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Abstract 

 This master thesis focuses on the application of Deep Learning algorithms for 

performing Hyperspectral Image semantic segmentation, with a focus on food quality 

inspection and sorting.  Hyperspectral Imaging is a powerful instrument, still the 

applicability of this camera is mostly limited to remote sensing applications. The 

principal objective of this master thesis is the pixel-level classification of different 

quality of eggplants using Hyperspectral Imaging systems coupled with Deep 

Learning algorithms. There are several available options for the semantic 

segmentation algorithm using Deep Learning that can be found in some of scientific 

databases. In this master thesis, four benchmark Deep Learning models have been 

adapted and trained on an in-house collected dataset. The HSI data coming from a 

push-broom type camera. This is the most diffused data acquisition method in 

industrial applications, as many of the system in industry rely on a conveyor belt to 

move the products. 

 The research and development of novel methodologies for carrying out Deep 

Learning-based HSI segmentation is the final innovative contribution of the present 

work. Moreover, the work also provides techniques to analyze hyperspectral data 

from line scanners application. The results of this work show that Hyperspectral 

Imaging systems, coupled with Deep Learning, lead to very good performance for the 

semantic segmentation task for automatic food quality inspection. Results were 

validated through the k-Fold Cross-Validation methodology. 
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1. Introduction 

This Master Thesis focuses on the application of Deep Learning algorithms for 

the Hyperspectral Image semantic segmentation, with a focus on food quality 

inspection and sorting. Hyperspectral Imaging (HSI) systems are commonly used 

for remote sensing application. As a matter of fact, there is only limited scientific 

production addressing the application of HSI in the food industry. Moreover, the 

scarce availability of related data collections in the study is another important 

challenge to be considered.  

 The principal objective of the master thesis is the pixel-level classification of 

different quality of eggplants using HSI systems coupled with Deep Learning 

Algorithms (DL). In the real industry implementation, this technology will increase 

the efficiency of the food processing by automating the sorting process. There are 

several available options for the segmentation algorithm: either relying on 

conventional Machine Learning (ML) algorithms or on Deep Learning. Both 

techniques will be briefly described in the following sub-chapters. 

The research and development of novel methodologies for carrying out Deep 

Learning-based HSI segmentation is the final innovative contribution of the present 

work. Moreover, the work also provides techniques to analyze any HSI data from 

line scanners application. Several models are trained and tested; results are 

eventually presented. 
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  State of the Art 

In this section, the state of the art of the three principal technologies on which 

this master thesis is built on will be briefly described. These subjects are Food 

Sorting, HSI, and DL.  

 Food sorting is a crucial activity in the food industry. Therefore, the use of 

innovative technology is of vital importance for the competitive advantage of any 

company. Mainly, food sorting is divided into three categories. These are external 

quality and defect evaluation, internal quality and maturity assessment, and food 

safety detection [1]. This master thesis is focusing on the external quality and defect 

evaluation problem, but also on the internal characteristics. There are several 

technologies already established depending on its enabling technology that will 

briefly described in the next subchapter.  

 HSI is a technique that generates a spatial map of spectral variation, making 

it a useful tool in many applications [2] especially for semantic image segmentation. 

HSI system produces two-dimensional spatial array of vectors which represents the 

spectrum at each pixel location [2]. The resulting three-dimensional dataset 

containing the two spatial dimensions and one spectral dimension is known as the 

data cube or hypercube [3]. As a comparison, usual RGB camera produce only three 

spectral data (i.e., corresponding to the red (R), green (G) and blue (B)). In RGB 

imaging the picture is a matrix of three channels. On the other hand, the data cube 

might have hundreds of channels. The data richness of data cube is the power of HSI 

systems, but also at the same time it brings by some challenges.  

Deep learning is a supervised process that enables machines to recognize a 

pattern in the world by studying it beforehand with labelled data. This process is 

technically implemented using a digital architecture called Neural Network (NN). 

The design of Neural Network is inspired by how human brain works. As a matter 

of fact, human brain can process huge amount of information using billions 

combination of neuron cells. These information are electrical signals that comes 

from the world senses by the human body’s sensors. Later, these signals processes 

by neuron cells into an understandable information as a class of vision, texture, or 

sound. The NNs in Deep Learning work the same. NNs is using the combination of, 
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also so called, neuron to identify complex patterns in the real world. Instead of 

processing electrical signals, artificial neural networks process numbers that 

represents the world features into meaningful information. The word deep just 

comes from the architectures of neural networks that have multiple layers of inter-

connected neurons. 

 Food Sorting Technologies 

Food industry is one of the world’s biggest market. Food manufacturers are 

developing their product lines continuously to remain competitive. This is including 

making sure that their product is always fresh and in a good shape. This is not an 

easy task when the scale of the company’s production capacity is in metric tons. 

Using human worker to classify food product is not only cumbersome, but also 

uneconomical. Fortunately, computer vision is now able to do this task with high 

precision and robustness.  

There are numerous methods already developed by other researchers related to 

food sorting technology using computer vision. Traditional, hyperspectral, and 

multispectral computer vision systems are the most widely used vision systems in 

the external quality inspection of food and agricultural products [4]. Traditional 

computer vision systems are using the usual RGB camera system, widely used for 

their ease of use. The second technique is multispectral imaging (MSI), which can 

acquire up to 15 spectral band. The last one is the HSI system, capable of acquiring 

hundreds of contiguous spectral bands. Each method has its own strengths and 

weaknesses. Traditional computer vision systems are cheap compared to the other 

two methods. But they feature limitations on their performance. Multispectral 

imaging usually work at specific bands to excel at one task while performing poorly 

in others [4]. HSI systems perform well above the other two. Their ability to acquire 

hundreds of material spectral band brings huge potential for the application. 

Nevertheless, the computation requirement for this type of system is very high. 

 Food sorting is qualitative type of image segmentation. Thus, it belongs to the 

domain of pattern classification in machine learning algorithm. Several qualitative 
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models that are used for food sorting have been developed for HSI systems. Among 

them the following can be cited: Linear Discriminant Analysis (LDA), Correlation 

Analysis (CA), Principal Components Analysis (PCA), K-Nearest Neighbor (KNN), 

Support Vector Machine (SVM), Partial Least Square Discriminant Analysis 

(PLSDA), and Deep Learning [1]. 

 Mehl et al [5] were among the first to apply HSI for surface defect 

classification in fruits [1]. Later, they also presented Correlation Analysis (CA) 

method for the same detection problem. Moscetti et al [6] applied multi-class Partial 

Least Square Discriminant Analysis (PLS-DA) classifier for hazelnuts classification 

problem. Cheng et al [7] reported combination of PCA-LDA as a hybrid dimension 

reduction technique with k-NN for classification of physiological disorder during 

postharvest handling of horticultural commodities of tropic or subtropic origin like 

cucumbers, apples, and peaches. Finally, the method that increasingly popular in 

recent years is Deep Learning. Owing to the advancements in computing 

technologies, especially the utilization of GPUs, Deep Learning able to solve 

computer vision tasks with superior accuracy [1]. Later, the various Deep Learning 

state-of-the-art algorithm will be presented and described in subchapter 1.1.3. 

 

 Hyperspectral Imaging (HSI) 

 HSI is a technique that generates a spatial map of spectral variation [2], often 

times resulting in hundreds of spectral bands. Ordinary camera usually only 

assigning three spectral bands (red, green, blue) to its image. It is mostly enough for 

human to identify image using the combination of those colors. The main impetus 

for developing a HSI system was to integrate spectroscopic and imaging techniques 

to enable direct identification of different components and samples spatial 

distribution [2]. Hence, it is superior in its ability to identify material characteristics 

compared to ordinary monochrome and RGB camera. HSI brings possibilities to 

analyze spectrum that is invisible for human eyes and to characterize materials. 



Introduction 

 
 

 

10 
 

  The process starts from the reflection of the light that is coming from the 

samples going into the entrance slit of the camera as can be seen in Error! 

Reference source not found.1. The light is then diffracted into its individual 

wavelength and captured by the detector array (CCD). The spatial information of the 

image is maintained as the image preserved the image projection of the world. 

Furthermore, the spectral information of each band is also preserved as the light 

intensity image for each spectrum band are stacked onto each other creating a 

hyperspectral data cube as can be seen in Figure 22.  

 Hyperspectral data cube, known also as hypercube, is three-dimensional data 

which provide physical and/or chemical information of the samples. It characterized 

by a very large volume and dimensionality. Data cube can contain information of 

hundreds of wavebands and hundred thousand of pixels for each waveband. The 

amount of data is the greatest problem that must be coped with. The first goal of 

data analysis is therefore to decrease the data size. It is ironic considering the goals 

 
 

1 https://www.photonics.com/Articles/Hyperspectral_Imaging_Enables_Industrial/a56804 
2 https://www.cleanpng.com/png-hyperspectral-imaging-data-cube-photon-etc-market-3123261/ 

 

Figure 1 – Image acquisition process in HSI camera 
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of using Hyperspectral camera is to gain samples data as much as possible. 

Nevertheless, this is something need to be solved as in practice classification of 

samples must be done in real time.  

There are three acquisition modes of HSI[2]. The first is area scanning imaging 

configuration. This method is performed by gathering the images at one wavelength 

at a time until all the spectral bands images are taken. The second technique is 

whiskbroom, or point-scan imaging. This technique scans a single pixel at a time but 

taking directly all the spectral information of the picture, with the scanning element 

moving continuously through the image. The third technique is the push-broom, or 

line-scan imaging. This technique records whole line of an image using two-

dimensional dispersing element (grating) and two-dimensional detector array. A 

narrow line of the specimen is imaged onto a row of pixels on the sensor chip and 

the spectrograph generate a spectrum for each point on the line, spread across the 

second dimension of the chip. This technique is commonly used in the food industry 

because the nature of the product movement in the conveyor belts.  

 HSI systems cannot stand alone without the help of some software for gaining 

high performance in acquisition, controlling, and analysis[2]. The first step is the 

collection of a HSI using hyperspectral camera. Then the spectral data are extracted 

 

Figure 2 – Visualization of HSI data cube of a leaf 
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from different regions of interest (ROIs) that present different quality features[2]. 

Before processing any further, the data must be preprocessed. Many algorithms are 

available to preprocessed hyperspectral data, depending on whether the interest is 

to preprocesses the spectral feature or the spatial feature. Earlier research related to 

HSI analysis focused on Multivariate statistics [8] such as Euclidean distance 

correlation for correlation technique, and principal components analysis (PCA) for 

classification. Recent years have set off a wave of deep learning for analysis 

technique for hyperspectral data [2], mainly by means of Convolutional Neural 

Networks. This novel technique has excellent capabilities in image processing owing 

to the advancement of computing technology. This master thesis uses deep learning 

as its technique to analyze the data cube. Next sub-chapter will briefly introduce the 

topic. 

 Deep Learning 

Deep learning is a branch of machine learning based on artificial neural 

networks. The term neural is highly correlated with the human brain. In fact, just 

like the over 100 billion of neurons in our brain, artificial neural networks aim to 

extract high-level information from raw data by breaking it down in a collection of 

low-level simple features. 

