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Abstract

The scientific interest in the exploitation of Lagrangian points orbits has increased
in the last decades. The requirement of precise station-keeping for the unstable
motion of Halo orbits has brought many control techniques. In addition, the use of
Cubesats has the potential to reduced mission cost. The primary task of a space
mission is subject to its scientific requirements, which are not generally considered
by the classical control schemes. For example, optimal controls typically aim to
minimize fuel and tracking error, it may also be desirable to maximise the time at
which science can be undertaken. Moreover, during station-keeping maneuvers it may
not be possible to perform the science, since the thrust-vectoring required may be in
a different direction to the payload pointing requirement. This thesis presents the
development of controls that are able to combine stable station-keeping and maximize
the time where no control is required. The Elliptical Restricted 3-Body Problem and
a simple Linear Quadratic Regulator are introduced, capable of providing continuous
control. This classic control algorithm is augmented to include impulsive control,
coupled with different strategies. The performance of these strategies is analysed

with respect to delta-V, tracking error and time for science.
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Chapter 1

Introduction

1.1 Motivation

The orbits around Lagrangian points have attracted the mission analyst because they
provide natural orbits of strategic importance, with theoretically fuel-free trajecto-
ries. However, due to their inherent instability, they require station-keeping. The
existence of Lagrange points in the restricted three body problem has been known
since the mid-eighteen century. The real importance of these special locations in the
solar system became clear in the Space Age of 1960’s. It was immediately evident
that several missions could be accomplished only by the use of these points. The
first space mission that placed a spacecraft in a Lagrange point was the Interna-
tional Sun-Earth Explorer-3 (ISEE-3), whose selected location was the Sun-Earth
L1 point, a suitable location for an obstructed view of the Sun. Scientific missions
where instead its presence was undesirable where placed in the L2 points, such as the
Wilkinson Microwave Anisotropy Probe (WMAP). In the Earth-Moon system, the
L2 point provides a suitable place for continuous relay communication, a feature that
have been exploited by the Chang’e 4 mission through the Queqiao relay satellite.
A future mission that would exploit this point for scientific purpose is the Lunar
Meteoroid Impact Observer (LUMIO), thanks to the continuous and unobstructed

view of the Moon far side. The L1 Earth-Moon Lagrange point is instead a suitable
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location for a space station and Nasa is currently developing the Lunar Gateway,
whose final orbit will be a highly elliptical near-rectilinear halo orbit.

As miniaturization technology is improving [22], it seems beneficial to use the
newly developed Cube-sat standard. The advantage of such technology, starting
from lower price and reliability requirements, is that a Cube-Sat could have a ride-
share with a bigger and more complex payload, therefore with no need to define a
separate mission.

Of course, it is expected that a Cube-sat mission would mostly be dedicated
to its scientific payload, which may have specific requirements about pointing and
time schedule. It is therefore mandatory that the Cube-sat is able to meet said
scientific requirements, while also being able to maintain its given orbit through
station-keeping maneuvers.

It is therefore clear that a continuous control algorithm, which would be contin-

uously active, can not provide spare time for its scientific mission.

1.2 Problem Statement

Scope of the thesis is to find, study and assess the performance of different con-
trol algorithms and strategies in order to reduce the portion of mission time dedi-
cated to station-keeping procedures in L2 halo orbits, with the application of current
propulsion technologies for miniaturized spacecrafts, namely chemical and electric
propulsion.

In order to understand the problem definition for this mission, a brief review
about the circular restricted three-body problem is firstly given. With this problem
setup, a linear quadratic regulator (LQR) is introduced together with different control
strategies to achieve impulsive control and suitably long windows of no station-
keeping maneuvers.

In order to develop a more realistic scenario, it has been chosen to introduce in
the simulation the data related to two commercially available thruster, a chemical

and an electric one, in the form of available thrust. The choice of two different
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propulsion unit is not meant to compare the two propulsion technologies but to find

the suitable control algorithms that better suit the particular thruster.

1.3 Previous Work

Centuries ago Fuler, Lagrange, and Jacobi introduced the dynamics of the La-
grangian points. The Jacobi integral forms an important part for a discussion of
the transfer trajectories to these locations from Earth and vice-versa.

In the 1960s, Steg and Michael provided analysis of the stability of triangular
regions studying the motion of a particle placed at the Earth-Moon L4 location. They
investigated the influence of third body perturbations and extended it to the elliptical
lunar orbit. However, due to the limitation of numerical calculus at the time, the
search of periodic orbits was significantly limited and it was believed by Forest and
Moulton that certain periodic solutions are practically impossible to compute. With
the invention of computers and calculators such concern was gone, and numerical
procedures paved the way for several types of periodic solutions.

Poincareé first indicated periodic solutions as the primary mean of understanding
the CR3BP [20][39]. Howell and Keeter [25] also studied the orbits in these loca-
tions of E-M system. Many periodic orbits have been successfully exploited for space
mission applications in both the Sun-Earth and Earth-Moon [24] system. Catalogs
of quasi-periodic orbits have been compiled to better understand the dynamical be-
haviour 23] and guide the mission design within the context of a given three-body
system. Farquhar [11] and Hoffman provided analysis and discussion of stability and
control of the Earth-Moon co-linear .2 and L1 locations, respectively, in a classical
control theory. Howell and Folta [15] detailed an analysis of transfers between the
Sun-Earth locations and the Earth-Moon locations. The effects of the various per-
turbation with respect to orbits in the vicinity of moon were studied by Martin T.
Ozimek [36] in his PhD dissertation. Later, Wong, Patil and Misra detailed about
the effects of gravity torque along Lagrangian point orbits for a single, rigid vehicle in

the Sun-Earth system [50]. Howell identified the initial conditions for periodic orbits
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around Lagrangian point. This was followed by Folta [15] where he has dealt with
Earth-Moon Lagrangian station-keeping. Gordon [18] aid in the numerical procedure
for the station-keeping methodologies around Lagrangian point trajectories includ-
ing error analysis. Grebow identified the important orbits and the station-keeping
requirements for the particular case of south pole coverage [19].

