user or routers, switches and network
devices for the network itself.

INET has a strong base for the development of LTE and vehicular networks, and that
is how it is used in the OMNeT++ simulator: as an open source model library sup-
porting the simulation environment. Moreover, it makes use of the services provided
by OMNeT++ for its purpose, meaning that it is possible to evaluate the results
coming from INET’s components directly in the OMNeT++ environment, using the
graphical or command-line view.

5.3.1 Features

Here are shown some of the major INET’s features that can be used while working
with the framework. Then, some of the modules (packages) mostly used in this
work are explained more in detail (references lead to the specific pages in the INET
framework site).

53

• OSI layers: physical (scalable level of detail), link, network (IPv4/IPv6), trans-
port (TCP, UDP, SCTP), application models;

• Additional plug-ins for further protocol implementation;

• Routing protocols: wired/wireless and ad-hoc;

• Wired/Wireless interfaces: Ethernet, PPP, IEEE 802.11, etc..;

• Mobility support;

• Network emulation support;

• Visualization support;

• Physical environment modeling support.

Each feature has several packages in charge of implement it. There are packages for
the specifics required by the protocol, packages implementing rules to be applied,
packages that link different part of the same module or that link several module,
packages which develop the interfaces, etc..

5.3.1.1 Layered Protocol Base

This module takes an important role since it is where a first definition of the signals
(the method used to register significant events and then record them) is placed (see
fig.5.5). Here, the mechanism of packet ”sent-to-upper” and ”sent-to-lower” (layers)
is mentioned, as well as packet ”received” and packet ”drop” [44].

A more precise definition of what signals are and how to use them as well as which
signals are recorded in this work to analyze them as results of the simulation will be
provided later on in the simulation chapter.

54

Figure 5.5: INET-LayeredProtocolBase definition of signals.

5.3.1.2 Physical Layer Base

Beside another definition of the signals already mentioned in the previous sub-section,
here what it is really interesting is the implementation of the Radio Module and
Shortcut-Radio module [45].

The Radio module describes the physical device that is capable of transmitting and
receiving signals on the medium. It contains the sub-module for the antenna, the
transmitter, the receiver and the energy consumer models. It also supports changing
in the radio mode (mode 3-4 and viceversa) and transmission power. It has the defi-
nition of new signals and related collected statistics to be used in the result analysis
[46].

Figure 5.6: INET-PhysicalLayer-Radio definition of signals and collected statistics.

55

The Shortcut-Radio module implements a simple shortcut to peer radio proto-
col that completely bypasses the physical medium, thus it permits to directly sends
packets to the other radio module without any physical layer processing in the radio
medium.

To be reported is also the module interface IRadio in charge of the transmission
of frames over a wireless medium. In transmission, upper layers can send frames to
the radio module which encapsulates them into signal messages to be distributed to
other network nodes in the communication range (another interface communicates
the list with the node positions and interference with other nodes); In reception,
the received signals are sent to the gate of the radio module and, if they have been
received correctly, they are decapsulated and the retrieve frame is sent to the upper
layers [47].

5.3.1.3 Mobility Base

Module used to setting up mobility parameters and areas in which the mobility is
constrained [48].

Parameters:

(a) position

(b) velocity

(c) speed

(d) acceleration

(e) angular position

(f) angular velocity

(g) angular speed

(h) angular acceleration

5.3.1.4 Antenna Base

Related to the Mobility Module through the Mobility Interface, this module gives all
the possible set of antennas the user can use in the simulation [49]. In this work, only
Isotropic [50] and Parabolic [51] antennas are used.

56

5.3.1.5 Physical Environment

All the elements that affect the integrity of the transmission are listed in this module:
objects and surfaces influence propagation, absorption, refraction and reflection of
signals [52].

The module defines a set of physical objects which are loaded from an XML configu-
ration file. The elements that compose the objects are:

• object: id, name, position, orientation, color, outline width, opacity, texture;

• shape: id, type, size, radius, height, points of the polygons;

• material: id, name, resistivity, relative permittivity, relative permeability.

5.3.1.6 Flat Ground

It is the typical view related to the ground environment that is used in a simulation:
considering the earth curvature as a flat ground is much easier and best fits with the
real scenario where a little portion of city or whatever considered scenario could not
be affected by the curvature of the Earth [53].

5.3.1.7 Scenario Manager

Used for setting up and controlling simulation experiments, scheduling events and
their time, changing parameter values and/or rates, removing or adding connections,
removing or adding routes, etc.. It executes an XML script [54].

57

5.4 Vanetza

Vanetza is an open-source implementation of the ETSI C-ITS protocol suite [55]. It
is basically a series of C++ libraries working both autonomously and together adding
features to the simulator that it is used, OMNeT++ in this case.

Vanetza’s most important features added are:

• GeoNetworking (GN) over IP multicast, among the communication tech-
nologies;

• Basic Transport Protocol (BTP) as transport layer protocols;

• Decentralized Congestion Control (DCC) as traffic management system;

• Security;

• Support for ASN.1 messages, such as CAM and DENM.

Here are the major features listed in a self-explanating table:

Figure 5.7: Components, dependances and features of Vanetza’s tools.

The combinations of these major features (and other minors) with the ITS-G5 channel
model of VANET (under the IEEE 802.11p paradigm) give how Vanetza is used in
the Artery framework.

58

5.5 SUMO and TraCI

Simulation of Urban MObility (SUMO) is a set of applications to enable traffic
simulation of a real world scenario. It is an open source traffic simulation package
that helps to investigate several research topics such as route choice, traffic light
algorithms, vehicular communications, etc.. allowing the simulation of automatic
driving or traffic management strategies [56].

SUMO can generate the network of roads, buildings and traffic density by using an
application called ”netgen”, which it is in charge of create a virtual map, or importing
portion or road maps coming from real world (e.g. a city or part of it) with the support
of other traffic simulators such as VISUM, MATsim or the most important and famous
OpenStreetMap.

In SUMO, every object has an identifier helping the visualization of the behaviour
during the simulation; in particular, each vehicle has a departure and arrival time,
velocity, dimensions, dynamic position, a pre-defined route to follow during the sim-
ulation; Also the buildings have their own features as well as the streets which have
dimension and traveling speed. The movement on the street is typically provided by
the intelligence navigation systems that nowadays are present on every vehicle in use.

In the vehicular communication, each object (vehicle) in SUMO receive extra infor-
mation from an external communication simulation, the Traffic Control Interface
(TraCI), that allows to retrieve values of simulated objects and to manipulate their
behavior ”on-line”. TraCI uses a TCP based client-server architecture to provide ac-
cess to SUMO [57]. Basically, TraCi gives an architecture to couple two simulators: a
road traffic (SUMO) and a network (OMNeT++) simulator. The traffic and network
simulators are connected in real time by TraCI thus enabling the control of mobility
attributes of each simulated vehicle [58].

In the figure 5.8, an example of possible exchange of messages in the TraCI architec-
ture is shown:

Figure 5.8: The example shows an exchange of TraCI messages.

59

5.5.1 Gemv2 in SUMO

In the Gemv2 folder we can find the files useful to upload the traffic scenario to be
launched by SUMO.

Each of the link type proposed by Gemv2 is composed by one SUMO configuration
file and two/three XML files to set up general parameters.

• LinkType.sumo.cfg: permits SUMO to load the network and road files for
traffic scenario;

• LinkType.net.xml: it contains parameters of the vehicles (length, width,
speed, shape) and of the street borders (lines) and it creates the links between
nodes representing the network in which they are connected;

• LinkType.rou.xml: it contains parameters regarding the route edge followed
by vehicles during their mobility in the scenario, it sets up the departure speed
and time foe each street and the maximum allowed speed in each street;

• LinkType.poly.xml: additional file not always present which defines parame-
ters regarding buildings and foliage’s lines.

5.6 R-Trees structure

When working with such a complicated simulation, something that helps to recognize
what objects are inserted in and classify them in dynamic/static objects is mandatory.

