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Abstract

The Red Planet has been on top in the priority list of interplanetary exploration of the
solar system. The Mars exploration landers and rovers have laid the foundation of our
understanding of the planet atmosphere and terrain. Although the rovers have been a
great help, they also have limitations in terms of their speed and exploration capabilities
from the ground. Robotic planetary aerial vehicles increase the range of terrain that can
be examined, compared to traditional landers and rovers, and have more near-surface ca-
pability than orbiters. Aerial mobility is a promising possibility for planetary exploration
as it reduces the challenges that difficult obstacles pose to ground vehicles. The Ingenu-
ity Mars helicopter has been designed by NASA’s Jet Propulsion Laboratory to test the
technical demonstration of aerial flight in the thin atmosphere of Mars. The first purpose
of this thesis is to replicate Mars helicopter dynamics, building a simplified mathemat-
ical model suitable for control design based on available literature about Ingenuity and
existing approaches for the modeling of small terrestrial coaxial helicopters. The second
aim of this project is to develop a nonlinear control law to improve the operative range
of this kind of UAVs with respect to existing control designs, which are mostly based on
linear control approaches. The thesis starts with a brief introduction to the challenges
encountered by the development of a Mars helicopter and then proceeds with an overview
of the design of Ingenuity aiming to investigate its main components and to highlight its
working principles. In the second chapter, the procedure developed to obtain a sufficiently
accurate nonlinear model of the Mars helicopter, which mixes first-principle modeling and
identification experiments, is discussed. In the third chapter, the control system is devel-
oped starting with the presentation of the baseline control architecture implemented in
Ingenuity and following with the development of the proposed nonlinear controller. The
results of numerical simulations are shown in the last chapter underling the benefits de-
rived from the implementation of a nonlinear control system when the helicopter operates
far from its hovering point.
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Abstract in lingua italiana

Marte è da sempre in cima alla lista di priorità per l’esplorazione interplanetaria del nos-
tro sistema solare. I lander e i rover per l’esplorazione di Marte hanno gettato le basi per
la nostra comprensione dell’atmosfera e della superficie del pianeta. Sebbene i rover siano
stati di grande aiuto, essi hanno limitazioni in termini di velocità e di capacità esplo-
rativa. L’introduzione di veivoli per l’esplorazione marziana aumenterebbe la portata del
terreno che può essere esaminata rispetto ai tradizionali rover, dando allo stesso tempo
la possibilità di osservare più da vicino, e di conseguenza più nel dettaglio, la superficie
di un pianeta rispetto a un satellite orbitale. Lo sviluppo di droni capaci di volare al
di fuori dell’atmosfera terrestre rappresenterebbe perciò una possibilità promettente per
migliorare l’esplorazione planetaria e permetterebbe di ridurre le sfide correlate alla pre-
senza di ostacoli del terreno. L’elicottero Ingenuity è stato progettato dal Jet Propulsion
Laboratory della NASA per testare il volo aereo nella sottile atmosfera di Marte. Il primo
scopo di questa tesi è quello di replicare la dinamica dell’elicottero marziano, costruendo
un modello matematico semplificato adatto al design di controllo basato sulla letteratura
disponibile su Ingenuity e sugli approcci esistenti per la modellazione di piccoli elicotteri
terrestri a rotori coassiali. Il secondo obiettivo di questo progetto è sviluppare una legge
di controllo non lineare per migliorare il range operativo di questo tipo di UAV rispetto
a design di controllo già esistenti, i quali per la maggior parte sono basati su approcci
di controllo lineare. La tesi inizia con una breve introduzione sulle sfide incontrate nello
sviluppo di un elicottero marziano e con una descrizione generale del design di Ingenu-
ity con l’obiettivo di identificarne i componenti principali e di evidenziarne i principi di
funzionamento. Nel secondo capitolo, è discussa la procedura sviluppata per ottenere un
modello non lineare sufficientemente accurato dell’ elicottero marziano, basandosi su una
modellazione di primo principio e su esperimenti identificativi. Nel terzo capitolo, il sis-
tema di controllo viene sviluppato a partire dall’ architettura di controllo implementata
da Ingenuity e a seguire dallo sviluppo del controllore non lineare proposto. I risultati
delle simulazioni numeriche effettuate sono mostrate nell’ultimo capitolo sottolineando i
benefici che derivano dall’implementazione di un sistema di controllo non lineare quando
l’elicottero opera lontano dal suo punto di equilibrio.



Parole chiave: Ingenuity, Marte, elicottero, UAV, dinamica, controllo
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Introduction

The idea of exploration fulfils human curiosity in order to find answers to the science
mysteries present in the Universe.
The question that has been pursued over many years now is: how did life evolve in our
solar system, and other than Earth where else life could have existed in the early days
of our solar system formation? These questions lead us to identifying the habitable zone
of our solar system and the planets that fall under this habitable zone. Earth and Mars
are prime candidates for satisfying the criteria defined to be in the habitable zone of the
solar system.
For many years now we have been sending unmanned robotic probes, orbiters, landers
and rovers to the red planet Mars in order to understand its composition, atmosphere,
geology etc. There have been over 45 missions that were targeted to Mars by collective
effort from different space agencies from around the world.
The unmanned robotic missions are great at exploring the Red Planet while also surviving
the harsh atmosphere environment and radiation dose. The robotic exploration has paved
the way for humanity to research technology that supports human settlement on Mars.
The rovers Spirit and Opportunity have led a foundation for developing technology to
send robust and autonomous systems to conduct experiments on Mars.
The orbiters have mapped the surface of the planet with great detail that helps space
agencies in selecting landing sites of future missions in order to define mission objectives,
and also to have knowledge about the environment in which the lander or rover will be
performing experiments. The orbiters like Mars Reconnaissance Orbiter (MRO) and Mars
Express have mapped the interesting regions of the planet like Volcanoes, Canyons and
polar ice caps. Even after using the best quality Hires Images from MRO, the surface has
only been mapped with resolution of about 20 m per pixel.
For this purpose the rovers have been designed and sent to Mars in order to partially fill
the data gaps from the orbiters. The rovers have been successful in doing onsite research
about mineral composition of rocks and soil, atmospheric studies along with sending
beautiful panoramic mosaics of the red planet.
The problem is that the rovers are still limited by their ability to move quickly from one
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site to another site of interest in order to conduct science experiments.

A. Motivation

The limitation posed by ground based exploration vehicles are a constraint to going fur-
ther on the Red Planet. In order to overcome this limitation, the idea of aerial exploration
has been considered for many years and many methods have been proposed to go a step
further by changing the mode of exploration.
Aerial exploration is great at moving from point A to point B without considerations
about the terrain and ground obstacles. Aerial exploration also allows for movement at
higher speeds from one site to another site of interest.
There have been many ideas and theories that propose modes of transport that consider
flying or hovering vehicles.
Among many projects considered for developing multi rotor systems to fly on Mars, the
project that has been an inspiration to this master thesis is the Ingenuity Mars helicopter
project.
The Mars helicopter is a small, lightweight helicopter that has been designed and tested
by NASA’s Jet Propulsion Laboratory in a simulated environment that represent atmo-
sphere, density, pressure and gravity in Mars-like conditions.
The technological demonstration about making the first powered flight in the Mars at-
mosphere from the Ingenuity helicopter builds a foundation the development autonomous
control for rotorcrafts for space purposes and also lead to a significant amount of re-
search in order to develop thin airfoil aerodynamics analysis that focuses on low Reynolds
number flow.

B. Challenges of Mars helicopter flight

Like any spacecraft or spacecraft instrument, a helicopter designed for Mars faces a host
of challenging requirements not typically seen on Earth: it must withstand high struc-
tural loads during launch, extreme temperature variations, high levels of radiation, and
be vacuum compatible; it must satisfy contamination requirements related to planetary
protection; and it must operate entirely without physical intervention after launch. It
must also be compact and safely deployable after landing.
In this work, the most important set of challenges taken under consideration are those
related to the flight dynamics of the vehicle when operating in the Martian environment,
and how these affect the mechanical design of the vehicle and the flight control algorithms.
Two aspects of the environment are primary drivers for the flight dynamics of a helicopter
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on Mars:

1. The Martian atmosphere consists primarily of carbon dioxide (CO2) at only 1− 2%

of Earth’s atmospheric density at sea level, which is equivalent to altitudes around
100.000 ft on Earth.

2. The Martian gravity is approximately 38% of Earth’s gravity.

The most obvious effect of the reduced density is a reduction in lift capability for any
given rotor.
The reduced gravity, although helpful, does not nearly make up for this reduction in lift.
Beyond this, the Martian environment also influences the helicopter flight dynamics in
less obvious but highly consequential ways, which ultimately influence both the design of
the helicopter itself and the algorithms used to control it.
Designing a helicopter for Mars also presents serious challenges in terms of testing, ver-
ification, and validation. It is not possible to fully replicate the Mars environment on
Earth; this forces a greater reliance on analysis, modeling, and simulation, combined with
limited testing in partially replicated environments.

C. Contributions of thesis

This master thesis focuses on the flight dynamics and control design of the Mars Heli-
copter; in particular, the following factors are covered specifically:

1. The derivation of a nonlinear dynamic model of the Mars Helicopter suitable for
simulation purposes and the preliminary validation of nonlinear control laws by
combining first-principle modeling and relying on data found in Ingenuity’s scientific
papers and adapting existing mathematical models of terrestrial coaxial helicopters
similar in structure, actuation and control.

2. The derivation of a suitable nonlinear control-oriented model that accounts for the
main nonlinear effects, in particular those associated with the rigid body kinematics
and the input coupling.

3. The design of a nonlinear control system, choosing a proper control architecture,
designing P/PID controllers and simulating the model in SIMULINK to follow au-
tonomously different trajectories.

The thesis is structured as presented here:

• In the first chapter, a brief introduction to the design of Ingenuity is presented
aiming to investigate its main components and to highlight its working principles.
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• In the second chapter, the procedure developed to obtain a sufficiently accurate
nonlinear model of the Mars helicopter, which mixes first-principle modeling and
identification experiments, is discussed giving particular attention to rotor dynamics.

• In the third chapter, the control system is developed starting with the presentation
of the baseline control architecture implemented in Ingenuity and following with the
development of the proposed nonlinear controller.

• In the fourth chapter, the nonlinear control law adopted has been tested carrying
out numerical simulations of the system underling the difference with the baseline
control architecture and verifying the performances of the controller for complex
trajectories.

• In the last part some conclusions are derived from the presented analysis and a
proposal for further developments is explained.
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1| Vehicle overview

Before modelling the flight dynamics of the vehicle, it is necessary first to have a detail
description of the components of the Mars Helicopter and a clear knowledge of how it
works.
Ingenuity is a small robotic coaxial rotor helicopter operating on Mars as part of NASA’s
Mars 2020 mission along with the Perseverance rover.
Its rotors measure 1.21 m and its entire body is 0.49 m tall, with a dry mass of 1.8 kg [2].
The helicopter is built around a central mast - a hollow structural tube that runs from the
top of the helicopter to the bottom. Within this tube are the wires from the Electronics
Core Module (ECM) to the propulsion motor and servo elements, as well as to the host
spacecraft.
The mast tube is designed to be stiff so as to minimize control interactions, as well as
have low thermal conductivity to minimize thermal leakage into the ECM.
Attached to the mast are (ordered from top to bottom):

1. Upper Launch Lock: this attaches the helicopter to the host spacecraft prior to
deployment onto the surface. Attached to the launch lock are deployment devices,
wires to provide power and communications prior to deployment, and separation
connectors to cleanly disconnect electrical lines upon deployment.

2. Solar Panel: the solar panel is made from Inverted Metamorphic (IMM4J) cells
from SolAero Technologies. The cells are optimized for the Mars solar spectrum and
occupy a rectangular area with 680 cm2 of substrate (544 cm2 active cell area) in a
region centered and immediately above the co-axial rotors. It provides the recharge
of the batteries and minimally interferes with the flow through the rotor.

3. Upper & Lower Rotors: the rotor hubs are attached to the mast and includes
the various non-rotating elements such as the servos, the non-rotating portion of
the swashplate, the rotor windings, and the rotor power electronics.

4. Landing Gear Mounting Plate: this consists of a plate to which are connected
four light-weight legs.
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5. Fuselage - Warm Electronics Box: the fuselage consists of a very lightweight
structural frame to hold the thermal skin of the helicopter, and the 30 mm gap
insulation between the skin and the ECM.

6. ECM Assembly: the ECM is mounted onto the mast and consists of the battery,
the Battery Interface Board (BIB), and electronics circuits board for the avionics.

7. Upper Sensor Assembly: this consists of an inclinometer, IMU and associated
vibration isolation elements mounted on the mast as close to the center-of-mass of
the vehicle (to minimize the effects of angular rates and accelerations). The Lower
Sensor Assembly (consisting of an altimeter, cameras and a secondary IMU) is
mounted directly onto the ECM and not onto the mast.

8. Lower Launch Lock: this holds the helicopter to the host spacecraft on the other
end prior to deployment.

The final design is represented in Fig. 1.1 and some of its features are now discussed in
more detail.

Figure 1.1: Ingenuity 3D model
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1.1. Rotor system

The Mars Helicopter design features a coaxial rotor with two counter-rotating hingeless
two-bladed rotors measuring 1.21 m in diameter, which are spaced apart by approximately
8% of the rotor diameter. The coaxial rotor configuration was chosen early on, with
accommodation constraints on the host spacecraft as the main driver.
The rotor system provides lift for the helicopter as well as forces required for the directional
control of its trajectory.
There are swashplates on both the upper and lower rotor, each with collective and cyclic
control. The collective angle can range from −4.5◦ to 17.5◦ and the cyclic angle has a
range of ±10◦.
The maximum rotation rate for the rotors is 2800 rpm. The speed is fixed for the duration
of flight, depending primarily on the atmospheric density.
Seals around bearings and a soft boot around the swashplate assembly mitigate against
dust in the Mars atmosphere.
Actuator power electronics are co-located with each actuator, and the motors self-heat
before flight.
The rotors are actuated with a custom 46 pole brushless motor with solenoid wound teeth
using rectangular copper wire.
Three Maxon brushed DC motors (DCX10) operating through a 4-stage gear-box control
the height and tilt of each swashplate. Chinese weights provide a restoring force on the
blade moments when under centrifugal loads thereby reducing the torque requirements
on the swashplate actuators.
The rotor is shown in Fig. 1.2 and is fabricated from carbon fiber composites for most of
the primary structure.
In Table 1.1, the numerical values of some key Ingenuity rotor parameters are reported.

