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Abstract

The scientific interest in the exploitation of Lagrangian points orbits has increased
in the last decades. The requirement of precise station-keeping for the unstable
motion of Halo orbits has brought many control techniques. In addition, the use of
Cubesats has the potential to reduced mission cost. The primary task of a space
mission is subject to its scientific requirements, which are not generally considered
by the classical control schemes. For example, optimal controls typically aim to
minimize fuel and tracking error, it may also be desirable to maximise the time at
which science can be undertaken. Moreover, during station-keeping maneuvers it may
not be possible to perform the science, since the thrust-vectoring required may be in
a different direction to the payload pointing requirement. This thesis presents the
development of controls that are able to combine stable station-keeping and maximize
the time where no control is required. The Elliptical Restricted 3-Body Problem and
a simple Linear Quadratic Regulator are introduced, capable of providing continuous
control. This classic control algorithm is augmented to include impulsive control,
coupled with different strategies. The performance of these strategies is analysed
with respect to delta-V, tracking error and time for science.
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Chapter 1

Introduction

1.1 Motivation

The orbits around Lagrangian points have attracted the mission analyst because they
provide natural orbits of strategic importance, with theoretically fuel-free trajecto-
ries. However, due to their inherent instability, they require station-keeping. The
existence of Lagrange points in the restricted three body problem has been known
since the mid-eighteen century. The real importance of these special locations in the
solar system became clear in the Space Age of 1960’s. It was immediately evident
that several missions could be accomplished only by the use of these points. The
first space mission that placed a spacecraft in a Lagrange point was the Interna-
tional Sun-Earth Explorer-3 (ISEE-3), whose selected location was the Sun-Earth
L1 point, a suitable location for an obstructed view of the Sun. Scientific missions
where instead its presence was undesirable where placed in the L2 points, such as the
Wilkinson Microwave Anisotropy Probe (WMAP). In the Earth-Moon system, the
L2 point provides a suitable place for continuous relay communication, a feature that
have been exploited by the Chang’e 4 mission through the Queqiao relay satellite.
A future mission that would exploit this point for scientific purpose is the Lunar
Meteoroid Impact Observer (LUMIO), thanks to the continuous and unobstructed
view of the Moon far side. The L1 Earth-Moon Lagrange point is instead a suitable
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location for a space station and Nasa is currently developing the Lunar Gateway,
whose final orbit will be a highly elliptical near-rectilinear halo orbit.

As miniaturization technology is improving [22], it seems beneficial to use the
newly developed Cube-sat standard. The advantage of such technology, starting
from lower price and reliability requirements, is that a Cube-Sat could have a ride-
share with a bigger and more complex payload, therefore with no need to define a
separate mission.

Of course, it is expected that a Cube-sat mission would mostly be dedicated
to its scientific payload, which may have specific requirements about pointing and
time schedule. It is therefore mandatory that the Cube-sat is able to meet said
scientific requirements, while also being able to maintain its given orbit through
station-keeping maneuvers.

It is therefore clear that a continuous control algorithm, which would be contin-
uously active, can not provide spare time for its scientific mission.

1.2 Problem Statement

Scope of the thesis is to find, study and assess the performance of different con-
trol algorithms and strategies in order to reduce the portion of mission time dedi-
cated to station-keeping procedures in L2 halo orbits, with the application of current
propulsion technologies for miniaturized spacecrafts, namely chemical and electric
propulsion.

In order to understand the problem definition for this mission, a brief review
about the circular restricted three-body problem is firstly given. With this problem
setup, a linear quadratic regulator (LQR) is introduced together with different control
strategies to achieve impulsive control and suitably long windows of no station-
keeping maneuvers.

In order to develop a more realistic scenario, it has been chosen to introduce in
the simulation the data related to two commercially available thruster, a chemical
and an electric one, in the form of available thrust. The choice of two different
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propulsion unit is not meant to compare the two propulsion technologies but to find
the suitable control algorithms that better suit the particular thruster.

1.3 Previous Work

Centuries ago Euler, Lagrange, and Jacobi introduced the dynamics of the La-
grangian points. The Jacobi integral forms an important part for a discussion of
the transfer trajectories to these locations from Earth and vice-versa.

In the 1960s, Steg and Michael provided analysis of the stability of triangular
regions studying the motion of a particle placed at the Earth-Moon L4 location. They
investigated the influence of third body perturbations and extended it to the elliptical
lunar orbit. However, due to the limitation of numerical calculus at the time, the
search of periodic orbits was significantly limited and it was believed by Forest and
Moulton that certain periodic solutions are practically impossible to compute. With
the invention of computers and calculators such concern was gone, and numerical
procedures paved the way for several types of periodic solutions.

Poincarè first indicated periodic solutions as the primary mean of understanding
the CR3BP [20][39]. Howell and Keeter [25] also studied the orbits in these loca-
tions of E-M system. Many periodic orbits have been successfully exploited for space
mission applications in both the Sun-Earth and Earth-Moon [24] system. Catalogs
of quasi-periodic orbits have been compiled to better understand the dynamical be-
haviour [23] and guide the mission design within the context of a given three-body
system. Farquhar [11] and Hoffman provided analysis and discussion of stability and
control of the Earth-Moon co-linear L2 and L1 locations, respectively, in a classical
control theory. Howell and Folta [15] detailed an analysis of transfers between the
Sun-Earth locations and the Earth-Moon locations. The effects of the various per-
turbation with respect to orbits in the vicinity of moon were studied by Martin T.
Ozimek [36] in his PhD dissertation. Later, Wong, Patil and Misra detailed about
the effects of gravity torque along Lagrangian point orbits for a single, rigid vehicle in
the Sun-Earth system [50]. Howell identified the initial conditions for periodic orbits
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around Lagrangian point. This was followed by Folta [15] where he has dealt with
Earth-Moon Lagrangian station-keeping. Gordon [18] aid in the numerical procedure
for the station-keeping methodologies around Lagrangian point trajectories includ-
ing error analysis. Grebow identified the important orbits and the station-keeping
requirements for the particular case of south pole coverage [19].

The full three-dimensional coupled motion was explored by Knutson and Howell
[28] for a multiple spacecraft flight in non-linear Lyapunov and halo reference orbits.
Periodic solutions are typically generated by numerically correcting an initial guess
to meet specific boundary conditions, which include the continuity between the final
and initial states. This numerical procedure have been referred to as "Differential
Corrector" [29] and has been widely used in previous work on Lagrangian point orbits.
Even with the current computational capabilities, the convergence of algorithms for
periodic orbits depends significantly on the accuracy of the initial guess and the
implementation of the targeting scheme.

To simulate a real scenario of the E-M Lagrange points, it is important to find
natural Lagrangian orbits. Thus, an elliptical problem is important to be considered
in the trajectory definition. Campagnola [7] introduced the formulation of elliptical
restricted three body problem in the most simpler form such that they could be
reduced to CR3BP when e = 0.

For what concerns control, instead, the Lagrangian point orbits are naturally un-
stable, but controllable. Additional control force is therefore needed for a spacecraft
to remain close to its nominal orbit. The challenges of station-keeping control emerge
from high accuracy, low computational burden and minimal fuel cost requirements
under the condition of dynamic uncertainties, unmodelled perturbations, and initial
orbit injection errors [43]. Hence, station-keeping control for libration point is vital
but posses a great number of difficulties.

The study of station-keeping control on libration point orbits has become a popu-
lar research topic ever since the problem was firstly proposed. A vast majority of the
station-keeping control methods are designed based on LTI model via local lineariza-
tion at the libration points due to the high non-linearity of the dynamic equation of
libration point orbits. There are numerous references for the discussion of stability
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and control for both co-linear and triangular locations. Farquhar and Hoffman pro-
vided analysis and discussion of stability and control of the Earth-Moon co-linear L2
and L1 locations, respectively, in a classical control theory. Cielaszyk and Wie [8]
employed a new LQR control method combined with a disturbance accommodating
controller for Lissajous and Halo orbits maintenance based on LTI model. Howell and
Pernicka [26] developed a target-point approach to maintain the spacecraft within a
region about the nominal Halo orbit. Furthermore, several other control strategies
have been developed: Kulkarni et al. [30] extended the traditional framework to pe-
riodic, discrete LTV systems for spacecraft flight stabilization in Halo orbits, Wang
et al. [48] presented a nonlinear controller based on polynomial eigen-structures of
LTV model for the control of Sun-Earth point station-keeping and Rahmani et al.
[41] solved the problem of Halo orbit control using optimal control theory and the
variation of the extreme technique. Biggs et al. [4] enhanced the station-keeping
control with the use of an extended state observer

However, the robustness under nonlinear system uncertainties and the request for
low computational burden are not always investigated. Oguri et al. [36] developed a
station-keeping procedure that included different sources of error and tested it using
a Montecarlo simulation. The same procedure was used by Narula [34]. The com-
putational burden was instead investigated by Kim and Hall [27], who also provided
a user-friendly interface for a periodic orbit generator. Han [21] introduced an ac-
tive disturbance rejection station-keeping control method proposing an error driven,
rather than model-based control law which takes into account system uncertainties,
unmodelled disturbance, and orbit injection errors to achieve better robustness. This
could achieve a better station-keeping performance as well as a smaller computational
effort.

Moreover, few of these works have dealt with the problem related to the scientific
mission requirements. The discussions involved optimal control and discontinuous
control, for single and multiple spacecraft around Lagrangian points, without as-
sessing the performance of their control under the point of view of reducing control
active time. The work developed by Oguri et al. [36] and Garulli et al. [16] provided
a station-keeping algorithm that allows discontinuous control, therefore suitable for
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a scientific application, but with no explicit declaration of this concept. The idea
of discontinuous thrust was investigated also by Eckstein [9], where he also carried
the case of an electric propulsion system under given limitations on thrust magni-
tude and operation times. Both concepts are studied in this thesis work. Table 1.1
presents different control techniques and their relevant features.

Control Method Features Ref.
Convex optimization problem robust and optimized 43
Target point and Floquet mode Impulsive 26

H∞ approach discrete control 30
Polynomial eigenstructure assignment continuous and optimized 48

Optimal control theory optimized 41
Extended state observer continuous 4

Time continuation of quasi halo orbits impulsive 36
Active disturbance rejection control continuous 21

Extended Kalman filter hybrid continuous/impulsive 16
Optimization techniques impulsive and optimized 9

Time-delayed feedback control continuous 6

Table 1.1: Control techniques and relevant features

1.4 Structure of the Thesis

The thesis is organized in the following structure.
Chapter 2 introduces the orbital dynamic frame which is is used to simulate the

motion of a third body in the Earth-Moon system. Starting from the assumptions
and the reference frame used, the equations of motion are derived firstly for the
circular restricted problem, and then for the elliptical restricted problem. Then, the
concept of state transition matrix is introduced and used to compute periodic orbits.

Chapter 3 shows how to transform a periodic orbit into a reference trajectory
for a control algorithm. Then, the construction of a Linear Quadratic Regulator
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is explained. After a brief introduction of the main control algorithms, different
methodologies to obtain a control that simultaneously achieves stable station keeping
and time windows where no control is required are explained.

Chapter 4 is introduced by the other details that complete the simulation envi-
ronment, from disturbances and errors to performance criteria and thruster selection.
Then, the results of the various trajectory and control algorithms are listed.

Chapter 5 is dedicated to the conclusion of the thesis work and the lessons learned,
together with possible ideas for future works.
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Chapter 2

Orbital Dynamics

This chapter is dedicated to the review of important mathematical and physical
concepts relevant to this work. The difference between different reference frames
is introduced and the equations of motions are developed first for the Circular Re-
stricted 3-Body Problem (CR3BP) and then extended to the Elliptical Restricted
3-Body Problem (ER3BP) with the addition of eccentricity of the secondary in the
equation of motion. The concept of differential corrector is introduced and particular
solutions, such as equilibrium points, as well as periodic orbits are discussed. The
dynamics is then solved for the problem to define the initial condition of unstable
Lagrange point orbit.

The refined initial conditions will be used in Chapter 3 in order to provide ref-
erence trajectories for a suitable control algorithm, capable of providing station-
keeping.

2.1 Circular Restricted 3-Body Problem

The simplest formulation of the mutual gravitational interaction between three point-
mass bodies consists in the Circular Restricted 3-Body Problem. The motion of the
third body moves under the gravitational attraction of the two primaries, constrained
to move on circular orbits around the system center of mass, without influencing their
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motion. Such model is valid when the mass of the third body is negligible compared
to that of the primaries.