Since the simulation required a strong design and geo-data applications, spatial data
are used and so an index mechanism that helps in retrieving data items quickly
according to their locations has to be used: a dynamic index structure called R-Tree
structure is what meets the needs and give algorithms for searching and updating
objects [59].

The R-Trees structure is used to manipulate traffic objects using a hierarchical view
based on their locations in the map’s space. Moreover, it can distinguish moving
objects (here vehicles, but also pedestrians and drones in other works where they are
used) w.r.t. static objects (here buildings and foliage, but also different infrastructures
and networks in other works).

The structure is constructed with a top-down approach similar to what is done with
a binary-tree structure: every leaf node contains a pointer to a data object; a spatial

60

search is performed when needed but visiting only a limited number of nodes since
every index is completely dynamic and there’s no need for a reverse path in order to
jump from one node to another located far away from the considered branch. Each
tuple in this structure (a database indeed) represents a spatial object with a unique
identifier that is used to retrieve information regarding its leaf nodes to which it is
linked to in the form (I, tuple-ID) where I is an n-dimensional rectangle representing
the ”box” of the considered object, and tuple-ID identify the tuple in the database.

We won’t go into the details of the algorithms (searching, updating, insertion, etc..),
a good explanation can be found in Guttman Antonin work from 1984 [59] which
despite the little dated work, still remains current regarding the mechanism of the
R-Tree structure.

In the figure below, it is presented an R-Tree structure (fig. [a]) and the overlapping
relationships that can exist between the rectangles of the structure (fig. [b]).

Figure 5.9: [a] R-Tree structure.

Figure 5.10: [b] Relationships between rectangles in the structure.

61

5.7 Summary Frameworks and Tools Technologies

In the scheme below are shown all the technologies mentioned in chapter 5:

Figure 5.11: Scheme 3: Tools and Frameworks.

62

Chapter 6

Simulation Environment

In this chapter, we will go through each step of the set of instructions that has to be
followed to launch the Gemv2 tool in Artery project while working with OMNeT++.

The main purpose of this work is to understand how an already existing tool created
for the aim of vehicular communication behaves and how it can be usefull for the
needs of the end user. How the results given can help understanding a real-world
situation?

The code is already created, the end user run it and sees the behaviour of different
scenarios attributable to real world situations and make further analysis by using the
results file the software gives back or by using any of the external software available
on the market.

Further, the end user can take action on the code changing the main parameters for
new environments, such as transmitted power or range of transmission, or by storing
new parameters acting on the emitted signals.

64

6.1 Simulation flow

The simulation flow (see fig. 6.1) is the set of operations that are performed after the
launch of the program. Some of them are performed automatically by the system (e.g.
checking the already existing of previously loaded R-Trees), some other are choices
to be taken by the user (e.g. LOS/NLOS link type).

65

Figure 6.1: Simulation flow.

66

6.2 INI file, NED files and SUMO files

We have already talked about the role of the INI file in the section ”OMNeT++” in
chapter 5.
Here is the INI file from Gemv2 where we can: set the initial parameters, load the
first NED file (from there all the others NED files are sequentially loaded) which is
the World.ned file, view the SUMO files eventually launched when the link type will
be selected.

However, there are some assumptions that are made when using GEMV2 in the net-
work simulator and that typically are not changed in the configuration files involved:
(i) buildings are too tall for any meaningful amount of power to be received over them;
(ii) in environments where other objects (besides vehicles, buildings and foliage) e.g.
lamp posts, signs, railing, etc.. are placed in the scenario, GEMV2 does not consider
them as obstructing objects; (iii) scattering is typically non considered due to its po-
tential ”large-number” nature; (iv) it is assume a flat-ground earth as terrain for the
simulation.

67

omnetpp.ini simulation file:

68

Figure 6.2: omnetpp.ini simulation file

69

The World.ned file (see fig. 6.3, 6.4 and 6.5) is the initial NED file that is loaded
by the system. It contains the basic parameters and sub-modules that are needed to
go through each step of the simulation.

Figure 6.3: World.ned file: Design view.

Figure 6.4: World.ned file: Submodules.

70

Figure 6.5: World.ned file: Source view (C++ code).

71

Import is the way OMNeT++ links different NED files to work in cohesion during
the simulation. It means that not only one single NED file (the World.ned file) is
uploaded at the beginning and then nothing else happen, but a bunch of NED files
are loaded and simultaneously running for a more realistic simulation.
Several NED files are loaded for the managing of the transmission, the connections
between nodes, the antenna and radio parameters, and so on..
(In the figure above we can clearly see an example of ”import” of NED file, right after
the name of the package file the file is referred to).

As initial parameters, the default NED files are loaded (e.g. the Car.ned file from the
artery-inet path).
As sub-modules, the basic elements in charge of controlling the situation while the
simulation is running are created.

• Traci Manager: Management parameter (e.g. startingTime), launcher files
(e.g. configuration file, SUMO launcher file), parameters related type of nodes
and type of mapper to be used (e.g. people and vehicles involved)(see fig. 6.6).

Figure 6.6: Traci Manager.

Here is where the SUMO files related to the link type are first loaded by the
Traci Manager with the following line of code:

*.traci.launcher.sumocfg = ”LinkType.sumo.cfg”.

72

• Radio medium: all the sets of parameters used to define the medium channel
that is used, such as pathLossType (in our case, it is always Gemv2), back-
ground noise parameters, propagation parameters, etc.. (see fig. 6.7).

Figure 6.7: Radio medium.

• Physical Environment: groundType file, temperature, spaces (see fig.6.8).

Figure 6.8: Physical Environment

73

• Static Nodes and Nodes: parameters related to the vehicles involved (an-
tennas, belonging RSU, mobility parameters, etc..)(see fig. 6.9).

Figure 6.9: Static Nodes and Nodes.

Still in the INI file, we can see the different link type that can be chosen when using
Gemv2.
LOS, NLOSb1, NLOSb2, NLOSv, NLOSf and their extensions, such as the differen-
tiation of the antenna heights when selecting the LOS type.

From that, what happens is that the configuration file of SUMO will go through its
code sequentially launching the others SUMO files.

• LinkType.sumo.cfg: the configuration file where .net and .rou xml files are
launched (see fig.6.10).

Figure 6.10: LinkType.sumo.cfg. Here the LOS type is shown.

74

• LinkType.net.xml: as explained is chapter 5, in the .net file we can find all
the parameters about vehicles, such as length, width, etc.., about the link from
one vehicles to the others creating the ”network” of communicating vehicles and
the parameters regarding the lane’s shapes and borders (see fig.6.11).

Figure 6.11: LinkType.net.xml. Here the LOS type is shown.

75

• LinkType.rou.xml: route edges followed by vehicles , speeds and times (see
fig.6.12).

Figure 6.12: LinkType.rou.xml. Here the LOS type is shown.

• LinkType.poly.xml: additional parameters regarding building and foliage
shapes (see fig. 6.13).

Figure 6.13: LinkType.poly.xml. Here the NLOSf type is shown.

76

6.2.1 Modifications to the code

Some modifications have to be done to the code of the INI file (see fig. 6.14) in order
to store some data that are not automatically stored but that they already have the
signal declarations, emissions and listening methods implemented in some other NED
files, especially from the INET framework.

Figure 6.14: Modifications.

6.3 Launching from the terminal

Here it is shown the schema needed at the beginning to launch the simulation:

Figure 6.15: Simulation schema.

77

So first thing to do is to open a new terminal, move from ”home” directory to ”Artery”
and launch the Gemv2 tool with the cmake command; A better explanation of the
set of operations to perform the command is given in the Appendix A: Installation
Guide.

The simulator will automatically upload the frameworks it needs (OMNeT++, traci,
SUMO, etc..) and, at the end, a window of the simulator OMNeT++ will be dis-
played.

