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Abstract 

NaTech events (Natural Hazard Triggering Technological Disasters) are industrial 
accidents triggered by natural hazards which may lead to potentially tremendous 
impact on the environment and the population. Seismic-induced tsunami NaTech 
risk assessment entails the seismic sources to be characterised and modelled to 
provide the Peak Ground Acceleration (PGA) information as input to the seismic-
induced tsunamis models and simulation needed for a Seismic Probabilistic Tsunami 
Hazard Analysis (SPTHA). In this thesis, we propose two Sensitivity Analysis (SA) 
methods to deal with the computational issues related with:  

1. The identification of the model parameters most affecting the PGA;  
2. The identification most relevant features of the seismic model, for deciding a 

priori the seismic scenarios to be simulated. 
With respect to the first issue, we propose a novel Bootstrapped Modularised Global 
Sensitivity Analysis (BMGSA) method. The method is tested on a benchmark case 
study. The results are compared with a standard variance-based Global SA method. 
The strength of the proposed method is that its application only requires input-
output data and not the direct accessibility to the code.  
With respect to the second issue, we propose a wrapper-based heuristic approach to 
select the set of most relevant features of the seismic model, for deciding a priori the 
seismic scenarios to be simulated. The proposed approach is based a Multi-Objective 
Differential Evolution Algorithm (MODEA) and is developed with reference to a case 
study whose objective of the analysis is calculating the annual rate of a threshold 
exceedance of the height of tsunami waves caused by subduction earthquakes that 
might be generated on a section of the Hellenic Arc and propagated to a target site on 
the eastern coast of Sicily (Siracusa). The comparison between the mean values of 
annual rate of exceedance of the tsunami wave height estimated considering only the 
selected scenarios and the full set of scenarios shows that the proposed approach 



ii  

 

 

allows a reduction of 95% of the number of scenarios with half of the features to be 
considered, and with no appreciable loss of accuracy. 
 
Keywords: Probabilistic Seismic Hazard Assessment (PSHA), Modularised Global 
Sensitivity Analysis (MGSA), Bootstrapped Modularised Global Sensitivity Analysis 
(MGSA), Seismic Probabilistic Tsunami Hazard Analysis (SPTHA); Scenario 
selection; Feature selection; Wrapper approach; Multi-Objective Differential 
Evolution Algorithm (MODEA). 

 

 

 

 

 

 



iii 

 

 

Abstract in lingua italiana 

Gli eventi NaTech (Natural Hazard Triggering Technological Disasters) sono incidenti 
industriali causati da calamità naturali con possibili impatti disastrosi su ambiente e 
popolazione. La valutazione del rischio di NaTech dovuti a tsunami sismogenerati 
implica la caratterizzazione e la modellazione delle sorgenti sismiche per calcolare 
Peak Ground Acceleration (PGA), l’input di modelli e simulazioni di tsunami, 
necessaria per una Seismic Probabilistic Tsunami Hazard Analysis (SPTHA). In questa 
tesi proponiamo due metodi di Sensitivity Analysis (SA) per affrontare due problemi 
computazionali:  

1. Individuazione dei parametri del modello che influenzano maggiormente la 
PGA;  

2. Individuazione delle feature del modello sismico più rilevanti, per decidere a 
priori gli scenari sismici da simulare. 

Riguardo il primo problema, proponiamo un nuovo metodo di Bootstrapped 
Modularised Global Sensitivity Analysis (BMGSA), testandolo su un caso di studio di 
riferimento e confrontando i risultati con un metodo standard di Global SA variance-
based. Il punto di forza del metodo proposto è che la sua applicazione necessita solo 
di dati di input-output e non dell’accesso diretto al codice.  
Riguardo il secondo problema, proponiamo un approccio euristico wrapper-based, per 
selezionare l'insieme delle caratteristiche più rilevanti del modello sismico, per 
decidere a priori gli scenari sismici da simulare. L'approccio proposto si basa su un 
Algoritmo di Evoluzione Differenziale Multi-Obiettivo (MODEA) ed è sviluppato 
con riferimento ad un caso studio il cui obiettivo è il calcolo del tasso annuale di 
superamento di una altezza soglia delle onde di tsunami causate da terremoti di 
subduzione che potrebbero essere generate su un tratto dell'Arco Ellenico e 
propagate ad un sito target sulla costa orientale della Sicilia (Siracusa). Il confronto 
tra i valori medi del tasso annuale di superamento dell'altezza dell'onda di tsunami 
stimata considerando solo gli scenari selezionati e l'insieme completo degli scenari 
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mostra che l'approccio proposto permette una riduzione del 95% del numero di 
scenari con la metà delle feature da considerare, e senza apprezzabili perdite di 
precisione. 

Parole chiave: Probabilistic Seismic Hazard Assessment (PSHA); Modularised Global 
Sensitivity Analysis (MGSA); Bootstrapped Modularised Global Sensitivity Analysis 
(MGSA); Seismic Probabilistic Tsunami Hazard Analysis (SPTHA); Scenario 
selection; Feature selection; Wrapper approach; Multi-Objective Differential 
Evolution Algorithm (MODEA). 
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Introduction 

NaTech events (Natural Hazard Triggering Technological Disasters) are industrial 
accidents triggered by natural hazards (i.e., hurricanes, floods, earthquakes, 
tsunamis, etc.) which may lead to losses of hazardous materials with potentially 
tremendous impact on the environment and the surrounding population [1], [2]. 
Industrial facilities located in coastal areas are exposed to tsunami NaTech and the 
associated potential flooding resulting in damage or collapse of buildings, tanks or 
other equipment, possibly causing the release of contaminants [3]. The Niigata (1964) 
and Tohoku (2011) earthquakes and tsunamis, for example, resulted in oil spread 
from an oil refinery plant [4] and radioactive release of material from a nuclear 
power plant [5], respectively. This emphasises the hazard posed by earthquakes and 
subsequent tsunamis which may trigger accidents (e.g., Tohoku earthquake and 
tsunami) [6]–[8]. Tsunami NaTech are, indeed, typically triggered by earthquakes 
occurring offshore or in the proximity of the coastline in active subduction zones, 
resulting in a sudden deformation of the seafloor that perturbates and displaces the 
entire water column above it, i.e., generating a tsunami [9]. To manage tsunami 
threat, tsunami hazard and risks methodologies have been developed through time 
to quantify the tsunami hazard and the potential consequent risks [9], [10].  

Early on, “worst credible”/ “worst case” scenarios approaches have been adopted 
[11]–[14]. These approaches consist in the postulation of conservative scenarios, 
which are then simulated by high-resolution codes to verify the response of the 
system and its safety barriers. For example, in [3] a worst case analysis of tsunamis 
impacting an oil refinery is reported, whereas in [15] an application to a nuclear 
power plant is described. However, these approaches have proven to be limited in 
modelling seismic sources as well as tsunamis [16], due to the large uncertainty, both 
epistemic and aleatory, given by the scarcity of tsunami observations [17]. 

In this thesis, we focus on an approach called Seismic Probabilistic Tsunami Hazard 
Analysis (SPTHA) [18]. To overcome “worst credible”/ “worst case” scenarios 
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analyses, SPTHA is aimed at estimating, for a certain location, the annual rate of 
exceedance of a seismic-induced tsunami wave with respect to a predefined 
threshold. The analysis relies on computationally demanding numerical simulations 
of seismic-induced tsunami wave generation and propagation.  

SPTHA entails performing: 

i) Seismic sources characterisation and modelling, 

ii) Seismic-induced tsunamis modelling and simulation. 