2.1.1 Equation of Motion

Following the procedure found in [35], the derivation of the equations of motion in
the three-body problem begins with a set of n particles. From the inverse-square law
of gravity, the force on a particle i due to a particle j is:

−→
F i = −Gmimj

r3ji

−→r ji (2.1)

where G is the gravitational constant, m i and mj are the masses of the two particles
and −→r ji is their distance vector.

Since:
−→
F i = mi

−̈→r i (2.2)

equation 2.1 can be rewritten as:

−̈→r i = −Gmj

r3ji

−→r ji (2.3)

If more particles were present, then acceleration of particle i could be written as:

−̈→r i =
n−1∑
j=1

−Gmj

r3ji

−→r ji (2.4)

The undergoing problem requires n = 3, therefore, for a three body problem, the
inertial acceleration of the spacecraft due to the other two bodies is given as:

−̈→r 3 = −Gm1

r313

−→r 13 −
Gm2

r312

−→r 12 (2.5)

The next step consists in transforming the inertial reference frame into a rotating
one, with constant angular velocity equal to the mean Moon orbital angular velocity
n. True anomaly follows the equation θ(t) = nt.

The Inertial reference frame is valid for the equations of motion as defined above
by Newton’s laws. This inertial frame is centered on the barycenter of the system,
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the X is directed towards the right side from the barycenter and will cross the moon
when they are in same alignment. The Y axis is directed perpendicular upwards as
shown in the figure 2.1. The Z-axis is coming out of the plane towards the reader.

Figure 2.1: Comparison between Inertial and Rotating reference frames [35]

The Rotating reference frame is the best visualisation of three-body problem
where the spacecraft is moving near the Lagrangian points. The barycenter of the
system is again the origin of this new reference. The vector X̂ is defined such that
it is directed from the barycenter towards the small primary. The Ŷ axis is 90o from
X̂ in the plane of the motion of the primaries. The vector Ẑ completes the triad and
is normal to the plane of motion.

Before this transformation, however, it’s useful to write equation 2.5 using nor-
malized quantities. Normalization is performed by proper characteristic quantities
that depend on the particular analyzed system (in this case, the Earth-Moon sys-
tem). This provides an advantage for the numerical and computational point of view.
The characteristic quantities are:

• l∗ = a, where a is the Moon semi-major axis (384,748 km)

21



• m∗ = m1 +m2, where m1 and m2 are Earth and Moon mass, respectively

• t∗ =
√

(l∗)3

Gm∗ = 375, 704s

Using these quantities, the mass of the two primaries can be written as:

µ =
m2

m∗
(2.6)

for the second primary, and
1− µ =

m1

m∗
(2.7)

for the first one, while the distances between the spacecraft and the two bodies
become:

−→r =
−→r 23

l∗
(2.8)

and
−→
d =

−→r 13

l∗
(2.9)

It is worth noting that in the rotating reference frame the coordinates of the two
primaries are (-µ,0,0) for the Earth and (1-µ,0,0) for the Moon. Moon orbital Angular
velocity, in turn, becomes:

n =
2π

T
∗ t∗ = 1 (2.10)

where T is Moon sidereal period. Time, too, changes, and becomes:

τ =
t

t∗
(2.11)

so that t = T is represented as τ = 2π in the model with normalized quantities.
Also, the value of G has been imposed to be equal to 1. With these considerations,
equation 2.5 becomes:

−̈→ρ = −1− µ
d3
−→
d − µ

r3
−→r (2.12)

Applying a rotation with constant angular velocity n to

−→ρ =

ρxρy
ρz

 (2.13)
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it can be obtained that ρxρy
ρz

 =

xy
z

 (2.14)

where x,y,z are the components of the position vector in the rotating reference frame.
By differentiating the kinematics, it derives that:ρ̇xρ̇y

ρ̇z

 =

ẋ− yẏ + x

ż

 (2.15)

ρ̈xρ̈y
ρ̈z

 =

ẍ− 2ẏ − x
ÿ + 2ẋ− y

z̈

 (2.16)

therefore, equation 2.5 can be rewritten in the rotating reference frame as:

ẍ− 2ẏ − x = −(1− µ)(x+ µ)

d3
− µ(x− (1− µ))

r3

ÿ + 2ẋ− y = −(1− µ)y

d3
− µy

r3

z̈ − (1− µ)z

d3
− µz

r3

while vectors
−→
d and −→r can be rewritten as:

−→
d = (x− (−µ))X̂ + yŶ + zẐ

−→r = (x− (1− µ))X̂ + yŶ + zẐ

This set of Ordinary Differential Equations represents spacecraft motion in the Ro-
tating reference frame for the CR3BP.

2.1.2 Lagrange Points

The ODE of motion can be used to locate Lagrange points in the Rotating reference.
In 1772, Lagrange identified these points for a restricted 3-body problem with the
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assumption of circular orbits. The L1, L2 and L3 are collinear equilibrium points and
L4 and L5 are equilateral Lagrangian points. These points are obtained by equating:

−xeq = −(1− µ)(xeq + µ)

d3eq
− µ(xeq − (1− µ))

r3eq

−yeq = −(1− µ)yeq
d3eq

− µyeq
r3eq

zeq −
(1− µ)zeq

d3eq
− µzeq

r3eq

L1, L2, L3 can be found by assuming yeq = 0, zeq = 0, while L4, L5 require only
zeq = 0. Their location is listed in table 2.1

Lagrange Point Location
L1 −µ < xeq < 1− µ
L2 xeq > 1− µ
L3 xeq < −µ
L4 xeq = 1

2
, yeq =

√
3
2

L5 xeq = 1
2
, yeq = −

√
3
2

Table 2.1: Lagrange Points position

The Lagrangian of the CR3BP does not depend on time explicitly, which results
in a constant Hamiltonian. It follows that the system possesses a constant of in-
tegration known as the Jacobi Constant. Physically, the gravitational forces must
be balanced by the centrifugal forces. It follows that a modified potential energy
function corresponding to the differential equations can be identified:

U =
1

2
(ẋ+ ẏ)2 +

1− µ
d

+
µ

r
(2.17)

The Jacobi constant, also know as ’integral of relative energy’, is defined in terms of
pseudo-potential as:

Jc = 2U − (ẋ2 + ẏ2 + ż2) (2.18)

Which allows to produce zero-velocity curves that identify the region of exclusion for
a specific energy level. An example of such zero-velocity plot for Earth-Moon system
is shown in figure 2.2
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Figure 2.2: Zero-velocity curves [35]

2.1.3 State Transition Matrix

State transition matrix associated with the equation of motion is required by a
differential correcting scheme. The STM provides the evolution of state vectors in
time and this methodology is used to compute the nominal orbits of interest. It
is generally denoted as φ(t, t0) and is composed by the partial derivatives ∂−→x (t)

∂−→x (t0)

evaluated along the trajectory. The state vector is defined as X = [x, y, z, ẋ, ẏ, ż]T .
In order to propagate STM, the following differential equation is evaluated:

d

dt
φ(t, t0) = A(t)φ(t, t0) (2.19)
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with initial condition φ(t0, t0) = I6x6, where A is given by:

A(t) =

[
03x3 I3x3
Udd 2Ω

]
(2.20)

A is the matrix of the state-space representation of the ODE set of motion Ẋ(t) =

A(t)X(t), since the ODE set can be rewritten, using 2.17, into:

ẍ =
∂U

∂x
+ 2ẏ

ÿ =
∂U

∂y
− 2ẋ

z̈ =
∂U

∂z

Matrix Ω is defined as:

Ω =

 0 1 0

−1 0 0

0 0 0

 (2.21)

and matrix Udd is the 3x3 symmetric matrix containing the double partial deriva-
tives of potential energy U:

Udd =


∂2U
∂x2

∂2U
∂x∂y

∂2U
∂x∂z

∂2U
∂y∂x

∂2U
∂y2

∂2U
∂y∂z

∂2U
∂z∂x

∂2U
∂z∂y

∂2U
∂z2

 (2.22)

where each terms is defined as:
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Uxx = 1− 1− µ
d3
− µ

r3
+ 3

(1− µ)(x+ µ)2

d5
+ 3

µ(x− 1 + µ)2

r5

Uyy = 1− 1− µ
d3
− µ

r3
+ 3

(1− µ)y2

d5
+ 3

µy2

r5

Uzz =
1− µ
d3
− µ

r3
+ 3

(1− µ)z2

d5
+ 3

µz2

r5

Uxy = Uyx = 3
(1− µ)(x+ µ)y

d5
+ 3

µ(x− 1 + µ)y

r5

Uxz = Uzx = 3
(1− µ)(x+ µ)z

d5
+ 3

µ(x− 1 + µ)z

r5

Uyz = Uzy = 3
(1− µ)yz

d5
+ 3

µyz

r5

Having φ(t, t0), it is possible to solve the variational equation

δ−̇→x = A(t)δ−→x (2.23)

which has solution in the form

δ−→x (t) = φ(t, t0)δ
−→x (t0) (2.24)

and where
δ−→x (t) = X(t)−Xref (t) (2.25)

where Xref is the state space representation of the reference orbit. The solution
represents the evolution of the initial error along the trajectory, and is fundamental
in the computation of a suitable initial condition for a halo periodic orbit. This task
requires the coupling of the 6 ODEs from orbital motion with the 36 ODEs coming
from the STM.

2.1.4 Orbit Generation

The generation of orbits in CR3BP is a critical step towards the construction of an
optimal reference for station-keeping. The sensitivity of this problem is quite high,
but it is easily solvable.
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As the main goal is to have a closed bounded periodic orbit near a co-linear
Lagrangian point, initial condition of these orbits needs to be selected in such a way
that it excites only stable modes associated with it.

The definition for a periodic orbit is given by Grebow[19] specified that the fol-
lowing conditions needs to be satisfied in order to call an orbit a periodic orbit:

• They should be symmetric about the x-z plane

• They should intersect the x-axis twice per orbit

The initial state vector is defined with the following notation:
−→
X 0 = [x0, y0, z0, ẋ0, ẏ0, ż0]

T (2.26)

This initial condition can be strategically chosen such that it lays on the x -z plane
with initial velocity only in the y-direction, therefore perpendicular to the x -z plane.
Thus, the initial state will only have three components different from zero:

−→
X 0 = [x0, 0, z0, 0, ẏ0, 0]T (2.27)

The requirement states that the orbit needs to be periodic about the x -z plane every
time it crosses it. The next crossing should therefore occur after t = T

2
, where T is

the orbit period, and should be perpendicular again to the same plane:
−→
X t = [xt, 0, zt, 0, ẏt, 0]T (2.28)

Given an initial condition, it is not guaranteed that this condition will happen,
therefore the initial condition requires an adjustment, which can be provided by the
solution of the variational equation.

Since the form of
−→
X t is known, δ−→x t can be constructed as:

δ−→x t = [0, 0, 0, δẋt, 0, δżt]
T (2.29)

which collects every term that make the crossing not perpendicular. After the solu-
tion of the STM 36 ODE set, φ(t, t0) can be recovered and thus δ−→x 0 can be computed,
which can be used to adjust the initial condition:

−→
X 0,new =

−→
X 0,old − δ−→x 0 (2.30)
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A good strategy consists in computing δ−→x 0 in such a way that said adjustment
doesn’t alter perpendicularity property of the initial condition. In order to achieve
this, the adjustment should be applied only to the non-zero condition:

δ−→x 0 = [δx0, 0, δz0, 0, δẏ0, 0]T (2.31)

It is also possible to impose the correction only to z0, ẏ0, so that:

δ−→x 0 = [0, 0, δz0, 0, δẏ0, 0]T (2.32)

With this considerations, equation 2.24 can be inverted in order to find δ−→x 0:

δ−→x (t0) = φ(t, t0)
†δ−→x (t) (2.33)

where † corresponds to the pseudo-inverse operation. The correction procedure re-
quires the repetition of the computation for a suitable number of times. To ease the
computation of the pseudo-inverse, equation 2.33 can be rewritten as:[

δz0

δẏ0

]
=

[
φ43 φ45

φ63 φ65

]† [
δẋt

δżt

]
(2.34)

This formulation can be easily modified if a correction on x0 were to be desired. Both
methods were in fact used to compute suitable initial conditions.