6.4 LinkType choice

Once the simulator is ready, a multiple choice menù will be displayed on screen (see
fig. 6.16). Here is where the user can decide in the bunch of possibilities which link
type he want to simulate; the possibilities are the ones proposed by Gemv2 tool: LOS,
NLOSv, NLOSb, NLOSf and all their extensions related to them.

Figure 6.16: Gemv2 menù.

78

6.4.1 Gemv2 link type

As we have already said, Gemv2 link choice is not only related to the non-obstructed/obstructed
path but there also some other features that can be performed in the simulation.

LOS type has 3 extensions related to the different antenna heights mounted on on
top of the vehicles (low, medium, high).
NLOSb is first divided in ”b1” and ”b2” where it can be found a different expan-
sions of number of buildings in the path, number of streets and number of vehicles
involved. Then, we have 2 extensions for b2 type and 3 for b1 type: [a] Diffraction-
Refrection of the path (with a different minStdDev w.r.t. the basic NLOSb type),
[b] the implementation of the SmallScaleVariations (besides to the already running
LargeScaleVariations) and, only for b1 type, [c] DistanceSwitch extension (with a
more strictly range of transmission and the implementation of the free space loss pa-
rameter set to 2.9dB).
NLOSv and NLOSf have no extensions.

6.5 Graphical view

When the link type to be simulated is chosen, the OMNeT++ ide (the graphical
interface) is shown (fig. 6.17).

Figure 6.17: OMNeT++ graphical view.

79

Here we can find all the buttons to run the simulation in normal speed or fasten, some
others to search specific features while running, the counter of the number of events
occurred during the transmission and the time passed and 4 windows showing some
parameters:

1. Top left shows the major NED file used, the world.ned file, and the directory
containing the scheduled events.

2. Bottom left shows the modules implemented and their parameters when high-
lighted and opened. It varies while the simulation proceeds adding and/or
removing items (vehicles) when they reach their final destination.

3. Top right shows the modules used (defined in the INI file).

4. Bottom right shows the events occurred while running and significant charac-
teristics.

6.5.1 Visualization in SUMO

With the play button the simulation begins. But first, if the traci manager sees that
the SUMO graphical view is required, it launches it and the user is able to better
understand what it is going on through a more realistic scenario representing the
selected link type.

• LOS: 1 highway, 2 vehicles running in opposite directions meeting halfway.

Figure 6.18: LOS view: standard visualization.

Figure 6.19: LOS view: real-world visualization.

80

• NLOSv: 1 highway, 4 lanes but only 2 are used (and running in the same
directions), xxx vehicles already in the scenario since the beginning.

Figure 6.20: NLOSv view: real-world visualization.

• NLOSb1: urban scenario with 6 streets (4 with opposite directional lanes, 2
with single directional lane), increasing number of vehicles up to 19 vehicles
entering and exiting the scenario, 4 buildings.

Figure 6.21: NLOSb1 view: standard visualization.

81

• NLOSb2: urban scenario with 4 streets (each having double directional lanes),
increasing number of vehicles up to 8 vehicles entering and exiting the scenario,
4 buildings.

Figure 6.22: NLOSb2: standard visualization.

• NLOSf : urban scenarios with the introduction of foliage concept; 4 streets
(each having double directional lanes), increasing number of vehicles up to 8
vehicles entering and exiting the scenario, 1 forest and 5 bushes, 1 building.

Figure 6.23: NLOSf view: standard visualization.

Now, pushing the play button from the SUMO ide, the simulation can start.

82

6.6 While running

We can observe the progress of the simulation both in the SUMO ide and OMNeT++
ide.
The first one is more representative of what it is going on in the scenario meaning
that we can see the exact path where a vehicle is running and which are the other
vehicles it encounters during the simulation or when it enters or exits the scenario.
Using the OMNeT++ visualization we can track the events occurring in the simu-
lation or see which node or RSU is transmitting at a certain moment: stopping the
simulation, a typical situation is when we observe a node (fig. 6.25) or RSU (fig. 6.24)
tracking the paths of its messages (to which nodes transmit them) and after that see
the effective paths (fig. 6.26) follow by each of the packet containing the information;
plus, we can observe also those nodes not hit by the transmission and so not receiving
anything at that moment.

Figure 6.24: RSU path.

83

Figure 6.25: Node path.

Figure 6.26: Target nodes.

84

6.7 End of the simulation

Depending on the link type chosen, the simulation has different duration times.

At the end of the simulation, the results are stored in the ”results” directory in the
Artery - scenarios - Gemv2 directory; it can be access directly from the the directories
path or from the OMNeT++ ide typing $omnetpp in the console and opening a new
OMNeT++ window.

From the OMNeT++ view, we switch to the ”results” directory of Gemv2 and double-
clicking on the .sca and .vec files, which are the two files where the system has stored
scalar and histogram data in the .sca file and vectorial data in the .vec file.

85

Chapter 7

Numerical Results and
Analysis

In this chapter we will see which results are automatically stored by the tool and which
others can be stored with the changes to the code mentioned in the ”Modifications”
section of chapter 7.

Few comments before going on: Gemv2 is not a complete tool.
It was created by students as a thesis work [60], some of its parts have not been
completed while others are only mentioned and suggested but not coded yet. This
could be a good hint for any future works.

7.1 Parameters and Files Involved

Since Gemv2 is an already existing tool, there are some parameters that are taken as
always true by default and set by the system automatically and some others the end
user can work on to change the prediction on the scenario.

7.1.1 Fixed Parameters

• Flat ground: the physical environment takes as true a flat ground type, thus
not considering the earth’s curvature. That’s why the simulated scenarios are
not so big and, as it happens in real world, the curvature can be neglected in
such scenarios;

86

• 5.9 GHz: the carrier radio frequency on which Gemv2 works is the 5.9 GHz, a
transmission band that nowadays is contested between the wireless and the 5G
communications and not allocated yet;

• Band: the band use is the so called 5 GHz and the bandwidth is 10 MHz;

• Permittivity: relative permittivity for LOS environment = 1, by default. Rel-
ative permittivity of vehicles in NLOS environments = 6. Relative permittivity
of buildings in NLOSb and NLOSf environments = 4.5;

• Path loss exponent: = 2.9 dB;

• Polarization: vertical type;

• Antenna height: = 1.5 m from the ground. It changes in the LOS extensions;

• RSU height: = 7.1 m.

7.1.2 Changing Parameters

To best evaluate different possibilities in the same scenario, some parameters have
been taken with different values:

• Transmitter power: it varies from 0.01 mW (-20 dBm), to 1 mW (0 dBm),
endlessy to 200 mW (23 dBm) which is the value given by default;

• LOS/NLOS ranges: from all ranges equal to 100 m, to the default values and
finally to the default values multiplied by 10.

The different combinations used (different ”replicas”) are:

Figure 7.1: Combinations of simulated parameters.

87

7.1.3 .ANF file

Once the simulation is completed, the results can be accessed (1°) directly from the
”Results” directory in Artery path, (2°) exporting them in a CSV file or (3°) by
looking at them through the use of OMNeT++ graphical view. The third method is
the one we will use here.

Opening OMNeT++, we will search in the Artery - scenarios - Gemv2 - results di-
rectories.
Here there will be a set of files, typically 4 files for each scenario simulated, named (i)
LinkType.sca, (ii) LinkType.vec, the (iii) log file containing all the events occurred
while running and a (iv) LinkType.vci containing the data that the vectors will use.

What we are interested in is the .anf file (see fig. 7.2) containing all the results: select
all the file of the relative LinkType chosen for the anlysis, double click on the selection
and create the .anf file.

The .ANF file has 3 possible views attributable to the buttons placed at the bottom-
left side of it:

• Inputs: it resumes the file contained in the .anf file, indeed the .sca and .vec
files;

• Browse Data: it contains all the values recorded, from vectors to scalars to
histograms data;

• Datasets: where automatic computations can be performed at the end of the
simulation. The end user creates the dataset, adding values and performing
calculations, and see the results of the dataset on a graph or new file.

Figure 7.2: .anf file view. Here NLOSv type is shown.