Probabilistic Seismic Hazard Analysis (PSHA) is aimed at characterising and 
modelling seismic sources by assessing, at a given target location and for a given 
exposure time window Δ𝑇, the probability that a given intensity measure (IM) of the 
ground motion, typically the Peak Ground Acceleration (PGA), exceeds a threshold 
value 𝛾 [19]. The output of the PSHA are hazard curves, defined by quantifying the 
mean annual rates of exceedance of a set of intensity measures (IM) values. 
Considering PGA as the IM and assuming a Poisson process, as the model of 
earthquake occurrence, with parameter 𝜆  denoting the mean annual rate of 
exceedance of the 𝛾-th PGA level, the probability of interest is calculated: 

𝑃(𝑃𝐺𝐴 > 𝛾, Δ𝑇) = 1 − exp[−𝜆 (𝑃𝐺𝐴 > 𝛾)Δ𝑇] (1) 

Since the propagation of the earthquake wave in the soil is typically evaluated by 
empirical relationships, called Ground Motion Prediction Equations (GMPEs), 𝜆  is 
quantified by means of the total probability theorem as [20]: 

𝜆 (𝑃𝐺𝐴 > 𝛾) = 𝜆 𝑃(𝑃𝐺𝐴 > 𝛾|𝑚, 𝑟)𝑓 (𝑚)𝑓 (𝑟)𝑑𝑚𝑑𝑟 (2) 

where 𝜆 is the mean annual rate of earthquake occurrence at a given source location 
(i.e., the number of occurrence of earthquakes with intensity of PGA above a given 
threshold per year); the distribution 𝑓 (𝑚) describes the probability distribution of 
different earthquake magnitudes, typically assumed to follow a truncated 
Gutenberg-Richter distribution within the interval of values [𝑚 ; 𝑚 ] and slope 
parameter 𝑏 [20]; 𝑓 (𝑟) describes the probability distribution of the source-to-target 
distance 𝑟, assuming a spatial distribution for earthquakes [19]. These input 
distributions are typically determined from historical, instrumental, and geological 
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observations [19], [21], but large epistemic uncertainty exists, so that many 
alternative parametrisations of the model are possible [22], [23].  

Tsunami hazard is classically assessed by simulation of either one “worst credible”  
or few representative scenarios [18], [24]. This can be an effective approach when (i) 
the effects of frequent, small magnitude earthquakes are expected to be negligible 
compared to those less frequent large magnitude earthquakes, and (ii) the analysis is 
conducted in a relatively simple geophysical context where tsunami hazard is 
dominated by the large magnitude earthquakes occurring in subduction zones, 
whose geometries are reasonably well constrained [18]. On the other hand, when 
tsunamis are generated in complex and fragmented tectonic environments (e.g., the 
Caribbean Sea and the Mediterranean Sea) or when relatively short return periods 
need to be considered, the tsunami hazard might be severely biased [18]. To 
explicitly account for the whole spectrum of seismic triggering events and their 
related uncertainty, a probabilistic analysis of a large set of potential tsunamis can be 
performed (Seismic Probabilistic Tsunami Hazard Analysis, SPTHA) [9], [24]. 
Specifically, SPTHA aims to estimate the probability that the height 𝜓 of an 
earthquake-induced tsunami wave exceeds a threshold 𝜓, within in an exposure time 
Δ𝑇, at a location of coordinates 𝑎 [9]. Each tsunami is assumed to be generated by a 
seismic scenario 𝜎  belonging to the space of possible seismic scenarios Σ (𝜎 ̅ ∈ Σ), 
characterized by parameters �̅� and occurring with annual frequency 𝜆(𝜎 ̅) 
considering a Poisson process for the wave exceedance event occurrence in time, the 
probability of exceedance 𝑃  can be written as: 

𝑃 = 𝑃𝑟 𝜓 ≥ 𝜓; 𝛥𝑇 ≈ 1 − 𝑒𝑥𝑝 −Λ 𝜓 ≥ 𝜓  Δ𝑇  (3) 

where Λ 𝜓 ≥ 𝜓  is the annual rate of occurrence of a tsunami of intensity 𝜓 ≥ 𝜓 at 
location 𝑎. This rate is calculated by integrating, over the space Σ, the annual 
frequency 𝜆(𝜎 ̅) of occurrence of the seismic scenario 𝜎 ̅  times the probability 
𝑃𝑟 𝜓 ≥ 𝜓|𝜎 ̅  that the tsunami wave generated by the scenario exceeds 𝜓: 

Λ 𝜓 ≥ 𝜓 = 𝜆(𝜎 ̅)𝑃𝑟 𝜓 ≥ 𝜓|𝜎 ̅ 𝑑𝜎 ̅  (4) 

Considering, without loss of generality and for the sake of simplicity, a set of 𝑄 

discretized seismic scenarios 𝜎 ̅  (𝑞 = 1, … , 𝑄) with 𝜆 𝜎 ̅  and 𝑃𝑟 𝜓 ≥ 𝜓|𝜎 ̅ , Eq. 

(4) can be approximated as: 
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Λ 𝜓 ≥ 𝜓 ≈ 𝜆 𝜎 ̅ 𝑃𝑟 𝜓 ≥ 𝜓|𝜎 ̅  (5) 

To account for epistemic uncertainty, 𝑀 alternative formulations of 𝜆 𝜎 ̅  and 

𝑃𝑟 𝜓 ≥ 𝜓|𝜎 ̅  can be considered, producing 𝑀 alternative quantifications of both 

factors in Eq. (5). The mean hazard rate can, then, be evaluated as: 

Λ 𝜓 ≥ 𝜓 ≈
1

𝑀
𝜆 𝜎 ̅ 𝑃𝑟 𝜓 ≥ 𝜓|𝜎 ̅  (6) 

where 𝜆 𝜎 ̅  is the generic entry of the matrix 𝜆(𝜎 ̅): 

𝜆(𝜎 ̅) =

⎝

⎜
⎜
⎜
⎛

𝜆 𝜎 ̅ ⋯ 𝜆 𝜎 ̅ ⋯ 𝜆 𝜎 ̅

⋮

𝜆 𝜎 ̅

⋮

⋮

⋯ 𝜆 𝜎 ̅ ⋯

⋮

⋮

𝜆 𝜎 ̅

⋮

𝜆 𝜎 ̅ ⋯ 𝜆 𝜎 ̅ ⋯ 𝜆 𝜎 ̅ ⎠

⎟
⎟
⎟
⎞

 (7) 

and 𝑃𝑟 𝜓 ≥ 𝜓|𝜎 ̅  is the generic entry of the matrix 𝑃𝑟 𝜓 ≥ 𝜓|𝜎 ̅ : 

𝑃𝑟 𝜓 ≥ 𝜓|𝜎 ̅

=

⎝

⎜
⎜
⎜
⎛

𝑃𝑟 𝜓 ≥ 𝜓|𝜎 ̅ ⋯ 𝑃𝑟 𝜓 ≥ 𝜓|𝜎 ̅ ⋯ 𝑃𝑟 𝜓 ≥ 𝜓|𝜎 ̅

⋮

𝑃𝑟 𝜓 ≥ 𝜓|𝜎 ̅

⋮

⋮

⋯ 𝑃𝑟 𝜓 ≥ 𝜓|𝜎 ̅ ⋯

⋮

⋮

𝑃𝑟 𝜓 ≥ 𝜓|𝜎 ̅

⋮

𝑃𝑟 𝜓 ≥ 𝜓|𝜎 ̅ ⋯ 𝑃𝑟 𝜓 ≥ 𝜓|𝜎 ̅ ⋯ 𝑃𝑟 𝜓 ≥ 𝜓|𝜎 ̅ ⎠

⎟
⎟
⎟
⎞

 (8) 

Note that the calculation of the entries of 𝑃𝑟 𝜓 ≥ 𝜓|𝜎 ̅  may result computationally 
burdensome, for example when using highly non-linear tsunami simulation models. 

In the particular case of a local SPTHA for the estimation of inundation hazard 
curves for a small target site, e.g., a refinery, high-resolution inundation simulations 
are needed. This requires either large High Performance Computing (HPC) resources 
[25], [26] or a reduction of the number of simulations by, for example a two-stage 
filtering procedure [18], [26], [27], or training a metamodel, for example an Adaptive 
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Kriging that mimics the behaviour of the computationally demanding tsunami 
inundation simulator, e.g., [28], [29].  

On the other hand, when the interest is in a regional SPTHA for the estimation of 
inundation hazard curves for large areas, such as countries or continents, the 
computation is usually performed by using simplified relationships between the 
water elevation at the shoreline and the maximum inundation height [30], [31].   

In this thesis, we propose two novel Sensitivity Analysis (SA) methods to address the 
aforementioned computational issues related with SPTHA, namely:  

1. A Bootstrapped Modularised method of Global Sensitivity Analysis for 
Probabilistic Seismic Hazard Assessment to identify the model parameters 
most affecting the PGA (that ultimately affects the tsunami wave height); 

2. A heuristic features selection approach for scenario analysis of a Regional 
Seismic Probabilistic Tsunami Hazard Assessment to identify the features of 
the seismic model worthy to be fed to a seismic-induced tsunami simulation 
code. 