In the last 20 years, the computational power has increased exponentially along 

with the amount of available data. These two factors are letting the deep learning to 

rapidly evolve and out-perform the traditional machine learning algorithm.  
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 It is possible to visualize an artificial neural network as a sequence of layers, 

which represent the depth of the network. A visualization of artificial neural can be 

seen in the Figure 33. The input is usually the raw data and the output represents 

the decision such as the classification of a pixel, a yes or no answer, a voice 

recognition and so on. However, this raw data needs to be prepared before feeding 

into the network. There are several requirements for the raw data so that the model 

can work properly, and it is really depending on how the model works. The process 

to prepare the data is called pre-processing.  

 
 

3 https://medium.com/@16611056/machine-learning-2-artificial-neural-network-b57b9b716f78 

 

Figure 3 – Visualization of Artificial Neural Network 

 

 

Figure 4 - The visualization of CNN classifies a 2-dimensional image. 
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 The process of a training starts from what is called forward propagation. 

During this process, the raw input is fed to the network and convoluted with the 

weights of the kernel in each layer. Then the output of each layer is fed to an 

activation function which results is acting as an input to the next layer. After the last 

layer, the decision is taken, and a Loss Function gives a numerical value that depicts 

the distance between the algorithm decision and the true labels. Then an 

optimization criterion modifies the weights starting from the last layer until the first 

one with the objective to minimize the result of the Loss Function. This model’s 

weight update operation is called backward propagation. Once all weights are 

updated, a new input data is fed to the network and the same training process 

repeated until the last epoch. 

 Since this master thesis is mostly about image analysis it is important to 

introduce the most important notion in artificial neural network for image analysis 

called the Convolutional Neural Network, or CNN. The emphasis of CNN is the use 

of kernel to convolute the image samples to extract the lower-level features. The 

example of CNN architecture can be seen in the Error! Reference source not 

found.4. CNN is better in exploiting the spectral and spatial correlations of an 

image. Moreover, convolutional operations along with multi-dimensional kernels 

allows to reduce the number of variable weights in the development of very deep 

neural networks.  

There are numerous frameworks that enables deep learning with their own 

strengths and weaknesses. This master thesis developed using Pytorch, an open-

source machine learning library based on the Torch library. Pytorch mainly written 

in Python, but also has a C++ interface. The framework is created with CUDA 

support by default. It is useful to make the program run faster by harnessing the 

capabilities of GPU power.  

 This master thesis uses CNN for HSI segmentation and classification using 

Pytorch. The goal is to classify food quality in real time scenario. Several state-of-

 
 

4https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-
eli5-way-3bd2b1164a53 
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the-art technologies in food sorting application will be introduced and compared 

with the deep learning technique developed in this master thesis. 

 Existing Applications 

Most of the research related to HSI System are in remote sensing applications. 

Traditionally, it is famous method to analyze the composition of different class in 

the data-cube earth’s image. But now some researchers start to apply the camera 

also for other application. In this section, several deep learning algorithms related 

to the analysis of the HSI data will be briefly described. 

 Many algorithms have been applied to analyze the data from HSI camera 

using deep learning. In image analysis the deep learning algorithm that mostly use 

is the Convolutional Neural Network (CNN). Here several deep learning algorithms 

are discussed, both in the remote sensing application and food industry application.  

Commonly, there are three different CNN architecture used for analyzing HSI image 

depends on the dimension of the convolution kernel. 

Hamidah et al [9] developed 3-D CNN approach to the hyperspectral data sets 

created by University of Pavia. Hu et al [10] developed 1-D CNN approach to analyze 

HSI data of Indian pines, Salinas, and also the University of Pavia scenes. Whereas 

Roy et al [11] developed the hybrid 3-D 2-D CNN approach to analyze the Indian 

pines, University of Pavia, and Salinas scene. In remote sensing, spatial feature is as 

important as the spectral feature. Thus, it is useful to use 3D CNN that able to extract 

both features [11]. Whereas the 2D and 1D CNN only extract respectively the spatial 

and spectral feature. 

 Moreover, there are also few developed deep learning algorithms to analyze 

HSI data from food industry. Wang et al, [12] used ResNet and ResNeXt model to 

detect internal mechanical damage of blueberries using HSI transmittance data. 

Zhang et al. [13] developed novel CNN architecture for fine-grained classification of 

banana’s ripening stages. Steinbrener et al. [14] used modified GoogLeNet model to 

classify various fruit with high accuracy. 
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 As it shows in the previous paragraph, the development of the deep learning 

algorithm for HSI data analysis is still in the early phase. As Liu et al. [15] suggest in 

2017 that deep learning model, especially CNNs should be applied more frequently 

as it is already shows convincing results in the other area of study.  

 Scheme of the thesis 

This thesis report is articulated in four main chapters: Setup, Method, Results, 

and Conclusions. 

The Setup chapter is divided into two sub-chapters, Experimental Setup and 

Software Setup. In Experimental Setup, there are information about the HSI camera 

that is used to get the data and a brief description of the whole experimental setup 

in which includes the conveyor belt and specific lighting conditions. Moreover, a 

gentle introduction to the Software Setup adopted for the program is provided. 

Next chapter is related to the applied and developed Method. Here can be found 

a more in-depth description of the program with all the main logics behind the 

developed algorithms to accomplish the thesis tasks.  This section describes the 

main metric parameters, preprocessing of the raw dataset, and model architectures 

adopted to generate the semantic segmentation. 

 The subsequent chapter is the Results, as the name suggests it refers to all the 

most relevant results obtained during the large number of experiments. The 

performances are measured in terms of accuracy and testing time. Independent 

subsections consider all the comparison between the results obtained with different 

models. Then a discussion related to the results from the developed algorithms is 

introduced. 

 Finally, the Conclusions. This chapter recaps in bullet points the main results 

of this work, offering at the end our opinions regarding the results obtained and 

suggestions that hopefully useful for the future research and studies.  

 

  

 



 

2. Setup 

The setup for the image acquisition of the eggplants is divided into two main 

categories. The first one is the experimental setup, that is related to the hardware 

setup of the HSI imaging system. The second one is the software setup, that is 

related to the preparation of the environment of the developed program. 

 Experimental Setup 

The image acquisition of the eggplants is conducted in the ImageS laboratory. 

The selection and the design of the setup is adapted to the requirements of the 

master thesis. There are two main system involved, the first one is the Specim FX17 

HSI camera, and the second one is the supporting equipment Specim LabScanner 

20x20. The camera that is used in this master thesis is line scanning camera, thus it 

is important to set the conveyor speed of the LabScanner to match the sampling time 

of the camera. It is also important to calibrate the camera during the experiment. 

 Specim FX17 Camera 

There are not many companies that producing industrial HSI camera for food 

processing application. One of the leading companies producing HSI camera and 

imaging systems is Finland’s technology firm, Specim. For years, Specim have 

developed numerous HSI camera for remote sensing applications. It was widely 

credited for its Thermal Infrared Hyperspectral Cameras, that is the first 

Hyperspectral Camera that can efficiently be used for outdoor surveillance and UAV 

applications without an external light source such as the sun or the moon. 

Nowadays, Specim broaden their business by producing HSI camera specialized 

for industrial sorting applications. This camera using line scan technology to inspect 

the chemical substance of a sample with good performance. 
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 FX17 is series of Specim camera operated in near-infrared region (900 nm to 

1700 nm), can sample the invisible features of the normal camera or human eyes. 

Furthermore, the camera can reveal chemical composition of a target, making it 

superior for sorting technology implementation. It has a spatial resolution of 640 

pixels and image speed of 527 FPS for GigE version and 670 FPS for CameraLink 

version. This specification is sufficient for this master thesis. The camera can be seen 

in Figure 5. 

 

Camera focus Configuration 

     To make the camera work properly, it is needed to set manually a few 

parameters. The first operation is to set the aperture wide open. Once this operation 

is done, it is necessary to adjust the focus (as the FX17 is a manual focus camera), 

by rotating the focusing ring. On the PC connected to the camera it is possible to see 

in a preview of the picture with real time changes in terms of exposure and focus 

with respect to the setting of the camera parameters we are setting.  The 

visualization of the process can be seen in Figure 6. 

 

Figure 5 - Specim FX17 made by Specim Spectral Imaging Oy Ltd 
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After following the procedure above, everything on the conveyor belt is focused. 

Since the aperture is wide open, the focusing plane is the thinnest. The next step is 

to close the aperture narrow enough to have all the scene perfectly in focus, this 

operation alone will result also in a darker image, in fact less light is getting inside 

the lens with the diaphragm more closed. It is necessary to compensate the exposure 

to have a usable image, so it is needed to increase the exposure time. This is because 

when the shutter is open for a longer period, than the more light is getting inside the 

lens. False setting of the focus of the Hyperspectral camera not only will results in 

blurry spatial features, but spectral features [16] too. Hence reduces the 

performance of the model that is using the data for training. The result from this 

procedure is an all-around sharp focused image ready to be used for data 

acquisition.  

 Finally, Figure 7 shows the image acquisition setting for the master thesis. The 

FX17 camera is mounted on the top of the sliced eggplants to acquire the data. Other 

than that, it is also possible to see the white reference at the edge of the conveyor. 

This bar is useful for dark current calibration that will be explained in the dark 

current calibration sub-chapter. 

 

Figure 6 - Picture shows the importance of a correct set-up in terms of aperture and 
focusing distance. 
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Figure 7 - Dark current calibration and image acquisition setting 
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 Supporting System Tools 

The main supporting system of the HSI System [17][17] is Specim’s LabScanner 

40 x 20, a small scanner system for laboratory use. It has 400 x 200 mm sample 

tray, a mount of a camera, halogen illumination and optional camera height 

adjustment.  As can be seen from Figure 8, the sample will be moved by the 

conveyor below the camera that is mounted on the top of the tools. The scanning 

speed range of the tools is around 0.1 mm/s until 99 mm/s. But this choice of speed 

is not arbitrary, as it is really depending on the camera parameter such as its 

exposure time. Failing to set the speed properly will results images having bad 

spatial data quality as will explained in the next discussion. 

 

 

 

 

 

 

 

Figure 8 - Specim LabScanner 400 x 200 made by Specim Spectral Imaging Oy Ltd 
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Conveyor Belt Speed Configuration 

One of the important aspects for the tool setup of line-scanning camera is the 

setting of the conveyor belt speed. It is because line scanning camera works by 

capturing line by line the spatial and spectral features of the samples. Thus, relative 

motion between the camera and the samples needs to be set. In practice, the camera 

will be set fix to the ground, and the samples will move with respect to the ground. 

The setting of the relative speed is performed by putting a circle-shape sample above 

the conveyor belt that is continuously moving when the data acquisition process 

starts. If the relative speed is right, then the resulting picture will not change the 

shape of the samples. 

 

Figure 9 - Elongated circle sample due to the too low conveyor speed  
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The problem arises when the exposure time of the camera is not match with the 

speed of the samples. If the speed is too high, then the resulting picture will be wider 

in the orthogonal direction of the motion. If the speed is too low, the picture of the 

object will wider in the moving direction. Example of the elongated samples can be 

seen in the Error! Reference source not found.. Using this fact, then the speed 

of the conveyor belt can be tuned by obtaining a picture of the object with the same 

shape of the samples. 