The full three-dimensional coupled motion was explored by Knutson and Howell
[28] for a multiple spacecraft flight in non-linear Lyapunov and halo reference orbits.
Periodic solutions are typically generated by numerically correcting an initial guess
to meet specific boundary conditions, which include the continuity between the final
and initial states. This numerical procedure have been referred to as "Differential
Corrector" [29] and has been widely used in previous work on Lagrangian point orbits.
Even with the current computational capabilities, the convergence of algorithms for
periodic orbits depends significantly on the accuracy of the initial guess and the
implementation of the targeting scheme.

To simulate a real scenario of the E-M Lagrange points, it is important to find
natural Lagrangian orbits. Thus, an elliptical problem is important to be considered
in the trajectory definition. Campagnola |7] introduced the formulation of elliptical
restricted three body problem in the most simpler form such that they could be
reduced to CR3BP when e = 0.

For what concerns control, instead, the Lagrangian point orbits are naturally un-
stable, but controllable. Additional control force is therefore needed for a spacecraft
to remain close to its nominal orbit. The challenges of station-keeping control emerge
from high accuracy, low computational burden and minimal fuel cost requirements
under the condition of dynamic uncertainties, unmodelled perturbations, and initial
orbit injection errors [43]. Hence, station-keeping control for libration point is vital
but posses a great number of difficulties.

The study of station-keeping control on libration point orbits has become a popu-
lar research topic ever since the problem was firstly proposed. A vast majority of the
station-keeping control methods are designed based on LTI model via local lineariza-
tion at the libration points due to the high non-linearity of the dynamic equation of

libration point orbits. There are numerous references for the discussion of stability
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and control for both co-linear and triangular locations. Farquhar and Hoffman pro-
vided analysis and discussion of stability and control of the Earth-Moon co-linear L2
and L1 locations, respectively, in a classical control theory. Cielaszyk and Wie [§|
employed a new LQR control method combined with a disturbance accommodating
controller for Lissajous and Halo orbits maintenance based on LTI model. Howell and
Pernicka [26] developed a target-point approach to maintain the spacecraft within a
region about the nominal Halo orbit. Furthermore, several other control strategies
have been developed: Kulkarni et al. [30] extended the traditional framework to pe-
riodic, discrete LTV systems for spacecraft flight stabilization in Halo orbits, Wang
et al. [48| presented a nonlinear controller based on polynomial eigen-structures of
LTV model for the control of Sun-Earth point station-keeping and Rahmani et al.
[41] solved the problem of Halo orbit control using optimal control theory and the
variation of the extreme technique. Biggs et al. [4] enhanced the station-keeping
control with the use of an extended state observer

However, the robustness under nonlinear system uncertainties and the request for
low computational burden are not always investigated. Oguri et al. [36] developed a
station-keeping procedure that included different sources of error and tested it using
a Montecarlo simulation. The same procedure was used by Narula [34]. The com-
putational burden was instead investigated by Kim and Hall [27]|, who also provided
a user-friendly interface for a periodic orbit generator. Han [21] introduced an ac-
tive disturbance rejection station-keeping control method proposing an error driven,
rather than model-based control law which takes into account system uncertainties,
unmodelled disturbance, and orbit injection errors to achieve better robustness. This
could achieve a better station-keeping performance as well as a smaller computational
effort.

Moreover, few of these works have dealt with the problem related to the scientific
mission requirements. The discussions involved optimal control and discontinuous
control, for single and multiple spacecraft around Lagrangian points, without as-
sessing the performance of their control under the point of view of reducing control
active time. The work developed by Oguri et al. [36] and Garulli et al. [16] provided

a station-keeping algorithm that allows discontinuous control, therefore suitable for
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a scientific application, but with no explicit declaration of this concept. The idea
of discontinuous thrust was investigated also by Eckstein [9], where he also carried
the case of an electric propulsion system under given limitations on thrust magni-
tude and operation times. Both concepts are studied in this thesis work. Table 1.1

presents different control techniques and their relevant features.

Control Method Features Ref.

Convex optimization problem robust and optimized 43

Target point and Floquet mode Impulsive 26

H., approach discrete control 30

Polynomial eigenstructure assignment continuous and optimized 48

Optimal control theory optimized 41

Extended state observer continuous 4

Time continuation of quasi halo orbits impulsive 36

Active disturbance rejection control continuous 21

Extended Kalman filter hybrid continuous/impulsive | 16
Optimization techniques impulsive and optimized

Time-delayed feedback control continuous

Table 1.1: Control techniques and relevant features

1.4 Structure of the Thesis

The thesis is organized in the following structure.

Chapter 2 introduces the orbital dynamic frame which is is used to simulate the
motion of a third body in the Earth-Moon system. Starting from the assumptions
and the reference frame used, the equations of motion are derived firstly for the
circular restricted problem, and then for the elliptical restricted problem. Then, the
concept of state transition matrix is introduced and used to compute periodic orbits.

Chapter 3 shows how to transform a periodic orbit into a reference trajectory

for a control algorithm. Then, the construction of a Linear Quadratic Regulator
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is explained. After a brief introduction of the main control algorithms, different
methodologies to obtain a control that simultaneously achieves stable station keeping
and time windows where no control is required are explained.

