
Politecnico di Milano
SCHOOL OF INDUSTRIAL AND INFORMATION ENGINEERING

Master of Science – Mathematical Engineering

Mid-Term Probabilistic Load
Forecasting with

Recurrent Neural Networks

Supervisor
Prof. Roberto BAVIERA

Co-Supervisor
Michele AZZONE

Co-Supervisor
Prof. Paolo BRANDIMARTE

Candidate
Pietro MANZONI – 921050

Academic Year 2019 – 2020

Ringraziamenti

Desidero in primis esprimere un sentito ringraziamento al Prof. Baviera e a Michele
Azzone per la grandissima disponibilità, competenza e passione con cui mi hanno
accompagnato nella scrittura di questa tesi. Il loro supporto è stato fondamentale e
ogni momento di confonto illuminante.

Ringrazio la mia famiglia per avermi aiutato e sostenuto in tutte le scelte che mi
hanno portato ad arrivare dove sono oggi. Grazie ai miei genitori per essere sempre
stati al mio fianco e per avermi incoraggiato nei momenti più difficili, e a mio
fratello Nicolò perchè più di tutti mi ha sopportato in questi anni.

Un grazie speciale va poi a Luca, Danny, Gianluca, Daniele e a tutti i BC(S), com-
pagni di mille avventure che non hanno mai fatto mancare il loro sostegno. E
ringrazio ovviamente tutti gli amici del Politecnico - in particolare Matteo - con
i quali, giorno dopo giorno, ho avuto il piacere di condividere questa bellissima
esperienza.

Infine, vorrei ringraziare Laura, Francesco e Simone, i miei veri compagni di viaggio
in questi anni. Loro e le lunghe chiacchierate sul treno mi mancheranno certamente
moltissimo (i sedili scomodi e la curiosa fauna che popola il Lecco-Milano un po’
meno).

La realtà è che odio gli addii e i cambiamenti, ma sono sicuro che - ovunque mi
porterà il futuro - ogni volta che ripenserò agli anni dell’università lo farò con gioia,
e questo lo devo a tutti voi. Grazie di cuore.

ii

Sommario

In un mondo sempre più caratterizzato da un alto fabbisogno di energia elettrica
la capacità di predire accuratamente i consumi futuri è fondamentale. Le tecniche
convenzionali sono mirate alla generazione di previsioni puntuali; tuttavia negli
ultimi anni si è osservato un crescente interesse per il campo delle previsioni pro-
babilistiche. Ciò è principalmente dovuto alla loro capacità di offrire informazioni
sull’incertezza, un elemento cruciale per prendere decisioni ottimali.

Lo scopo essenziale di questa tesi è l’introduzione di due modelli per la previsione
probabilistica su base oraria; entrambi considerano un orizzonte temporale di un
anno e fanno uso di Reti Neurali Ricorrenti. Le prestazioni di tali modelli sono
valutate sulla serie storica 2009-2015 dei consumi elettrici del New England, USA. I
risultati mostrano come i modelli proposti siano in grado di ottenere una maggiore
accuratezza in termini di previsione puntuale rispetto ad alcuni modelli utilizzati
tipicamente nel settore; in aggiunta si riscontra anche una maggiore appropriatezza
delle densità di probabilità generate.

Parole chiave: Previsioni probabilistiche, medio termine, reti neurali ricorrenti

iii

Abstract

In a world characterized by a huge need for energy, the ability to predict accurately
the future electrical demand is crucial. Conventional techniques are aimed at
generating point forecasts; however, in recent years, probabilistic forecasting is
becoming increasingly widespread. This is mainly due to the fact that probabilistic
forecasts can offer some information about uncertainty, a fundamental element to
make optimal decisions.

The essential aim of this thesis is the introduction of two models for forecasting
the probability distribution of the hourly load; both consider a time-horizon of
one year and make use of Recurrent Neural Networks. The performances of these
models are assessed by using the time-series 2009-2015 of the electrical demand
of New England, USA. The results show that the proposed models are capable of
achieving a greater accuracy with respect to some standard models used in the
sector; in addition, even the predicted probability densities are found to be more
appropriate.

Keywords: Probabilistic forecasting, mid-term, recurrent neural networks

iv

Contents

Notation and Symbols viii

Acronyms ix

List of Figures xii

List of Tables xiii

Introduction 1

1 Overview of Load Forecasting 4
1.1 Classification of Load Forecasts . 4
1.2 Weather Dependent Modelling . 5
1.3 Literature Review . 7

1.3.1 Point Forecast . 8
1.3.2 Probabilistic Load Forecasting 8

1.4 Evaluation . 10

2 Artificial Neural Networks 12
2.1 Feedforward Neural Networks . 12

2.1.1 Introduction . 12
2.1.2 A quick dive into neuronal models 14
2.1.3 From neurons to brains . 15
2.1.4 The universal approximation theorem 17
2.1.5 Training a FNN: the backpropagation 18
2.1.6 Training algorithms . 22
2.1.7 Underfitting, overfitting and regularization 24
2.1.8 The vanishing gradient problem 27

2.2 Recurrent Neural Networks . 29
2.2.1 Introduction . 29
2.2.2 The structure of the RNN . 30
2.2.3 Architectures for sequence modelling 32
2.2.4 The backpropagation through time 33
2.2.5 Other RNNs: LSTM and NARX 36

3 Forecasting the Daily Demand 40

v

Contents

3.1 Preliminary analysis . 40
3.1.1 Dataset introduction . 41
3.1.2 Holiday impact . 43

3.2 The NAX model . 44
3.2.1 Overview . 44
3.2.2 Data transformation . 46
3.2.3 Trend, seasonality and intervention 46
3.2.4 Modelling the residual variability 48

3.3 Training the RNN . 51
3.3.1 Preparation of the dataset . 51
3.3.2 Implementation . 52
3.3.3 Calibration, validation and testing 53

3.4 Improving NAX performances . 54
3.4.1 The impact of Window Length 55
3.4.2 The impact of Random Shuffling 57
3.4.3 Continual operation and RTRL 57
3.4.4 Results . 61

4 Analysis of Intra-daily Load Dynamics 64
4.1 Data analysis . 64
4.2 Frequency-based approach . 70

4.2.1 Fourier analysis of seasonality 70
4.2.2 The interaction effect . 71
4.2.3 Incorporating the temperature 74

4.3 Tao Vanilla Model . 76

5 Hourly Forecasting with RNNs 79
5.1 Introduction . 79
5.2 H-NAX . 81
5.3 D-NAX . 83

5.3.1 The model . 83
5.3.2 The network . 86
5.3.3 Random search of hyperparameters 90
5.3.4 The final version . 91

5.4 Results . 93

6 Conclusions 101
6.1 Further Developments . 102

A Activation Functions 103

B RTRL for NAX network 107
B.1 Derivation of formulae . 107
B.2 Estimate of complexity . 109

vi

Contents

C RTRL for D-NAX network 110
C.1 Derivation of formulae . 110

Bibliography 119

vii

Notation and Symbols

df

dx
Jacobian matrix, defined in such a way that

[df

dx

]
ij

=
dfi
dxj

.

∇f Gradient, always defined as a column vector.

∇Tf Transpose gradient (row vector). If f is a scalar field,∇Tf ≡ df

dx
.

‖ ‖p Lp norm of a vector or of a matrix (induced norm).

� Elementwise product (Hadamard product).

� Elementwise division.

δij Kronecker delta.

E Expected value of a random variable.

ϕ(x, µ, σ) PDF of univariate Gaussian distribution with mean µ, variance σ2

evalutated in x.

L In NNs, loss function associated with a single example.

` In NNs, loss associated with a single example.

J In NNs, average loss of the training set.

θ In NNs, vector that collects all the trainable weights.

σ(x) Logistic sigmoid function.

A In NNs, activation function.

A′ In NNs, Jacobian matrix of an activation function.

D In NNs, dense affine application between two layers.

L In FNNs, application between two layers.

Ki In NNs, kernel of the i-th layer.

bi In NNs, bias of the i-th layer.

viii

Acronyms

ACF AutoCorrelation Function.

AI Artificial Intelligence.

AIC Akaike Information Criterion.

ANN Artificial Neural Network.

API Application Programming Interface.

APL Average Pinball Loss.

AR AutoRegressive.

ARMA AutoRegressive and Moving Average.

ARX AutoRegressive eXogenous.

BIC Bayes Information Criterion.

BPTT Backpropagation Through Time.

CNN Convolutional Neural Network.

FNN Feedforward Neural Network.

GEFCom Global Energy Competition.

GLM General Linear Model.

GRU Gated Recurrent Unit.

HPC High Performance Computing.

LHS Left-Hand Side.

LSTM Long Short-Term Memory.

MAPE Mean Average Percentage Error.

MLP MultiLayer Perceptron.

NARX Nonlinear AutoRegressive eXogenous.

NAX Neural Network Autoregressive eXogenous (cf. Chapter 3).

ix

Acronyms

NLP Natural Language Processing.

NN Neural Network.

OLS Ordinary Least Squares.

PACF Partial AutoCorrelation Function.

PDF Probability Density Function.

PLF Probabilistic Load Forecasting.

ReLU Rectified Linear Unit.

RHS Right-Hand Side.

RMSE Root Mean Square Error.

RNN Recurrent Neural Network.

RTRL Real-Time Recurrent Learning.

SGD Stochastic Gradient Descent.

TBPTT Truncated Backpropagation Through Time.

x

List of Figures

Figure 1.1 Flow diagram of weather-dependent modelling 6

Figure 2.1 Scheme of MultiLayer Perceptron 13
Figure 2.2 McCulloch-Pitts neuronal model 15
Figure 2.3 Block diagram of a FNN . 19
Figure 2.4 Forward and backward propagation from a neuron perspective 22
Figure 2.5 Underfitting and overfitting 25
Figure 2.6 Example of use of Early stopping 26
Figure 2.7 The vanishing gradient problem 27
Figure 2.8 Comparison between Sigmoid and ReLU 28
Figure 2.9 Comparison between FNN and RNN 31
Figure 2.10 Unrolling a RNN . 32
Figure 2.11 Different architectures for sequence modelling 33
Figure 2.12 Backpropagation Through Time 34
Figure 2.13 LSTM scheme . 37
Figure 2.14 NARX network scheme . 38
Figure 2.15 NARX network: training mode and operational mode 39

Figure 3.1 New England map and population density 41
Figure 3.2 Scatter plot of dry-bulb temperature and consumption . . . 42
Figure 3.3 Daily aggregate energy consumption in 2009-2010 45
Figure 3.4 Holiday impact on Mondays of 2009 45
Figure 3.5 Logarithmic transformation of the time-series 46
Figure 3.6 Consumption and log-consumption densities 47
Figure 3.7 GLM predictions on 2012 . 48
Figure 3.8 Autocorrelation structure of GLM residuals 49
Figure 3.9 Scheme of the RNN used in NAX 50
Figure 3.10 Sliding windows . 51
Figure 3.11 Keras APIs for models implementation 53
Figure 3.12 NAX predictions on 2012 . 54
Figure 3.13 Boxplot of RMSE and MAPE against window length 56
Figure 3.14 Evolution of testing loss for different choices of window length 56
Figure 3.15 Evolution of testing loss with and without random shuffling 58

Figure 4.1 Hourly energy consumption in January 2009 65
Figure 4.2 Intra-daily demand profiles in the four seasons 66

xi

List of Figures

Figure 4.3 Spaghetti plot of the intra-daily patterns 66
Figure 4.4 Intra-daily demand profiles during the week 67
Figure 4.5 Boxplots of hourly demand 68
Figure 4.6 Autocorrelation structure of raw hourly data 69
Figure 4.7 Periodogram of the time-series 71
Figure 4.8 Fit of Fourier model . 72
Figure 4.9 Fit of Fourier model with interactions 73
Figure 4.10 Log-consumption as a cubic function of temperature 75
Figure 4.11 Fit of Fourier model . 76
Figure 4.12 Fit of Tao model . 77

Figure 5.1 Timeline for data segmentation 80
Figure 5.2 Wind rose for hourly energy consumption 81
Figure 5.3 Yearly behaviour of energy consumption at a fixed hour . . 82
Figure 5.4 Autocorrelation structure of the residuals 85
Figure 5.5 Scheme of RNN used in D-NAX 87
Figure 5.6 Exponential growth in RNN unrolling 89
Figure 5.7 Scheme of the optimal D-NAX 92
Figure 5.8 D-NAX load density forecast 95
Figure 5.9 H-NAX load density forecast 96
Figure 5.10 Tao model load density forecast 97
Figure 5.11 Pinball loss and Winkler score for the 4 models 99
Figure 5.12 Backtested confidence intervals 100

Figure A.1 Plots of Sigmoid and Swish 104
Figure A.2 Plots of ReLU and tanh . 105

xii

List of Tables

Table 3.1 Optimal hyperparameters for NAX model 55
Table 3.2 Results of epochwise and continual operation without shuffling 61
Table 3.3 Results of epochwise and continual operation NAX 62

Table 4.1 Model selection by means of information criteria 74
Table 4.2 Results for the three frequency-based models 75
Table 4.3 Results of fit for Tao model . 78

Table 5.1 Identifying the potential in D-NAX 84
Table 5.2 Set of considered hyperparameters for D-NAX model 91
Table 5.3 Accuracy results for the 4 models 98
Table 5.4 Comparison in terms of MAPE, RMSE and APL 99

xiii

Introduction

The economic and technological development of a country is strictly related to
the availability of electricity infrastructures and networks. Modern society requires
a huge amount of electrical energy in every moment, every day: our world is
interconnected, fast, smart and enlightened thanks to the presence of a complex
system of production and distribution of electricity that has gradually evolved in
the last decades.

As a general matter, the more a country is developed, the more electrical power
is needed for industrial, business and personal use. The topic of electricity demand
is contemporary, now more than ever: all the recent studies highlight how this
latter is projected to increase worldwide in the next years (cf. e.g. IEA 2020). On
the one hand, this is a consequence of the improvements in the standard of living
and of the expansion of economies; on the other, electricity is expected to become
increasingly central as clean energy transitions accelerate (cf. Vanegas Cantarero
2020).

Electricity demand forecasting plays a fundamental role both in allocating
the load for everyday use and in planning the future augmentation of facilities
and transmission lines; moreover being able to generate accurate predictions is
extremely important in order to accomplish other relevant tasks, such as scheduling
the maintenance of the power systems, minimizing the risks for the utility company
and achieving the maximum utilisation of the power plants (cf. e.g. Hong 2010).
All these activities concern specific time horizons: in the present thesis, we will
focus on mid-term forecasting, which means that we will consider one-year-ahead
load forecasting; why this time-frame is relevant in the practical situations will be
explained in the next chapter.

In general a multitude of different models exists and many techniques have
been used over the years with the aim of producing precise forecasts. The tradi-
tional methodologies are designed to generate point-forecasts; however in the most
recent decade, because of the increase of market competition and of the intrinsic
uncertainties associated to electricity demand, Probabilistic Load Forecasting (PLF)
has become ever more important (cf. Hong & Fan 2016). The advantage of PLF
is that each forecast is not thought as a single point-prediction, but rather it takes
the form of a predictive probability distribution over the future values of the load.

1

Introduction

Clearly this approach offers a more valuable information, since it provides details
about the uncertainty of each prediction.

Of course this requires more sophisticated models, which have to be carefully
designed and tested. In the latest years, in accordance with the technological im-
provements of the sector and the availability of a greater amount of data, new
techniques are emerging: the most interesting ones are based on Artificial Intelli-
gence (AI) and in particular on Artificial Neural Network (ANN), soft computing
models that are finding countless applications in all the fields. In detail, interesting
results have been obtained adopting Recurrent Neural Network (RNN), peculiar
models which are designed for analysing sequences, and therefore time-series (cf.
e.g. Hong & Fan 2016).

Having outlined the context in which this thesis is conceived, we now mention
that it is partly based on the previous work of Azzone & Baviera (2021). In this
paper, the authors propose a model for mid-term PLF that addresses the problem
of predicting the daily aggregate power consumption. More in detail, they consider
a Gaussian-based approach for modelling the daily electrical load and make use
of a Recurrent Neural Network to predict the probability densities of this latter
quantity.

The present thesis is the natural prosecution of this work and is aimed at:

• introducing a novel model for predicting the mid-term PLF on an hourly
basis. We would like to adopt a Gaussian parametric approach as well, and to
suitably use a Recurrent Neural Network in order to forecast the mean and
the variance of the future hourly distributions. In designing the model, we
need to find an effective method to take into account the autocorrelation of
the time-series: hourly electrical load is indeed characterized by a noticeable
serial dependency, as remarked by Bianchi et al. (2017).

• testing the performances of the proposed model in terms of both point accur-
acy of the predictions and reliability of the forecasted probability distributions.
Moreover, we would like to show that the proposed model can outperform
some existing linear models that are used in this field.

• analyse the state-of-the-art of PLF, focusing in particular on the model intro-
duced in Azzone & Baviera (2021).

Our work is organized on two complementary levels: firstly the modelling
one, since the final aim is to build a convincing mathematical representation of
the dynamics of electrical load; secondly, the computational one, because a special
interest is reserved to the practical implementation of those models. It is clear
that in principle the two things should be closely related; nevertheless, in the field
of Neural Networks this is not always true. Because of the existence of many

2

Introduction

high-level libraries that allow the creation of these versatile models, their use is
increasingly oriented towards immediate practical application, often neglecting
their actual functioning. In many cases this is perfectly reasonable, however, in our
opinion, it is always fundamental not to lose touch with the mathematical structure
of the models; this holds in particular when facing new research problems. In this
sense, we heed the appeal of Tien (2003): ‘Most people explain networks are just
black boxes. However, this lack of understanding has done more harm than good
to this research area.’

Furthermore, the attention for the implementation aspects is also aimed at
considering the required computational resources: Artificial Intelligence is known
for being an extremely computer-intensive field. Instead, we would like to design
models that can be reasonably managed without the need for too advanced techno-
logies.

The rest of the thesis is structured as follows:

Chapter 1 provides an overview of electrical load forecasting, in order to define
some important notions, to present the overall framework and to review the existing
literature on PLF.

Chapter 2 is devoted to describing Artificial Neural Network. It is thought to
give an insight into the structure of Feedforward and Recurrent Neural Networks,
to analyse their functioning, to summarize their properties and to explain the
algorithms that are typically used for training them.

Chapter 3 introduces the problem of forecasting the daily aggregate load. It is
focused on the analysis of the NAX model (Azzone & Baviera 2021), which has
central importance for the following chapters.

Chapter 4 illustrates the dynamics of intra-daily electrical load: this is necessary
to deduce its main features and the criticalities that may arise when designing a
model; moreover, two benchmark models are presented.

Chapter 5 introduces two new models based on Recurrent Neural Networks, de-
signed to produce intra-daily probabilistic forecasts of electrical load; their predict-
ive accuracy is then compared to the one of the previously introduced benchmark
models.

Chapter 6 summarizes the work and provides conclusive comments.

3

Chapter 1

Overview of Load Forecasting

Electrical load forecasting is a fundamental problem in the energy field, and it is
arguably one of the most interesting and attractive for researchers and practitioners.
Since the inception of the electric power industry, which happened more than a
hundred years ago, the need for predicting future power consumption has led to
the development of a large number of techniques for the purpose. The associated
literature is thus extensive and covers a multitude of methodologies and time-
horizons. In this regard, the central point that has to be considered is that electricity
as a product has very different characteristics compared to a material product, since
electrical energy cannot be stored and has to be generated when it is demanded.
The ability to forecast electrical load is therefore one of the most important aspects
for the management of the power systems, but also for planning and for decision
making.

1.1 Classification of Load Forecasts

In the first place, load forecasting can be classified according to the considered
time-frame: up to one day (or one week) for short-term forecasting, up to one year
for medium-term and more than one year for long-term (cf. e.g. Guerini 2016).

Short-term forecasting is for instance necessary for estimating load flows, for
making decisions that can prevent overloading and for many other day to day op-
erations. Moreover, in recent years this area is becoming more and more important
as a consequence of the deregulation of the power industry and the restructuring of
the energy sector, which have brought new challenges in the field of load forecasting
(cf. Hong 2010).

Mid-term forecasting is instead used mainly for schedule maintenance, fuel
supply and some minor infrastructure adjustments. In addition, it enables a com-
pany to understand the expected load demand over a longer horizon, which is

4

Chapter 1. Overview of Load Forecasting

useful for instance for the negotiation with other companies. Moreover, for the
proper functioning of a company, it is important for short-term decision level to
be incorporated into long-term decision level, so as to have coordination between
the two (cf. Reneses et al. 2006); in this sense, this is relevant to guarantee that
mid-term operations and goals are taken into account when deciding the short-term
strategies.

The last category, long-term forecasting, is purely aimed at planning; for in-
stance planning the construction of new power stations, the expansion of the grid
and the future investments. Long-term forecasting focuses on the analysis of dif-
ferent factors with respect to short and mid-time horizons, that for instance can be
the socioeconomic situation, industrial development or population growth. Fur-
thermore, also the level of detail of the predictions is different, since typically the
required output for this kind of forecasting is the average annual consumption for
the next years (cf. e.g. Kandil et al. 2002).

It is clear that there is no forecast that can satisfy all these needs, and thus
different models and approaches are employed for different purposes. In general,
depending on the selected time horizon, the type of variables that are considered
are obviously different; short-term forecasting - for instance, few hours ahead - is
usually performed utilising just the historical data of the load. The more the time
horizon is near in the future, the more the recent history becomes fundamental
for the prediction. However, when larger time ranges are considered, like weeks,
months or years, other variables come into play and have to be properly considered
in order to obtain accurate and reliable predictions (cf. e.g. Fahad & Arbab 2014).

1.2 Weather Dependent Modelling

When describing the dynamics of load on longer time horizons, weather con-
ditions represent the most relevant independent variables; they can for instance
include temperature (both dry-bulb and wet-bulb), relative humidity, precipitations,
but also wind speed and cloud coverage. The causal correlation between weather
and energy demand has been underlined by hundreds of studies (see Hong 2010
and references therein) and it has thus become a common practice to consider
weather conditions as a known datum when designing models. This approach,
known as weather dependent modelling, has been used for many years and it has
gradually become the standard methodology (cf. Hong 2010); moreover it ‘is being
commonly accepted by the industry for its simplicity and interpretability’ (Xie &
Hong 2018). In general, it is reasonable to assume that the incidence of weather
on the electrical load is more notable for domestic consumers, but actually, it has a
relevant impact also on the industry. Besides, it has to be considered that temperat-
ure can also alter the conductivity of the transmission lines, affecting the overall

5

Chapter 1. Overview of Load Forecasting

Load
history

Weather
history

Modelling

process
Model

Weather
forecast

Extra-
polating
process

Forecast

Figure 1.1. Flow diagram of weather-dependent modelling. In the initial phase, the model-
ling process, historical data of both load and weather are used for constructing
and calibrating the model; then, during the prediction phase, weather forecasts
are used to produce the final load forecast. (Figure adapted from Hong 2010)

carrying capability thereof (cf. Fahad & Arbab 2014).

The typical workflow of weather-dependent modelling is outlined in Figure
1.1. The scheme is formed by two main blocks; the first concerns the calibration
of the model, in which weather and historical data are suitably combined so as to
explain the realised power consumption. The second instead has to do with the
forecasting process: once the model has been calibrated, it can be used to predict
the energy demand over a specified period of time; however, in order to generate
the forecasts, the future weather conditions must be provided as input. Depending
on the time horizon, weather forecasts can be more or less accurate; in the case
of few days ahead, it is possible to rely on precise predictions provided by the
meteorological services. Instead, in the case of mid and long-term predictions, the
model is typically fed with weather scenarios, that can be suitably generated using
different techniques (cf. e.g. Xie & Hong 2018).

This is what happens in real cases; however, during the design phase of a
model, it is typical to test its performances using data of the past years, so as to
compare the forecasts produced by the model with the realized load. In this regard,
Hyndman & Fan (2010) introduced the distinction between ex-post and ex-ante
forecasting: the former expression refers to the case in which the true weather
conditions are supplied to the model, the latter instead to the case in which the true
weather conditions are not considered an available piece of information, and either
predictions or scenarios are thus supplied to the model.

In detail, ex-post forecasting is very useful to evaluate the model in terms of
its ability to generalise, i.e. to adapt properly to previously unseen data. In other
words, it serves to understand whether the model has convincingly captured the
relationship between climate and energy demand. Ex-ante forecasting instead
represents the typical real-world application of a model, since future weather
variables are unknown and they have to be somehow predicted.

In this sense, we notice that two sources of error exist: one is associated with
the inaccuracy of the model (even when the true weather conditions are provided
to the model, the prediction error is not equal to zero), while the second is due to

6

Chapter 1. Overview of Load Forecasting

the inaccuracy of the provided weather forecasts. Therefore, ex-post forecasting is
very helpful in evaluating the model performances because it separates the first
kind of error from the second. For this reason, in the following chapters, we will
focus on ex-post forecasting.

1.3 Literature Review

Among the different branches of load forecasting, mid-term PLF is characterized
by rather limited literature. It has to be said that generally the largest part of the
overall literature is focused on the techniques for producing point predictions: this
is arguably due to the fact that decision making in the utility industry is mainly
based on the evaluation of the expected value of the power consumption. Moreover,
this fact holds not only in the case of load forecasting but also for the other important
research area of electricity price forecasting (cf. Weron 2014).

However, it is not really clear why the literature of PLF is more limited - for
instance - than the ones of probabilistic wind forecasting and of probabilistic fore-
casting in general. What instead is known is that, as a consequence of the previously
mentioned deregulation of the power industry, during the early 2000s the efforts
of researchers and practitioners were primarily devoted to short-term predictions,
because of the increased competition in electricity markets; conversely, limitations
in infrastructure investment reduced the need for mid and long-term forecasting
(Hong & Fan 2016).

Just in the latest years, because of the fact that existing infrastructures have
shown their age limits and because of the increased employment of new technolo-
gies, like smart grids, the research in these latter fields has been encouraged, and
the interest for a higher level of granularity of the predictions has increased. In
addition, the recent introduction of the GEFComs, the Global Energy Competitions,
has ulteriorly stimulated the development of new techniques and methodologies;
in particular, the last one, that took place in 2017, was expressly aimed at enhancing
the knowledge about mid-term probabilistic forecasting (cf. Hyndman 2020).

Since PLF is an emerging branch of the more general field of load forecasting
(and therefore is not totally independent of point load forecasting) we firstly present
a concise review of the techniques used in this latter subject, focusing on the main
methodologies that are important for the discussion. Subsequently, we analyse
the literature of PLF, providing suitable insights about the state-of-the-art, and
specifying the framework in which we will work in the following chapters.

7

Chapter 1. Overview of Load Forecasting

1.3.1 Point Forecast

Load forecasting techniques are usually classified into two categories: statistical
techniques and Artificial Intelligence techniques (cf. e.g. Hong & Fan 2016). The former
group is mainly composed of standard methodologies, such as multivariate linear
regression, exponential smoothing, AutoRegressive and Moving Average (ARMA)
models and parametric additive models. The greatest part of the literature is based
on multivariate linear regression, which allows to model the dependency of load
from other exogenous factors, like calendar and weather variables. Many different
linear regression models have been introduced and are currently in use both for
short and long-term point predictions (see e.g. Hong 2010 and Guerini 2016). In
this regard, it is important to recall that these models are linear in the sense that
the dependency between the variables is expressed by a linear equation, but the
variables themselves can be suitably transformed (for instance, the logarithm of
the load is often used as dependent variable, as noted by Hong 2010, Chapter 3):
this makes this kind of models extremely versatile and able to describe even some
forms of non-linearity.

Artificial Intelligence techniques are instead more diverse and include for
instance Artificial Neural Networks, fuzzy regression models, support vector ma-
chines and gradient boosting machines (cf. e.g. Hong & Fan 2016): as mentioned,
in the present thesis we will be particularly interested in the first kind of models
(which will be presented and described in detail in Chapter 2). Artificial Neural
Networks are indeed reported to be extensively used in the field since the 1990s;
the advantage of these models is the fact that in principle the relationship between
variables does not have to be explicitly modelled, as happens for instance in linear
regression: by learning patterns from the historical data the network can construct
a proper mapping between the input and output variables. Moreover, their remark-
able ability to capture nonlinear dependencies have led to a widespread diffusion
of these models, which are currently used for forecasting on different time-horizons
(cf. e.g. Feilat et al. 2017 and Rodrigues et al. 2014). In particular, noticeable results
in mid and long-term modelling have been obtained by using a particular type
of Neural Networks, called Long Short-Term Memory (LSTM), which is expressly
designed for the analysis of sequences (cf. Agrawal et al. 2018).