88

7.2 Values Types

7.2.1 Browse Data: Vectors values

The values recorded here are series of values, but the single data cannot be accessed
individually. Infact, Gemv2 does not handle and has no concept of individual packets.

• radioChannel: number of the channel used in transmission, by default channel
n° 180;

• radioMode: counts of the switches from radio mode 3 to radio mode 4 and
viceversa for each node;

• transmissionState: number of occurrences that passes through each node;

• receptionState: number of occurrences received by each node;

• passedUpPk(packetBytes): packets (in terms of Bytes) the highlighted node
forwards to the upper layers of its pile;

• sentDownPk(packetBytes): packets (in terms of Bytes) the highlighted node
forwards to the lower layers of its pile;

• rcvdPkFromHL(packetBytes): packets (in terms of Bytes) the highlighted
node receives from the upper layers of its pile;

• rcvdPkFromLL(packetBytes): packets (in terms of Bytes) the highlighted
node received from the lower layers of its pile.

Few comments about the last four values.

Remembering the ISO/OSI stack (see fig. 7.3), we know that in each node the layer
in charge to deal with the packets is the second layer, the Link layer.

Here, the link layer receives packets from the upper layer (rcvdPkFromHL) when the
application needs to transmit a packet to any other node and sent it down to the
lowest layer (sentDown) that will transmits the packet on the network.
On the other side, the link layer receives packets from the lower layer (rcvdPkFromLL)
when the node has received a new one from any other node, and then it transmits
this packet to the upper layer of the stack (passedUp) with a flag set to true (when
the received packet coming from the network has some errors and it’s not correct) or
false (when everything went smoothly and run correctly).

89

Figure 7.3: ISO/OSI stack and the PassedUp/SentDown mechanism handling the
packets.

7.2.2 Browse Data: Scalars values

• Arrival computation count: total number of occurrences propagates by the
radio medium;

• bitrate: Gemv2 is specifically designed to operate at the 6 GHz band;

• countLOS/NLOSb/NLOSv/NLOSf : number of times the transmission has
experienced a communication without any obstacles or has been hampered by
a building/vehicle/foliage on its path;

• Interference computation count: number of times the radio medium has
experienced any kind of interference of the channel;

• port: on which the traci launcher has opened a connection;

• radio frame send count: number of occurrences the radio medium has for-
warded a frame on a transmission;

• passedUpPk(packetBytes) and passedUpPk(count): with the same mech-
anism already explained as vectors data;

• sentDown(packetBytes) and sentDown(count): with the same mechanism
already explained as vectors data;

90

• rcvdPkFromHL(packetBytes) and rcvdPkFromHL(count): with the same
mechanism already explained as vectors data;

• rcvdPkFromLL(packetBytes) and rcvdPkFromLL(count): with the same
mechanism already explained as vectors data.

7.2.3 Browse Data: Histograms values

This section is supposed to be the place where the system automatically computes
Error Rates to better understand what’s going on in the transmission.
Unfortunately, only a couple of rates really work while the other are not able to record
the right flag for correct/incorrect packets and so it cannot compute any rates.

• packetErrorRate: total number of occurrences involved in the computation
of packets transmitted wrongly;

• minSNIR: total number of occurrences involved in the computation of the
minimum signal-to-noise plus interference ratio and SUM of the mean value
of each (focus on sum, this is not the mean minSNIR of all the transmitted
packets!);

• bitErrorRate and SymbolErrorRate: not recorded.

7.3 Recorded Data

Here we will make some analysis of the given results trying to catch something related
in order to better understand what the tool can give to the end user to be replicated
in real-world situation.

7.3.1 Data not influenced by parameters

Some values do not change when transmitter power and/or ranges are set to different
values.

• count LOS/NLOS: number of times the communication has experienced a
clear transmission (LOS type) or something has blocked it (NLOS due to what-
ever thing).
It does not change even if there is a change in the range values and this is a big
limitation of the tool.

91

Where not necessary, the count of a NLOS due to something missing is consid-
ered as 0; indeed, it is reasonable that in LOS type with no obstacles in between
the count of NLOS occurrences is 0 (see fig. 7.4) or in NLOS due to the vehicles
the counts of NLOS due to the buildings or NLOS due to the foliage is 0 (see fig.
7.5) since the scenario is running on a highway with only vehicles as obstacles,
while in NLOS due to the foliage all the available NLOS types have a count (see
fig.7.6).

Figure 7.4: Counts of LOS/NLOS in LOS type.

Figure 7.5: Counts of LOS/NLOS in NLOSv type.

Figure 7.6: Counts of LOS/NLOS in NLOSf type.

92

• Transmission state: the number of packets sent by each node does not change
if we change the value of transmitting power or ranges. The node tries to for-
ward the same number of packets every time (fig. 7.7).

Figure 7.7: Transmission state.

• Arrival computation count: the number of occurrences that the radio medium
handle is the same no matter the transmission powers or ranges. Infact, has
seen for Transmission state, each node forward the same number of packets on
the radio medium each time (fig. 7.8).

Figure 7.8: Arrival computation count.

93

• Radio frame send count: as the Transmission state, also the Radio frame
forward on the radio medium is always the same no matter about the already
mentioned parameters (fig. 7.9).

Figure 7.9: Radio frame send count.

• Radio mode count: the number of times the one node has switched its status
from mode 3 to mode 4 does not change (fig. 7.10).

Figure 7.10: Radio mode count.

94

• Reception computation count: as already said for Arrival computation
count, here the concept is the same; each node forward the same number of
packets on the radio medium each time and thus the radio medium module
receive the same number of packets each time (fig. 7.11).

Figure 7.11: Reception computation count.

• Transmission count, TransmissionState count: each node forwards the
same number of packets on the radio medium each time (fig. 7.12).

Figure 7.12: Transmission count.

95

• rcvdFromHL, sentDown: as already said for Transmission count, each node
forwards the same number of packets and thus receives the same number of oc-
currences from higher layers sending them down to the physical layer to transmit
them, no matter about transmitting power or ranges (fig. 7.13).

Figure 7.13: SentDown.

7.3.2 Data changing with parameters

Here are reported all those data influenced by the different replicas applied:

• Reception state: a vector containing the count of packets received by each
node; this number grows with the power, thus more the power more the proba-
bility of receiving the packet (fig. 7.14).

Figure 7.14: Reception state.

96

• rcvdFromLL, passedUp: directly related with the reception of packets, it
changes with the increasing value of power meaning that if the power is low
the node is not able to forward the packet and thus to receive it; if it does not
receive the packet, it does not have something to bring up to upper layers (fig.
7.15).

Figure 7.15: PassedUp.

• minSNIR, packetErrorRate: directly related with the reception of packets,
it changes with the increasing value of power meaning that if the power is low
the node is not able to forward the packet and thus to receive it and thus the
number of errors and interference ratio is lower than in those cases where the
number of transmitted packets is higher (fig. 7.16).

Figure 7.16: packetErrorRate.

97

7.4 Analysis

In this section, we analyse the results given trying to make the most complete in-
formation we can, further doing some assumptions (based on what it is clear from
the values) and completing with some hypothesis (when there is not a clear data
explaining what we are looking for).

The mechanisms we will see are valid for all the different scenarios involved, even
when running any of the available extensions. The values change, the paradigms to
which we reach the information are the same.

We will use the NLOSb1 type just as a random choice among the link types.

• Arrival computation count → Reception computation count
They both refer to what happen in the radio medium, but the first one is also
referred to the propagation mechanism of the radio medium and has values that
are a little higher than the Reception counts due to the fact that at the end of
the simulation some of the vehicles that propagate a transmission are trying to
reach some others vehicles that already left the scenario, leading to a loss in the
total count (fig. 7.17).

Figure 7.17: Arrival computation count → Reception computation count.

• Reception computation count == Radio frame send count
Again, they both refer to what happen in the radio medium module and thus
the number of occurrences sent/received must be the same (radio medium is
different to the correctness of the communications between nodes).