In order to find t = T
2
, a shooting method can be adopted: target is t that

corresponds to the x -z plane crossing, or yt = 0.
Having a starting guess, which can be recovered by tables or by an analytical guess

[42], this initial condition is updated in order to find a suitable initial condition for
a repeating orbit. The starting guess is:

x0

y0

z0

ẋ0

ẏ0

ż0


=



1.124242839945290

0

0.187435048916681

0

−0.223784191244108

0


(2.35)
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and the refined condition is:

x0

y0

z0

ẋ0

ẏ0

ż0


=



1.124242839945290

0

0.182846789055170

0

−0.225326578364074

0


(2.36)

This initial condition provides a repeating orbit with period T equal to 2.9475τ ,
which corresponds to 12.81 days, and is represented in figure 2.3. Since the ODE
set provides an orbit in normalized quantities, a backward transformation to not-
normalized units is required. For the circular case, the characteristic time and length
are constant, therefore no deformation is introduced in the orbit shape.
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Figure 2.3: Refined periodic orbit

Figure 2.4: Refined periodic orbit in the xz-plane (left) and xy-plane (right)
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2.2 Elliptical Restricted 3-Body Problem

The CR3BP is an autonomous model which has an inherent approximation, consist-
ing in the circular orbit of the smaller primary. However, in order to provide a more
rigorous model, it is necessary to include the information about eccentricity. For the
Earth-Moon system, eccentricity e has a value e = 0.0549. The inclusion of this
term into the equations of motion mutates the problem into the Elliptical Restricted
3-Body Problem (ER3BP). This new model has significant differences as compared
to that of the CR3BP:

• Position of Lagrange points is not constant

• Jacobi Integral is time-dependent

• STM is modified.

In this new model, l∗ is no more constant, but it depends on the value of true anomaly
θ following the equation:

l∗ =
a(1− e2)
1 + ecosθ

(2.37)

Angular velocity is also θ-dependent, as its derivative:

n =
(1 + ecosθ)2

(1− e2)e 3
2

ṅ = −2e
sinθ

(1− e2) 3
2
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2.2.1 Equation of Motion

As carried out for the CR3BP, the position, velocity and acceleration coordinates in
rotating frame becomes: ρxρy

ρz

 =

xy
z


ρ̇xρ̇y
ρ̇z

 =

ẋ− nyẏ + nx

ż


ρ̈xρ̈y
ρ̈z

 =

ẍ− 2nẏ − ṅy − n2x

ÿ + 2nẋ+ ṅx− n2y

z̈



Using this formulation, equation of motion becomes:

ẍ− 2nẏ − ṅy − n2x = −(1− µ)(x+ µσ)

d3
− µ(x− (1− µ)σ)

r3

ÿ + 2nẋ+ ṅx− n2y = −(1− µ)y

d3
− µy

r3

z̈ − (1− µ)z

d3
− µz

r3

where

−→
d = (x+ µσ)X̂ + yŶ + zẐ

−→r = (x− (1− µ)σ)X̂ + yŶ + zẐ

σ =
1− e2

1 + ecosθ
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The pseudo potential becomes:

U =
1

2
n2(ẋ+ ẏ)2 +

1− µ
d

+
µ

r
(2.38)

which demonstrates how the Jacobi Integral becomes time-dependent. There exist,
however, a different way to define motion in the ER3BP. This different methodology
requires the introduction of a new reference: Pulsating-Rotating reference frame.

The Pulsating-Rotating reference frame is able to fix the relative distance between
the primaries, in the normalized set of equation of motion, and makes the problem
θ-dependent. Therefore, all the quantities of interest (position, velocity, accelera-
tion) are expressed in terms of true anomaly. Following the procedure explained by
Szebehely [44] and Ferrari [12], in its PhD thesis, and used by [5][6], equation of
motion can be written in this new reference frame as:

ẍ− 2ẏ =
1

1 + ecosθ

∂Ω

∂x

ÿ + 2ẋ =
1

1 + ecosθ

∂Ω

∂y

z̈ + z =
1

1 + ecosθ

∂Ω

∂z

where
Ω =

1

2
(ẋ+ ẏ + ż)2 +

1− µ
d

+
µ

r
(2.39)

2.2.2 State Transition Matrix

The overall theory behind the computation of the State Transition Matrix doesn’t
change, since it is again referred to the evolution of a given state vector along time.

Due to the different state-space representation of the equation of motion, however,
there is a slight change in the computation of the A matrix, particularly in the
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computation of the Udd components. The double partial derivatives become:

Uxx =
1

1 + ecosθ
(1− 1− µ

d3
− µ

r3
+ 3

(1− µ)(x+ µσ)2

d5
+ 3

µ(x− (1− µ)σ)2

r5
)

Uyy =
1

1 + ecosθ
(1− 1− µ

d3
− µ

r3
+ 3

(1− µ)y2

d5
+ 3

µy2

r5
)

Uzz =
1

1 + ecosθ
(
1− µ
d3
− µ

r3
+ 3

(1− µ)z2

d5
+ 3

µz2

r5
)

Uxy = Uyx =
1

1 + ecosθ
(3

(1− µ)(x+ µσ)y

d5
+ 3

µ(x− (1− µ)σ)y

r5
)

Uxz = Uzx =
1

1 + ecosθ
(3

(1− µ)(x+ µσ)z

d5
+ 3

µ(x− (1− µ)σ)z

r5
)

Uyz = Uzy =
1

1 + ecosθ
(3

(1− µ)yz

d5
+ 3

µyz

r5
)

2.2.3 Orbit Generation

The initial condition needs to be updated to fit the ellipticity of the model. This
section will describe the algorithm that will be followed to generate initial conditions
for the ER3BP. The right hand side of the equations of motion is periodic with period
2π. Thus, periodic solutions of the ER3BP must have period T = 2Nπ, N = 1, 2, ....

In the context of the planar ER3BP, Moulton [33] used these considerations and
the symmetry properties to formulate the Strong Periodicity Criterion:

• For an orbit to be periodic [in the planar ER3BP] it is sufficient that it has
two perpendicular crossing with the x -z plane

• The crossings happen when the two primaries are at an apse

With these considerations, it is no more sufficient to only impose perpendicular cross-
ing as previously done in the CR3BP, because crossing time becomes crucial. Starting
from the refined initial condition found in the CR3BP, the variational approach has
been adopted to provide refinements to the initial condition. The corrective term
δ−→x 0 has been computed considering the fact that two conditions must be valid.

The adopted procedure is the following:
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1. Impose crossing of y-axis at t = π, computing δ−→x t = [0, δyt, 0, δẋt, 0, δżt]
T and

evaluating δ−→x 0 = [δx0, 0, δz0, 0, δẏ0, 0]T . Inverse computation becomes easier
due to the fact that φ(t, t0) can be written as a 3x3 square matrix

2. Impose perpendicular crossing at t = π, computing δ−→x t = [0, δyt, 0, δẋt, 0, δżt]
T

and evaluating δ−→x 0 = [0, 0, δz0, 0, δẏ0, 0]T .

3. Repeat point 1-2 until desired orbit becomes periodic and repeating.

This methodology proved to be useful in recovering a suitable initial condition for
the ER3BP, that starting from the initial guess of Narula and Biggs [35]:

x0

y0

z0

ẋ0

ẏ0

ż0


=



1.13424283994529

0

0.187435048916681

0

−0.223784191244108

0


(2.40)

has been updated to: 

x0

y0

z0

ẋ0

ẏ0

ż0


=



1.149619657045652

0

0.165528132267168

0

−0.251414419543829

0


(2.41)

The obtained orbit is shown in figure 2.5 in normalized units. It can be noted that it’s
shape is not actually a classical halo around the Moon, like the one provided in the
CR3BP section. Also, the same procedure of non-normalization must be performed.
In this case, the characteristic length changes in time, therefore a deformation will
be introduced. This effect is clear in figure 2.7.
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Figure 2.5: Repeating Halo Orbit in the ER3BP, normalized units

Figure 2.6: Periodic orbit in the xz-plane (left) and xy-plane (right), normalized
units
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Figure 2.7: Repeating Halo Orbit in the ER3BP

Figure 2.8: Periodic orbit in the xz-plane (left) and xy-plane (right)
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It can also be shown that a similar shape can be obtained by a classical halo
orbit, as the one of figure 2.3. First, the orbit found in the CR3BP must be updated
in order to impose a period of 2π, since this guarantees crossing of the x-z plane
when the primaries are at an apse.

Starting from the initial guess:

x0

y0

z0

ẋ0

ẏ0

ż0


=



1.124242839945290

0

0.187435048916681

0

−0.223784191244108

0


(2.42)

and implementing the same procedure, but in the CR3BP work-frame, the initial
condition is updated to: 

x0

y0

z0

ẋ0

ẏ0

ż0


=



1.126756126623475

0

0.184036459910411

0

−0.201986794155454

0


(2.43)

The new initial condition provides an orbit with period T=π if seen in the CR3BP
and it still resembles a classical halo-orbit around the Moon. Two full orbits corre-
spond instead to a time τ = 2π.

In the ER3BP, however, the characteristic length varies in time and this effect
causes the two perpendicular crossings to happen at different distances from the E-
M system barycenter. Orbit apoapsis and periapsis therefore stop coinciding and
become two separate points. The orbital period becomes T=2π, which is consistent
with the hypothesis of crossing of the x-z plane when the primaries are at an apse.
The effect of this transformation is seen in figure 2.9.

This demonstrates that the shape of an orbit also depends on the work-frame in
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which it is represented and that a classical halo orbit can deform to a completely
different shape.

Figure 2.9: Periodic orbit in CR3BP and in ER3BP work-frame
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2.3 Reference Computation

Having identified some nominal trajectories, a suitable reference trajectory is nec-
essary in order to compute the reference

−→
X ref . To this end, various strategies are

suggested by Howell [38], Folta [13] to keep the actual trajectory of the spacecraft
sufficiently close to the reference path.

As a first approximation, the quasi-periodic orbit that derives from suitable initial
conditions can be approximated through a Fourier series, such that:

iref = ai0 +
n∑

k=1

(aikcos(kωt) + biksin(kωt)) (2.44)

Where k represents series order and i = xref , yref , zref , ẋref , ẏref , żref . t can be
intended as τ , in case of CR3BP, or as true anomaly θ, in case of ER3BP.

In order to improve the reference approximation, particularly for the ER3BP case,
a different approach has been adopted. Instead of computing the reference through
the Fourier series for θ = θ̂, the equation of motion would be solved, starting from
the refined initial condition, from θ = θ0 to θ = θ̂.

The possible drawback that can arise from this methodology is the fact that the
initial condition for ER3BP doesn’t produce a perfectly repeating orbit, therefore
motion, and thus reference, would diverge in time. Moreover, in absence of external
disturbances, reference and spacecraft motion would always coincide, thus no control
action would be performed and no station-keeping would be possible. Wrapping the
solution to 2π mitigates these effect and provides a fixed reference in time, suitable
for station-keeping purpose, while removing the approximation that a Fourier series
approach would introduce, at the expense of a small discontinuity at t=2π.
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Chapter 3

Control Algorithm

This chapter will introduce the station-keeping concepts and methodologies that are
adopted to control the Halo orbit. The first control is a simple continuous LQR [35],
which is later modified into a discrete, continuous LQR [3]. The next step consists in
a further improvement, which allows the realization of an impulsive control, the first
element of novelty of the thesis. In order to improve the response of the spacecraft
motion, the proportional LQR is augmented with the addition of a derivative element
in the control, a second element of novelty. Both strategies are joined together and
improved thanks to an act-and-wait strategy [40] and a Schmidt trigger control,
based on [31].

The Lagrange points are equilibrium points that, as previously shown, can be
found through the use of zero-velocity curves. Unfortunately, only L4 and L5 are
stable points, while L1, L2, L3 are unstable equilibrium points. This means that
the computation of a periodic orbit is not enough to guarantee asymptotic stability
for a spacecraft orbiting close to these points and a proper control algorithm must
be implemented to achieve station-keeping. Without this technique, the natural
disturbances that a spacecraft undergoes in its orbit would be enough to make its
motion divergent.

There have been many strategies explained in literature with respect to station-
keeping in the Sun-Earth system [5][6], but fewer studies have considered trajectories
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near the Earth-Moon Lagrangian points [13][14][15] as it is more challenging in the
Earth-Moon system, due to the larger orbital eccentricity of the secondary.

The unique operational constrains are achieving a controlled orbit with minimum
cost in terms of fuel as well as limiting the required control effort. Presently, station-
keeping costs of less than 200 m/s per year are desired [13].