1.3.2 Probabilistic Load Forecasting

Despite being quite scarce, the literature of PLF contains a variety of techniques.
One of the first works that outlined the importance of density forecasting is the
one of Hyndman & Fan (2010), in which the authors propose a two-staged semi-
parametric additive model for predicting the long-term peak demand in South
Australia. Their approach makes use of simulated scenarios for the temperature to

8

Chapter 1. Overview of Load Forecasting

generate the required probability distributions, and they show that such a model
can be used for predictions up to ten years. Incidentally, this methodology is
reported to have been employed in practice by the Australian Energy Market
Operator (Hong & Fan 2016).

The recent edition of GEFCom 2017 led instead to the introduction of other
methodologies: for instance, significant results have been obtained using quantile
regression for mid-term PLF (cf. Ziel 2019 and references therein). This technique
- which is an extension of standard linear regression - is aimed at characterizing
the entire conditional distribution of the dependent variable, providing a more
comprehensive statistical modelling with respect to the usual (mean) regression.

Other relevant machine learning approaches are instead associated with tree-
based techniques, namely gradient boosting machines and quantile random forests (cf.
Smyl & Hua 2019 and Roach 2019). Both methods were exploited by some of the
winning teams of the Global Energy Competition 2017, proving the remarkable
accuracy that these predictive models can achieve in mid-term PLF. The main
feature of all these methodologies (including quantile regression) is that they do not
require assumptions on the probability distribution of the load. In these cases, the
models produce as output an empirical density, which is characterized by means of
a suitable number of forecasted quantiles.

This fact can of course bring some benefits in terms of flexibility; however, the
approach that we want to adopt in this thesis is based on the use of a parametric
distribution, namely a Gaussian density. As mentioned in the Introduction, we will
consider as main reference the model proposed by Azzone & Baviera (2021), called
NAX, which makes use of a Recurrent Neural Network (cf. Section 2.2) to generate
mid-term forecasts; in particular, they focus on the daily aggregate consumption on
a time horizon of one year. In this case, each output of the Neural Network consists
of the mean and the standard deviation of the forecasted distribution. A similar
approach can also be found in Vossen et al. (2018), but in this other case, the aim is
to forecast just the one-hour-ahead electrical load.

Another interesting technique that makes use of Gaussian distribution is the
Gaussian process regression, a Bayesian statistical methodology based on the mul-
tivariate normal distribution. The effectiveness of this approach in mid-term PLF
is for instance shown in Baviera & Messuti (2020); however Gaussian process re-
gression relies on a strong assumption of multivariate normality and it has been
outperformed by the previously mentioned NAX in terms of accuracy of the pre-
dictions (cf. Azzone & Baviera 2021).

For this reason, we would like to extend the approach used in Azzone & Baviera
(2021), so as to generate one-year-ahead probabilistic forecasts, but with a higher
level of granularity: we aim indeed at making forecasts on an hourly basis. To the
best of our knowledge, there are no previous studies that make use of a parametric

9

Chapter 1. Overview of Load Forecasting

distribution for predicting the hourly dynamics of electrical load on the mid-term
horizon.

1.4 Evaluation

We conclude this introductory section by illustrating the most typical proced-
ures that are used to evaluate the goodness of a probabilistic forecast.

In general, PLF aims at providing information on the uncertainty of a future
value. As mentioned before, the energy industry is mostly interested in the point
predictions, which are more immediate to be interpreted and to be used to make
decisions. However, expected values can be easily computed starting from the
predicted probability densities, entailing that point predictions can always be
deduced from probabilistic forecasts. To evaluate the accuracy of point predictions,
the most commonly used statistical measures are RMSE (Root Mean Square Error)
and MAPE (Mean Average Percentage Error), as mentioned by Hong & Fan (2016).
Given a set of forecasted values {ŷt}nt=1 and the corresponding actual values {yt}nt=1,
we define the two quantities as

RMSE =

√√√√ 1

n

n∑
t=1

(yt − ŷt)2

MAPE =
1

n

n∑
t=1

∣∣∣∣yt − ŷtyt

∣∣∣∣
Instead, evaluating a probabilistic distribution is a more complex task. A

forecasted density is usually measured in terms of sharpness and reliability. The
former notion refers to ‘how tightly the predicted distribution covers the actual one’
(Hong & Fan 2016), the latter is associated with the frequency of exceptions, i.e. how
often the actual values fall outside the predicted confidence intervals.

Common metrics for evaluating sharpness are the pinball loss and the Winkler
score. Given a quantile q ∈ [0, 1] and the pinball loss for the element t is given by

Pt(q) =

{
(1− q)(ŷt − yt) if ŷt ≥ yt

q(yt − ŷt) if ŷt < yt

and therefore the pinball loss over the sample is computed as

Pinball(q) =
1

n

n∑
t=1

Pt(q)

Incidentally, pinball loss is the quantity that has to be minimized in quantile regres-
sion, implying that the aim of this latter technique is to generate a density that fits

10

Chapter 1. Overview of Load Forecasting

as well as possible the true quantiles of the distribution. Moreover a point metric,
which is called Average Pinball Loss (APL), can be computed as the average of the
pinball loss on a given set of quantiles (usually percentiles are considered).

Winkler score (Winkler 1972), instead, is computed as follows: let L̂t and Ût be
the lower and the upper bounds of the double-sided confidence interval for the
element t, with a level q, and let

Wt(q) =

Ût − L̂t + 2

1−q (yt − Ût) if yt > Ût

Ût − L̂t if L̂t ≤ yt ≤ Ût

Ût − L̂t + 2
1−q (L̂t − yt) if yt < L̂t

Then the overall score of a set of forecasts is defined as

Winkler(q) =
1

n

n∑
t=1

Wt(q)

In practice, Winkler score is composed of a fixed quantity Ût − L̂t (which rewards
narrow confidence intervals) plus a penalty that is applied in case the actual value
falls outside the confidence intervals.

Instead, the reliability of the predicted distributions are commonly evaluated by
means of backtesting, which basically consists in checking the compatibility between
the fraction of the observed values that fall inside the predicted confidence intervals
and their theoretical confidence level. Statistical tests can also be performed in order
to verify some relevant properties of the exceptions: this a very standard procedure
that is followed, for instance, in financial risk management (cf. e.g. Azzone &
Baviera 2021 and references therein).

11

Chapter 2

Artificial Neural Networks

Nowadays, Artificial Intelligence is carving out an ever-growing and privileged
space in the collective imaginary. It is extremely difficult to imagine a future in
which modern devices and machine learning will not play a prominent role and,
actually, it is even more difficult to imagine any task that AI will not be able to
accomplish in the future. Year after year, while scientists and philosophers raise
questions on these topics, modern technologies based on Artificial Intelligence
become more and more popular and high-performing, thanks to the contribution
of practitioners and enthusiasts all around the world. Behind the scenes of many
developments of this kind, we find Artificial Neural Network (ANN), or simply
Neural Network (NN), powerful computational models that will be briefly de-
scribed throughout the present chapter. Contents are freely adapted from two of
the main textbooks that cover this subject, namely Goodfellow et al. (2016) and Ag-
garwal (2018), and supplemented with additional references. For a more exhaustive
treatment of the topics, we refer the interested reader to the original books.

2.1 Feedforward Neural Networks

2.1.1 Introduction

Since the brain is par excellence the place where learning and cognitive processes
take place, why not imitate its functioning?

The idea behind Deep Learning, the branch of machine learning we are about
to introduce, is both simple and brilliant. The human brain has always been one of
the most mysterious and complex subjects for the scientific community, which still
has not been able to comprehend and explain many of its dynamics. However, the
cerebral structure, intended as the billions of neurons and the physical architecture
of interconnections that allow the flow of information among them, is a well-known

12

Chapter 2. Artificial Neural Networks

Input1

Input2

Input3

Input4

...

InputN

Output

Input layer Hidden layers Output layer

Figure 2.1. Scheme of MultiLayer Perceptron; in this case two hidden layers are considered.
As denoted by the arrows, the flow of information goes from the input layer to
the output layer.

fact. Artificial Neural Networks take inspiration from this structure since they
represent an attempt to reproduce - in a more or less simplified way - the behaviour
of the brain and of its cognitive dynamics.

In Figure 2.1 is reported the scheme of a paradigmatic type of network, which
is known as MultiLayer Perceptron (MLP) (cf. Goodfellow et al. 2016, Chapter 6).
This model exhibits the simplest architecture for a Neural Network and is formed
by many layers; in turn, each layer is composed of a certain number of basic units,
which are in fact called neurons. In particular, an MLP has an input layer, which
contains all the exogenous variables that are provided to the model, an output layer,
that can contain one or more neurons (depending on the problem that the model is
expected to solve), and an adjustable number of hidden layers in between.

Neurons are tasked with elaborating and sharing information. As shown in
the image, each neuron of a layer is connected to all the neurons of the following
layer, generating a complex network of interactions: if we consider a neuron i in the
n-th layer and a neuron j in the (n+1)-th layer, a weight wij is attributed to the link
(i, j). Simply, this value indicates how much the information brought by the neuron
i influences the neuron j. Altogether, these weights characterize the interactions
between two consecutive layers and in short the calibration of a NN, called training,
is aimed at determining the optimal value of all these parameters.

Networks designed to accomplish sophisticated tasks may require a large
number of layers, leading to the creation of very deep structures: the name Deep
Learning was originally thought to resemble this feature. On the contrary, networks
that are formed by few hidden layers (typically just one) are also denoted as shallow
Neural Networks.

13

Chapter 2. Artificial Neural Networks

Moreover, since the flow of signals is one-way, going from the input to the
output, these networks are typically referred to as Feedforward Neural Networks
(FNNs). The reader may imagine that other types of interconnections between
layers or neurons are possible: in these cases, other architectures are obtained, like
for instance the so-called Recurrent Neural Networks (RNNs) or Convolutional
Neural Networks (CNNs). We will be particularly interested in the former, which
are discussed in Section 2.2; instead, the latter (which incidentally should be in-
cluded in the category of FNN) will not be considered in this work (cf. Goodfellow
et al. 2016, Chapter 9).

2.1.2 A quick dive into neuronal models

To understand the mechanisms of Neural Networks and the intuition behind
them, it is certainly useful to go through a couple of historical moments that have
been fundamental for their introduction. We have already said that the basic
element of a NN is the neuron, which has been studied thoroughly by medicine
and science.

In detail, as described in Wang & Raj (2017), the origins of such networks
actually have to be sought in biological models. In 1943 two researchers, McCulloch
and Pitts, introduced the first simplified biomathematical model for the functioning
of a neuron (cf. McCulloch & Pitts 1943). They imagined a structure as the one
in Figure 2.2: the dendrites, the tiny ramifications that encircle the central body
of the neuron, receive the electrical stimuli from other neurons; conversely, the
axon, the long protrusion, has the task of conducting the electrical impulse away
from the neuron and transmitting it to the dendrites of other neurons through the
synapse. What has been said so far concerns the input and output connections, but
in addition the body of the neuron, the soma, and the nucleus in it are is responsible
for the elaboration of the electrical information captured by the dendrites: indeed
neurons belong to the class of the so-called excitable cells, which are able to modify
their physicochemical behaviour when suitably stimulated. If the received stimulus
is sufficiently intense, a neuron can electrically communicate with the surrounding
neurons; otherwise, its axon may not propagate any impulse.

From a mathematical perspective, the McCulloch-Pitts model is defined by the
following equation:

y =

{
1 if

∑N
i=1 xi ≥ θ

0 if
∑N

i=1 xi < θ

where y and {xi}i represents output and inputs respectively, while θ is a threshold
parameter that governs the behaviour described above (see Wang & Raj 2017). It
is however necessary to underline that this model is a binary model, and for this

14

Chapter 2. Artificial Neural Networks

y

x1

x2

x3

∑
i xi Aθ(·)

Figure 2.2. Scheme of the McCulloch-Pitts neuronal model. Dendrites gather information
coming from the neighbouring neurons and transfer it to the soma: there, data
are collected and summed, the threshold step-function Aθ is applied and the
resulting impulse is finally broadcast through the axon.

reason even the inputs {xi}i shall be thought as variables that can hold either zero
or one.1

A few years later, in 1958, the research psychologist Frank Rosenblatt intro-
duced a modified version of the McCulloch-Pitts model (cf. Rosenblatt 1958): he
abandons the purely binary framework, assuming that the nucleus can aggregate
the information coming from the dendrites not just by summing them, but by
means of a vector of weights w:

y =

{
1 if

∑N
i=1wixi ≥ θ

0 if
∑N

i=1wixi < θ

The Rosenblatt formulation offers greater flexibility to the model, because it leaves
the opportunity of choosing (or determining empirically) the vector of weights
in order to achieve a more precise and detailed mathematical description of the
neuron.

2.1.3 From neurons to brains

Modern NNs are de facto composed of groups of neurons with a structure
similar to the one prescribed by Rosenblatt model and are organized so as to form
a hierarchical system of layers. Layers can easily be thought as vectors of neurons:
the vector extension of the theory for the presented neuronal models is indeed
straightforward. Anyway, a big difference is the fact that inputs and outputs are no
longer forced to be binary variables, but are allowed to assume continuous values.

1In principle the model was designed to admit the presence of inhibitory variables capable of
preventing the excitation of the neuron. Nevertheless they will not be considered since they are not
of significant interest for the discussion.

15

Chapter 2. Artificial Neural Networks

Nevertheless, there are also two important features which, despite being presen-
ted in modern NNs in a slightly different formulation, are reminiscences of the
neuronal models. Firstly, the presence of the threshold level θ is typically expressed
by means of a parameter (one for each neuron) called bias, which is included in
the weights w that have to be calibrated. It is indeed elementary to rewrite the
excitability condition as

N∑
i=1

wixi ≥ θ ⇐⇒
N∑
i=0

wixi ≥ 0

once we define w0 = −θ and x0 = 1.

Secondly, a separate analysis of the two tasks performed by the soma, i.e. the
passive reception of the incoming stimuli and the active propagation of the impulse,
is very typical in contemporary architectures. The fact that electrical responses of
the neurons are nonlinear functions of the (weighted) sum of the received inputs
has a strong impact from a modelling perspective. Indeed we can look again at
Figure 2.1: if we assume the state of each layer to be an affine function of the state
of the previous one, the output layer would be an affine function of the inputs
and the overall model would just become a standard linear model. Therefore the
problem of determining the optimal weights for such a model would result in an
underdetermined form of multivariate linear regression. Rather, the main strength
of Artificial Neural Networks is the capability of capturing nonlinear relationships
between variables.

In this regard, in contrast with the original neuronal models, the intensity of the
output of a single neuron is typically expressed through specific functions known
as activation functions. One of the most iconic activation function is the so-called
sigmoid, defined as

σ(x) =
1

1 + e−x
=

ex

1 + ex

which takes values in [0, 1] and thus represents a continuous extension of the step
behaviour of neuronal models. Different types of activation functions are actually
selected depending on the problem that the model is supposed to address: the
individuation of the most suitable activation functions is indeed a part of the design
process of the NN. An exhaustive list of the commonly used activation functions is
provided in Appendix A.

In mathematical terms, we can therefore represent the action of every hidden
layer of a MLP as a map between vector spaces of dimensions ni and no

L : Rni → Rno

obtained as a composition of an affine application D and an activation function A

L = A ◦ D (2.1)

16

Chapter 2. Artificial Neural Networks

such that

D : Rni → Rno

D : x 7→ Kx+ b

A : Rno → Rno

The matrix K is called the kernel of the layer, while b is the bias vector. Since there
is an all-to-all (directed) connection between neurons of consecutive layers, each
layer of a MLP is said to be dense or fully connected.

Moreover in all the typical cases, with one significant exception, activation
functions are intended as functions between no-dimensional spaces that actually
operate component-wise; this is natural, since we expect the excitement of a neuron
to depend only on the stimulus that it receives, and not on the stimuli received by
the neighbouring neurons.

2.1.4 The universal approximation theorem

Starting from the late 1970s Neural Networks have increasingly become the
subject of in-depth studies for the scientific community (in particular engineers,
mathematicians, physicians and pioneers of computer science), interested in dis-
covering potential uses within the field of Artificial Intelligence. For instance, it
was exactly in those years that the principal algorithm for the training of NNs, the
backpropagation (cf. Subsection 2.1.5), was developed and devised (cf. Werbos
1994). Anyway, the initial applications were mostly based on heuristics and merely
justified by the analogy with the human cognitive system.

A crucial turning point for the theory of NN occurred when in 1989 George
Cybenko proved that a Neural Network composed by a linear output layer and a
hidden layer endowed with sigmoidal activation function and a suitable number of
neurons can approximate with arbitrary precision any Borel-measurable function
between two finite-dimensional spaces (cf. Cybenko 1989). Nevertheless, this
remarkable theorem, known as the universal approximation theorem, has to be
intended as a sort of existence result, since it cannot offer any indication of the
number of neurons that are actually required for concrete applications. Some
authors have tried to further investigate this topic (e.g. Barron 1994), but their
findings are far from being enough general and are not applicable in practice.

Moreover, many extensions of Cybenko’s theorem are present in literature,
some of which - under suitable hypothesis - prove that an analogous result holds
not only for sigmoids, but for any continuous activation function (cf. Pinkus 1999);
however the discussion of these theorems goes beyond the scope of the thesis.

In summary, the key point of the universal approximation theorem is that NNs
are in principle capable of approximating any function between Euclidean spaces.
This fact is undoubtedly the main strength of this kind of models, and from a

17

Chapter 2. Artificial Neural Networks

conceptual point of view, this theorem represented the historical legitimisation for
the extensive use of Neural Networks: thanks to this theoretical result, the research
in this field was encouraged and intensified, in an effort to unveil their effective
potential. It is nonetheless true that, as just mentioned, Cybenko’s result did not
bring any awareness of the way in which networks should be built in order to
obtain good performances. This aspect remained - and still remains - a critical
issue for Deep Learning and is usually addressed through heuristics and empirical
approaches (cf. Goodfellow et al. 2016, Chapter 6.4.1).

In this regard, an important remark is that the Neural Networks are generally
trained to detect and capture nonlinear dependencies between a set of provided
inputs and the corresponding provided outputs, which form respectively the exo-
genous and endogenous variables of the so-called training set. In almost all the
practical cases the exact way in which these variables are related, i.e. the function
we are trying to approximate, is unknown: hence the critical difficulty of choosing
a priori a suitable architecture.

2.1.5 Training a FNN: the backpropagation

So far we have described the formal structure of a FNN, the interaction between
the constituent parts and we have highlighted the important approximation prop-
erty; at this point we can start focusing on the effective use of these models.

There are two key phases in the creation of a Neural Network. The first has to
do with the design thereof, namely the choice of the number of hidden layers, the
number of neurons of each layer, the activation functions and some of the other
so-called hyperparameters of the network. The second instead is the training of the
network: this is the moment in which the parameters of the model - the weights -
are calibrated and the learning actually takes place.

The training of a Neural Network somehow resembles human learning. In short,
a set of pairs of input-output vectors

{
(x1, y1

), . . . , (xN , yN)
}

, known as examples
ot training set, is provided to the network; for each of the inputs xi the network is
asked to produce an inferred output ŷ

i
, which is then compared to the true output

y
i
.2 Every discrepancy between these two values is used by the network to adapt

its own weights, refining its knowledge about the analysed data and, hopefully,
improving its ability to generalise and produce good predictions whenever a new
input is supplied.

Although more general formulations are possible, we can assume that the inputs

2Since the true outputs (also called targets or labels) are known and the network can access them
during the training, this learning paradigm is termed supervised learning. In the thesis we will always
consider problems that deal with this type of framework. Anyway Neural Networks are also used
with remarkable results for performing unsupervised tasks, such as clustering (cf. e.g. Aljalbout et al.
2018).

18

Chapter 2. Artificial Neural Networks

x1

x2

x3

...

xN

ŷ1

ŷ2

D1 A1 D2 A2

x h ŷ

L1 L2

θ ϕ

Figure 2.3. A FNN with one hidden layer and the corresponding block diagram: every map
between two consecutive layers is a composition of an affine transformation (a
dense application) and an activation function. θ and ϕ refer respectively to the
weights of the first and of the second layer.

belong to a certain Euclidean space X , while the outputs belong to a Euclidean
space Y . In principle, the NN is meant to approximate the function

f : X → Y

that generated the samples of the training set: clearly the more the produced
outputs are similar to the targets, the more the model is high performing and well
calibrated. In detail, the goodness of a produced output is evaluated by means of a
loss function that suitably measures the magnitude of the error by attaching a cost
to every pair (y

i
, ŷ

i
); for many applications the loss function is a map of the form

L : Y × Y → R (2.2)

which can simply be any Lp norm of the residual εi = y
i
− ŷ

i
, but it may also assume

different forms depending on the problem that the NN is intended to solve. For
instance, we will see that the models presented in the following chapters do not
use a loss function of the form (2.2).

The aim of the training procedures is to minimize the average loss over the
sample, which is the average of the losses over the N pairs in the training set. To
do so, gradient-based algorithms are typically used; this entails that the weights
update procedure requires the computation of the gradient of the loss function with
respect to the same weights.

This task is usually addressed by exploiting the characteristic structure of a
FNN, which is a composition of many stacked layers. Indeed, said M the number

19

Chapter 2. Artificial Neural Networks

of hidden layers, the inferred output ŷ
i
, i.e. the one relative to i-th example, can be

written as
ŷ
i

= LM+1 ◦ LM ◦ · · · ◦ L1(xi) (2.3)

where each L• is a map between two layers of the form (2.1). Instead, the corres-
ponding loss value `i, i.e. the actual cost of the error, is given by

`i = L (y
i
, ŷ

i
)

In view of equation (2.3), differentiation with respect to weights can be per-
formed by using the chain rule. For the sake of clarity, the procedure is here dis-
cussed taking as reference the shallow network in Figure 2.3; anyway the reader
will realize that the following deductions apply to any more general case. For the
depicted network, the loss is given by

` = L
(
y,L2(L1(x, θ), ϕ)

)
= L

(
y,L2(h, ϕ)

)
where θ and ϕ shall be thought as vectors that collect all the trainable weights in
the corresponding layer. Then,

d`

dθ
=

dL

dŷ

dL2

dh

dL1

dθ
(2.4)

d`

dϕ
=

dL

dŷ

dL2

dϕ
(2.5)

In these computations, it is important to underline that x and y have to be treated
as fixed variables, since they are externally provided and clearly the NN cannot
have any influence on them.

A further investigation leads to more refined and usable formulae, once we
consider the structure of the basic functions L. Indeed each L can be written as

L(x, θ) = A(D(x, θ)) = A
(
Kx+ b

)
and the corresponding derivatives, which actually are Jacobian matrices, are given
by

dL
dx

= A′ K

dL
dθ

= A′ dD
dθ

Here the symbolA′ is to indicate the Jacobian matrix of the activation function with
respect to its own inputs, which is (nearly) always a diagonal matrix.

To conclude, it is necessary to deduce the expression for the matrix dD/dθ ;
in order to do so, we must first declare how the vectorisation of the weights is

20

Chapter 2. Artificial Neural Networks

performed. For our purposes, we will always assume that the kernel matrix K is
flattened by considering a row-major order and that the bias term is subsequently
appended to the obtained vector. In other words, the following type of enumeration
for the θ-parameters is used

Kx+ b =

[
θ1 θ2 θ3

θ4 θ5 θ6

]x1

x2

x3

+

[
θ7

θ8

]
(2.6)

Under this assumption, the Jacobian matrix dD/dθ , which has as many columns as
the total number of weights that have to be calibrated, is

dD
dθ

=

xT 0T · · · 0T 1 0 · · · 0

0T xT · · · 0T 0 1 · · · 0
...

...
...

...
0T 0T · · · xT 0 0 · · · 1

 (2.7)

with 0 null (column) vector of the same size as x. For example, in the case of
equation (2.6), the Jacobian matrix dD/dθ ∈ R2×8. A relevant remark is that each
column has only a non-zero element: from the implementation perspective, this
fact should not be neglected.

Having analysed all the terms, we can combine them and rewrite equations
(2.4) and (2.5) as

d`

dθ
= ∇TL A′2 K2 A′1

dD1

dθ
(2.8)

d`

dϕ
= ∇TL A′2

dD2

dϕ
(2.9)

where∇TL is used to indicate the gradient of the loss function with respect to the
output of the network, but intended as a row vector. In summary, the problem
of calculating the gradients reduces to the computation of products of Jacobian
matrices. Although the entire procedure is here explained for a simple case, the
presented methodology can be used for any kind of FNN with an arbitrary number
of fully connected layers.

Moreover, it should be noted that in general the optimal way of performing the
matrix multiplications is backward, from the loss to the input layer. Indeed the loss
function is a scalar-valued function and its Jacobian matrix is actually a gradient,
i.e. a vector (a row vector); the backward approach ensures that the long chain of
matrix multiplications is treated as a series of matrix-vector products, and therefore
- with very few exceptions - a low number of operations is required. In addition,
this fact offers a very nice visual representation of the training procedure, since
every neuron is initially implicated in a forward flow of the information during the
processing of the inputs, and in a backward flow of the gradient for the optimization
procedure (see Figure 2.4). This should explain why in literature the expression
backpropagation is commonly used for referring to this differentiation algorithm.

21

Chapter 2. Artificial Neural Networks

ŷ

x1

x2

x3

L
dL
dŷ

dL
dx1

dL
dŷ

dŷ
dx1

dL
dx2

dL
dŷ

dŷ
dx2

dL
dx3

dL
dŷ

dŷ
dx3

dL

Figure 2.4. Diagram of forward and backward propagation from a neuron perspective.

2.1.6 Training algorithms

The aim of this subsection is to provide an overview of the algorithms and of the
techniques used in practice to train Neural Networks. We have already mentioned
that the calibration of a Neural Network involves the minimization of the function

J(θ) =
1

N

N∑
i=1

`i(θ)

where N is the number of the examples in the whole training set. Here θ is meant
to collect all the trainable parameters of the model. As discussed in the previous
subsection, such a problem is usually approached with gradient-based algorithms
and ∇J is easily obtained thanks to the linearity of the gradient operator.

The simplest algorithm that can be used is the gradient descent, which recursively
updates the parameters according to the equation

θ t+1 = θ t − η∇Jt (2.10)

In this context a specific terminology is adopted: the parameter η, representing
the step size of the update, is called learning rate. Instead, the training set is said
to form a batch, and so the term batch gradient descent is often used for referring to
this algorithm. Lastly, an important notion is the one of epoch, which stands for a
complete presentation of the whole training set, or better ‘each repeated entry of
the full set of training patterns’ (Stegemann & Buenfeld 1999); in the case of batch
gradient descent, the weights are updated once per epoch.

Despite its simplicity, in practice this formulation of the gradient descent is
rarely used; this happens for several reasons (cf. Goodfellow et al. 2016, Chapter 8),
in particular

B computing gradients for the entire training set is computationally expensive,
entailing that a long time is required for each iteration;

B the number of the weights is usually very large and therefore the risk of being
stuck in local minima of the function J is highly relevant.

22

Chapter 2. Artificial Neural Networks

A very common approach to address these issues is to split the training sets in
mini-batches of size K and to approximate the exact gradient∇J with the average
gradient computed on each mini-batch:

∇J =
1

N

N∑
i=1

∇`i '
1

K

K∑
k=1

∇`ik

where {i1, i2, . . . , iK} are the K indexes of the statistical units that form the mini-
batch. The procedure, in this case, consists of analysing the training set one batch at
a time: for each of them, the estimate of the exact gradient is computed and used to
update the weights as in (2.10). This means that with this algorithm, the mini-batch
gradient descent, several updates occur during each epoch. At the end of any epoch,
the training set can even be shuffled; this implies that new mini-batches are formed
and, in some cases, this can bring benefits in terms of convergence speed.

A very special case of the mini-batch gradient descent is called Stochastic
Gradient Descent (SGD) and is obtained by selecting K = 1. It is clear that in
principle the more K is large, the more the approximated gradient (i.e. the update
direction) is similar to ∇J (i.e. the correct descent direction): therefore the SGD
is characterized by a very large variability and, despite being still fairly used in
practice, it is seldom the best solver that one can choose (cf. Choi et al. 2020).