Chapter 4 is introduced by the other details that complete the simulation envi-
ronment, from disturbances and errors to performance criteria and thruster selection.
Then, the results of the various trajectory and control algorithms are listed.

Chapter 5 is dedicated to the conclusion of the thesis work and the lessons learned,

together with possible ideas for future works.
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Chapter 2
Orbital Dynamics

This chapter is dedicated to the review of important mathematical and physical
concepts relevant to this work. The difference between different reference frames
is introduced and the equations of motions are developed first for the Circular Re-
stricted 3-Body Problem (CR3BP) and then extended to the Elliptical Restricted
3-Body Problem (ER3BP) with the addition of eccentricity of the secondary in the
equation of motion. The concept of differential corrector is introduced and particular
solutions, such as equilibrium points, as well as periodic orbits are discussed. The
dynamics is then solved for the problem to define the initial condition of unstable
Lagrange point orbit.

The refined initial conditions will be used in Chapter 3 in order to provide ref-
erence trajectories for a suitable control algorithm, capable of providing station-

keeping.

2.1 Circular Restricted 3-Body Problem

The simplest formulation of the mutual gravitational interaction between three point-
mass bodies consists in the Circular Restricted 3-Body Problem. The motion of the
third body moves under the gravitational attraction of the two primaries, constrained

to move on circular orbits around the system center of mass, without influencing their
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motion. Such model is valid when the mass of the third body is negligible compared

to that of the primaries.

2.1.1 Equation of Motion

Following the procedure found in [35|, the derivation of the equations of motion in
the three-body problem begins with a set of n particles. From the inverse-square law
of gravity, the force on a particle ¢+ due to a particle 7 is:

Gm;m;

3 Je

where G is the gravitational constant, m; and m; are the masses of the two particles

and 7j,- is their distance vector.

Since:
equation 2.1 can be rewritten as:
. Gm.:

i
If more particles were present, then acceleration of particle ¢ could be written as:
.o, n_l m .
j
j=1 gi
The undergoing problem requires n = 3, therefore, for a three body problem, the

inertial acceleration of the spacecraft due to the other two bodies is given as:

oo Gmn o Gmao (2.5)
T3 T2
The next step consists in transforming the inertial reference frame into a rotating
one, with constant angular velocity equal to the mean Moon orbital angular velocity
n. True anomaly follows the equation 0(t) = nt.
The Inertial reference frame is valid for the equations of motion as defined above

by Newton’s laws. This inertial frame is centered on the barycenter of the system,
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the X is directed towards the right side from the barycenter and will cross the moon
when they are in same alignment. The Y axis is directed perpendicular upwards as

shown in the figure 2.1. The Z-axis is coming out of the plane towards the reader.

Halo
, Orbit

Figure 2.1: Comparison between Inertial and Rotating reference frames [35]

The Rotating reference frame is the best visualisation of three-body problem
where the spacecraft is moving near the Lagrangian points. The barycenter of the
system is again the origin of this new reference. The vector X is defined such that
it is directed from the barycenter towards the small primary. The Y axis is 90° from
X in the plane of the motion of the primaries. The vector Z completes the triad and
is normal to the plane of motion.

Before this transformation, however, it’s useful to write equation 2.5 using nor-
malized quantities. Normalization is performed by proper characteristic quantities
that depend on the particular analyzed system (in this case, the Earth-Moon sys-
tem). This provides an advantage for the numerical and computational point of view.

The characteristic quantities are:

e [* = a, where a is the Moon semi-major axis (384,748 km)
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e m* = my + my, where my; and my are Earth and Moon mass, respectively

o - = /U2 = 3757045

Using these quantities, the mass of the two primaries can be written as:

mgy
= 2.6
pe (2.6
for the second primary, and
my
1—p= 2.7
p=m (2.7
for the first one, while the distances between the spacecraft and the two bodies
become: =
?:lf (2.8)
and

7:?? (2.9)

It is worth noting that in the rotating reference frame the coordinates of the two

primaries are (-,0,0) for the Earth and (1-1,0,0) for the Moon. Moon orbital Angular

velocity, in turn, becomes:

27
=kt =1 2.10
n= * ( )
where T is Moon sidereal period. Time, too, changes, and becomes:
t
T=4 (2.11)

so that ¢ = T is represented as 7 = 27 in the model with normalized quantities.
Also, the value of G has been imposed to be equal to 1. With these considerations,

equation 2.5 becomes:
) 1—
S G (2.12)

7= |p, (2.13)



it can be obtained that
Pz

Pyl —
P2

where z,y,z are the components of the position vector in the rotating reference frame.

(2.14)

|
ISEENCI

By differentiating the kinematics, it derives that:

Pz T—y
py| = |y+z (2.15)
P2 z
P r-2y—ux
Pyl = |i+28—y (2.16)
P2 Z

therefore, equation 2.5 can be rewritten in the rotating reference frame as:

(I—p@+p)  pla—(1-p)

Pz =— = -
L (I—pwy  py

N e DL

: d3 r3

while vectors 7 and 7 can be rewritten as:

d=(z— ()X +yV +22
7= (z u— INX +yY + 22

This set of Ordinary Differential Equations represents spacecraft motion in the Ro-

tating reference frame for the CR3BP.

2.1.2 Lagrange Points

The ODE of motion can be used to locate Lagrange points in the Rotating reference.