Before tuning the speed, it is possible to analyze the required speed of the 

conveyor buy studying how the line-scanning camera work from Figure 11. 

 

 

Sensor of the camera works with sampling rate 𝑓𝑟𝑎𝑡𝑒. On the other hand, each 

pixel in Figure 11 must be exposed by light for 𝑡𝑒𝑥𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 long. Moreover, there is also 

processing and transmitting data time needed to be considered  𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔. Thus, the 

𝑓𝑟𝑎𝑡𝑒 must be fulfilled the following equation to make the picture acquired properly. 

1

𝑓𝑟𝑎𝑡𝑒
≥ 𝑡𝑒𝑥𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 

 

Figure 10 - Elongated circle sample due to the too low conveyor speed  

 

 

Figure 11 Image acquisition of line-scanning camera 
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The resulting analysis of the speed requirement is not exactly resulting perfect 

circle image of the reference sample. This is due to the fact that there is small 

difference between the parameter used to calculate the speed, with the real physical 

parameter. Thus, tuning of the speed is still important step to do.  

 Dataset Samples 

 The dataset is acquired by taking several classes of eggplants using HSI 

system already explained above. There are several types of experiments conducted 

with the data acquisition modules. From those experiments an extracting algorithm 

performed to gather the pixel samples, with its respective labels, for training. 

 First, several eggplants (Solanum melongena) with identical shape are 

considered. The first hyperspectral data-cube created from taking the whole image 

of the healthy eggplant as can be seen from Figure 12. Later the same eggplants will 

be cut into pieces and the data-cube are created by taking its image using the HSI 

systems. The second eggplants will be damaged. Then the whole damaged eggplant 

is scanned using the same HSI system to take its image data-cube. The third 

eggplants will be cut into four pieces. The first piece was left at it is. The second and 

the third pieces were baked respectively for 10 minutes and 20 minutes. The last 

piece was places into a tray, and using a heat lamp, burnt the middle of the pieces. 

All of four pieces are then placed on the conveyor belt, and one single data-cube is 

acquired from the HSI system as can be seen in Figure 13.  

 After all the data-cube are acquired, the next step is to apply the extracting 

algorithm to create the labelled dataset ready for training. Region of Interest (ROI) 

function from OpenCV library is used to show the location of the selected area of the 

data-cube image. Later, the user will need to decide the class of the selected samples. 

This process is repeated several times depending on how many samples, and how 

many classes the user wants to create. The results of the dataset extracting algorithm 

are two mat files. The first one is containing all the selected pixels stacked in a 

column with the spectrum data lies as its row. The second file is only containing the 

labels of its respective pixels. It means that the number of the row in both files will 

be the same and it shows relation between the pixel and its label. Moreover, the 
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program also saved the information related to the creation of the labelled dataset. A 

txt file containing information of the created class, the coordinate of the ROI, and 

the name of image from which the ROI is taken, is created and saved for the 

documentation purposes.  

 

Figure 13 – The false color image of the different class of the cut eggplants  

 

 

Figure 12 – The false color image of the entire eggplant 
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 Software Setup 

 Since the program creation has a big role in this work, this subchapter aims 

to provide the reader the knowledge about all the required tools to successfully run 

and test or replicate the code presented in this work. In the Input Dataset sub-

chapter there are an explanation of the dataset used to run the code, it is also 

explained how to obtain the dataset starting from the most common tools used to 

acquire hyperspectral data. Later, in Framework and Libraries there is a brief 

overview of the Python libraries which helped this work the most, introducing their 

strengths and their specific function to the code. It is important to state that all the 

programs used in this master thesis are open-source and easy to access from any 

Python environment.  

2.3.1 Input Dataset 

By the nature of Convolutional Neural Networks (CNN), there is not a fixed 

architecture for a specific task. CNN are great for image classification, voice 

recognition, and in general complex feature selection. However, the same tasks 

might be also achieved by simpler Fully Connected (FC) sequential layers, if the 

number of variables is relatively small. For what has just stated, it is important to 

focus on the heterogeneity of the problems that might be solved with the Neural 

Network (NN). The hardest challenges in applying NN to real problems is the 

dataset adaptation. The challenge is to transform real world data into a series of 

numeric values which can be easily indexed and used by the model.  

To train the model described in this work it is necessary to provide these inputs: 

Hyperspectral data-cube: it is a 3-dimensional matrix which represents the 

hyperspectral picture, 2 out of the 3 dimensions are the height and the width of the 

picture, so the spatial resolution of the camera. The last dimension is the spectral 

dimension of the camera which can be identified as the depth of the picture, so how 

many channels are available to be studied for each pixel. In this master thesis, the 

Hyperspectral data-cube must have the .mat extension format. 
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Ground Truth: it is a 2-dimensional matrix which has the same shape, in 

terms of the height and width of the Hyperspectral data-cube. The value inside each 

element is an integer which represents the class of the pixel positioned in the 

respective position in the Hyperspectral data-cube. The ground truth also must have 

the .mat extension format. 

 The output of the HSI camera is a combination of files, but for the purpose of 

this master thesis just the raw data is necessary to build the hyperspectral data-cube.  

 Unlike the hyperspectral data-cube, which is mostly a conversion task, the 

ground truth creation is a whole different story. It is possible to build it manually, 

inserting values pixel by pixel on a personal knowledge base, or adopting 

unsupervised learning techniques or, developing image segmentation algorithms 

(for this last purpose usually hyperspectral cameras also provide a false color 

image). Since the scope of this work is not to tackle unsupervised learning technique 

to create a precise dataset with the smallest possible amount of lost information, 

therefore a simple program is developed to label part of the picture simultaneously. 

The program created using Python based on OpenCV and Numpy libraries which 

allows the user to select regions from the false color images provided by the camera. 

A selected region should contain only pixels from the same class, the tool then 

associates these pixels with the corresponding spectra and in parallel create a 

labelled ground truth. The user then chooses for each selected region which class it 

corresponds to. This method is wasting a lot of useful data, but it is very fast and 

easy to apply. It is fundamental to create the most possible precise ground truth, 

otherwise each pixel that wrongly classified in the ground truth will compromises 

the training results. Ground truth is in fact the reference that the model uses to state 

whether its predictions are good or not, and based on that, to update the weights 

consequently. 
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2.3.2 Framework and Libraries 

The code presented in this work is completely written on Python mainly because 

of its readability and intuitiveness, it is open source as well as equip with many 

available libraries and very helpful to tackle in a proper way almost every deep 

learning task. It is important to say that there are libraries specifically built to 

develop deep learning models and applications. The list of the most important 

libraries adopted to make this code possible is presented down below: 

NumPy: It is one of the most powerful open-source Python libraries, 

commonly used in the industry for array computing. It can be utilized to perform 

many mathematical operations on arrays such as trigonometric, statistical, and 

algebraic routines. Therefore, the library contains many mathematical, algebraic, 

and transformation functions. It also allows random methodologies. In the program 

of the master thesis, NumPy is vastly used to perform preprocessing routines to 

adapt the dataset to the model. 

PyTorch: Significant part of its codebase from the Torch7 project started in 

2007 [18], one of the keys to its success is that it allows to write the native looking 

Python code and get all the benefits of a DL framework like auto-differentiation and 

built-in optimization. It is an open-source Python library which derives a significant 

part of its codebase from the Torch7 project started in 2007 [18], one of the keys to 

its success is that it allows to write native looking Python code and still get all the 

benefits of a good framework like auto-differentiation and built-in optimization. 

Moreover, it works with arrays called Tensor, an object which share most of the 

advantages of NumPy arrays but built to harness the astonishing computational 

power of the GPU. In the code presented in this work, PyTorch is used to manage 

and index the dataset and to create the model architectures. In addition, it is also 

used to tackle all the hidden but essential operations which characterize the training 

process such as: Forward Propagation, Loss Function, Optimizer, and Back 

Propagation.  

Matplotlib: It is an open-source Python library built to visualize 2-d plots of 

arrays. Its greatest strength is that it allows visualization of huge amounts of data in 

an easily readable graph, helped by the fact that it is also built on NumPy arrays. In 
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this work, Matplotlib has been essential to plot and visualize almost any graph 

shown such as training and validation loss, accuracy, sample’s spectrum, and the 

semantic segmentation results. 

Scikit-Learn: It is another Python open-source library that is a simple and 

efficient tool for predictive data analysis. It is built on top of NumPy, SciPy, and 

Matplotlib. Its strength comes by the fact that it is very intuitive and reusable in 

various contexts. In the code presented in this work, Scikit-Learn is used to provides 

and visualize an effective confusion matrix.  

 

    

 

 

 



 

3. Methods 

The Chapter 3 describes all the decisions and techniques adopted to carry on 

this master theses. The three main sections are contained in this chapter: Metric 

Parameters, Dataset Preprocessing, and Deep Learning program. Within Metric 

Parameters are described all the tools and parameters used to understand the 

results of this work. The Data Preprocessing talks about the management of a raw 

data and moreover it explains the logic behind the dataset used to train the NNs. 

Deep Learning program is a section more focused on the NNs Python code and the 

description of the four different NNs architectures used for this work. 

 Metric parameters    

To evaluate the performance of the program, several metric parameters are 

introduced. The first parameter is cross entropy loss that is used to evaluate the loss 

between the output with the prediction labels. The second one is the Confusion 

Matrix, which is used to evaluate the prediction performance on a test set. Moreover, 

considering the limited amount of dataset, cross validation is used to evaluate the 

generalization performance of the model. 

3.1.1 Cross Entropy Loss 

Cross Entropy Loss measures the performance of the classification model with 

the class probability value and the true label as the input. It is the distance between 

the probability of the output, with the actual label of that output. So, if the distance 

is small, then it means the model classify the output well. Moreover, the equation of 

Cross Entropy Loss can be written as the equation below: 

 

𝐻(𝑝, 𝑞) = −∑𝑝(𝑥)log(𝑞(𝑥))

∀𝑥
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 The cross-entropy formula takes in two distributions which are 𝑝(𝑥), the true 

distribution, and 𝑞(𝑥), the estimated distribution, both define over the discrete 

variable x. As the equation only receive probabilities, the Softmax function is applied 

to change the value of the last layer of the NNs into probability. 

 In this master thesis, Cross Entropy Loss is implemented using PyTorch class 

with the name CrossEntropyLoss(). The Softmax function is already embedded in 

this function. Small training loss is a good sign for the model parameter. However, if 

the loss of the training and the validation start to diverge, then it is a sign that the 

model works well only in the training data, but not in the validation data. It is called 

overfitting and may results bad prediction in the testing dataset. Thus, the training 

should be stop when this condition occurs. 

3.1.2 Confusion Matrix 

As briefly explained in the previous sub-chapter, Confusion Matrix is used to 

evaluate the performance of the trained model in the test dataset. It is a compact 

way to visualize how good the model predicts the labels of the dataset. Basic 

confusion matrix features can be seen in the picture below. 