Parameter Physical meaning

Nb = 2 Number of blades per rotor
llow = 0.09 m Distance of the lower rotor hub from Ingenuity CG
R = 0.605 m Rotor disk radius

A = 1.150 m2 Rotor disk area

Ω ≈ 272 rad/s Rotational Speed of Rotor (at atmospheric density, ρ = 0.0175 kg/m3)

σ = 0.148 Rotor Solidity

Table 1.1: Rotor parameters [6]
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Figure 1.2: Ingenuity rotor system

1.1.1. Rotor blades

The low density Martian atmosphere and the relatively small Mars Helicopter rotors re-
sult in very low chord-based Reynolds number flows over a range of Rec ≈ 103 to 104.
Furthermore, the low density and low Reynolds number reduce the lifting force and lifting
efficiency, respectively, which are only marginally compensated by a lower gravitational
acceleration.
In addition, the low temperature and largely CO2 based atmosphere result in a low speed
of sound, further constraining rotor operation in the Martian atmosphere by increasing
compressibility effects.
All these issues represented a great challenge in the selection of proper airfoil sections for
the rotor blades.
A series of thin laminar flow airfoils was developed for the extremely low Reynolds number
operating conditions experienced by the Mars Helicopter rotor.
The CLF5605 airfoil used for the outboard portion of the blade was based on an airfoil
used on other propellers designed by Aerovironment, with the camber line modified for
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operation at higher lift coefficients (see Figs. 1.3 and 1.4) [10].

Figure 1.3: The CLF5605 airfoil cross section at 3/4-span

Figure 1.4: The blade planform

Section thickness was based on structural requirements: minimizing thickness reduces
section profile drag which leads to corresponding performance benefits, but the unusually
high first flapping frequency required for stable flight drove the design to a minimum
thickness of 5% for the outboard sections and the airfoils inboard of r/R = 0.52 increase
in thickness to the round interface tube at the root.
The high first flapping frequency is caused by the low density atmospheric condition af-
fecting the dynamics of blade flapping: the rotating blade acts as a mass-spring-damper
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system, where the predominant source of damping is aerodynamic – as the blades move
up and down, the angle of attack changes in such a way as to generate forces opposing the
flap motion. However, because the low atmospheric density on Mars cannot be matched
by a corresponding reduction in blade inertia, the relative damping of the flap mode is
approximately an order of magnitude lower for the Mars Helicopter than for a typical
Earth helicopter.
The reduced damping affects the helicopter dynamics in multiple ways, one of which is
to introduce poorly damped, oscillatory regressing and advancing flap modes that couple
with the body of the helicopter. This is a potential issue for flight control, because a
high-bandwidth attitude controller can potentially interact with and amplify the oscilla-
tory modes, thereby destabilizing the system.
This issue is solved by making the rotor blades extremely stiff, thus driving the flap modes
to high enough frequencies that interference with the control system is no longer an issue.
Requirements on blade stiffness were designed with the purpose of ensuring a regressing
flap mode frequency of at least 30 Hz. For the flight design, the non-rotating flap fre-
quency can be estimated at approximately 65−70 Hz, which ensures that the requirement
is met.
In Table 1.2, the numerical values of some key parameters for Ingenuity rotor blades are
listed.

Parameter Physical meaning

mbl = 0.043 kg Mass of each blade

Jβ = 0.005 kg ·m2 Moment of inertia of each blade

γ = 0.33 Blade lock number

e = 0.05 m Effective hinge offset

Table 1.2: Blade parameters [2]
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1.2. Landing gear system

The Mars helicopter landing gear system is designed to accommodate a wide range of
dynamic landing conditions and surface features (see Fig. 1.5).
A large footprint with a side length of 577 mm provides a stable base for the helicopter
and reduces risk of tip-over.
Rigid, lightweight, composite landing legs and feet with high resonant frequencies ensure
that the landing gear modes do not interact with the control system. The four landing
gear legs are attached to a molded composite interface plate, which is bonded to the main
helicopter mast.
Latching deployment hinges at the top of the legs allow the landing gear system to be
folded and released from the stowed state required for rover accommodation.

Figure 1.5: Mars Helicopter Landing gear system

Expected landing velocities up to 2 m/s are arrested by a titanium flexure at the root of
each landing leg, which can deflect as much as 15◦ to provide an effective vertical stroke
of 92 mm. An opposing flexure of 1100-series annealed aluminum deforms plastically
to provide a lightweight damping solution that is largely independent of temperature or
atmospheric pressure (see Fig. 1.6).
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Figure 1.6: Landing gear deployment hinge and flexure/damper mechanism

1.2.1. Take-off and landing phases

Take-off and landing are the most critical phases of flight.

1. Take-off : during the initial takeoff, a constant thrust setting is applied, correspond-
ing to a level approximately 20% above the vehicle weight. The purpose of this is
to effect a quick separation of the legs from the ground.
Full six-degree-of-freedom (6-DOF) control is not applied during this phase, since
the legs are initially in contact with the ground; however, limited control is applied
to reduce the angular rates of the vehicle.
The initial takeoff phase lasts only a short time; once the vehicle has climbed 5 cm,
or a 4 s timeout has been reached, full control is enabled. From this point on until
the end of the flight, the control system tracks a reference trajectory for position,
velocity, attitude, and angular rates provided by the guidance subsystem.

2. Landing: on landing, updates from the LRF and camera are again turned off when
the vehicle is an estimated 1 m away from ground contact.
When the vehicle is an estimated 0 : 5 m away from ground contact, touchdown
detection is enabled. Touchdown detection is based on monitoring the vertical
velocity control error, to determine whether the landing gear has made contact with
the ground. When the control error exceeds a given threshold, indicating that the
vehicle is unable to continue along its downward trajectory, all control is disabled
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and the collective is set to the minimum value of −4.5◦ on both rotors.

Figure 1.7: Illustration of take-off and landing sequences

1.3. Thermal system

The helicopter must survive the cold of the night on Mars where temperatures can drop
to −100◦C or lower.
The most critical component is the battery which is kept above −15◦C through the night
as it powers Kapton film heaters attached to the battery cells.
The avionics boards in the ECM surround the battery and are also kept at an elevated
temperature by virtue of their proximity to the warm battery assembly.
Insulation around the avionics boards is provided by a carbon-dioxide gap of 3 cm width.
Additional insulation can be provided by replacing the carbon-dioxide gas with an Aerogel
formulation.
The outermost fuselage thermal coating is from Sheldahl with Solar absorptivity α = 0 : 8

and infra-red (IR) emissivity ϵ = 0 : 1.
In addition to thermal losses through the gas gap (or aerogel), additional losses occur due
to conduction in the mast as well as through the copper wiring that penetrate the ECM
from the mast. To minimize the latter, the wire gauges are selected to be of the thinnest
gauges that can still support the current draw during operations without overheating.
Prior to flight, under the control of the FPGA, the thermal system powers on heaters
in the motor control boards that have been exposed to the ambient temperatures. The
internal battery temperature is brought up to 5◦C to allow hi-power energy extraction
from the cells.
During operation the ECM and battery warm up as a result of avionics operations and
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battery self-heating. However, the thermal inertia of the elements is such that for the
short flights of the helicopter, there is no overheating.

Figure 1.8: NASA technician is shown working on Ingenuity that features a Kapton
insulation blanket protecting the Helicopter Warm Electronics Box

1.4. Electronic Core Module

An illustration of the Electronics Core Module is shown in Fig. 1.9 and its components
will be described in more details in the next subsections.

1.4.1. Power and energy System

The helicopter is powered by a Li-Ion battery system that is recharged daily by a solar
panel.
The energy in the battery is used for operating heaters to survive the cold Martian nights
as well as operate the helicopter actuators and avionics during short flights.
Depending on the latitude of operations and the Martian season, recharging of this battery
through the solar panel could occur over one to multiple sols (Martian days).
The helicopter battery shown in Fig. 1.10 consists of 6 Sony SE US1865o VTC4 Li-ion
cells with a nameplate capacity of 2 Ah. The maximum discharge rate is greater than 25
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Figure 1.9: Electronics Core Module (ECM) showing configuration of battery surrounded
by avionics boards and attached sensor assemblies

A and the maximum cell voltage specified by the manufacturer is 4.25 V. The continuous
tested power load capability of this battery is 480 W with a peak power capability of 510
W. Battery voltage is in the range of 15− 25.2 V and the total mass of the 6 cells is 273

g. A cell balancing charge management system controlled by the FPGA ensures that the
all the individual cells are at a uniform voltage.
A de-rated end-of-life battery capacity of 35.75 Wh is available for use. Of this capacity,
10.73 Wh (30%) is kept as reserve, night-time survival energy usage is estimated at 21 Wh
for typical operation in the northern latitudes in the spring season, and approximately 10

Wh is available for flight.
Assuming that 20% of the power is at the peak load of 510 W and 80% is at a continuous
load of 360 W, approximately 90 s of flight is possible.
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Figure 1.10: 3D-CAD of Battery assembly with Li-Ion cells and bonded thermostat and
heaters

1.4.2. Avionics

The avionics design is required to have low mass, low power and adequate radiation
tolerance. A set of candidate parts to meet these requirements have been incorporated
into the design which is now described.

1. Processor: the Snapdragon processor from Intrinsyc with a Linux operating system
performs high-level functions on the helicopter.
The Snapdragon processor has a 2.26 GHz Quad-core Snapdragon 801 processor
with 2 GB Random Access Memory (RAM), 32 GB Flash memory, a Universal
Asynchronous Receiver Transmitter (UART), a Serial Peripheral Interface (SPI),
General Purpose Input/Output (GPIO), a 4000 pixel color camera, and a Video
Graphics Array (VGA) black-and-white camera. This processor implements visual
navigation via a velocity estimate derived from features tracked in the VGA camera,
filter propagation for use in flight control, data management, command processing,
telemetry generation, and radio communication.
The Snapdragon processor is connected to two flight-control (FC) Microcontroller
Units (MCU) via a Universal Asynchronous Receiver/Transmitter (UART). These
MCU processor units operate redundantly, receiving and processing identical sensor
data to perform the flight-control functions necessary to keep the vehicle flying in
the air. At any given time, one of the MCU is active with the other waiting to be
hot-swapped in case of a fault.
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Figure 1.11: Block diagram of Avionics Elements

2. Avionics Boards: The avionics consists of 5 printed circuit boards which form the
5 facets of the Electronic Core Module cube. The boards are shown in Fig. 1.12.

• Battery Interface Board (BIB): placed in the bottom of the cube, it hosts the
battery monitoring circuitry, motor power switches and current monitors.

• FPGA/Flight Controller Board (FFB): the two redundant TI Hercules safety
processors serve as the low-level flight controller; the two processors run in sync
and are provided with the same clock and data by the FPGA, which handles
all the sensors and actuators interface. If a fault is detected, it signals the error
to the FPGA; the FPGA switches to the other processor and power cycles the
faulty one, so the flight control software continues to run without disruption.

• NAV/Servo Controller Board (NSB): the NSB carries the Snapdragon CPU
and provides power and I/O interfaces. NSB also hosts the drive circuitry for
the 6 DC servo motors and delivers over 20 W power.

• Telecom Board (TCB): the telecom module is mounted on the TCB. Some
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Figure 1.12: Avionics Boards shown in unfolded configuration together with key interfaces

additional analog circuitry, a 16-bit 8-channel ADC, the temperature sensor
interface and heater switches take up the remaining space. This ADC is used
for monitoring charging current and temperature without having to turn on
the FCs, thereby saving power.

• Helicopter Power Board (HPB): the HPB has two DC/DC converters that
regulate the battery voltage to the 3.3 V and the 5 V. The 5 V regulator can
be switched off.

1.5. Concept of operation

Flights will be conducted based on a flight plan uploaded from the ground, consisting of
a series of waypoints.
Due to the many minutes of communication delay between Earth and Mars, each flight
must be conducted with full autonomy. For this purpose, onboard navigation is performed
using a combination of upper and lower sensors:

1. The IMU, which measures accelerations and angular rates, is used for propagation
of the vehicle state from one time step to the next.

2. The camera is used together with the laser rangefinder to determine height above
ground and translational velocity (this information is fused with the IMU solution).

3. The inclinometer is used to determine initial attitude before takeoff.
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The onboard computation platform consists of a radiation-tolerant fieldprogrammable
gate array (FPGA); a dual-redundant automotiveclass microcontroller hosting the most
critical flight control functions; and a cell-phone class processor hosting the vision-based
navigation functions.
The helicopter will only fly in favorable weather, with wind velocities limited to 10 m/s
horizontally and 2 m/s vertically, with a maximum gust component of 3.5 m/s.
Based on the forecasted weather, ground speed and climb/descent speeds will be limited
such that maximum airspeed does not exceed 10 m/s horizontally and 3.5 m/s vertically.
The batteries provide energy for flights lasting up to approximately 90 s.