In 1772, Lagrange identified these points for a restricted 3-body problem with the
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assumption of circular orbits. The L1, L2 and L3 are collinear equilibrium points and

L4 and L5 are equilateral Lagrangian points. These points are obtained by equating:
(L—p)(weqg + 1) plweg — (1 —p))

_'qu — — —

dz, 3,
Yo = — (1 _dél)yeq o l/;geq
eq eq
Yeg — (1 — 1) zeq _ HZeq
d3, 3,

L1, L2, L3 can be found by assuming y., = 0, 2. = 0, while L4, L5 require only

Zeq = 0. Their location is listed in table 2.1

Lagrange Point Location
L1 U< Teg < 1—p
L2 Teg>1—p
L3 Teg < — [
L1 S S
L5 Teq = 3:Yeg = =%

Table 2.1: Lagrange Points position

The Lagrangian of the CR3BP does not depend on time explicitly, which results
in a constant Hamiltonian. It follows that the system possesses a constant of in-
tegration known as the Jacobi Constant. Physically, the gravitational forces must
be balanced by the centrifugal forces. It follows that a modified potential energy

function corresponding to the differential equations can be identified:

I PRI S L.
U=g@+9)+——+" (2.17)

The Jacobi constant, also know as ’integral of relative energy’, is defined in terms of
pseudo-potential as:

Jo=2U — (i* + 9* + 2?) (2.18)
Which allows to produce zero-velocity curves that identify the region of exclusion for
a specific energy level. An example of such zero-velocity plot for Earth-Moon system

is shown in figure 2.2
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jobi Contour Plt

13.4

Figure 2.2: Zero-velocity curves [35]

2.1.3 State Transition Matrix

State transition matrix associated with the equation of motion is required by a
differential correcting scheme. The STM provides the evolution of state vectors in
time and this methodology is used to compute the nominal orbits of interest. It
is generally denoted as ¢(t,%y) and is composed by the partial derivatives C,?—j(%
evaluated along the trajectory. The state vector is defined as X = [z, v, z, 4,7, 2]*.

In order to propagate STM, the following differential equation is evaluated:

d
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with initial condition ¢(tg,ty) = Ilez6, where A is given by:

A(l) = [03953 3.3 (2.20)

Uy 2Q

A is the matrix of the state-space representation of the ODE set of motion X (t) =
A(t)X (t), since the ODE set can be rewritten, using 2.17, into:

Matrix € is defined as:

0 10
Q=1[-10 0 (2.21)
0 00

and matrix Uy, is the 3x3 symmetric matrix containing the double partial deriva-
tives of potential energy U:

02U 0%U 92U
Oz2 Oz0y  Ox0z
_ | 8?U 92U 9°U
Udd T | Oyoxr  Oy? Oydz (2 ’ 22)
02U 9*U  9%U
0z0x 020y 0z2

where each terms is defined as:
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Upe =1 — d3’u _ rﬂ?’ _1_3(1 _N);;U+M)2 +3u($ —T15_|_,u)2
Uy =1 1;M_%+3(1;5)92+3;ﬁz2

-5 0

N S

Ue = U = 385 ’“‘15? Tz g —r15+ L

Uy, =U,, = 3<1 _d5>yz n 3/Lry52

Having ¢(t, to), it is possible to solve the variational equation

5T = A(t)§T (2.23)
which has solution in the form
5T (1) = o(t, )02 (o) (2.24)
and where
0T (1) = X(1) = Xpes (1) (2.25)

where X, s is the state space representation of the reference orbit. The solution
represents the evolution of the initial error along the trajectory, and is fundamental
in the computation of a suitable initial condition for a halo periodic orbit. This task
requires the coupling of the 6 ODEs from orbital motion with the 36 ODEs coming
from the STM.

2.1.4 Orbit Generation

The generation of orbits in CR3BP is a critical step towards the construction of an
optimal reference for station-keeping. The sensitivity of this problem is quite high,

but it is easily solvable.
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As the main goal is to have a closed bounded periodic orbit near a co-linear
Lagrangian point, initial condition of these orbits needs to be selected in such a way
that it excites only stable modes associated with it.

The definition for a periodic orbit is given by Grebow|19] specified that the fol-

lowing conditions needs to be satisfied in order to call an orbit a periodic orbit:

e They should be symmetric about the x-z plane
e They should intersect the x-axis twice per orbit
The initial state vector is defined with the following notation:
}0 = [0, Yo, 20, To, Yo, 20]T (2.26)

This initial condition can be strategically chosen such that it lays on the z-z plane
with initial velocity only in the y-direction, therefore perpendicular to the z-z plane.

Thus, the initial state will only have three components different from zero:

?0 - [xOJOJ ZO7O7QO7O]T (227)
The requirement states that the orbit needs to be periodic about the z-z plane every
time it crosses it. The next crossing should therefore occur after ¢t = %, where T is

the orbit period, and should be perpendicular again to the same plane:
Yt - ['Itvoa Zt707ytaO]T (228)

Given an initial condition, it is not guaranteed that this condition will happen,
therefore the initial condition requires an adjustment, which can be provided by the
solution of the variational equation.

Since the form of Yt is known, 87, can be constructed as:
57, =1[0,0,0,04,0,0%)" (2.29)

which collects every term that make the crossing not perpendicular. After the solu-
tion of the STM 36 ODE set, ¢(t,ty) can be recovered and thus 5o can be computed,

which can be used to adjust the initial condition:

YO,new = ?Opld - 5?0 (230)
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A good strategy consists in computing 87 in such a way that said adjustment
doesn’t alter perpendicularity property of the initial condition. In order to achieve

this, the adjustment should be applied only to the non-zero condition:
670 = [0, 0,62,0, 85, 0]" (2.31)
It is also possible to impose the correction only to zy, 1o, so that:
576 = 10,0, 02,0, 90, 0]" (2.32)
With this considerations, equation 2.24 can be inverted in order to find 6 2:
5T (to) = o(t, to)T o (1) (2.33)

where t corresponds to the pseudo-inverse operation. The correction procedure re-
quires the repetition of the computation for a suitable number of times. To ease the

computation of the pseudo-inverse, equation 2.33 can be rewritten as:

[5@1 _ [¢43 ¢45r léﬁgt] 230
Yo Pe3 Pes| | 0%
This formulation can be easily modified if a correction on zy were to be desired. Both
methods were in fact used to compute suitable initial conditions.