3.1 Continuous Control

The goal of the station keeping process is to compute and implement maneuvers to
maintain a vehicle within the enclosed region defined by a torus centered at a point
along the trajectory, point by point, in time. The simplest way to integrate the
station keeping is through a continuous control. The following sequence of steps are
adopted to perform the station-keeping:

1. At any given instant, identify weather a station-keeping maneuvers is required

2. If required, compute the magnitude and direction of the control u

3. Optimize the gain in conjunction with the maximum thrust available from the
thrusters

4. Implement tracking and sensor errors to the problem

Spacecraft station-keeping on Libration Point Orbits can be categorized into two
types: impulsive thrust station-keeping (usually chemical) where the controls are dis-
continuous and continuous, low-thrust, station-keeping (such as solar electric propul-
sion or solar sail spacecraft). Xin [50] used a sub-optimal control technique (the θ -
D technique) to complete the mission of multiple spacecraft formation flying in deep
space about the L2 point. Marchand and Howell [32] employed feedback lineariza-
tion for formation flight in the vicinity of Lagrangian points. Bai and Junkins[2]
proposed a modified Chebyshev-Picard integration method for station-keeping of L2
Halo orbits in the Earth-Moon system. Karimi [52] solved the problem of Halo orbit
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control using optimal control theory and the extension of the active disturbance re-
jection technique to counter the external disturbances in the unstable orbit near the
co-linear points. Narula and Biggs [35] compared different approaches to a simple
LQR scheme for continuous control with partial thrust failures. Biggs et al. [6] de-
veloped a time-delayed feedback controller for the case of solar sail propulsion, which
checked the error after one orbit thanks to a state transition matrix exploitation. Bai
et al. [1] developed an adaptive control with active disturbances rejection, applied
to a quaternion attitude tracking problem.

Having identified the initial conditions and the reference trajectory, the aim is
now to have a control algorithm for such an unstable periodic orbit for all the three
axis of the spacecraft. In order to optimize the use of propellant, an LQR control is
developed considering the thruster model for the actuation of spacecraft as continu-
ous. In some cases the control is also highly nonlinear such as in the case of a solar
sail [5][6] and a traditional approach consists in firstly linearize the nonlinear system
of the form:

Ẍ1 = g(Ẋ1,X1, u) + d (3.1)

whereX1, Ẋ1, Ẍ1, u, d are respectively the position, velocity, acceleration, control
and disturbance vectors and g is a known non-linear function. Expanding the state
space, the system can be written in the form:

Ẋ = f(X, u) + d (3.2)

where X = [X1, Ẋ1] is the state. Linearizing the nonlinear equations by defining:

∆
−→
X =

−→
X ref −X (3.3)

where
−→
X ref denotes the reference trajectory, yields to the linear system:

∆
−̇→
X = A(t)∆

−→
X + Bu (3.4)

which is a linear time-varying system, with:
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A(t) =

[
03x3 I3x3
Udd 2Ω

]
(3.5)

B =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


(3.6)

and u is the control vector. It was also found that A(t) does not change much
along the reference trajectory, thus in order to have a simplified control design, the
following linear time invariant model can also be assumed as:

∆
−̇→
X = A∆

−→
X + Bu (3.7)

where

A =

[
03x3 I3x3
Udd 2Ω

]
−→
X0

(3.8)

−→
X 0 is a suitable point belonging to the reference trajectory, such as the initial

point of the trajectory. A simple controller is given by:

u = −K∆
−→
X (3.9)

where the gain matrix K can be solved through the minimization of the cost
function:

J =

∫ t

t0

[∆
−→
X TQ∆

−→
X + uTRu]dt (3.10)

The solution to the minimization can be obtained using the method of Lagrange
multiplier and leads to the following Riccati equation:
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SA+ ATS − SBR−1BTS +Q = 0 (3.11)

where Q, R are two weights that quantify the relative cost of each state and
control in the cost function. The values for Q,R has been selected from [35] and
then manually adjusted and are listed in table 3.1

Matrix Value
Q diag(100,100,100,1,1,1)
R diag(0.04,0.04,0.04)

Table 3.1: Weight matrices

Having solved the equation for S, the gain matrix can be obtained as:

K = R−1BTS(t) (3.12)

Having found the value of control action u, it can be plugged in the equation of
motion. In case of ER3BP, it becomes:

ẍ− 2ẏ =
1

1 + ecosθ
(
∂Ω

∂x
+ ux)

ÿ + 2ẋ =
1

1 + ecosθ
(
∂Ω

∂y
+ uy)

z̈ + z =
1

1 + ecosθ
(
∂Ω

∂z
+ uz)

3.2 Discrete Control

A different methodology would be to implement a discrete LQR, as explained in [3].
The actuation is performed using thrusters which provide impulsive thrust with a
sampling interval Ts and a duration d, therefore the control vector u is defined as
follows:
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u(t) =

uk/d if tk ≤ t ≤ tk + d

0 if tk + d < t ≤ tk + Ts

In the notation, Ts represents the sampling interval, d is the thrust duration, k
represents the sampling index and uk = [∆vx,∆vy,∆vz]

T is the control signal (in
velocity units) provided by a discrete-time controller.

In the limit case where d→ 0 and Ts > d, the control signal becomes impulsive:

u(t) = ukδ(t− tk), tk ≤ t ≤ tk+1, k = 0, 1, 2, ... (3.13)

where δ(t− tk) is the Dirac delta function defined as:

δ(t− tk) = 0, t 6= tk (3.14)

and ∫ +∞

−∞
δτdτ = 1 (3.15)

If d is selected such that d = Ts, the control becomes u(t) = uk/d for tk ≤ t ≤
tk+1, which is constant between sampling instants. This is a common assumption in
discrete-time control.

The computation of the control u(t) is similar as in the continuous control case,
but it is done considering discrete quantities. Since the gain matrix K is a matrix
that allows the transformation from an error to an acceleration, the equation used
to compute uk becomes:

uk = −K∆XkTs (3.16)

where ∆Xk is the discretized error state. In this way, when computing the control
effort u(t) as:

u(t) =

uk/d if tk ≤ t ≤ tk + d

0 if tk + d < t ≤ tk + Ts
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no error is made, as uk is in the form of a velocity. It represents the impulse
required for the particular sample interval k.

The difference with a continuous control lies in the fact that the discrete con-
trol only updates the error state at the beginning of a new sampling interval, then
it remains constant for its duration , while the continuous control is continuously
updating the error and compensating accordingly. The two controls provide the
same value only when the discrete controller updates the error state, afterwards they
diverge. This implies that the discrete controller provides an action that relies on
not-trustworthy information, and this behaviour becomes more intense as time ap-
proaches the end of the sampling interval. It is therefore good practice to reduce the
duration of the sampling interval Ts, or to develop a control capable of providing the
required impulse in a short amount of time, closer to the beginning of the sampling
interval, where the information is more up-to-date.

The possible drawbacks that can be encountered are an increased computational
effort in case of Ts reduction, therefore the choice of this value must be studied in
order to find a suitable compromise between control performance and computational
performance.

The linear time invariant model is however not discretized and it remains con-
tinuous. Only the control is discretized through this procedure, implementing a
zero-order holder in the Simulink environment of the simulation.

3.3 Impulsive Control Hypothesis

A drawback of a continuous control is the fact that thrust level must be adapted to
match the required control effort, which may reach low values. These values might
be out of specs for the chosen thruster. Moreover, this kind of control requires the
thruster to be always on, therefore leaving not enough time for an attitude correction
maneuver to change spacecraft pointing to the required direction.

A possible solution would be to concentrate the nominal control into smaller win-
dows of time, while simultaneously increasing the control effort in order to maintain
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the same nominal required impulse. The idea behind this implementation lies in the
fact that the simulation, while trying to simulate a continuous system, computes
the required control point by point, which are separated by a certain amount of
time. Linearizing the control between two points, the area subtended is equal to the
impulse that the thruster must provide in the identified nominal interval.

This procedure would be implemented in a post-processing phase, after the com-
pletion of the orbital dynamics simulation and would transform the continuous con-
trol into an impulsive control.

If the thrust level of the engine is known, together with spacecraft mass, the
nominal acceleration a that the thruster can provide is known. Since the required
impulse i along x,y,z can be computed, it is straightforward to compute the new
interval length τ and the new control action that would provide the same impulse as
the one from the nominal interval tnom:

τ = 1
a

√
i2x + i2y + i2z

ux = ix/τ

uy = iy/τ

uz = iz/τ

Visually, the effect is seen in figure 3.1.
This methodology does not solve the problem related to a control action higher

than the maximum allowable by the thruster. However, a saturation algorithm could
be implemented in the simulation that would limit the control output. Of course,
it would require the upper limit of the net acceleration provided by the spacecraft,
a quantity that must also undergo normalization with a time-varying characteristic
length.

It is possible that for some intervals the value of τ might be below the minimum
activation interval for the thruster. In these cases, a strong approximation has been
introduced, which consists in neglecting those intervals. Due to the consequently
small required impulse, the error introduced by this decision should be low. A study
must be performed to verify if it actually negligible or not.
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Figure 3.1: Continuous control to impulsive control

A more severe problem lies in the fact that this procedure is performed outside
of the simulation work-frame, therefore it is mandatory to simulate again the orbital
dynamics with the new control history, to validate if spacecraft motion is still con-
trolled. The difficulty in this task is given by the computational effort required by
this validation procedure. The time resolution should be selected such that it would
be able to identify the smallest interval τ available for the thruster, therefore in the
order of the hundredth of a second for a ordinary chemical thruster with minimum
impulse time of 0.1s. For a time-span of one orbit, 27.3 days, the simulation would
be composed of 235 million time cells, where each one would store the informa-
tion related to time (scalar), state (length-6 vector), control (length-3 vector), error
(length-6 vector) in a 64-bit format. The total size of simulation result would be in
the order of tens of Gigabytes, and it would require a considerable amount of time
to complete.

Due to these drawbacks, this methodology has not been chosen as a tool to obtain
an impulsive control from the continuous one.

50



3.4 Impulsive Discrete Control

The problem found in the continuous control is that an attitude correction maneuver
is required to point the spacecraft in the correct direction. When the control is
active, it leaves no time for attitude adjustment, which can’t be simply assumed as
instantaneous. It is therefore mandatory that some time between two consecutive
control actions must be allocated to a slew maneuver to change the attitude. For
this reason, the continuous control won’t be further analyzed in this chapter, and
the search for a suitable control algorithm will solely focus on the discrete LQR. It
too must posses the ability to guarantee time between following sample intervals, in
order to complete the attitude adjustment required for pointing the spacecraft in the
appropriate control direction.

A possible solution consists in defining the value of d as a fraction of the value
selected for Ts, in order to partition a sampling interval between a control phase
and a waiting phase, which is used to properly point the spacecraft to the desired
direction. The magnitude of the control must however take into account this change,
and must increase its value in order to compensate for the shorter control window,
since the impulse in the sampling interval must remain constant. It may happen
that the thrust obtained in this way is higher than the maximum allowable thrust,
therefore a saturation algorithm is mandatory to solve this possibility.

The discrete control can be written as:

u(t) = −K∆
−→
Xg(t)

Ts
d

(3.17)

and

g(t) =

1 if tk ≤ t ≤ tk + d

0 if tk + d < t ≤ tk + Ts

Two possible strategies can be adopted:

1. The first part of the sampling interval is dedicated to the control

2. The second part of the sampling interval is dedicated to the control
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Selecting 1), the control equation doesn’t change. This methodology also allows
the control to act in a time region closer to the beginning of the sampling interval,
which, as previously stated, allows the control to rely on updated information about
the error state. There is however a problem: the information on the required attitude
for the next interval can’t be recovered, since the current sampling interval hasn’t
finished yet. This means that the control developed by the algorithm can’t directly
be feed-forwarded to the spacecraft, but must be first completely simulated. This
control history is however an approximation of the real space environment that is
affecting the spacecraft, therefore the control algorithm should be continuously run
to develop a certain control history, updated for a certain time length, then feed-
forwarded to the spacecraft as a set of commands that would become less reliable in
time.