In this regard, it is necessary to specify that for this kind of complex optimization
problems an update in the wrong direction is not always a completely negative
fact, since for instance it can help to escape from sub-optimal local minima. On the
other hand, it should be said that the most effective algorithms are typically those
that progressively adjust their update direction, rather than changing it completely
as SGD does. Progressive adjustments are usually implemented by keeping a
moving average of the previous gradients, so that the information brought by a
new gradient modifies only partially the descent direction adopted for the previous
updates; this approach is used in some algorithms such as Momentum optimizer (cf.
Qian 1999) and Nesterov Accelerated Gradient (cf. Nesterov 1983).

Nowadays, one of the most popular and versatile optimizers is Adam (cf. Kingma
& Ba 2014) that was originally conceived as an extension of another solver called
RMSProp (Geoffrey Hinton, unpublished). Its name stands for adaptive moment
estimation, and the idea behind it is indeed to keep track of both the mean and
the uncentered variance of the previous gradients through moving averages. In
detail, the core of the update strategy of Adam is specified by the following set of
equations:

mt = β1mt−1 + (1− β1)∇J
v t = β2v t−1 + (1− β2)∇J �∇J
[. . .]

θ t = θ t−1 − ηmt �
√
v t + ε

23

Chapter 2. Artificial Neural Networks

where � and � are used to indicate the elementwise multiplication and division,
respectively. Typical values of the hyperparameters are β1 = 0.9 and β2 = 0.999

(meaning that the impact of every innovation is very limited), while ε is just a small
constant introduced for numerical stability. For the sake of completeness, RMSProp
is instead obtained by setting β1 = 0.

The reason why it is worth analysing Adam-like solvers (Adagrad, RMSProp,
AdaMax, AdaDelta, Nadam, AMSGrad) is that they take advantage of what is
called an adaptive learning rate, which means that the step size used in the optim-
ization procedure is not kept fixed, but it is scaled by the inverse square root of
the estimate of the uncentered variance vt (cf. Goodfellow et al. 2016, Chapter
8.5). Moreover, this holds component-wise, entailing that every weight is actually
updated accordingly to a customized learning rate, which is a function of the history
of the gradients. In particular, the larger a partial derivative has been in recent
history, the more cautious is the solver in proceeding along that direction; on the
other hand for some solvers, this effect is counterbalanced by a Momentum-like
running average of the gradients at the numerator.

A final remark is that of course all these algorithms are designed for mini-batch
learning. The size of the mini-batches (usually called just batch size), as well as
the learning rate η, is one of the fundamental hyperparameters that have to be
accurately tuned in order to achieve good performances in optimization.

2.1.7 Underfitting, overfitting and regularization

The algorithms presented in the previous section are aimed at finding a reas-
onable local minimum of the loss function: when this happens, the training can
be considered complete, since the model can reproduce as closely as possible the
provided data. Unless few trivial cases, the minimisation of J is a complex problem
and we cannot expect the provided solution to be the global minimum, because of
the nonlinear structure of the loss function; however, these algorithms are designed
so as to increase as much as possible the probability of reaching a good local min-
imum. Moreover, it should be underlined that all of them are iterative methods,
which means that some termination criterion should be set: the most naive choice
is that the algorithm is stopped after a certain number of epochs.

Once the network has been trained, it can be used for predicting new outputs
given unseen inputs, which is the principal purpose of these kinds of models; if
the network has been well designed and trained, it should have ‘learnt’ the crucial
features from the training set and so it should be able to generalize and to produce
reasonable predictions.

In some sense, the training procedure explained so far is not different from
an optimization problem; what mainly separates machine learning from mere

24

Chapter 2. Artificial Neural Networks

optimization is that the generalization error, i.e. the discrepancy between the inferred
value in presence of an unseen input and its real value, is desired to be low as well.
In practice, the two factors that determine the performance of a machine learning
algorithm are its ability to:

B make the training error (i.e. the loss) small

B make the gap between training error and generalization error small as well

The inability to fulfil these objectives is called respectively underfitting and
overfitting (cf. Aggarwal 2018, Chapter 1.4 and Goodfellow et al. 2016, Chapter 5.2).
Underfitting happens when the model is not complex enough to suitably capture
the relevant features of the training set; overfitting instead occurs when the model
learns too many details of the training set (including the existing noise) and is thus
not able to generalise well. Figure 2.5 shows with a simple example the principle of
these two issues.

In practice, the Neural Networks are very unlikely to suffer from underfitting,
in the sense that - according to the universal approximation theorem - they can
approximate any function, as long as the number of neurons or layer is suitably
large; therefore, such a problem may arise either when the network is too small or
the number of samples in the training set (or their quality) is not sufficient to allow
a proper learning.

For what concerns overfitting, the issue is more delicate. In general, the
strategies that are employed to avoid overfitting are called regularization techniques:
for the sake of brevity, we mention two of them that are arguably the most used
ones. The first one consists of adding an extra penalty to the loss function, that
depends on the norm of the vector of parameters θ by means of a suitable positive

Figure 2.5. Example of underfitting and overfitting on polynomials. Underfitting (left) is
characterised by the fact that the model is too simple to properly describe the
data. The overfitting case instead (right) guarantees optimal flexibility and an
incredible ability to minimize the training loss; but on the other hand, it does
not extract the relevant features of the data. The best fit (centre) is obtained when
the model has the right degree of complexity.

25

Chapter 2. Artificial Neural Networks

underfitting overfitting

number of epochs

lo
ss

training

loss

validation

loss

Figure 2.6. Example of use of Early stopping: when - after a certain number of epochs
- overfitting starts to take place and the validation loss starts to increase, the
training procedure is stopped.

function Ω(·). Hence, the loss function is corrected as

J̃(θ) = J(θ) + λ Ω(θ)

where λ ≥ 0 is called regularization coefficient. The most important cases are the
so-called L1 and L2 regularization, that respectively consider

Ω(θ) = ‖θ‖1 Ω(θ) =
1

2
‖θ‖2

2

The second strategy is instead called Early Stopping and is thought to contrast
situations like the one in Figure 2.6, which are fairly common in Deep Learning.
Early Stopping requires the available data to be randomly split into a training set
and a validation set. During the optimization procedure, the former is used to train
the model in a regular way, while the latter (which represents a small portion
of the total data) is used to evaluate in real-time the generalization error - and
clearly, the network is never allowed to learn from the validation set. The training
is then conducted as usual until the validation error starts to increase as an effect of
overfitting.

However, although the original meaning of Early Stopping is the one just out-
lined, this expression is also used in a broad sense to indicate the interruption of the
training when a monitored metric has stopped improving. In the case in which no
validation set is created, the optimization procedure can be prematurely stopped
- for instance - when the loss or other statistics of the training set are no longer
significantly decreasing (cf. e.g. Mahsereci et al. 2017).

26

Chapter 2. Artificial Neural Networks

Figure 2.7. Graphical representation of the vanishing gradient in a deep feedforward net-
work. Going backwards through the network, the magnitude of the backpropag-
ated gradient diminishes progressively; therefore layers which are very distant
from the output layer are likely to suffer from vanishing gradient problem.

2.1.8 The vanishing gradient problem

We conclude this section dedicated to the FNNs by describing a common
problem that may affect Neural Networks and is called the vanishing gradient
problem. This issue is typical of very deep networks and occurs when the partial
derivatives of the loss with respect to the weights of the very first hidden layers
are of several orders of magnitude smaller than the other partial derivatives. In
other words, when the NN is very articulated and the flow of information must
pass through many layers, a small perturbation of any weight in the initial layers
may have no relevant impact on the loss (cf. Aggarwal 2018, Chapter 1.4).

The critical difficulty associated with this issue is that gradient-based optimiza-
tion procedures are likely to fail since the weights under consideration are almost
never modified during the training. This means that the learning is not carried out
in an appropriate manner and this results in an underperforming network.

From the point of view of the backpropagation, the vanishing gradient is caused
by the many matrix multiplications that are involved in the case of a deep network.
We can, for instance, consider a NN with M hidden layers. The gradient of the loss
for the first hidden layer (cf. equation (2.8)) is given by

d`

dθ
= ∇TL A′M+1 KM+1 · · · A′2 K2 A′1

dD1

dθ

and thus for any submultiplicative norm we get∥∥∥∥(d`

dθ

)T∥∥∥∥ ≤ ∥∥∥∥(dD1

dθ

)T∥∥∥∥ ∥∥(A′1)T
∥∥ ∥∥KT

2

∥∥ ∥∥(A′2)T
∥∥ · · · ∥∥KT

M+1

∥∥ ∥∥(A′M+1)T
∥∥ ‖∇L ‖

(2.11)
For instance we can consider the infinity norm ‖ ·‖∞, i.e. the maximum absolute
row sum of each matrix. For what concerns the most part of the activation functions
- as shown in Appendix A - their infinity norm is ≤ 1 (and almost always strict

27

Chapter 2. Artificial Neural Networks

−4 −2 0 2 4

0

0.5

1
f(x)
f ′(x)

−2 −1 0 1 2

0

1

2
f(x)
f ′(x)

Figure 2.8. Plot of Sigmoid (left) and of ReLU (right) with their first derivatives. Unlike
Sigmoid, ReLU activation function is designed to avoid saturation when the
input argument becomes large and positive.

inequality holds); for (dD1/dθ)T , the same result is true whenever the training
set is for instance min-max normalized3. Lastly, the weights that compose the
kernel matrices are usually small in magnitude (in particular when regulariza-
tion is applied) and for many applications kernels are rectangular matrices with
more columns (i.e. inputs) than rows (i.e. outputs); thus the infinity norm of their
transpose matrices is nothing but the maximum among the sums of just a few
terms.

The latter is not a very formal argument, hence in practice an a priori upper
bound cannot be found. Anyway, it should be enough to convince that in (2.11)
many terms on the RHS are less than 1 and they can therefore force the LHS to
be close to zero. In this regard, it is important to mention that vanishing gradient
problem arises in particular with activation functions such as the sigmoid. Indeed,
because of its shape, this function is very likely to get saturated, since its derivative
is relevantly different from zero only in a relatively small neighbour of the origin,
as shown in Figure 2.8. Even the presence of few saturated neurons is enough
to prevent the proper functioning of the backpropagation (cf. Rakitianskaia &
Engelbrecht 2015).

The vanishing gradient problem has been largely studied in literature, and
usually the most effective solutions to tackle this issue are:

3min-max normalization is a feature scaling technique which is very popular in Deep Learning
and consists in transforming each variable z into

z′ =
z −min z

max z −min z

In this way, each transformed variable z′ is forced to take values in the range [0,1] and this not only
is useful in comparing the variability of the several features independently of their magnitude, but
is also reported to improve the convergence of the optimization algorithms (Nawi et al. 2013).

28

Chapter 2. Artificial Neural Networks

B an accurate choice of the activation functions, because in deep networks the
risk of saturating neurons becomes very relevant. Piecewise linear functions
such as the ReLU and its variants have shown to be an effective remedy.

B a proper random initialization of weights, as suggested in Glorot & Bengio
(2010) or Yam & Chow (2000).

B the selection of different training algorithms. In this regard, an interesting
option is the algorithm Rprop (cf. Riedmiller & Braun 1993), which actually is
still gradient-based, but the descent direction is chosen only according to the
sign of the gradient; another suggestion is to training each layer separately
and then to perform an eventual fine-tuning, as proposed for example in
Schmidhuber (1992b).

B changing the topology of the network. For instance Residual Networks, also
called ResNets, (He et al. 2016) and Highway Networks (Srivastava et al. 2015)
are architectures that allow connections between non consecutive layers,
introducing shortcuts which reveal to be useful during the backpropagation.

On the other hand, it is rarer (but not uncommon) to have a network that
exhibits the opposite behaviour, i.e. an exploding gradient; such a problem may not
only lead to suboptimal learning, but may also cause instability of the training
algorithm. This issue is usually addressed with gradient clipping (cf. Pascanu et al.
2013): for a fixed threshold α, the gradient is adapted according to the relationship

∇J =

α

‖∇J‖
∇J if ‖∇J‖ > α

∇J if ‖∇J‖ ≤ α

so that, if required, its direction is preserved and its magnitude is reduced.

Nevertheless, it is clear that both problems are actually pathological behaviours
that require a careful analysis of the network and, if necessary, a redesign thereof,
especially when a large number of layers is present.

2.2 Recurrent Neural Networks

2.2.1 Introduction

Feedforward Neural Networks have shown to be capable of achieving out-
standing performances in a multitude of practical cases. Anyway there are many
situations in which data are characterized by sequential relationships, e.g. in image
generation, speech recognition, named-entity recognition, language modelling,

29

Chapter 2. Artificial Neural Networks

machine translation, and time-series analysis (cf. van den Oord et al. 2016 and
Sutskever 2013, Chapter 1).

In such cases, each statistical unit x is typically formed by a sequence of ba-
sic subunits {x(t)}t : these are for instance pixels for images, words for sentences
and observations for time-series. Every subunit represents an essential part of the
information, obviously; anyway we understand that, if we consider each subunit
separately, we are neglecting the important knowledge coming from the context.
Trivially, the meaning of a word might vary depending on the sentence to which
it belongs, and a pixel simply defines a colour, which taken in isolation is not
sufficient to recognize the subject of an image.

A Feedforward Neural Network is not able to capture this kind of dependency,
since it treats any subunit as an independent datum; the need for a proper way of
modelling sequences led to the introduction of other types of Neural Networks,
which are characterized by specific topologies.

Recurrent Neural Networks (Rumelhart et al. 1986) are one of the solutions
that were found to be effective for this purpose. They are networks that allow
feedback connections, as shown in Figure 2.9; this basically means that - while
elaborating the incoming information - the hidden layer can take advantage of the
knowledge of its previous state h(t−1). In this sense, a RNN treats the feedback as
one of the many stimuli that usually travel among the neurons; thus it has to learn
not only how to use properly every exogenous datum x(t), but also how to fully
exploit these new connections. As said, the huge advantage of such an architecture
is that networks are able to understand sequential relationships among the subunits.
Indeed at a given time, the state of the hidden layer is a function of the last hidden
state, which is in turn a function of second-last, and so forth.

As networks become deeper, not all the hidden layers are required to have
recurrent links; for instance, some of them can be just densely connected like the
ones of FNNs. Of course the presence of many recurrent layers generates a strong
web of interactions that may turn out to be useful in some situations. Furthermore,
in other circumstances different types of recurrent connection may be required: for
instance, instead of the hidden state h(t−1), the output ŷ(t−1) can be provided to the
hidden layer. An example of this structure is the one of NARX neural networks,
presented in Subsection 2.2.5. Although this section focuses on the general theory
of RNNs, we will be particularly interested in this latter kind of models.

2.2.2 The structure of the RNN

As mentioned, RNNs are basically FNNs that, in addition, allow the presence
of feedback links. With regard to the RNN in Figure 2.9, the usual convention is to
consider a scheme of all-to-all dense connections between the returned hidden state

30

Chapter 2. Artificial Neural Networks

x

h

ŷ

L1

L2

x(t)

h(t)

ŷ(t)

L1

R

L2

Figure 2.9. Scheme of a FNN (left) and of a RNN (right): these simple examples have only
one hidden layer (the structure of the FNN is actually equivalent to the one of
Figure 2.3). Every time the RNN processes a statistical unit, the output of its
hidden layer h is stored and used as input for the next iteration.

h(t−1) and the neurons of the hidden layer: in other words, the depicted Neural
Network can be equivalently represented as (see Goodfellow et al. 2016, p. 374)

ŷ(t) = L2

(
A1

(
K1x

(t) +R1h
(t−1) + b1

)︸ ︷︷ ︸
h(t)

)
(2.12)

where R1 is the matrix that collects the trainable weights associated to the feedback
links, while as before L2 = A2 ◦ D2. Although the picture may suggest some kind
of linear superposition of L1 and the recurrent function R, with abuse of notation
this is used to indicate a relationship of the form (2.12): an affine transformation
of all the inputs (including the recurrent ones) followed by a passage through the
activation function.

Also, it is possible to reformulate the equation for the hidden state h(t) to obtain
a FNN-like expression

K1x
(t) +R1h

(t−1) + b1 = K̃1x̃
(t) (2.13)

once we define
K̃1 = [K1 | R1 | b1]

and

x̃(t) =

 x(t)

h(t−1)

1

This block matrix formulation highlights how all the weights can be grouped in a
trainable matrix and all the stimuli in a (non-trainable) vector. It is moreover trivial

31

Chapter 2. Artificial Neural Networks

x(1)

ŷ(1)

L1

L2

R
h(1)

x(2)

ŷ(2)

L1

L2

R
h(2)

x(3)

ŷ(3)

L1

L2

R
h(3)

x(4)

ŷ(4)

L1

L2

R
h(4)

x(5)

ŷ(5)

L1

L2

h(5)

Figure 2.10. Unrolling a RNN. Because of their peculiar structure, RNNs can be thought as
particular forms of FNNs.

to deduce that if no feedback connection is allowed, equation (2.13) reduces to the
standard dense application that appears in FNNs.

In this regard, a crucial remark is that in most cases RNNs can actually be
represented as feedforward networks: this is done through a procedure called
unrolling of unfolding (Goodfellow et al. 2016, Chapter 10.1), which is illustrated in
Figure 2.10. The obtained envelope is a very particular feedforward network: the
trainable weights are somehow shared among the subunits, and indeed the same
symbols have been used to denote the corresponding applications (again, the abuse
of notation regarding L1 andR is adopted).

Moreover, the scheme highlights a matter that deserves special attention: in
the beginning, we do not have an initial condition h(0) for the hidden state. The
most popular solution is to impose it equal to zero, a solution that anyway can
introduce a bias if the hidden state is expected to be significantly different from the
null vector. Other possibilities are to use the last available state, which formally
belongs to a different sequence and therefore may assume nonsensical values as
well, or to randomly generate an initial state; lastly, an interesting proposal that
is worth mentioning is that the initial state can be learned as well as the other
parameters, as suggested for instance in Forcada & Carrasco (1995).

2.2.3 Architectures for sequence modelling

Depending on the form that we require for the output, Figure 2.10 can offer a
more or less appropriate representation of the network. Indeed in some situations
one may be interested in getting as output not an entire sequence, but just a single
element: a so-called many-to-one scenario. A field in which this happens is sentiment
analysis, that for example aims at recognizing if the review of a product (i.e. a
sentence) is positive or negative.

32

Chapter 2. Artificial Neural Networks

Figure 2.11. Different architectures for sequence modelling: many-to-many (above left and
above right), many-to-one (below left), one-to-many (below right). The first two
types of network transform sequences into sequences, while the others trans-
form a sequence into a single vector and vice-versa.

Figure 2.11 shows the four typical architectures that are used in sequence
processing (cf. e.g. Kapoor et al. 2019 and references therein). In music generation
one-to-many architectures can be employed, in such a way that from an initial note a
melody is produced. On the other hand, many-to-many architectures are necessary
whenever a sequence needs to be transformed into another sequence. They come
in the two depicted configurations: the one on the left is used for instance for
classification tasks, when each input has to be properly labelled; for example in
part-of-speech tagging each word has to be labelled as noun, verb, adverb... The one
on the right is instead a structure used in language translation: in this case the
whole sentence is formerly processed, and only then the output is produced.

An important remark is that the loss function has to be designed so as to match
the type of output that the network generates. Therefore in principle slight differ-
ences in the training procedure can arise when different architectures are selected.

From now on the discussion will be focused on time-series modelling, because
of the central importance they will have in the next chapters. In this case, data
assume a very simple form: a time-series is nothing but a sequence of real-valued
vectors.

2.2.4 The backpropagation through time

As FNNs, RNNs are commonly trained with gradient-based procedures; this
entails that the problem of computing gradients is central also in this case. The
technique of backpropagation that has been developed for feedforward networks
cannot be used in principle, because the feedback links alter the topology of the
network; anyway, we can take advantage of the feedforward representation that is

33

Chapter 2. Artificial Neural Networks

obtained by unrolling the RNN. In this initial stage, we analyse for simplicity the
case a RNN with one hidden layer and a many-to-one architecture. In particular
we consider the network in Figure 2.12, that processes a sequence with t elements
and produces a final output ŷ(t).

The idea is that the gradient can be backpropagated along with the unrolled
graph. With reference to Figure 2.12, backpropagation occurs not only vertically,
i.e. from ŷ(t) to x(t) as usual, but also horizontally, i.e. going backward in time: this
means that we must take into account both the impact of the weights in the usual
feedforward flow and the one associated with the recurrent connections.

In symbols, for the loss `(t), the one associated with ŷ(t) and the corresponding
true target y(t), we can write

d`(t)

dθ
= ∇TL

dŷ(t)

dθ
= ∇TL

dŷ(t)

dh(t)

dh(t)

dθ
(2.14)

On the other hand, in view of the previous discussion it is clear that

dh(t)

dθ
=
∂h(t)

∂θ
+

dh(t)

dh(t−1)

dh(t−1)

dθ
(2.15)

Assuming a structure of the form (2.12), we get

dh(t)

dh(t−1)
= A′1

∣∣∣∣∣
K1x(t)+R1h

(t−1)+b1

R1 (2.16)

In this context, we are obliged to distinguish between total derivatives and partial
derivatives of h(t) with respect to θ. The meaning of the two is straightforward: the

x(1)

h(1)

x(2)

h(2)

x(·)

h(·)

x(t−1)

h(t−1)

x(t)

ŷ(t)

h(t)

backpropagation
forward pass

Figure 2.12. Backpropagation Through Time. The scheme highlights how the backpropaga-
tion procedure works in the case of a RNN. In detail not only the usual feedfor-
ward contribution is considered (i.e. the one associated with x(t)), but also the
dependencies associated with the previous time-steps.

34

Chapter 2. Artificial Neural Networks

former indicates both the horizontal and vertical dependencies, as we defined them;
the latter account only for the vertical dependency, i.e. the one associated with the
processing of subunit t and not with the feedback connections.

Equation (2.15) anyway hides a recurrent relationship: indeed also h(t−1) can
be written in an analogous form. This in general holds until h(1) is reached in the
backpropagation, since that element has only a vertical dependency (unless the
initial condition is parametric as well, but we do not treat this case in this thesis);
thus, for this term, equation (2.15) becomes simply

dh(1)

dθ
≡ ∂h(1)

∂θ

The final formula for this modified backpropagation is given by

d`(t)

dθ
=

t∑
k=1

∇TL
dŷ(t)

dh(t)

dh(t)

dh(k)

∂h(k)

∂θ
(2.17)

Since this algorithm involves also the dependency at previous time steps, it is
known as backpropagation through time, or BPTT (Williams & Zipser 1995).

A couple of remarks should be made about equation (2.17). First, we emphasize
that such formulation has the advantage of being compact and easily understand-
able, but for practical purposes it prescribes useless matrix multiplications. Indeed,
when computing the k-th element of the sum, the following factorisation is ex-
ploited

dh(t)

dh(k)
=

dh(t)

dh(t−1)

dh(t−1)

dh(t−2)
· · · dh(k+2)

dh(k+1)

dh(k+1)

dh(k)
(2.18)

Therefore, according to (2.17), the contribution of the k-th element is given by

(
∇TL

dŷ(t)

dh(t)

dh(t)

dh(t−1)
· · · dh(k+2)

dh(k+1)

)dh(k+1)

dh(k)

∂h(k)

∂θ

but the row vector in brackets is the same that appears when considering the
contribution of the element k + 1, that reads(

∇TL
dŷ(t)

dh(t)

dh(t)

dh(t−1)
· · · dh(k+2)

dh(k+1)

)∂h(k+1)

∂θ

In other words, again with regard to Figure 2.12, the procedure expressed in equa-
tion (2.17) works as follows: starting from ŷ(t), the gradient is backpropagated until
h(k) is reached; once this is done, the procedure restarts again from ŷ(t) and the
gradient is now backpropagated until h(k+1) (or h(k−1), depending on the order) is
reached, and so forth. Instead the advised procedure to avoid repeated multiplica-
tion is to follow the natural path of the backpropagation, i.e. recursively employing
equations (2.14) and (2.15).

35

Chapter 2. Artificial Neural Networks

Second, given the large number of matrix multiplications in equation (2.18),
typically of the form (2.16), Recurrent Neural Networks are likely to suffer from
the vanishing or exploding gradient problem. In some sense, it is not a surprising
fact because RNNs are not so different to deep FNNs, as we showed; hence in
general they are not able to learn long-term dependencies, but they mainly rely on a
finite-context learning. This fact clearly causes the training of RNNs to be a difficult
task. More in detail, while exploding gradients are associated with some sort of
instability of a network, or at least of the training procedure (cf. e.g. Pascanu et al.
2013), vanishing gradients are somehow related to NN stability. For instance, a
recent work (Miller & Hardt 2019) proves that any stable recurrent model, i.e. a model
that fulfils some Lipschitz-like stability conditions and is characterised by vanishing
gradient, can be well-approximated by the corresponding truncated feed-forward
model: in short, this is equivalent to say that such networks cannot have long-term
memory.

As a consequence of the finite-context dependency, in many cases the Truncated
Backpropagation Through Time, or TBPTT (Williams & Zipser 1995) is used in
practice: this simply means that in equation (2.17), instead of backpropagating from
time t to time 1, the algorithm considers just the last K1 time steps. The equation
that governs TBPTT(K1) is thus:

d`(t)

dθ
'

t∑
k=t+1−K1

∇TL
dŷ(t)

dh(t)

dh(t)

dh(k)

∂h(k)

∂θ
(2.19)

If K1 is suitably tuned so that the sum of the ignored terms is reasonably negligible,
this algorithm is in practice equivalent to BPTT, but it is for sure advantageous
from a computational perspective (in particular when K1 is significantly less than
the length of the sequence).

2.2.5 Other RNNs: LSTM and NARX

In this section we briefly mention two other types of RNNs that perform better
than the standard RNNs (also called vanilla RNNs) on long-term dependencies.
The fact that vanilla RNNs are not capable of learning long-term dependencies
has been a central problem in literature (cf. e.g. Bengio et al. 1994 and Hochreiter
1998). Many applications require the knowledge of details which are distant in time;
this has always been the main limitation of standard RNNs, which instead ‘cannot
bridge more than 5–10 time steps’ (Gers et al. 2000).

Long Short-Term Memory (LSTM) networks are a class of RNNs with a partic-
ular structure that allows a greater persistence of the context-related information.
Indeed, they are reported to be able to bridge time intervals of up to 1000 steps
even in case of noisy input sequences, without exhibiting any loss of short time lag
capabilities (cf. Hochreiter & Schmidhuber 1997). Their architecture is much more

36

Chapter 2. Artificial Neural Networks

Figure 2.13. LSTM scheme. This complex cell is characterized by two different recurrent
connections, the usual hidden state associated with the processing of the
previous element of the sequence, plus an additional cell state that allows the
persistence of the information.

complex than the one of vanilla RNNs, as shown in Figure 2.13. The interesting
novelty introduced by LSTM is that two different recurrent connections exist: in
addition to the hidden state ht, also ct - called the cell state - is used as a feedback
signal. This latter is indeed what allows the long-term permanence of the context
details.

The overall functioning of a LSTM cell is governed by the following set of
equations:

f
t

= σ(Kf [ht−1, xt] + bf)

it = σ(Ki[ht−1, xt] + bi)

c̃t = tanh
(
Kc[ht−1, xt] + bc

)
ct = f

t
� ct−1 + it � c̃t

ot = σ(Ko[ht−1, xt] + bo)

ht = it � tanh(ct)

(2.20)

In short, each cell is composed of three main parts: a forget gate, an input gate and an
output gate. First of all, it is possible to notice that two different types of activation
functions are present: the sigmoid and the hyperbolic tangent. The latter is actually
used to transform the processed vector (as in FNNs or vanilla RNNs), whilst the
former is always employed with the explicit purpose of transforming the processed
vector into a vector of numbers between 0 and 1. Three vectors of this kind are
produced: it, ot and f

t
.