SA can aid the understanding of how the uncertainty in the model is apportioned 
among the model input parameters uncertainties [32], [33]. In other words, through 
SA, one can identify the most sensitive parameters and better focus the uncertainty 
analysis without losing accuracy. Different SA techniques have been proposed in 
literature, which can be sorted into three main categories: local, regional, and global 
[34]. Local and regional analyses limit inputs variations to a subset of their overall 
ranges. Local methods evaluate at low computational costs the effects on the system 
response of small perturbations in the model input variables around fixed values 
[34]. Then, local SA provides information on the sensitivity of the model output to 
the input variability at some fixed points. Regional analyses, on the contrary, focus 
on calculating the sensitivity of the model output to the variability of the inputs 
varying in given ranges of the inputs; yet, they do not give complete account to the 
uncertainty of the model inputs, in terms of their distributions [35], [36]. Global 
Sensitivity Analysis (GSA) methods, instead, explore the whole distribution range of 
the model inputs and the effects of their mutual combination on the model output, 
but they do so at larger computational costs than local and regional methods [35], 
[36]. GSA methods can be regression-based [37], variance-based [36], [38], 
distribution-based [39], [40] and expected value of information (EVI)-based [41]. 
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Among the GSA methods, variance decomposition based on Sobol indices is most 
widely used [42].  

Sobol indices measure that contribution the input variables provide, individually or 
in groups, to the variability of the model output [35], [43]. They are usually 
computed via a double-loop Monte Carlo Simulation (MCS), with computational cost 
equal to 𝐶 = 𝑣 ∙ 𝑛 ∙ 𝑛 , where 𝑣 is the number of input variables, 𝑛  the sample size 
for estimating the inner loop and 𝑛  the sample size for the outer loop [44], [45]. 
When the model runs are time consuming, the computational cost is high and 
strategies have been proposed to reduce it, including: reduced-order models 
calibrated on input-output data obtained by few runs of the original model, e.g., 
Bayesian approaches [46], kriging [47], and polynomial chaos expansion [48], [49]; 
sampling schemes tailored to efficiently characterise the sensitivity of the model 
inputs, e.g., Fourier Amplitude Sensitivity Test (FAST) [50], [51] and Effective 
Algorithm for computing global Sensitivity Indices (EASI) [52]; finally, data-driven 
approaches allow exploiting available datasets to calculate sensitivity measures [42], 
[53], which is quite of interest for many practical applications in which an input-
output dataset is available and models to perform a GSA using MCS-based methods 
cannot be run [42], [54].  

The novel Modularised GSA (MGSA) method, developed to identify the input 
variables which the output of a seismic model is most sensitive to, assuming that 
only an input-output dataset is given and with no need of repeating hazard 
computations, is sketched in the flowchart of Figure 1 and described in “A 
Bootstrapped Modularised method of Global Sensitivity Analysis for Probabilistic 
Seismic Hazard Assessment”. It consists of, first, applying a Bootstrap technique to 
the available input-output dataset to artificially increase the amount of data available 
[55], [56]. Then, for each 𝑑-th dataset, a sensitivity index is calculated for each input 
variable. Without loss of generality, in this work we propose to calculate the first-
order Sobol index, which measures the input variables individual contributions to 
the variability of the model output [35], [43]: in practice, for each input variable, the 
𝑑-th dataset is modularised (i.e., partitioned) into sub-sets that are used to calculate 
the variance of the model output 𝑌 and the first-order Sobol index [57]. Finally, the 𝐷 
independent rankings of the input variables, obtained based on their first-order 
Sobol indices values, are ensembled to provide an aggregated ranking of the input 
variables which the output is sensitive to. Typical ensemble strategies are Bottom-Up 
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(BU) and All-Out (AO) strategies: the former computes a ranking order of the input 
variables out of each 𝑑-th dataset and combines the 𝐷 alternative rankings a 
posteriori to generate a final aggregated ranking order [32]; on the contrary, the latter 
merges a priori the information from the 𝐷 datasets by averaging the 𝐷 Sobol indices 
for each input parameter and, then, provides the final ranking [32].  

 

Figure 1: Flowchart of the proposed method. 

The proposed method is tested on a hypothetical case study with a point seismic 
source and a nearby target point, where the hazard intensity corresponding to 10% 
probability of being exceeded in 50y is to be calculated. The results are compared to 
those obtained by a standard variance-based GSA method [33], which is the state-of-
practice approach when the simulation model is available. 

This thesis considers regional SPTHA and illustrates a novel approach for identifying 
the relevant features of the seismic scenarios and the selection of a limited number of 
them needed for performing the annual rate estimation with sufficient accuracy. 
Specifically, a Multi-Objective Differential Evolution Algorithm (MODEA) is used to 
select the features [58]. 

The proposed approach, described in the chapter “A heuristic feature selection 
approach for scenario analysis of a Regional Seismic Tsunami Hazard Assessment”, 
is developed with reference to a case study whose objective of the analysis is 
calculating the annual rate of exceedance of a threshold 𝜓 = 1𝑚 of tsunami wave 
height, resulting from subduction earthquakes in a section of the Hellenic Arc. The 
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target site 𝑎 for the propagation of the wave is at Siracusa, on the eastern coast of 
Sicily. The case study considers the crustal seismicity generated in the Kefalonia-
Lefkada region, thus developing outside the subduction interface of the Hellenic Arc 
[59], [60]; this is one of the regions considered in the tsunami hazard model recently 
released for the NEAM region [60], [61]. The source area comprises a total of 𝑄 =

23272 seismic scenarios and 𝑀 = 1000 alternative models for the calculation of 
Λ(𝜓 ≥ 1𝑚).  

A comparison is provided between the value of the mean annual rate of exceedance 
estimated considering only the selected scenarios SPTHA and the full set of scenarios 
SPTHA. The outcome of the comparison shows that the proposed approach allows a 
significant reduction of the number of scenarios needed without affecting the 
accuracy of the estimate. 

 

The structure of the thesis is as follows: in Chapter 1 “A Bootstrapped Modularised 
method of Global Sensitivity Analysis for Probabilistic Seismic Hazard Assessment” 
is presented; in Chapter 2 “A heuristic feature selection approach for scenario 
analysis of a Regional Seismic Tsunami Hazard Assessment” is presented; finally in 
Chapter 3 conclusions are drawn. 
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1. A Bootstrapped Modularised 
method of Global Sensitivity 
Analysis for Probabilistic Seismic 
Hazard Assessment 

With regards to the possibility of earthquake occurrence at a given location, 
Probabilistic Seismic Hazard Assessment (PSHA) evaluates the probability of 
exceedance of a given earthquake intensity measure like the Peak Ground 
Acceleration (PGA), at a target point for a given exposure time. The stochasticity of 
the occurrence of seismic events is modelled by stochastic processes and the 
propagation of the earthquake wave in the soil is typically evaluated by empirical 
relationships called Ground Motion Prediction Equations (GMPEs). The large 
epistemic uncertainty affecting PSHA is quantified by defining alternative model 
settings and/or model parametrisations. In this work, we propose a novel 
Bootstrapped Modularised Global Sensitivity Analysis (BMGSA) method for 
identifying the model parameters most important for the epistemic uncertainty in 
PSHA. The method consists in:  

1. Generating alternative artificial datasets by bootstrapping an available 
input-output dataset;  

2. For each alternative bootstrapped dataset, calculating a sensitivity index 
with the modularised method; 

3. Aggregating the individual rankings obtained from each alternative 
bootstrapped dataset, with Bottom-Up/All-Out strategies. 

The proposed method is tested on a benchmark case study. The results are compared 
with a standard variance-based Global Sensitivity Analysis (GSA) method of 
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literature. The novelty and strength of the proposed BMGSA method is that its 
application only requires input-output data and not the direct accessibility to the 
PSHA code. 