98

• Radio frame send count ==
∑

(countLOS + countNLOS)
LOS/NLOS is something referred to the radio medium and, has already said
before, it is not related to the correctness of the transmission but it occurs every
time with the same counts (each node always tries to forward the same number
of occurrences encountering a LOS and NLOS type link) (fig. 7.18).

Figure 7.18: Radio frame send count ==
∑

(countLOS + countNLOS).

• Received Packet from Higher Layer == Sent Down Packet
At level 2 of the ISO/OSI stack (see figure 8.3 in Values Type section) packets
are received from upper layers and then they are sent down to level 1 to be
forwarded on the channel (fig. 7.19).

Figure 7.19: rcvdPkFromHL == sentDownPK.

99

• Received Packet from Lower Layer == Passed Up Packet
As we have said for HigherLayer/sentDown, here the principle is the same but
from level 1 of the stack the pakctes arrive at level 2 and then from level 2 they
are passed up to the upper layers.
Before the forwarding to upper layers, a flag is set to true/false based on a
correct/wrong reception of packets during the transmission.

• Transmission count ==
∑

(rcvdPkFromHL) ==
∑

(sentDown)
If packets from upper layers arrive at level 2 of the ISO/OSI stack (received
from higher) and then from here are forwarded to level 1 (sent down) in order
to be transmitted to other nodes, then it is reasonable that the sum of this
packets sent down to be transmitted is equal to the number of occurrences in
the communication, indeed the transmission count (fig. 7.20).

Figure 7.20: Transmission count ==
∑

(rcvdPkFromHL) ==
∑

(sentDown).

100

7.5 Graphs

Here a couple of interesting graphs are shown.

7.5.1 Path Loss Type

In the first graph (see fig. 7.21) we can see the relation between the link type run
in the simulation and the percentage of LOS/NLOS-due-to-X that has influenced the
transmissions.

LOS NLOS_B1 NLOS_B2 NLOS_V NLOS_F
Type Link Name

0

20

40

60

80

100

Co
un

t

Path Loss
LOS
NLOS_B
NLOS_V
NLOS_F

Figure 7.21: Path Loss Type graph.

On the X-axis there are the different link types that Gemv2 is able to run; for each
of them, a bar shows the percentage of path loss for each link type.
As we can see, in LOS type, where there are no obstacles blocking the communication,
there is a 100% of LOS as path loss, while the foliage’s obstacles is only introduced
while running a NLOSf type.

101

7.5.2 Passed Up Packets count

In the second graph (see fig. 7.22) we can see the total amount of packets that are
forwarded to the upper layer by level 2 of the ISO/OSI stack and that is represented
by the passedUpPk:count data.

NLOS_B1 NLOS_B2 NLOS_V NLOS_F
Type Link Name

0

1000

2000

3000

4000

5000

6000

7000

Co
un

t

Power (dBm)
-20.0
0.0
23.0

Figure 7.22: PassedUpPk:count graph.

As we have already seen in the analysis of the results, the count of the packets raises
with the power: the more the transmitted power, the more the packets passing through
each node.

102

7.6 Hypothesis

In this section, a couple of hypothesis will be done from the comparisons made on
different results file.

(1) Packet length (Bytes):

We have seen in the previous section that packets received from Higher/Lower
layers (and by consequence packets sentDown/passedUp) are the effective oc-
currences running through the single node and then eventually transmitted to
other nodes.
By looking at the results we can see that there is a ”mean” value (see fig. 7.26)
when considering the vector data of such parameters, plus or minus a standard
deviation. In particular, this mean value is related to the sum of Packet Bytes
as mentioned by the recorded values (see fig. 7.24 and 7.25).

The 1° hypothesis we can do is indeed that the mean value is referred to the
mean length in terms of Bytes that each packet has in the simulation, and which
is equal to 163,... Bytes ± the standard deviation of 80,... Bytes meaning that
the packet length varies from 83 Bytes to 243 Bytes.

The hypothesis takes strong confirmation directly looking at the results (see
fig. 7.23): taking, from scalars values, the values given by each node at the
quote sentDownPk:sum(packetBytes) and divide them by sentDownPk:count,
we obtain exactly the mean value given by sentDownPk:vector(packetsBytes)
as mean value.

Figure 7.23: Tabulated values.

103

Figure 7.24: Scalar values - sentDownPk:sum(packetBytes).

Figure 7.25: Scalar values - sentDownPk:count.

Figure 7.26: Vectors values - sentDownPk:vector(packetBytes).

104

(2) Effective Transmission (percentage of correctness):

From scalars values we can see 2 data related to the count of occurrences in trans-
mission: [a] TransmissionState:count for each node and [b] Transmission:count
for the radio medium.

As we have said before, each node tries to forward a total number of occurrences
(thus, packets) which is larger than the total number of correct occurrences
detected at the end. Some of the packets can be lost in transmission while some
others can arrive but with some errors.

We can suppose that the difference of such parameters is the percentage of cor-
rectness of the transmission that can be simply calculated with these values (fig.
7.27).

Figure 7.27: Analysis of Transmission values in the NLOSv file.

Repeating the same analysis on all the other files (LOS, NLOSb1, NLOSb2 and
NLOSf), we can observe that the value 25% is recurring in every scenario.
We can make the 2° hypothesis that Gemv2 has a percentage of effective trans-
mission correctness of 25%.

105

Chapter 8

Conclusions and Future
Works

The simulation can be considered a valid instrument to simulate a real-world situation
that the end-user can make use of to reduce the cost of the implementation and the
difficulties rising when considering different scenarios and traffic conditions.

The Artery project gives an excellent environment where to test all the possible
features and the integration with the Gemv2 tool is optimal to complete all the set of
information there is a need of, where among them stands out, for sure, the need for
a path classification while transmitting.

The integration of SUMO simulator with OMNeT++ simulation platform gives a
bunch of possibilities to consider non only the predefined scenarios given by Gemv2

but also real scenarios coming from real-world, by simply updating the information
about the location of the simulated landscape.

For sure, Gemv2 has some lack of functions in its code that should be implemented
to better work.

Moreover, there is a lack in what concerning the results it is able to store and strong
knowledge of C++ programming language is suggested in order to complete those
parts where a better storage of values is needed to complete then also the results file.

The second suggestion and purpose to continue with this work is to verify the hy-
pothesis I personally did to confirm and, in case, complete the analysis of the tool.

What for sure has to be done is to replicate the same experiments in other simulation

106

platforms under the same conditions: take all the devices and items used in this work
(not only the simulation parameters but also the radio environment given by INET
or the control features given by Traci), put them in the new simulator and see the
values it gives as output. From the output, make some comparisons with the values
of this work checking the hypothesis and eventually giving some new ones.

Then, with the new results, my suggestion is to somehow ”open” the vectors given by
Gemv2 in order to see the single packet and not all the set of packets that the tool is
not able to automatically divide while storing. By looking at all the positions of the
vector, the user should be able to better understand what it is effectively transmitted
from one node to another. In addition, what could be very usefull is to reach the
information regarding the flag that, at level 2 of the ISO/OSI stack, is added to the
packet to report any error before pass it up to the upper layers; by looking at the flag,
the user should be able to understand how many packets are effectively correct/wrong
computing indeed all the error rates are needed: packet error rate, then bit error rate
(knowing the packet length in terms of bytes) and symbol error rate (by knowing the
modulation type used).

The software that could accomplish to this work are Network simulator, Jupiter Note-
book, Pandas for the analysis of the results and the matplotlib library to plot them
under a Python like environment.
The use of SQL database could be usefull too as analysis tool of the results.
The Gemv2 used in Matlab software could also be a good starting point to replicate
the simulation under the same conditions.

Finally, the implementation of the dataset formulas in the OMNeT++ simulator could
be usefull to verify the information and to add some new one not recorded by the
system, such as the throughput or whichever performance parameters needed by the
user.