 

 

Figure 14 – Example of Confusion Matrix with two class labels 
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There are four group that represent different combination of predicted and 

actual labels. The first group is True Positive (TP) it means that the algorithm 

predicted positive value and it is the same as the actual label. The second one is False 

Positive (FP), it means that the algorithm predicted positive value, but, it is negative. 

The third one is False Negative (FN), it means that the algorithm predicted negative 

value, but, it is positive. The last one is True Negative (TN), it means that the 

algorithm predicted negative value, and it is the same as the actual label. Each of 

this group is useful for measuring Recall, Precision, Specificity, and Accuracy. 

 Recall is the parameter to show how much, out of all the positive cases, the 

algorithm predicted correctly. It should be as high as possible. Recall can be written 

with the equation below: 

𝑅𝑒𝑐𝑎𝑙𝑙 = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

On the other hand, Precision defined as, out of all positive case the algorithm 

has predicted, how many are positive. The same, it should be as high as possible.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Because both of parameter shows how good the algorithm predicts, it usually 

combined to form new parameter called F-score. It is a way to measure Recall and 

Precision at the same time. 

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 
2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

3.1.3 K-fold Cross-Validation 

Generalization is a problem faced by all machine learning model. It is difficult 

to know a priori how good our model predicts the data outside the training dataset. 

This problem is worsened by the fact that in this master thesis the amount of the 

provided data is limited. In this scenario, K-Fold Cross-Validation is a good method 
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to perform to evaluate the generalization performance of the model with limited 

amount of data. 

First, all the datasets are divided into 6 groups. Thus, this process called 6-Fold 

Cross-Validation with K value is 6. In the first fold, the training used the nine group 

of the dataset, then the test conducted to the remaining one group. It is repeated 6 

times until the testing process conducted in all the group. It means that one group 

become training data nine times, and become test data one time, from sixfold 

processes. 

This master thesis conducted the cross-validation process manually by hard 

code the algorithm using python. It is because the available library that support 

cross-validation does not work with the PyTorch. Figure 15 is the flow diagram of 

the cross-validation developed for this master thesis. 

 

Figure 15 - Flow diagram of 6-Fold Cross-Validation 
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 Dataset Pre-processing 

Before conducting training and testing to the dataset, it is important to make 

sure that the available datasets is compatible and ready to use. It is because usually 

the raw dataset from data acquisition is not in the same format with the algorithm 

requirements, unbalanced, and full of noise. Thus, dataset pre-processing is 

paramount important for the successful machine learning problem. In the following 

sub-chapters several techniques are applied to the dataset to make sure that it will 

results with good model for the prediction. 

3.2.1 Dark Current Calibration 

Typically, when Hyperspectral Camera is acquired data, there is always 

electronic current flowing in the detector arrays even without light shining on it [2]. 

This current is called the dark current, and it is generated from thermally induced 

electron hole pairs. Thus, it is important to calibrate the output of the camera, so the 

effect of the dark current is minimized. The calibration is done by normalized the 

acquired value, with the white reference value and dark reference value. 

 In this master thesis, the white reference value is resulted from the acquisition 

of a white reference bar that put-on top of the conveyor belt. Meanwhile, the dark 

reference value is resulted by the camera when acquires the data with the lens closed 

(i.e., shutter mode). Figure 7 shows the setting of the data acquisition, with the white 

bar as the white reference and the cut eggplants is one of the experiments performed. 

It can be seen also that the LabScanner has six halogen lamp that are put on top of 

the samples. 

 The classification conducted in this master thesis is applied for each pixel of the 

data-cube, usually called semantic segmentation. Thus, one sample in the dataset 

corresponding to one pixel with all its spectrum. The range of value of the features 

corresponding to the intensity range of all the spectrum band. To apply the dark 

current calibration to the dataset, the following equation is applied to each pixel. 

 



 

30 
 

𝐼 = 
𝐼 − 𝐼𝑑𝑎𝑟𝑘

𝐼𝑤ℎ𝑖𝑡𝑒 − 𝐼𝑑𝑎𝑟𝑘
 

 

The dark current calibration is easily applied using Numpy. It has broadcasting 

property that makes the manipulation of array very easy. It is also lightweight and 

efficient for machine learning problem. 

3.2.2 Balancing Dataset 

 Balance dataset is important to give equal priority to each class in the training. 

This is true especially in a normal condition where all the number of the sample of 

each class is naturally balance in nature. In this master thesis, there are clearly 

imbalance number of samples for each class. This can be seen from the Error! 

Reference source not found..  

To minimize the effect of imbalance dataset, a data pre-processing is conducted. 

It is start by calculating total number of samples in each class. Then, use the class 

that has the least number of samples, multiply it by 300%, and use it as the 

maximum number of samples permissible for training for each other classes. With 

this algorithm, the number of samples in each class is relatively balance, and the 

model will process each class equally.  

Class Samples per 
class 

Sample per 
class (balanced) 

0 – Background  19251 
 

2697 

1 – Fresh  12075 
 

2697 

2 – Baked (10 min) 10098 
 

2697 

3 – Baked (20 min) 9964 
 

2697 

4 – Burnt  899 
 

899 

5 – Skin  13716 2697 

Table 1 - Total number of samples in each class and total number of samples in 
balanced dataset 
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3.2.3 Spectrum band selection 

Figure 17 shows the selected dataset spectrum. The complete method for 

dataset selection will be explained in the next sub chapter. In the beginning and at 

the end of the spectrum, there are noise due to sensor limitations. Thus, it is 

advisable to remove the noise to reduce the computational load.  

 

Figure 17 – Spectrum of the selected dataset with the noise  

 

 

Figure 16– Spectrum of the selected dataset after removing the noise 
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Figure 16 shows the spectrum without the noise. As with the water absorption 

spectrum band, it is still used for the training because there is different offset that 

useful for the classifier. 

 Program 

Most of the code developed for this master thesis is done using PyTorch and 

Numpy. Part of Exploration Data Analysis (EDA) is done with Numpy, as well as the 

data preprocessing. Moreover, part of the training, validation, and testing of the 

model are done with PyTorch. 

To tune the model, and easily troubleshoot some problem arises in the code 

development, a determinism setting is applied to the program. This is done by 

setting the seed of the internal python random number generator, so that all the 

pseudo random process included in the program will be fix anytime the code is 

running. 

3.3.1 Region of Interest Selector  

In this master thesis, the dataset is manually acquired using HSI system already 

explained. Thus, there are no labels assigned on each class, and this task must be 

done manually. 

 A program is created to fulfill this function. First, from the spatial image of the 

sample data-cube, a Region of Interest (ROI) is selected using a square bracket as can 

be seen from Figure 22. Then the program will investigate the matrix coordinate of 

the selected region and will take all the spectrum of the pixel inside selected region 

from the data-cube. After that, a function to assign the class number is invoked, and 

the user need to fill in it as shown in Figure 19. This process needs to be done several 

times until all the needed dataset class is created. 
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3.3.2 Weight initialization 

The weight of the model can be start from any value. But the deep learning has 

difficulties in converging when the weights are initialized using normal distribution 

 

Figure 18 – Choosing Region of Interest using a blue box 

 

Figure 19 – Assigning the class number to the samples selected using the blue box  
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with fixed standard deviation. Fortunately, it is possible to start the weight from 

value with the help of weight initialization function. This master thesis chooses 

Kaiming algorithm to initialize the weight. 

Kaiming algorithm is used when the ReLU is the activation function. In this 

master thesis, the activation function used is only the ReLU function. The equation 

of the Kaiming Initialization can be seen in below: 

𝑊 = Ν (0,
2

𝑛𝑙
) 

3.3.3 Deep Learning Workflow 

The whole workflow for the developed pre-processing and deep learning 

programs can be summarized in Figure 20. 

As it is already described in the previous chapters, it all begins with data 

acquisition through Specim FX17 camera. The outputs that need to be saved for the 

next processes are RAW hyperspectral image, RAW dark reference, RAW white 

reference, and the RGB false color image. The first three files are converted from 

 

Figure 20 – Data learning workflow 
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RAW format to the mat format thanks to a MATLAB program which is not described 

in this work. After that, the same three files are taken as input by the Python 

program normalization_tool which applied a normalization and resulted a single 

normalized mat file. This output together with the false color image are the new 

inputs to the Python program called play_with_data. This program allows the user 

to create the Ground Truth (GT) by selecting the Regions of Interest (ROI) from the 

false color image. Then the ROI coordinates are used to extract the respective 

hyperspectral normalized dataset from the mat file. Finally, the user writes the 

corresponding class for each ROI. The dataset is now saved in two distinct mat files, 

one contains the normalized data as a list of spectra, the other contains the GT as a 

list of integers, which represents the classes of the spectra positioned on the same 

index coordinate. Since Specim FX 17 sensor has a lot of noise in the first and last 

bands of its spectrum, it is important to plot the results to visualize which bands are 

better to be removed to obtain better performances during the training, this part is 

possible due to the Python program called spectra_plotter.  

Now the dataset is ready to be used to train the weights of the DL model. Two 

Python programs are developed for that purpose, tvt_tool and kfold_cv_tool, the 

last one uses cross validation while the first one follows the train-validation-test 

pattern. The following paragraphs describes more in depth of the tvt_tool, and the 

last paragraph will concentrate on the differences with kfold_cv_tool. 

The user must set the classical hyperparameters such as the number of epochs, 

learning rate, and batch size and others which are not so common such as the 

maximum number of samples per class that is created specifically for this master 

thesis. Moreover, if during the visualization part with spectra_plotter file, it is 

necessary to remove bands, then there is section of the program inside the file to 

remove them before training the model. If there are classes that are not consider in 

the training, the user must type them in the related section of the program. Then, 

the user must choose whether to save the weights at the end of the training, activate 

the early stop algorithm, and apply a dynamically decreasing learning rate during 

training. In addition to that the user also must choose a model between these four: 

Lucas NNN, Hu et al.[10], 2D CNN and FC NN.  

After the program is run, the tvt_tool program starts adjusting the dataset, in 

fact imagine that the total number of labels is n and 2 unwanted labels have been 
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selected to be removed, and since the classes must be in range from 0 to n with no 

gaps in between 0 and n, the algorithm should update/shift the value of the labels 

to always have increasing values from 0 to n – 2. The program then does not simply 

take every sample inside the dataset to train it, there is high probability to take an 

unbalanced sample by doing that, so it looks at all the classes and sees the class 

which has the least number of samples, then it multiplies this number by three and 

that is the maximum number of samples per class adopted for all the classes in the 

dataset. It is also important to note that all the samples from each class are chosen 

randomly. In addition to that, the program shuffles all the samples before using 

them for the training. 
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To properly index each sample with the corresponding label, PyTorch offers a 

specific object called Dataset to implement it. After the dataset is indexed inside the 

Dataset object, it is necessary to input it to the Dataloader object that splits the whole 

dataset in train, validation, and test set in accordance with the proportion set by the 

user at the beginning of the program. Two loops are designed then, one is for 

training and validation, and the other is for testing, as can be seen from Figure 21. 