1.1 The novel Bootstrapped Modularised GSA 
Let us consider a model 𝑔 whose output value 𝑌 ∈ ℝ depends on the values of 
uncertain input parameters 𝑋 = (𝑋 , 𝑋 , … , 𝑋 ): 

𝑌 = 𝑔(𝑋) (9) 

Let us also assume that an input-output data set �̿� is given (i.e., the analyst may not 
dispose the simulation code): 

�̿� =
�̅�
⋮

�̅�

=
𝑥 ⋯ 𝑥
⋮ ⋱ ⋮

𝑥 ⋯ 𝑥
     

𝑦
⋮

𝑦
 (10) 

where �̅� = [�̅� , 𝑦 ], ∀ 𝑠 = 1, … , 𝑆 is the 𝑠-th input-output pattern of �̅� =

(𝑋 , 𝑋 , … , 𝑋 , 𝑌) 

The proposed methodology consists in:  

1. Generating 𝐷 alternative bootstrapped artificial datasets from the available 
input-output dataset �̿� [62];  

2. From each 𝑑-th alternative dataset and for each input variable, calculating 
a sensitivity index (here the first-order Sobol index) with the modularised 
method [57]; 

3. Aggregating the 𝐷 individual rankings (one for each alternative dataset) 
with Bottom-Up/All-Out strategies [32]. 

1.1.1  Generation of the Bootstrapped datasets 

Bootstrap is a computer-based method usually employed to assess the accuracy of 
statistical estimates with minimum assumptions [56]. The main benefit is avoiding 
additional computational burden (for example, when simulation codes are 
computationally demanding or not available, as in the current case) by relying only 
on the available data [56], [63], which makes it particularly fit for the purpose of this 
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work. The basic idea is to generate a number 𝐷 of artificial datasets �̿�  by random 
sampling, with replacement from �̿�, the input-output patterns. The generic 
bootstrapped �̿� , thus, consists in a 𝑆 × (𝑁 + 1) matrix (see Figure 2). 

 

Figure 2: Bootstrap replicates of an original dataset. 

1.1.2  The modularised method to calculate the Sobol index 

The Sobol index is the result of the application of a variance-based method that 
apportions the output variance into the single (or groups of) variables variances [64], 
[65]. No hypotheses are made on the structure of the model 𝑔 from which the data 
have been generated. The variance 𝑉𝑎𝑟[𝑌] of the output 𝑌 can be, indeed, 
decomposed as follows [35], [36]: 

𝑉𝑎𝑟[𝑦] = 𝑉𝑎𝑟 𝔼
~

(𝑦|𝑥 ) + 𝔼 𝑉𝑎𝑟
~

(𝑦|𝑥 )  (11) 

where: 

 𝑉𝑎𝑟 𝔼
~

(𝑦|𝑥 )  is the variance of 𝑌 caused by 𝑋  without considering its 
interactions with other input variables (i.e., 𝑋~ ) 

 𝔼 𝑉𝑎𝑟
~

(𝑦|𝑥 )  is the variability of 𝑌 depending on all variables but on 𝑛 
(i.e., 𝑋~ );  

 𝔼(∙) is the expectation operator; 
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The first-order Sobol index for the 𝑛-th generic input variable is defined as [35], [36]: 

𝑆 =
𝑉𝑎𝑟 𝔼

~
(𝑦|𝑥 )

𝑉𝑎𝑟[𝑦]
, ∀ 𝑛 = 1, … , 𝑁 (12) 

The larger 𝑆 , the more 𝑋  contributes to the variance of 𝑌 [64]. As mentioned in the 
Introduction, the computation of the Sobol indices usually requires a double-loop 
MCS, which can be computationally burdensome. Since, in practice, the numerator is 
solved by a double-loop MCS [36]:  

 The inner loop computes 𝔼
~

(𝑦|𝑥 ) using 𝑛  random samples of 𝑋~  with 
fixed 𝑋 ; 

 The outer loop computes 𝑉𝑎𝑟 𝔼
~

(𝑦|𝑥 )  by iterating the inner loop 𝑛  
times, with different values of 𝑋 ;  

In total, for each 𝑆 , the number of model evaluations is 𝐶 = 𝑛 ∙ 𝑛 , that is 
unaffordable if each evaluation is time-consuming (notice that, in many practical 
applications, each loop must be of order greater than 1000 [34], [45]). To address this 
issue and avoid calling the simulation code, we propose a modularised approach, 
that partitions the �̿�  into subsets and proceeds as follows [44], [45]. 

Step 1: construct the reduced matrix 

For each 𝑛-th input variable, append the 𝑛-th input column of �̿�  to the output 
column; then, shuffle the rows in ascending order to obtain �̿�∗ , where 𝑥 ∗ ≤ 𝑥 ∗ ≤

⋯ ≤ 𝑥 ∗:   

�̿�∗ =
𝑥 ∗

⋮
𝑥 ∗

     
𝑦 ∗

⋮
𝑦 ∗

 (13) 

Step 2: partition the reduced matrix in subsets 

Partition the support of 𝑋  in 𝑘 = 1, … , 𝐾 mutually exclusive subsets �̿�∗ , such that 
⋃ 𝑋 = 𝑋 ∧ 𝑋 ∩ 𝑋 = ∅. Operatively, divide the resulting matrix �̿�∗  into 𝑘 =

1, … , 𝐾 submatrices �̿�∗  of 𝐽 rows, each retaining the order of the Step 1: 

�̿�∗ =
𝑥 ∗

⋮

𝑥
∗

     
𝑦 ∗

⋮
𝑦 ∗

 (14) 
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Note that  𝐽 ∙ 𝐾 = 𝑆, where 𝑆 is the total input-output pattern size and  𝐾 = 𝑖𝑛𝑡 √𝑆  
[44], [53].  Notice that the large 𝐾 improves the accuracy of the estimation of 𝑉𝑎𝑟 [∙], 
while worsening the accuracy of the estimation of 𝔼

~
(𝑦|𝑥 ), and vice versa [44], 

[66]. 

Step 3: estimation of the Sobol index 

The Sobol index 𝑆 ,  is, finally, calculated as: 

𝑆 , =
𝑉𝑎𝑟 𝔼

~
(𝑦|𝑥 )

𝑉𝑎𝑟[𝑦]
≈

1
𝐾

∑ (𝑦 − 𝑦)

1
𝑆

∑ (𝑦 − 𝑦)
 (15) 

where: 𝑦 = ∑ 𝑦  and 𝑦 = ∑ 𝑦 ∗ . 

The calculation of 𝑆 , , as a result of the modularisation, depends solely on 𝑋  and 𝑌, 
and can be performed even if the input values of 𝑋~  are not available [44], [45].  

1.1.3  Ensemble of the alternative rankings 

Each input variable 𝑋  has been, thus, assigned a 𝑆 , . Input variables can, 
accordingly, be ranked from the most important (largest 𝑆 , ) to the least contributor 
to the variance (smallest 𝑆 , ). Two strategies are explored for ensembling the 𝐷 
available alternative rankings: the BU and AO strategies [32]. 

1.1.3.1 Bottom-Up strategy 

Each 𝑑-th bootstrapped dataset �̿�  is treated separately from the others to generate its 
input ranking 𝑅 , . Then, the set of input rankings obtained from all the 𝐷 datasets 
is processed a posteriori to give the final aggregated ranking order 𝑅  (Figure 3) 
[32]. For each �̿�  the 𝑆 ,  are computed and, by sorting in ascending order, the 
corresponding ranking 𝑅 ,  is obtained. The final ranking order 𝑅  is obtained 
applying the Borda method, that consists in computing the Borda Count (BC) for 
each input variable [32]. Denoting by 𝑝 ,  the 𝑛-th variable order inside the 𝑑-th 
ranking, the BC for the input variable 𝑋  is given by [32]: 

𝐵𝐶 = 𝑝 , . (16) 
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A small value of 𝐵𝐶  means that the 𝑛-th input variable is among the most important 
(top ranked) input variables [32].  

 

Figure 3: The proposed bottom-up aggregation strategy. 

1.1.3.2 All-Out strategy 

The AO strategy a priori merges the information coming from each dataset �̿�  (see 
Figure 4). For each input variable 𝑋 , the expected value 𝔼(𝑆 ) of each Sobol index 𝑆  
is computed over the 𝐷 datasets [32]: 

𝔼(𝑆 ) =
1

𝐷
𝑆 ,  (17) 

Sorting 𝔼(𝑆 ) in ascending order provides the AO aggregated ranking 𝑅  (the larger 
the value of 𝔼(𝑆 ), the more important the 𝑛-th input variable) [32].  
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Figure 4: The proposed all-out aggregation strategy. 