This problem can be mitigated selecting 2), since the control happens in the later
part of the sampling interval and therefore the first part of the interval could be
used to point the spacecraft to the desired direction. However, the control would
happen in the second part of the sampling interval, which is the worst choice due to
the aforementioned updating problem. With this methodology, the control equation
would become:

u(t) = −K∆
−→
Xg(t)

Ts
d

(3.18)

and

g(t) =

0 if tk ≤ t ≤ tk + (Ts − d)

1 if tk + (Ts − d) < t ≤ tk + Ts

A hybrid solution could in theory mitigate both problems. A first, short part of
the sampling interval can be dedicated to attitude adjustment, followed immediately
by the control itself. The last part of the sampling interval would then be left free,
for maintenance or scientific purposes. A control of this kind can be represented as:

u(t) = −K∆
−→
Xg(t)

Ts
d

(3.19)
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and

g(t) =


0 if tk ≤ t < tk + tw

1 if tk + tw ≤ t ≤ tk + tw + d

0 if tk + tw + d < t ≤ tk + Ts

where tw represents the amount of time dedicated to attitude adjustment. This
notation can be also used for 1) and 2). Choosing tw = 0, the equation becomes the
one used for 1), while setting tw = Ts − d provides the equation used for 2).

The possibility of a saturation algorithm must be accounted for, in case of high
required thrust, together with the possibility of reducing the value assigned to d on an
interval level, which must be considered in case of small required thrust, particularly
in the case of chemical thrusters. On the other hand, it may be necessary to increase
the value of d, up to the maximum allowable d = Ts − tw. This could prove useful
for electric thrusters, given their low thrust level, in order to delay the saturation
algorithm as long as possible. Visually, the control would be active following figure
3.2, where the mechanism of changing d is shown, together with some cases. The
black dashed line represents the nominal, discrete control, while the blue columns
represent the control after the d-changing mechanism and the implementation of
maximum and minimum thrust. This distinction is useful in case of throttleable,
electric thruster. For a chemical thruster, therefore with a fixed thrust level, the two
values merge together within a single value: the nominal thrust.
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Figure 3.2: Discrete control and some worthy cases

This diagram is valid when the control is in the acting phase. When instead the
control is purposely waiting, the action is set to zero.

The complete Simulink algorithm is represented in figure 3.3. The control block
collects the adopted methodology for the impulsive discrete transformation of the
nominal control coming from the LQR and it can be augmented with the introduction
of the act-and-wait and Schmidt trigger strategies.
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Figure 3.3: Simulink algorithm

3.5 Proportional Derivative Control

The obtained control can be improved by introducing a derivative component within
its equation. The introduction of this component can improve the oscillating be-
haviour of the error state when it is brought to zero from high values:

u = −K∆
−→
X − kdKA∆

−→
X (3.20)

The term A∆
−→
X represents the derivative of the error state and kd is a parameter

to tune the effect of the derivative part of the control.
The idea of this kind of control is based on the fact that, together with the error

state, also the velocity at which this state is changing must be considered.
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3.6 Act and Wait Algorithm

Depending on the choice of Ts, d, tw, not enough time can be allocated to scientific
purpose, therefore an act-and-wait strategy can be superimposed to allocate long
periods of time to this task. This control algorithm would purposely deactivate the
control for a certain amount of time, after which it would re-activate it to perform
station-keeping maneuvers. A scientific mission would in fact require precise pointing
along a specific vector for a suitably long time span. A continuous control could
never achieve this task, while the discrete control can partially mitigate achieve this
objective by reducing the vale of d. However, only a portion of the sampling interval
Ts can be dedicated to the scientific mission, which may not be enough.

Moreover, the position and velocity error are limited within a tiny bound of
±1km and ±5mm/s. These numbers comes from the "Results" section. If these
errors would be allowed to slowly increase, thanks to an act-and-wait control type,
more time would be left that could be dedicated to a scientific mission. Of course,
the period of time where the control loop is off must be carefully chosen, otherwise,
at the activation of the control, the effort may reach too high values or, worse, the
orbit might start to diverge.

Also, the values of the position and velocity errors can be misinterpreted for a
tracking error, which a control algorithm should try to not compensate. Therefore,
trying to increase their values before applying any correction is mandatory.

Following the same notation used in [40], a control of this kind can be represented,
in a continuous work frame, as:

u(t) = −(K∆
−→
X − kpKA∆

−→
X )g(t) (3.21)

where

g(t) =

1 if 0 ≤ mod(t, tc) ≤ ta

0 if ta < mod(t, tc) ≤ ta + tp

The values for ta and tp represent the amount of time dedicated to the acting and
waiting phases (a pause for the algorithm), respectively, and the condition ta+tp = tc
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must be satisfied. ta and tc can be manually chosen in order to allocate more time to
the control or to the scientific mission. tc, the total cycle duration, affects how many
act-and-wait cycles are present in one orbit. Since normalized time is represented in
such a way that one full orbit is equal to 2π, the portions of orbit where the control is
active can be represented as shown in figure 3.4. Here, two different cycle durations
tc are shown, with a possible ta. The portion of time, and thus orbit, between tc

and ta is equal to tp. On the left, tc equal to π is selected, while on the right tc
has been chosen equal to 2π. Ideally, if also ta is doubled from the left case to the
right case, an equal amount of time is dedicated to the scientific mission, although
it is split into two intervals for the left one. This case should also provide less drift
for the spacecraft, and consequently less fuel consumption, because the correcting
maneuvers happen more frequently. As noted in [17], the immediate correction of
an error is preferable to a delayed correction, due to the fact that an error induces
forces that, as time passes, increase said error.

Figure 3.4: Two possible configurations for the act-and-wait control

It is important to select a suitable value for ta. A small one may not allow
enough time to properly control the spacecraft motion, especially in presence of
disturbances, therefore making its orbit diverge in time, while a higher value, which
can mitigate this problem, may hinder the scientific mission time. On the other hand,
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this kind of control allows a precise schedule of time between a station-keeping phase
and a scientific one. The complete control block for the act-and-wait algorithm is
represented in figure 3.6.

Figure 3.5: Control block detail
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3.7 Schmitt Trigger Control

In electronics, a Schmitt trigger is a comparator circuit with hysteresis implemented
by applying positive feedback to the non-inverting input of a comparator or differ-
ential amplifier [49]. It is an active circuit which converts an analog input signal to
a digital output signal. The circuit is named a "trigger" because the output retains
its value until the input changes sufficiently to trigger a change. In the non-inverting
configuration, when the input is higher than a chosen threshold, the output is high.
When the input is below a lower chosen threshold the output is low, and when the
input is between the two levels the output retains its value.

Figure 3.6: Schmitt Trigger transfer function. T - input, M - output

The implementation of a Schmitt trigger allows the introduction of a control that,
based on the error state as usual to compute the control action, uses the same state
as trigger to decide whether a station-keeping maneuver is required or not. If the
error state is above a certain upper threshold, the control is active and tries to bring
the error down to a certain lower threshold. On the other end, when the error state is
below the upper threshold, no control is active. This idea follows the same principle
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introduced with the act-and-wait algorithm, that is to improve the time window
available for scientific purpose by letting the position and velocity error increase up
to a certain level. Proper bound selection is mandatory to tune the activation and
deactivation of the control, which, in a continuous work frame, can be now written
as:

u(t) = −(K∆
−→
X − kpKA∆

−→
X )g(t) (3.22)

where g(t) is the Schmitt trigger output, which can assume the limited values of
0 (no control), 1 (control). The output of the trigger depends on the choice of the
upper and lower bounds of the trigger, ub and lb. The activation and deactivation
of the control follows: activation: |ep + kev| > ub

deactivation: |ep + kev| < lb

ep and ev represent the position and velocity error, recovered by the error state
∆
−→
X , and k is a weight parameter. The schmitt trigger control logic allows a space-

craft to remain confined within a certain station-keeping box, similar to the work
done by Liu et al. [31]. In this case, however, the box also includes the velocity error
information, together with the position error.

The main difference with the act-and-wait algorithm is based on the fact that the
activation is not based on time, following a predetermined cycle, but based on the
error state. This means that no precise schedule can be obtained, due to the fact that
the error depends on many possible disturbances that the simulated model doesn’t
include, therefore the length of time available for scientific mission is hard to predict.
On the other hand, no tuning on activation time is required, which is mandatory
for the act-and-wait algorithm and critical for the stability of the station-keeping,
because the control is solely based on the error state.

The Schmitt trigger can be tuned to work on the position and velocity error or
to work independently on the three axis. In this last case, if an axis doesn’t require
control it is mandatory to redistribute all the available thrust on the two remaining
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axis, only. Both cases will be tested.
In case of Schmitt trigger, both the Simulink model and the control algorithm

are subjected to changes, which can be seen in figure 3.7 and 3.8. Most notably,
the Simulink model requires the introduction of a memory block which stores the
information of the control state at the previous step. This block is used to determine
if a station keeping maneuver is required, when the error is in the region between
the upper and lower bound.

Figure 3.7: Simulink algorithm for Schmitt trigger
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Figure 3.8: Control block detail for Schmitt trigger
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3.8 Discarded Ideas

Different control techniques where considered and tested during the thesis project.
Among them, one idea was to use the control itself to drive the spacecraft to a

better trajectory than the one computed. The gain matrixK was slowly reduced until
orbital motion started to diverge. Right before diverging, motion was still controlled,
but it created a different trajectory than the one provided. This new trajectory was
then approximated through a Fourier series and then used as a new reference, with
the nominal gain K. Unfortunately, this new reference always performed worse than
the nominal one. This behaviour must be due to the inner instability of the L2 point.
It is therefore improbable that the reduced control effort could move a spacecraft on
a more stable, and thus efficient, orbit. This technique could however work on a L4
or L5 Halo orbit, due to the stability of the two Lagrange points.

A different idea was to use a spherical control, where the control action would
maintain a constant mean absolute value, thus suitable for a chemical thruster. The
only parameters that would change where two control angles, a horizontal and ver-
tical angle, that would provide the control direction, starting from a suitable, initial
vector. This initial vector was obtained after an averaging process of the required
control effort with the proportional LQR. Then, in a new simulation, the two control
parameters where obtained at each step from a linearization procedure. The control
wasn’t able to provide a stable station-keeping, even when increasing the control
magnitude and the control gain. This behaviour could be due to the linearization
procedure, especially when the required control angles are far from the initial vector.
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Chapter 4

Simulation Results

In this chapter the results of the various simulations and tests will be shown.
Starting from a comparison between the periodic orbit computed in the CR3BP

and the one from the ER3BP, thanks to the refined initial conditions found in chapter
1, the analysis will also test the difference between the Fourier series approximated
reference trajectory and the one where the reference comes from the dynamic model.

Later, the first results from the continuous control model will be shown, and
then the analysis will focus on the discrete LQR control, introducing all the different
strategies previously stated in Chapter 2.

The analysis will be divided between chemical thrusters and electric propulsion.
Before the results are shown, it is necessary to better explain the simulation envi-

ronment adopted, where the simulation parameters and disturbances are explained.
It is also introduced the methodology to assess the performance of the different con-
trol strategies, together with the two chosen thrusters data-sheets.

4.1 Simulation Environment

The orbital dynamic scheme is simulated in the Simulink environment, solving the
problem through ODE113 scheme, thanks to its higher performance when tolerances
are small with respect to ODE45: the relative and absolute tolerances are in fact
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set at 10−12. In order to increase the fidelity of the model, some adjustments and
additions are introduced.

4.1.1 Solar Radiation Pressure

A spacecraft orbiting close to the L2 Lagrange point is subjected to disturbances that
can slowly alter its motion. The task of compensation is entrusted to the control
algorithm. The most relevant sources of disturbance come from Solar Radiation
Pressure (SRP), Moon non-homogeneous gravity and gravitational influence of other
massive bodies, in this case the Sun. Among these, SRP only is taken into account,
due to its greater magnitude. The expression to compute its acceleration is given by:

−→a SRP = −ρSRPCrA

m

−→r � −−→r S/C

|−→r � −−→r S/C |
(4.1)

where ρSRP is the pressure exerted by the Sun, Cr is the reflection coefficient of the
material, A is spacecraft area, normal to the direction of incoming light, m is its
mass, −→r � is the position vector of the Sun with respect to system barycenter and
−→r S/C is spacecraft position.

The resulting acceleration, however, must be integrated in the equation of motion
in the Pulsating-Rotating reference frame, therefore both −→r � and −→r S/C must be
computed in a Rotating reference frame. −→r S/C is directly obtained in this frame
from the equation of motion, but −→r � is the result of a rotation of angle θ along the
z-axis applied to the Sun-inertial position −→r I

�, which can be computed as:

−→r I
� = r�

 cos(n�t)
sin(n�t)cosε
sin(n�t)sinε

 (4.2)

which represents Sun position in the Inertial reference frame centered at Earth-
Moon barycenter, where r� is the Sun-Earth mean distance, n� is Sun mean angular
velocity, t is time and ε is Earth orbit inclination around the Sun.