Figure 1.13: Typical Ingenuity’s operation
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Parameter Range

Atmospheric density 0.014− 0.02 kg/m3

Horizontal wind ≤ 10 m/s

Vertical wind ≤ 2 m/s

Gust component ≤ 3.5 m/s

Landing area slope ≤ 10◦

Endurance ≤ 90 s

Flight range ≤ 300 m

Flight altitude ≤ 5 m

Table 1.3: Summary of key operational conditions and limitations [6]

Property Value

Dry Mass 1.8 kg

Rotor diameter 1.21 m

Rotor spacing 0.1 m

Ground clearance 0.3 m

Landing gear footprint 0.6× 0.6 m

Thrust-to-weight ratio 135 to 155%

Rotor speed ≤ 2800 rpm

Collective control (both rotors) −4.5◦ to 17.5◦

Cyclic control (both rotors) ±10◦

Table 1.4: Summary of key physical parameters [6]

1.6. Demonstration vehicle

The vehicle used to demonstrate controlled flight is shown in Fig. 1.14.
It features a full-scale rotor similar to the final vehicle built for Mars flight, but with a
slightly larger rotor spacing corresponding to 9% of the rotor diameter. However, because
this vehicle was required to lift its own weight in Earth gravity, anything nonessential to
the demonstration of controlled flight was left off the vehicle to reduce weight to a total
of 765 g.
Unlike the Mars vehicle, the demonstration vehicle was equipped with cyclic control only
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on the lower rotor (and collective on both rotors). This provides sufficient degrees of free-
dom for control but results in reduced control authority and greater cross-axis coupling.

Figure 1.14: Demonstration vehicle used for controlled-flight demonstration in Martian
atmospheric conditions.

Property Value

m 0.765 kg

Ixx 0.0285 kg m2

Iyy 0.0289 kg m2

Izz 0.0121 kg m2

Table 1.5: Summary of key physical parameters of demonstration vehicle [6]
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As for all helicopter UAVs, obtaining an accurate mathematical model is a challenging
task. The aim of this work is to derive a simplified mathematical model that is reliable
in near hovering conditions and at the same time that allows capturing the most relevant
nonlinear effects. Specifically, its dynamics have been modeled basing on the study of
flight dynamics of a terrestrial miniature rotorcraft [3] and properly readjusting it for a
coaxial case taking inspiration from the work of Fei Wang [4].

2.1. Working principles

Before deriving the flight dynamic model, the basic working principles of a coaxial heli-
copter are briefly described.
First of all, a coaxial helicopter has a pair of contrarotating rotors (upper and lower) to
provide the fundamental lift force for the overall platform.
The dynamic motion of the helicopter is achieved by actively changing the pitch angles of
both upper and lower rotors via the upper swashplate and the lower swashplate, respec-
tively.
For Ingenuity, the pitch angles of both rotors are constituted by collective pitch and cyclic
pitch, which are mixed controlled by three servos linked to each swashplate.
Dynamic movement of the helicopter in Roll-Pitch direction is realized by changing the
cyclic pitch angles of both rotors; on the other hand, Heave and Yaw direction controls
are obtained by changing collective pitch angles of both rotors in the same direction for
the first and in opposite direction for the second.

2.2. Reference systems

2.2.1. Inertial reference system

The inertial reference system is a Cartesian coordinate system of three fixed axes that
works as a fixed base for the representation of the position of a considered body or moving
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reference system.
The origin of the system could be set everywhere (for example the intersection of the
equator with the prime meridian and the mean sea level): it is completely arbitrary but
once chosen it cannot vary.
The displacement along one or more set of orthogonal axes attached to the origin describes
the position of anything in this reference system.
It is convenient to align the axes of the reference frame with the compass: one is aligned
with the axis labelled North, one with the axis labelled East and the last with the normal
to the surface generated by the previous two, pointing to the centre of the Earth and
labelled Down. These three axes are mutually perpendicular by construction and when
referring to them in the order NED form a right-handed coordinate system.

2.2.2. Body Axes

For the representation of the attitude of the UAV it is convenient to set the origin of the
body frame coinciding with the centre of gravity (CG) of the coaxial helicopter.
The chosen set of axes is a right-handed system; the X axis lies in the plane of symmetry
and generally points forward, the Y axis points to the right normally to the plane of
symmetry and the Z axis points down.

Figure 2.1: Coordinate frames and main forces and torques
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2.3. Kinematics

One of the main problem in modelling and controlling a 3D system has always been
the correct representation of the attitude of an object with respect to an inertial frame
and a body fixed frame. This is actually a key issue in this work since the errors and
so the control variables are computed based on it and the singularities of the different
representations strongly influence the stability and robustness properties of the controlled
system.

2.3.1. Attitude and position representation

Vectors can be rotated about any axes in any order for any number of times until the
final orientation is achieved. These subsequent rotations can be represented by means of
a rotation matrix from the initial orientation to the final one.
Adopting the to-from notation, a rotation matrix from system E to system D would be
named RD−E. Thus any vector PE in the E reference system can be resolved to system
D, in the corresponding vector PD through the matrix operation:

PD = RD−EPE (2.1)

Rotation matrices are written for R3 vectors and may represent the rotation around one,
two or three axes.
For sake of a better comprehension it is useful to analyse the rotation around a single axis
and then composing different rotations in order to achieve the final rotation matrix.
A rotation about the X axis does not change the component of the vector directed along
the X axis itself, but changes the Y and Z components. All these considerations can be
noticed analysing the matrix associated to this rotation of an angle Φ:

RX(Φ) =

1 0 0

0 cos(Φ) sin(Φ)

0 −sin(Φ) cos(Φ)

 (2.2)

same considerations can be done for the rotation matrices representing respectively rota-
tions of an angle Θ around Y and Ψ around Z axes.
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These matrices have the form:

RY (Θ) =

cos(Θ) 0 −sin(Θ)

0 1 0

sin(Θ) 0 cos(Θ)

 (2.3)

Rz(Ψ) =

 cos(Ψ) sin(Ψ) 0

−sin(Ψ) cos(Ψ) 0

0 0 1

 (2.4)

The positive direction of the angular displacement is the one your fingers curl when
aligning your thumb with the positive direction of the axis. The 0 degrees position can
be assigned arbitrarily but once fixed, it must not vary.
The three presented matrices are orthonormal since each of their columns represent a
vector of unit magnitude and the scalar product of column i with column j with i ̸= j

equals zero, that is the definition of orthogonal. Orthonormality carries also the useful
property that the inverse of an orthonormal matrix is its transpose, thus in order to
compute the inverse rotation matrix only a transposition is needed.
It is possible to build the overall matrix representing subsequent rotations around different
axes multiplying in the same sequence the rotation matrices of each rotation around each
axis. Moreover, every cascade of rotations can be reduced to a rotation about three axes
only. One possible way in representing these three subsequent rotations is the Euler angle
conventions, whose naming convention follows NASA standard notation and consists in
a first rotation of an angle Ψ around the Z axis called yaw, then a rotation of an angle
Θ around the new intermediate Y axis, the so called pitch, and finally a rotation of an
angle Φ around the newer X axis and also known as roll. The three angles are shown in
Fig. 2.2 .

Figure 2.2: Euler angles

This particular set of rotations is performed by the so called Euler rotation matrix defined
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as:
TBE(Φ,Θ,Ψ) = RX(Φ)RY (Θ)RZ(Ψ) (2.5)

where subscript B stands for "body" and E stands for " Earth", respectively.
Matrix TBE resolves an Earth-based vector to body reference system. The overall formu-
lation of the TBE matrix is then:

TBE(Φ,Θ,Ψ) =

 CΘCΨ CΘCΨ −SΘ

SΦSΘCΨ − CΦSΨ SΦSΘSΨ + CΦCΨ SΦCΘ

CΦSΘCΨ + SΦSΨ CΦSΘSΨ − SΦCΨ CΦCΘ

 (2.6)

where the shorthand notation CΦ = cosΦ, SΦ = sinΦ, TΦ = tanΦ has been adopted.
To conclude the description of the configuration of the body attached frame, the position
vector is given by

Pe =

NE
D

 (2.7)

where Pe is the position of the UAV centre of gravity in the inertial (Earth) frame (NED).
Starting from these considerations the vector of angular position of the UAV body axes
with respect to the Earth reference system can be defined as:

αe =

ΦΘ
Ψ

 (2.8)

named respectively roll angle, pitch angle and yaw angle.

2.3.2. Kinematics

Of course, the three angles just defined vary with time during a maneuver and so the
Euler rates are function of both the Euler angles and the body-axis angular rates.
Firstly the Euler rates are defined as:

ωe =

Φ̇Θ̇
Ψ̇

 = α̇e (2.9)
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and the body-axis rates as:

ωb =

pq
r

 (2.10)

To get the relation from Earth-axis rates to body-axis ones each Euler rate has to be
considered individually, resolved to intermediate axes and only at the end resolved to
body axes. Define the Euler rate elemental vectors as:

ωΦ̇ =

Φ̇0
0

 , ωΘ̇ =

0Θ̇
0

 , ωΨ̇ =

00
Ψ̇

 (2.11)

Rotate ωΨ̇ through the angle Θ about the Y axis, and add the result to the ωΘ̇ vector.
Rotate that sum about the X axis through the angle Ψ and add the result to the ωΦ̇

vector. This last resulting vector is the body-axis angular rates vector.

ωb = ωΦ̇ +RX(Φ)(ωΘ̇ +RY (Θ)ωΨ̇) (2.12)

Rearranging the terms we get to

ωb = E(Φ,Θ)ωe =

1 0 −SΘ

0 CΦ SΦCΘ

0 −SΦ CΦCΘ

ωe (2.13)

On the contrary, to get the Earth-axis rate in terms of body-axis rates the inversion of
the transformation matrix E is needed.
Unlike the TBE matrix, matrix E is not orthonormal and in addition its inverse present
two singularities in case of a pitch angle of ±90◦.

E(Φ,Θ)−1 =

1 SΦTΘ CΦTΘ

0 CΦ −SΦ

0 SΦ/CΘ CΦ/CΘ

 (2.14)

This singularity is called gimbal lock and is one of the main difficulties when handling
aggressive flight maneuvers with Euler angles parametrization. Indeed, in this work we will
make use of the quaternion parametrization for simulation purposes and of the rotation
matrix for control law design.
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The kinematics of position is given by

Ve =

ṄĖ
Ḋ

 = Ṗe

Vb = TBE(Φ,Θ,Ψ)Ve =

uv
w



(2.15)

(2.16)

where Ve is the velocity of the UAV centre of gravity in the NED frame and Vb is the same
velocity resolved to body axes.

2.4. Flight dynamics

The model is developed under the assumption of the rigid body, that is all the points
belonging to the body move keeping the distances and the angles fixed.

2.4.1. Velocities and accelerations

When considering the kinematic of a moving frame system following a generic path, it
has to be considered that both the modulus and the direction of the velocity vector can
change. A straightforward consequence of this fact is that, defining S the position vector
of a point expressed in a reference system rotating with angular rate ωb

S =

xy
z

 , ωb =
pq
r

 (2.17)

and

∂S

∂t
=

ẋẏ
ż

 =

uv
w

 (2.18)

the total velocity and acceleration seen in the Earth frame are

dS

dt
=
∂S

∂t
+ ωb × S (2.19)

d2S

dt2
=

∂

∂t
(
dS

dt
) + ωb ×

(
dS

dt

)
=
∂2S

∂t2
+ 2ωb ×

∂S

∂t
+
∂ωb
∂t

× S + ωb × (ωb × S) (2.20)
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2.4.2. Linear motion

The description of the linear motion of a body can be obtained starting from the second
Newton’s Law. Linear momentum is the product of the mass times the velocity of an
object. A force acting on the object makes the related momentum change:

F =
d(mVb)

dt
(2.21)

Applying to this expression (2.19) and (2.20) and adopting dot notation for the sake of
readability:

F =
dm

dt
Vb +m

(
∂Vb
∂t

+ ωb × Vb

)
= ṁVb +mV̇b + ωb × (mVb) (2.22)

The obtained expression in Eq. 2.22 represents the rate of change of the linear momentum
as a function of the applied forces. In the system under analysis those forces are forces
coming from various mechanical parts, gravity, aerodynamics and others that can be
lumped into a category called externally applied loads. In the following the vector Fext
represents the external forces:

Fext =

FXFY
FZ

 (2.23)

Assuming a constant mass of the UAV the resulting equation of linear motion takes the
form:

mV̇b + ωb × (mVb) = Fext (2.24)

2.4.3. Angular motion

Expanding and rearranging Eq. 2.20, the acceleration of a point can be expressed as:
ẍ = u̇+ q̇z − ṙy + q(w + py − qx)− r(v + rx− pz)

ÿ = v̇ + ṙx− ṗz + r(u+ qz − ry)− p(w + py − qx)

z̈ = ẇ + ṗy − q̇x+ p(v + rx− pz)− q(u+ qz − ry)

(2.25)
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Considering the body mass divided into infinitesimal masses, the inertial force acting on
the J-th differential mass element is:

(dFX)j = dmjẍ

(dFY )j = dmj ÿ

(dFZ)j = dmj z̈

(2.26)

If the position of the differential mass element is Sj , the mass resists an angular force (a
moment) about all three axes. The differential inertial moments are:

dMj = Sj × dFj (2.27)
(dMX)j = (dFZ)jyj − (dFY )jzj

(dMY )j = (dFX)jzj − (dFZ)jxj

(dMZ)j = (dFY j)xj − (dFX)jyj

(2.28)

By definition, the origin of the coordinate system is the centre of gravity; therefore
∑

(x)dm = 0∑
(y)dm = 0∑
(z)dm = 0

(2.29)

Combining Eqs. 2.26, 2.28 and 2.29 the linear motion equation are obtained:
mẍ = m(u̇+ qw − rv)

mÿ = m(v̇ + ru− pw)

mz̈ = m(ẇ + pv − qu)

(2.30)

Introducing the definition of inertia tensor in the form:

In =

 Ixx −Ixy −Ixx
Iyx Iyy −Iyz
−Izx −Izy Izz

 (2.31)
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where the various terms can be defined as∫
(xy)dm = Ixy,

∫
(xz)dm = Ixz,

∫
(yz)dm = Iyz,∫

(y2 + z2)dm = Ixx, (x
2 + z2)dm = Iyy,

∫
(x2 + y2)dm = Izz

Considering a body frame coincident with the symmetry axes of the aircraft body, In
becomes a diagonal matrix.
From all the previous considerations the expression of the angular motion can be derived
in the form:

L = Ixxṗ+ (Izz − Iyy)qr

M = Iyy q̇ + (Ixx − Izz)pr

N = Izz ṙ + (Iyy − Ixx)pq

(2.32)

where L, M , N are the moments applied on the body-axes X, Y , Z respectively. Collect-
ing all the applied moments in a vector Mext

Mext =

LM
N

 (2.33)

and recalling the definition of body-axis angular velocity vector the equation of angular
motion can be reorganized in the form

Inω̇b + ωb × (Inωb) =Mext (2.34)

The similarity of this formulation with Eq. 2.24 are evident and the two together consti-
tute the generalized equations of motion of a body.