Considering the equations in (2.20), in every case these vectors are involved
in an element-wise product with another vector. For instance, the RHS of the (iv)

37

Chapter 2. Artificial Neural Networks

equation is formed by two blocks: the first one, i.e.

f
t
� ct−1

represents the fraction of the previous cell state ct−1 that has to be remembered. On
the other hand

it � c̃t
is the new part that will compose the cell state: it is composed of the product of the
scale vector it and the informative vector it, both obtained by processing the input
[ht−1, xt]. The sum of the two contributions forms the state c̃t.

We will not go into deeper detail, since LSTMs will not be utilised in the fol-
lowing; anyway it is worth mentioning that some models in the energy forecasting
sector make use of these structures, as well as of a similar type of recurrent net-
works called Gated Recurrent Unit (GRU) (cf. e.g. Bianchi et al. 2017 and references
therein).

Nonlinear AutoRegressive eXogenous (NARX) networks (cf. Billings 2013) are
another family of recurrent models that has gained significant importance in many
fields of data analysis. Basically they constitute the nonlinear analogous of the
well-known ARX models and are thus described by the equation

y
t

= F
(
y
t−1
, y

t−2
, . . . , ut, ut−1, ut−2, . . . ,

)
(2.21)

where F is a nonlinear function and each ut−k is a (time-lagged) exogenous vector.
In the general formulation of the NARX model, F can assume different forms, but
in the case of NARX networks it is supposed to be a function described actually by
a Neural Network, as shown in Figure 2.14.

In other words, NARX networks are built in such a way that there is a recurrent
connection between the output and the first hidden layer. Nevertheless their power
is that they allow a better description of temporal dependencies, in the sense that

Figure 2.14. NARX network scheme. These recurrent networks are characterised by the
existence of a feedback connection from the output layer to the input layer:
in this way the model can take advantage of its previous predicted values.
(Figure adapted from Bianchi et al. 2017, p.33)

38

Chapter 2. Artificial Neural Networks

Figure 2.15. NARX network: training mode and operational mode. During training (left),
the network is considered as a FNN and the true lagged values yt−k are used
as inputs. When the network is instead utilised for forecasting (right), the loop
is closed and the model is fed with the previous inferred outputs. (Figure
adapted from Bianchi et al. 2017, p.33).

not only the 1-lagged output ŷ
t−1

is provided as input when computing ŷ
t
, but in

principle an arbitrary number of the previous outputs can be used; in this regard,
there are several studies (cf. e.g. Menezes & Barreto 2008) that show that NARX
networks perform better than vanilla RNNs on predictions involving long-term
dependencies.

Because of their peculiar architecture, NARX networks often are not trained
with the backpropagation through time, but it is possible to exploit a particular
strategy to learn the parameters θ of the NN. The procedure is shown in Figure
2.15: during the training phase, the output feedback is disconnected and the entire
model is treated like a FNN. In this sense, the required ideal targets y

t−k are fed
into the network instead of the corresponding inferred values ŷ

t−k: this technique,
which allows a great reduction of the training time, is known in literature as teacher
forcing (cf. Goodfellow et al. 2016, Chapter 10.2.1). Notice that this is not possible
for instance with vanilla RNNs, since the ideal values of the previous hidden states
ht−k are not retrievable by the training set. Once the training is over, the feedback
link is reconnected and the network is used in closed loop to make predictions (cf.
Bianchi et al. 2017).

In this chapter we have described the features of the Artificial Neural Net-
works, defining the notion of FNN and of backpropagation, explaining the typical
algorithms used for their calibration and highlighting the issues that may arise
during the training. Then we have focused on RNNs, which are more powerful,
but also more complex kinds of networks that can be used for modelling sequences,
and we have shown how the backpropagation algorithm works in for them. In
the following chapter, we will show how RNN can be used for probabilistic load
forecasting.

39

Chapter 3

Forecasting the Daily Demand

The most natural way to approach the problem of forecasting intra-daily energy
demand is to understand how to model daily consumption effectively. What makes
this problem simple yet challenging is the fact that daily energy consumption is
characterized by a peculiar seasonal behaviour, that is strongly correlated with
the climatic conditions (heating and cooling systems play a critical role in this);
however, the standard time-series techniques, such as regressive and autoregressive
models, are not capable of producing accurate medium-term predictions.

In recent years, the knowledge in the field of Probabilistic Load Forecasting
has grown enormously, also thanks to the competitions that encouraged brilliant
researchers to work on this subject; as a consequence, many interesting techniques
and models were developed. In the present thesis, we consider as the main reference
the NAX model, a NN-based architecture proposed in Azzone & Baviera (2021),
which achieves remarkable results in forecasting the probabilistic distribution of
daily energy consumption. In this chapter, we introduce the NAX model - which
will be a fundamental building block for the following chapters - and describe it
in detail, with a particular focus on its training phase. In this regard, we discuss
and compare some different procedures that can be used to train the model and we
show their impact on the accuracy of the predictions.

3.1 Preliminary analysis

We are used to having a daily routine in our lives: in spite of pretending to be
unpredictable, we have a multitude of habits, especially when it comes to energetic
consumption. It is not complicated to imagine that for instance the weekly energetic
consumption of a person, whose working and social life lead to specific situations
and actions, is incredibly similar to the last week’s ones and to the next week’s ones.
This is in general true, of course, when we do not consider public holidays, which
instead represent particular exceptions in the usual daily routine.

40

Chapter 3. Forecasting the Daily Demand

Residents per square
mile of land area

0
1-10
10-49
50-99
100-149
150-249
250-499
500-999
1000-2499
2500-4999
5000-9999
10000+

Figure 3.1. Population density of New England divided by municipality, based on the
2010 US Census data. It can be noticed that the region is characterized by an
inhomogeneous density: the coastal zones are the most densely settled, whilst
the internal areas are far less populated.

However, there is another big periodicity that characterizes our lives, and
it is represented by the annual cycle. Different seasons mean different climatic
conditions, and different climatic conditions lead to different energetic demands.
Temperature and weather produce a huge impact on electricity consumption. In
winter and summer, heat pumps and air conditioning are the biggest cause of
elevated power consumption in the most developed regions of the world, while
this phenomenon is less noticeable in autumn and spring.

3.1.1 Dataset introduction

The selected dataset is the one used for the GEFCom 2017 and is provided by
ISO New England Inc., the Regional Transmission Organization that coordinates
the electric grid for the New England region, in the US; it contains the energy
consumption profiles for the whole region, subdivided into eight bottom-level
zones (cf. Hong, Xie et al. 2019).

New England is one of the most renowned zones of the United States, it is
situated in the northeast of the country and it is composed of six states: Connecticut,
Maine, Massachusetts, New Hampshire, Rhode Island and Vermont. In detail the
dataset defines eight zones, each of them corresponding to a single State with the
exception of Massachusetts, which is subdivided into three sub-regions; this is
mainly due to the fact that it is the most populated State and it features the biggest
town in the New England zone, Boston.

41

Chapter 3. Forecasting the Daily Demand

−10 0 10 20 30
°C

10 20 30 40 50 60 70 80
°F

250

300

350

400

450

500

550

GW
h

Figure 3.2. Scatter plot of dry-bulb temperature and consumption in 2009-2010 for the whole
New England area. The distribution highlights how extreme temperatures cause
an increase in energy consumption; moreover, the impact of high temperatures
seems to be more pronounced.

As proposed in the work of Azzone & Baviera (2021), the electrical load data
of the entire region are aggregated, despite the relevant territorial extension of
the area. This approach ensures to have an average point of view of the power
consumption of New England, which in principle is a region characterized by a
large inhomogeneity, as Figure 3.1 shows. On the other hand, this should limit
the possibility of having noisy data – associated for instance to zonal events or
criticalities – and provide a more reliable picture of the overall consumption.

Climate effects are similarly local, they change from State to State and it is not
so hard to imagine that the temperature could be so different in the eight zones on
the same day. New England is indeed a region characterized by an unpredictable
climate, there is a big difference between Atlantic zones (especially in the North)
and inland zones. However, in order to be coherent with the consumption data, the
average temperature for the entire New England is considered.

In detail, the dataset contains the following variables

B energy demand

B dry-bulb temperature

B dew point temperature

B hour and date

and, in addition, a list of the federal holidays is provided. Since the proposed
variables are actually sampled on an hourly basis, energy demand is summed to

42

Chapter 3. Forecasting the Daily Demand

obtain the total consumption on each day, whilst temperatures are averaged on
daily intervals. The resulting variables are therefore the sum over all zones and the
24 hours for what concerns the consumption, and the average over all the zones
and over the 24 hours for what concerns the temperatures.

Figure 3.3 captures the combined effect of the two previously presented peri-
odicities - one anthropic and one natural - that govern the daily energy use. The
weekly routine is marked by an evident collapse of energetic consumption during
the weekend, especially on Sunday, when many production and business activities
are closed. People have different habits during these days, they may move from
their usual houses and spend their time out, they wake up late and do not have to
go to their workplace. These weekend habits have a big impact on the electrical
demand, which will be even more significant in the intra-daily analysis of the
following chapters.

The long-term behaviour is instead a consequence of the fact that climate
changes during the year. The green dashed line in the plot is suitably able to
describe the dynamics of demand; it is obtained by performing a linear regression
of power consumption against two pairs of sines and cosines with a period equal
to one year and six months, plus a linear trend term. Incidentally, this approach of
modelling seasonality by means of sinusoidal functions is fairly common in this
field and it will be discussed in the following.

3.1.2 Holiday impact

Holidays are another significant point to consider; despite being somehow
periodical, they are not usually modelled as working days. The literature often
define holidays and extraordinary events (like blackouts or strikes) as intervention
events (cf. e.g. Guerini & De Nicolao 2015): this emphasises their uncommon nature,
even under the perspective of energy demand. In particular, only federal holidays
will be considered in this study. The energy demand is obviously lower during
these days since that most of the business activities are closed. Interestingly, in
several States, for instance, in Massachusetts, blue laws are in force; these old laws
prescribe that the main part of business activities must be closed during federal
holidays. Figure 3.4 shows the power consumption of every Monday of the year
2009; traditionally, in U.S. many fixed-day holidays, i.e. the ones that occur every
year on a specific day of the week, fall on Monday, creating a three-day holiday
called long weekend.

Anyway, energetic demand on public holidays - and public holidays as well -
could be different from country to country (for instance, in Italy fixed-day holidays
are rare since they are usually fixed-date, i.e. they occur on the same day of the
year, like Christmas). They are somehow based on local customs, state laws and
population’s habits and thus there is not a unique common modelling strategy; as a

43

Chapter 3. Forecasting the Daily Demand

general rule, it is always advisable to model these days separately from the usual
dynamics of power consumption (cf. e.g. Ziel 2018).

3.2 The NAX model

3.2.1 Overview

As mentioned in Chapter 1, the critical point of mid-term and long-term fore-
casting is that they mainly rely on the detection of trend and seasonality of a time
series, just like the ones that were discussed in the previous section. Contrarily to
the short-term forecasting, which is strongly based on what we can call the recency
effect (i.e. the fact that the knowledge of today’s demand is an important piece of
information for predicting tomorrow’s demand, as the two are clearly very close
in time), mid and long-term forecasting cannot in principle do much more than
extracting just the ordinary features of a time series. In this sense, it is difficult to
imagine that, say, the exact knowledge of the energy load of April is useful for
predicting the one of the next December; the longer time horizon clearly introduces
a large variability and the seasonal behaviour is simply what survives. Essentially,
this lack of long-term certainty is the main motivation behind the use of weather
dependent forecasting (cf. Subsection 1.2).

This is the context in which the NAX model (Azzone & Baviera 2021) was
conceived. It is a weather-dependent model that ‘joints the advantages of classical
univariate time-series analysis and a shallow NN’: indeed NAX stands for Neural
Network with Autoregression and eXogenous inputs. Despite some common features,
this architecture should not be confused with NARX networks (cf. Subsection 2.2.5);
the reason why NAX is a peculiar nonlinear autoregressive model will become
clearer in the following. The main strength of NAX is that it is designed density
forecasting, and in particular for the mid-term one.

As reported in Guerini (2016) - and references therein - a well-established
approach to load forecasting is the sequential one, which consists in

B data transformation,

B detrending and seasonality removal,

B intervention analysis,

B modelling of the residual variability.

We will see in the next pages that NAX methodology follows exactly this scheme.

44

Chapter 3. Forecasting the Daily Demand

2009-01 2009-04 2009-07 2009-10 2010-01 2010-04 2010-07 2010-10 2011-01
Date

250

300

350

400

450

500

550
GW

h
Consumption
Seasonality
Sunday

Figure 3.3. Daily aggregate energy consumption in 2009-2010. The profile exhibits a relevant
seasonal pattern, with peaks in summer and winter. Furthermore, on Sundays,
the consumption is considerably lower than the other days. (Figure adapted
from Azzone & Baviera 2021).

2009-01 2009-03 2009-05 2009-07 2009-09 2009-11 2010-01
Date

275

300

325

350

375

400

425

450

475

GW
h

Working day
Holiday

Figure 3.4. Holiday impact on Mondays of 2009. The plot highlights the relevant decrease
in energy consumption during the holidays. During long weekends, indeed, the
consumption on Monday is always far lower than the other Mondays.

45

Chapter 3. Forecasting the Daily Demand

3.2.2 Data transformation

It is a common standard in the literature to model the natural logarithm of
the consumption (cf. e.g. Benth et al. 2008), also denoted as log-consumption in
the following. As pointed out in the original paper, this is useful to tackle the
seasonality in the observed volatility of the time-series; indeed energy load in sum-
mer is characterized by turbulent fluctuations and by the presence of huge spikes.
Although it is not immediate to notice it in Figure 3.5, thanks to the logarithmic
transformation the behaviour of log-consumption appears to be more harmonious;
similarly, the resulting distribution is more balanced because of the compression
effect that logarithm has on the right tail (Figure 3.6).

Furthermore, it is worth mentioning that in general the advantage of working
with logarithms is that yearly and weekly seasonality - and also holiday effects - can
be modelled additively, whereas they are multiplicative in the original time-series
(Soares & Souza 2006).

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

250

300

350

400

450

500

550

GW
h

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Date

5.6

5.8

6.0

6.2

6.4

GW
h

Figure 3.5. The original time-series of daily energy consumption for 2007-2016 (above) and
the log-transformed one (below). The two plots do not show significant dif-
ferences, but the series of log-consumption appears to be more regular and
compact; in particular, the summer peaks are less pronounced in the second
plot.

3.2.3 Trend, seasonality and intervention

According to Guerini (2016), additive models are usually specified as

Yt = Trendt + St + rt (3.1)

where Yt is the logarithm of energy demand, Trendt is a term that accounts for the
linear trend, St is the seasonal term, that incorporates all the periodicities and the

46

Chapter 3. Forecasting the Daily Demand

250 300 350 400 450 500 550
GWh

0

50

100

150

200

250

300

350
Fr
eq
ue
nc
y

5.6 5.8 6.0 6.2
GWh

0

50

100

150

200

250

300

Fr
eq

ue
nc
y

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

Figure 3.6. Histograms of consumption (left) and of log-consumption (centre). It is possible
to notice that the original distribution is very skewed (actually resembles the
PDF of a lognormal distribution) due to the presence of a heavy right tail, whilst
the log-consumption exhibits a more centred and balanced distribution. The
plot on the right instead compares the two densities after the two samples have
been min-max scaled.

special days, and rt is a stochastic process. Trendt is here indicated in this way
to avoid any risk of confusion with the (dry-bulb) temperature, indicated in the
following as Tt.

Actually, the structure of NAX is completely coherent with this definition. The
first two terms are expressed as follows:{

Trendt = β0 + β1t

St =
∑2

k=1[β2k sin(kωt) + β2k+1 cos(kωt)] + β6DSat(t) + β7DSun(t) + β8DHol(t)

(3.2)

The three D◦(t) terms are dummy variables that hold one if day t is a Saturday, a
Sunday or a holiday, respectively, and zero otherwise. The sinusoidal terms instead
account for the yearly and half-yearly seasonality (ω = 2π/365); in this regard, the
authors decided to remove 29 February from leap years to preserve the seasonality
structure.

Altogether, the presented terms form the deterministic part of of the model,
which is meant to describe the seasonal behaviour of the electric load. In this
regard, it is important to underline that the log-consumption profile is assumed
to depend linearly on these factors, defining therefore a General Linear Model
(GLM), which is then calibrated on the training data by means of Ordinary Least
Squares (OLS). Despite its simple formulation, the model is able to describe the
most evident behaviour of the energy consumption, i.e. the seasonal dynamics, and
could in principle be used to make some initial rough forecasts. Figure 3.7 shows
for instance the mid-term predictions for the year 2012, obtained by training the
model on the data of years 2009-2011. However, the residuals of this regression,
indicated in the following as rt, are still relevant, in particular during the summer

47

Chapter 3. Forecasting the Daily Demand

2012-01 2012-03 2012-05 2012-07 2012-09 2012-11 2013-01
Date

250

300

350

400

450

500

550

GW
h

Realized
Forecast
CI

Figure 3.7. GLM predictions for the year 2012. The model is trained by using the data
2009-2011 as training set and the predicted profile is plotted together with the
95% confidence intervals. The GLM model is only capable of capturing the most
evident part of the trend, i.e. the half-yearly seasonality and the reduction of
consumption during the weekend.

months. As a consequence of this considerable variability that is not explained by
this basic model, very large confidence intervals are generated.

3.2.4 Modelling the residual variability

At this point, the macroscopic features of the time series have been identified
and removed. We should expect the residuals of the GLM model to be fairly
autocorrelated as a result of the previously discussed recency effect. Indeed, the
removed seasonality describes a long-term behaviour and thus it assumes almost
the same value on two consecutive days; this entails that if on a day the true
consumption falls relevantly above (or below) the predicted value, it is likely that
this will happen even on the following day.

Formally, this aspect is investigated by means of the complete and partial
autocorrelation functions reported in Figure 3.8: they show that the previous claim
is actually correct. Moreover the plot of PACF allows in principle to deduce which
lags are relevant to explain properly the observed phenomenon; in the case of a
standard AR(p) model, we would have probably selected the first two lags. Since
the autocorrelation at first lag is very pronounced, usual tests for the presence of a
unit root are performed, that however lead to a negative response.

The central idea proposed in NAX concerns the form assigned to the stochastic

48

Chapter 3. Forecasting the Daily Demand

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

Autocorrelation

0 10 20 30 40 50

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Partial Autocorrelation

Figure 3.8. Total and partial autocorrelation functions for GLM residuals. The plots show an
evident 1-lag autocorrelation, that cannot be captured by the GLM. According
to PACF also 2-lag autocorrelation is considered statistically relevant, which is
however far less pronounced than the 1-lag one.

process rt and the way its parameters are estimated. Residuals are indeed assumed
to be a collection of independent Gaussian random variables with mean µt and
variance σt, both deterministic functions of time. This structure allows in partic-
ular great flexibility in describing the previously mentioned erratic behaviour of
variance, which clearly requires appropriate heteroskedastic modelling.

The two time-series of mean and variance, that completely characterize the pro-
cess rt, are estimated through a Neural Network. Anyway, since serial dependency
is a crucial feature of the residuals, a Recurrent Neural Network is employed for
the occasion; its scheme is illustrated in Figure 3.9.

It has only one hidden layer and - as usually happens for regression problems -
the linear activation function, i.e. the identity, is chosen for the output layer. The
network produces as output a pair (µt, σt), respectively the estimated mean and
standard deviation of the distribution of rt; instead, every exogenous input vector
is formed by the two temperatures contained in the dataset, namely the dry-bulb
and the dew point, and eight calendar variables, which are the ones that appear in
equation (3.2), i.e. the linear trend, the four sinusoidal terms and the three dummy
variables. In addition, in order to replicate the evident one-lag serial dependency, a
feedback connection from the output to the input is introduced in the model. This
latter element constitutes the autoregressive part of the model.

As mentioned in Chapter 2, the training strategy is specified by choosing the loss
function, because it establishes how errors are measured. In this case, a maximum
likelihood estimation approach is used; in detail, for each time t, the adopted loss
function is expressed by

L (µt, σt |rt) =
1

2
log
(
2πσ2

)
+

1

2

(rt − µt)2

σ2
t

= − logϕ(rt, µt, σt) (3.3)

49

Chapter 3. Forecasting the Daily Demand

Drybulbt

DewPointt

Calendar1
t

Calendar2
t

...

Calendar8
t

µt−1

σt−1

µt

σt

Figure 3.9. Scheme of the Recurrent Neural Network that is employed in NAX model. The
output of the previous day, composed by the mean and the standard deviation
of the predicted distribution, is used as autoregressive input for the following
day.

where ϕ(x, µ, σ) is the value at x of the normal PDF with mean µ and standard
deviation σ. Thus, it should be clear that, because of stochastic independence, min-
imizing the loss function is equivalent to maximizing the corresponding Gaussian
log-likelihood.

As a final note, we would like to highlight that this is one of the cases in which
the output of the network (µt, σt) and the true target rt are elements of different
Euclidean spaces (cf. Subsection 2.1.5), being the first a vector in the 2D space
and the second simply a scalar. In this sense, we do not want the output to be
as close as possible to the target in a usual Lp norm sense, but a probabilistic
framework is adopted. Incidentally, in addition to the entire methodology that
has been described above, this also represents the main differences between this
model and usual NARX models: µt and σt are not available data, but are obtained
by processing the incoming information. Trivially, a training in open-loop form (cf.
Subsection 2.2.5) could not be performed, since - with regard to Figure 3.9 - the pair
(µt−1, σt−1) is not known unless we process the inputs for day t− 1 (but this, in turn,
would require the output of the previous day, and so forth).

50

Chapter 3. Forecasting the Daily Demand

3.3 Training the RNN

3.3.1 Preparation of the dataset

As described in Chapter 2, RNN models are trained to make predictions based
on a sequence of consecutive samples from the data. However, when dealing with
time-series, it often happens that the available data come in the form of a single
long sequence of past observations. In order to obtain a training set that can be
handled by a RNN, a typical procedure is to use a sliding window approach, i.e. to
split the long sequences into a family of sub-sequences of fixed length, each one
shifted in time with respect to the previous one, as in Figure 3.10. Each of these
sub-sequences, equipped with the corresponding target, represents a single training
case. For example, this approach is adopted by Gasparin et al. (2019) and Bianchi
et al. (2017).

When this methodology is considered, two further hyperparameters have to be
taken into account: the length of each sub-sequence and the time-shift between two
consecutive sub-sequences. Concerning the latter, unless exceptional cases, it is a
common practice to set it equal to one; this is mainly due to the fact that, clearly,
setting a larger time-shift parameter implies that fewer windows are obtained and
so fewer training cases are made available to the network. In principle, the larger is
the time-shift, the larger is the risk of losing some important pieces of information.

The length of the sub-sequences, instead, has no default value and there are no
specific rules-of-thumb to select it. Its choice is driven by two aspects:

B if the sub-sequence is too short, some important information about the context
may be lost;

B if the sub-sequence is too long, the training procedure is can be very expensive
under the computational perspective, because of BPTT.

Figure 3.10. Generation of sub-sequences: in this case, a unitary time-shift is selected.
Clearly, the total number of windows that can be created depends both on the
length and the time-shift thereof.

51

Chapter 3. Forecasting the Daily Demand

This trade-off has always to be considered when designing an RNN, or better
when preparing the data. Anyway, the intuition behind the choice of sequence
length is that it does not alter substantially the kind of information contained in
a sub-sequence. Instead, it is mainly concerned with how frequently the hidden
state is reset; in this regard, we recall the discussion on the initialization of hidden
states in RNNs (cf. Subsection 2.2.2). In accordance with the default choice of
many Deep Learning libraries like Keras (cf. Kapoor et al. 2019, Chapter 8), in the
following, we always assume that the hidden state is initialized to zero whenever a
new sub-sequence is analysed.

In the present case, windows are composed by a sequence of length L of vectors
of size 10 (each formed by the two temperatures and the eight calendar variables):
they are thus matrices of data. As a consequence, the training set can be thought a
3D tensor, since it is formally an ordered set of windows. On the other hand, every
target is just a scalar, i.e. the true residual corresponding to the last element of each
sequence. In this sense, it is implied that a many-to-one architecture is selected for
the occasion.

The initial choice is to consider windows of length two, in an attempt to focus
just on the 1-lag autoregressive dependency and to fully exploit this very-short-
term piece of information; in Section 3.4 we discuss instead the impact of longer
dependencies by considering wider windows.

Moreover, to conclude the data pre-processing, the data are min-max normal-
ized, so that all the features are in a comparable range and improve the convergence
of the training algorithm; in detail, this applies for the two temperatures, which
assume values on a different scale with respect to the other variables.

3.3.2 Implementation

As explained in the paper, the original implementation of NAX is done in
Keras (cf. Chollet et al. 2015) with Tensorflow as backend. The simplicity of
the interface is for sure a point in favour of this API, which is indeed extremely
popular in the world of Deep Learning; on the other hand, it has the disadvantage
that networks like the one depicted in Figure 3.9 are not built-in structures and
must be defined ad-hoc.

Keras allows by default the construction of sequential networks by means
of a specific Sequential API, which for many practical cases can be enough; in
particular, this API offers the possibility to create vanilla RNNs, in which the
recurrent connections are always intended to be layer-wise (see Section 2.2.2) and
not - for instance - from the output layer to the hidden layer, as NAX requires.
In order to implement more complex networks, one can either use the Functional
API, which is used to create flexible models characterised for instance by non-

52

Chapter 3. Forecasting the Daily Demand

Figure 3.11. Keras APIs for models implementation. The Sequential API allows the cre-
ation of the most general networks; anyway, non-conventional models can be
implemented using Functional API and Model Subclassing.

sequential topology, or resort to a most low-level alternative: Model Subclassing,
i.e. implementing tailor-made derived classes and overriding the built-in methods.
The main problem with these last two possibilities is that often training times
become very long since the sophistication of the model has a direct impact on the
backpropagation procedure (the same principle for which BPTT in RNNs is more
computer-intensive than backpropagation in FNNs).

The structure of the network used in the NAX model has anyway a relevant
peculiarity. It is represented by the equation

ŷ(t) = K2 A1

(
K1x

(t) +R1 ŷ
(t−1) + b1

)︸ ︷︷ ︸
h(t)

+b2 (3.4)

and thus
ŷ(t) = K2 A1

(
K1x

(t) +R1K2h
(t−1) +R1 b2 + b1

)
+ b2 (3.5)

In other words, since the output is an affine transformation of the hidden layer, it is
possible to write the hidden state h(t) as a function of h(t−1):

h(t) = K1x
(t) +R1K2h

(t−1) +R1 b2 + b1 =

= K1x
(t) +R∗1h

(t−1) + b∗1

This shows that the network is actually equivalent to a vanilla RNN with a fully
recurrent hidden layer. As a consequence, the Sequential API that was mentioned
before can be used for implementing such a structure.

3.3.3 Calibration, validation and testing

Once the network has been created and implemented, the actual training takes
place: this is the moment in which the model learns the features of the residuals. In

53

Chapter 3. Forecasting the Daily Demand

Keras, the training is done through a built-in method, which actually implements
the steps that are described in Chapter 2. In this regard, Adam is selected as
optimizer.

As usually happens in these cases a procedure called grid search is performed:
many combinations of the hyperparameters are considered and the corresponding
results are evaluated and compared in order to identify empirically the best one. In
Table 3.1, are reported the ones that are selected according to the paper. This phase
actually represents the validation of the model.

As the last step, the obtained model is then trained on subsequent years and
used to forecast the mid-term load and, thus, to test its effectiveness; as an illustra-
tion of the overall result, in Figure 3.12 are plotted the predicted values for the year
2012. For more precise details of the testing phase, we refer the interested reader to
the original paper.

Figure 3.12. NAX ex-post predictions for the year 2012. The model is trained by using the
data 2009-2011 as training set and the hyperparameters identified in Table 3.1.
The predicted profile is plotted together with the associated 95% confidence
intervals.

3.4 Improving NAX performances

Among people that work ordinarily with Neural Networks, there is a popular
saying that goes: deep learning is an art rather than a science. This quote is
meant to resemble how deep learning models are difficult to be treated: they are

54

Chapter 3. Forecasting the Daily Demand

Hyperparameter Value

Hidden neurons 3
Activation function Softmax

Learning rate 0.003
Batch size 50

Regularization parameter 0.0001
Time range of training set 3 years

Table 3.1. Best-performing configuration of hyperparameters for NAX model.

too complex to be studied analytically and usually we do not have particularly
formal ways of explaining why an architecture is better than another. In this
section, we investigate some aspects of the training of the RNN employed in
the NAX model and we propose modifications that are useful to improve the
predictive performances: in particular, in Subsection 3.4.4 the results obtained by
best-performing configurations are compared to the results provided in the original
paper that introduces NAX.