Through the forward propagation, the input data pass through the network weights, 

then a softmax function evaluates the most probable solution from the outcomes. 

The outputs for both training and validation branch are accuracy and loss values. 

The function to calculate the loss is the Cross-entropy loss function. Next step is to 

calculate the outputs of the train branch that through the SGD optimizer and 

 

Figure 21 - Train/validation/test workflow 
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accordingly calculate the gradient which allows the classification to be closer to the 

solution. In this process, the weights which are used for the next training and 

validation loop, are updated (only if the epoch is not the last one or the early stop 

algorithm stops the process). The weights resulting from the last epoch in the train 

or validation process is used for the test part. Finally, the test dataset is simply fed 

to these weights and, with the usual softmax function, all the classification are 

evaluated. 

On the other hand, the Python program kfold_cv_tool uses K-fold Cross 

Validation technique to evaluate the reliability and robustness of the model. It 

shares a lot of common processes with the train and validation flow, but with the 

test branch instead of the validation branch as can be seen from Figure 22. Now the 

dataset is no more split in train-validation-test but in K number of folds that the 

user sets. The train-test loop is done for all the epochs necessary to finish the 

training, but this process is repeated K times. Note that for each fold, one group is 

used for the test, and the remaining are grouped for the training. 

 

Figure 22 - K-Fold Cross Validation workflow 
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3.3.4 Models 

In this section are described the model used for this semantic segmentation 

work: Lucas NNN, Hu et al 1D CNN, FC NN, and 2D CNN. The first two model are 

already applied to classify hyperspectral data coming from remote sensing images 

taken with drones, and the remaining two are developed for this master thesis. Since 

this work aims to study hyperspectral data pixel by pixel, all the models do not 

consider spatial feature correlations. In the following subsections, there are more 

detailed descriptions. 

  

Lucas NNN 

Lucas NNN (in the original paper [19] referred as LucasCNN) is a neural 

network developed in 2019 by Riese and Kellers to study and classify the freely 

available Land Use/Cover Area Frame Statistical Survey (LUCAS) Soil dataset. It 

includes hyperspectral and soil texture data from measurements all over Europe. 

 The Lucas NNN consists of four convolutional layers, each followed by a 

ReLU activation function and max-pooling layer. After flattening the output of the 

fourth convolutional layer, two FC layers are implemented, again followed by a 

ReLU activation function, and one FC layer with a softmax activation. Finally, six 

outputs are placed at the end of the network. 

 



 

40 
 

 

 

 

 

 

  

 

Figure 23 - LucasNNN architecture 

  

OPERATION INPUT  OUTPUT  KERNEL  STRIDE PADDING 

Conv (first) 1 x 204 32 x 1 x 102 3 1 1 

Conv (second) 32 x 1 x 102 32 x 1 x 51 3 1 1 

Conv (third) 32 x 1 x 51 64 x 1 x 25 3 1 1 

Conv (fourth) 64 x 1 x 25 64 x 1 x 12 3 1 1 

MaxPool - - 2 - - 

Flatten 768 160 - - - 

FC (first) 160 120 - - - 

FC (second) 120 N classes (6) - - - 

Table 2 - Table with the parameters related to LucasNNN architecture 
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Hu et al. 1D CNN 

Hu et al. [10] developed a neural network architecture that is employed to 

classify HSI image directly in spectral domain. The algorithms originally 

implemented on several freely available HSI data sets including Indian Pines, 

Salinas, and University of Pavia. 

 The architecture consists of one convolutional layer, followed by a ReLU 

activation function and max-pooling layer. After flattening the output of the max-

pooling layer, two FC layers are implemented, again followed by a ReLU activation 

function, and one FC layer with a softmax activation is placed at the end of the 

network.  

 

Figure 24 - Hu et al. architecture 

 

OPERATION INPUT  OUTPUT  KERNEL  STRIDE PADDING 

Conv  1 x 204 20 x 1 x 36 25 1 - 

MaxPool - - 5 - - 

Flatten 720 100 - - - 

FC  100 N classes (6) - - - 

Table 3 - Table with the parameters related to Hu et al. architecture 
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FC NN 

This architecture is developed just to see if a simpler structure such as a 

sequence of three fully connected layers might compete in terms of performances 

and accuracy against the two more structured architectures described before. Figure 

25 represents the architecture of the network, and Table 4 shows the evolution of 

the input and output for each layer. 

 

Figure 25 - FC NN architecture 

 

 

OPERATION INPUT  OUTPUT  KERNEL  STRIDE PADDING 

FC (first) 204 150 - - - 

FC (second) 150 80 - - - 

FC (third) 80 N classes (6) - - - 

Table 4 - Table with the parameters related to FC NN architecture 
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2D CNN 

This network is very similar to classical 2D architectures used to analyze 

spectral-spatial correlations in 2D RGB images. It is decided to also study this 

architecture to see if even a different approach might be useful to classify an input 

dataset made by a 1D vector and not a 2D image. To build the requested 2D input, 

the input of 1D vector as a column is multiplied by itself as a row. Figure 26 described 

the architecture of the network, and Table 5 shows the evolution of the input and 

output for each layer in the network. 

 

Figure 26 - 2D CNN architecture 

 OPERATION INPUT  OUTPUT  KERNEL  STRIDE PADDING 

Conv (first) 1 x 204 x 204 5 x 66 x 66 7 1 - 

Conv (second) 5 x 66 x 66 10 x 22 x 22 3 1 1 

Conv (third) 10 x 22 x 22 20 x 11 x 11 3 1 1 

MaxPool 
(first/second) 

- - 3 - - 

MaxPool (third) - - 2 - - 

Flatten 2420 160 - - - 

FC  160 N classes (6) - - - 

Table 5 - Table with the parameters related to 2D CNN architecture 
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3.3.5 Early Stop Algorithm 

The main problem in training is deciding when to stop it. This problem is 

classical machine learning problem that still become the main research topic around 

the world. Too fast to stop the training, then the model will not fully develop and 

will underperformed even in the training data. Too long to stop the training, then 

the model will overfit the training data, causing the model underperformed for the 

unseen testing data. 

In this master thesis, simple early stop algorithm is developed to minimize the 

effect of overfitting. The code is manually developed using some criteria that is the 

assumption of well-developed model.  

When training a model, it is important to have enough computational power to 

complete many epochs in a limited time span, on the other end it would be an error 

to think that the more epochs you are doing the more the model is getting better, in 

fact the risk of overfitting is always behind the corner. Overfitting happens when the 

model is updating the weights in a way that it is not generalizing the classification 

anymore, but it is just trying to fit all the data contained in the training dataset with 

the respective values. The result is a model which classify perfectly what is inside the 

training dataset, but completely fail the recognition of any sample outside from the 

training dataset. 

Spotting overfitting is not easy task, but without going to much in depth, it is 

possible to say that whenever an increasing divergency happens between training 

and validation curves with respect to both accuracy and loss, overfitting is taking 

over. The algorithm described below aims to recognize overfitting by monitoring 

validation and training curves during training, whenever overfitting is detected the 

algorithm stops the training loop. 

To tackle this problem the algorithm creates 2 lists with a defined number of 

elements, the elements cab be either 0 or 1, one list is related to the divergency 

between training and validation in the accuracy of the model, the other to the 

divergency between training and validation in the loss of the model. The algorithm 

flow is described in the Figure 27.  
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Figure 27 - Early stop algorithm flowchart 
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4. Results 

The Chapter 4 is going to exhibit the results of the master thesis. The results of 

each model will be presented sequentially as Lucas NNN, 2D CNN, Hu et al, FC NN. 

As it was anticipated in the previous chapters the results from the models will be 

analyzed in two ways, first one is the classic learning pattern composed by training, 

validation, and test, the second one is made with k-fold cross validation. For what 

concerns the first pattern, the first experiments focus on the number of epochs (400, 

200) and the ability of early stop algorithm to stop the training whenever overfitting 

occurs, the next experiments will focus on the different learning rates (0.001, 0.005, 

0.0002) and how they affect the training. As a support to these experiments, there 

will be three different plots such as training and validation accuracy curves 

throughout all the epochs, training and validation loss curves throughout all the 

epochs, confusion matrix related to the results from the test, and other parameters 

like training and validation time, testing time and testing accuracy. 

On the other hand, with the k-fold cross validation (k equals to 6) pattern the 

focus of the related experiments will be mostly on the different learning rates (0.001, 

0.005, 0.0002). As a support to these experiments there will be a plot which 

describes the different training and testing accuracy along the different folds and 

other parameters like cross validation time, mean and standard deviation of testing 

accuracy along the different folds. 

 

Besides these different experiments there is a common ground between all of them 

which is presented in Table 6. 

Batch Size Loss Function Optimizer  Weights 
initialization 

Processor 

64 Cross Entropy Adam Algorithm Kaiming 
normal 

Nvidia GeForce 
GTX 1080 Ti 

Table 6 - Common function and parameters 
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 LucasNNN 

 In this introductory section there will be described results from experiments 

regarding Lucas NNN architecture. A general overview about the combination of 

parameters used for each test outcoming from train, validation and test pattern is 

visible in Error! Reference source not found., while in Table 8 are presented 

the parameters used for cross validation pattern. In the next two sections there is a 

more in-depth description of the results from the tables presented down below, also 

with references to the related plots. 

 

Model Epochs 
(E) 

Learning Rate 
(LR) 

Cross 
Validation 
time (s) 

Average Test 
Accuracy 

Standard 
deviation test 
Accuracy 

 
 
LucasNNN 

200 0.001 1810.3 98.89 0.2573 

200 0.005 1810.4 99.09 0.4 

200 0.0002 1814.4 98.21 0.4 

Table 8 - Parameters adopted for cross validation pattern in LucasNNN architecture 

 

Model Epochs 
(E) 

Learning Rate 
(LR) 

Training, 
Validation 
time (s) 

Test time (s) Test 
Accuracy (%) 

 
 
 LucasNNN 
 

400 0.001 382.9 0.1436 99.11 

200 0.001 192.5 0.1376 96 

200 0.005 192.3 0.1388 96.75 

200 0.0002 192.1 0.1466 94.22 

Table 7 - Training, Validation, and Testing's parameter and results of LucasNNN model 
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4.1.1 Training, Validation, and Testing Results 

In this section there are described only the experiments resulting from the train, 

validation and test pattern described in Table 7. 

LucasNNN: 400 epochs, 0.001 learning rate 

From the plots in Figure 28 and Figure 30 in it is possible to see that in the first 

30 epochs the curves have almost reached their steady state values. 

 In both loss and accuracy plots there is no sign of divergency, that means that 

the model is still generalizing and training well avoiding any overfitting, but this was 

inevitable since the parameters are the same with the previous experiment, except 

for the number of epochs which is lower. 

 In general, during the evolution of the curves in the two plots is possible to 

see a spiky behavior, this is because the learning rate is a bit too big, but still the 

training was evolving well. Confusion matrix in Figure 29 is showing good results in 

terms of test accuracy, just a bit of confusion regarding classes 2 and 3 (baked 10 

min and baked 20 min). 