In order to find t = %, a shooting method can be adopted: target is t that
corresponds to the z-z plane crossing, or y, = 0.

Having a starting guess, which can be recovered by tables or by an analytical guess

[42], this initial condition is updated in order to find a suitable initial condition for

a repeating orbit. The starting guess is:

zo| [ 1.124242839945290 |

Yo 0

20| _ | 0.187435048916681 2.35)
To 0

Jo —0.223784191244108

_20_ i 0 |
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and the refined condition is:

(20| [ 1.124242839945290 |

Yo 0

% 0.182846789055170

O = (2.36)
ZTo 0

o —0.225326578364074
_Z.D_ - O o

This initial condition provides a repeating orbit with period T equal to 2.94757,
which corresponds to 12.81 days, and is represented in figure 2.3. Since the ODE
set provides an orbit in normalized quantities, a backward transformation to not-
normalized units is required. For the circular case, the characteristic time and length

are constant, therefore no deformation is introduced in the orbit shape.

30



Refined Condition Orbit
* L2
x10% [ Moon

z [km]

-5 38 x [km]

4
10
) x10*
i Initial Condition Orbit Ve Initial Condition Orbit
#  Refined Condition Orbit / #  Refined Condition Orbit
6 ] 4 / \ [
/ \
- 3 [ \
° | \
| \
4 2 ‘\ \
3| ! ‘ “
€ E
g .| 0@ ‘ *
N2 - ‘\
i 4 ‘ |
1 | |
2 /
0-9 * l /
3 \ /
1 \ /
4 \ /
2 - \ /
L 5 N
T T T T
38 4 4.2 44 38 4 4.2 4_45
£10° X [km] x [km] %10

Figure 2.4: Refined periodic orbit in the xz-plane (left) and xy-plane (right)
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2.2 Elliptical Restricted 3-Body Problem

The CR3BP is an autonomous model which has an inherent approximation, consist-
ing in the circular orbit of the smaller primary. However, in order to provide a more
rigorous model, it is necessary to include the information about eccentricity. For the
Earth-Moon system, eccentricity e has a value e = 0.0549. The inclusion of this
term into the equations of motion mutates the problem into the Elliptical Restricted
3-Body Problem (ER3BP). This new model has significant differences as compared
to that of the CR3BP:

e Position of Lagrange points is not constant
e Jacobi Integral is time-dependent
e STM is modified.

In this new model, [* is no more constant, but it depends on the value of true anomaly

0 following the equation:

_a(l—e?)
1+ ecosf
Angular velocity is also #-dependent, as its derivative:

I (2.37)

(1 + ecosf)?

(1—e2)e2
h 9 sind 3
(1)
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2.2.1 Equation of Motion

As carried out for the CR3BP, the position, velocity and acceleration coordinates in

rotating frame becomes:

ARRE

py| = |Y

A

A EREL

Py| = |y +nx

2% I

(.| [2—2ny —ny — n%z
py| = | U+ 2nd + nx —n?y
6] L Z

Using this formulation, equation of motion becomes:

(1 —p)(z+po) pl@—(1-po)
d3 7‘3
]__
§—|—2m':—|—hx—n2y:_(d—3ﬂ)y_%
(1—pz pz

e

I —2ny —ny — n*x = —

where

7:(x+u0))2+y§>+22
T =(x—(1—p)o)X +yY + 22
1—e?

7= 1 + ecost
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The pseudo potential becomes:

U= %nz(j: +9)% + 1% + g (2.38)
which demonstrates how the Jacobi Integral becomes time-dependent. There exist,
however, a different way to define motion in the ER3BP. This different methodology
requires the introduction of a new reference: Pulsating-Rotating reference frame.
The Pulsating-Rotating reference frame is able to fix the relative distance between
the primaries, in the normalized set of equation of motion, and makes the problem
O-dependent. Therefore, all the quantities of interest (position, velocity, accelera-
tion) are expressed in terms of true anomaly. Following the procedure explained by
Szebehely [44| and Ferrari [12], in its PhD thesis, and used by [5][6], equation of

motion can be written in this new reference frame as:

s oy 1 of)

rT—2y= ———

y 1+ ecosf Ox

Y 1 of)

iP=——

4 1 + ecosf Oy

- 1 of)

Z4z=—-——

1 + ecost 0z

where . )

O — 2(h i )2 e 2.39
S+ +—E+ (2.39)

2.2.2 State Transition Matrix

The overall theory behind the computation of the State Transition Matrix doesn’t
change, since it is again referred to the evolution of a given state vector along time.
Due to the different state-space representation of the equation of motion, however,

there is a slight change in the computation of the A matrix, particularly in the
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computation of the Uy; components. The double partial derivatives become:

(1—p)(x+po)® pe—(1—p)o)

1 1-—

1+ ecost d3 r3 +3 dj 2+ 3 5 )
Upy = 1+20059(1_ 1;”M _%+3<1 —déi)y +3Mg, )
2 2
Uar = 1 +icos€<1;3M B % +3( _déu)z +3ljﬂz5 )
Yoy = Ui = 1 + jc}cozs€(3(1 - '“)<dI5+ = - 3F‘<I - (1»5_ M)U)y)
Uye = Uy = gm0 0002 | gla = (L2 1o,
Upe = Uy = 1+ 20059@(1 _dg)yz + 3Mry52>

2.2.3 Orbit Generation

The initial condition needs to be updated to fit the ellipticity of the model. This
section will describe the algorithm that will be followed to generate initial conditions
for the ER3BP. The right hand side of the equations of motion is periodic with period
2m. Thus, periodic solutions of the ER3BP must have period T = 2Nw, N =1, 2, ....