3.4.1 The impact of Window Length

In the first place, the incidence of the window length is discussed. As previously
mentioned, this hyperparameter is related to the context that the network can
make use of to produce each prediction: the larger is the size of each window, the
more detailed is the information contained in it. This is obvious in principle, but in
practice, it is not always convenient to use windows that are too large. In the present
case the reason is twofold: first of all, the vanishing gradient problem prevents
the network from learning long-term dependencies; secondly, the autocorrelation
plot in Figure 3.8 shows that actually long-term dependencies are not relevant for
explaining the residuals.

In Figure 3.13 is reported an evaluation of the forecast performance of NAX
when the window length is set equal to 2, 5 and 10 respectively. Two accuracy met-
rics, MAPE and RMSE (cf. Subsection 1.4), are considered for the purpose: in both
cases selecting a window length equal to 5 seems to be the most appropriate choice,
which is expected to produce - on average - the best predictions. This is somehow
consistent with what has been said before, i.e. that truncating the sequence too
early causes the network to be blind to long-term temporal dependencies and that
on the contrary, the learning becomes more difficult if the window is excessively
long. Nevertheless, these results are in general to be taken as a tendency, since the
training procedure depends considerably on the initial values of the weights of the

55

Chapter 3. Forecasting the Daily Demand

2 5 10
Window Length

7.6

7.8

8.0

8.2

8.4

8.6
RM

SE

2 5 10
Window Length

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

M
AP

E

Figure 3.13. Boxplot of RMSE (in GWh) and MAPE (in %) against three window lengths.
The values have been obtained by training the NAX model 10 times for each
window length, with different initial conditions. The training set is composed
of the data 2009-2011 and the accuracy of the corresponding forecasts for 2012
is evaluated; the selected hyperparameters are the ones in Table 3.1 with the
exception of the learning rate, which is set equal to 0.001 to obtain more stable
performances. Moreover, the training set is shuffled at the end of every epoch
(cf. Subsection 3.4.2).

0 250 500 750 1000 1250 1500 1750 2000
Epochs

2200

2000

1800

1600

1400

1200

1000

Lo
ss

Length = 2
Length = 5
Length = 10

Figure 3.14. Evolution of testing loss for different choices of window length. Data and
settings are the same as in Figure 3.13 and, similarly, 10 replications with a
different random seed are considered: the shaded profile represents the average
loss for each epoch. In order to obtain smoother curves, a running average is
then computed and plotted.

56

Chapter 3. Forecasting the Daily Demand

NN, which are randomly selected.

3.4.2 The impact of Random Shuffling

Another aspect that is fundamental for practical applications is the random
shuffling of the training data, which was briefly mentioned in Subsection 2.1.6.
In many cases, shuffling the training set and creating new mini-batches at the
end of each epoch can sensibly improve both the convergence of the optimization
algorithm and the ability to generalize of the obtained model; the underlying reason
is that shuffling data serves the purpose of reducing variance. In particular, this
becomes a very relevant point when data are somehow sorted, since the gradient
that is computed on a mini-batch may be a very biased estimate of the real gradient
∇J that represents the ideal descent direction: therefore, mixing the training set
during the pre-processing of the data is always a recommended practice (cf. Bengio
2012).

Anyway it is common to do it also after each epoch: on the one hand to limit the
risk of having many mini-batches are not representative of the overall dataset - and
thus helping the optimization algorithm to escape from suboptimal local minima
- on the other, because it should ensure that the model is less prone to overfitting
since a new amount of randomness is introduced at every epoch.

In the case of NAX, both the convergence speed and the performances of the
training algorithm are definitely increased with this procedure. In particular, a
comparison between the average convergences of the same network, with even the
same initialization, is shown in Figure 3.15. When data are not shuffled, many more
epochs are required for convergence and the testing loss (but the same thing holds
for the training loss) is greater than the one obtained by mixing the training set;
this is mainly caused by the fact that in these cases the optimization algorithm gets
stuck in sub-optimal local minima. On the other hand, the randomness associated
with shuffling generates more volatile results, as highlighted by the wide shaded
profile in the plot; the convergence is much smoother and more regular in the other
case, and usually continuous slow improvements occur for thousands of epochs.

3.4.3 Continual operation and RTRL

The last modification we analyse is related to the algorithm used for training
the network. The underlying idea of the following discussion is that instead of
splitting the training set into a multitude of windows, we would like to consider
the network as a continually running system.

In this regard, the distinction between the epochwise1 and the continual operation

1In this context, epochwise should not be confused with the notion of epoch given in Subsection

57

Chapter 3. Forecasting the Daily Demand

0 2000 4000 6000 8000
Epochs

2200

2000

1800

1600

1400

1200

1000

Lo
ss

Shuffled
Not shuffled

Figure 3.15. Evolution of testing loss with and without random shuffling. Four replications
of the training are performed with the same hyperparameters used in Figures
3.13 and 3.14; the shaded area spans one standard deviation. Furthermore, in
accordance with the previous results, the window length is set equal to 5.

of a recurrent network is an important concept in Deep Learning literature (cf. e.g.
Williams & Zipser 1995, Schmidhuber 1992a and Williams & Peng 1990). Epochwise
operation means that ‘the network is run from some particular starting start until
some stopping time is reached, after which the network is reset to its starting state
for the next epoch’ (cf. Williams & Zipser 1995): this is exactly the case that has
been considered up to now, with the sliding windows approach. When dealing
with epochwise operation, it is important to ensure that the new state at the start of
the new epoch is unrelated to the state at the end of the previous epoch.

Conversely, a network is considered to operate continually if the hidden state
is never reset, but it persists in time. In our case, what we mean by continually
running network is that the RNN is supposed to process the available weather (and
calendar) data as a single long sequence, without splitting it into smaller windows
of few days. In this way, the model is expected to produce each forecast using the
entire history available up to that time.

While in the case of epochwise operation BPTT is arguably the most used al-
gorithm for differentiation, continual operation requires in principle a different
approach: since its hidden state at time t is a function of all the previous history,
BPTT becomes a very computer-intensive algorithm as soon as the number of
time-steps gets large. Even for a vanilla RNN with a single hidden layer, after 1000
time-steps (i.e. more or less at the end of the three years of the training set of NAX)
backpropagating the gradient is a very extreme task: basically it is not so different

2.1.6.

58

Chapter 3. Forecasting the Daily Demand

from training a FNN with 1000 hidden layers.

The most interesting algorithm designed to overcome this problem is called
Real-Time Recurrent Learning (or RTRL, cf. Williams & Zipser 1995). It is based
on the following principle: let us consider a generic recurrent network of the form

ŷ(t)(θ) = f
(
θ, ŷ(t−1)(θ)

)
(3.6)

Then the Jacobian matrix of ŷ(t) with respect to θ can be written as

dŷ(t)

dθ
=
∂f

∂θ
+

∂f

∂ŷ(t−1)

dŷ(t−1)

dθ
(3.7)

which, in other words, means that the Jacobian matrix at time t is a function of
quantities that can be calculated at time t (i.e. ∂f/∂θ and ∂f

/
∂ŷ(t−1)) and of the

Jacobian matrix that has been computed at the previous time-step.

As known, the loss at time t is defined as

`(t) = L
(
y(t), ŷ(t)

)
entailing that the corrisponding gradient is given by

d`(t)

dθ
= ∇TL

dŷ(t)

dθ
(3.8)

Similarly, also the term ∇TL is a quantity that depends only on the values of y(t)

(the realized ones) and ŷ(t)(θ) (the forecasted ones).

Therefore, by suitably storing in memory the last computed Jacobian matrix,
the differentiation algorithm can operate in real-time, in the sense that all the terms
that are required for deducing the gradient of the loss can be computed at time t:
there is no longer the need for unrolling the network.

One may notice that the previous equations are basically equivalent to (2.14) and
(2.15), which were found when developing the BPTT. The real novelty introduced
by RTRL is associated with the order in which the matrix multiplications are
performed: indeed firstly dŷ(t)

/
dθ is computed, and only then the gradient∇TL

is calculated and the two terms are multiplied together.

In BPTT the gradient is always backpropagated from the loss to the inputs. As
underlined in Chapter 2, the reason why this algorithm is executed in that way
is for computational purposes, since it allows to transform the series of matrix
multiplications into a series of matrix-vector products. However, this fact becomes
a big disadvantage when we need to compute the gradients for many consecutive
time-steps: in this case, several different iterations of BPTT have to be run, each one
starting from the loss at the considered time-step and going backwards.

59

Chapter 3. Forecasting the Daily Demand

RTRL is instead designed also to solve this issue because exploiting equation
(3.7) makes it possible to calculate the gradients in real-time. The drawback is a
greater complexity in time because, actually, RTRL works with Jacobian matrices
and not with vectors: this makes the algorithm tractable only for the smallest
networks (as the ones considered in this thesis.) A simple estimate for vanilla
RNNs is that the computational cost of each iteration of RTRL is O(k2|θ|) where
k is the size of the recurrent state and |θ| the number of weights; thus when a
sequence of length N is processed, the associated cost is O(Nk2|θ|). On the other
hand, BPTT has a time complexity that can be quantified as O(N |θ|) (cf. Menick
et al. 2020). In the case of deep and wide networks, this difference is extremely
relevant and therefore RTRL in its original formulation cannot be applied; anyway,
its advantages have led in recent years to a search for more approximations that
retain its desirable properties (cf. e.g. Tallec & Ollivier 2017 and Menick et al. 2020).

Nevertheless, for the RNN used in NAX, the complexity of the two algorithms
is actually comparable, since the recurrent state has size 2. For the occasion, the
network has been implemented in C++ , as Keras and Tensorflow - as well as
the main Deep Learning API - do not offer RTRL as a built-in algorithm because of
its lack of versatility.2 Further technical details about the derivation of formulae are
provided in Appendix B.

The obtained network is then tested against its epochwise operating version:
both are trained on the data of 2009-2011 and the corresponding forecasts for 2012
are evaluated. In order to have a fair comparison, the epochwise operating network
is never allowed to shuffle the training set; indeed by construction RTRL processes
the entire time series sequentially. The results are reported in Table 3.2: it is possible
to notice that no relevant differences between the two methods are detected. This
shows firstly that the truncated sub-sequences used in the epochwise approach,
obtained by means of the sliding window, contain a suitable amount of information;
the knowledge of long-term context is not considered useful in explaining the
phenomenon, or simply that the RNN is not capable of exploiting it because of its
structure. Secondly, this shows that feeding the network with a null initial state
does not introduce a significant bias.

According to these results, in the following we will consider the continually
running version of the network. This is mainly due to the fact that, despite theoret-
ically RTRL is expected to be a sub-optimal algorithm, the C++ implementation has
proved to be much faster than the one of Keras.3

2Actually Keras allows the creation of continually operating recurrent networks by means of an
optional parameter stateful; anyway they are trained using TBPTT (cf. e.g. Kapoor et al. 2019,
Chapter 8).

3The measurements are made on a Intel CPU i5-5257U: using the IDE PyCharm 2020.2.3,
Python 3.8, Keras 2.3.1 and Tensorflow 2.3.1, the average time required for processing
1000 epochs is 32 seconds; instead 6 seconds are required by of C++ 14 compiled with clang

12.0.0 and the option -Ofast enabled. Moreover the number of epochs that are required to con-

60

Chapter 3. Forecasting the Daily Demand

Continual Epochwise w/o shuffling

Learning rate MAPE RMSE APL MAPE RMSE APL

0.001 1.73 8.06 2.14 1.71 8.13 2.13
0.0008 1.70 7.97 2.11 1.70 8.04 2.10
0.0005 1.68 7.93 2.08 1.66 7.89 2.06

Table 3.2. Results of epochwise and continual operation (without shuffling) in forecasting
2012 load. MAPE is expressed as a percentage, RMSE and APL in GWh. Both net-
works are trained with the parameters indicated in Table 3.1, with the exception
of the learning rate which is suitably specified; lastly, for epochwise operation a
window length of 5 is selected.

This is probably due to overhead and to the reduced functionalities of the
former, which is instead optimized for the specific network of NAX. However it
is important to remark that epochwise operation networks should in general be
preferred if there is the possibility to run the code in parallel: in this case, each
sub-sequence can be processed independently, whilst continually running networks
rely on a sequential approach that prevents the parallelization.

To conclude, a relevant remark. A last important thing should be mentioned
about RTRL: if the weights are updated while the network is running - which
is the most natural use of the algorithm - the gradient of the loss is no longer
exact, but becomes an approximation; indeed at each time-step, the Jacobian matrix
is computed with the real-time weights. This entails that after an update of the
weights, the previously computed Jacobian matrices are an estimate of the exact
ones; anyway, the practical differences are often slight and become even slighter
as the learning rate is made smaller (cf. Williams & Zipser 1989). In this regard,
one should remember that, when working with mini-batches, also the gradient
computed on each mini-batch is an approximation of the true gradient∇J .

3.4.4 Results

In the light of the findings of the previous subsections, we select two final
configurations for the Recurrent Neural Network adopted in NAX. The first is the
original epochwise operating network, which is allowed to shuffle the training set,
and is considered with the usual choice of hyperparameters (cf. Table 3.1), learning
rate equal to 0.001 and window length of 5 time-steps. The second is instead the
continually operating network trained with RTRL, using the same hyperparameters

verge are approximately the same for the two approaches, making the RTRL algorithm implemented
in C++ the most convenient choice for the case.

61

Chapter 3. Forecasting the Daily Demand

Continual Epochwise w/ Shuffling Original

Year MAPE RMSE APL MAPE RMSE APL MAPE RMSE APL

1.68 7.95 2.09 1.63 7.84 2.04
2012

(0.004) (0.02) (0.005) (0.09) (0.23) (0.08)
1.74 8.10 2.15

1.96 9.21 2.52 1.78 8.57 2.36
2013

(0.028) (0.13) (0.04) (0.03) (0.10) (0.03)
2.13 10.10 2.76

1.76 7.73 2.19 1.78 7.82 2.22
2014

(0.008) (0.03) (0.008) (0.06) (0.19) (0.06)
2.00 8.70 2.49

2.06 9.09 2.51 2.06 9.07 2.51
2015

(0.006) (0.03) (0.007) (0.09) (0.30) (0.11)
2.52 10.74 3.05

1.66 6.97 1.95 1.62 6.94 1.95
2016

(0.002) (0.01) (0.002) (0.01) (0.24) (0.09)
1.70 7.58 2.07

Table 3.3. Results of epochwise and continual operation NAX. On the left, the results of the
training in the case of the continually operating network trained with RTRL, at
the centre the standard epochwise network with a sliding window of length 5, on
the right the original results; ten repetitions of the training have been done, in
brackets the standard deviations are indicated. It is possible to see that with a
fine tuning of the hyperparameters NAX can perform even better.

as the first model and learning rate equal to 0.0005.

Following the usual NAX methodology, the two networks are trained on 5
different time windows and the resulting forecasts are analysed. In order to have an
estimate of the robustness of results, 10 repetitions of each training are performed.
Table 3.3 shows the forecast accuracy of the two configurations in terms of MAPE,
RMSE and APL, which are compared to the original results provided in the original
paper (cf. Azzone & Baviera 2021).

It can be noticed that in both case the original accuracy of the predictions is
increased with respect to the original network and that the epochwise operating
network with shuffling is the configuration that obtains the best performances;
anyway also the continually operating network - which is trained using RTRL
algorithm - can obtain relevant results, which are even more stable in terms of
standard deviation. As a final result, we have proved how shuffling the sample
and enlarging the short-term context can bring benefits for training the network.

This final comparison is the main result of the present chapter, since the per-
formances of NAX are improved and stabilized. On the one hand, this fact is
important to have more precise daily forecasts, on the other because this model
will be used also in the hourly case in Chapter 5. Besides, this analysis has given us
relevant insights about the sliding window methodology, the fine-tuning of some

62

Chapter 3. Forecasting the Daily Demand

hyperparameters (like the window length) and the impact of shuffling. In this
sense, we have experimented how RNNs can capture pieces of information from
the previous context and, instead, which are their limitations. Moreover, we have
shown that, in this specific case, RTRL is a feasible algorithm that can be used to
train the network. We have adopted it for training the continually running version
of the NAX network, and the C++ implementation of this algorithm has proven to
be faster than the epochwise sliding window approach implemented in Keras on
a standard PC.

In summary, in this chapter we have introduced and discussed the main fea-
tures that characterize the dynamics of daily consumption over the year, we have
introduced NAX and shown its main strengths and we have discussed how to
improve its performances. Moreover, we have introduced the RTRL algorithm,
which will be used again in Chapter 5. In the following chapter, the main features
of intra-daily load dynamics will be investigated.

63

Chapter 4

Analysis of Intra-daily Load
Dynamics

Despite the fact that daily modelling can achieve a noticeable accuracy, for
many applications it is necessary to have a more precise characterization of the
intra-daily dynamics of power consumption. A good part of the recent literature
is focused on the analysis of electrical load on an hourly basis, and some authors
also consider quarter-hour data (cf. Guerini 2016 and references therein). On the
one hand, the interest for this order of magnitude is due to the needs of the power
industry: generators and utility companies require indeed detailed profiles in order
to plan and set up a more correct production and distribution of the energy. On the
other hand, the hour is also the fundamental unit of measure for many products
which are traded in the energy market.

Although the problem of modelling intra-daily dynamics may seem very similar
to a continuous-time framework, the techniques that are employed are based
on statistical analysis, and linear models are still frequently used. This chapter
introduces hourly modelling: the selected dataset is presented and used in order
to explain the main features of intra-daily power consumption. Afterwards, two
linear models are proposed and outlined, so as to have a better understanding of
the typical methodologies that can be used for the purpose.

4.1 Data analysis

The analysis in Chapter 3 highlighted that daily demand is characterized by the
superposition of two distinct effects, due to the (half-)yearly and weekly seasonality.
It is easy to deduce that the main complexity associated with hourly forecasting
is the occurrence of a third seasonal effect, the daily one. This latter has the
straightforward implication that during the night energy demand is far less than
the one registered during daytime because of the lack of human activity. But there

64

Chapter 4. Analysis of Intra-daily Load Dynamics

01-01 08-01 15-01 22-01 29-01

12

14

16

18

20
GW

h

Figure 4.1. Hourly energy consumption in January 2009 for the whole New England. The
plot shows the profiles of intra-daily load: during the cold months, it is char-
acterised by this "M"-shaped behaviour with two peaks, one around midday
and the other in the late afternoon. In the grey sections, Saturdays and Sundays:
during weekends consumption is lower with respect to working days, as already
underlined in the daily analysis.

is also to consider that the variation of temperature and humidity during the day
has an impact on electrical consumption. For instance, during the hottest days of
summer load peaks are expected to occur in the afternoon and in the early evening,
due to the use of air-conditioners.

For all the following analysis, the considered data set is the same one used
for the daily case, with the clear difference that now it is considered on an hourly
basis, as it is originally provided by ISO-NE. Thus now the data are aggregated by
considering the sum of the hourly demand on the 8 zones of New England and by
computing the hourly average temperature of the entire region (cf. Section 3.1).

From the modelling perspective, the most critical issue is understanding how
to manage the coexistence of the three hierarchical seasonal components. Figure
4.1 reports the dynamics of electricity demand during the month of January; as
one can notice, it is characterised by a peculiar daily behaviour, with two peaks
during daytime - the first around 11 in the morning and a second around 18 - which
are followed by a sudden drop at night-time. Incidentally, in the following we
will consider that hour 11 corresponds to the hour starting at 11:00 and ending at
12:00, hour 12 corresponds to 12:00-13:00 and so on. Moreover, it is evident that
the impact of the weekend is still relevant and in detail, a decrease in the electrical
demand is observed, mainly due to the fact that a large part of the businesses is
closed.

However, the crucial aspect is that the daily profiles are not constant during
the year, but - in particular during the summer months - they exhibit different
shapes. Figure 4.2 shows four different profiles, one for each season, that reveal
how different the intra-daily dynamics can be during the year: this is a very
important point that has to be carefully considered when building an effective

65

Chapter 4. Analysis of Intra-daily Load Dynamics

0 5 10 15 20
Hour

14

15

16

17

18

19

20
GW

h

0 5 10 15 20
Hour

10

11

12

13

14

15

GW
h

0 5 10 15 20
Hour

10

11

12

13

14

15

16

17

GW
h

0 5 10 15 20
Hour

10

11

12

13

14

15

16

17

GW
h

Figure 4.2. Intra-daily demand profiles in the four seasons in 2009: 15th of January (above
left), 15th of April (above right), 15th of July (below left) and 15th of October (below
right).

Figure 4.3. Spaghetti plot of the intra-daily patterns for years 2009-2011. There is strong
evidence that the "M"-shaped profiles are the most typical over the year, but
also the arc-shaped ones are quite common. Moreover, it is possible to see that
these latter ones are usually associated with relevant peaks.

66

Chapter 4. Analysis of Intra-daily Load Dynamics

0 5 10 15 20
Hour

12

13

14

15

16

17

18

19

GW
h

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

0 5 10 15 20
Hour

10

11

12

13

14

15

GW
h

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

0 5 10 15 20
Hour

12

14

16

18

20

GW
h

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

0 5 10 15 20
Hour

9

10

11

12

13

14

15

16

GW
h

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

Figure 4.4. Intra-daily demand profiles for each day of the week: the plots refer to January
(above left), April (above right), July (below left) and October (below right). For each
day of the week, the average over the selected month is computed; moreover
in order to limit the potential impact associated with the different weather
conditions, the data for the time-window 2009-2015 are used. It can be noticed
that the overall shapes of the demand are very similar to the ones in Figure 4.2.

model. Indeed it is clear that such behaviour is caused by the interaction, i.e. the
combined effect, of the yearly and the daily periodicity. As highlighted in Figure
4.3, the most common pattern is the "M"-shape, which typically is characteristic of
the cold months, but it is present also during the mid-seasons; instead, the summer
months show a remarkable increase in the demand during the central hours of the
day, in all probability determined by the massive use of air conditioners.

Anyway, not only the intra-daily load varies depending on the period of the year
but also depending on the day of the week. In Figure 4.4 are depicted the average
profiles for the seven days of the week - again - in four different months of the year.
At first sight, it is evident that the electrical consumption is not constant during
the week, and two main categories can be identified, weekdays and weekends;
this is completely analogous to what has been done for the daily modelling with
NAX. Nevertheless, even within these categories, there are some slight differences
depending on the considered day. For instance, Fridays are usually characterized by
a lower demand during the afternoon, as a consequence of the end of the working
week; a similar behaviour is found also on the Thursdays of July. The first hours of

67

Chapter 4. Analysis of Intra-daily Load Dynamics

Figure 4.5. Boxplots of hourly demand in 2009 for weekdays (above) and weekends (below).
The two graphical tools show that there are slight differences in the dynamics of
intra-daily demand, that are associated in particular to the central hours of the
day.

Monday, instead, exhibit a behaviour which is more similar to the ones of Sunday;
and on the contrary, the first hours of Saturday are more similar to the ones of the
working day.

In addition, it should be noted that the load during Saturdays and Sundays
has not exactly the same shape as the weekdays. Indeed for example during the
morning the growth of demand is much slower since people usually wake up
later. In this regard, further details are provided Figure 4.5: the boxplots show that,
although the night patterns of the two categories - weekdays and weekends - are
similar, there are some differences during the working hours, i.e. 8:00-17:00. In
general, they are characterised by greater variability and fluctuations during the
weekend, while they are more regular during the weekdays; moreover, it is possible
to notice also a greater increase of load around 18:00 and the already mentioned

68

Chapter 4. Analysis of Intra-daily Load Dynamics

0 20 40 60 80 100

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Autocorrelation

0 20 40 60 80 100

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Partial Autocorrelation

Figure 4.6. Autocorrelation structure of raw hourly data for the year 2009.

delayed growth in the morning.

Of course, as a consequence of all the previous discussions about the relevant
seasonal effects, we expect the time series of hourly load to exhibit a strong serial
correlation; the corresponding autocorrelation functions are plotted in Figure 4.6. In
detail they show that in order to obtain efficient modelling, data must be processed
in order to remove as much as possible the short-term dependencies; PACF plot
reveals that there is a complex structure of serial correlation in the raw data that
involves the previous day and that should somehow be exploited. In this regard,
whilst in the daily case the sinusoidal seasonal trend was extremely evident, in this
case it is not straightforward to understand how to remove the daily periodicity,
mainly because it varies over time. This is a very important point for the construc-
tion of appropriate models and, in the following pages, different techniques will be
considered for this purpose.

As a final note, when dealing with hourly data one has always to check the
problem of daylight saving time. In general, the different dataset might treat it
differently; in the present case, data are provided in such a way that at 2:00 of the
transition day in November the demand is aggregated - being thus the equivalent of
the consumption of two hours - while in March a null value is set in correspondence
of the transition hour. Neglecting this fact does not produce serious issues when
working with daily data (in principle the error can be quantified as 1/24, but it is
even lower since demand at night-time is very limited), but has certainly a greater
impact in the case of hourly modelling since relevant outliers are introduced.

69

Chapter 4. Analysis of Intra-daily Load Dynamics

4.2 Frequency-based approach

4.2.1 Fourier analysis of seasonality

A first approach that has to be considered for a better understanding of con-
sumption dynamics is based on Fourier analysis. The idea is to use the typical tools
of signal processing to identify the relevant periodic components that are present
in the time series; the Fourier Transform is indeed known for converting a discrete
signal from its original domain into the frequency domain. In detail, given a se-
quence of complex (or just real, in the case of time-series) numbers x0, x1, . . . , xn−1,
the Discrete Fourier Transform (DFT) is defined as

d(ωj) =
n−1∑
t=0

xt e
−2πiωjt j = 0, . . . , n− 1

with ωj = j/n. Since each d(ωj) is a complex number, it can be represented as

d(ωj) = R(ωj)e
iΦ(ωj)

where R(ωj) is the magnitude, a value associated to the intensity of the oscillation
with frequency ωj , and Φ(ωj) is the phase.

The values
I(ωj) =

1

n
R(ωj)

2 =
1

n
|d(ωj)|2

form the so-called periodogram, which is an estimate of power spectral density of
the signal (cf. Bloomfield 2013); in short, the well-known periodogram allows to
identify which are the main frequencies that compose a time-series.

The periodogram of log-demand is reported in Figure 4.7 and shows the pres-
ence of periodic behaviours on three levels, as expected. In particular, we may
choose to consider 3 harmonic frequencies for the Fourier expansion of the yearly
seasonality, 3 for the weekly seasonality and 2 for the daily one. Thus the core
dynamics of the time-series can be described as

Y (t) = β0 + β1t + β2DHol(t) +

+
3∑

k=1

[
β2k+1 cos(kΩt) + β2k+2 sin(kΩt)

]
+

+
3∑

k=1

[
β2k+7 cos(kΨt) + β2k+8 sin(kΨt)

]
+

+
2∑

k=1

[
β2k+13 cos(kΘt) + β2k+14 sin(kΘt)

]
(4.1)

where, assuming that t is measured in hours

Ω =
1

365.25 · 24
Ψ =

1

7 · 24
Θ =

1

24

70

Chapter 4. Analysis of Intra-daily Load Dynamics

0 200 400 600 800 1000 1200
frequency [1/year]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Po

we
r S

pe
ct
ra
l D

en
sit

y

0 50 100 150 200
frequency [1/year]

0.000

0.005

0.010

0.015

0.020

0.025

Po
we

r S
pe

ct
ra
l D

en
sit

y
0 2 4 6 8 10

frequency [1/year]

0.000

0.005

0.010

0.015

0.020

0.025

Po
we

r S
pe

ct
ra
l D

en
sit

y

Figure 4.7. Periodogram of the time-series (2009-2012) on different scales. The reported
frequencies are to be thought on a yearly basis, so that the most relevant com-
ponent is the daily one, having frequency 365 (left). The three plots are meant to
be representative of the different periodicities: the daily dynamics (left), where
two harmonics are found to be significant, the weekly one (centre) where two
or three harmonics can be selected and the yearly one, characterized by three
relevant frequencies (right). In particular, this latter plot highlights that the
half-yearly component is more important than the yearly one.