The resulting acceleration must also undergo a normalization procedure in order
to be plugged in the equation of motion. The normalization has been performed

65



assuming constant characteristic quantities. Rigorously, this procedure should have
been performed using θ-changing characteristic quantities, including time, but since
accuracy on the disturbance is not the task of this work, computation has been
simplified through this approximation. The normalization procedure is therefore
performed as:

−̂→a SRP = −→a SRP
t∗2

l∗
(4.3)

where −̂→a SRP is the normalized acceleration due to Solar Radiation Pressure. It can
be now plugged in the equation of motion, in order to have a more complete model
of the orbital dynamic:

ẍ− 2ẏ =
1

1 + ecosθ
(
∂Ω

∂x
+ ux + aSRP,x)

ÿ + 2ẋ =
1

1 + ecosθ
(
∂Ω

∂y
+ uy + aSRP,y)

z̈ + z =
1

1 + ecosθ
(
∂Ω

∂z
+ uz + aSRP,z)

4.1.2 Errors

The possible injection errors that a spacecraft can incur into must be accounted
for. This error has been modeled as a random, normally distributed component
added to the initial condition, with zero mean and 100km standard deviation for
position, 1m/s standard deviation for velocity. A control algorithm must be able
to compensate for this error, but its main objective is the station keeping after the
injection errors mitigation.

For this reason, when testing different control algorithms for many orbits, this
error will not be introduced, since it may alter the results of the simulation. It will
be validated afterwards, as a proof that the control algorithm can also be used to
mitigate the injection error.
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4.1.3 Performance Criteria

The following methodology is taken to evaluate the effectiveness of the controller. It
was adopted by M. Zhu et al. [52] in his work on active disturbance rejection control.
As suggested by him, the velocity increments ∆V (in unit of m/s/T), and the mean
absolute value of the position errors are important parameters in determining the
goodness of a control scheme.

The velocity increment can be computed as:

∆V =
1

T

∫ T

t0

|u|dt (4.4)

while the mean absolute position errors can be computed as:

ei = |∆i|mean (4.5)

with i = x, y, z.
An other important parameters that can discriminate between different control

algorithms is the time that can be dedicated to a scientific mission. As examples,
Clementine NASA satellite required 1.5-2 hours of precise pointing during its mission
phase of lunar imaging [10], while the Lumio spacecraft, a joint mission between
ESA and Politecnico di Milano, currently under development, is expected to point
at the far side of the Moon for up to half the Moon synodic period, ≈15 days
[46]. The act and wait algorithm and the Schmitt trigger algorithm can be used to
impose long periods of time where no control is achieved, thus allowing the spacecraft
to point in the direction that the scientific mission requires. On the other hand,
thanks to the conversion from continuous to impulsive control scheme, time between
following maneuvers can be dedicated to the scientific mission, too. Careful must
be paid in choosing the sampling frequency, since a smaller sample interval means
a more frequent control action, which reduces idle time between following corrective
maneuvers. For these reasons, two measures are selected as indices that represent
the effectiveness of a control in delivering windows of free time: longest window
of no-control, LW , and the ratio between total no-control time over total
simulated time, R.
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This particular choice has been made because the use of the longest window of
no-control only would have made no use of the available time between impulsive
maneuvers. It can add up to important values, in fact, depending on the particular
discretization chosen, and therefore it would have not been able to provide the com-
plete picture of a given control strategy. The same can be said for the ratio between
total no-control time over total simulated time, because it can’t provide a measure
for the maximum and uninterrupted time available for a scientific mission.

It is therefore necessary to use both figures of merit.

4.1.4 Selected Thrusters

The two selected thrusters are here presented and discussed.
The chosen chemical thruster is the VACCO "ArgoMoon Propulsion System"

[47], a hybrid propulsion unit composed by a main thruster of 100mN together with
four smaller thrusters, 25mN each, for attitude maneuvering. The total unit mass,
in a 1.3U format, is 2.065kg. The selected thrust level is 100mN, which corresponds
to the main thruster only.

Figure 4.1: Vacco propulsion unit

The electric thruster selected is a 1U electric unit from Thrustme. the "NPT30-
I2 smart propulsion with iodine propellant" [45] is a gridded ion thruster that used
iodine as fuel. Its main advantage is its throttleable thrust, that can be exploited
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to obtain a smoother control action. The chosen thrust level is therefore selected
between 0.3mN and 1.1mN. The total wet mass is 1.2kg.

Figure 4.2: Thrustme propulsion unit

Figure 4.3: Thrustme propulsion unit thrust levels

Of course, since the simulation environment requires an acceleration, a mass
hypothesis is required to convert thrust to acceleration. Since the propulsion systems
together with the entire thesis work is tailored for cube-sat application, a generic mass
of 24kg, suitable for a 16U cube-sat, is selected.
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It is however necessary to convert the obtained acceleration in normalized units,
in order to specify the maximum allowable acceleration coming from the thrusters.
Moreover, due to the elliptical problem, the normalization process requires time-
changing constants at each integration steps.
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4.2 Results

4.2.1 Reference Trajectory Choice

The first important discriminant is the research of a suitable trajectory. As previ-
ously stated, two methodologies have been selected: one of them is based on the
Fourier series approximation of a repeating orbit, while the other computes the orbit
solving the ER3BP starting from an initial condition that produces a periodic orbit,
which is then used as reference. It is expected that this last methodology produces
a better result, because it eliminates the approximation that the Fourier series ap-
proach introduces. The Fourier series approximation does in fact impose the control
to drive the spacecraft to a trajectory which is slightly different from the nominal
one, which has instead been computed in order to minimize the control effort. Due
to the instability of the L2 point, this new reference requires more station keeping
cost.

It is also studied the difference in computing a reference trajectory in the CR3BP
and in the ER3BP environment. Again, it is expected that the latter would produce
a better result, because it uses a more realistic model.

For this simulation, a continuous control is chosen, without injection errors, in
order to simulate a best-case scenario. The Fourier series parameters for the two
orbits built in the CR3BP and ER3BP reference frames are listed in table 4.1, 4.2,
4.3 and 4.4.
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coefficient X Y Z
a0 1.0856 1.9606e-18 7.3107e-02
a1 4.2624e-02 5.7774e-07 1.2814e-01
a2 1.8790e-06 -1.2764e-01 -7.6151e-07
a3 -1.4276e-03 -1.6609e-07 -2.1764e-02
a4 -1.2587e-07 1.8348e-02 2.5868e-07
a5 -1.9045e-04 6.3373e-08 6.1803e-03
a6 -2.5187e-08 -4.6670e-03 -1.1019e-07
a7 2.3280e-04 -2.4843e-08 -2.2049e-03
a8 4.1051e-08 1.3721e-03 5.2415e-08
b1 -1.8185e-04 9.3143e-09 9.5998e-04
b2 -4.0084e-08 -4.1156e-04 -2.8525e-08
b3 1.2394e-04 -3.1097e-09 -4.6859e-04
b4 3.2782e-08 1.1451e-04 1.6709e-08
b5 -1.1559e-04 6.3271e-10 3.3080e-04
b6 -3.5671e-08 -1.9969e-05 -1.3761e-08
b7 9.6063e-05 2.6706e-10 -2.4243e-04
b8 3.3879e-08 -7.3751e-06 1.1526e-08
ω 2.0000 2.0000 2.0000

Table 4.1: Fourier series coefficient for CR3BP orbital position
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coefficient Vx Vy Vz
a0 -9.7467e-20 2.4532e-06 1.0296e-18
a1 1.0391e-04 -2.5525e-01 -3.5992e-05
a2 -8.5290e-02 -1.1732e-06 -2.5620e-01
a3 -1.3768e-05 7.3380e-02 2.4488e-05
a4 5.6500e-03 6.7452e-07 8.7157e-02
a5 -3.9913e-06 -2.7975e-02 -1.5587e-05
a6 1.0920e-03 -3.8573e-07 -3.6984e-02
a7 9.0329e-06 1.0962e-02 9.8926e-06
a8 -1.8535e-03 2.0152e-07 1.7604e-02
b1 -1.0898e-05 -4.0895e-03 -6.7074e-06
b2 1.7890e-03 -9.3979e-08 -9.5489e-03
b3 1.0449e-05 1.3699e-03 4.6174e-06
b4 -1.4294e-03 3.7777e-08 5.4780e-03
b5 -1.2865e-05 -2.4770e-04 -4.3205e-06
b6 1.5084e-03 -7.9692e-09 -4.3935e-03
b7 1.4801e-05 -1.3714e-04 4.3121e-06
b8 -1.5185e-03 -5.0426e-09 3.8368e-03
ω 2.0004 2.0000 2.0000

Table 4.2: Fourier series coefficient for CR3BP orbital velocity
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coefficient X Y Z
a0 1.0929e+00 2.9540e-18 5.9463e-02
a1 6.7818e-06 -6.6765e-18 3.4472e-02
a2 4.0099e-18 -9.1346e-02 -3.3400e-18
a3 5.8949e-02 -3.8082e-18 1.0407e-01
a4 1.3501e-16 -1.1864e-01 -7.5943e-18
a5 2.8574e-03 4.4279e-18 -3.5272e-02
a6 8.5423e-18 2.8039e-02 -2.6342e-18
a7 -7.2234e-03 5.2710e-18 -3.6207e-03
a8 1.2783e-17 4.6542e-03 -1.6061e-18
b1 1.7335e-03 2.0970e-18 9.7483e-03
b2 1.5715e-17 -8.7948e-03 -1.9190e-19
b3 1.5450e-03 -1.3129e-18 -3.7139e-03
b4 -1.3299e-17 3.1380e-03 -3.7091e-19
b5 -1.4116e-03 -8.9227e-19 -1.4630e-03
b6 1.4663e-17 1.2962e-03 -2.6726e-18
b7 2.2817e-04 3.1482e-18 2.0728e-03
b8 -2.4955e-17 -1.9080e-03 3.2623e-18
ω 1.0282 1.0006 1.0016

Table 4.3: Fourier series coefficient for ER3BP orbital position
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coefficient Vx Vy Vz
a0 -5.2321e-18 2.2938e-04 1.7683e-17
a1 2.4329e-18 -9.0616e-02 -9.0374e-18
a2 1.8949e-03 6.8991e-18 -3.5567e-02
a3 -2.0134e-18 -2.3680e-01 6.0526e-18
a4 -1.1984e-01 1.4559e-17 -2.0827e-01
a5 5.5619e-18 8.3842e-02 7.6216e-18
a6 -1.3516e-02 -5.2634e-18 1.0706e-01
a7 -2.2767e-18 1.9838e-02 3.9545e-18
a8 3.1175e-02 1.2247e-18 1.3126e-02
b1 2.3896e-18 -4.3831e-02 -8.8753e-18
b2 -7.2229e-03 -2.4067e-18 -4.9223e-02
b3 -4.7805e-19 1.9246e-02 6.1421e-18
b4 -1.0913e-02 2.9176e-18 2.2574e-02
b5 4.5901e-19 9.8053e-03 1.9247e-18
b6 9.5099e-03 -2.3743e-18 1.0082e-02
b7 -5.4619e-18 -1.4947e-02 6.0600e-18
b8 4.3381e-04 3.6147e-20 -1.7597e-02
ω 1.0158 9.9956e-01 1.0026

Table 4.4: Fourier series coefficient for ER3BP orbital velocity
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The initial condition for the propagation of the reference orbit in case of reference
trajectory through motion equation is instead the refined condition for the ER3BP
orbit. This initial condition is also used as initial condition for spacecraft motion,
while the initial conditions for the two Fourier-series approximated orbits are the
corresponding approximation computed at t = 0. All the orbits are simulated for a
time span equal to 8π, which corresponds to 4 orbits.

The diagram of position error and control actions reveal that the reference tra-
jectory computed in this way allows a better error compensation (figure 4.4) and a
reduced controlled effort (figure 4.6). Table 4.5 synthesizes the performance evalua-
tion for the three orbits.