107

Chapter 9

Ringraziamenti

Arrivato fin qui, è doveroso esprimere al meglio la mia più profonda gratitudine a
tutte quelle persone che mi sono state accanto, non solo durante il periodo di tesi ma
durante tutto il lungo cammino intrappreso ormai qualche anno fa.

Un sentito grazie al mio relatore Prof. Maurizio Magarini che ha saputo guidarmi
durante tutto l’arco di ricerca e stesura del lavoro, con i suoi consigli indispensabili e
le sue conoscenze pratiche permettendomi di proseguire anche quando sembrava non
si potesse andare oltre.

Ringrazio i dottorandi che mi hanno affiancato e che con le loro conoscenze in diversi
ambiti hanno saputo darmi preziosi consigli: un grazie sincero a Dott. Francesco
Linsalata, Dott. Eugenio Moro, Dott. Mehdi Haghshenas e Dott.ssa Francesca Ratti.

Ringrazio di cuore i miei genitori, Tiziana e Sergio. Grazie per avermi sempre
sostenuto nei momenti più bui ed avermi permesso di portare a termine questo per-
corso, incoraggiandomi a non mollare mai e a mettercela sempre tutta. Sono valori
che porterò sempre con me in ogni ambito del futuro che mi aspetta. Un grazie anche
a tutta la mia famiglia per aver creduto in me, sempre.

Un enorme grazie a tutti quei pazzi furiosi dei miei amici, sempre pronti a festeggiare
al meglio ogni traguardo.

Ringrazio la saggezza dei Pollici e la premura delle donne di Apez. Mi avete dato
sempre e solo il meglio di voi, mi avete appoggiato e mi avete tollerato, mi avete reso
meno testardo e più ragionevole, mi avete seguito nelle mie follie ed io vi seguirei in
capo al mondo. Non chiedetemi con largo anticipo cosa farò il prossimo weekend,
perchè la risposta io NON LA SOOOOOO!

110

Ringrazio la serenità degli Eventi Cazzuola. Mi avete trasmesso sicurezza e fiducia
nei miei mezzi, mi avete dato la giusta dose di spensieratezza per godere al meglio di
ogni momento passato insieme. Da ognuno di voi ho preso il meglio e se sono oggi
una persona migliore è anche merito vostro. Un consiglio per il futuro? L’impepata
di cozze MAI prima di un calcetto.

Ringrazio gli Ing. Seri, Ilaria e Simone, presenti fin dal primo anno. L’esperienza
universitaria non sarebbe stata la stessa senza di voi. Grazie per tutte le emozioni
vissute prima e dopo un esame, per le scorribande in giro per l’Europa e per il mondo,
per avermi fatto emozionare dei vostri traguardi e per aver gioito insieme dei miei.

Ringrazio i miei più vecchi e cari amici, Mara e Luca, per avermi fatto rivivere i bei
ricordi d’infanzia e avermi fatto sentire tutto il loro appoggio in questi mesi di tesi.

Special thanks to Ramiro 24 for giving me the chance to learn from people of such
different backgrounds with their beautiful minds and personalities. Thanks to Fabio,
Gianluca, Florian and Kaan to have known and lived me in all my multiple versions
and still always making me feel like home. Not just roomies, but hermanos. You
know bros, THAT’S LIFE!

Grazie a Ginevra, Eriona, Roberta e Greta, donne forti, determinate, eleganti. Vi
ringrazio per avermi sopportato anche quando non lo meritavo, per aver portato
sempre il sorriso in casa Ramiro, per avermi fatto sentire meno vecchio, per essere
state indispensabili nel percorso di crescita durante tutta l’esperienza Valenciana. Vi
scriverò per i programmi della serata, ma rigorosamente alle 12 in punto. Mi troverete
ad aspettarvi l̀ı, sempre a Colòn.

111

Bibliography

[1] C. Sommer and F. Dressler, Vehicular Networking. Cambridge University Press,
2014.

[2] “Artery-architecture section in artery web site.”

[3] D. Jiang and L. Delgrossi, “Ieee 802.11p: Towards an international standard for
wireless access in vehicular environments,” in VTC Spring 2008 - IEEE Vehicular
Technology Conference, pp. 2036–2040, 2008.

[4] V. Mannoni, V. Berg, S. Sesia, and E. Perraud, “A comparison of the V2X
communication systems: ITS-G5 and C-V2X,” IEEE Vehicular Technology Con-
ference, vol. 2019-April, 2019.

[5] S. Eichler, “Performance evaluation of the ieee 802.11p wave communication
standard,” in 2007 IEEE 66th Vehicular Technology Conference, pp. 2199–2203,
2007.

[6] M. Choudhary, “What is intelligent transport system and how it works?,” 2019.

[7] “Il ruolo degli ITS Intelligent Transport Systems Architettura Telematica Italiana
per il Sistema dei Trasporti,” 2006.

[8] J. Santa, F. Pereniguez-Garcia, A. Moragón, and A. Skarmeta, “Experimental
evaluation of cam and denm messaging services in vehicular communications,”
Transportation Research Part C: Emerging Technologies, vol. 46, p. 98–120, 09
2014.

[9] S. Kuehlmorgen, P. Schmager, A. Festag, and G. Fettweis, “Simulation-Based
Evaluation of ETSI ITS-G5 and Cellular-VCS in a Real-World Road Traffic Sce-
nario,” IEEE Vehicular Technology Conference, vol. 2018-August, pp. 0–5, 2018.

[10] A. Turley, K. Moerman, A. Filippi, and V. Martinez, “C-ITS: Three observations
on LTE-V2X and ETSI ITS-G5-A comparison,” Npx, 2018.

[11] N. Lyamin, Performance evaluation of safety critical ITS-G5 V2V communica-
tions for cooperative driving applications. No. 53, 2019.

[12] D. E. S. Its, “in the 5 GHz frequency band,” vol. 0, pp. 1–27, 2010.

[13] IEEE-spectrum, “Applications of Device-to-Device Communication in 5G Net-
works,” pp. 5–7, 2020.

114

[14] U. N. Kar and D. K. Sanyal, “An overview of device-to-device communication in
cellular networks,” ICT Express, vol. 4, no. 4, pp. 203–208, 2018.

[15] B. Lorenzo, “5g: le tecnologie messe in campo,” 2019.

[16] H. Badis and A. Rachedi, “Chapter 23 - modeling tools to evaluate the perfor-
mance of wireless multi-hop networks,” in Modeling and Simulation of Computer
Networks and Systems (M. S. Obaidat, P. Nicopolitidis, and F. Zarai, eds.),
pp. 653–682, Boston: Morgan Kaufmann, 2015.

[17] T. Yeferny and S. Hamad, “Vehicular Ad-hoc Networks : Architecture , Appli-
cations and Challenges,” vol. 20, no. 2, pp. 1–7, 2020.

[18] D. C. Marinescu, “Chapter 5 - cloud access and cloud interconnection networks,”
in Cloud Computing (Second Edition) (D. C. Marinescu, ed.), pp. 153–194, Mor-
gan Kaufmann, second edition ed., 2018.

[19] A. Paul, N. Chilamkurti, A. Daniel, and S. Rho, “Chapter 9 - future trends
and challenges in its,” in Intelligent Vehicular Networks and Communications
(A. Paul, N. Chilamkurti, A. Daniel, and S. Rho, eds.), pp. 185–210, Elsevier,
2017.

[20] M. Soyturk, K. Muhammad, M. Avcil, B. Kantarci, and J. Matthews, “Chapter
8 - from vehicular networks to vehicular clouds in smart cities,” in Smart Cities
and Homes (M. S. Obaidat and P. Nicopolitidis, eds.), pp. 149–171, Boston:
Morgan Kaufmann, 2016.

[21] A. Paul, N. Chilamkurti, A. Daniel, and S. Rho, “Chapter 4 - evaluation of ve-
hicular network models,” in Intelligent Vehicular Networks and Communications
(A. Paul, N. Chilamkurti, A. Daniel, and S. Rho, eds.), pp. 77–112, Elsevier,
2017.