This Fourier-based approach can be a valid choice for reproducing the so-called
potential of the time-series, i.e. the ensemble of its seasonal patterns (cf. Guerini
2016); in addition, trend and special events should be modelled appropriately - for
instance in equation (4.1) holidays are considered by means of a specific dummy
variable. The overall result is a linear model that can be calibrated through OLS.

Figure 4.8 reports some results of the fit on the 2009-2012 data: it is evident that
such a model is not able to reproduce properly the intra-daily profile. In particular
in the case of January, the "M"-shape of the profile is quite correct; instead, there
are evident issues in replicating the consumption of July, or in general of the warm
months. Intuitively, the model is not flexible enough to describe properly these
two different kinds of profile, and so it chooses to fit the "M"-shaped one because it
corresponds to the predominant behaviour over the year.

Nevertheless, the periodogram proves to be an effective tool for capturing the
most relevant periodic features of the time series, since in practice all the selected
harmonics are found to be statistically significant in the regression.

4.2.2 The interaction effect

What is for sure missing in the just presented model is the interaction between
variables: the model is just additive and this is not enough to explain a daily profile
that varies according to the season. A way to take into account this aspect is to

71

Chapter 4. Analysis of Intra-daily Load Dynamics

01-01 03-01 05-01 07-01 09-01 11-01
Date

10

12

14

16

18

20
GW

h
Realized
Fitted

01-07 03-07 05-07 07-07 09-07 11-07
Date

10

12

14

16

18

20

GW
h

Realized
Fitted

Figure 4.8. Fit of Fourier model on 2009-2012 data. In detail the first ten days of January
2009 (left) and of July 2009 (right) are plotted. The critical difficulty for the model
is to reproduce the shape of the intra-daily consumption, as it can be noticed in
particular for the July case.

extend the number of regressors that describe the potential as follows: let

Q = {cos(kΩt), k ∈ [0,Nq]} ∪ {sin(kΩt), k ∈ [1,Nq]}
W = {cos(kΨt), k ∈ [0,Nw]} ∪ {sin(kΨt), k ∈ [1,Nw]} (4.2)

D = {cos(kΘt), k ∈ [0,Nd]} ∪ {sin(kΘt), k ∈ [1,Nd]}

Then it is possible to select the set of the covariates as the tensor product of these
sets, Q⊗W ⊗D, i.e. to consider all the regressors of the form

hijm(t) = sin(iΩt) cos(jΨt) cos(mΘt)

or
hijm(t) = sin(iΩt) sin(jΨt) sin(mΘt)

In other words, each regressor is a combination of three sinusoidal functions with
suitable frequencies. In addition, it should be noticed that the defined space contains
not only all the triplets of multiplied sinusoids, but also all the singletons and the
pairs, since in equations (4.2) the index k is allowed to hold 0 for cosines.

This approach, described e.g. in Guerini (2016), leads to a better description
of the phenomenon (see Figure 4.9); intra-daily profiles are in this case far more
appropriate and seem to follow convincingly the observed dynamics. The drawback
is that a huge number of covariates is involved and very few of the ones that are
formed by the multiplication of three terms are found to be significant in the
regression.

For instance, the depicted model is the result of the interaction of 3 yearly, 3
weekly and 2 daily harmonics - it is thus analogous to the model developed in
Subsection 4.2.1 - and in principle it includes 244 regressors (16 singletons, 84 pairs
of sinusoidal functions multiplied together and 144 triplets) plus the intercept, the

72

Chapter 4. Analysis of Intra-daily Load Dynamics

01-01 03-01 05-01 07-01 09-01 11-01
Date

10

12

14

16

18

20
GW

h
Realized
Fitted

01-07 03-07 05-07 07-07 09-07 11-07
Date

10

12

14

16

18

20

22

GW
h

Realized
Fitted

Figure 4.9. Fit of Fourier model with interactions (Nq=Nw=3 and Nd=2) on 2009-2012 data.
The first ten days of January 2009 (left) and of July 2009 (right) are plotted. The
presence of the interaction terms allows the daily profile to assume different
shapes throughout the year.

linear trend and the holiday dummy variables. Among this multitude of terms,
just 8 of the 144 triplets are found to be individually significant at level 5%, i.e. the
p-value of the associated t-tests is almost always greater than this threshold. Of
course, this does not mean that they are completely useless and can be removed
all at once, but that actually the model could be somehow refined by reducing
the number of covariates with an iterative procedure (for instance the backward
elimination technique).

In this framework, the best model can be chosen by means of information
criteria, the Akaike Information Criterion (AIC) and the Bayes Information Criterion
(BIC), or according to the Adjusted R-squared. In particular BIC might be the most
appropriate one, since it is prone to privilege more parsimonious model and thus it
can help in limiting the number of regressors.

For the present case, the results of the model selection are provided in Table
4.1: under the constraint that no more than three harmonics can be considered for
each seasonal pattern, AIC and BIC are used to define the best configuration. AIC
leads to the selection of the model with the maximum available complexity, i.e.
Nq=Nw=Ny=3; this however may not be the best practical choice because of the
large number of mixed interaction terms that are considered in the linear regression.

BIC as expected selects instead a simpler model, which actually is characterised
by Nq=Nw=3 and Nd=2. According to this criterion, the increase of the model
size caused by considering the third daily harmonic is not followed by a relevant
improvement of the performances; in this sense, the benefits are not enough to
allow the introduction of all those regressors. An interesting thing is that the
triplet (Nq,Nw,Ny)=(3,3,2) is the same one that was identified by the periodogram;
this entails that the relevance of these frequencies is not only associated with
their interaction, but they are also individually very important to understand the

73

Chapter 4. Analysis of Intra-daily Load Dynamics

Nq Nw Nd Ntot R2 AIC

3 3 3 345 0.872 -85228.2
3 3 2 247 0.870 -84877.7
3 2 3 247 0.869 -84660.2

Nq Nw Nd Ntot R2 BIC

3 3 2 247 0.870 -82786.9
3 2 2 177 0.867 -82729.6
3 2 3 247 0.869 -82569.4

Table 4.1. Results of model selection on 2009-2012 data by means of information criteria. The
left table displays the best three models according to AIC, the right one according
to BIC. In addition to the value of the statistics and number of harmonics Nq, Nw

and Nd, also the total number of regressors Ntot and the R2 of the regression are
reported.

periodical structure of the time-series.

4.2.3 Incorporating the temperature

The Fourier model with interactions is anyway a weather-independent model
and, as a consequence, it is not capable of fitting perfectly the provided data: there
are indeed some features of energy load that cannot be explained with the seasonal
analysis only. This fact can be observed in Figure 4.9, as the July panel shows a
significant discrepancy between the fitted values and the observed consumption:
the shape of the former is reasonably correct, but it is shifted upwards. During the
warm months, energy demand is extremely sensitive to weather conditions and
uncommon dynamics can occur when humidity or temperature is higher or lower
than usual.

In order to obtain a better fit, it is possible to enrich the previous model by
including the available climate variables among the regressors: in this case we may
choose to consider the first three powers of the (dry-bulb) temperature. This choice
is motivated by the behaviour of log-consumption as a function of temperature,
which can be reasonably described by a cubic function:

Y = α0 + α1T + α2T
2 + α3T

3

as shown in Figure 4.10.

We might expect that not all the informative content of these weather variables is
completely new; after all it is characterised by a yearly and daily seasonality which
should somehow resemble the one of energy load. However the statistical impact
of the three powers of temperature is extremely noticeable and helps substantially
in explaining the residual variability. As usual, the two profiles of the first ten days
of January and July are presented in Figure 4.11: the same interaction structure of
Subsection 4.2.2 (3 yearly, 3 weekly and 2 daily harmonics) is considered, and the

74

Chapter 4. Analysis of Intra-daily Load Dynamics

0 20 40 60 80 100
Temperature °F

8.5

9.0

9.5

10.0

10.5

GW
h

Figure 4.10. Log-consumption as a cubic function of temperature. A linear regression on
normalised variables is performed (because of the different orders of mag-
nitude involved), which are then converted back to their original scale. The
obtained cubic is Y = 9.66 + 4.94 · 10−3 T + 4.26 · 10−4 T 2 + 4.93 · 10−6 T 3. As
usual, the time period 2009-2012 is considered for the analysis.

first three powers of dry-bulb temperature are added as predictors. Moreover, to
have a quantitative measure of the different performances in terms of fitting the
data, in Table 4.2 are reported R2, RMSE and MAPE for the three models presented
in this section.

In conclusion, Fourier analysis proves to be an effective technique to capture
the core dynamics of this time series. The final model is shown to be a significantly
improved version of the previous ones and is able to fit the data with reasonable
accuracy, with a MAPE that is slightly less than 3.5%; instead, its forecasting
performances will be discussed later on. For simplicity, in the following, we will
refer to this benchmark model as the extended Fourier model.

interaction weather R2 RMSE MAPE

X X 0.948 697.13 3.38%
X 0.870 1137.04 5.38%

0.831 1280.01 6.28%

Table 4.2. Summary of the results for the three frequency-based models on 2009-2012 data.
Three measures for the goodness of fit, i.e. R2, RMSE (in MWh) and MAPE, are
considered in order to evaluate the differences among them.

75

Chapter 4. Analysis of Intra-daily Load Dynamics

01-01 03-01 05-01 07-01 09-01 11-01
Date

10

12

14

16

18

20
GW

h
Realized
Fitted

01-07 03-07 05-07 07-07 09-07 11-07
Date

10

12

14

16

18

20

GW
h

Realized
Fitted

Figure 4.11. Fit of Fourier model with interactions and temperature effect on 2009-2012
data. As before, the first ten days of January 2009 (left) and of July 2009 (right)
are plotted. The accuracy of the fit is noticeable increased with respect to the
analogous plots presented in the previous pages.

4.3 Tao Vanilla Model

In recent times, the so-called Tao model (also known as the Tao Vanilla model)
has become fairly popular in literature. It is a linear model that was introduced by
Tao Hong in his dissertation (cf. Hong 2010) and mainly owes its fame to the fact
that it has been used as a benchmark in the GEFComs.

Contrarily to the extended Fourier model, which is based on a sinusoidal
encoding of the seasonality, the Tao model adopts a one-hot encoding scheme, i.e.
every categorical variable is considered in the model by means of a specific dummy
variable. For instance, 24 different binary variables are generated to encode the
information about the hour of the day: they thus form a set of variables {Hi}23

i=0

such that for a given hour h

Hi(h) =

{
1 if h = i

0 if h 6= i

In the Tao model the hour of the day, the day of the week and the month of the
year are encoded in this way, generating three sets of dummy variables which are
respectively denoted as {Hi}23

i=0, {Wi}7
i=1 and {Mi}12

i=1. In this way each seasonal
block is decomposed into the unit of the highest resolution.

According to its definition, the Tao model considers the demand and not the
log-demand as the dependent variable; for consistency with the notation used so
far, we indicate it as expY (t). In a synthetic manner the model is expressed as (cf.
Hong, Xie et al. 2019):

expY (t) = β0 + β1t+ β2M(t) + β3W (t) + β4H(t) + β5W (t)H(t) + f
(
T (t)

)
76

Chapter 4. Analysis of Intra-daily Load Dynamics

01-01 03-01 05-01 07-01 09-01 11-01
Date

12

14

16

18

20

22
G
W
h

Realized
Fitted

01-07 03-07 05-07 07-07 09-07 11-07
Date

10

12

14

16

18

20

G
W
h

Realized
Fitted

Figure 4.12. Fit of Tao model on 2009-2012 data. The overall results are similar to the ones
obtained with the extended Fourier model.

Instead each element that involves one of the dummy variables should be thought
as follows: for instance

β2M(t) =
12∑
i=1

β
(i)
2 Mi(t)

In this sense there are 12 different values of β2, that can be denoted as the set {β(i)
2 },

each one accounting for the contribution of each month; while M(t) represents the
only dummy variable that holds 1 at time t. This entails that the term W (t)H(t) rep-
resents the notion of hour of the week, expressed by means of 168 dummy variables,
and the associated coefficient β5 is thought to assume 168 different values {β(i)

5 }.
Lastly, the function f accounts for the weather-dependent term of the model and is
defined as

f
(
T (t)

)
= β6T (t) + β7T

2(t) + β8T
3(t) + β9T (t)M(t) + β10T

2(t)M(t)+

+β11T
3(t)M(t) + β12T (t)H(t) + β13T

2(t)H(t) + β14T
3(t)H(t)

Essentially, the Tao model creates a network of connections between the vari-
ables. For instance, when defining the consumption on a Monday of January at
8:00, one has to consider that the parameter:

B β
(1)
2 is the same for all the other days of January

B β
(1)
3 is the same for all the other Mondays of the year

B β
(8)
4 is the same for all the other days of the year at 8:00

B β
(8)
5 is the same for all the other Mondays of the year at 8:00

and so forth. As a final note, holidays are not considered explicitly in this model.

77

Chapter 4. Analysis of Intra-daily Load Dynamics

R2 RMSE MAPE

0.953 616.00 2.77%

Table 4.3. Results of fit for Tao model on 2009-2012 data. As before, three measures for the
goodness of fit are considered, i.e. R2, RMSE (in MWh) and MAPE.

With reference to and Table 4.3, the Tao model seems to perform better than
extended Fourier in terms of fitting the data, also considering that they have more
or less the same complexity.

However, both models have been shown to be effective in capturing the main
features that characterize the energy demand. Up to now, we have focused on
the aspect of fitting the model, i.e. we have considered how these models are
appropriate to describe the data. In the next chapter, we will instead consider
intra-daily forecasting, and we will compare these two models with two other
models which are based on the use of RNNs.

78

Chapter 5

Hourly Forecasting with RNNs

Linear regression models have always played a central role in load forecasting
since the inception of the electric power industry. They are extremely used because
of their versatility, their robustness and the fact that they can be easily calibrated.
However, as already discussed in this thesis, the Artificial Intelligence techniques -
and above all Neural Networks - are emerging, showing promises in much better
predictions as compared to traditional methods. Among the main features that
characterize hourly load there are the presence of nonlinear behaviours and a
significant serial correlation: therefore obtaining accurate predictions is a very
challenging goal and more complex models have been introduced to properly
capture and exploit at best this kind of information. This chapter is focused on the
development of two new models for electric load forecasting on an hourly basis,
which make use of Recurrent Neural Networks and are partially inspired by the
previously discussed NAX model. After the description of the two architectures,
their forecast accuracy is analysed and compared to the one of the two benchmark
models of Chapter 4.

5.1 Introduction

The main reason why extended Fourier and Tao models have been presented
and described is to show two possible standard methodologies for modelling
the hourly demand using linear regression. In particular, this has allowed us to
understand which are the main features of the hourly load dynamics and how the
two models are designed in order to tackle the problem. In this regard, they are
both meant to exploit as well as possible the multi-seasonality of the time series,
but they do it in different ways.

The extended Fourier model has a relevant and nice theoretical justification,
but, in real life, it is very difficult to think of energy consumption as a superposition
of harmonic frequencies. Moreover, the introduction of the interaction effects not

79

Chapter 5. Hourly Forecasting with RNNs

only leads to the creation of an almost uncontrollable number of terms, but it makes
it even harder to understand the practical meaning of each regressor; in this sense,
the model seems to be even more abstract. Indeed the great thing about linear
regression models is that they allow us to comprehend the role of every covariate
in the observed phenomenon, something that in this case is instead impossible.

On the other hand, Tao’s approach seems to be extremely naive; in practice,
many different models are introduced, each one in charge of describing a small
part of the overall phenomenon. However, the fact that all these smaller models
are not independent, but they somehow share some parameters, allows in part
the reproduction of the complex seasonal behaviour of the energy demand. Also
thanks to a better modelling of weather effect, the Tao model is able to achieve
better results, and in addition, it has also a clearer interpretation of the meaning of
each regressor, being almost all of them dummy variables.

Nevertheless, none of the two is originally conceived with the specific aim of
providing probabilistic forecast, but rather point predictions. Our goal is instead
constructing a solid model that is capable of forecasting in an appropriate manner
the distribution of the predicted load, taking into account the associated uncertainty.
Moreover, we are convinced that employing for the purpose a nonlinear architecture
is fundamental in order to suitably capture all the details of the observed dynamics.
The main focus is indeed on the application of Recurrent Neural Networks, in the
light of the convincing results that the NAX model achieved in the daily case.

However, it is important to mention that the transition from daily modelling to
hourly modelling has a critical implication, namely the huge increase in the size of
the sample that has to be studied. This is often a central point that has to be carefully
considered when creating and designing sophisticated models. Calibrating a model
- especially a RNN - on a training set that is too large may represent a problem
from the computational perspective. In this regard, one of the strengths of the NAX
model is the fact that it can be calibrated on few years (three) of daily data, which
is a great compromise between the complexity of the model and the size of the
data-set used for training; we would like our model to be able to work on a similar
time-range, without sacrificing its accuracy.

Hence, for the following discussion, we consider just a part of the original
dataset made available for the GEFCom 2017, that covers the time window 2009-

2009 2010 2011 2012 2013 2014 2015 2016 years

Training Validation Testing

Figure 5.1. The timeline defines how the selected dataset is subdivided and utilised for
performing training, validation and testing of the model.

80

Chapter 5. Hourly Forecasting with RNNs

2015. In detail, it will be divided as follows: years 2009-2012 for training the model,
year 2013 for the validation thereof, years 2014 and 2015 for testing (in particular
2015 is used to test the robustness of the proposed models).

5.2 H-NAX

The first model we introduce conjugates in some sense the sinusoidal approach
of the Fourier expansion and the hourly decomposition of Tao. It is called H-NAX,
which stands for Hour-by-hour-NAX. The idea behind its functioning is very simple:
24 different models are used to describe separately the consumption for each hour
of the day. In detail, the NAX model is utilised for every hour, so that H-NAX is
actually made of 24 different NAX models. Incidentally, this explains in part why
in Chapter 3 this latter model is analysed in detail and special attention is paid to
improve and stabilize its performances.

Figure 5.2 is very important to understand why the modelling structure pro-
posed in H-NAX is reasonable, as it shows that the yearly behaviour of the con-
sumption is almost the same for all the 24 hours of the day. Indeed the 24 coloured
‘ellipses’, each one representing the energy load at a certain hour, do have more
or less the same shape and the same kind of deformation during summer. In this
sense, the consumption at 4:00 will obviously be lower than the one at 16:00 - and

20 10 0 10 2020

15

10

5

0

5

10

15

20
winterspring

summer autumn

h=0
h=1
h=2
h=3
h=4
h=5

h=6
h=7
h=8
h=9
h=10
h=11

h=12
h=13
h=14
h=15
h=16
h=17

h=18
h=19
h=20
h=21
h=22
h=23

Figure 5.2. Polar representation of energy consumption in GWh during 2009. Instead of
using the log-transformed data, the original ones are here considered so as to
obtain a greater dispersion (Figure adapted from Ziel 2019).

81

Chapter 5. Hourly Forecasting with RNNs

01-2009 01-2010 01-2011 01-2012 01-2013
Date

9.0

9.2

9.4

9.6

9.8
GW

h

01-2009 01-2010 01-2011 01-2012 01-2013
Date

9.3

9.5

9.7

9.9

10.1

GW
h

01-2009 01-2010 01-2011 01-2012 01-2013
Date

9.3

9.5

9.7

9.9

10.1

GW
h

01-2009 01-2010 01-2011 01-2012 01-2013
Date

9.2

9.4

9.6

9.8

10.0

GW
h

Figure 5.3. Yearly behaviour of energy consumption at a fixed hour for the period 2009-2012.
The four profiles correspond respectively to 4:00 (above left), 10:00 (above right),
16:00 (below left) and 22:00 (below right); colours are thought to resemble the
ones of Figure 5.2. It is possible to notice that the impact of heat pumps and air
conditioners - the main causes of the increase of demand during the cold and
the warm months - is substantial not only during the day but also at night-time;
this leads to the creation of the half-yearly seasonality. In addition, it can be
noticed that during night hours the yearly dynamics seems to be more balanced
and the distinction between summer and winter is less evident.

indeed the ellipse associated with the former is smaller than the one associated
with the latter - but they are both expected to exhibit the same seasonal patterns.
In confirmation of this, in Figure 5.3 are depicted four consumption profiles that
correspond to different hours of the day and they all reveal the peculiar half-yearly
seasonality that was discussed for the daily case in Chapter 3.

From the theoretical perspective, the main defect of H-NAX is the inability
to take into account intra-daily dependencies. The short-term context, i.e. what
happened in the hours immediately preceding the considered one, is a piece of
information that cannot be captured by the model. On the other hand, H-NAX
is capable of creating long-term connections (the ones between the same hour
in consecutive days) like NAX does for the consecutive days: this is of course a
positive aspect that should in principle enhance the strength of the proposed model
since there is a great correlation between the energy demand on a certain day at a
certain hour and the one observed 24 hours before.

In addition, it is important to say that modelling separately the different hours

82

Chapter 5. Hourly Forecasting with RNNs

of the day is a fairly common approach in the literature; for instance it is reported
that one of the first electricity forecasting competition was won by a team that
included Engle and Granger (cf. Ramanathan et al. 1997) which proposed to use
separate regression models for each of the 24 hours of the day. It is somehow
reasonable to imagine that modelling separately the different hours is convenient
because it allows the creation of tailor-made models - that for example can take into
account the different impact that weather has on electricity demand depending on
the hour of the day - and moreover, it reduces the computational complexity since
the dataset is split into 24 independent parts. Of course, the price to pay when
using this approach is the loss of one of the three seasonality, the daily one, as in
practice every hour is modelled ignoring the existence of the other 23.

5.3 D-NAX

In contrast with the simplicity of H-NAX, the second model that we would like
to present is characterized by a more challenging approach. Many applications of
Deep Learning, above all the ones related to image recognition, make use of very
deep networks in which every layer is in charge of studying a particular feature
of the input (as a part of a process that is called feature extraction). Inspired by this
idea, we consider a modified version of the RNN used in the NAX model which
has no longer a single hidden layer, but two: the resulting model is thus called
D-NAX, which is a contraction for Double-NAX. D-NAX is built so as to study the
entire time-series and exploit the multi-seasonality that characterizes the hourly
electrical load.

5.3.1 The model

In general, the procedure utilised by D-NAX is not so different from the original
one of NAX. First of all, the time-series of the demand for the selected time interval
is transformed into log-demand, in order to obtain a more compact and regular
distribution. In this regard, Figure 5.3 shows that the during the daytime summer
peaks are relevant and the impact of the logarithm can help to obtain a more
uniform sample.

Modelling the potential (cf. Section 4.2.1) and the interaction effects is not a
straightforward task, as mentioned in Section 4.1, because of the fact that it is not
clear what the ‘typical’ daily seasonality is supposed to be throughout the year.
One may choose to describe separately the daily profile of every month, but this
may result inappropriate for instance in the case of a late spring or an early autumn.
For this reason, we select two possible strategies: a frequency-based modelling with
interaction, like the one of the extended Fourier model, and an approach similar to

83

Chapter 5. Hourly Forecasting with RNNs

the one of H-NAX, i.e. associated with the creation of hourly slices of the dataset.

In this latter case, the behaviour of the log-demand at each hour is modelled
according to equation (3.2) and thus 24 different linear models are obtained. Instead,
for what concerns the former option, we consider the configuration defined by
the triplet of parameters (Nq, Nw, Nd)=(3,3,2), which is the one that is found to be
optimal in Subsection 4.2.2.

The hour-by-hour approach is shown to be more effective in terms of the resid-
ual sum of squares, as indicated in Table 5.1, being is also the most parsimonious
model of the two; it is therefore selected for the removal of the seasonality. Because
of the similarity with the NAX model, we adopt the same notation used in Chapter
3 and write the reference model in the form of equation (3.1), here reported for
convenience:

Yt = Trendt + St + rt

It is important to remark that now the terms Trendt and St depend on the hour
of the day, because each one of the 24 linear model is characterized by a different
vector of coefficients {β(h)}23

h=0.

Of course, since we are going to model the residuals rt of this regression, it is
also important to ensure that the removal of this component does not alter too much
or destroy their autocorrelation. The plots in Figure 5.4 show the structure of the
serial dependency of the residuals after the detrending and the deseasonalization
and can be compared to the initial plots in Figure 4.6. The PACF diagram indicates
the presence of a short-term autocorrelation that involves mainly the first 2 lags;
but more in general the residual at a given hour is correlated with the ones of the
entire day before and, especially, with the ones of the days before during the same
period of the day. In this regard, by construction each GLM creates a link between
hours on a regular daily basis; this explains why the autocorrelation at 24-lag is
lower in magnitude than the one at 25 and 26. Furthermore, because of the relevant
1-lag dependency, Augmented Dickey-Fuller test is performed: the corresponding
p-value is found to be negligible and the null hypothesis of the presence of a unit
root is rejected.

Hour-by-Hour Frequency-based

RSS 116.84 179.88
Ntot 216 247

Table 5.1. Comparison of the methods for identifying the potential in D-NAX. The two
alternatives are evaluated in terms of Residual Sum of Squares (in MWh) and
total number of parameters; the hour-by-hour approach is found to explain a
greater part of the variability. Both models are calibrated on the 2009-2012 data.

84

Chapter 5. Hourly Forecasting with RNNs

Figure 5.4. Autocorrelation structure of the residuals. The PACF highlights the presence of
serial correlation on a regular daily basis, characterized by a short-term serial
dependency. Furthermore, because of the huge sample size, the confidence band
for PACF is so small that it is not even visible.

In any case, since the final goal is to produce a time-series of probabilistic
forecasts, a modelling assumption on the ideal form of the residuals has to be
introduced: they are supposed to be independent and normally distributed random
variables, each one with an appropriate mean and variance. Analogously to what
happens in the case of NAX, a Gaussian distribution is thus selected to describe
the log-demand of each hour, and similarly the two characteristic parameters - the
mean and the standard deviation - are predicted by means of a suitable Recurrent
Neural Network.

However, because of the peculiar autocorrelation structure of the time-series
of residuals, the network should be able to take into consideration not only the
1-lag autoregressive dependency - as the RNN of NAX does - but a larger period of
time. Up to now, the weather effects have not been considered yet, thus for instance
unusually warm and cold days are likely to generate a higher demand for several
consecutive hours, and this fact is reflected on the corresponding residuals.

In order to tackle this problem, a specific Neural Network has to be designed:
this is the most innovative part of the present thesis and currently, no similar
architectures can be found in the literature of the energy sector. As anticipated, it is
composed of two hidden layers and produces as output the pair (µt, σt), respectively
the mean and the standard deviation of the distribution of the residual at time t.
However, in order to reproduce the intricate dependency structure of the residuals,
the network has to be able to provide as a recurrent input:

B any previous output to any layer,

B the average of the last n outputs to any layer.

In particular, we are interested n = 24, i.e. in providing as autoregressive input
the average mean and standard deviation of the previous day. A scheme of the

85

Chapter 5. Hourly Forecasting with RNNs

proposed Neural Network is reported in Figure 5.5. In this regard, the presence of
a single recurrent input in the hidden layers is just for graphical purposes; as said,
it is indeed possible to feed each layer with more than one of the previous outputs,
if required. Obviously implementing such a complex architecture is not a trivial
task, and the following subsection is indeed devoted to offering more details.

As happens in the case of NAX, the loss function selected for the purpose is the
negative Gaussian log-likelihood

L(µt, σt|rt) = − logϕ(rt, µt, σt)

where clearly rt is the residual at time t: therefore again a maximum likelihood
approach is exploited for the calibration of the model.

The input layer of the network contains the dry-bulb and the dew-point tem-
peratures plus the date, which has to be suitably transformed: one-hot encoding
can be utilised, as well as a sinusoidal approach. In particular, when dealing with
cyclical features, this latter can be preferred since it suggests to the network some
further information about the relationships between the variables, for instance the
fact that 11:00 is close to 12:00, Tuesday is close to Wednesday and September is
close to October - something that one-hot encoding cannot do. Since it is not possible
to determine a priori which is the ideal type of date encoding for this network, we
will try them both during the validation phase (cf. Section 5.3.3).

Incidentally, each of the input features is min-max scaled in order to obtain
variables that assume values in the same range, allowing them to contribute equally
to the model fitting. In this regard, is important to remark that when a validation or
test set is present, i.e. when the model is used not for fitting data but for predicting,
the scaling has to be performed by taking the maximum and the minimum of each
feature with respect to the training set only; indeed in a real-world problem, at the
time of calibration, the only available data are the ones in the training set.