In the context of the planar ER3BP, Moulton [33] used these considerations and

the symmetry properties to formulate the Strong Periodicity Criterion:

e For an orbit to be periodic [in the planar ER3BP] it is sufficient that it has

two perpendicular crossing with the z-z plane

e The crossings happen when the two primaries are at an apse

With these considerations, it is no more sufficient to only impose perpendicular cross-
ing as previously done in the CR3BP, because crossing time becomes crucial. Starting
from the refined initial condition found in the CR3BP, the variational approach has
been adopted to provide refinements to the initial condition. The corrective term
87 has been computed considering the fact that two conditions must be valid.

The adopted procedure is the following;:
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1. Impose crossing of y-axis at ¢ = 7, computing 0T = [0, 8y¢, 0, 64,0, 82]T and

evaluating 0Ty = (60,0, 620, 0, 69, 0]7. Inverse computation becomes easier

due to the fact that ¢(t,tg) can be written as a 3x3 square matrix

2. Impose perpendicular crossing at ¢ = 7, computing 6 7', = [0, Sy, 0, 824, 0, 52,
and evaluating 677y = [0, 0, 0z, 0, 850, 0]

3. Repeat point 1-2 until desired orbit becomes periodic and repeating.

This methodology proved to be useful in recovering a suitable initial condition for

the ER3BP, that starting from the initial guess of Narula and Biggs [35]:

has been updated to:

Zo
Yo
20
To

Yo

1.13424283994529 |
0
0.187435048916681
0
—0.223784191244108

)

0

[ 1.149619657045652
0
0.165528132267168
0
—0.251414419543829

0

(2.40)

(2.41)

The obtained orbit is shown in figure 2.5 in normalized units. It can be noted that it’s

shape is not actually a classical halo around the Moon, like the one provided in the

CR3BP section. Also, the same procedure of non-normalization must be performed.

In this case, the characteristic length changes in time, therefore a deformation will

be introduced. This effect is clear in figure 2.7.
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It can also be shown that a similar shape can be obtained by a classical halo
orbit, as the one of figure 2.3. First, the orbit found in the CR3BP must be updated
in order to impose a period of 27, since this guarantees crossing of the z-z plane
when the primaries are at an apse.

Starting from the initial guess:

(0] [ 1.124242839945290 ]|

Yo 0

20| _ | 0.187435048916681 0.02)
To 0

Jo —0.223784191244108

_20_ i 0 |

and implementing the same procedure, but in the CR3BP work-frame, the initial

condition is updated to:

70 [ 1.126756126623475 |

Yo 0

20| _ | 0.184036450910411 0.13)
Tg 0

Yo —0.201986794155454

_20_ i 0

The new initial condition provides an orbit with period T= if seen in the CR3BP
and it still resembles a classical halo-orbit around the Moon. Two full orbits corre-
spond instead to a time 7 = 27.

In the ER3BP, however, the characteristic length varies in time and this effect
causes the two perpendicular crossings to happen at different distances from the E-
M system barycenter. Orbit apoapsis and periapsis therefore stop coinciding and
become two separate points. The orbital period becomes T=2x, which is consistent
with the hypothesis of crossing of the z-z plane when the primaries are at an apse.
The effect of this transformation is seen in figure 2.9.

This demonstrates that the shape of an orbit also depends on the work-frame in
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which it is represented and that a classical halo orbit can deform to a completely

different shape.
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Figure 2.9: Periodic orbit in CR3BP and in ER3BP work-frame
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2.3 Reference Computation

Having identified some nominal trajectories, a suitable reference trajectory is nec-
essary in order to compute the reference ?m ¢. To this end, various strategies are
suggested by Howell 38|, Folta [13] to keep the actual trajectory of the spacecraft
sufficiently close to the reference path.

As a first approximation, the quasi-periodic orbit that derives from suitable initial

conditions can be approximated through a Fourier series, such that:

n
irep = af) + Z(aicos(k;wt) + bt sin(kwt)) (2.44)
k=1
Where k represents series order and @ = Zyef, Yref, Zref, Trefs Uref, Zref- ¢ can be

intended as 7, in case of CR3BP, or as true anomaly 6, in case of ER3BP.

In order to improve the reference approximation, particularly for the ER3BP case,
a different approach has been adopted. Instead of computing the reference through
the Fourier series for 6 = é, the equation of motion would be solved, starting from
the refined initial condition, from 6 = 6, to 0 = 0.

The possible drawback that can arise from this methodology is the fact that the
initial condition for ER3BP doesn’t produce a perfectly repeating orbit, therefore
motion, and thus reference, would diverge in time. Moreover, in absence of external
disturbances, reference and spacecraft motion would always coincide, thus no control
action would be performed and no station-keeping would be possible. Wrapping the
solution to 27 mitigates these effect and provides a fixed reference in time, suitable
for station-keeping purpose, while removing the approximation that a Fourier series

approach would introduce, at the expense of a small discontinuity at t=27.
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Chapter 3

Control Algorithm

This chapter will introduce the station-keeping concepts and methodologies that are
adopted to control the Halo orbit. The first control is a simple continuous LQR [35],
which is later modified into a discrete, continuous LQR [3]. The next step consists in
a further improvement, which allows the realization of an impulsive control, the first
element of novelty of the thesis. In order to improve the response of the spacecraft
motion, the proportional LQR is augmented with the addition of a derivative element
in the control, a second element of novelty. Both strategies are joined together and
improved thanks to an act-and-wait strategy [40] and a Schmidt trigger control,
based on [31].