2.5. Rotor dynamics

Since detailed rotor equations of motion can be extremely complex and not all effects
related to rotors are relevant for the type of analysis we carry out in this work, we need
simplified expressions for the rotor equations of motion. With these simplified dynamics,
we will then be able to express the rotor forces and moments as a function of the rotor
states and couple the two dynamic systems.
A fundamental aspect of rotor dynamics is the flapping motion of the blades and in the
following, we will summarize the development of a so-called tip-path-plane rotor model
used in low-complexity simulation systems and which represents the foundation of the
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highly simplified model used for the identification.
The flapping motion is a 2π-periodic function. Thus the general solution to the flapping
equation can be expressed as a the Fourier series [3]

β(Ψ) = β0 − β1cCΨ − β1sSΨ − β2cC2Ψ − β2sS2Ψ − ... (2.35)

In full-scale helicopters, the magnitude of the second harmonic are less than 10% of the
magnitude of the first harmonic [3]. Hence, the second and higher harmonics in the
Fourier series can be ignored, i.e.

β(Ψ) ≈ β0 − β1cCΨ − β1sSΨ (2.36)

This first-harmonic representation of the blade flapping motion defines the rotor tip-path-
plane (TPP) equation. This type of motion results in a cone-shaped rotor like the one
illustrated Fig. 2.3. The top of the cone is the TPP. The non-periodic term β0 describes
the coning angle and the coefficients of the first harmonic β1c and β1s describe the tilting
of the rotor tip-path-plane in the longitudinal and lateral directions, respectively. In the
following, we will use the notation: a instead of β1c, b instead of β1s, and ao instead of β0.

Figure 2.3: Tip-path-plane rotor representation

As a simplifying assumption for a TPP model, the blade is represented as a rigid beam
and its attachement to the shaft is modeled through a flapping hinge located at the center
of the hub (no hinge offset) with a linear torsional spring with spring constant Kβ.
Thus, the equations for the blade flapping motion are derived from the balance of moments
about the flapping hinge (Fig. 2.4).
Once derived the elemental forces acting on a blade element located at the radial station
y, the flapping equation of motion results in [3]:

β
′′
+

(
1 +

Kβ

IβΩ2

)
β =

1

IβΩ2

∫ R

0

ydFzdy (2.37)
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Figure 2.4: Blade represented as a rigid beam, with flapping angle β. Also shown are
forces acting on a blade element, as well as the moment from the flapping spring acting
at root of the blade.

where Iβ is the inertia of the blade, Ω is the rotational speed of rotor and β
′′ describes

the differentiation respect to Ψ.
Substituting the tip-path-plane expression Eq. 2.36 into the flapping differential equation
Eq. 2.37, matching all the non-periodic terms with ao, the sine terms with b, and the
cosine terms with a and defining the tip-path-plane state vector a = [a, b]T , we obtain a
second-order matrix differential equation:

ä+Dȧ+Ka = F (2.38)

where D is the damping matrix, K is the stiffness matrix, and F is the forcing term.
Discarding the effects of translational speed, setting zero pitch-flap coupling coefficient
and discarding the coning dynamics, the previous matrices reduce to [3]

D = Ω

(
γ
8

2

−2 γ
8

)
; K = Ω2

(
Kβ

IβΩ2
γ
8

−γ
8

Kβ

IβΩ2

)
(2.39)

and

F = Ω2

(
γ
8

0

0 γ
8

)[
A1

B1

]
+ Ω

(
−2 −γ

8

−γ
8

2

)[
p

q

]
+ Ω

(
0 − 1

Ω

− 1
Ω

0

)[
ṗ

q̇

]
(2.40)

where γ is the blade lock number which represents the ratio between the aerodynamic
and inertial forces acting on the blade

γ =
ρcClαR

4

Iβ
(2.41)

where R is the rotor radius, ρ is the air density, c is the blade chord length and Clα is the
lift curve slope.
A1 and B1 are, respectively, the lateral and longitudinal cyclic blade pitch angle defined
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as functions of the longitudinal and lateral cyclic controls, δlon and δlat, respectively

A1 = Blatδlat B1 = Alonδlon. (2.42)

Next, the order of the rotor equations will reduce to discard the high-frequency dynamics.
This is achieved by dropping the higher-order terms in the TPP equations of motion Eq.
2.38, i.e. the blade flapping accelerations ä and b̈ and the vehicle angular accelerations ṗ
and q̇.
Using equation Eq. 2.38 with the above matrices and simplifications produces the follow-
ing coupled first-order tip-path-plane equations of motion:

{
τf ḃ = −b− τfp−Baa+BsB1 +BcA1

τf ȧ = −a− τfq + Abb− AsB1 + AcA1

(2.43a)

(2.43b)

The key terms are:

Ab = Ba =
128Kβ − Iβγ

2Ω2

8γ(2IβΩ2 +Kβ)
(2.44)

which represent the coupling effect between longitudinal and lateral flapping motions.

τf =
IβΩ(γ

2 + 256)

8γ(2IβΩ2 +Kβ)
(2.45)

is the rotor time constant.
Eq. 2.43 represents the low-frequency rotor dynamic approximations which capture the
key tip-path-plane responses due to control inputs and vehicle motion.

2.6. External forces and moments

Once the dynamics equations of the model have been identified, the most important
contributions to forces and moments acting on the helicopter are now presented in this
section.
The overall contributions can be summarized as

Fext = FT + Fg + Fa

Mext =MQ +Mβ +Ma

(2.46a)

(2.46b)

where FT ∈ R3 and MQ ∈ R3 are the rotors thrust and torque, respectively; Fg ∈ R3 is
the gravitational force vector in body frame; Mβ ∈ R3 is the hub torsional moment vector
and Fa ∈ R3, Ma ∈ R3 are the aerodynamic forces and moments vectors.
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Each contribution in Eq. 2.46 will be investigated in more details in the following sub-
sections.

2.6.1. Rotors thrust and torque

When spinning, each rotor produces a force and a torque that can be used to control
the motion of the helicopter. In the following, we will describe a simplified model for
the generation of force and torque by coaxial propellers based on BEMT (blade element
momentum theory).
A first simplifying assumption is that the thrust vector is always perpendicular to the
tip-path-plane (TPP), which is true in hover and vertical flight and still very accurate in
forward flight [9].
In its default orientation, TPP is coincident with hub plane and rotors generate only a
vertical thrust that can be expressed in body coordinates as:

FT =
∑ 0

0

Ti

 , i ∈ (up, low) (2.47)

where Ti is the magnitude of each rotor thrust.
Since during flight, the upper and lower TPPs deviate from their default orientation,
the rotors generate not only a vertical thrust but also two lateral forces dependent on a
longitudinal flapping angle a and a lateral flapping angle b of the blades (Fig. 2.5).
The single thrust can be rewritten as:

FTi = R(ai, bi)

00
T

 (2.48)

where

R(ai, bi) =

 Cai −SaiSbi −SaiCbi
0 −Cbi Sbi

−Sai −CaiSbi −CbiCai

 (2.49)

is a transformation matrix between the body and rotor coordinate system.
By computing Eq. 2.48, it results:

FTi = T

−SaiCbiSbi
−CaiCbi

 (2.50)
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Figure 2.5: Hub plane, tip-path plane and body axes

and the overall thrust vector:

FT = Tup

−SaupCbupSbup

−CaupCbup

+ Tlow

−SalowCblowSblow
−CalowCblow

 (2.51)

According to the aerodynamic actuator disk theory [1], the magnitude of rotor thrust can
be formulated as:

T = ρCTAΩ
2R2 (2.52)

where ρ is the air density, A is the rotor disk area, Ω is the rotor rotational speed, R is
the rotor radius and CT is the rotor thrust coefficient. All these parameters are constant
except for the last one.
In order to evaluate the total thrust coefficient, it is necessary first to find the expression
of its incremental.
The incremental thrust dCT can be obtained using the BEMT theory with small angle
assumptions (cosϕ ≈ 1, ϕ is the inflow angle equal to λ/r) [11]:

dCT = 4Fλ(λ− λ∞)rdr (2.53)

where r is the nondimensional radial distance along the blade, F is the factor to account
for the Prandtl tip losses, λ is the nondimensional inflow velocity and λ∞ is the nondi-
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mensional axial velocity (equal to zero in hovering conditions).
Now, using the conventional blade-element theory (BET), the incremental thrust can be
rewritten as [11]:

dCT =
1

2
σClα(θir

2 − λr)dr (2.54)

where Clα is the bidimensional lift-curve slope of the airfoil section and although it will
get a different value at each blade station because it is a function of local incident Mach
number and Reynolds number, an average value for the rotor can be assumed without
serious loss of accuracy [11].
The rotor solidity σ is defined as the ratio of the blade area against the rotor disk area:

σ =
Nbc

πR
(2.55)

where Nb are the number of blades per rotor and c is the chord of the blade.
θi is the blade pitch distribution on the i-th rotor and it is related to the collective
commanded controls (δi0).
The most critical part of the design is the evaluation of λ, the nondimensional inflow
velocity.
The generic expression of λ is function of r and it can be obtained equating the incremental
thrust coefficients from the momentum and blade-element theories (i.e., using Eqs. 2.53
and 2.54) [11]:

λ(r) =

√(
σClα
16F

− λ∞
2

)2

+
σClα
8F

θir −
(
σClα
16F

− λ∞
2

)
(2.56)

Eq. 2.56 can be solved numerically at a series of discretized elements that are distributed
radially over the rotor disk; for simplification, F can be considered equal to 1 (correspond-
ing to Nb → ∞).
The expression of λ in Eq. 2.56 is valid for both the upper and lower rotors. However,
as the inner part of the lower rotor operates in the vena contracta of the upper rotor (see
Fig. 2.6), the evaluation of λlow is more complicated.
For beam sections of the lower rotor lying inside the upper contraction area, the inflow

distribution is given as:

λ(r) =

√(
σClα
16F

− λ∞ + (A/Ac)λu
2

)2

+
σClα
8F

θlr −
(
σClα
16F

− λ∞ + (A/Ac)λu
2

)
(2.57)
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Figure 2.6: Flow model used for the BEMT analysis of a coaxial rotor system with the
lower rotor operating in the slipstream of the upper rotor.

where θl is the blade pitch distribution on the lower rotor (related to the lower collective
commanded control, δl0) and λu is the inflow velocity of upper rotor.
Ac is the contracted area defined as:

Ac = πr2cR
2 (2.58)

where rc is the contraction ratio found closer to 0.8 for practical cases.
For points outside the upper contraction area, the inflow distribution is expressed as Eq.
2.56, with i = l.
When the spanwise inflow distributions are obtained, the rotor thrust and power coeffi-
cients for each rotor may then be found by numerical integration across each respective
rotor disk.
The thrust coefficient becomes:

CT =

∫ r=1

r=0

dCT =
1

2
σClα

∫ r=1

r=0

(θir
2 − λr)dr (2.59)
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An alternative simplified formulation that neglects the radial distribution of the inflow
but that can be employed also in forward flight conditions is derived next.
These formulas have been obtained considering the previous reasoning about inflow and
interaction between the rotors but taking a θi and λi uniformly distributed along the
blade (so not depending on r).
For upper rotor: 

λup =
CTup

2
√
µ2 + (λup − µz)2

CTup =
Clα,upσ

2

(
θup

(
1

3
+
µ2

2

)
+
µz − λup

2

) (2.60a)

(2.60b)

For lower rotor:
λlow =

CTlow
2
√
µ2 + (λlow − kλup − µz)2

CTlow =
Clα,low

σ

2

(
θlow

(
1

3
+
µ2

2

)
+
µz + kλup − λlow

2

) (2.61a)

(2.61b)

where

µ =

√
(u− uwind)2 + (v − vwind)2

ΩR

µz =
w − wwind

ΩR

(2.62)

uwind, vwind, wwind stand for velocity of wind along body-axis X, Y, Z.
The key term k in Eq. 2.61 is a coefficient taking in account the interaction between the
rotors and it has been evaluated from hovering conditions as shown in the later Section
2.8.1.
Eqs. 2.60 and 2.61 are evaluated at each instant time using the MATLAB function fsolve
and taking as initial conditions the values of λ and CT at previous instant time.