[22] V. D. V, A. Chekima, F. Wong, and J. A. Dargham, “A study on vehicular ad
hoc networks,” in 2015 3rd International Conference on Artificial Intelligence,
Modelling and Simulation (AIMS), pp. 422–426, 2015.

[23] D. Yuen, “The future begins with the road side unit,” 2020.

[24] A. Festag, “Standards for vehicular communication—from IEEE 802.11p to 5G,”
Elektrotechnik und Informationstechnik, vol. 132, no. 7, pp. 409–416, 2015.

[25] D. Dhoutaut, A. Régis, and F. Spies, “Impact of radio propagation models in
vehicular ad hoc networks simulations,” VANET - Proceedings of the Third ACM
International Workshop on Vehicular Ad Hoc Networks, vol. 2006, pp. 40–49,
2006.

[26] S. Chen, J. Hu, Y. Shi, Y. Peng, J. Fang, R. Zhao, and L. Zhao, “Vehicle-to-
Everything (v2x) Services Supported by LTE-Based Systems and 5G,” IEEE
Communications Standards Magazine, vol. 1, no. 2, pp. 70–76, 2017.

[27] X. Shen, R. Fantacci, and S. Chen, “Internet of Vehicles,” Proceedings of the
IEEE, vol. 108, no. 2, pp. 242–245, 2020.

[28] S. Wan, R. Gu, T. Umer, K. Salah, and X. Xu, “Toward offloading internet of
vehicles applications in 5g networks,” IEEE Transactions on Intelligent Trans-
portation Systems, pp. 1–9, 2020.

115

[29] H. Zhou, W. Xu, J. Chen, and W. Wang, “Evolutionary v2x technologies toward
the internet of vehicles: Challenges and opportunities,” Proceedings of the IEEE,
vol. 108, no. 2, pp. 308–323, 2020.

[30] M. Boban, J. Barros, and O. K. Tonguz, “Geometry-Based Vehicle-to-Vehicle
Channel Modeling for Large-Scale Simulation,” vol. 63, no. 9, pp. 4146–4164,
2014.

[31] R. Meireles, M. Boban, P. Steenkiste, O. Tonguz, and J. Barros, “Experimental
study on the impact of vehicular obstructions in VANETs,” 2010 IEEE Vehicular
Networking Conference, VNC 2010, pp. 338–345, 2010.

[32] “Omnet++ web site.”

[33] F. Saremi, “OMNet ++ OMNet,” Computer Engineering, 2009.

[34] S. learn developers, “OMNeT++ userguide,” Computer, no. September, pp. 1–
20, 2020.

[35] “Omnet++ simulation manual, omnet++ version 5.6.1.”

[36] “Veins web site.”

[37] “Artery web site.”

[38] A. Hegde and A. Festag, “Artery-C: An OMNeT++ Based Discrete Event Sim-
ulation Framework for Cellular V2X,” MSWiM 2020 - Proceedings of the 23rd
International ACM Conference on Modeling, Analysis and Simulation of Wire-
less and Mobile Systems, pp. 47–51, 2020.

[39] “Artery-middleware section in artery web site.”

[40] “Artery-environment section in artery web site.”

[41] “Artery-storyboard section in artery web site.”

[42] “Artery-gemv2 section in artery web site.”

[43] “Inet web site.”

[44] “Inet-layeredprotocolbase module in inet web site.”

[45] “Inet-physicalbase module in inet web site.”

[46] “Inet-radio module in inet web site.”

[47] “Inet-iradio module in inet web site.”

[48] “Inet-mobility module in inet web site.”

[49] “Inet-baseantenna module in inet web site.”

[50] “Inet-isotropicantenna module in inet web site.”

[51] “Inet-parabolicantenna module in inet web site.”

[52] “Inet-physicalenvironment module in inet web site.”

[53] “Inet-flatground module in inet web site.”

116

[54] “Inet-scenariomanager module in inet web site.”

[55] “Vanetza web site.”

[56] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “SUMO–simulation of
urban mobility: an overview,” Proceedings of SIMUL 2011, The Third Interna-
tional Conference on Advances in System Simulation, no. October, 2011.

[57] G. A. C. (DLR) et al., “Sumo.”

[58] A. Wegener, M. Piórkowski, M. Raya, H. Hellbrück, S. Fischer, and J. P. Hubaux,
“TraCI: An interface for coupling road traffic and network simulators,” Pro-
ceedings of the 11th Communications and Networking Simulation Symposium,
CNS’08, no. April, pp. 155–163, 2008.

[59] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in Pro-
ceedings of the 1984 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’84, (New York, NY, USA), p. 47–57, Association for Computing
Machinery, 1984.

[60] M. Boban, J. Barros, and O. Tonguz, “Geometry-based vehicle-to-vehicle channel
modeling for large-scale simulation,” IEEE Transactions on Vehicular Technol-
ogy, vol. 63, pp. 4146–4164, Nov 2014.

117

Appendix A

Installation Guide

I

A.1 Introduction

A.1.1 Ubuntu 20.04 LTS

The following installation guide is performed under the assumptions of Ubuntu 20.04
LTS as the Operating System.

• Ubuntu 20.04 LTS

A.1.2 Suggestions

Before starting with the installation of the programs, it is always better to start from
the very beginning in order to delete possible packages that could be counterproduc-
tive in our installation. If you are using a Linux-based pc, re-initialize the system
with a new installation of Ubuntu. If you are using a Virtual machine, delete it and
create a new one from zero.

When downloading anything, move it to the Home folder and always work from there.

A.1.3 Synaptic

First thing to do, refresh the database of available packages. Type in the terminal:

$ sudo apt-get update

Install the Synaptic application for a better control when installing some of the needed
packages. Open a new terminal and type:

$ sudo apt install synaptic

Since software installation requires root permissions, it will ask you to type your
password.

II

A.1.4 Git

Install the Git tool to clone programs from extern (e.g. GitHub). Type in the
terminal:

$ sudo apt install git

A.2 OMNeT++

A.2.1 Installing the Prerequisite Packages

OMNeT++ requires several packages to be installed on the computer. These packages
include the C++ compiler (gcc or clang), the Java runtime, and several other libraries
and programs. You can perform the installation using the graphical user interface or
from the terminal, whichever you prefer. Here, the Command-Line Installation is
shown.

First thing to do, refresh the database of available packages. Type in the terminal:

$ sudo apt-get update

To install the required packages, type in the terminal:

$ sudo apt-get install build-essential gcc g++ bison flex perl python python3 qt5-
default libqt5opengl5-dev tcl-dev tk-dev libxml2-dev zlib1g-dev default-jre doxygen
graphviz

At the confirmation question (Do you want to continue? [Y/N]), answer Y.

Open the Synaptic application typing ”sudo synaptic” in the terminal. From the

III

searching window, type the following package name: ”libweb”. Click the squares
before EACH and EVERY names where ”libweb” is shown, then choose Mark for
installation. If the Mark additional required changes? dialog comes up, choose the
Mark button. When the installation of the packages is complete, close synaptic and
go back to the terminal.

Now you have to add the ubuntugis/ppa repository manually to your software sources:

$ sudo add-apt-repository ppa:ubuntugis/ppa
$ sudo apt-get update

To use Qtenv with 3D visualization support, install the development packages for
OpenSceneGraph (3.2 or later) and the osgEarth (2.7 or later) packages:

$ sudo apt-get install openscenegraph-plugin-osgearth libosgearth-dev

To enable the optional parallel simulation support you will need to install the MPI
packages:

$ sudo apt-get install openmpi-bin libopenmpi-dev

The optional Pcap library allows simulation models to capture and transmit network
packets bypassing the operating system’s protocol stack. It is not used directly by
OMNeT++, but models may need it to support network emulation.

$ sudo apt-get install libpcap-dev

At this point, it is better to restart the system.