The output of the network represents instead the probability distribution of
each residual, that has to be summed to the previously determined seasonal term
Trendt + St. As a consequence, the estimated distribution for the log-demand Yt is
a Gaussian random variable with mean Trendt + St + µt and variance σ2

t .

5.3.2 The network

The Recurrent Neural Network in Figure 5.5 is the core of the D-NAX model.
As mentioned it is designed so as to admit a wide range of recurrent connections
between the output and the other layers, which should enhance its ability to take
advantage of long-term context. In this sense, their main effect is that they are useful
to combat the problem of the vanishing gradient because they create shortcuts: this
is the same principle at the base of ResNets and Highway Networks (cf. Subsection

86

Chapter 5. Hourly Forecasting with RNNs

Drybulbt

DewPointt

Calendar1
t

Calendar2
t

Calendar3
t

Calendar4
t

...

CalendarNt

µ∗

σ∗

µ∗

σ∗

µt

σt

σ∗

µ∗

Figure 5.5. Scheme of the Recurrent Neural Network that is employed in the D-NAX model.
It is formed by two hidden layers and has recurrent connections from the output
to every layer. Moreover, as denoted by the symbols (µ∗, σ∗), these latter can
involve any of the previous outputs (even more than one per each layer or the
mean of the last ones).

87

Chapter 5. Hourly Forecasting with RNNs

2.1.8) and also NARX models (cf. Subsection 2.2.5). Moreover a valuable feature is
the possibility for each layer of using as input the average of an arbitrary number
of last outputs, which in principle could be helpful for the analysis of electrical
demand.

In the general case, the hidden state of the first layer at time t is defined by the
following equation:

h
(t)
1 = A1

(
K1x

(t) +
∑
i∈R1

R1,i ŷ
(t−i) +

1

n
M1

n∑
i=1

ŷ(t−i) + b1

)
(5.1)

where K1 and b1 are the usual kernel and bias of the layer, R1,i is the kernel associ-
ated with the recurrent output at lag i and M1 is instead the kernel accounting for
the average output. Is important to remark that the first sum is computed over an
arbitrary setR1 of time-lags: in principle it is not necessary that the considered lags
are consecutive.

Let us assume that the set that contains the indexes of the recurrent lags for
the first layer, R1, has the following form: R1 = {i1, . . . , im}. Then the previous
expression can be rewritten as

h
(t)
1 = A1

(
K1 x

(t) +R∗1 y
∗(t)
1

+ b1

)
(5.2)

with
R∗1 = [R1,i1 | . . . | R1,im |M1]

and

y∗(t)
1

=

ŷ(t−i1)

...

ŷ(t−im)

ŷ(t)[n]

where ŷ(t)[n] is here used as a shorthand for the average of the last n outputs. In
this way, the term y∗(t)

1
accounts for all the recurrent connections from the output to

the first layer. The advantage of this representation is that the recurrent inputs are
separated by the exogenous variables: the overall formulation for the first layer is
in practice equivalent to the one obtained for the original NAX (cf. equation (3.4))
with the difference that now the recurrent connections can involve multiple lags.

Considering analogous writings for the other layers, the network can be ex-
pressed by the equation

ŷ(t) = K3 h
(t)
2 +R∗3 y

∗(t)
3

+ b3 =

= K3 A2

(
K2 h

(t)
1 +R∗2 y

∗(t)
2

+ b2

)
+R∗3 y

∗(t)
3

+ b3 =

= K3 A2

(
K2 A1

(
K1 x

(t) +R∗1 y
∗(t)
1

+ b1

)
+R∗2 y

∗(t)
2

+ b2

)
+R∗3 y

∗(t)
3

+ b3

(5.3)

88

Chapter 5. Hourly Forecasting with RNNs

The main point that has to be considered is how to train such a network: in order
to perform the training procedure using a gradient-based algorithm, it is necessary
to compute the gradient of the loss with respect to the weights θ. However it is
immediate to realize that BPTT may not be the most indicated procedure: indeed
unrolling a network with more than a single recurrent connection leads to an
exponential growth of the resulting graph, as shown in Figure 5.6. A Truncated
Backpropagation Through Time can be in principle employed to tackle this issue;
however, since we want to be able to use the average of the last, say, 24 or 48
outputs, even TBPTT is likely to require a huge computational cost.

Hence, a different approach has to be identified: we decide to use RTRL al-
gorithm, which is introduced in Subsection 3.4.4 for continually operating Neural
Network. Anyway, this algorithm is extremely general and can be applied - with
more or less the same strengths and weaknesses - also in the case of epochwise
operating networks. In the light of the results of Section 3.4, an epochwise operation
approach with random shuffling is indeed selected for the occasion. Thus the train-
ing set for this network will be composed of a set of time windows: each of them is
processed by the D-NAX network in order to produce a single output (many-to-one
architecture).

An aspect that should be remarked is that when RTRL is used without allowing
the real-time update of the weights - as in this case - the computed gradient is exact,
contrarily to what happens in continually operating networks (cf. Subsection 3.4.4).
This is another point in favour of RTRL, if compared for instance to TBPTT or other
algorithms that are just able to produce an approximation of the gradient.

The network is implemented in C++ in order to obtain reasonably high per-

Figure 5.6. Exponential growth in RNN unrolling. When a network with more than a
recurrent connection is unrolled, the number of branches in the resulting graph
grows exponentially.

89

Chapter 5. Hourly Forecasting with RNNs

formances; the mathematical formulae used for computing the gradients for the
present network can be found in Appendix C. Because of the strong computational
effort required by the training - due to the large number of matrix multiplications
involved and the increased magnitude of the dataset (if compared to the daily case)
- the code is designed for parallel computing using MPI protocol.

In this regard, training this network on few years of data is not a task that can
be accomplished easily by a standard PC. In our case, the algorithm is run on the
MOX clusters for parallel applications (HPC) at Politecnico di Milano, in particular
on 1 node with 20 cpu Intel Xeon E5-4610v2 @2.30GHz of Gigat.

5.3.3 Random search of hyperparameters

Because of the increased complexity of the architecture, a larger amount of
hyperparameters should be determined. For each of the two hidden layers one has
to define the number of neurons, the activation function and the type of required
recurrent connections; as in the NAX case, the activation function of the output
layer is instead considered as the linear one - a common practice in regression
problems. Moreover, the learning rate, the batch size, the regularization parameter,
the time range of the training set and the length of each sub-sequence are all
hyperparameters to be selected. Due to the intense computational effort associated
with every calibration of the model, a random search is performed instead of a
complete grid search, based on the values listed in Table 5.2. Therefore not all the
possible combinations of the hyperparameters are tested, but just a smaller random
subset. In all the cases, Adam solver is used as optimizer to train the network.

As one may notice from the table, we decide not to consider recurrent connec-
tions from the output layer to itself: this is a design choice. Since the activation
function of the output layer is the linear one, the presence of such a recurrent
connection would just introduce a simple linear dependency of the output at time t
from the previous one(s). Instead, we would like to encourage the network to study
in-depth the intricate relationships between the variables.

Moreover, in addition to the standard hyperparameters, we also determine
during this phase which is the best way to encode the input. In detail, we consider
the pure one-hot encoding of all the calendar variables - which is, in general, the
approach that produces the largest number of input variables - and a hybrid version,
that uses cyclical encoding for the month-of-the-year and the hour-of-the-day and a
one-hot encoding of the day-of-the-week. This second choice is motivated by the
fact that the drop during weekends might be too relevant to be explained without a
dummy variable approach, i.e. without indicating explicitly the day-of-the-week.

The overall procedure is performed using the year 2013 as validation set, as
explained in Section 5.1, and the model is thus calibrated on a suitable number of

90

Chapter 5. Hourly Forecasting with RNNs

Hyperparameter Value

Learning rate 0.003, 0.001
Batch size 50, 100

Regularization parameter 0.0001, 0
Time range of training set 3, 4 years

Sliding-window size 50, 100
Hidden neurons (1st layer) 3, 5
Hidden neurons (2nd layer) 8, 10, 15

Activation function (both layers) ReLU, Sigmoid, Softmax, Swish
None, {1,24}, {1,2,24},

Recurrent connections (both layers)
{1,2,3,24}, {mean24}

Table 5.2. Set of considered hyperparameters for D-NAX model.

previous years (3 or 4 years, as indicated in the table).

5.3.4 The final version

As a result of the random search, the best hyperparameters associated with the
optimization algorithm are found to be a learning rate equal to 0.001, a batch size of
50, no regularization and a 4-years long training set. Moreover, the length of each
sub-sequence is selected to be equal to 50; in this regard, the choice of the maximum
size of 100 for this hyperparameter is due to the computational cost associated with
processing sequences that are too long.

The most interesting finding concerns the hyperparameters that define the
structure of the network. Indeed, the best configuration is found to be the one that
has a first layer composed of 10 hidden neurons, a swish activation function and
the first three lagged output plus the output one day before ({1,2,3,24}). The second
hidden layer is instead formed by 3 neurons, has a softmax activation function and
the mean of the last 24 outputs as recurrent input. In practice, if we consider just
the last three layers, we obtain a structure that is exactly analogous to the one of
the original NAX, as shown in Figure 5.7.

This fact has a strong meaning from the point of view of the feature extraction
that was discussed in the opening of the section. Indeed the intuition is that the
second hidden layer is in charge of modelling the weekly and yearly seasonal part,
just like NAX does, while the first hidden layer accounts for the extraction of the
relevant features that are associated with the daily seasonality. To do so, the first
hidden layer needs more precise details that are associated with the short-term
context (i.e. the last 3 outputs) and the distribution of the residual that is observed

91

Chapter 5. Hourly Forecasting with RNNs

Drybulbt

DewPointt

Calendar1
t

Calendar2
t

Calendar3
t

Calendar4
t

...

Calendar32
t

µ∗

σ∗

µ∗

µt

σt

σ∗

NAX

Figure 5.7. Scheme of the optimal D-NAX: as highlighted, the best performing model is
found to be actually based on the NAX architecture.

one day before, which is found to be very relevant according to the initial PACF in
Figure 5.4. Instead, the previous day context is enclosed in the mean of the last 24
outputs, which is provided as input to the second hidden layer. Since the residuals
are supposed to be Gaussian and independent, the predicted distribution of the
sum of the last 24 residuals is supposed to be a Gaussian as well, with mean and
standard deviation

µ# =
24∑
i=1

µt−i σ# =
(24∑
i=1

σ2
t−i

) 1
2

Hence the information transmitted via this recurrent connection is composed of
a scaled version of the former and a scaled proxy for the latter. Moreover, the
presence of the swish activation function is not particularly surprising, since it
has been shown to outperform the standard ReLU in a multitude of cases (cf.
Ramachandran et al. 2017).

This interpretation of the functioning of this complex network is a further
reason for which the name D-NAX seems to be very appropriate for the proposed
model.

Finally, the calendar variables are encoded with the hybrid approach: in detail,
the best performing network is found to be the one fed with six harmonic pairs of

92

Chapter 5. Hourly Forecasting with RNNs

sines and cosines with period equal to 1 year to encode the day-of-the-year d

{cos(kΩd)} ∪ {sin(kΩd)} k ∈ [1, 6] ω =
1

365.25

six harmonic pairs of sines and cosines with period equal 1 day to encode the
hour-of-the-day h

{cos(kΘh)} ∪ {sin(kΘh)} k ∈ [1, 6] Θ =
1

24

and a dummy encoding of the day of the week, plus an additional dummy variable
for the holiday. Although it may seem a bizarre encoding, it should be noticed
that it has the advantage of encoding the hour-of-the-day with just 12 variables,
reducing thus the total number of neurons in the input layer. The final size of
the exogenous input vector is 34, namely the 32 calendar variables and the 2
temperatures. However, it is also to be remarked that a complete grid search might
have lead to the choice of different encoding.

5.4 Results

As mentioned in the introduction of this chapter, the proposed models are
validated on the year 2013 and then tested on the years 2014 and 2015. In doing this,
the optimal size of the training set - in terms of number of years - is selected during
the validation phase and then kept fixed: as a consequence, the performances
of D-NAX are tested using the data of 2010-2013 and 2011-2014 as training set,
respectively.

In this regard, being H-NAX based on the suitable use of NAX, the optimal
combination of hyperparameters that is found and discussed in Chapter 3 is used.
The validation of H-NAX is just aimed at determining how many years of data
should be used as training set: since, in practice, no relevant differences in terms of
RMSE and APL are found, we decide to calibrate both H-NAX and D-NAX on the
data from January 2010 to December 2013, to have a fair comparison.

Figure 5.8 shows the load forecasts of D-NAX on two different periods of
the year, namely ten days of mid-March and of mid-August. The solid red line
represents the point forecast of each hour, that is given by the mean of the predicted
distribution; in this regard, we recall that for both D-NAX and H-NAX the load at
every hour is modelled as a lognormal random variable Xt with parameters (µt, σ

2
t):

hence each point forecast is given by

E[Xt] = e µt+
1
2
σ2
t

The shaded area around the point forecast is instead the 95% confidence interval
associated with the point prediction, which in principle should provide us with

93

Chapter 5. Hourly Forecasting with RNNs

some information about the uncertainty thereof. As one can notice, even though
the two depicted profiles are characterized by different intra-daily patterns (the
ones that in Chapter 4 we called "M"-shaped and "arc"-shaped, respectively) the
model is capable of predicting the realized dynamics with remarkable accuracy in
both cases.

Analogous plots for model H-NAX are instead reported in Figure 5.9: in terms
of predictive performances, its accuracy seems to be very close to the one of D-
NAX. However, these two specific time ranges have been chosen to highlight the
differences that may arise between the models in terms of confidence intervals.
The ones of H-NAX indeed are larger and exhibit more irregular profiles: this is
a clear consequence of the methodology of this model, which constructs the final
forecast as a juxtaposition of the single predictions made by the 24 different models.
The fact that, instead, D-NAX is able to partially capture the correlation between
the terms enables it to reduce uncertainty. Nevertheless, on many other days the
discrepancy between the confidence intervals produced by the two models is very
subtle.

In order to have a practical intuition of the considerable accuracy of the two
presented models, we can compare their predictions to the ones generated by
the Tao model, which are plotted in Figure 5.10. At first sight, what is extremely
evident is that the point forecast are far less accurate with respect to the ones of
the RNN-based models and, as a consequence, the associated confidence intervals
are inevitably larger; moreover similar results are also found for extended Fourier
model.

In the remaining part of the section, we compare the four models under the
quantitative perspective: we analyse firstly the accuracy of the point forecasts and
then the property of sharpness and reliability of the predicted probability densities,
by considering the results on the test year 2014; in this case, also the two linear
models are calibrated using as training set the time-interval 2010-2013.

As mentioned in Chapter 1, point predictions are extremely important for
the power industry in order to make operational decisions. An evaluation of the
accuracy of the four models for the year 2014 is reported in Table 5.3. It can be
noticed that both D-NAX and H-NAX outperform the linear models: in detail
the RMSE of D-NAX is 45% less than the one of the Tao vanilla model, which
is for sure a noticeable result. The two RNN-based models are quite similar in
terms of accuracy; however, D-NAX can achieve better precision by exploiting the
autocorrelation structure. Similarly, the two linear models are somehow equivalent
in terms of RMSE and Tao is characterized by a lower relative error.

The relevant difference in terms of accuracy highlights the power of Recurrent
Neural Networks in capturing the non-linear relationships that characterize the
electrical demand. Moreover, it should be noticed that both D-NAX and H-NAX

94

Chapter 5. Hourly Forecasting with RNNs

10-03-2014 12-03-2014 14-03-2014 16-03-2014 18-03-2014 20-03-2014
Date

10

12

14

16

18

20

GW
h

Realized
Forecast
Confidence

10-08-2014 12-08-2014 14-08-2014 16-08-2014 18-08-2014 20-08-2014
Date

10

12

14

16

18

20

GW
h

Realized
Forecast
Confidence

Figure 5.8. D-NAX load density forecast: realized (green line) and predicted power con-
sumption (red line) during two different months, March and August; the shaded
area instead represents the 95% confidence interval for the prediction. The fore-
casts seem to follow effectively the intra-daily behaviour of the load during
every hour of the day, and in these particular cases, confidence intervals seem
to behave appropriately.

95

Chapter 5. Hourly Forecasting with RNNs

10-03-2014 12-03-2014 14-03-2014 16-03-2014 18-03-2014 20-03-2014
Date

10

12

14

16

18

20

GW
h

Realized
Forecast
Confidence

10-08-2014 12-08-2014 14-08-2014 16-08-2014 18-08-2014 20-08-2014
Date

10

12

14

16

18

20

22

GW
h

Realized
Forecast
Confidence

Figure 5.9. H-NAX load density forecast: realized (blue line), predicted power consumption
(orange line) and 95% confidence interval (yellow area) during March and
August, as done in Figure 5.8. Also in these cases the predictions seem to be
accurate; moreover, it can be noticed how the confidence intervals associated
with night hours are smaller than the ones that are generated for daytime hours.

96

Chapter 5. Hourly Forecasting with RNNs

10-03-2014 12-03-2014 14-03-2014 16-03-2014 18-03-2014 20-03-2014
Date

8

10

12

14

16

18

20

GW
h

Realized
Fitted
Confidence

10-08-2014 12-08-2014 14-08-2014 16-08-2014 18-08-2014 20-08-2014
Date

8

10

12

14

16

18

20

22

GW
h

Realized
Fitted
Confidence

Figure 5.10. Tao model load density forecast. As before, realized (green line), predicted
power consumption (red line) and 95% confidence interval (shaded red area).
These forecasts, however, are significantly less accurate and precise than the
ones generated by H-NAX and D-NAX, and the associated prediction intervals
are indeed larger.

97

Chapter 5. Hourly Forecasting with RNNs

take as input variable also the dew-point temperature, whilst the other two models
do not: this variable is very important because, if suitably combined with dry-bulb
temperature, it allows to deduce the relative humidity, a central climatic factor that
has to be taken into account. The advantage of using Neural Networks is that they
learn from historical data how to use at best this new information, without the need
of specifying how the impact of temperatures changes, for instance, according to
the season or to the period of the day.

For evaluating the sharpness of the predicted distributions, instead, we consider
the Pinball Loss (cf. Subsection 1.4): the results on percentiles are shown in Figure
5.11. Also in this case D-NAX obtains slightly better performances with respect
to H-NAX on average; anyway, both models are able to produce more realistic
distributions with respect to the ones of Tao and extended Fourier. This is mainly
due to the fact that, in the former models, the shape of the densities is allowed
to vary, since every prediction comes with a different standard deviation; this
feature is very important in order to describe the heteroskedastic behaviour of the
time-series.

Furthermore, we can also consider Winkler score, that - as already said - is built
in such a way to reward the models that are able to produce narrower confidence
intervals. Indeed it is possible to notice that the Winkler score of D-NAX is always
lower than the one of H-NAX, and more in general that, also according to this
criterion, the two proposed models achieve better performances with respect to the
linear ones.

Lastly, concerning the reliability of the produced distributions, we use the
backtesting procedure to evaluate whether the confidence intervals are actually
accurate. We consider different confidence levels and, for each of them, we compute
how many times the realized hourly load falls within the predicted interval; the
results of this analysis are shown in Figure 5.12. In this case, we notice that H-NAX
and extended Fourier obtain the best results, while the tendency of D-NAX to
produce confidence intervals that are too small causes the model to be less reliable
than the other ones. This is for sure something that should be considered in the
overall evaluation, since in general the inability of predicting the right tail of a

D-NAX H-NAX Tao EF

RMSE [MWh] 362.0 419.2 694.3 693.8
MAPE [%] 1.90 2.11 3.27 3.69

Table 5.3. Accuracy results for the 4 models on the test set 2014. MAPE and RMSE (in MWh)
are considered in the comparison; the two proposed models are able to achieve
better predictive performances with respect to the linear models.

98

Chapter 5. Hourly Forecasting with RNNs

0.0 0.2 0.4 0.6 0.8 1.0

Quantiles

0

50

100

150

200

250
Pi
nb

al
l L
os
s [

M
W
h]

D-NAX
H-NAX
Tao
EF

0.0 0.2 0.4 0.6 0.8 1.0

Quantiles

0

500

1000

1500

2000

2500

3000

W
in
kl
er
 S
co
re
 [M

W
h]

D-NAX
H-NAX
Tao
EF

Figure 5.11. Pinball loss (left) and Winkler score (right) for the 4 models on the test set
2014. Sharpness is evaluated by means of these quantitative criteria, which
are computed for each percentile. In detail, it is possible to notice that the two
proposed models are characterized by lower values of the statistics in both
cases.

probability distribution may lead to severe consequences.

Lastly, Table 5.4 contains a summary of the results of the models in different
years: the validation set (2013) and the two test sets (2014 and 2015). Also in these
cases, D-NAX and H-NAX are reported to outperform the benchmarks (here, for
the sake of compactness, only the Tao model is considered).

D-NAX H-NAX Tao

Year MAPE RMSE APL MAPE RMSE APL MAPE RMSE APL

2013 1.90 372 101 2.23 458 120 3.11 679 179.5
2014 1.90 362 99 2.11 419 112 3.27 694 183
2015 2.44 435 124 2.58 477 132 3.57 722 194

Table 5.4. Comparison of the models in terms of MAPE, RMSE and APL on different years;
MAPE is measured in %, RMSE and APL in MWh. The first year (2013) reflects
the results on the validation set, while the other two show the results of the
testing phase of the proposed models.

99

Chapter 5. Hourly Forecasting with RNNs

0.90 0.92 0.94 0.96 0.98
Nominal level α

0.88

0.90

0.92

0.94

0.96

0.98

Ba
ck
te
st
ed

 le
ve

l

D-NAX
H-NAX
Tao
EF
Nominal level

Figure 5.12. Backtested confidence intervals for the 4 models on the test set 2014. Their
reliability is tested by considering different confidence levels α from 90%
to 99%: it is possible to notice that the behaviour of H-NAX (in orange) is
extremely compatible with the nominal level; instead D-NAX (in blue) is not
very reliable, as a consequence of the fact that its confidence intervals are too
narrow to contain large deviations.

100

Chapter 6

Conclusions

In this thesis we have addressed the problem of intra-daily probabilistic load
forecasting, focusing on the impact that weather conditions have on power con-
sumption. The obtained results can be summarized as follows:

• we have presented two novel models for hourly PLF, called D-NAX and
H-NAX. Both rely on the use of a parametric approach: each predicted prob-
ability density is indeed a lognormal distribution. This modelling assumption
is found to be effective in capturing the most relevant features of the intra-
daily load dynamics. Besides, we have managed to model effectively the
serial correlation that characterizes the electrical load by means of Recurrent
Neural Networks. In this regard, we stress that we have implemented the
D-NAX model in C++ because its structure is new to the literature and not
available in Keras or in other standard machine learning libraries.

• we have assessed the predictive accuracy of the two proposed models, show-
ing that both are able to outperform the benchmark models. The most remark-
able result is the very high accuracy that characterizes the point forecasts of
D-NAX and H-NAX: for instance, in 2014 the RMSE is, respectively, about 45%
and 40% lower than the one of the benchmarks. Also in terms of sharpness
and reliability, the predicted distributions are found to be definitely more
appropriate than the ones prescribed by the linear models.

• we have shown that a fine-tuning of the hyperparameters in the NAX model
can lead to a further improvement of its ex-post predictive accuracy. This is
important not only to obtain better forecasts of daily load, but also because
the NAX model is a central building block for both D-NAX and H-NAX.

Some final words should be spent on the comparison between D-NAX and
H-NAX: the two models have proven to have excellent characteristics and different
strengths. H-NAX is simpler. This is always a point in favour of a model because it

101

Chapter 6. Conclusions

is easier to be implemented, faster to be calibrated and more straightforward to be
used.

D-NAX has instead a more challenging and ambitious architecture, and some-
how is in between vanilla RNNs and usual NARX models. It can be noted that it
obtains in general better results than H-NAX, both in terms of accuracy and sharp-
ness; however, it requires a longer training time and is less reliable than H-NAX.
As already mentioned, this fact can be dangerous for practical applications since
the underestimation of the electrical load increases - for instance - the risk of power
outages; in this sense, we may say that H-NAX is more conservative. For all these
reasons, we do not claim that D-NAX is definitely the best choice, at the moment;
anyway, there is still room for improvements that in principle may allow this latter
model to outperform the rival.

6.1 Further Developments

The research on this topic could proceed in several ways: in the following, we
propose some suggestions to anyone who wants to perform further insights.

First of all, the architecture and the training of D-NAX could be further invest-
igated. For instance, the initial random search can be extended to a complete grid
search to analyse the goodness of the selected hyperparameters and - hopefully -
enhance the accuracy of the model. In this regard, one of the most critical issues
that we faced during the phase of model design was the huge amount of hyperpara-
meters that could in principle be selected: the number and the type of recurrent
connections, the number of neurons, the activation functions, the training-related
parameters, the encoding of the input, etcetera. Due to the computational time
required for each training, we had to make some choices, but there are still many
configurations that can be tested.

Second, the ex-ante predictions should be assessed. In this regard, Azzone &
Baviera (2021) addressed this issue by simulating a large number of temperature
scenarios and deducing the ex-ante distributions (cf. Azzone & Baviera 2021 and
references therein).

Lastly, it is important to mention that nowadays in some fields of Artificial
Intelligence - above all the one of Natural Language Processing (NLP) - both RNNs
and LSTMs are less frequently used (cf. Karita et al. 2019). This fact is mainly due
to the introduction of the Transformer (Vaswani et al. 2017), an architecture that
makes use of the so-called attention mechanisms. These are some techniques which
are designed to mimic the human cognitive attention; in short, attention is purely
based on a more refined notion of context. Applications of these mechanisms to
time-series analysis are not yet very popular (cf. e.g. Du et al. 2020): it could be a
possibility to investigate how to introduce attention in hourly PLF.

102

Appendix A

Activation Functions

As mentioned in Chapter 2, the excitation level of each neuron, and therefore its
ability to communicate with its neighbours, is expressed by means of an activation
function: a list of the most used ones is here provided. For all of them, in order to
perform the backpropagation procedure, the computation of the Jacobian matrix
is required: in almost all the cases we obtain a diagonal matrix, because of the
componentwise action of the involved functions. In accordance with the usual
notation, each activation function is denoted as

A : Rn → Rn

and its Jacobian matrix as A′.

Sigmoid

Sigmoid activation function transforms each component xi as follows

σ(xi) =
1

1 + e−xi
=

exi

exi + 1

Its derivative is given by

σ′(xi) = e−xiσ(xi)
2 = σ(xi)(1− σ(xi))

and therefore for each entry of the Jacobian matrix the following relation holds

[A′]ij =
dσ(xi)

dxj
= σ(xi)(1− σ(xi)) δij ≤

1

4

entailing that ‖A′‖∞ =
∥∥(A′)T

∥∥
∞ ≤

1
4
.

103

Appendix A. Activation Functions

−4 −2 0 2 4

0

0.5

1
f(x)
f ′(x)

−4 −2 0 2 4

0

2

4
f(x)
f ′(x)

Figure A.1. Plot of Sigmoid (left) and of Swish (right) with their first derivatives

Swish

Swish activation function is a modification of the sigmoid which has been recently
introduced by a team of researchers of Google Brain (cf. Ramachandran et al. 2017).
It is defined as

f(xi) = xiσ(xi)

and its componentwise derivative reads

f ′(xi) = σ(xi) + xiσ(xi)(1− σ(xi))

In this case it is easy to show that such derivative is greater than 1 for xi ≥ x∗, with
x∗ solution of x∗−1 = e−x

∗ . Hence for Swish the infinity norm of the Jacobian matrix
is not less than 1; however it is possible to prove its boundedness and numerically
it is found that ‖A′‖∞ =

∥∥(A′)T
∥∥
∞ < 1.1.

ReLU

The Rectified Linear Unit (ReLU) activation function is expressed by the component-
wise equation

f(xi) =

{
xi if xi ≥ 0

0 if xi < 0

Thus its derivative is just the Heaviside step function and the infinity norm of its
Jacobian matrix (and of its transpose) is less or equal than 1.