1.2 Case study 
The proposed GSA methodology has been tested on a benchmark case study 
regarding the PSHA of one hypothetical seismic point source and one target point 
located in its proximity. The source model consists of a point source with a given 
mean annual rate and generating seismicity with magnitudes following a truncated 
Gutenberg-Richter distribution [67]. The source model is, then, coupled with a 
standard Ground Motion Prediction Equation (GMPE) for the propagation of the 
earthquake waves in the soil [68]. A reference target point is selected in the near field, 
at distance of approximately 10 km.  

The epistemic uncertainty of the PSHA is evaluated with respect to six input 
parameters, accounting for a total of 16384 alternative computational settings, 
resulting in �̿� = [16384 × 7], as in Eq. (18) below. The purpose is to quantify the 
impact of these parameters on the epistemic uncertainty of the IM value 
corresponding to an exceedance probability of 10% in 50 years, with a mean return 
period of 475 years. The input parameters are 𝑋 = (𝜎 , 𝜆, 𝑚 , 𝑚 , 𝑏, 𝑟) where: 
𝜎  is the standard deviation of the GMPE, 𝜆 is the mean annual rate of seismic 
activity at the source location (i.e., the number of earthquakes per year of intensity 
magnitude 𝑚 a minimum magnitude 𝑚 ), 𝑚  and 𝑚  are the minimum and 
the maximum magnitude parameters of the truncated Gutenberg-Richter 
distribution, whose slope is 𝑏 [20], [67], and 𝑟 is the source-to-target distance [20]. 
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The latter parameter is here added to the other five input to emulate the dependence 
of GMPEs on source characteristics like earthquake depth, size or geometry. The 
output variable is the IM 𝑃𝐺𝐴, i.e., the reference peak ground acceleration at the 
target location that has annual rate of exceedance 𝜆  assumed to be equal to 1/475y.  

�̿� =

⎝

⎜
⎛

𝜎 𝜆

⋮
𝜎

⋮

⋮
𝜆
⋮

𝜎 𝜆

𝑚 𝑚

⋮
𝑚

⋮

⋮
𝑚

⋮
𝑚 𝑚

𝑏 𝑟
⋮

𝑏
⋮

⋮
𝑟
⋮

𝑏 𝑟

𝑃𝐺𝐴
⋮

𝑃𝐺𝐴
⋮

𝑃𝐺𝐴 ⎠

⎟
⎞

 (18) 

The epistemic distributions of all the six input variables 𝑋 are reported in Table 1. 
Notably, the source-target distance is set around 10 km, thus in the very near field, in 
which the dependence of distance on the source characteristics (geometry, depth, and 
dimension) is more pronounced. Consequently, a quite large variance is set for 𝑟. The 
other parameters are inspired from the ones adopted in the areal sources of the 
PSHA study that is enforced by law in Italy, MPS04 [69], [70]. In particular, the 
parameters of the source model (𝜆, 𝑚 , 𝑚  and 𝑏) are inspired by source zone 920 
(Val di Chiana-Ciociaria) of MPS04, with a reduced value 𝑚  (from 4.76 to 4.5) and 
𝜆 (as we are considering a point source). The central value of 𝜎  is instead taken 
from [68].  Variance value representing the epistemic uncertainty on the parameters, 
are set based on expert judgement. 

Input variable Units 
Type of 

distribution 
Mean value Standard 

𝜎  𝑔  (𝑚 𝑠 )⁄  Normal 0.3446 0.0490 

𝜆 𝑦𝑟  Normal 0.0600 0.0021 

𝑚  - Normal 5.6791 0.2430 

𝑚  - Normal 4.5005 0.1000 

𝑏 - Normal 1.9597 0.0580 

𝑟 𝑘𝑚 Normal 10.0142 2.9639 

Table 1: Model input variables and output, with their associated distributions. 

The results of the proposed method are compared to those obtained by a standard 
variance-based GSA method [33], which is the state-of-practice approach when the 
simulation model is available.  
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1.3 Results 
The BMGSA methodology described in Section 2 has been applied to the case study 
presented in Section 3. The original dataset �̿� has been replicated by bootstrap to 
generate 𝐷 = 1000 datasets. Each replicate matrix �̿�  is comprised of 𝑆 = 16384 rows 
(the input-output patterns) and 7 columns (6 input variables, 1 output). The partition 
size chosen to test the proposed methodology is 𝐾 = 𝑖𝑛𝑡 √𝑆 = 128. 

The results of the assessment carried out with the standard GSA on the case study of 
Section 3 are taken as a benchmark, i.e., as correct ranking. This ranking is reported 
in Table 2, along with the values of the Sobol indices. 

Notably, the main drivers of the epistemic uncertainty on the reference PGA are  
𝑚  and 𝜎 . While the dependence on 𝜎   is a well-established result [71], the 
dependence on 𝑚  is not that straightforward, and it is probably due to the 
selection of a target point in the very near field (about 10 km) and the use of a very 
large value for the slope 𝑏-value (about 2). The combined effect of these two 
parameters is to produce a very large number of events with a magnitude very close 
to 𝑚 , resulting in a critical dependence of the reference PGA on the selected 
minimum magnitude value. 

Rank 1 2 3 4 5 6 

Input variable 𝑚  𝜎  𝜆 𝑟 𝑚  𝑏 

𝑺𝒏 0.5896 0.3811 0.0470 0.0320 0.0264 0.0221 

Table 2: Input variables ranking obtained with the standard GSA [2]. 

1.3.1  Results of the Bottom-Up strategy 

The application of the ensemble BU strategy produces the final ranking obtained by 
the Borda method, shown in Table 3. The major limitation of the BU strategy is that 
the result is lumped in a ranking table that is not transparent with respect to the 
actual Sobol indices that generate that ranking and, finally, the analyst is not 
provided with any confidence measure on the resulting rank: in other words, it 
cannot be quantitatively assessed how much the generic 𝑛-th input 𝑋  contributes to 
the variance of 𝑌. 
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Rank 1 2 3 4 5 6 

Input variable 𝑚  𝜎  𝜆 𝑟 𝑚  𝑏 

Table 3: Input variables ranking obtained through MGSA, D=1000 bootstrapped 
datasets, BU strategy. 

1.3.2  Results of the All-Out strategy 

The ranking and the expected values of the Sobol indices obtained with the ensemble 
strategy AO are reported in Table 4. As stated for the BU strategy, one can observe 
that: 

1. The variables 𝜎  and 𝑚  are the first two (by far) more relevant inputs 
(Figure 5); 

2. The other input variables bring a negligible contribution to the variability of 
the output. 

Rank 1 2 3 4 5 6 

Input variable 𝑚  𝜎  𝜆 𝑚  𝑟 𝑏 

𝔼(𝑺𝒏) 0.5760 0.3693 0.0508 0.0359 0.0336 0.0249 

Table 4: Input variables ranking obtained through MGSA, D=1000 bootstrapped 
datasets, AO strategy. 
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Figure 5: Sobol indices obtained with the AO strategy. 

1.3.3  Comparison with the benchmark results 

The results of the proposed methodology have been then compared with the ranking 
results of the standard GSA, reported in Table 5.  

Rank 1 2 3 4 5 6 

Standard GSA  𝑚  𝜎  𝜆 𝑟 𝑏 𝑚  

BU (BMGSA) 𝑚  𝜎  𝜆 𝑚  𝑟 𝑏 

AO (BMGSA) 𝑚  𝜎  𝜆 𝑚  𝑟 𝑏 

No bootstrap (MGSA) 𝑚  𝜎  𝑟 𝑚  𝜆 𝑏 

Table 5: Input variables rankings (sample size S=16384). 

Both ensemble strategies and the standard GSA identify the 𝜎  and 𝑚  as the 
most important variables, whereas the sensitivity indices of the other input variables 
are negligible (Table 5, Figure 6). The disagreement regarding the ranking for the 
positions 4-6 may be due to hidden dependences and/or correlations between the 
input variables, as well as to the quantity of data upon which the rankings are 
drawn.  
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Figure 6: Sobol indices obtained with the standard GSA [2]. 