The rotation of each rotor generates also a drag torque Q along the body-axis Z.
Similarly to thrust, this torque can be formulated according to the aerodynamic actuator
disk theory [1] as:

Q = ρCQAΩ
2R3 (2.63)

The main difference from Eq. 2.52 is represented by the coefficient CQ.
It is necessary also in this case to find first the expression of its incremental.
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The incremental rotor torque coefficient is provided by BEMT:

dCQ =
σ

2
(ϕCl + Cd)r

3dr (2.64)

where Cd is the sectional profile drag coefficient. By knowing that λ = ϕr and dCT =

(σ/2)Clr
2dr, the incremental torque coefficient can be rewritten as:

dCQ =
σ

2
Clλr

2dr +
σ

2
Cdr

3dr = λdCT +
σ

2
Cdr

3dr (2.65)

Integrating Eq. 2.65:

CQ =

∫ r=1

r=0

dCQ =

∫ r=1

r=0

λ dCT +
σ

2

∫ r=1

r=0

Cdr
3dr (2.66)

Also in this case, for simplicity, the torque coefficient is evaluated considering θ and λ

uniformly distributed along the blade resulting in a final expression:

CQ = λCT +
σ

8
Cd (2.67)

In the first instance, the drag coefficient Cd can be assumed equal to a constant value
Cd,0, whose numerical value is extracted from Fig. 2.7 basing on the fact that MH airfoil
operates in a subcritical flow state and has a constant t/c = 0.05 [10].

Figure 2.7: Reynolds number criticality based on thickness
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Eventually, the overall rotor torque vector along the body-axis Z will be described by:

MQ =

 0

0

Qup −Qlow

 (2.68)

Moreover, when the thrust vector no longer pass through the CG of the helicopter due
to the deviation of the upper and lower TPPs from their default orientation, a rotational
torque is generated.
This torque can be expressed as a vectorial product given by:

∑
li × Ti =

∑
|li|

 0

0

−1

× Ti

−SaiCbiSbi
−CaiCbi

 , i ∈ (up, low) (2.69)

where li is the displacement from the helicopter CG to the i-th rotor hub.

2.6.2. Gravitational force

Another force to be considered acting on the centre of gravity is the gravitational force.
This force acts always pointing to the centre of the Earth, that is Down in the inertial
frame, and so it must be rotated into body frame to get a consistent representation of its
effect on the system:

Fg = TBE(Φ,Θ,Ψ)

 0

0

mg

 =

 −SΘ

SΨCΘ

CΨCΘ

mg (2.70)

2.6.3. Aerodynamics forces and moments

In order to determine the aerodynamic forces acting on the body, it is necessary to know
both the direction and velocity of the total airflow inside which the UAV operates.
In all, three main wind sources composing the total wind vector Vtot ∈ R3 can be identified:
the first component is Vb ∈ R3 due to the airflow generated by the translational and
rotational body displacements; the second component corresponds to the airflow speed
Vprop ∈ R3 generated by the coaxial rotors; the third component Vwind ∈ R3 is due to the
externally induced wind, in general unpredictable.
Since the resultant of aerodynamic forces are applied in correspondence of the CoP and,
in a realistic case CoP ̸= CoG, a fourth component ωb × dcp must be considered inside
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the expression of the total wind vector: this represents the cross product between body
angular rates ωb ∈ R3 and dcp = [Xcp, Ycp, Zcp]

T , the coordinates of CoP in the body
frame.
The wind vector in the body coordinate system is then written as [9] [13]:

Vtot = Vb − Vprop − Vwind + ωb × dcp (2.71)

Vprop can be expressed as the induced velocity of the lower rotor on the fuselage and it
can be written as:

Vprop =

√
|Tlow|
2ρπR2

(2.72)

Considering Eq. 2.71 and a Vprop acting only in body-azis Z direction, the expressions of
the three components of the total wind are written as follows:

Vux = u− |Vwind|Xb
+ (qZcp − rYcp)

Vvy = v − |Vwind|Yb − (pZcp − rXcp)

Vwz = w − Vprop − |Vwind|Zb
+ (pYcp − qXcp)

(2.73a)

(2.73b)

(2.73c)

where u, v, w are the three translational body-velocity components and |Vwind|Xb
, |Vwind|Yb , |Vwind|Zb

are the three components of the externally induced wind vector Vwind.
Once the expression of Vtot is known, the aerodynamic forces in the three body directions
can be evaluated knowing the air density ρ and the effective drag areas Sx, Sy, Sz.
They can be formulated in a quadratic form as:

|Faero|X = −ρ
2
SxVux∥Vtot∥

|Faero|Y = −ρ
2
SyVvy∥Vtot∥

|Faero|Z = −ρ
2
SzVwz∥Vtot∥

(2.74a)

(2.74b)

(2.74c)

(2.74d)

where
∥Vtot∥ =

√
V 2
ux + V 2

vy + V 2
wz (2.75)

The effective drag areas along the body-axis X, Y, Z are evaluated as:

Si = Ai · Ci, i ∈ (X, Y, Z) (2.76)
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where Ci are the body shape aerodynamic coefficients and Ai are the surface areas of the
fuselage.
The non-dimensional coefficients Ci depends on the flight conditions and on a number
of quantities in a nonlinear manner, typically the Mach number, altitude, attitude and
body rates. However, considering a near-hover or slow cruise flight, a fair assumption is
to consider it as constant. Given the low density, this simplification has little impact on
the flight dynamics.
Once defined the drag caused by linear translations, the aerodynamic moments around
each axis can be defined:

Maero = −ρ
2

 AxClpVuxpAyCmqVvyq

AzCnrVwzw

+ dcp × Faero (2.77)

where the constants Clp, Cmq and Cnr are the aerodynamic damping moment coefficients.

2.7. Nonlinear model

The conventions and the Mars helicopter model have been presented in detail in this
chapter, highlighting all the modelling assumptions and the implication they have in the
final result.
The final model to be controlled is then

{
mV̇b + ωb × (mVb) = Fext

Inω̇b + ωb × (Inωb) =Mext

(2.78a)

(2.78b)

where the total forces and moments, Fext and Mext respectively, can be summarized as:FXFY
FZ

 =
∑

Ti

−SaiCbiSbi
−CaiCbi

+mg

 −SΘ

SΨCΘ

CΨCΘ

+

−0.5ρSxVux||Vtot||
−0.5ρSyVvy||Vtot||
−0.5ρSzVwz||Vtot||

 ,
LM
N

 =
∑

liTi

 Sbi
SaiCbi

0

+
∑

Kβ

biai
0

+

 0

0

Qup −Qlow

+

+ 0.5ρ

 AxClpVuxpAyCmqVvyq

AzCnrVwzw

+

Ycp|Faero|Z − Zcp|Faero|Y
Zcp|Faero|X −Xcp|Faero|Z
Xcp|Faero|Y − Ycp|Faero|X

 .
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and the flapping motion of blades is described by

{
τf ḃ = −b− τfp+Baai +BsB1 +BcA1

τf ȧ = −a− τfq + Abbi − AsB1 + AcA1

(2.79a)

(2.79b)

Figure 2.8: Simulink block for evaluation of thrust coefficient

Figure 2.9: Simulink block for evaluation of flapping angles
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2.8. Model tuning

In this section, the linearization of the system dynamics around hovering condition is
presented. This has a double goal:

1. Use the linearized dynamics at low frequency in order to evaluate the unknown
parameters of the nonlinear model, exploiting the numerical values of Ingenuity’s
stability and control derivatives available [6].

2. Have an adequate model to study the main dynamic characteristics of the system
and on which to perform the synthesis of linear control solutions.

The flight dynamics of the system, summarized in Subsection 2.7, can be concisely write
as a non-linear function:

ẋ = f(x, u) (2.80)

with x ∈ R16 and u ∈ R6.
Eq 2.80 can be linearized around an equilibrium condition, obtaining a state-space model
in standard form described by the general equation:

ẋ = Ax+Bu (2.81)

where A ∈ R16×16 is the state matrix and B ∈ R16×6 is the control matrix.
The state vector is expressed as x = [x; y; z;ϕ; θ;ψ;u; v;w; p; q; r; aup; bup; alow; blow] in-
cluding NED-frame positions, the attitude Euler angles, body-frame linear velocities,
body-frame angular rates and flapping angles of the blades; and the control input vector
u = [θu0; θl0; θus; θuc; θls; θlc] includes the upper and lower collective, followed by the upper
and lower cosine cyclic and sine cyclic.
Since we want to replicate the behaviour of the low-order model of Ingenuity proposed in
[6], the linearized flight dynamics can be accurately described with only vehicle velocities,
attitude, and angular rates as states in the frequency range relevant for control. This
approximation is acceptable because of the stiff rotor design leading to a rotor dynamics
always far from the desired bandwidth of control system.
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This results in a final linearized model expressed as

u̇

v̇

ẇ

Φ̇

Θ̇

Ψ̇

ṗ

q̇

ṙ


= A



u

v

w

Φ

Θ

Ψ

p

q

r


+B



θl0

θlc

θls

θu0

θuc

θus


(2.82)

where A ∈ R9×9 and B ∈ R9×6 will be identified in next subsections.

2.8.1. Trimming

In order to estimate the stability and control derivatives of the system, it is necessary
first to identify the trimming values of the states.
The hovering condition is chosen as equilibrium point.
In hovering condition the position of the helicopter is constant and all velocites are set to
zero resulting in a state vector:

x0 =



u

v

w

Φ

Θ

Ψ

p

q

r


0

=



0

0

0

0

0

0

0

0

0


(2.83)

In hovering, the overall thrust produced by the rotor system acts straight up and must
equal the weight of the vehicle.
For the coaxial case:

Tup + Tlow = mg (2.84)
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Moreover, the rotors operate at balanced torque

Qup −Qlow = 0 (2.85)

with the lower rotor operating in the vena contracta of the upper rotor.
In this situation, the thrust generated by the lower rotor will be smaller respect than the
one produced by the upper rotor.
The thrust ratio can be evaluated analytically once chosen properly one of the primary
case shown in [7].
For our model, the rotors operate at balanced torque with the lower rotor operating in
the vena contracta of the upper rotor.
Assuming:

1. Close finite spacing between rotors

2. Lower rotor not affecting performance of upper rotor

3. The vena contracta produced by the upper rotor has an area of A/2 with slipstream
velocity 2vu

it results
Tup
Tlow

= 1.4375 (2.86)

The complete study and derivation is shown in [7] and its accuracy has been validated for
our model.
Once defined the ratio between the thrusts, it is necessary to evaluate the inflow velocities
of both rotors.
In hovering flight, some assumptions can be considered reasonable:

1. The blade is considered to be rigid;

2. The truncation effect at the blade root, tip loss, and flapping hinge extension is
neglected and the unsteady effect is neglected;

3. The inflow velocity is considered to be uniformly distributed in the plane of the
blade disk.

For upper rotor, basing on the previous assumptions, the inflow equation in hovering
condition becomes:

λup =

√
CTup
2

(2.87)
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Since the performance of lower rotor is affected by upper rotor, the expression of λlow
cannot be written as Eq. 2.87; thus, it can be determined solving the following system of
equations coming from Eqs. 2.84 and 2.86:

CTup + CTlow =
mg

ρΩ2R2A
= CTup + 2λlow

√
(λlow − kλup)2,

CTup − CTlow =
λlow
2

− 1 + k

2
λup

(2.88a)

(2.88b)

where λlow and k are the only two unknowns.
Onced found the numerical values of thrusts and inflow velocities in hovering condition,
the trimming values of collective control inputs can be evaluated from Eqs. 2.60b and
2.61b.
Around equilibrium conditions, the flapping motion of blades is null; setting all velocities
and flapping angles equal to zero, from Eq. 2.79, it results clearly that the cyclic control
inputs are equal to zero in hovering condition.

θus = θls = 0

θuc = θlc = 0

(2.89a)

(2.89b)

All identified trimming values satisfy the nonlinear equilibrium equation:

ẋ = f(x, u) = 0 (2.90)

with x ∈ R16 and u ∈ R6.

2.9. Derivatives evaluation

Since the difficulties to replicate Martian conditions on Earth, the demonstration vehicle
has been used for flight dynamics simulations.
As described in Section 1.6, the demonstration vehicle features a full-scale rotor equipped
with cyclic control only on the lower rotor (and collective on both rotors); it has a reduced
weight in order to simulate gravity on Mars and different values of inertia along the X-,
Y-, Z-axis (see Table 1.5). Nevertheless, its flight dynamics is described by the same
dynamics model reported in Subsection 2.7.
The resulting linearized system model is defined by a slightly modified form of Eq. 2.82

M ˙̄x = Fx̄+Gū (2.91)
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where the state vector is arranged as x̄ = [u; v;w; Φ;Θ;Ψ; p; q; r] and the input vector is
defined as ū = [θs0; θlc; θls; θa0], where θs0 and θa0 are the symmetric and antisymmetric
collective components:

θs0 =
θu0 + θl0

2
, θa0 =

θl0 − θu0
2

(2.92)

The matrix

M =



m 0 0 0 0 0 0 0 0

0 m 0 0 0 0 0 0 0

0 0 m 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 Ixx 0 0

0 0 0 0 0 0 0 Iyy 0

0 0 0 0 0 0 0 0 Izz


(2.93)

is the inertial matrix of the helicopter.
The matrices

F =



Xu Xv Xw 0 −mgCΘ̄ 0 Xp Xq − w̄ Xr + v̄

Yu Yv Yw mgCΦ̄CΘ̄ −mgSΦ̄SΘ̄ 0 Yp + w̄ Yq Yr − ū

Zu Zv Zw −mgSΦ̄CΘ̄ −mgCΦ̄SΘ̄ 0 Zp − v̄ Zq + ū Zr

0 0 0 0 0 0 1 SΦ̄TΘ̄ CΦ̄TΘ̄

0 0 0 0 0 0 0 CΦ̄ −SΦ̄

0 0 0 0 0 0 0 SΦ̄/CΘ̄ CΦ̄/CΘ̄

Lu Lv Lw 0 0 0 Lp Lq Lr

Mu Mv Mw 0 0 0 Mp Mq Mr

Nu Nv Nw 0 0 0 Np Nq Nr


,

G =



XS0 XLC XLS XA0

YS0 YLC YLS YA0

ZS0 ZLC ZLS ZA0

0 0 0 0

0 0 0 0

0 0 0 0

LS0 LLC LLS LA0

MS0 MLC MLS MA0

NS0 NLC NLS NA0



(2.94)
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are respectively the matrices containing the stability derivatives and the control derivatives
of the system.
[ū; v̄; w̄] are the the body-frame trim velocities and Φ̄ and Θ̄ are the trim roll and pitch
attitudes. All these trim values are equal to zero as seen before.