The Lagrange points are equilibrium points that, as previously shown, can be
found through the use of zero-velocity curves. Unfortunately, only L4 and L5 are
stable points, while L1, L2, L3 are unstable equilibrium points. This means that
the computation of a periodic orbit is not enough to guarantee asymptotic stability
for a spacecraft orbiting close to these points and a proper control algorithm must
be implemented to achieve station-keeping. Without this technique, the natural
disturbances that a spacecraft undergoes in its orbit would be enough to make its
motion divergent.

There have been many strategies explained in literature with respect to station-

keeping in the Sun-Earth system [5][6], but fewer studies have considered trajectories
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near the Earth-Moon Lagrangian points [13][14][15] as it is more challenging in the
Earth-Moon system, due to the larger orbital eccentricity of the secondary.

The unique operational constrains are achieving a controlled orbit with minimum
cost in terms of fuel as well as limiting the required control effort. Presently, station-

keeping costs of less than 200 m/s per year are desired [13].

3.1 Continuous Control

The goal of the station keeping process is to compute and implement maneuvers to
maintain a vehicle within the enclosed region defined by a torus centered at a point
along the trajectory, point by point, in time. The simplest way to integrate the
station keeping is through a continuous control. The following sequence of steps are

adopted to perform the station-keeping:
1. At any given instant, identify weather a station-keeping maneuvers is required
2. If required, compute the magnitude and direction of the control u

3. Optimize the gain in conjunction with the maximum thrust available from the

thrusters
4. Implement tracking and sensor errors to the problem

Spacecraft station-keeping on Libration Point Orbits can be categorized into two
types: impulsive thrust station-keeping (usually chemical) where the controls are dis-
continuous and continuous, low-thrust, station-keeping (such as solar electric propul-
sion or solar sail spacecraft). Xin [50] used a sub-optimal control technique (the 6 -
D technique) to complete the mission of multiple spacecraft formation flying in deep
space about the L2 point. Marchand and Howell [32] employed feedback lineariza-
tion for formation flight in the vicinity of Lagrangian points. Bai and Junkins|2]
proposed a modified Chebyshev-Picard integration method for station-keeping of 1.2
Halo orbits in the Earth-Moon system. Karimi [52] solved the problem of Halo orbit
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control using optimal control theory and the extension of the active disturbance re-
jection technique to counter the external disturbances in the unstable orbit near the
co-linear points. Narula and Biggs [35] compared different approaches to a simple
LQR scheme for continuous control with partial thrust failures. Biggs et al. [6] de-
veloped a time-delayed feedback controller for the case of solar sail propulsion, which
checked the error after one orbit thanks to a state transition matrix exploitation. Bai
et al. [1] developed an adaptive control with active disturbances rejection, applied
to a quaternion attitude tracking problem.

Having identified the initial conditions and the reference trajectory, the aim is
now to have a control algorithm for such an unstable periodic orbit for all the three
axis of the spacecraft. In order to optimize the use of propellant, an LQR control is
developed considering the thruster model for the actuation of spacecraft as continu-
ous. In some cases the control is also highly nonlinear such as in the case of a solar
sail [5][6] and a traditional approach consists in firstly linearize the nonlinear system

of the form:

X, :g(X17X1>U)+d (3.1)

where X;, Xy, X1, u, d are respectively the position, velocity, acceleration, control
and disturbance vectors and ¢ is a known non-linear function. Expanding the state

space, the system can be written in the form:

X = f(X,u)+d (3.2)

where X = [X7, X 1] is the state. Linearizing the nonlinear equations by defining:

AX =X, — X (3.3)

where ?Te ¢ denotes the reference trajectory, yields to the linear system:

AX = A()AX +Bu (3.4)

which is a linear time-varying system, with:
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[
Alt) = | 0% 7 (3.5)

(3.6)

S = O O O O
_ o O O O O

and u is the control vector. It was also found that A(t) does not change much
along the reference trajectory, thus in order to have a simplified control design, the

following linear time invariant model can also be assumed as:

AX = AAX + Bu (3.7)
where

(3.8)

03,3 Iss
A — 3x3 3x3
Udd 20

Xo

?0 is a suitable point belonging to the reference trajectory, such as the initial

point of the trajectory. A simple controller is given by:

w= —KAX (3.9)

where the gain matrix K can be solved through the minimization of the cost

function:

bh:/ﬁA?TQA?+4FRmﬁ (3.10)

to
The solution to the minimization can be obtained using the method of Lagrange

multiplier and leads to the following Riccati equation:
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SA+ATS —SBR'BTS+Q =0 (3.11)

where (), R are two weights that quantify the relative cost of each state and
control in the cost function. The values for Q,R has been selected from [35] and

then manually adjusted and are listed in table 3.1

Matrix Value
Q diag(100,100,100,1,1,1)
R diag(0.04,0.04,0.04)

Table 3.1: Weight matrices

Having solved the equation for S, the gain matrix can be obtained as:

K =R 'B"S(t) (3.12)

Having found the value of control action u, it can be plugged in the equation of

motion. In case of ER3BP, it becomes:

1 o0

t=29= 1+60056’(3_x+u1>
. . 1 o0

yrae= 1+60059(8_y +uy)
. 1 o0
rE= 1—%—60059(54_%)

3.2 Discrete Control

A different methodology would be to implement a discrete LQR, as explained in [3].
The actuation is performed using thrusters which provide impulsive thrust with a

sampling interval Ts and a duration d, therefore the control vector u is defined as

follows:
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u(t) =
0 ifﬁk+d<t§tk+Ts

In the notation, T represents the sampling interval, d is the thrust duration, k
represents the sampling index and w;, = [Awv,, Av,, Av,|T is the control signal (in
velocity units) provided by a discrete-time controller.