 

Figure 28 - The training validation loss of LucasNNN with E 400 and LR 0.001 
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Figure 29 - Confusion Matrix of a LucasNNN with E 400 LR 0.001 

 

  

 

 

 

Figure 30 - The training validation accuracy of LucasNNN with E 400 and LR 0.001 
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LucasNNN: 200 epochs, 0.001 learning rate 

From the plots in Figure 31 and Figure 33 it is possible to see that in the first 30 

epochs the curves have almost reached their steady state values. 

 In both loss and accuracy plots there is no sign of divergency, that means that 

the model is still generalizing and training well avoiding any overfitting, but this was 

inevitable since the parameters are the same with the previous experiment, except 

for the number of epochs which is lower. 

 In general, during the evolution of the curves in the two plots is possible to see 

a spiky behavior, this is because the learning rate is a bit too big, but still the training 

was evolving well. Confusion matrix in Figure 32 is showing good results in terms of 

test accuracy, just a bit of confusion regarding classes 2 and 3 (baked 10 min and 

baked 20 min). 

 

 

 

Figure 31 - The training validation loss of LucasNNN with E 200 LR 0.001             
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Figure 33 – The training validation accuracy of LucasNNN with E 200 LR 0.001 

 

 

             

 

Figure 32 - Confusion Matrix of a LucasNNN with E 200 LR 0.001 
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LucasNNN: 200 epochs, 0.005 learning rate 

 From the plots in Figure 34 and Figure 36 it is possible to see that in the first 20 

epochs the curves have almost reached their steady state values. 

 In both loss and accuracy plots there is no sign of divergency, that means that 

the model is still generalizing and training well avoiding any overfitting. 

 In general, during the evolution of the curves in the two plots is possible to see 

a spiky behavior, more than the 0.001 case, this is because the learning rate is higher, 

but still the training was evolving well. Confusion matrix in Error! Reference 

source not found. is showing amazing results in terms of test accuracy, just a bit 

of confusion regarding classes 2 and 3 (baked 10 min and baked 20 min). 

 

 

 

 

Figure 34 - The training validation loss of LucasNNN with E 200 LR 0.005  
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Figure 36 – The training validation accuracy of LucasNNN with E 200 LR 0.005 

 

 

             

 

Figure 35 - Confusion Matrix of LucasNNN with E 200 LR 0.005 
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LucasNNN: 200 epochs, 0.0002 learning rate  

 From the plots in Figure 37 and Figure 39 it is possible to see that in the first 50 

epochs the curves have almost reached their steady state values, this number is higher 

as expected from the previous experiments, in fact a lower learning rate means 

smaller steps for the training, so lower learning speed. 

 In accuracy plot there is a slight sign of divergency, but nothing to be worried 

about, the model is still generalizing and training well avoiding any overfitting. 

 In general, during the evolution of the curves in the two plots the smooth 

behavior is associated with the lower learning rate, in fact moving in training with 

smaller steps means also to always move from one relative minimum gradually to 

another, without rough jumps. Confusion matrix in Figure 38 is showing good results 

in terms of test accuracy, bit of confusion regarding classes 2 and 3 (baked 10 min 

and baked 20 min) and regarding classes 1 and 5 (fresh and skin). 

 

 

 

Figure 37 - The training validation loss of LucasNNN with E 200 LR 0.0002 
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Figure 39 – The training validation accuracy of LucasNNN with E 200 LR 0.0002 

 

 

             

 

Figure 38 - Confusion Matrix of a LucasNNN with E 200 LR 0.0002 
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Early Stop 

Since the divergencies were non existing, especially in the case used to test the early 

stop algorithm with a learning rate of 0.001, the training did not stop before the 

assigned number of epochs of 200. 

4.1.2 6-folds Cross-Validation 

In order, Figure 40,Figure 41, and Figure 42, are referred to the following learning 

rate: 0.001, 0.005 and 0.0002. The results are very consistent with a small standard 

deviation and a high mean. That leads to the conclusion that LucasNNN model is in 

general very robust and with a good repeatability. 

   

 

Figure 40 – The cross validation of LucasNNN with E 200 LR 0.001 
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Figure 41 – The cross validation of LucasNNN with E 200 LR 0.005 

 

Figure 42 – The cross validation of LucasNNN with E 200 LR 0.0002 
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4.1.3 Discussion 

From Cross Validation experiments is possible to say that the model in general is very 

robust and reliable to train. Looking at the train, validation and test part is clear that 

the number of epochs could have been also higher than 400 to output even better 

results. The learning rate which seems the best in terms of trade-off between spiky 

curves and speed of training is 0.001. That learning rate also represents the smaller 

standard deviation in the cross-validation experiments. 

 TwoDCNN 

In this introductory section there will be described the results from experiments 

regarding TwoDCNN architecture. A general overview about the combination of 

parameters used for each of the test outcoming from the train, validation and test 

pattern are visible in Error! Reference source not found., while in  

Model Epoch 
(E)  

Learning 
Rate (LR) 

Training, 
Validation time (s) 

Test time (s) Test  
Accuracy (%) 

Model Epoch 
(E)  

Learning 
Rate (LR) 

Training, 
Validation time (s) 

Test time (s) Test  
Accuracy (%) 

TwoDCNN 400 0.001 1292.1 0.7749 98.78 

200 0.001 641.2 0.7679 98.92 

200 0.005 642.1 0.7699 99.17 

200 0.0002 642.1 0.7669 98.58 

 Table 10 - Training, Validation, Testing's parameters from TwoDCNN architecture 

 Model Epochs 
(E)  

Learning Rate 
(LR) 

Cross 
Validation 
time (s) 

Average Test 
Accuracy 

Standard 
deviation test 
Accuracy 

 
 
TwoDCNN 

200 0.001 5549.5 99.01 0.28 

200 0.005 5334.8 99.03 0.37 

200 0.0002 5456.6 98.85 0.37 

Table 9 - Parameters adopted for cross validation pattern in TwoDCNN architecture 

 



 
 

59 
 

TwoDCNN 400 0.001 1292.1 0.7749 98.78 

200 0.001 641.2 0.7679 98.92 

200 0.005 642.1 0.7699 99.17 

200 0.0002 642.1 0.7669 98.58 

 Table 10 presented the parameters used for cross validation pattern. In the next 

two sections there are more in-depth description of the results from the tables 

presented down below, also with references to the related plots. 

4.2.1 Training, Validation, and Testing Results 

In this section there are described only the experiments resulting from the 

train, validation and test pattern described in Table 10 - Training, Validation, Testing's 

parameters from TwoDCNN architectureError! Reference source not found.. 

TwoDCNN:400 epochs, 0.001 learning rate 

 From the plots in Figure 43 and Figure 45 it is possible to see that in the first 30 

epochs the curves have almost reached their steady state values. 

 In both loss and accuracy plots there is no sign of divergency, that means that 

the model is still generalizing and training well avoiding any overfitting. 
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 In general, during the evolution of the curves in the two plots is possible to see 

a spiky behavior, this is because the learning rate is a bit too big, but still the training 

was evolving well. Confusion matrix in Figure 44 is showing amazing results in terms 

 

Figure 43 - The training validation loss of TwoDCNN with E 400 LR 0.001 
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of test accuracy, just a bit of confusion regarding classes 2 and 3 (baked 10 min and 

baked 20 min).  

 

Figure 45 – The training validation accuracy of TwoDCNN with E 400 LR 0.001 

 

 

             

 

Figure 44 - Confusion Matrix of a TwoDCNN with E 400 and LR 0.001 
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TwoDCNN: 200 epochs, 0.001 learning rate 

 From the plots in Figure 46 and Figure 47 it is possible to see that in the first 30 

epochs the curves have almost reached their steady state values. 

 In both loss and accuracy plots there is no sign of divergency, that means that 

the model is still generalizing and training well avoiding any overfitting. This was 

inevitable since the parameters are the same with the previous experiment, except 

for the number of epochs which is lower. 

 In general, during the evolution of the curves in the two plots is possible to see 

a spiky behavior, this is because the learning rate is a bit too big, but still the training 

was evolving well. Confusion matrix in Figure 48 is showing amazing results in terms 

of test accuracy, just a bit of confusion regarding classes 2 and 3 (baked 10 min and 

baked 20 min). 

 

 

Figure 46 - The training validation loss of TwoDCNN with E 200 LR 0.001 
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Figure 47 - The training validation accuracy of TwoDCNN with E 200 LR 0.001 

 

 

Figure 48 –Confusion Matrix of a TwoDCNN with E 200 and LR 0.001 
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TwoDCNN: 200 epochs, 0.005 learning rate  

 From the plots in Figure 49 and Figure 51 it is possible to see that in the first 30 

epochs the curves have almost reached their steady state values. 

 In both loss and accuracy plots there is no sign of divergency, that means that 

the model is still generalizing and training well avoiding any overfitting. 

 In general, during the evolution of the curves in the two plots is possible to see 

a spiky behavior, this is because the learning rate is a bit too big, but still the training 

was evolving well. Confusion matrix in Figure 50 is showing amazing results in terms 

of test accuracy, just a bit of confusion regarding classes 2 and 3 (baked 10 min and 

baked 20 min). 

  

 

Figure 49 - The training and validation loss of TwoDCNN with E 200 LR 0.005 
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Figure 51 - The training and validation accuracy of TwoDCNN with E 200 LR 0.005 

 

 

Figure 50 –Confusion Matrix of a TwoDCNN with E 200 and LR 0.005 
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TwoDCNN: 200 epochs, 0.0002 learning rate  

 From the plots in Figure 52 and Figure 53 it is possible to see that in the first 50 

epochs the curves have almost reached their steady state values, this number is higher 

as expected from the previous experiments, in fact a lower learning rate means 

smaller steps for the training, so lower learning speed. 

 In accuracy plot there is a slight sign of divergency, but nothing to be worried 

about, the model is still generalizing and training well avoiding any overfitting. 

 In general, during the evolution of the curves in the two plots the smooth 

behavior is associated with the lower learning rate, in fact moving in training with 

smaller steps means also to always move from one relative minimum gradually to 

another, without rough jumps. Confusion matrix in Figure 54 is showing good results 

in terms of test accuracy, bit of confusion regarding classes 2 and 3 (baked 10 min 

and baked 20 min) and regarding classes 1 and 5 (fresh and skin). 

  

 

Figure 52 - The training and validation loss of TwoDCNN with E 200 LR 0.0002 
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Figure 54 - Confusion Matrix of a TwoDCNN  E 200 and LR 0.0002 

 

 

Figure 53 – The training validation accuracy of TwoDCNN with E 200 LR 0.0002 
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Early Stop 

There is no sign of divergency between training and validation plot for 200 

epochs. Thus, the early stop algorithm condition is not met. 

4.2.2 6-folds Cross-Validation 

 Figure 55, Figure 56, and Figure 57 are referred to the following learning rate: 

0.001, 0.005 and 0.0002. The results are very consistent with a small standard 

deviation and a high mean. That leads to the conclusion that LucasNNN model is in 

general very robust and with a good repeatability. 