2.9.1. Stability derivatives

The stability derivatives of the system can be modeled taking the partial derivative of
dynamics equation respect to each state and substituting the trim parameters:

F =

[
∂f

∂x

]
x0,u0

=


∂f1
∂x1

... ∂f1
∂xn...

...
...

∂fn
∂x1

... ∂fn
∂xn


x0,u0

∈ R9×9 (2.95)

Defining: 

f1

f2

f3

f7

f8

f9


=



−TlowSaCb −mgSΘ − |Faero|X
TlowSb +mgSΦCΘ − |Faero|Y

−Tup − TlowCaCb +mgCΦCΘ − |Faero|Z
llowTlowSb +Kβb+ |Maero|X
llowTlowSaCb +Kβa+ |Maero|Y

Qup −Qlow + |Maero|Z


(2.96)

the parameters dependent stability derivatives of our model are expressed as:

Xu =

[
∂f1
∂u

]
x0,u0

= −
ρSx
√
Vprop

2

Xq =

[
∂f1
∂q

]
x0,u0

= −
ρSxZcp

√
V 2
prop

2

Yv =

[
∂f2
∂v

]
x0,u0

= −
ρSy
√
Vprop

2

Yp =

[
∂f2
∂p

]
x0,u0

=
ρSyZcp

√
V 2
prop

2

Zw =

[
∂f3
∂w

]
x0,u0

= −
ρSz
√
V 2
prop

2
−
ρSzV

2
prop

2
√
Vprop

Lv =

[
∂f7
∂v

]
x0,u0

=
ρSyZcp

√
V 2
prop

2

Lp =

[
∂f7
∂p

]
x0,u0

= −
ρSyZ

2
cp

√
V 2
prop

2

(2.97)

(2.98)

(2.99)

(2.100)

(2.101)

(2.102)

(2.103)
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Mu =

[
∂f8
∂u

]
x0,u0

= −
ρSxZcp

√
V 2
prop

2

Mq =

[
∂f8
∂q

]
x0,u0

= −
ρSxZ

2
cp

√
V 2
prop

2

Nr =

[
∂f9
∂r

]
x0,u0

=
ρCnrAzVprop

2

(2.104)

(2.105)

(2.106)

where

Vprop =

√
|Tlow|
2ρπR2

(2.107)

Note that we have reported only non-null derivatives.
Since not all physical parameters of Ingenuity were known from the available literature,
the goal was to evaluate them obtaining stability derivatives as close as possible to the
ones reported in [6] and ensuring then their validity. Looking at the expressions of the
stability derivatives, the assumed parameters known were ρ and Vprop (its numerical value
can be extrapolated from Eq. 2.107 in hovering condition); instead, the system parameters
to identify are the drag areas Si, the body coordinates of center of pressure (Xcp, Ycp, Zcp)
and the aerodynamic damping moment coefficient Cnr .
For example, from Eq. 2.97, the effective drag area Sx has been extrapolated knowing
the desired value Xu and substituting the other known parameters of the system

Sx = − 2Xu

ρ
√
Vprop

(2.108)

The same procedure has been followed for evaluate Sz, Zcp and Cnr.
Note that for the symmetry of the vehicle Sx = Sy and Xcp = Ycp = 0.
Substituting all the physical parameters of the system in the expression of stability deriva-
tives, the matrix F becomes

F =



−0.03 0 0 0 −7.54 0 0 0.005 0

0 −0.03 0 7.54 0 0 −0.005 0 0

0 0 −0.13 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 −0.005 0 0 0 0 −8.34e−4 0 0

0.005 0 0 0 0 0 0 −8.34e−4 0

0 0 0 0 0 0 0 0 −0.006
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2.9.2. Control derivatives

The evaluation of control derivatives is very important for the development of the control
system.
Their computation is similar to that of stability derivatives, but in this case each dynamics
equation is partially derived respect to each control input variable

G =

[
∂f

∂u

]
x0,u0

=


∂f1
∂us0

∂f1
∂ulc

∂f1
∂uls

∂f1
∂ua0...

...
...

...
∂fn
∂us0

∂fn
∂ulc

∂fn
∂uls

∂fn
∂ua0


x0,u0

∈ R9×4 (2.109)

Since the dynamics’ equations do not depend directly on cyclic control inputs but on
flapping angles, it is necessary first to rearrange Eq. 2.79.
At equilibrium one has {

a = Abb− AsB1 + AcA1

b = −Baa+BsB1 +BcA1

(2.110a)

(2.110b)

Substituting Eq. 2.110b in Eq. 2.110a leads to

a =
1

1 + AbBa

((AbBs − As)B1 + (AbBc + Ac)A1) (2.111)

and then

b =
1

1 + AbBa

((BaAs +Bs)B1 + (Bc −BaAc)A1) . (2.112)

Substituting Eqs. 2.111 and 2.112 in Eq. 2.96, the partial derivatives respect to cyclic
controls can be written as:

Xlc =

[
∂f1
∂θlc

]
x0,u0

= − 1

1 + AbBa

Tlow(AbBc + Ac)

Xls =

[
∂f1
∂θls

]
x0,u0

= − 1

1 + AbBa

Tlow(AbBs − As)

Ylc =

[
∂f2
∂θlc

]
x0,u0

=
1

1 + AbBa

Tlow(Bc −BaAc)

Yls =

[
∂f2
∂θls

]
x0,u0

=
1

1 + AbBa

Tlow(BaAs +Bs)

Llc =

[
∂f7
∂θlc

]
x0,u0

=
1

1 + AbBa

(Bc −BaAc)K

Lls =

[
∂f7
∂θls

]
x0,u0

=
1

1 + AbBa

(BaAs +Bs)K

(2.113)

(2.114)

(2.115)

(2.116)

(2.117)

(2.118)
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Mlc =

[
∂f8
∂θlc

]
x0,u0

=
1

1 + AbBa

(AbBc + Ac)K

Mls =

[
∂f8
∂θls

]
x0,u0

=
1

1 + AbBa

(AbBs − As)K

(2.119)

(2.120)

where K is a parameter including the effective spring constant Kβ , Tlow and llow .
On the other hand, the non-null derivatives respect to collective angles are:

Zs0 =

[
∂f3
∂θs0

]
x0,u0

= −AΩ
2R2ρσ

6
(Clα,up + Clα,low

)

Za0 =

[
∂f3
∂θa0

]
x0,u0

=
AΩ2R2ρσ

6
(Clα,up − Clα,low

)

Ns0 =

[
∂f9
∂θs0

]
x0,u0

=
AΩ2R3

6
(ρσλupClα,up − λlowClα,low

)

Na0 =

[
∂f9
∂θa0

]
x0,u0

= −AΩ
2R3

6
(ρσλupClα,up + λlowClα,low

)

(2.121)

(2.122)

(2.123)

(2.124)

In the previous expressions of control derivatives, not all system parameters are known;
in particular, ρ, A, Ω, R, σ and llow are known from literature (see Table 1.1). Tlow, λup
and λlow were previously evaluated for hovering condition (see Subsection 2.8.1). The
only unknowns are the parameters related to the flapping motion of the blades (Ab, Ba,
Ac, Bc, As, Bs), the parameter K and the bidimensional lift-curve slope for both rotors
(Clα,up and Clα,low

).
In order to evaluate the unknown parameters, a system of eight equations in seven un-
knowns is built imposing the expression of partial derivatives respect to cyclic controls
equal to the desired control derivatives (adjusting the signs according to the conventions
adopted for reference system).

−3.079n(AbBc + Ac) = [Xlc]d

−3.079n(AbBs − As) = [Xls]d

3.079n(Bc −BaAc) = [Ylc]d

3.079n(BaAs +Bs) = [Yls]d

nK(Bc −BaAc) = [Llc]d

nK(BaAs +Bs) = [Lls]d

nK(AbBc + Ac) = [Mlc]d

nK(AbBs − As) = [Mls]d

(2.125)
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where

n =
1

1 + AbBa

(2.126)

System 2.125 is solved using nonlinear least-squares methods implemented in MATLAB
function fsolve using as starting points the values expected from flapping dynamics deriva-
tion exposed in Section 2.5 (see results in Table 2.1).
Using the same procedure, the average value of Clα,up and Clα,low

is evaluated from Eqs.
2.121 and 2.122 (Table 2.2).
Substituting all rotor parameters in the expression of control derivatives, the matrix G

becomes

G =



0 −3.87 0.48 0

0 −0.76 −3.87 0

−42.39 0 0 −7.73

0 0 0 0

0 0 0 0

0 0 0 0

0 −1.19 −6.09 0

0 6.08 −0.75 0

0.044 0 0 −1.29


(2.127)

In a linearized model, forces and moments are instantaneous and proportional to the con-
trol inputs with a gain equal to the corresponding control derivative.
Matrix 2.127 shows clearly how rotor forces and moments along Z body-axis are pro-
portional only to collective inputs and, vice versa, forces and moments along X and Y

body-axis are proportional only to cyclic inputs.

Parameter Physical meaning

Ab = 0.6428 Coupling term
Ba = −0.1755 Coupling term
Ac = 1.4135 Coefficient multiplied for longitudinal cyclic control (Eq. 2.79b)
Bc = −0.4660 Coefficient multiplied for longitudinal cyclic control (Eq. 2.79a)
As = −0.6524 Coefficient multiplied for lateral cyclic control (Eq. 2.79b)
Bs = −1.2290 Coefficient multiplied for lateral cyclic control (Eq. 2.79a)
Kβ = 4.5680 Nm/rad Effective spring constant

Table 2.1: Flapping parameters derived from control derivatives
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Parameter Physical meaning

Clα,up = 1.2867 Bidimensional lift-curve slope for upper rotor
Clα,low

= 1.8606 Bidimensional lift-curve slope for lower rotor

Table 2.2: Rotor parameters derived from control derivatives

2.9.3. Comparison with Ingenuity

Since we want to have a dynamic behavior of our model comparable to that of Ingenuity
in the vicinity of the hovering point at low frequency and not all derivatives of model
match perfectly the numerical values reported in [6], the strategy adopted is to compare
the two systems using the MATLAB function gapmetric.
The function

[gap, nugap] = gapmetric(P1, P2) (2.128)

computes the gap and Vinnicombe (ν-gap) metrics for the distance between two dynamic
systems P1 and P2. The gap metric values satisfy 0 ≤ nugap ≤ gap ≤ 1. Values close to
zero imply that any controller that stabilizes P1 also stabilizes P2 with similar closed-loop
gains.
The result of this analysis is a gap between Ingenuity dynamic system and our model
dynamic system of 0.57.
Since the great influence on control system is given by the control derivatives of system, in
order to investigate the great gap obtained, it is necessary to look at the two G matrices
of the systems

GIngenuity =



0 −3.84 0.37 0

0 −0.74 −3.91 0

−42.39 0 0 −7.73

0 0 0 0

0 0 0 0

0 0 0 0

0 −1.20 −6.06 0

0 6.10 −0.82 0

0 0 0 −4.81


, (2.129)
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Gmodel =



0 −3.87 0.48 0

0 −0.76 −3.87 0

−42.39 0 0 −7.73

0 0 0 0

0 0 0 0

0 0 0 0

0 −1.19 −6.09 0

0 6.08 −0.75 0

0.044 0 0 −1.29


(2.130)

As shown in Eq. 2.130, the great difference between the two matrices is given by the
numerical value of control derivative Na0 (the term contoured in red); this is about four
times smaller respect the value reported in Ingenuity’s scientific paper.
This can be explained looking at the expression of Na0

Na0 = −AΩ
2R3

6
(ρσλupClα,up + λlowClα,low

) (2.131)

it appears clearly that a great contribution is given by the value of λlow at equilibrium;
this strictly depends on the considerations carried out in hovering condition, in particular
in term of thrust ratio and assumptions adopted (see Subsection 2.8.1).
Since we are mostly interested in control the position of the UAV, we can neglect the
difference between Na0 values and the gap between the two dynamics systems is reduced
to 0.02.
The only parameter left to be identified is the rotor time constant τf ; this coefficient has
been chosen so that the first frequency of our model is the same of the one reported in
literature for Ingenuity demonstration vehicle, in which the first frequency is about 12 Hz
[5]. As shown in Fig. 2.10, the open-loop poles of the complete hover dynamics of the
demonstration vehicle (including rotor dynamics) have been plotted once identified τf ; as
expected from the high stiffness of the rotors, the poles related to flapping dynamics (the
two complex poles on the left of the graphic at a frequency above 10 Hz) are located far
from the poles of the low-frequency dynamics.
The responses in open loop of our model’s rotor system to collective and cyclic step
inputs are shown in the following figures. In particular, Fig. 2.11 illustrates the response
of vertical force to symmetric and antisymmetric collective step inputs: three-second steps
of 2 deg in the asymmetric collective (negative, then positive) are followed by three-second
steps of 2 deg in the symmetric collective (positive, then negative).
Fig. 2.12 shows the responses of roll and pitch torques to steps in the cyclic channels:
three-second steps of 5 deg in θ1c (positive, then negative) are followed by similar steps
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Figure 2.10: Poles of the complete dynamics of the demonstration vehicle

in θ1s. The responses obtained are close to those of the real system as reported in [6].
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Figure 2.11: Open loop response of vertical force to steps in the collective channels
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Figure 2.12: Open loop response of roll and pitch torques to steps in the cyclic channels
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The linearized model presented in the previous chapter is now used to develop control
laws for the position and attitude control of the Mars helicopter.
The development of the control system starts with the implementation of the linear control
system taken from baseline by replicating the architecture proposed in the literature [5]
for Ingenuity; this is useful to see the responses of our model to simple commands and its
behavior near hovering conditions. Limitations of the linear architecture are highlighted
when considering large maneuvers and large magnitude disturbances.
After deriving a suitable nonlinear-control oriented model for the Mars Helicopter, the
design of a nonlinear control architecture leads to an improvement of results far from
hovering point and to the possibility of making the UAV follow more complex trajectories.
Beyond the complex and uncertain nonlinear dynamics, one of the main challenges in
deriving control laws for the system under consideration is the underactuation, which is
clearly visible by inspecting the input matrix G, which has rank 4.