A.2.2 Downloading and Unpacking

Download OMNeT++ from http://omnetpp.org. Make sure you select to download
the generic archive, omnetpp-5.6.2-src-linux.tgz. Copy the archive to the directory
where you want to install it. This is usually your home directory, /home/you. Open
a terminal, and extract the archive using the following command:

IV

$ tar xvfz omnetpp-5.6.2-src-linux.tgz

This will create an omnetpp-5.6.2 subdirectory with the OMNeT++ files in it.

A.2.3 Environment Variables

OMNeT++ needs its bin/ directory to be in the path. To add bin/ to PATH tem-
porarily, change into the OMNeT++ directory and source the setenv script:

$ cd omnetpp-5.6.2
$. setenv

To set the environment variables permanently, edit .bashrc in your home directory.
Use your favourite text editor to edit .bashrc, for example gedit:

$ gedit ~/.bashrc

Add the following line at the end of the file, then save it:

export PATH=$HOME/omnetpp-5.6.2/bin:$PATH

You need to restart the pc for the changes to take effect.

A.2.4 Configuring and Building

In the top-level OMNeT++ directory, type:

$ cd omnetpp-5.6.2
$./configure

The configure script detects installed software and configuration of your system. It
writes the results into the Makefile.inc file, which will be read by the makefiles during
the build process.

When ./configure has finished, you can compile OMNeT++. Type in the terminal:

V

$ make

A.2.5 Verify the Installation

You can now verify that the sample simulations run correctly. For example, the dyna
simulation is started by entering the following commands:

$ cd samples/dyna
$./dyna

By default, the samples will run using the Tcl/Tk environment. You should see nice
gui windows and dialogs.

A.2.6 Starting the IDE

You can launch the OMNeT++ Simulation IDE by typing the following command in
the terminal:

$ omnetpp

When the dialog window comes up, go to the ”Workspace” option.
Then, let OMNeT++ install the INET framework automatically (it would take some
minutes to install it).

VI

A.3 SUMO

A.3.1 Installing the Prerequisite Packages

To install the required packages, type in the terminal:

$ sudo apt-get install cmake python g++ libxerces-c-dev libfox-1.6-dev libgdal-dev
libproj-dev libgl2ps-dev libavformat-dev libswscale-dev libopenscenegraph-dev python3-
dev swig libgtest-dev libeigen3-dev python3-pip python3-setuptools default-jdk

$ sudo pip3 install texttest

A.3.2 Installation

Install the basic version of SUMO. Type in the terminal:

$ sudo apt-get install sumo sumo-tools sumo-doc

Then, update the ppa repository for a more recent version:

$ sudo add-apt-repository ppa:sumo/stable
$ sudo apt-get update

Then redo the installation:

$ sudo apt-get install sumo sumo-tools sumo-doc

Now the SUMO-1.8.0 version is installed and run correctly.

VII

A.4 Artery

A.4.1 Requirements

Install some prerequisite packages. Type in the terminal:

$ sudo apt-get install python python3 libgeographic-dev libcrypto++-dev libboost-
dev libboost-date-time-dev libboost-system-dev

At this point we need to be sure that all requirements needed by Artery are fullfiled
before proceding with its installation.
Open Synaptic application, search the following packages and do what it is written
for each of them:

• cmake: Mark and Install every package containing the word ”cmake” in the
name.

• python: Mark and Install every package containing the word ”libpython” + the
version of the package already installed with this name (e.g. if libpython3.8 has
already some packages installed, Mark and Install the remaining libpython3.8
packages).

• geographicLib: Mark and Install every package that it is found when searching
”geographiclib”.

• crypto++: Mark and Install every package that it is found when searching
”crypto++”.

A.4.2 Cloning the Artery repository

All source code of Artery is stored in a git repository on GitHub. This repository
contains compatible versions of INET, SimuLTE, Veins, Vanetza and some other
third-party dependencies as git submodules. You can find those submodules in the
extern subdirectory.

VIII

The command below will clone Artery’s master branch along with matching versions
of its submodules onto your machine’s file system. Type in the terminal:

$ git clone –recurse-submodule https://github.com/riebl/artery.git
(before ”recurse”, two minus signs are written: - - but with no space in them).

A.4.3 Create build directory

From ARTERY PATH create a build directory for Artery, configure the build direc-
tory with CMake and finally build Artery there. Type in the terminal:

$ cd artery
$ mkdir build
$ cd build
$ cmake ..
$ cmake –build .
(before ”build”, two minus signs are written: - - but with no space in them).

A.5 Getting started

A.5.1 Import Artery project

Now that all the tools and packages are correctly installed on your pc, you need to
import the Artery project into the OMNeT++ workspace.
Open a new OMNeT++ session, typing in the terminal:

$ omnetpp

Now follow these instructions:

File - import - General - existing project into workspace - root dir:Browse - home:Artery

IX

- open - Options(check the square box): search for nested projects - Options(check
the square box): copy projects into worspace - Finish

At the end of the process (be sure that everything is uploaded, e.g. C/C++ indexer
at the bottom of the window that takes much time), do:

File - Open Projects from File System... - import source:directory/artery - Finish

Now you can see that in the set of available projects that can be run in OMNeT++
(left window) there is the Artery project and also other related projects such as Veins,
Lte, etc...

Click on:

Project - Build All

Now you are able to run the Artery tool from the terminal and then see the file and
the results by using OMNeT++ ide.

To run artery type in the terminal:

$ cd artery
(to move from home to artery directory)
$ cmake –build build –target run name
(before ”build” and ”target”, two minus signs are written: - - but with no space in
them).

Where ”name” is one of the available scenarios you can find in the Artery - build -
scenarios directory.

X

	Introduction
	Motivation
	Research Problem
	Research Methodology

	Technologies for Vehicular Communications
	IEEE 802.11p
	Technical Specifications

	Intelligent Transport System
	Communicating Messages
	ETSI ITS-G5

	Device-to-Device Technology
	D2D and 5G Networks
	D2D Applications

	Summary Background Technologies

	Vehicular Ad-hoc Networks
	Features and Applications
	Routing Protocols
	RSUs Deployment
	Vehicle-to-Everything Communication Protocol
	LTE and 5G - V2X Implementations

	Internet of Vehicles
	Summary VANET Technology

	Geometry-based Efficient Propagation Model for Vehicle-to-Vehicle Communication
	Geometry-based Models
	Tool Features
	Path Loss Type: Free Space and Obstructed View
	Summary Gemv2 Technology

	Frameworks and Tools Supporting the Discrete Event Simulator
	OMNeT++
	Model
	Structure
	Results

	Artery
	Features
	Architecture
	Middleware
	Environment Model
	Storyboard
	Gemv2 in Artery

	Inet
	Features

	Vanetza
	SUMO and TraCI
	Gemv2 in SUMO

	R-Trees structure
	Summary Frameworks and Tools Technologies

	Simulation Environment
	Simulation flow
	INI file, NED files and SUMO files
	Modifications to the code

	Launching from the terminal
	LinkType choice
	Gemv2 link type

	Graphical view
	Visualization in SUMO

	While running
	End of the simulation

	Numerical Results and Analysis
	Parameters and Files Involved
	Fixed Parameters
	Changing Parameters
	.ANF file

	Values Types
	Browse Data: Vectors values
	Browse Data: Scalars values
	Browse Data: Histograms values

	Recorded Data
	Data not influenced by parameters
	Data changing with parameters

	Analysis
	Graphs
	Path Loss Type
	Passed Up Packets count

	Hypothesis

	Conclusions and Future Works
	Ringraziamenti
	Installation Guide
	Introduction
	Ubuntu 20.04 LTS
	Suggestions
	Synaptic
	Git

	OMNeT++
	Installing the Prerequisite Packages
	Downloading and Unpacking
	Environment Variables
	Configuring and Building
	Verify the Installation
	Starting the IDE

	SUMO
	Installing the Prerequisite Packages
	Installation

	Artery
	Requirements
	Cloning the Artery repository
	Create build directory

	Getting started
	Import Artery project