 

 

  

 

Figure 55 – Cross Validation of TwoDCNN with E 200 LR 0.001 
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Figure 56 – Cross Validation TwoDCNN with E 200 LR 0.005 

 

Figure 57 – Cross Validation of TwoDCNN with E 200 LR 0.0002 

 

 

             



 

70 
 

4.2.3 Discussion 

 From Cross Validation experiments is possible to say that the model in general 

is very robust and reliable to train. Looking at the train, validation and test part is 

clear that the number of epochs could have been also higher than 400 to output even 

better results. The learning rate which seems the best in terms of tradeoff between 

spiky curves and speed of training is 0.001. That learning rate also represents the 

smaller standard deviation in the cross-validation experiments. 

 Hu et al. 

In this introductory section there will be described results from experiments 

regarding Hu et al. [10] architecture. A general overview about the combination of 

parameters used for each test outcoming from train, validation, and test pattern is 

visible in Error! Reference source not found., while in Error! Reference 

source not found. are presented the parameters used for cross validation pattern. 

In the next two sections there is a more in-depth description of the results from the 

tables presented down below, also with references to the related plots.   

Model Epoch 
(E)  

Learning 
Rate (LR) 

Training, 
Validation 
time (s) 

Test time (s) Test 
Accuracy (%) 

 
 
Hu et al. [10] 

400 0.001 204.8 0.0728 99.36 

200 0.001 102.2 0.0738 99.53 

200 0.005 102.9 0.0738 99.42 

200 0.0002 102.8 0.0738 98.69 

Table 12 - Training, Validation, Testing's of Hu et al architecture 

 Model Epochs 
(E)  

Learning Rate 
(LR) 

Cross 
Validation 
time (s) 

Average Test 
Accuracy 

Standard 
deviation test 
Accuracy 

 
 
Hu et al. [10] 

200 0.001 954.1 99.21 0.11 

200 0.005 960.1 99.12 0.34 

200 0.0002 5456.6 98.85 0.37 

Table 11 - Parameters adopted for cross validation pattern in Hu et al architecture 
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4.3.1 Training, Validation, and Testing Results 

In this section there are described only the experiments resulting from the train, 

validation and test pattern described in Table 7. 

 

Hu et al. [10]: 400 epochs, 0.001 learning rate 

From the plots in Figure 58 and Figure 60 it is possible to see that in the first 

30 epochs the curves have almost reached their steady state values. 

In both loss and accuracy plots there is no sign of divergency, that means that 

the model is still generalizing and training well avoiding any overfitting. 

In general, during the evolution of the curves in the two plots is possible to see 

a spiky behavior, this is because the learning rate is a bit too big, but still the training 

was evolving well. Confusion matrix in Figure 59 is showing amazing results in 

terms of test accuracy, just a bit of confusion regarding classes 2 and 3 (baked 10 

min and baked 20 min). 

 

 

Figure 58 - The training validation loss of Hu et al. with E 400 LR 0.001 
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Figure 60 – The training validation accuracy of Hu et al. with E 400 LR 0.001 

 

             

 

Figure 59 - Confusion Matrix of a Hu et al. with E 400 LR 0.001 
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Hu et al. [10]: 200 epochs, 0.001 learning rate 

From the plots in Figure 61 and Figure 63 it is possible to see that in the first 30 

epochs the curves have almost reached their steady state values. 

In both loss and accuracy plots there is no sign of divergency, that means that 

the model is still generalizing and training well avoiding any overfitting. This was 

inevitable since the parameters are the same with the previous experiment, except 

for the number of epochs which is lower. 

In general, during the evolution of the curves in the two plots is possible to see 

a spiky behavior, this is because the learning rate is a bit too big, but still the training 

was evolving well. Confusion matrix in Figure 62 is showing amazing results in 

terms of test accuracy, just a bit of confusion regarding classes 2 and 3 (baked 10 

min and baked 20 min). 

 

 

 

Figure 61 - The training validation accuracy of Hu et al. with E 200 LR 0.001 
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Figure 62 - Confusion Matrix of a Hu et al. with E 200 LR 0.001 

 

 

             

 

 

Figure 63 - The training and validation loss of Hu et al. with E 200 LR 0.001 
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Hu et al. [10]: 200 epochs, 0.005 learning rate  

From the plots in Figure 64 and in Figure 66 it is possible to see that in the first 

30 epochs the curves have almost reached their steady state values. 

In both loss and accuracy plots there is no sign of divergency, that means that 

the model is still generalizing and training well avoiding any overfitting. 

In general, during the evolution of the curves in the two plots is possible to see 

a spiky behavior, this is because the learning rate is a bit too big, but still the training 

was evolving well. Confusion matrix in Figure 65 is showing amazing results in 

terms of test accuracy, just a bit of confusion regarding classes 2 and 3 (baked 10 

min and baked 20 min). 

 

 

Figure 64 - The training and validation loss of Hu et al. with E 200 LR 0.005 
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Figure 66 - The training and validation accuracy of Hu et al. E 200 LR 0.005 

 

  

Figure 65 –epochs Confusion Matrix of a Hu et al. with E 200 LR 0.005 
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Hu et al. [10]: 200 epochs, 0.0002 learning rate  

From the plots in Figure 67, and Figure 69 it is possible to see that in the first 

50 epochs the curves have almost reached their steady state values, this number is 

higher as expected from the previous experiments, in fact a lower learning rate 

means smaller steps for the training, so lower learning speed. 

In both loss and accuracy plots there is no sign of divergency, that means that 

the model is still generalizing and training well avoiding any overfitting. 

In general, during the evolution of the curves in the two plots the smooth 

behavior is associated with the lower learning rate, in fact moving in training with 

smaller steps means also to always move from one relative minimum gradually to 

another, without rough jumps. Confusion matrix in Figure 68 is showing amazing 

results in terms of test accuracy, just a bit of confusion regarding classes 2 and 3 

(baked 10 min and baked 20 min).  

 

Figure 67 - The training and validation loss of Hu et al. with E 200 LR 0.0002 

 

 

             



 

78 
 

  

 

Figure 68 - Confusion Matrix of a Hu et al. with E 200 LR 0.0002 

 

 

Figure 69 – The training and validation accuracy of Hu et al. with E 200 LR 0.0002 
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4.3.2 6-folds Cross-Validation 

Figure 70, Figure 71, and Figure 72 are referred to the following learning rate: 

0.001, 0.005 and 0.0002. The results are very consistent with a small standard 

deviation and a high mean. That leads to the conclusion that Hu et al. [10] model is 

in general very robust and with a good repeatability. 

  

 

Figure 70 – Cross Validation of Hu et al. with E 200 LR 0.001 
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Figure 71 - Cross Validation of Hu et al. with E 200 LR 0.005 

 

Figure 72 – Cross Validation of Hu et al. with E 200 LR 0.0002 
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4.3.3 Discussion 

From Cross Validation experiments is possible to say that the model in general 

is very robust and reliable to train. Looking at the train, validation and test part is 

clear that the number of epochs could have been also higher than 400 to output even 

better results. The learning rate which seems the best in terms of tradeoff between 

spiky curves and speed of training is 0.001. That learning rate also represents the 

smaller standard deviation in the cross-validation experiments. 

 FCNet 

In this introductory section there will be described results from experiments 

regarding FCNet architecture. A general overview about the combination of 

parameters used for each test from train, validation and test pattern is visible in 

Table 13, while in Error! Reference source not found. are presented the 

parameters used for cross validation pattern. In the next two sections there is a more 

Model Epoch 
(E)  

Learning 
Rate (LR) 

Training, 
Validation 
time (s) 

Test time 
(s) 

Test Accuracy 
(%) 

 
 
FCNet 

400 0.001 205.5 0.1097 97.08 

200 0.001 101.5 0.072 94.83 

200 0.005 104.5 0.0652 87.29 

200 0.0002 167.7 0.1287 97.05 

120 
(ESA) 

0.001 63.9 0.0668 96.85 

Table 13 - Training, Validation, Testing's of FCNet models 

 
Model Epoch 

(E)  
Learning 
Rate (LR) 

Cross 
Validation 
time (s) 

Average 
test 
accuracy 

Standard 
deviation test 
accuracy 

 
 
FCNet 

200 0.001 848,1 97,74 1,27 

200 0.005 852,7 97,46 0,7 

200 0.0002 848,6 97,6 0,75 

Table 14 - Cross Validation results from FCNet models 
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in-depth description of the results from the tables presented down below, also with 

references to the related plots. 

4.4.1 Training, Validation, and Testing Results 

In this section there are described only the experiments resulting from the 

train, validation and test pattern described in Table 13Error! Reference source 

not found.. 

FCNet: 400 epochs, 0.001 learning rate 

From the plots in Figure 73 and Figure 74 it is possible to see that in the first 30 

epochs the curves have almost reached their steady state values. 

In both loss and accuracy plots there are clear signs of divergency, especially 

around epoch 120, that means that the model is not generalizing well but is trying 

just to imitate the behavior of the training dataset, resulting in overfitting.  

In general, during the evolution of the curves in the two plots is possible to see 

a spiky behavior, this is because the learning rate is a bit too big, but still the training 

was evolving well. Confusion matrix in Figure 75 is showing good results in terms of 

 

Figure 73 - The training and validation loss of FCNet with E 400 LR 0.001 
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test accuracy, just a bit of confusion regarding classes 2 and 3 (baked 10 min and 

baked 20 min). 

 

 

Figure 74 – The training and validation accuracy of FCNet with E 400 LR 0.001 
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FCNet: 200 epochs, 0.001 learning rate 

From the plots in Figure 76 and Figure 77 it is possible to see that in the first 30 

epochs the curves have almost reached their steady state values. 

In both loss and accuracy plots there are clear signs of divergency, especially 

around epoch 120, that means that the model is not generalizing well but is trying 

just to imitate the behavior of the training dataset, resulting in overfitting.  

In general, during the evolution of the curves in the two plots is possible to see 

a spiky behavior, this is because the learning rate is a bit too big, but still the training 

was evolving well. Confusion matrix in Figure 78 is showing good results in terms of 

test accuracy, a bit of confusion regarding classes 2 and 3 (baked 10 min and baked 

20 min), more than the 400 epochs case. 

  

 

Figure 76 - The training and validation loss of FCNet with E 200 LR 0.001 

 

 

             

 

Figure 75 - Confusion Matrix of a FCNet with E 400 LR 0.001 
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Figure 78 - Confusion Matrix of a FCNet with E 200 and LR 0.001 

 

 

Figure 77 – The training and validation accuracy of FCNet with E 200 LR 0.001 
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FCNet: 200 epochs, 0.005 learning rate  

From the plots in Figure 79 and Figure 80 it is possible to see that in the first 

20 epochs the curves have almost reached their steady state values, so faster than 

the 0.001 learning rate case. 

In both loss and accuracy plots there are signs of divergency, especially around 

epoch 160, that means that the model is not generalizing well but is trying just to 

imitate the behavior of the training dataset, resulting in overfitting.  

In general, during the evolution of the curves in the two plots is possible to see 

a very spiky behavior, this is because the learning rate is too big, but still the training 

was evolving well. Confusion matrix in Figure 81 is showing decent results in terms 

of test accuracy, confusion regarding classes 2 and 3 (baked 10 min and baked 20 

min) and classes 1 and 5 (fresh and skin). 