To highlight the important role played by the bootstrapping (Section 1.1.1) in 
obtaining such results, we show (Figure 7-Figure 11) the results that would have 
been obtained with a given input-output dataset �̿� of decreasing size (𝑆 =

16384, 8192, 4096, 2048, 1024), employing the more transparent AO ensemble 
strategy (green squares in the Figure 7-Figure 11). These results are compared with i) 
the benchmark values (Standard GSA, blue diamonds in the Figure 7-Figure 11) and 
ii) the results obtained with the MGSA without bootstrap (magenta circles in the 
Figure 7-Figure 11). The relative rankings are reported in Table 6-Table 9.  

When �̿� = [16384 × 7], as shown in Figure 7 and Table 5, the Standard GSA (blue 
diamonds in Figure 7), the BMGSA (green squares in Figure 7) and the MGSA 
(magenta circles in Figure 7) agree on the identification of 𝑚  and 𝜎  as the 
most important variables, whereas for the third most important variable only 
Standard GSA and BMGSA agree on 𝜆. Then, the approaches provide different 
rankings for lower ranking positions. 
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Figure 7: Sobol indices estimates at sample size S=16384. 

When �̿� = [8192 × 7], as shown in Figure 8 and Table 6, the Standard GSA (blue 
diamonds in Figure 8), the BMGSA (green squares in Figure 8) and the MGSA 
(magenta circles in Figure 8) agree on the identification of 𝑚  and 𝜎  as the 
most important variables, whereas for the third most important variable only 
Standard GSA and BMGSA agree on 𝜆. Then, the approaches provide different 
rankings for lower ranking positions. 

 

Figure 8: Sobol indices estimates at sample size S=8192. 
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Rank 1 2 3 4 5 6 

Standard GSA  𝑚  𝜎  𝜆 𝑟 𝑏 𝑚  

AO (BMGSA) 𝑚  𝜎  𝜆 𝑏 𝑚  𝑟 

No bootstrap (MGSA) 𝑚  𝜎  𝑚  𝑏 𝜆 𝑟 

Table 6: Input variables rankings (sample size S=8192). 

When �̿� = [4096 × 7], as shown in Figure 9 and Table 7, the Standard GSA (blue 
diamonds in the Figure) and the BMGSA (green squares in Figure 9) agree on the 
identification of 𝑚  and 𝜎  as the most important variables, as well as on third 
(𝜆) and fourth (𝑟) most important variables. Then, the approaches provide different 
rankings for lower ranking positions. The MGSA (magenta circles in Figure 9) 
instead yields a completely different ranking (except for position 4). Notice that, 
when the dimension of �̿� decreases, even if the most important variables are correctly 
identified, a less accurate estimation of the Sobol indices is provided and the 
differences between the GSA (blue diamonds in Figure 9), the BMGSA (green circles 
in Figure 9) and MGSA (magenta circles in Figure 9) increase.       

 

Figure 9: Sobol indices estimates at sample size S=4096. 
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Rank 1 2 3 4 5 6 

Standard GSA 𝑚  𝜎  𝜆 𝑟 𝑏 𝑚  

AO (BMGSA) 𝑚  𝜎  𝜆 𝑟 𝑚  𝑏 

No bootstrap (MGSA) 𝜎  𝑚  𝑚  𝑟 𝜆 𝑏 

Table 7: Input variables rankings (sample size S=4096). 

When �̿� = [2048 × 7], as shown in  Figure 10 and Table 8, the Standard GSA (blue 
diamonds in Figure 10) and the BMGSA (green squares in Figure 10) agree on the 
identification of 𝑚  and 𝜎  as the most important variables, as well as on third 
(𝜆) and fourth (𝑟) most important variables. Then, the approaches provide different 
rankings for lower ranking positions. The MGSA (magenta circles in Figure 10) 
instead yields a completely different ranking (except for position 5). Notice that, 
when the dimension of �̿� decreases, even if the most important variables are correctly 
identified, a less accurate estimation of the Sobol indices is provided and the 
differences between the GSA (blue diamonds in Figure 10), the BMGSA (green circles 
in Figure 10) and MGSA (magenta circles in Figure 10) further increase with respect 
to the case with �̿� = [4096 × 7].       

 

Figure 10: Sobol indices estimates at sample size S=2048. 
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Rank 1 2 3 4 5 6 

Standard GSA  𝑚  𝜎  𝜆 𝑟 𝑏 𝑚  

AO (BMGSA) 𝑚  𝜎  𝜆 𝑟 𝑚  𝑏 

No bootstrap (MGSA) 𝜎  𝑚  𝑟 𝜆 𝑚  𝑏 

Table 8: Input variables rankings (sample size S=2048). 

When �̿� = [1024 × 7], as shown in Figure 11 and Table 9, the Standard GSA (blue 
diamonds), the BMGSA (green squares in Figure 11) and the MGSA (magenta circles 
in Figure 11) agree on the identification of 𝑚  as the most important variable, 
whereas for the second (𝜎 ) and third (𝜆) most important variables only Standard 
GSA and BMGSA agree. Then, the approaches provide different rankings for lower 
ranking positions. Nevertheless, as Figure 11 clearly shows, the numerical values of 
the Sobol indices obtained with the proposed BMGSA may not be considered 
satisfactory. Furthermore, Figure 12-Figure 16 show that, when the dimension of �̿� 
decreases, the distributions of 𝑆 ,  become wider (i.e., bootstrap replicates are subject 
to noise and, as a result, the Sobol indices estimate are not precise).  

 

Figure 11: Sobol indices estimates at sample size S=1024. 
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Rank 1 2 3 4 5 6 

Standard GSA  𝑚  𝜎  𝜆 𝑟 𝑏 𝑚  

AO (BMGSA) 𝑚  𝜎  𝜆 𝑏 𝑟 𝑚  

No bootstrap (MGSA) 𝑚  𝜆 𝜎  𝑏 𝑚  𝑟 

Table 9: Input variables rankings (sample size S=1024). 

 

Figure 12: 𝑆 ,  distributions at sample size S=16384 

 

Figure 13: 𝑆 ,  distributions at sample size S=8192 
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Figure 14: 𝑆 ,  distributions at sample size S=4096 

 

Figure 15: 𝑆 ,  distributions at sample size S=2048 
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Figure 16: 𝑆 ,  distributions at sample size S=1024 

As general conclusion, we can state that bootstrapping allows relying on a very small 
dataset. Indeed, a sample size of 𝑆 = 2048 (Figure 10) allows correctly identifying the 
most important input variables, while 𝑆 = 4096 (Figure 9) yields already a very 
satisfactory estimate of the Sobol indices values (compared with the GSA estimates). 
Thus, as a general recommendation, we may conclude that a ratio of 4:1 of 𝑆: 𝐷 
(dataset size vs number of bootstrap replicates) is enough to guarantee satisfactory 
results, without resorting further to demanding computations. 

For the case study at hand, we can conclude that, 𝑚 , 𝜎 , and 𝜆 have been 
identified as the input variables which most influence the reference PGA, whereas 𝑟, 

𝑏, and 𝑚  influence is negligible (for whatever dataset size 𝑆 =

16384, 8192, 4096, 2048, 1024). The analyst, once identified the input parameters 
which most influence the epistemic uncertainty on reference PGA, may decide to 
further investigate the choice made regarding such inputs and proceed with the 
uncertainty analysis.  

We underline that, obviously, the numerical results obtained are relative to the 
specific case and cannot be generalized to other PSHA case studies. In particular, 
while the strong impact of 𝜎 , and 𝜆 on hazard quantifications is well known 
(e.g., [33]), the reasons behind the importance of 𝑚  must be further investigated. 
In Figure 17, we show the impact of small events (i.e., with a magnitude near Mw 
4.5) in our case study. The relative short source to site distance (10 km) and the low 

S
n,

d
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PGA level (0.07g) make very important the contribution of small events: the 
probability of exceedance of such PGA level for a magnitude Mw 4.5 is larger than 
0.2. In the case of larger distances (e.g., 40 km) of larger PGA levels (e.g., 0.20 g) the 
impact of small events noticeably decreases. 