In the limit case where d — 0 and T > d, the control signal becomes impulsive:

u(t) :Uké(t_tk)ytk <t <tpi1,k=0,1,2,... (313)

where 0(t — t;) is the Dirac delta function defined as:

5(t —ty) = 0,t # t, (3.14)

and

+o0o
/ ordr =1 (3.15)

—c0
If d is selected such that d = Ty, the control becomes u(t) = ug/d for t, <t <
tr+1, which is constant between sampling instants. This is a common assumption in
discrete-time control.
The computation of the control u(t) is similar as in the continuous control case,
but it is done considering discrete quantities. Since the gain matrix K is a matrix
that allows the transformation from an error to an acceleration, the equation used

to compute u becomes:

where A X}, is the discretized error state. In this way, when computing the control

effort u(t) as:

u(t) =
0 iftk+d<t§tk+Ts
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no error is made, as wu is in the form of a velocity. It represents the impulse
required for the particular sample interval k.

The difference with a continuous control lies in the fact that the discrete con-
trol only updates the error state at the beginning of a new sampling interval, then
it remains constant for its duration , while the continuous control is continuously
updating the error and compensating accordingly. The two controls provide the
same value only when the discrete controller updates the error state, afterwards they
diverge. This implies that the discrete controller provides an action that relies on
not-trustworthy information, and this behaviour becomes more intense as time ap-
proaches the end of the sampling interval. It is therefore good practice to reduce the
duration of the sampling interval T, or to develop a control capable of providing the
required impulse in a short amount of time, closer to the beginning of the sampling
interval, where the information is more up-to-date.

The possible drawbacks that can be encountered are an increased computational
effort in case of T§ reduction, therefore the choice of this value must be studied in
order to find a suitable compromise between control performance and computational
performance.

The linear time invariant model is however not discretized and it remains con-
tinuous. Only the control is discretized through this procedure, implementing a

zero-order holder in the Simulink environment of the simulation.

3.3 Impulsive Control Hypothesis

A drawback of a continuous control is the fact that thrust level must be adapted to
match the required control effort, which may reach low values. These values might
be out of specs for the chosen thruster. Moreover, this kind of control requires the
thruster to be always on, therefore leaving not enough time for an attitude correction
maneuver to change spacecraft pointing to the required direction.

A possible solution would be to concentrate the nominal control into smaller win-

dows of time, while simultaneously increasing the control effort in order to maintain
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the same nominal required impulse. The idea behind this implementation lies in the
fact that the simulation, while trying to simulate a continuous system, computes
the required control point by point, which are separated by a certain amount of
time. Linearizing the control between two points, the area subtended is equal to the
impulse that the thruster must provide in the identified nominal interval.

This procedure would be implemented in a post-processing phase, after the com-
pletion of the orbital dynamics simulation and would transform the continuous con-
trol into an impulsive control.

If the thrust level of the engine is known, together with spacecraft mass, the
nominal acceleration a that the thruster can provide is known. Since the required
impulse ¢ along z,y,z can be computed, it is straightforward to compute the new
interval length 7 and the new control action that would provide the same impulse as

the one from the nominal interval t,,,,:

)
— 1 /2 72 2
T=o\/1lx Tt
Uy = 1y T
Uy =1,/ T
KuZ:z'z/T

Visually, the effect is seen in figure 3.1.

This methodology does not solve the problem related to a control action higher
than the maximum allowable by the thruster. However, a saturation algorithm could
be implemented in the simulation that would limit the control output. Of course,
it would require the upper limit of the net acceleration provided by the spacecraft,
a quantity that must also undergo normalization with a time-varying characteristic
length.

It is possible that for some intervals the value of 7 might be below the minimum
activation interval for the thruster. In these cases, a strong approximation has been
introduced, which consists in neglecting those intervals. Due to the consequently
small required impulse, the error introduced by this decision should be low. A study

must be performed to verify if it actually negligible or not.
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Figure 3.1: Continuous control to impulsive control

A more severe problem lies in the fact that this procedure is performed outside
of the simulation work-frame, therefore it is mandatory to simulate again the orbital
dynamics with the new control history, to validate if spacecraft motion is still con-
trolled. The difficulty in this task is given by the computational effort required by
this validation procedure. The time resolution should be selected such that it would
be able to identify the smallest interval 7 available for the thruster, therefore in the
order of the hundredth of a second for a ordinary chemical thruster with minimum
impulse time of 0.1s. For a time-span of one orbit, 27.3 days, the simulation would
be composed of 235 million time cells, where each one would store the informa-
tion related to time (scalar), state (length-6 vector), control (length-3 vector), error
(length-6 vector) in a 64-bit format. The total size of simulation result would be in
the order of tens of Gigabytes, and it would require a considerable amount of time
to complete.

Due to these drawbacks, this methodology has not been chosen as a tool to obtain

an impulsive control from the continuous one.
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3.4 Impulsive Discrete Control

The problem found in the continuous control is that an attitude correction maneuver
is required to point the spacecraft in the correct direction. When the control is
active, it leaves no time for attitude adjustment, which can’t be simply assumed as
instantaneous. It is therefore mandatory that some time between two consecutive
control actions must be allocated to a slew maneuver to change the attitude. For
this reason, the continuous control won’t be further analyzed in this chapter, and
the search for a suitable control algorithm will solely focus on the discrete LQR. It
too must posses the ability to guarantee time between following sample intervals, in
order to complete the attitude adjustment