  

 

Figure 79 - The training and validation loss of FCNet with E 200 and LR 0.005 
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Figure 81 - Confusion Matrix of a FCNet with E 200 and LR 0.005 

 

 

Figure 80 – The training and validation accuracy of FCNet with E 200 and LR 0.005 
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FCNet: 200 epochs, 0.0002 learning rate  

From the plots in Figure 82 and Figure 84 it is possible to see that in the first 

100 and 50 epochs the curves have almost reached their steady state values, so way 

slower with respect to the previous cases, this is due to the small learning rate value. 

In both loss and accuracy plots there is no sign of divergency, that means that 

the model is generalizing well, no overfitting is occurring.  

In general, during the evolution of the curves in the two plots is possible to see 

a very smooth behavior, this is because the learning rate is very small, the training 

was evolving well better than the other cases. Confusion matrix in Figure 83 is 

showing the best results in terms of test accuracy, just a small confusion regarding 

classes 2 and 3 (baked 10 min and baked 20 min). 

 

  

 

Figure 82 - The training and validation loss of FCNet with E 200 and LR 0.0002 
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Figure 83 - Confusion Matrix of a FCNet with E 200 and LR 0.0002 

 

 

Figure 84 – The training and validation accuracy of FCNet with E 200 and LR 0.0002 
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4.4.2 6-folds Cross-Validation 

In order, Figure 85, Figure 86 and Figure 87 are referred to the following learning 

rate: 0.001, 0.005 and 0.0002. The results are very consistent with a low standard 

deviation, and a high mean. The standard deviation in general is higher than the other 

models, that shows that this model is slightly less robust than the others. That leads 

to the conclusion that LucasNNN model is in general very robust and with a good 

repeatability. 

 

  

  

 

Figure 85 – Cross Validation of FCNet with E 200 and LR 0.001 
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Figure 86 – Cross Validation of FCNet with E 200 and LR 0.005 

 

Figure 87 – Cross Validation of FCNet with E 200 and LR 0.0002 
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Early Stop 

In this model, early stop algorithm stops earlier the training preventing from the 

divergencies visible in Figure 88 and Figure 90. The training is stopped at epoch 120, 

the experiment is done with an initial number of epochs set to 200 and a learning 

rate equals to 0.001. The results available in Figure 89 show better accuracy than the 

experiment with the same parameters but with the early stop algorithm disabled.  

 

Figure 88 – The training stops at E 120 for FCNet due to early stop algorithm 
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Figure 90 - The training stops at E 120 for FCNet due to early stop algorithm  

 

 

Figure 89 –Confusion Matrix of a FCNet that stop at E 120 due to early stop 
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4.4.3 Discussion 

From Cross Validation experiments is possible to say that the model in general 

is very robust and reliable to train. Looking at the train, validation and test part is 

clear that the number of epochs could have been also higher than 400 to output even 

better results. The learning rate which seems the best in terms of tradeoff between 

spiky curves and speed of training is 0.001. That learning rate also represents the 

smaller standard deviation in the cross-validation experiments. 

 Comparison between models 

 From the experiments conducted in the previous sub-chapters, some 

comparison can be discussed. First, all the train-validation time’s experiments for 

each model with 200 epochs is averaged.  It is shown that FCNet results the fastest 

train-validation time, followed by Hu et al, LucasNNN, and TwoDCNN. However, 

from the related average of the test accuracy, it is interesting to note that FCNet 

performed the worst. Model that is relatively fast to train, but has the highest 

accuracy on the test data is Hu et al. On the other hand, even though TwoDCNN has 

the second highest accuracy on the test data, it is taking significantly long to train 

compared to other models. While for LucasNNN is moderate both in training time 

and test accuracy. 

 As the generalization performance, it can be deducted from the cross-

validation results. First, it is important to note that all LucasNNN, TwoDCNN, and 

Hu et al models almost have similar average accuracy for the cross validation, while 

FCNet has the lowest accuracy. Moreover, FCNet also performed worst in average 

cross validation standard deviation, while for the other three are almost the same. 

However, FCNet is the fastest to train compare the other model. While for 

TwoDCNN, is again also the longest time to train.  
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Figure 92 –Average Accuracy of the test for each model with E 200 

 

 

             

 

Figure 91 –Average train-validation processing time for each model with E 200 
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Figure 94 –Average CV accuracy for each model with E 200 

 

 

             

 

Figure 93 –Average Standard Deviation for each model with E 200 
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 Finally, all the trained weights from the best combination were tested to create 

an intuitive false color image to show the classification results as can be seen from 

Figure 96. Here one big point raised, in fact it seems that apart from FCNet, all the 

other models confuse some part of the background with burnt class. The images are 

taken from the outputs of weights coming from a training with a balanced dataset. 

Balanced dataset for this work means that if the class with less samples has N 

samples, than all the other classes must have at maximum 300% of N samples inside 

the dataset used for training, for simplicity referred as “300” spc (sample per class) 

value. Thus, a new experiment is done using more spc and the results can be seen 

from Figure 97. By considerably increasing the spc, way better results appear from 

all the models.  

 

Figure 95 –Average training time for each model with E 200 
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Figure 96 - Classification results using spc = 300: A) False color image from FX17; B) 
FCnet; C) LucasNNN; D) Huetal; E) 2DCNN 

 

Figure 97  - Classification results using spc = 700: A) False color image from FX17; B) 
FCnet; C) LucasNNN; D) Huetal; E) 2DCNN 
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5. Conclusions 

This Master Thesis project achieved these important milestones in the 

application of Hyperspectral Imaging and Deep Learning for performing Food 

Quality investigations. 

 

1. All the tested networks show very good performance for the semantic 

segmentation task for automatic food quality inspection with accuracy all 

above 90%. Furthermore, the result from 6-Fold Cross-Validation confirms 

also that all the neural networks are robust to different random dataset.  

2. In more detail, Hu et al. [10] performed best with average accuracy for the 

test at 99.25%. It means that statistically speaking, not a single pixel from 

100 pixels in semantic segmentation task is misclassified. Furthermore, the 

FCNet, which is the worst model, still performed good for industrial 

application, with average test accuracy at 94%. Only six misclassified pixels 

out of 100 possible pixels. This is a good result for food quality inspection, as 

almost impossible for the algorithm to miss an eggplant that has the bad 

region, because it must be taken at least dozens of pixels. 

3. Moreover, the generalization performance of the models is also good. The 6-

Fold Cross Validation results shows that the model is robust for randomly 

selected eggplants pixel. Moreover, it is hard to come across significant 

differences between LucasNNN, TwoDCNN, and FCNet models. All are having 

average CV accuracy around 98% with standard deviation around 0.3. Not 

more than two pixels on about 100 pixels in semantic segmentation task are 

misclassified. However, once again FCNet model underperformed compared 

to the other models with accuracy at 96.62% and standard deviation at 2.4%.  

 

There is some suggestion for the next research for this thesis topic: 

1. Upgrade the GT creation program such that it is possible to select multiple 

areas related to the same class from a single picture, or even better multiple 

areas from different classes from the same picture. 
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2. Upgrade the program into real time GT classification. 

3. Increase the semantic segmentation with other possible useful classes (such 

as rotten eggplants). 

4. Converts the programs from Pytorch to Tensorflow because it is used more for 

industrial application and has better deep learning packages (i.e., the cross 

validation is less hard coded). 

 Finally, it is reasonable to say that Hyperspectral Image Systems with the 

combination of Deep Learning algorithm result in really good performance for 

food industry sorting application. Moreover, it is also proud to say that this master 

thesis has provided very good tools to analysis the HSI data, since the creation of 

the ground truth until the testing of the model. Hence, the next researcher can 

focus more with the data analysis rather than building the program from scratch. 
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Appendix 

All the tools described in this section are developed in Python, the list of programs 

strictly related to this work are: tvt_tool, kfold_cv_tool, play_with_data, 

spectra_plotter, false_color and normalization_tool. 

 

Tvt_tool 

This code aims to train the model chosen by the user following the classic 

machine learning training workflow: training, validation, testing. 

 

Inputs  

 

• Input Dataset (Data and GT in .mat) 

• Model to train 

• Hyperparameters (number of epochs, batch size, learning rate, weight 

decay, number of samples per class) 

• Bands to take into account 

• Percentages to split the dataset (train, validation, test percentages) 

• Classes to do not take into account 

• Save the weights (True/False) 

• Use an Early Stop Algorithm (True/False) 

• Use a scheduler to dynamically change the learning rate (True/False, set 

the weight decay) 

 

Outputs 

 

• Plot with the Average Training and Validation Accuracy 
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• Plot with the Average Training and Validation Loss 

• Confusion Matrix (referred to the results from testing) 

• Time occurred to train/validate the NN 

• Time Occurred to test the NN 

• Testing Accuracy 

• NN model with the weights trained up to last epoch 

 

Kfold_cv_tool 

This code aims to validate both the dataset and the training model, it tests the 

reliability of the results through a k-fold Cross Validation algorithm. It only trains 

and tests the NN. 

 

Inputs  

 

• Input Dataset (Data and GT in .mat) 

• Model to train 

• Hyperparameters (number of epochs, batch size, learning rate, weight 

decay, number of samples per class) 

• Bands to take into account 

• Classes to do not take into account 

• Select K, so how many folds to use to apply the K-fold Cross Validation 

technique 

• Use a scheduler to dynamically change the learning rate (True/False, set 

the weight decay) 

 

Outputs 

 

• Plot with the final Training and Testing Accuracy values from each of the K 

training processes 

• Average Testing Accuracy between the accuracies resulting from the k training 

processes 
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• Standard Deviation Testing Accuracy between the accuracies resulting from the 

k training processes 

• Time occurred for the whole k-Fold cross validation process 

 

Play_with_data 

This code aims to create the ground truth necessary to train model, the user 

needs to create two folders first. In one folder are saved the png images, in the other 

one are saved the corresponding mat files. 

 

Inputs  

 

• Directory to the folder containing png images 

• Directory to the folder containing mat files 

 

Outputs 

 

• Mat file containing a list of spectra 

• Mat file containing a list of integers, each integer represents the class of the 

spectrum in the corresponding position in the previous mat file 

 

Spectra_plotter 

This code aims to plot the spectra of different classes in a 2-dim graph, x-axis 

represents the frequencies while y-axis represents the intensities. Each line is not a 

single spectrum but the mean of all the spectra considered for that class, in 

transparency is also represented the standard deviation. 

 

Inputs  

 

• Data and ground truth 

• Classes whose spectra should be plotted 



Appendix B 

107 
 

• Frequencies to do not consider when plotting the spectra 

 

Outputs 

 

• Graph with the spectra in terms of mean and standard deviation 

 

Normalization_tool 

This code aims to preprocess the data normalizing them with the following 

formula (I - Ib)/(Iw - Ib). 

 

Inputs  

 

• Mat file with inside: white ref, black ref, hyperspectral data 

 

Outputs 

 

• Mat file containing just the normalized hyperspectral data 

 