3.1. Baseline controller

The overall baseline control architecture, as presented in [5], is illustrated in Fig. 3.1,
which mirrors typical cascade control architectures used also on Earth form small scale
helicopters.
The main blocks are:

1. Heave controller based on a PID-type controller

2. Yaw angle controller based on a PID-type controller

3. Horizontal position controller is composed by a nested architecture. An inner
loop is formed by independently controlling roll and pitch with PD-type controllers.
Input to the inner loop is set by an outer loop, which is formed by controlling the
horizontal position using PID-type controllers. The horizontal position is repre-
sented in a local ground frame, whereas the roll and pitch angles are the angles of
the body frame relative to gravity; therefore, the output of the outer loop is rotated
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by the yaw angle before being used as a reference by the inner loop.

4. Mixer to decouple control inputs

5. Plant which contains all dynamics equations taking as inputs the cyclic and collec-
tive controls and giving in output the states of the system

As mentioned above, the baseline controller proposed in the literature [5] is based on
a simplified model that accounts only for large rotations about the z-axis. Specifically,
based on the nonlinear translational model (including only the propulsive force)

mv̇x = (cos(ϕ)sin(θ)cos(ψ) + sin(ϕ)sin(ψ))Tc

mv̇y = (cos(ϕ)sin(θ)sin(ψ)− sin(ϕ)cos(ψ))Tc

(3.1a)

(3.1b)

assuming near hovering conditions lead to

m

[
v̇x

v̇y

]
= −mg

[
cos(ψ)sin(ψ)

−cos(ψ)sin(ψ)

][
θ

ϕ

]
= −mgT (ψ)

[
θ

ϕ

]
(3.2)

To control the (underactued) translational motion, one can use the roll and pitch angles
as virtual inputs, given that the attitude dynamics is fully actuated. Setting θ = θv,
ϕ = ϕv, since matrix T (ψ) is invertible, it is possible to decouple the two equations by
using [

θv

ϕv

]
= T (ψ)−1

[
θ̃v

ϕ̃v

]
(3.3)

so that

mv̇x = −mgθ̃v
mv̇y = −mgϕ̃v

(3.4a)

(3.4b)
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Figure 3.1: Baseline control architecture (SIMULINK representation)

Figure 3.2: Nested architecture for horizontal position controller

3.1.1. Input mixing

The first step for the design of control system is the selection of collective and cyclic
mixing matrices to decouple control inputs.
For control of heave and yaw, the mixing matrix Mcol is selected such that[

θs0

θa0

]
=M−1

col

[
δz

δψ

]
(3.5)
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where δz and δψ are respectively the heave-aligned input and yaw-aligned input.
Eq. 3.5 is verified for a mixing matrix defined as:

Mcol =

(
Zs0 Za0

Ns0 Na0

)
(3.6)

where Zs0, Za0, Ns0 and Na0 are the control derivatives evaluated during linearization as
partial derivatives of dynamics equations respect to collective angles (third row and ninth
row of matrix 2.127).
The mixing matrix Mcyc for roll and pitch control has been selected in a similar way:[

θlc

θls

]
=M−1

cyc

[
δp

δq

]
(3.7)

where δp and δq are respectively the roll-aligned input and pitch-aligned input.
The mixing matrix Mcyc is

Mcyc =

(
Llc Lls

Mlc Mls

)
(3.8)

where Llc, Lls, Mlc and Mls are the control derivatives evaluated during linearization as
partial derivatives of dynamics equations respect to cyclic angles (seventh row and eighth
row of matrix 2.127).

3.1.2. Control requirements and tuning

Once the system has been decoupled into several subsystem thanks to the mixing, the
next step is the design of each single PID- and PD-type controllers according to the ar-
chitecture described above.
The first tuning is performed taking the same control architecture illustrated in Fig. 3.1
and considering as plant the linearized system model expressed in Eq. 2.91; this procedure
allows to have a simple design of controllers and to obtain good results for nonlinear case
near equilibrium point.
Since the mixer allows to obtain heave and yaw dynamics that are decoupled from each
other and, due to the values of other stability and control derivatives in hover, the rest of
the system, for both heave and yaw, PID-type controllers can be designed with relative
ease.
Basing on stability analysis carried out by [5], for the heave loop, a controller with
crossover frequency of 1.2 Hz was designed, with stability margins of 15.5 dB and 60◦.
For the yaw loop, a controller with crossover frequency of 1.9 Hz was designed, with sta-
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bility margins of 10.2 dB and 58◦.
The cyclic inputs, coming out from the mixer, will result in pure roll and pitch moments
according to the model, although coupling still exists due to the stability derivatives and
the translational control derivatives; this coupling leads, together with the nested archi-
tecture, to a more complex design of controllers for roll and pitch.
The inner loop is designed by eliminating the translational degrees of freedom and de-
signing for the system restricted to roll and pitch.
The inner loop has a crossover frequency of 2.6 Hz and exhibits margins of 9.3 dB and
60◦ [5].
The outer loop is designed by closing the inner loop and treating the pitch angle as the
control input for longitudinal translational control and the roll angle as the control input
for lateral translational control.
The outer loop has a crossover frequency of 0.3 Hz, with margins of 15.6 dB and 56◦.
The robustness of the resulting system has been checked performing first the Nichols
charts for each loop, introducing a perturbation at each channel independently.
For heave and yaw loop, the plots are reported in Figs. 3.3 and 3.4 together with the
values of minimum stability margins.

Figure 3.3: Nichols chart for heave loop

Figs. 3.3 and 3.4 show that the curve of the magnitude-vs-phase plot is always far from
the critical point and from the minimum requirements for stability (defined as margins of
6 dB and 30◦ [5]) meaning a good robustness of the system to perturbations.
Moreover, the curve of the magnitude-vs-phase plot passes only above the critical point
meaning that a reduction in gain will reduce the gain margin and eventually destabilize
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Figure 3.4: Nichols chart for yaw loop

the system.
As seen for heave and yaw loop, the Nichols charts for inner pitch loop and outer longi-
tudinal translation loop have been investigated (Figs. 3.5 and 3.6).

Figure 3.5: Nichols chart for inner pitch loop

Looking at Figs. 3.5 and 3.6, similar considerations done for heave and yaw loop can be
made with the only difference for Nichols chart of outer longitudinal translation loop in
which the curve of the magnitude-vs-phase plot passes both above and below the critical
point, which means that both an increase and a reduction in gain will reduce the gain
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Figure 3.6: Nichols chart for outer longitudinal translation loop

margin and eventually destabilize the system.
Ideally, the sequential design process outlined above would be adequate for designing the
nested controller. However, it is possible to design a controller with good stability mar-
gins both for the inner loop (with translational dynamics eliminated) and the outer loop
(with the inner loop closed) that nevertheless reveals inadequate margins when the loop
is opened up at the input point with both controllers in place, as illustrated in Fig. 3.7.

Figure 3.7: Stability is studied by opening the plant at the input point, while leaving the
roll/pitch and horizontal translation controllers in place.

Fig. 3.8 shows the Nichols chart for the pitch/longitudinal translation axis when opened
at this point. The curve of the magnitude-vs-phase plot remains far from the critical
point ensuring the robustness of the system also in this condition.
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Figure 3.8: Nichols chart for the pitch and longitudinal position control loop, when
opened at the input point to the plant

Due to the couplings that exist between the pitch/longitudinal translation loop and the
roll/lateral translation loop, stability must also be studied in a MIMO sense.
This is done using multiloop disk margins, an analysis technique based on the structured
singular value that can be used to quantify the largest complex perturbations that can
be injected at the input point to the plant, simultaneously and independently in each
channel. The perturbation takes the form of a disk in the complex plane (Fig. 3.9).

Figure 3.9: MIMO disk margins

The plot has been realized using MATLAB functions diskmargin and diskmarginplot and
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it identifies gain margins of [0.55 1.8] and phase margins of [−32◦ 32◦].
Once the linear control system has been tuned, in order to check the performance of the
control law, simulations with the linear plant have been performed considering as reference
states small step signals.
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Figure 3.10: Time history of NED position (dashed lines are the desired values)

0 10 20 30 40 50 60 70

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 3.11: Tracking error of NED position

In Fig. 3.10, it is shown the response of the linear model on the x, y, z axes to a step of
−0.1 m (with sample time of 1 s) on the desired heave and of 0.1 m (with sample time of 20
s) on the desired longitudinal position. The results are satisfactory, with small overshoots
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and settling times, showing the good performances of the linear position controller when
the system operates near hovering condition.
A similar simulation can be conducted in order to check the validity also of the linear
attitude controller; in this case, the response of the system to a step of 0.1 rad on the
desired yaw angle is studied.
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Figure 3.12: Time history of roll, pitch and yaw angles (dashed lines are the desired
values)
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Figure 3.13: Tracking error of attitude

Looking at Fig. 3.12, we can do the same considerations carried out for the previous
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simulation with a convergence of the yaw angle to zero in about 1.5 s. This result is
consistent with the tuning since the required bandwidth for the system was of about 1.9

Hz.

3.1.3. Validation on the nonlinear plant

The designed control system is then paired with the nonlinear model described by Eq.
2.78.
The system is simulated under the same conditions of the previous linear case and consid-
ering the same reference states; this in order to check that the responses of the nonlinear
model are the same of that linear near hovering point.
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Figure 3.14: Time history of NED position (dashed lines are the desired values)

Fig. 3.14 is very similar to Fig. 3.10 with the only difference in slightly higher settling time
on x axis and higher coupling between axis due to introduction of saturation; therefore,
the results of this simulation confirms that the nonlinear model shows the same responses
of the linear system in term of position when we operate near design condition.
The same considerations can be done in term of attitude control looking at Fig. 3.16;
the response on yaw angle has the same time of convergence as in Fig. 3.12 but with a
slightly higher overshoot and with some oscillations due to nonlinearites of the system
and residual couplings between axis.
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Figure 3.15: Tracking error of NED position
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Figure 3.16: Time history of roll, pitch and yaw angles (dashed lines are the desired
values)
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Figure 3.17: Tracking error of attitude

Then, the baseline controller has been tested far from the design condition considering
great steps ( 2 m on x axis and −3 m on z axis). As illustrated in Fig. 3.19, the linear
controller does not work well showing great overshoots and settling times. Moreover, as
shown in Fig. 3.18, the control inputs are saturated at the point in which the step occurs
(for Ingenuity the cyclic angles can range ±10◦ and the collective angles can range from
−4.5◦ to 17.5◦). These results confirm the bad behavior of the linear control law when
the nonlinear system operates far from the hovering condition. To overcome this issues,
it is necessary to implement a nonlinear controller.
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Figure 3.18: Time history of control inputs
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Figure 3.19: Time history of NED position (dashed lines are the desired values)
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Figure 3.20: Tracking error of NED position
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Another example of the bad behaviour of the linear control system far from the design
point is shown in Fig. 3.21: it illustrates the longitudinal position response to a constant
horizontal wind of magnitude 10 m/s (maximum horizontal wind at which the Mars
Helicopter operates) applied throughout the simulation time, with a very great peak of
approximately 0.78 m.
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Figure 3.21: Step response of longitudinal position to a constant wind of magnitude 10

m/s along the x axis
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Figure 3.22: Pitch response to a constant wind of magnitude 10 m/s along the x axis



76 3| Vehicle control system

3.2. Nonlinear controller

In order to improve the results already obtained, a nonlinear control architecture is intro-
duced.
The chosen control architecture shown in Fig. 3.23 consists of two nested parts. The
outer position loop computes the total thrust to be generated by rotors and the roll and
pitch angles required to get this thrust. The inner loop controls the attitude of the UAV
using the moments generated by the propellers and the desired yaw and the computed
roll and pitch as set-points instead.