Orbit Velocity inc. [m/s/s] Mean abs. err. [km]
ER3BP ODE 5.185e-08 0.682
ER3BP Fourier 4.096e-04 4628.262
CR3BP Fourier 4.649e-04 5823.225

Table 4.5: Performance criteria with different reference trajectories

It is clear that a reference trajectory computed integrating the equation of motion
provides a better reference for a spacecraft, due to the elimination of an approxima-
tion step. For the same reason, a reference computed including the effect of the
eccentricity is better than a reference that doesn’t consider it. It can be noted that
only the trajectory computed through the integration of the equations of motion can
provide an annual Delta-V below the requirement of 200m/s per year.

For this reason, the reference trajectory computed by integrating the equation of
motion is selected as main reference.

Of particular interest is the entity of position and velocity error when using the
reference defined as "main reference", which are bounded to a region of ±1km and
±5mm/s. These low values can be in fact misinterpreted for tracking errors, in a
real scenario.

Lastly, for what concerns control effort, all the three methodologies allow the use
of the chosen chemical thruster, since the maximum allowable acceleration coming
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from this thruster amounts to 4.17x10−3 m/s2. On the other hand, the electric
thruster can provide a maximum acceleration equal to 4.17x10−5 m/s2, which can
only be achieved by the selected main trajectory.
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Figure 4.4: Position error with different reference trajectories
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Figure 4.5: Velocity error with different reference trajectories
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Figure 4.6: Control effort with different reference trajectories
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4.2.2 Discrete Control

The next test involves the use of the discretized control, which can be helpful in the
construction of an impulsive control. This control requires the tuning of the sam-
ple interval parameter Ts, which can affect the performance of the station-keeping,
and must be compared with a classical continuous LQR. The simulation has been
performed along a time span of normalized time equal to 2π, without considering
injection errors. The three choices for Ts have been selected as π/200, π/100 and
π/50, which correspond to an updating interval of ≈1.5h, ≈3h and ≈6h, respectively.

As it can be noted by table 4.6, the mean absolute error is very similar between
all the four cases, while the velocity increment, which is linked to ∆V usage, increase
by 0.28% when moving from a continuous control to a discretized control with Ts =

π/200 and by 0.23% when moving from Ts = π/200 to Ts = π/100. The same
increment reaches 0.92% when introducing Ts = π/50. In any case, the behaviour
of both the position and the velocity error is similar, with all the three discretized
control cases achieving stable station-keeping.

Control Velocity inc. [m/s/s] Mean abs. err. [km]
Continuous 3.884e-8 0.111

Discrete (Ts = π/200) 3.895e-8 0.100
Discrete (Ts = π/100) 3.904e-8 0.100
Discrete (Ts = π/50) 3.940e-8 0.101

Table 4.6: Performance criteria with different control types

Due to the different sample time, the shape of the control action is different,
and this can be noted in figure 4.11, where a smaller sample time interval makes
the control action behave more like a control action from a continuous control. The
same choice affects the computational time, where a greater sample time makes the
simulation faster, due to the lower control frequency.

The achieved acceleration, for all the considered cases, is compatible with the
chosen thrusters.
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Given these considerations, the value of Ts = π/100 has been chosen as a good
compromise between computational accuracy and effort for a discretized control.
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Figure 4.7: Results from continuous control
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Figure 4.8: Results from discrete control with Ts = π/200
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Figure 4.9: Results from discrete control with Ts = π/100
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Figure 4.10: Results from discrete control with Ts = π/50
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Figure 4.11: Detail on a same spot with different Ts

4.2.3 Proportional Derivative Control

This test evaluates the use of a proportional derivative control for orbit maintenance.
No injection error is yet introduced and the simulation is tested over a period of two
orbits with a discretized control (Ts=π/100). This section is also used to find a
suitable value for the derivative gain kp.

The result are summarized in table 4.7. It can be noted that the mean absolute
error is similar between the different cases, while the Delta-V requirement is actually
improving as the proportional gain kd is increasing, following a rule of decreasing
increments.

Control Velocity inc. [m/s/s] Mean abs. err. [km]
kd = 0 3.904e-8 0.100
kd = 0.1 3.863e-8 0.101
kd = 0.2 3.839e-8 0.101
kd = 0.3 3.820e-8 0.101
kd = 0.4 3.807e-8 0.100

Table 4.7: Performance criteria with different derivative gains

The practical benefit of a proportional discrete control is shown in figure 4.12
and 4.13, where two simulations are run with an injection error. It can be noted that
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the use of a simple LQR produces a control that oscillates when large corrections are
required. This behaviour is solved with the introduction of a derivative component.

It can be concluded that the introduction of a derivative component in the control
is useful in improving the control behaviour and thus the Delta-V requirement. It
is however not possible to select an optimal value for the derivative gain, since the
simulation is lacking important strategies such as impulsive control or the Schmitt
trigger, which can alter the control behaviour and make it more discontinuous. More-
over, the simulation is still lacking in realism, since no constrain on the acceleration
or on the error is introduced.
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Figure 4.12: Results from discrete control with kd = 0
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Figure 4.13: Results from discrete control with kd = 0.3
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4.2.4 Act-and-Wait Control

This section applies the Act-and-wait strategy to the control, together with the
impulsive discrete transformation of the nominal control. Here, the real values of
the available accelerations are for the first time introduced, and a more realistic
scenario is therefore simulated. In order to consider the real performance this control
technique has on the station keeping, which is analyzed over a time span of two
orbits, the injection error is introduced, which acts as an error that have increased
after a previous waiting phase. An analysis on the weight of the derivative gain kd
is performed, for both thrusters. Moreover, since the Schmitt trigger has a lower
bound on the error state under which the control deactivates, a similar lower bound
is here introduced: if the position error is below 5km and the velocity error is below
0.1m/s, no control is performed. Lastly, a waiting time tw of 2 minutes is introduced,
which is a reasonable value for an attitude maneuver.

The first batch of results adopts the chemical thruster. Two cycles tc of π and
2π are developed, which correspond to two control phases along one orbit and only
one control phase per orbit, respectively. The act time ta, after many iterations, has
been found to be equal to at least π/3 for the first case and 2/3π for the second,
otherwise the control would diverge. Since the developed model is limited for what
concerns perturbances and disturbances, an augmented act time ta equal to π/2 and
π has been chosen, in order to allow for some robustness in case of a more realistic
scenario.

The results are listed in table 4.8, where also the performance criteria about
longest window of no-control and the ratio between total no-control time over total
simulated time. The abbreviations V inc. and m.ab.E stand for velocity increment
and mean absolute error. As a first regard, it can be appreciated how the chemical
thruster requires less than 1% of the total mission time to provide a stable station
keeping, independently on the choice of the parameters.
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n tc kd V inc. [m/s/s] m.ab.E [km] LW [days] R [%]
1 π 0 7.952x10−6 120 7.6 99.81
2 π 0.1 5.093x10−6 108 10.8 99.88
3 π 0.2 3.866x10−6 84 8.2 99.91
4 π 0.3 3.576x10−6 68 9.5 99.92
5 π 0.4 5.283x10−6 40 9.8 99.87
6 2π 0 1.234x10−5 359 11.0 99.71
7 2π 0.1 2.164x10−5 781 16.7 99.48
8 2π 0.2 1.255x10−5 659 16.1 99.70
9 2π 0.3 1.182x10−5 529 16.4 99.72
10 2π 0.4 2.458x10−6 103 16.4 99.94
11 2π 0.5 8.432x10−6 336 16.7 99.80

Table 4.8: Act-and-wait control with different settings, chemical thruster

It can be noted that, for the π-cycle, an increase in derivative gain brings benefits
in terms of fuel requirement, mean absolute error and ratio R, up to a certain value,
where performances start to decrease. In this case, the longest window of no control
is found for a value of kd equal to 0.1, which allows up to 10.8 days without acting
on the station keeping, while the best ratio between total no-control time over total
simulated time is found for a value of kd equal to 0.3, which also corresponds to the
case with the least velocity increment. For this case, total Delta-V requirement over
one year would amount to 113 m/s.

For the cases with tc equal to 2π the increase of cycle duration has a great effect on
the mean absolute error, due to the fact that the position error is allowed to increase
for a greater amount of time. It can be noted that there is an initial worsening of
the performance as the derivative gain increases, a part for the longest window of no
control which is actually improved, up to a certain value of kd, where instead a local
minima for fuel requirement, mean absolute error and ratio R is found. The longest
window of no control is instead slightly smaller than the maximum, and it’s equal to
16.4 days. For this case, namely kd=0.4, annual Delta-V budget amounts to 78 m/s.
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It can be noted how this case offer the best fuel requirement and the best scientific
performances, even better than the shorter π-cycle, which should, in theory, allow
a more frequent control and thus a smaller error increase, with consequently less
Delta-V. It has been found that a numerical bug causes this issue.

This bug is a combined effect of the short pulse duration of the chemical rocket
engine, due to its high thrust, and the length of the waiting time tw. For some cases,
particularly at the end of the control window, where the error is small, it is possible
that the pulse duration for a discretized interval is much smaller that the waiting
time. The simulation is able to compute the duration of the pulse d, which can reach
values below one second, but it’s not able to dynamically adjust its resolution, which
is instead automatically calibrated for 2 minutes. Therefore, the control skips the
control interval. Reducing the discretization level, in an attempt to obtain a less
frequent control action and thus an increased error, doesn’t solve the problem, and
it is actually partially mitigated by an increase in cycle time. This is why the best
case for the chemical thruster is found for the 2π-cycle, where the error is allowed to
increase to a much higher entity.

Figure 4.14 shows important plots for case 10), the one with the best overall
performance, with a detail on the control norm, where the impulsive behaviour can
be appreciated. As an example, the control has computed that the first control pulse
at the beginning of the second control phase would require 870s of continuous thrust,
while the last control impulse would require only 38s. It can also be noted how the
control achieves an acceleration equal to the one imposed by the particular thruster,
namely a=0.0417 m/s2.
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Figure 4.14: Chemical thruster with tc = 2π and kd = 0.4

The result coming from the electric thruster are listed in table 4.9. The same
values of the previous one are adopted, for what concerns cycle duration and waiting
time. It can be noted how, case by case, the fuel requirement is smaller for the electric
thruster than the chemical one, thanks to its smaller thrust level which achieves a
smoother control action.

Similarly to what happened for the chemical thruster for the π-cycle, an increase
of the derivative gain provides a general increment in station keeping performance.
Only the longest window of no control appears to behave in an opposite manner,
with a reduction of its size as kd increases. In this case, a trade-off is necessary to
select the best case, depending on the mission constrains, as some cases allows better
station keeping cost at the expense of the size of the no control window.
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n tc kd V inc. [m/s/s] m.ab.E [km] LW [days] R [%]
12 π 0 3.793x10−6 49 9.8 78.87
13 π 0.1 2.826x10−6 51 9.4 84.26
14 π 0.2 2.242x10−6 46 8.0 87.52
15 π 0.3 1.727x10−6 46 7.9 90.38
16 π 0.4 2.479x10−6 57 9.0 86.20
17 2π 0 2.157x10−6 39 13.9 87.99
18 2π 0.1 3.177x10−6 95 15.3 82.30
19 2π 0.2 1.251x10−6 54 17.4 93.03
20 2π 0.3 1.360x10−6 56 16.6 92.43

Table 4.9: Act-and-wait control with different settings, electric thruster

For the 2π-case, the results are similar to the π-cycle. Fuel requirement, mean
absolute error and ratio R are similar, while there is a great improvement over the
window of no control. For this reason, there is no doubt that a control cycle of period
2π provides a better control architecture. It can also be noted that a clear, better
derivative gain is detectable, namely kd=0.2, which allows the best annual Delta-V
budget, 40m/s, the best window of no control, 17.4 days, and the best ratio of total
no-control time over total simulated time.

The resulting graph of this case are listed in figure 4.15 . It can be noted how
the control requires longer control pulses, as big as the entire discretized interval,
minus the waiting time, which has an effect over the ratio R. These control pulses
appear as if the control was continuous, but a detailed zoom over the second control
phase, however, shows how the control is actually impulsive (figure 4.16). It can
also be noted how the control norm is bounded between the maximum acceleration,
4.17x10−5 m/s2, and the minimum one, 1.39x10−5 m/s2. Lastly, at the beginning
of the second control phase, the first required impulse is 8100s long, while the last
control impulse is 191s long.