 

Figure 17: Probability of exceedance of a specific PGA level, 0.07g for panel (a), 0.20g 
for panel (b), as a function of the magnitude, using the GMPE adopted in this study, 

for two different distances (10 km for the blue curve, 40 km for the red curve) 

The large probabilities shown by the blue curve in panel (a) of Figure 17 clearly 
explain the unexpected large importance of the  𝑚  as input variable in PSHA 
computation (see [71] or [72] for a deeper investigation of the effect of small 
magnitude events in PSHA). This highlights that the proposed method represents 
also an important sanity check for any hazard quantification, as PSHA results are 
assumed independent from the selection of  𝑚 . In this case, indeed, we show that 
the tails of the GMPE for small magnitudes are sufficiently populated to strongly 
impact the hazard quantification also at a relatively high mean return period (475 
years in this case), at least in the near field of the source areas. 

Notably, this effect, as pointed out in other studies [71], [72], could be due to the 
extension of the validity of the GMPEs to small magnitude events that, in some cases, 
can even lead to a bias in the hazard estimation.  
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2. A heuristic feature selection 
approach for scenario analysis of a 
Regional Seismic Tsunami Hazard 
Assessment 

Seismic Probabilistic Tsunami Hazard Analysis (SPTHA) is aimed at estimating the 
annual rate of exceedance of an earthquake-induced tsunami wave of a certain 
location with reference to a predefined height threshold. The analysis relies on 
computationally demanding numerical simulations of seismic-induced tsunami 
wave generation and propagation. A large number of scenarios needs to be 
simulated to account for the aleatory and epistemic uncertainties. However, the 
exceedance of tsunami wave threshold height is a rare event so that most of the 
simulated scenarios bring little statistical contribution to the estimation of the annual 
rate yet increasing the computational burden. To efficiently address this issue, we 
propose a wrapper-based heuristic approach to select the set of most relevant 
features of the seismic model, for deciding a priori the seismic scenarios to be 
simulated. The proposed approach is based a Multi-Objective Differential Evolution 
Algorithm (MODEA) and is developed with reference to a case study whose 
objective of the analysis is calculating the annual rate of a threshold exceedance of 
the height of tsunami waves caused by subduction earthquakes that might be 
generated on a section of the Hellenic Arc and propagated to a target site on the 
eastern coast of Sicily (Siracusa). The comparison between the mean values of annual 
rate of exceedance of the tsunami wave height estimated considering only the 
selected scenarios and the full set of scenarios shows that the proposed approach 
allows a reduction of 95% of the number of scenarios with half of the features to be 
considered, and with no appreciable loss of accuracy. 
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2.1 Case study 
We consider the regional SPTHA for the target site 𝑎 on the eastern coast of Sicily 
(Siracusa, red cross in Figure 18), exposed to tsunamis triggered by crustal 
earthquakes occurring outside the subduction interface of the Hellenic Arc in the 
Kefalonia-Lefkada region [60]. Earthquakes are assumed to be generated at specific 
epicentral locations 𝐻  (𝑖=1,…, 42, blue points in Figure 18) with different 
magnitudes, depths, and faulting mechanisms. Without loss of generality, the 
following assumptions are made:  

i. The threshold is of 𝜓 = 1𝑚 at 50m from the coastline. 

ii. One epicentral location (star 14 in Figure 18) is considered, since a large 
number 𝑄 = 721 of seismic scenarios 𝜎 ̅  is available, making, Λ(𝜓 ≥

1𝑚|𝐻 ) equal to: 

Λ(𝜓 ≥ 1𝑚|𝐻 ) ≈
1

𝑀
𝜆 𝜎 ̅ |𝐻 𝑃𝑟 𝜓 ≥ 1𝑚|𝜎 ̅ , 𝐻  (19) 

(Herein after, for the sake of readability, 𝐻  will be omitted). 

iii. Each 𝜎 ̅  is characterised by the set of parameters �̅� =

(𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 ) [59], [60], whose support and values are listed in 
Errore. L'origine riferimento non è stata trovata.. These parameters (see 
Figure 19 for a schematic representation) are:  

1. 𝑥  Magnitude 

2. 𝑥  Depth (top of the fault) 

3. 𝑥  Strike (of the focal mechanism) 

4. 𝑥  Dip (of the focal mechanism) 

5. 𝑥  Rake (of the focal mechanism) 

6. 𝑥  Area (of the fault), i.e., the product of its width by its length 

7. 𝑥  Length (of the fault) 

8. 𝑥  Slip (of the fault) 
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Figure 18: Seismic zones H  (i=1,…,42) of the Hellenic Arc (blue dots), case study 
source (blue asterisk), target site a (red cross), (Siracusa). 

 

Figure 19: Schematic representation of an earthquake and its parameters [73]. 
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Parameter 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝒙𝟕 𝒙𝟖 

Support 
[6.5000-
8.0933] 

[1.00-
17.86] 

[22.5-
337.5] 

[10-90] [0-270] 
[318.95-

12648.92] 
[22.68-
665.73] 

[0.67-
4.21] 

V
al

ue
s 

6.5000 1.00 22.5 10 0 318.95 22.68 0.67 

6.8012 5.97 67.5 30 90 558.32 34.39 0.95 

7.0737 7.56 112.5 50 180 638.11 37.88 1.09 

7.3203 9.43 157.5 70 270 1194.98 50.10 1.29 

7.5435 10.94 202.5 90  1205.54 63.64 1.30 

7.7453 1158 247.5   2108.29 70.44 1.71 

7.9280 14.00 292.5   2133.31 95.87 1.73 

8.0933 14.12 337.5   3566.59 112.28 2.21 

 16.65    3524.55 126.69 2.24 

 17.86    5608.92 163.06 2.79 

     5676.15 187.72 2.82 

     8541.96 204.89 3.44 

     8644.77 298.74 3.48 

     12497.92 454.99 4.16 

     12648.92 665.73 4.21 

Table 10: Parameters of the seismic scenarios. 

2.2 Methodology 
To alleviate the computational burden of the SPTHA, the procedure sketched in 
Figure 20 is developed. Firstly, an optimisation problem is solved to identify the 
optimal set of seismic scenarios that contribute most to Λ(𝜓 ≥ 1𝑚) of Eq. (19). Then, 
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their features values are identified. The optimisation is performed by a wrapper-
based heuristic approach: based on a Multi-Objective Differential Evolution 
Algorithm (MODEA) wherein the DE engine [58], [74] iteratively searches for 
candidate sets of scenarios, among the original dataset of 𝑄 = 721 scenarios, whose 
performance is evaluated with respect to a given cost function. Once the optimal set 
of scenarios is identified, their common features are retrieved by statistical analysis. 

 

Figure 20: Wrapper approach for optimal set of scenarios selection based on MODEA 

 

The procedure is explained in detail here below. 

Step 1: Consider the original dataset  

The original dataset �̿� = [𝑄 × 9] is: 

A =

⎝

⎜
⎜
⎛

𝑥 , … 𝑥 , Λ 𝜓 ≥ 1𝑚|𝜎 ̅

⋮
𝑥 ,

⋮

⋮
⋯
⋮

⋮
𝑥 ,

⋮

⋮

Λ 𝜓 ≥ 1𝑚|𝜎 ̅

⋮
𝑥 , … 𝑥 , Λ 𝜓 ≥ 1𝑚|𝜎 ̅ ⎠

⎟
⎟
⎞

 (20) 
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where 𝑥 ,  is the value of the parameter 𝑥  in the 𝑞-th scenario, 𝑥 ,  is the value of the 

parameter 𝑥  in the 𝑞-th scenario, etc., and Λ 𝜓 ≥ 1𝑚|𝜎 ̅ =

∑ 𝜆 𝜎 ̅ 𝑃𝑟 𝜓 ≥ 1𝑚|𝜎 ̅  is the annual rate of exceedance of the q-th 

scenario. 

Step 2: Apply MODEA to identify the most relevant scenarios 

The MODEA searches the global minimum of a set of objective (cost) functions 𝐹 =

{𝑓(∙)}, of one (or more) decision vector(s) 𝑈 (typically a string of binary digits) [75], 
[76]. In the case of interest for this work, 𝑈 indicates whether the q-th seismic 
scenario is considered in the candidate solution (q-th bit equal to 1) or not (q-th bit 
equal to 0). 

The MODEA search is performed by initially randomly sampling the bits of the 𝑁𝑃 
vectors that compose the initial population strings [75]. Then, iteratively, the 
population is enriched by the solution 𝑈 that best fits the objective functions, through 
a selection process driven by a set of parameters, i.e., the scaling factor 𝐹 and the 
crossover probability 𝐶𝑅 [58]. For a thorough description of the process based on DE 
and its controlling parameters, the interested reader may refer to the Appendix A or 
to [58].  