Figure 3.23: Control block diagram

3.2.1. Mathematical model

The starting point of the nonlinear control design is the building of an enlarged system
that include also the dynamic of the rotation matrix R ∈ SO(3), describing the attitude
of UAV; the resulting system is represented in inertial frame with the centre of mass
coincident with the origin of the body frame.
Recalling Eqs. 2.78 and 2.79, the position dynamics can be written as

ẋ = v

mv̇ = −mge3 + TupRnup(aup, bup) + TlowRnlow(alow, blow) + fe(x, v, ...)
(3.9)
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where

ni =

−SaiCbiSbi
−CaiCbi

 i ∈ (up, low),

e3 =

00
1


fe = aerodynamic drag and unmodelled exogenous terms

(3.10)

and the attitude dynamics

Ṙ = Rω̂

Jω̇ = −ω̂Jω + llowe3 × Tlownlow +Kβ

blowalow

0

+ lupe3 × Tupnup

+Kβ

bupaup
0

+ (Qup −Qlow)e3 + τe

(3.11)

where τe are the aerodynamics effects and unmodelled exogenous terms.
Including all terms treated as disturbances inside τe, the Eq. 3.11 can be rewritten as:

Ṙ = Rω̂

Jω̇ = −ω̂Jω + llowe3 × Tlownlow +Kβ

blowalow

0

+ (Qup −Qlow)e3 + τe
(3.12)

If we consider alow and blow small enough, the expression of nlow can be rewritten as

nlow ≈

−alowblow

1

 (3.13)

leading to

llowe3 × Tlownlow ≈ Tlowllow

blowalow

0

 (3.14)
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The total control torque components along roll and pitch axis are

Lc = (Tlowllow +Kβ)blow

Mc = (Tlowllow +Kβ)alow
(3.15)

Assuming steady state conditions for the rotor dynamics and neglecting the influence of
p, q (acceptable near hovering condition)[

blow

alow

]
=M−1

cyc

[
θlc

θls

]
(3.16)

where Mcyc is the mixing matrix defined in Eq. 3.8.
In near hovering conditions, Tlow ≈ Tlow,0 and we can write[

Lc

Mc

]
=Mcyc

[
θlc

θls

]
(3.17)

where

Mcyc = (Tlow,0llow +Kβ)M
−1
cyc (3.18)

Mcyc is invertible and Lc, Mc can be used to control roll and pitch axis motion.
The yaw torque is expressed as

Nc = Qup −Qlow (3.19)

and near hovering conditions is related to the asymmetric collective input as follow

Nc ≈
∣∣∣∣ ∂

∂θa0
(Qup −Qlow)

∣∣∣∣
x0,u0

θa0 (3.20)

Going back to the position dynamics and substituting the previous assumptions in Eq.
3.9

mv̇ = −mge3 + TupR


−aupbup

0

− e3

+ TlowR


−alowblow

0

− e3

+ fe (3.21)

Remarking that cyclic inputs terms become disturbances for the position dynamics (input
coupling effect), Eq. 3.21 becomes

mv̇ = −mge3 + TcRe3 + f̃e (3.22)
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where f̃e includes the terms related to alow, blow, aup ... and Tc = Tup + Tlow.
Tc can be written in approximate way as

Tc ≈
∣∣∣∣ ∂

∂θs0

∣∣∣∣
x0,u0

θs0 (3.23)

The final model in inertial frame becomes

ẋ = v

mv̇ = −mge3 + TcRe3 + f̃e

Ṙ = Rω̂

Jω̇ = −ω̂Jω + τc + τe

(3.24)

with the allocation matrix 
θs0

θa0

θlc

θls

 =

(
M−1

col

M−1
cyc

)
Tc

Lc

Mc

Nc

 (3.25)

3.2.2. Control design

Considering Eq. 3.25, it is possible to use Tc and τc ∈ R3 as variables for control design
purposes, representing a desired control thrust and torque, respectively.
We can consider a nonlinear cascaded controller for position-yaw setpoint regulation; in
particular, the control architecture corresponds to a double cascade P/PID nonlinear
controllers for position and attitude control with a planner in the middle (see Fig. 3.24)
[12]:

fdc = sat(PIx(s)(k
0
p,x(x− xd)− v)) +mge3 (3.26)T

d
c = ||fdc ||

Rp =
[

bp3×bd1
||bp3×bd1 ||

× bp3
bp3×bd1

||bp3×bd1 ||
bp3

]
, bp3 =

fdc
||fdc ||

(3.27)

τ dc = PIR(s)(ω
d(Kp,R(R

T
pR)− ω)−DR(s)ω (3.28)

where
PI(.)(s) = Ki

p,(.) + kii,(.)
1

s

D(.)(s) = kid,(.)N
i
(.)

Ns

s+N

(3.29)
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are continuos functions defining, respectively, a proportional integral and (filtered) deriva-
tive actions, k(.)(.,.) ∈ R>0 are scalar gains while Kp,R ∈ R3x3

>0 is a diagonal matrix and
N

(i)
(.) ∈ R>0 is the filter time constant; xd ∈ R3 is the position setpoint; the rotation

matrix Rp ∈ SO(3) is the reference signal to be tracked by the attitude controller (Eq.
3.28) and corresponds to a reference frame having the third axis bp3 aligned with the
force required for position stabilization (fdc in Eq. 3.26) while the other two axes of
the frame are assigned by a rotation about bp3 , that accounts for a desired yaw angle

(Ψd ∈ R) through the unit vector bd1 =
[
cos(Ψd) sin(Ψd) 0

]T
, which represents the

desired (inertial) heading direction;

ωd(Kp,RR
T
pR) = 2Kp,Rsgn(qe(Rp))qe(Rp) (3.30)

is a nonlinear proportional stabilizer assigning the reference velocity to the inner-loop
attitude PID controller, with qe(Rp) ∈ R and qe(Rp) ∈ R beeing the vectorial and the
scalar part of the quaternion error qe ∈ S3.

Figure 3.24: Controller implementation

For the position controller, a saturated PI has been implemented; this is necessary for two
reasons: first, to simulate the limited capabilities of the rotors; second, to avoid singularity
in the rotation matrix Rp ∈ SO(3). Looking at Eqs. 3.26 and 3.27, singularity can be
avoided imposing that the desired control thrust T dc must be always positive and lower
than the gravitational force: this is achieved, in our case, limiting the output of PIz in
the range of ±mg

2
.

Nevertheless, the introduction of saturation may ruin the performance of the closed loop
system, from degraded transients to instability when the system operates far from the
hovering condition. This phenomena is called windup effect and it can be mitigated with
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the implementation of a proper anti-windup technique. For our nonlinear controller, the
back calculation method has been used which involves the use of extra feedback path from
the error between the controller output u and the plant input û = sat(u) trough a gain
1
τt

(for PI controllers the back calculation constant is set as τt = τi; see Fig. 3.25) [8].

Figure 3.25: AW back calculation for a general PI controller

3.2.3. Tuning

The great advantage of the nonlinear control architecture presented in Subsection 3.2.2 is
the capability to manage great displacements of the nonlinear system without limitations
in the gains assigned to the controllers.
Even if there are not systematic tuning methods for nonlinear controllers, it is possible, for
our case, to tune the controllers in order to follow local desired performances without losing
global stability of the system. In this way, a linearized version of the control architecture
was used to carry out tuning of the gains. This allows to resort to the systematic tuning
method used for baseline controller (Subsection 3.1.2). Therefore, the controllers have
been tuned in order to achieve the same performance requirements identified for the
baseline.
As for the linear control system, if the inner loop for both position and attitude control
is fast enough, it is possible to choice arbitrarily gains for the outer loop; this because
the inner loop becomes like an identity capable to follow any reference within a certain
bandwidth. For the proportional controllers of position, the gains have been imposed
equal to the crossover frequencies of the outer horizontal position loop and heave loop
of baseline control architecture (0.3 Hz and 1.2 Hz, respectively); for the proportional
controllers of attitude, the gains have been imposed equal to the crossover frequencies
of the inner roll/pitch loop and yaw loop of baseline control architecture (2.6 Hz and
1.9 Hz, respectively). The inner loop PID controllers have been tuned on the linearized
dynamics system in order to be at least two times faster than the respectively outer loop
P controllers.
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4| Vehicle simulation

In this chapter the simulated results obtained using the previously developed nonlinear
control architecture is presented.
A first introduction to the SIMULINK simulator built is provided at the beginning. Then
the nonlinear control law is tested first near hovering condition (carrying out the same
simulations done in Subsection 3.1.2) and later, it is tested far from the design point in
order to study the responses of the system to great signals.

4.1. UAV simulator

The main block of the simulator is of course the Mars helicopter model. It is based on
the equations in Subsection 2.7 plus some additions that can be seen in Fig. 4.2. The
position in output is expressed in inertial frame and the attitude in form of quaternions.
The yellow block in Fig. 4.1 contains the implemented nonlinear control architecture
described in Section 3.2 that computes the required thrust and moments in order to
follow the desired trajectory generated by set point generator function. Before entering
the Ingenuity block, the control signals are sent to the mixer described by Eqs. 3.5 and
3.7 giving in output the collective and cyclic controls.

Figure 4.1: UAV simulator implemented in SIMULINK
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Figure 4.2: Simulator of the UAV dynamics

4.2. Simulations near hovering point

The system is simulated around hovering conditions considering as reference states the
same small step signals implemented at the end of Subsection 3.1.2.
In order to test the position control law, a step of −0.1 m (with sample time of 1 s) on
the desired heave and of 0.1 m (with sample time of 20 s) on the desired longitudinal
position has been considered. The results are illustrated in Fig. 4.3 showing a behaviour
similar to that of linear case but with smaller overshoots and settling times validating the
good performances of the nonlinear control architecture implemented. Moreover, the axis
appear completely decoupled.
The attitude control law has been tested in the same way considering a step of 0.1 rad on
the desired yaw angle. Also in this case, the response is very clean and fast with a time
of convergence to the desired value less than 1 s and a null overshoot (see Fig. 4.5).
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Figure 4.3: Time history of NED position (dashed lines are the desired values)
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Figure 4.4: Tracking error of NED position
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Figure 4.5: Time history of roll, pitch and yaw angle (dashed lines are the desired values)
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Figure 4.6: Tracking error of attitude
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4.3. Simulations out of design conditions

Once verified that the nonlinear control system implemented works as expected near equi-
librium point, simulations far from hovering condition have been carried out.
A first simulation has been done considering a step of 2 m on the desired longitudinal po-
sition and a smooth step of −3 m on the desired heave in order to achieve a high altitude
not too aggressively.
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Figure 4.7: Time history of NED position (dashed lines are the desired values)
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Figure 4.8: Tracking error of NED position
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As illustrated in Fig. 4.7, the system responses very well also out of design condition
showing the same local desired performances and stability. Moreover, even if the rotors
reach saturation, the longitudinal position response follows well the desired trajectory
validating the good performances of the anti-windup system implemented.
A second simulation is carried out in order to show the difference between the linear base-
line controller and the nonlinear controller when a constant horizontal wind of magnitude
10 m/s is applied throughout the simulation time; in Fig. 4.9, the longitudinal position
response reaches a peak of only 0.033 m, much smaller than the peak of 0.78 m shown in
Fig. 3.21. This result ensures the stability of the system developed in presence of external
perturbations.
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Figure 4.9: Step response of longitudinal position to a constant wind of magnitude 10
m/s along the x axis

The simulation in Fig. 4.12 replicates a flight test performed by Ingenuity inside the JPL
25-ft Space Simulator; the system stays on the ground for about 20 s before reaching the
desired altitude of 3 m at a rate of 1 m/s. Then, it stays in hover for 30 s before going
back to the ground with the same rate of ascent. As shown in Fig. 4.13, the error is very
small (in the order of 10−3 m during climb and descent phases). The test has been carried
out in absence of wind.
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Figure 4.10: Pitch response to a constant wind of magnitude 10 m/s along the x axis
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Figure 4.11: Force to be applied along x axis in order to compensate the presence of wind
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Figure 4.12: Time history of NED position during climb and descent operation
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Figure 4.13: Tracking error of NED position during climb and descent operation
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A final simulation has been run in order to reproduce a typical Ingenuity’s operation on
Mars similar to the one illustrated in Fig. 1.13. The UAV after 5 s on the ground reaches
the altitude of 3 m at a rate of 1 m/s. At constant height, the system translates laterally
until it reaches the cartesian coordinates (0, 20, 3) m. Then, it moves along longitudinal
axis for 10 m before going back to initial point following the same specular flight path.
The operation takes 90 s, maximum flight time in which the batteries provide energy.
Longitudinal and lateral translations occur at the same rate of ascent (1 m/s), velocity
needed to take clear images of the ground.
In Fig. 4.16, a 3D representation of the trajectory followed by the Mars helicopter is
plotted in cartesian coordinates. The red point indicates the initial and final position of
the UAV and the arrows specify the direction of the path.
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Figure 4.14: Time history of NED position during Mars operation
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Figure 4.15: Tracking error of NED position during Mars operation

Figure 4.16: 3D plot of the flight path followed by the helicopter
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The previous test has been carried out also in the presence of a three-second horizontal
gust of magnitude 10 m/s applied at time t = 42 s. The results, illustrated in Figs. 4.17
and 4.18, show a small peak of displacement along the x axis due to wind, validating
the robustness of the designed nonlinear control law even in the presence of external
disturbances.
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Figure 4.17: Time history of NED position during Mars operation in presence of a
horizontal gust
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Figure 4.18: Tracking error of NED position during Mars operation in presence of a
horizontal gust
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In order to highlight the differences between the nonlinear controller and the baseline
controller, the same previous maneuver has been carried out using the linear controller.
The results are shown in Figs. 4.19 and 4.20.

Figure 4.19: Time history of NED position during Mars operation in presence of a
horizontal gust and using the linear controller
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Figure 4.20: Tracking error of NED position during Mars operation in presence of a
horizontal gust using the linear controller
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5| Conclusions

In the presented thesis, a nonlinear dynamic model of the Mars helicopter has been de-
rived for simulation purposes and for the preliminary validation of nonlinear control laws.
While simple, the parameters of the nonlinear model could be tuned to achieve a behavior
very similar to the demonstrator vehicle of the Mars Helicopter in near hovering condi-
tions, by exploiting identification experiments reported in the literature. The analysis
and the open loop simulations conducted have tested the correct working of our model
showing a similar behavior to the that of Ingenuity demonstrator.
In the second part of the thesis, the control system has been developed starting with the
implementation of a linear controller obtained by replicating the architecture proposed
in literature for Ingenuity and following with the development of the proposed nonlinear
controller based on additional simplifications of the nonlinear model. Both controllers
have been tuned properly checking their performances through linear stability analysis as
Nichols charts and MIMO disk margins.
The numerical simulations carried out have shown good results of the baseline controller
when the system operates near hovering condition, but deteriorated performance far from
it. The implementation of a nonlinear control law has improved the system performance
far from hovering and has made the UAV capable of following more complex trajectories.
As future work, a more accurate model of the Mars Helicopter could be developed includ-
ing the higher-order terms discarded in the rotor dynamics and incorporating a detailed
inflow evaluation for both rotors taking in account a radial distribution of the blade pitch
angle and of the inflow.
The control system developed could be tested for aggressive maneuvers verifying its sta-
bility and robustness under these conditions. The cyclic control could be applied also on
the upper rotor, as in the real system, leading to a improvement of control authority and
to a reduction of cross-axis coupling. Moreover, a comparison between results obtained
with the proposed nonlinear controller and with other nonlinear control laws could be
carried out in order to select the most suitable controller for our model.
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