As final notes, the electric thruster, due to its lower thrust level, requires longer
control pulses, which, depending on the free parameters, require up to 22% of the
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total simulated time. On the other hand, the fact that the control pulses are much
longer makes the simulation safe from the numerical bug that afflicted the chemi-
cal thrust. This consideration, together with the smoother control behaviour, can
explain the reduced fuel requirement for the electric thruster.
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Figure 4.15: Electric thruster with tc = 2π and kd = 0.2
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Figure 4.16: Detail over the second control phase

4.2.5 Schmitt trigger

As previously stated, a different way to activate and deactivate the control can be
based on the error state, rather than on time, thanks to the Schmitt trigger. The
definition of the boundaries, however, requires the tuning of the weight k, and the
identification of suitable upper and lower boundaries. The weight has been chosen in
such a way that, in normalized terms, a position error of 100km would have the same
importance as 2m/s of velocity error, namely k=0.13. Then, the upper boundary
have been chosen in such a way that a certain position error alone or a velocity error
alone would activate the control, for example 100km and 0m/s or 0km and 2m/s of
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error which, in normalized values, corresponds to 2.6x10−4. The lower boundary has
been instead selected in such a way that the position and velocity error must not
surpass a combined error, in normalized values, of 2.6x10−5, which corresponds to
5km and 0.1m/s of error, combined.

The value of the normalized boundaries should vary in time, due to the elliptical
problem, but a constant value is preferred to make the computation of spacecraft
motion easier.

Different upper boundaries are therefore tested for both thrusters. The value of
the derivative gain is not however tested, and the appropriate value has been chosen
as the best case that each thruster achieved in the act-and-wait algorithm. The
simulation is two orbits long and the injection error is again introduced to simulate
the end of a previous waiting phase.

The results are listed in table 4.10 for the chemical thruster and in table 4.11 for
the electric thruster. The abbreviation "ub" stands for "upper bound" and represents
the equal amount of position or velocity error that activates the control.

It can be noted that for both thrusters, an increase in upper bound level decreases
the station keeping performance, requiring more Delta-V budget due to the progres-
sive increase of the error state. For the chemical thruster, however, this behaviour
has little effect on the ratio R, while it actually allows a bigger window of no control
as the upper bound increases. Case 23) allows up to 12 days of no control, at the
expense of fuel requirement, 193 m/s of annual Delta-v budget, which is however
within the margin of 200m/s per year. The diagrams of this case are represented
in figure 4.17 and it can be seen how there are more windows of no control, albeit
smaller than the maximum, with respect to the act and wait control which only had
one, bigger window. This configuration possesses therefore exploitation that can be
used. On the other hand, a more frequent control with a lower upper threshold like
case 21) is able to save more than half fuel requirement, at the expense of half of
the maximum window of no control, which is suitable for a longer mission duration.
The final choice between the two must therefore undergo a selection based also on
the mission scientific requirements.
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n ub [km - m/s] V inc. [m/s/s] m.ab.E [km] LW [days] R [%]
21 50 - 1 2.646x10−6 37 6.3 99.94
22 100 - 2 4.989x10−6 64 7.6 99.88
23 200 - 4 6.122x10−6 99 12.0 99.88
24 300 - 6 1.202x10−5 170 5.7 99.71

Table 4.10: Schmitt trigger with different settings, chemical thruster

Figure 4.17: Schmitt trigger control with case 23) of chemical thruster
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The electric thruster is penalized by this kind of control, due to its low thrust level
which requires much more time than the chemical thruster in order to maintain the
Halo orbit. It can be indeed noted that the best performance is achieved when the
upper bound is set to a low value. Paradoxically, due to the lower required control
effort offered by this solution, the electric thruster requires less time to correct the
error, thus allowing a greater window of no control. Also the ratio of total no-control
time over total simulated time is the best for this case. The diagrams of this case
are represented in figure 4.18. It can be noted that, a part for the first control phase
where the engine is working to resolve the injection error, the electric thruster action
is more impulsive and less frequent in time, with respect to the act and wait control
which instead was more frequent in the control phase. Similarly to the chemical
thruster, there are frequent windows where the engine is not operative that can be
exploited, if the scientific mission allows their use.

n ub [km - m/s] V inc. [m/s/s] m.ab.E [km] LW [days] R [%]
25 50 - 1 2.785x10−6 58 6.0 84.49
26 100 - 2 5.136x10−6 82 4.9 71.40
27 200 - 4 9.595x10−6 138 4.0 45.56

Table 4.11: Schmitt trigger with different settings, electric thruster
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Figure 4.18: Schmitt trigger control with case 25) of electric thruster
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The Schmitt trigger logic can also be applied separately on the three main axis
in such a away that when an axis doesn’t need to be controlled all the thrust can
be dedicated to the remaining two. This implementation can help the electric rocket
engine, due to its lower thrust.

The results from this kind of different implementation for the chemical thruster
are listed in table 4.12 . It can be noted that there is an overall decrease in the
performance, with respect to the Schmitt trigger based on the overall error, when
implementing this kind of control. Case 29) and 30) are in fact above the limit
of 200m/s of annual Delta-V budget, therefore only case 28) is suitable for a real
mission. It has however almost double fuel consumption and a lower longest window
of no control with respect to a simpler Schmitt trigger.

n ub [km - m/s] V inc. [m/s/s] m.ab.E [km] LW [days] R [%]
28 50 - 1 4.201x10−6 44 5.7 99.80
29 100 - 2 6.400x10−6 71 5.8 99.85
30 200 - 4 8.770x10−6 119 9.8 99.79

Table 4.12: Schmitt trigger with different settings, separately applied on the three
axis, chemical thruster

As an example, selecting case 30), which has the same upper bound as previously
done, it can be noted how the control is more frequent, thus reducing the possibility
of achieving long periods of time without control (figure 4.19)

The situation is instead different selecting the electric thruster, as it can be noted
in table 4.13. The best overall result is given by case 31), since case 32) is close to
the annual maximum Delta-V budget and case 33) surpasses it. The possibility of
dedicating the lower thrust to a reduced number of axis allows this particular engine
to perform its correcting maneuver in less time than with a Schmitt trigger based
on the overall error state. This situation has a beneficial effect on the maximum
window of no control, since it’s now comparable to the one obtained with the chemical
thruster. The downside in this different control logic is given by the fact that more
control impulses are required, thus increasing the overall fuel requirement. The
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Figure 4.19: Separate Schmitt trigger control with case 3) of chemical thruster

Schmitt trigger separately applied over the three axis has sensibly improved the
scientific criteria with respect to a simpler Schmitt trigger control, at the expense of
an increase 13% in station-keeping cost. The results of case 31) are shown in figure
4.20.
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n ub [km - m/s] V inc. [m/s/s] m.ab.E [km] LW [days] R [%]
31 50 - 1 3.152x10−6 46 8.0 96.02
32 100 - 2 5.790x10−6 67 9.1 93.07
33 200 - 4 9.786x10−6 103 8.5 87.12

Table 4.13: Schmitt trigger with different settings, separately applied on the three
axis, electric thruster
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Figure 4.20: Separate Schmitt trigger control with case 1) of electric thruster
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Chapter 5

Conclusion

The developed thesis has demonstrated that it is possible to obtain a control that
allows windows of free time where no control is active, while, at the same time,
achieving a stable station-keeping in the unstable motion around L2 Lagrangian
point. The results are also compatible with the Cubesat standard, since they have
been obtained using commercially available Cubesat engine data.

Table 5.1 provides a quick summary of the most performing results. The abbre-
viations Aaw, St, sSt stand for act-and-wait, Schmitt trigger and separate Schmitt
trigger. It is also chosen to show the total annual Delta-V requirement instead of the
velocity increment, as it is a more immediate information. The parameter ub stands
for "upper bound" and in the table it is written the corresponding position error
and velocity error that alone cause the Schmitt trigger to activate. The distinction
between different thruster is given by the letter: C for chemical thruster and E for
electric thruster.

Judging by the results alone, it may appear that a control based on time is more
efficient than a control based on error, under every aspect of a space mission, from
fuel requirement to time available for the scientific mission. It must be however
remembered that the intrinsic drawback of the act-and-wait control is the proper
selection of the active time ta, which affects the convergence of the station keeping.
The Schmitt trigger is exempted by this drawback, due to its error-based mechanism,
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4 C AaW tc = π 0.3 113 68 9.5 99.92
10 C AaW tc = 2π 0.4 78 103 16.4 99.94
21 C St ub = [50km, 1m/s] 0.4 83 37 6.3 99.94
23 C St ub = [200km, 4m/s] 0.4 193 99 12 99.88
28 C sSt ub = [50km, 1m/s] 0.4 133 44 5.7 99.80
15 E AaW tc = π 0.3 55 46 7.9 90.38
19 E AaW tc = 2π 0.2 40 54 17.4 93.03
25 E St ub = [50km, 1m/s] 0.2 88 58 6.0 84.49
31 E sSt ub = [50km, 1m/s] 0.2 99 46 8.0 96.02

Table 5.1: Best performing simulations

which is actually better suited for the unstable mission to the L2 point of the Earth-
Moon system. An other important factor for this control is the robustness, its ability
to react in case of unforeseen disturbances and modelization errors, which is not
embedded in the act-and-wait control logic. The Schmitt trigger, however, doesn’t
allow a precise schedule of mission time, due to the unpredictability of possible
disturbances and the instability of the Halo orbit, which is instead guaranteed by
the act-and-wait control logic. Therefore, careful consideration must be paid in the
choice of the control algorithm. The main driver for this choice is represented by
the scientific requirements, which can provide information about mission timing and
planning.

The act-and-wait algorithm is also best suited for a case where a longer period
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of time is dedicated to the waiting phase, since both thrusters are able to obtain the
best overall performance in correspondence of the 2π-cycle, with only one control
phase per orbit.

The Schmitt trigger logic is instead best suited for a chemical thruster when it
considers the overall position and velocity error, due to the fact that this thruster is
able to provide a higher acceleration than the electric thruster. On the other hand,
this particular engine is best suited for a Schmitt trigger which acts separately on the
three axis, thanks to its thrust partitioning peculiarity, which mitigates the intrinsic
low acceleration provided by the electric thruster.

It is however clear that the implementation of a proportional-derivative control
allows the construction of a more efficient control that mitigates the oscillating be-
haviour typical of a simple proportional control. Without this contribution, the task
of achieving long periods of time with no control action would have been severely
hampered.

The introduction of a transformation that modify the control from continuous
to impulsive has also made possible the exploitation of free time between different
maneuvers. At the same time, it has allowed the construction of a more realistic
scenario, with thrust levels coming from real rocket engines data sheets and the
possibility to account for attitude maneuvers. The discretization of the control as a
first, important step has been fundamental in achieving this transformation, which
can also be expanded and further analyzed in future works.

From a thruster point of view, the results state that a chemical thruster is more
suitable for correcting large errors, thanks to the increased provided acceleration,
while an electric thruster, with its more modest thrust, is able to achieve a smoother
control, with benefits on the maintenance of the orbit in terms of Delta-V budget.
The choice of the two thrusters must also take into account the difference in the
overall system. A chemical rocket engine does in fact require more fuel than an
electric one, due to the lower specific impulse, which instead requires larger solar
arrays due to the higher power requirement. Both cases must therefore undergo a
crucial analysis, due to the involved mass behind the two thrusters that can affect
the overall space system mass and design.
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From the work done, it has been noted how the study of motion around La-
grangian points requires the use of the most realistic simulation, avoiding, if pos-
sible, too many approximation. This has clear remarks when evaluating a suitable
reference trajectory, where the use of the elliptical restricted 3-body problem and
the avoidance of the Fourier series provided a better trajectory in terms of station
keeping cost and effort.

Future work can implement different orbits, which may behave in different man-
ners than the one developed and studied. A complete mission analysis, with Earth-
Moon transfer orbit and end of life disposal of the space system could also be a
possible improvement. A coupled attitude-orbital dynamic could also improve the
accuracy of the model, particularly for what concerns the choice of the waiting time
before a control pulse. The main difficulty in this process is given by the different
time scale at which these two dynamics work, since, in normalized units, the orbital
dynamic is 375,704 times faster than the attitude dynamic. An other improvement
can be made by introducing more perturbations, like the J2 effect of the moon or the
influence of other, influential bodies in the solar systems, such as the Sun. Moreover,
a procedure of optimization can be performed on the control parameters and gains,
in order to find the suitable values that allows a particular space mission to maximize
the scientific mission time. Lastly, the algorithm developed for station-keeping of this
particular problem can be extended to any general dynamical problem to develop a
controlled environment.
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