Many variations of the ReLU have been introduced to tackle a typical issue of
ReLU, the dead neuron problem, which consists in the fact that both the value of the
function and of its first derivative are zero when xi is negative (cf. Goodfellow et al.
2016, Chapter 6.3.1).

104

Appendix A. Activation Functions

−2 −1 0 1 2

0

1

2
f(x)
f ′(x)

−4 −2 0 2 4

−1

0

1
f(x)
f ′(x)

Figure A.2. Plots of ReLU (left) and of Tanh (right) with their first derivatives

Tanh

The hyperbolic tangent is another popular activation function, that is by construction
allowed to assume negative values. Its mathematical definition is

f(xi) =
exi − e−xi
exi + e−xi

= 2σ(2xi)− 1

It is thus possible to notice that it is a rescaled version of the sigmoid; for this reason,
it can be deduced that even in this case ‖A′‖∞ =

∥∥(A′)T
∥∥
∞ ≤ 1.

Softmax

The last activation function that has a relevant role in Deep Learning is called
Softmax. This is a very particular activation function because it does not act com-
ponentwise, and is indeed designed for classification problems: in these cases, the
output of the network is expected to be a (discrete) probability distribution on the
values of the target space (cf. Aggarwal 2018, Chapter 3.2.5). It is defined as follows

[A]i =
exi∑n
k=1 e

xk

Hence it is possible to deduce that the Jacobian matrix of the application is a dense
matrix; the elements that compose its diagonal are

[A′]ii = [A]i − [A]2i

while the off-diagonal components read

[A′]ij = −e
xj

exi
[A]2i

105

Appendix A. Activation Functions

Moreover, also in this case it is possible to compute
∥∥(A′)T

∥∥
∞: the absolute row

sum Sj for row j is given by

Sj =
n∑
i=1

[(A′)T]ji =
n∑
i=1

[A′]ij = [A]j − [A]2j +
∑
i 6=j

exj

exi
[A]2i =

= [A]j − [A]2j + [A]j
∑
i 6=j

[A]i = [A]j − 2[A]2j + [A]j

n∑
i=1

[A]i =

= 2[A]j − 2[A]2j ≤
1

2

This entails that
∥∥(A′)T

∥∥
∞ = maxj Sj ≤ 1

2
.

106

Appendix B

RTRL for NAX network

B.1 Derivation of formulae

The neural network employed in NAX is represented by the equation (3.4), which
is reported for convenience:

ŷ(t) = K2 A1

(
K1x

(t) +R1 ŷ
(t−1) + b1

)︸ ︷︷ ︸
h(t)

+b2

In alternative, it can be written as:

ŷ(t) = D2 ◦ A1 ◦ D1 (x̃(t)) (B.1)

where both D1 and D2 are affine applications and

x̃(t) =

 x(t)

ŷ(t−1)

1

In Chapter 2 the symbols D1 and D2 are used to express a feed-forward dense
connection between two consecutive layers. This still holds in the case of D2

(because of the absence of recurrent connections from the output layer to itself);
however for simplicity of notation the symbol D1 with the convention that

D1 (x̃(t)) = K1x
(t) +R1 ŷ

(t−1) + b1

Now, we may imagine to call θ the vector that collects all the weights of D1 and ϕ

the one for D2, so that actually

ŷ(t) = D2

(
A1

(
D1 (x̃(t), θ)

)
, ϕ
)

(B.2)

107

Appendix B. RTRL for NAX network

while the loss is given by

` (t) = L (y(t), ŷ(t)) (B.3)

It is possible to compute explicitly the Jacobian matrices of the inferred output ŷ(t)

with respect to θ and ϕ, getting

dŷ(t)

dθ
= K2 A′1

dD1(x̃(t), θ)

dθ

dŷ(t)

dϕ
=
∂D2

∂ϕ
+K2 A′1

dD1(x̃(t), θ)

dϕ

(B.4)

Because of the recurrent connections, x̃(t) = x̃(t)(θ, ϕ). In particular the recurrent
dependency affects only ŷ(t−1) and not the x(t) which is provided to the network as
an exogenous vector. As a consequence, the equations in (B.4) can be expanded as

dŷ(t)

dθ
= K2 A′1

(∂D1

∂θ
+R1

dŷ(t−1)

dθ

)
dŷ(t)

dϕ
=
∂D2

∂ϕ
+K2 A′1 R1

dŷ(t−1)

dϕ

(B.5)

Notice that ∂D1/∂θ is a matrix of the form of equation (2.7), but now it contains
also the recurrent inputs. This means that its structure is given by

dD1

dθ
=

x
T · · · 0T [ŷ(t−1)]T · · · 0T 1 · · · 0
...

...
...

0T · · · xT 0T · · · [ŷ(t−1)]T 0 · · · 1

 (B.6)

Anyway, a different choice for the vectorisation may lead to a slightly different
formulation of this matrix. Instead ∂D2

/
∂ϕ , which does not involve any recurrent

connection, has exactly the same structure as (2.7).

Equation (B.5) can be rewritten as

dŷ(t)

dθ
= K2 A′1

∂D1

∂θ
+K2 A′1 R1

dŷ(t−1)

dθ

dŷ(t)

dϕ
=

∂D2

∂ϕ
+K2 A′1 R1

dŷ(t−1)

dϕ

(B.7)

In practice, the intuition is that the Jacobian matrices have the following form: they
are the sum of a first term due to the FNN-like flow at time t and a second term
due to the recurrent connections. It is clear that, in absence of feedback links, R1 is
the null matrix and the standard FNN equations are obtained.

108

Appendix B. RTRL for NAX network

Once the two Jacobian matrices are known, the two gradients that are used in the
optimization procedure are just obtained as

d`(t)

dθ
= ∇TL

dŷ(t)

dθ

d`(t)

dϕ
= ∇TL

dŷ(t)

dϕ

(B.8)

B.2 Estimate of complexity

In Chapter 3 the time complexity for each iteration of the RTRL for a vanilla
RNN is estimated as O(k2|θ|), with k size of recurrent state and |θ| total number
of parameters. It is easy to show that this is applies also to this case: consider for
instance the first equation in (B.7):

dŷ(t)

dθ︸ ︷︷ ︸
k×|θ|

= K2︸︷︷︸
k×h

A′1︸︷︷︸
h×h

(
∂D1

∂θ︸︷︷︸
h×|θ|

+ R1︸︷︷︸
h×k

dŷ(t−1)

dθ︸ ︷︷ ︸
k×|θ|

)
(B.9)

where h is the number of hidden neurons (i.e. the size of the hidden state). Since
in the NAX case k = 2 and h = 3, it is optimal to compute K2 A′1, with a cost of
O(kh2), or O(kh) in case the activation function is not a softmax.

Then the obtained matrix is multiplied together with the first term in paren-
thesis, which is a sparse Jacobian of the form in equation (2.7), leading to a O(k|θ|).
Eventually the products between K2 A′1 (suitably stored to avoid duplicate calcula-
tion) and the last two terms are performed, which cost a number of operations of
the order of O(k2h) and O(k2|θ|), respectively. The very last operation is the one
involving the gradient∇TL : O(k|θ|).

Summing up all the contributions, it is possible to notice that the most expensive
task is the one associated to the Jacobian matrix dŷ(t−1)

/
dθ . Notice that |θ|, which

here is the number of parameters of the first layer, is equal to k(m+ h+ 1), where
m is the number of purely exogenous inputs. This can thus result into a very large
computational cost of the algorithm when many inputs are provided, or when the
size k of the recurrent state is significant.

Obviously an analogous estimate holds also for the second equation of (B.7),
leading to a total complexity of O(k2|θ|), as claimed.

109

Appendix C

RTRL for D-NAX network

C.1 Derivation of formulae

The RTRL formulae for the D-NAX network are analogous to the ones derived in
Appendix B, with the greater difficulty that multiple recurrent connections are now
involved.

The network is represented by equation (5.3), which reads:

ŷ(t) = K3 A2

(
K2 A1

(
K1 x

(t) +R∗1 y
∗(t)
1

+ b1

)
+R∗2 y

∗(t)
2

+ b2

)
+R∗3 y

∗(t)
3

+ b3

However, for the sake of simplicity, we split the previous relationship into three
parts as follows

h
(t)
1 = A1

(
K1 x

(t) +R∗1 y
∗(t)
1

+ b1

)
= A1 K̃1 x̃

(t) (C.1)

h
(t)
2 = A2

(
K2 h

(t)
1 +R∗2 y

∗(t)
2

+ b2

)
= A2 K̃2 h̃

(t)

1 (C.2)

ŷ(t) = K3 h
(t)
2 +R∗3 y

∗(t)
3

+ b3 = K̃3 h̃
(t)

2 (C.3)

As usual the tilde notation is meant to separate the trainable weights of the layer
from the state variables. For instance

K̃3 = [K3 | R∗3 | b3]

and

h̃
(t)

2 =

 h
(t)
2

y∗(t)
3

1

In this case, one should remember that R∗3 and y∗(t)

3
are respectively a matrix and a

vector that are formed in the same way (cf. equation (5.2)).

110

Appendix C. RTRL for D-NAX network

Now, we consider that all the weights of the K̃1 are suitably collected in a vector θ,
the weights of K̃2 in a vector ϕ and the ones of K̃3 in a vector ψ. Let us differentiate
equation (C.3) with respect to ψ:

dŷ(t)

dψ
=

d
(
K̃3 h̃

(t)

2

)
dψ

=
dK̃3

dψ
h̃

(t)

2 + K̃3
dh̃

(t)

2

dψ
(C.4)

The first term of the RHS is a sparse matrix, extension of the one in equation (B.6),
suitably adapted so that all the different vectors that compose the extended vector
h̃

(t)

2 are taken into account. It is clear that in principle it is possible to write K̃3 h̃
(t)

2

as an affine map D3(h̃
(t)

2), as done both in Chapter 2 and in Appendix B; however
we are convinced that in this case is better to use this other notation because of the
complex structure of matrix K̃3.

The second term instead can be expanded as

K̃3
dh̃

(t)

2

dψ
= K3

dh
(t)
2

dψ
+R∗3

dy∗(t)
3

dψ
(C.5)

According to equation (5.2),

R∗3
dy∗(t)

3

dψ
= R3,i1

dŷ(t−i1)

dψ
+ · · ·+R3,im

dŷ(t−im)

dψ
+M3

dŷ(t)[n]

dψ
(C.6)

where {i1, . . . , im} are suitable indexes in a set R3, that express the considered
time-lags in the recurrent connections for that layer. The term accounting for the
average, instead, can be easily treated considering the linearity of the derivative
operator. Thus the last Jacobian matrix of the previous equation can be written as

dŷ(t)[n]

dψ
=

1

n

n∑
i=1

dŷ(t−i)

dψ

Summing up, the Jacobian matrix of the output ŷ(t) with respect to the vector of
parameters ψ is given by

dŷ(t)

dψ
=

dK̃3

dψ
h̃

(t)

2 +K3
dh

(t)
2

dψ
+R∗3

dy∗(t)
3

dψ
(C.7)

where the first term of the RHS is a sparse matrix and the third is a linear combina-
tion of the previous Jacobian matrices. The second instead has to be expressed by
developing an analogous expression for the Jacobian of the hidden state h(t)

2 with
respect to ψ. It is not difficult to convince ourselves that similarly

dh
(t)
2

dψ
= A′2

(
K2

dh
(t)
1

dψ
+R∗2

dy∗(t)
2

dψ

)
(C.8)

111

Appendix C. RTRL for D-NAX network

and that an analogous expression holds for h(t)
1

dh
(t)
1

dψ
= A′1

(
K1

dx(t)

dψ
+R∗1

dy∗(t)
1

dψ

)
= A′1R∗1

dy∗(t)
1

dψ
(C.9)

since the input x(t) is exogenous and thus does not depend on ψ. To conclude,

dŷ(t)

dψ
=

dK̃3

dψ
h̃

(t)

2 +R∗3
dy∗(t)

3

dψ
+K3A′2

(
R∗2

dy∗(t)
2

dψ
+K2A′1R∗1

dy∗(t)
1

dψ

)
(C.10)

In other words, the main result of this discussion is that the Jacobian matrix
dŷ(t)

/
dψ is a function of the previously computed Jacobian matrices dŷ(t−k)

/
dψ .

Two similar equations can be deduced also for the other two vectors of weights θ
and ϕ, obtaining

dŷ(t)

dϕ
= R∗3

dy∗(t)
3

dϕ
+K3A′2

(
dK̃2

dϕ
h̃

(t)

1 +R∗2
dy∗(t)

2

dϕ
+K2A′1R∗1

dy∗(t)
1

dϕ

)
(C.11)

dŷ(t)

dθ
= R∗3

dy∗(t)
3

dθ
+K3A′2

(
R∗2

dy∗(t)
2

dθ
+K2A′1

(
dK̃1

dθ
x̃(t) +R∗1

dy∗(t)
1

dθ

))
(C.12)

Implementing these equations it is possible to train the D-NAX network with RTRL.

112

Bibliography

1. Aggarwal, C. C. (2018). Neural networks and deep learning: A textbook. Springer.

2. Agrawal, R. K., Muchahary, F. & Tripathi, M. M. (2018). Long term load fore-
casting with hourly predictions based on long-short-term-memory networks.
In 2018 IEEE Texas Power and Energy Conference (TPEC) (pp. 1–6).

3. Aljalbout, E., Golkov, V., Siddiqui, Y., Strobel, M. & Cremers, D. (2018). Clus-
tering with deep learning: Taxonomy and new methods. arXiv: 1801.07648

4. Azzone, M. & Baviera, R. (2021). Neural network middle-term probabilistic
forecasting of daily power consumption. Journal of Energy Markets, Early online.

5. Barron, A. R. (1994). Approximation and estimation bounds for artificial
neural networks. Machine Learning, 14(1), 115–133.

6. Baviera, R. & Messuti, G. (2020). Daily middle-term probabilistic forecasting
of power consumption in north-east England. arXiv: 2005.13005

7. Bengio, Y. (2012). Practical recommendations for gradient-based training of
deep architectures. In G. Montavon, G. B. Orr & K.-R. Müller (Eds.), Neural
networks: Tricks of the trade: Second edition (pp. 437–478). Springer.

8. Bengio, Y., Simard, P. & Frasconi, P. (1994). Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2),
157–166.

9. Benth, F. E., Benth, J. S. & Koekebakker, S. (2008). Stochastic modeling of electri-
city and related markets. World Scientific.

10. Bianchi, F. M., Maiorino, E., Kampffmeyer, M. C., Rizzi, A. & Jenssen, R.
(2017). Recurrent neural networks for short-term load forecasting - an overview and
comparative analysis. Springer Briefs in Computer Science. Springer.

11. Billings, S. (2013). Nonlinear system identification: NARMAX methods in the time,
frequency, and spatio-temporal domains. John Wiley & Sons.

12. Bloomfield, P. (2013). Fourier analysis of time series. John Wiley & Sons.

113

http://arxiv.org/abs/1801.07648
http://arxiv.org/abs/2005.13005

Bibliography

13. Choi, D., Shallue, C. J., Nado, Z., Lee, J., Maddison, C. J. & Dahl, G. E. (2020).
On empirical comparisons of optimizers for deep learning. arXiv: 1910.05446

14. Chollet, F. et al. (2015). Keras. https://keras.io.

15. Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 2, 303–314.

16. Du, S., Li, T., Yang, Y. & Horng, S.-J. (2020). Multivariate time series forecasting
via attention-based encoder–decoder framework. Neurocomputing, 388, 269–
279.

17. Fahad, M. & Arbab, N. (2014). Factor affecting short term load forecasting.
Journal of Clean Energy Technologies, 2, 305–309.

18. Feilat, E., Al-Sha’abi, D. & Momani, M. (2017). Long-term load forecasting
using neural network approach for Jordan’s power system. Engineering Press,
1, 43–50.

19. Forcada, M. L. & Carrasco, R. C. (1995). Learning the initial state of a second-
order recurrent neural network during regular-language inference. Neural
Computation, 7(5), 923–930.

20. Gasparin, A., Lukovic, S. & Alippi, C. (2019). Deep learning for time series
forecasting: The electric load case. arXiv: 1907.09207

21. Gers, F., Schmidhuber, J. & Cummins, F. (2000). Learning to forget: Continual
prediction with LSTM. Neural computation, 12, 2451–71.

22. Glorot, X. & Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. Journal of Machine Learning Research - Proceedings
Track, 9, 249–256.

23. Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep learning. MIT Press.

24. Guerini, A. (2016). Long and short term forecasting of daily and quarter-hourly
electrical load and price data: A torus-based approach (Doctoral dissertation, Uni-
versità di Pavia, Pavia).

25. Guerini, A. & De Nicolao, G. (2015). Long-term electric load forecasting: A
torus-based approach. In 2015 European Control Conference (ECC) (pp. 2768–
2773).

26. He, K., Zhang, X., Ren, S. & Sun, J. (2016). Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (pp. 770–778).

114

http://arxiv.org/abs/1910.05446
https://keras.io
http://arxiv.org/abs/1907.09207

Bibliography

27. Hochreiter, S. (1998). The vanishing gradient problem during learning recur-
rent neural nets and problem solutions. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 6, 107–116.

28. Hochreiter, S. & Schmidhuber, J. (1997). Long Short-Term Memory. Neural
Computation, 9(8), 1735–1780.

29. Hong, T. (2010). Short term electric load forecasting (Doctoral dissertation, North
Carolina State University, Charlotte, NC).

30. Hong, T. & Fan, S. (2016). Probabilistic electric load forecasting: A tutorial
review. International Journal of Forecasting, 32(3), 914–938.

31. Hong, T., Xie, J. & Black, J. (2019). Global energy forecasting competition 2017:
Hierarchical probabilistic load forecasting. International Journal of Forecasting,
35(4), 1389–1399.

32. Hyndman, R. (2020). A brief history of forecasting competitions. International
Journal of Forecasting, 36(1), 7–14.

33. Hyndman, R. & Fan, S. (2010). Density forecasting for long-term peak electri-
city demand. Power Systems, IEEE Transactions on, 25, 1142–1153.

34. IEA. (2020). World Energy Outlook 2020. Paris. Retrieved from https://www.
iea.org/reports/world-energy-outlook-2020

35. Kandil, M. S., El-Debeiky, S. M. & Hasanien, N. E. (2002). Long-term load
forecasting for fast-developing utility using a knowledge-based expert system.
IEEE Power Engineering Review, 22(4), 78–78.

36. Kapoor, A., Guili, A. & Pal, S. (2019). Deep learning with TensorFlow 2 and Keras:
Regression, ConvNets, GANs, RNNs, NLP, and more with TensorFlow 2 and the
Keras API, 2nd Edition. Packt Publishing, Ltd.

37. Karita, S., Wang, X., Watanabe, S., Yoshimura, T., Zhang, W., Chen, N., Hay-
ashi, T., Hori, T., Inaguma, H., Jiang, Z., Someki, M., Yalta, N. & Yamamoto, R.
(2019). A comparative study on Transformer vs RNN in speech applications.
In 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)
(pp. 449–456).

38. Kingma, D. P. & Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv: 1412.6980

39. Mahsereci, M., Balles, L., Lassner, C. & Hennig, P. (2017). Early stopping
without a validation set. arXiv: 1703.09580

40. McCulloch, W. & Pitts, W. (1943). A logical calculus of ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5, 127–147.

115

https://www.iea.org/reports/world-energy-outlook-2020
https://www.iea.org/reports/world-energy-outlook-2020
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1703.09580

Bibliography

41. Menezes, J. M. P. & Barreto, G. A. (2008). Long-term time series prediction
with the NARX network: An empirical evaluation. Neurocomputing, 71(16),
3335–3343.

42. Menick, J., Elsen, E., Evci, U., Osindero, S., Simonyan, K. & Graves, A. (2020).
A practical sparse approximation for real time recurrent learning. arXiv: 2006.
07232

43. Miller, J. & Hardt, M. (2019). Stable recurrent models. arXiv: 1805.10369

44. Nawi, N. M., Atomi, W. H. & Rehman, M. (2013). The effect of data pre-
processing on optimized training of artificial neural networks. Procedia Techno-
logy, 11, 32–39.

45. Nesterov, Y. (1983). A method for unconstrained convex minimization prob-
lem with the rate of convergence o(1/k^2). Doklady Akademii Nauk USSR, 269,
543–547.

46. Pascanu, R., Mikolov, T. & Bengio, Y. (2013). On the difficulty of training
recurrent neural networks. In S. Dasgupta & D. McAllester (Eds.), Proceedings
of the 30th international conference on machine learning (Vol. 28, 3, pp. 1310–1318).
Proceedings of Machine Learning Research. Atlanta, Georgia, USA: PMLR.

47. Pinkus, A. (1999). Approximation theory of the MLP model in neural net-
works. Acta Numerica, 8, 143–195.

48. Qian, N. (1999). On the momentum term in gradient descent learning al-
gorithms. Neural Networks, 12(1), 145–151.

49. Rakitianskaia, A. & Engelbrecht, A. (2015). Measuring saturation in neural
networks. In 2015 IEEE symposium series on computational intelligence (pp. 1423–
1430).

50. Ramachandran, P., Zoph, B. & Le, Q. V. (2017). Searching for activation func-
tions. arXiv: 1710.05941

51. Ramanathan, R., Engle, R., Granger, C., Vahid, F. & Brace, C. (1997). Short-run
forecasts of electricity loads and peaks. International Journal of Forecasting,
13(2), 161–174.

52. Reneses, J., Centeno, E. & Barquin, J. (2006). Coordination between medium-
term generation planning and short-term operation in electricity markets.
IEEE Transactions on Power Systems, 21(1), 43–52.

53. Riedmiller, M. A. & Braun, H. (1993). A direct adaptive method for faster back-
propagation learning: The RPROP algorithm. IEEE International Conference on
Neural Networks, 586–591 vol.1.

116

http://arxiv.org/abs/2006.07232
http://arxiv.org/abs/2006.07232
http://arxiv.org/abs/1805.10369
http://arxiv.org/abs/1710.05941

Bibliography

54. Roach, C. (2019). Reconciled boosted models for GEFCom2017 hierarchical
probabilistic load forecasting. International Journal of Forecasting, 35(4), 1439–
1450.

55. Rodrigues, F., Cardeira, C. & Calado, J. (2014). The daily and hourly energy
consumption and load forecasting using artificial neural network method:
A case study using a set of 93 households in Portugal. Energy Procedia, 62,
220–229.

56. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6), 386–408.

57. Rumelhart, D., Hinton, G. & Mcclelland, J. (1986). A general framework for
parallel distributed processing. Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, 1.

58. Schmidhuber, J. (1992a). A Fixed Size Storage O(n3) Time Complexity Learn-
ing Algorithm for fully recurrent continually running networks. Neural Com-
putation, 4(2), 243–248.

59. Schmidhuber, J. (1992b). Learning complex, extended sequences using the
principle of history compression. Neural Computation, 4(2), 234–242.

60. Smyl, S. & Hua, N. G. (2019). Machine learning methods for GEFCom2017
probabilistic load forecasting. International Journal of Forecasting, 35(4), 1424–
1431.

61. Soares, L. J. & Souza, L. R. (2006). Forecasting electricity demand using gener-
alized long memory. International Journal of Forecasting, 22(1), 17–28.

62. Srivastava, R. K., Greff, K. & Schmidhuber, J. (2015). Highway networks. arXiv:
1505.00387

63. Stegemann, J. A. & Buenfeld, N. (1999). A glossary of basic neural network
terminology for regression problems. Neural Computing and Applications, 8,
290–296.

64. Sutskever, I. (2013). Training recurrent neural networks (Doctoral dissertation,
University of Toronto, Toronto, Canada).

65. Tallec, C. & Ollivier, Y. (2017). Unbiased online recurrent optimization. arXiv:
1702.05043

66. Tien, D. (2003). Common mistakes in neural networks training. In D. Feng
& E. Carson (Eds.), 5th IFAC symposium on modelling and control in biomedical
systems (pp. 383–386).

117

http://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1702.05043

Bibliography

67. van den Oord, A., Kalchbrenner, N. & Kavukcuoglu, K. (2016). Pixel recurrent
neural networks. arXiv: 1601.06759

68. Vanegas Cantarero, M. M. (2020). Of renewable energy, energy democracy,
and sustainable development: A roadmap to accelerate the energy transition
in developing countries. Energy Research & Social Science, 70, 101716.

69. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L. & Polosukhin, I. (2017). Attention is all you need. arXiv: 1706.03762

70. Vossen, J., Feron, B. & Monti, A. (2018). Probabilistic forecasting of household
electrical load using artificial neural networks. In International conference on
probabilistic methods applied to power systems (PMAPS) : June 24-28, 2018, Boise,
Idaho, USA : Conference proceedings / IEEE. International Conference on Probab-
ilistic Methods Applied to Power Systems, Boise, Idaho (USA), 24 Jun 2018 -
28 Jun 2018. Piscataway, NJ: IEEE.

71. Wang, H. & Raj, B. (2017). On the origin of deep learning. arXiv: 1702.07800

72. Werbos, P. J. (1994). The roots of backpropagation: From ordered derivatives to neural
networks and political forecasting. John Wiley & Sons.

73. Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art
with a look into the future. International Journal of Forecasting, 30(4), 1030–1081.

74. Williams, R. J. & Peng, J. (1990). An efficient gradient-based algorithm for
on-line training of recurrent network trajectories. Neural Computation, 2(4),
490–501.

75. Williams, R. J. & Zipser, D. (1989). A learning algorithm for continually run-
ning fully recurrent neural networks. Neural Computation, 1(2), 270–280.

76. Williams, R. J. & Zipser, D. (1995). Gradient-based learning algorithms for
recurrent networks and their computational complexity. In Y. Chauvin & D.
Rumelhart (Eds.), Developments in connectionist theory. backpropagation: Theory,
architectures, and applications (pp. 433–486). Lawrence Erlbaum Associates, Inc.

77. Winkler, R. L. (1972). A decision-theoretic approach to interval estimation.
Journal of the American Statistical Association, 67(337), 187–191.

78. Xie, J. & Hong, T. (2018). Temperature scenario generation for probabilistic
load forecasting. IEEE Transactions on Smart Grid, 9(3), 1680–1687.

79. Yam, J. Y. & Chow, T. W. (2000). A weight initialization method for improving
training speed in feedforward neural network. Neurocomputing, 30(1), 219–
232.

118

http://arxiv.org/abs/1601.06759
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1702.07800

Bibliography

80. Ziel, F. (2018). Modeling public holidays in load forecasting: A German case
study. Journal of Modern Power Systems and Clean Energy, 6(2), 191–207.

81. Ziel, F. (2019). Quantile regression for the qualifying match of GEFCom2017
probabilistic load forecasting. International Journal of Forecasting, 35(4), 1400–
1408.

119

	Notation and Symbols
	Acronyms
	List of Figures
	List of Tables
	Introduction
	Overview of Load Forecasting
	Classification of Load Forecasts
	Weather Dependent Modelling
	Literature Review
	Point Forecast
	Probabilistic Load Forecasting

	Evaluation

	Artificial Neural Networks
	Feedforward Neural Networks
	Introduction
	A quick dive into neuronal models
	From neurons to brains
	The universal approximation theorem
	Training a fnn: the backpropagation
	Training algorithms
	Underfitting, overfitting and regularization
	The vanishing gradient problem

	Recurrent Neural Networks
	Introduction
	The structure of the rnn
	Architectures for sequence modelling
	The backpropagation through time
	Other rnn: lstm and narx

	Forecasting the Daily Demand
	Preliminary analysis
	Dataset introduction
	Holiday impact

	The nax model
	Overview
	Data transformation
	Trend, seasonality and intervention
	Modelling the residual variability

	Training the rnn
	Preparation of the dataset
	Implementation
	Calibration, validation and testing

	Improving nax performances
	The impact of Window Length
	The impact of Random Shuffling
	Continual operation and rtrl
	Results

	Analysis of Intra-daily Load Dynamics
	Data analysis
	Frequency-based approach
	Fourier analysis of seasonality
	The interaction effect
	Incorporating the temperature

	Tao Vanilla Model

	Hourly Forecasting with RNNs
	Introduction
	H-NAX
	D-NAX
	The model
	The network
	Random search of hyperparameters
	The final version

	Results

	Conclusions
	Further Developments

	Activation Functions
	RTRL for NAX network
	Derivation of formulae
	Estimate of complexity

	RTRL for D-NAX network
	Derivation of formulae

	Bibliography