The two objective functions considered are:  

1. Minimisation of 𝑄 (i.e., the number of scenarios 𝜎 ̅  considered in the 

solution):  

𝑓 = 𝑈  (21) 

2. Minimisation of the squared error 𝑆𝐸 between the annual rate of 
exceedance Λ(𝜓 ≥ 1𝑚) and the annual rate of exceedance calculated 
considering exclusively the 𝑄∗ = 𝑚𝑖𝑛 ∑ 𝑈  selected scenarios Λ∗(𝜓 ≥

1𝑚):  

𝑓 = Λ(𝜓 ≥ 1𝑚) − Λ∗(𝜓 ≥ 1𝑚)  (22) 

where Λ∗(𝜓 ≥ 1𝑚) is calculated as: 
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Λ∗(𝜓 ≥ 1𝑚) = 𝜆 𝜎 ̅ 𝑃𝑟 𝜓 ≥ 1𝑚|𝜎 ̅ 𝑈  (23) 

The search procedure ends when the stopping criterion (e.g., the maximum number 
of generations 𝑀𝐴𝑋𝐺𝐸𝑁) is reached. 

Step 3: Optimal set of scenarios 

The optimal solution vector 𝑈∗ (i.e., the optimal set of scenarios) that optimizes the 
multi-objective function of Eqs. (21) and (22) is selected from the Pareto optimal front 
[75], as the solution with the minimum number 𝑄∗ of entries equal to 1 (i.e., the 
scenarios considered in the candidate solution). 

Step 4: Optimal features identification 

To identify the most relevant features to be considered for the SPTHA, we first 
calculate the optimal features matrix �̿�∗ = [𝑄∗ × 9], as the Hadamard product of the 
original dataset �̿� with 𝑈∗ (with (𝑄 − 𝑄∗) null vector rows): 

�̿�∗ = �̿� ∘ 𝑈∗ (24) 

 

�̿�∗ =

⎝

⎜
⎜
⎛

𝑥 , … 𝑥 , Λ 𝜓 ≥ 1𝑚|𝜎 ̅

⋮
𝑥 , ∗

⋮

⋮
⋯
⋮

⋮
𝑥 , ∗

⋮

⋮

Λ 𝜓 ≥ 1𝑚|𝜎 ̅ ∗

⋮
𝑥 , ∗ … 𝑥 , ∗ Λ 𝜓 ≥ 1𝑚|𝜎 ̅ ∗ ⎠

⎟
⎟
⎞

 (25) 

Then, the matrix �̿�∗ is columnwise compared with the original dataset �̿� to assess 
their commonality (i.e., the optimal features subset).  

2.3 Results  
The approach described in 2.2 has been applied to the case study presented in 
Section 2.1. The search for optimal scenarios among the 𝑄 = 721 of the original 
dataset is performed by a MODEA (DE/rand/1/bin strategy, see Appendix A for 
further details), with objective functions 𝑓  and 𝑓  (respectively Eq. (21) and Eq. (22)), 
where 𝑓  is calculated referring to the benchmark value of the annual rate of 
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exceedance Λ(𝜓 ≥ 1𝑚) = 3.3193 ∙ 10 𝑦𝑟  calculated from the full set of 
scenarios. In practice, each candidate solution 𝑈 is a binary string of 𝑄 = 721 bits. 
The population size 𝑁𝑃, the scaling factor 𝐹, the crossover probability 𝐶𝑅 and the 
generation bound 𝑀𝐴𝑋𝐺𝐸𝑁, have been expertly set equal to 20, 0.5, 0.9 and 10000, 
respectively: specifically, 𝑁𝑃 has been set equal to 10 ∙ (#𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠 = 2) = 20 in 
line with [58]; 𝐶𝑅 has been set equal to 0.9 for a fast convergence [58]; 𝐹 has been set 
equal to 0.5 in line with [58], [77]; the stopping criterion 𝑀𝐴𝑋𝐺𝐸𝑁 = 10000 has been 
set following a trial-and-error procedure [74].  

 

Figure 21: Pareto optimal front after MAXGEN iterations 

When the stopping criterion is reached, the Pareto front shown in Figure 21 is 
obtained:  

1. 𝑈∗ yields 𝑄∗ = 38 scenarios with a 𝑆𝐸 = 8.5 𝑦𝑟  and a percentage error 
of 0.085% 

2. 𝑈∗ yields 𝑄∗ = 39 scenarios with a 𝑆𝐸 = 8.1 𝑦𝑟  and a percentage error 
of 0.066% 

3. 𝑈∗ yields 𝑄∗ = 40 scenarios with a 𝑆𝐸 = 8.0 𝑦𝑟  and a percentage error 
of 0.063% 

In this work, the solution 𝑈∗ is preferred because it yields the minimum number of 
𝑄∗ = 38 scenarios (i.e., a 95% reduction with respect to 𝑄) with a reasonably small 
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𝑆𝐸 = 8.5 𝑦𝑒𝑎𝑟𝑠  (i.e., a percentage error of 0.085%) in the estimation of Λ(𝜓 ≥

1𝑚|𝐻 ).  

In Table 11, all the features and 𝑄∗ scenarios selected by the MODEA are listed, 
without discarding low-frequency scenarios [28]. All 𝑄∗ selected scenarios contribute 
to Λ(𝜓 ≥ 1𝑚|𝐻 ) with a relatively large probability of threshold exceedance 

Λ 𝜓 ≥ 1𝑚|𝐻 , 𝜎 ̅ . On the contrary, most of the 𝑄 = 721 seismic scenarios in the 

original dataset have a Λ 𝜓 ≥ 1𝑚, 𝜎 ̅ < 10 , i.e., bring a negligible contribution 

to the estimation of Λ(𝜓 ≥ 1𝑚|𝐻 ) but increase the computational burden. 
Furthermore, regarding the features selected to characterise the 𝑄∗ = 38 scenarios, 
these are reduced with respect to those that characterise the 𝑄 scenarios as shown in 
Table 12 and Figure 21-Figure 29.  

In what follows, a geophysical interpretation of the results obtained is provided. 

 

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝒙𝟕 𝒙𝟖 𝚲 𝝍𝒂 ≥ 𝟏𝒎|𝑯𝟏𝟒, 𝝈𝒙𝒒
 

6.5000 1.00 337.5 50 90 318.95 22.68 0.67 3.98E-17 

6.8012 1.00 157.5 50 90 638.11 34.39 0.95 4.17E-16 

6.8012 1.00 157.5 70 90 638.11 34.39 0.95 2.79E-16 

6.8012 1.00 157.5 90 270 638.11 34.39 0.95 3.28E-16 

6.8012 1.00 157.5 90 90 638.11 34.39 0.95 1.35E-16 

6.8012 1.00 337.5 70 90 638.11 34.39 0.95 4.16E-17 

6.8012 1.00 337.5 50 270 638.11 34.39 0.95 2.12E-17 

6.8012 1.00 337.5 50 90 638.11 34.39 0.95 4.17E-16 

6.8012 1.00 337.5 30 90 638.11 34.39 0.95 4.04E-13 

6.8012 7.56 337.5 50 90 638.11 34.39 0.95 2.95E-16 

6.8012 7.56 337.5 30 90 638.11 34.39 0.95 4.38E-13 

6.8012 14.12 337.5 30 90 638.11 34.39 0.95 8.72E-15 
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7.0737 1.00 22.5 50 90 1194.98 50.10 1.30 2.41E-17 

7.0737 1.00 157.5 50 270 1194.98 50.10 1.30 1.33E-16 

7.0737 1.00 157.5 50 90 1194.98 50.10 1.30 1.50E-15 

7.0737 1.00 157.5 70 90 1194.98 50.10 1.30 1.59E-15 

7.0737 1.00 157.5 90 270 1194.98 50.10 1.30 1.11E-15 

7.0737 1.00 337.5 70 90 1194.98 50.10 1.30 1.64E-16 

7.0737 1.00 337.5 50 270 1194.98 50.10 1.30 4.02E-16 

7.0737 1.00 337.5 50 90 1194.98 50.10 1.30 2.05E-15 

7.0737 1.00 337.5 30 270 1194.98 50.10 1.30 3.26E-17 

7.0737 1.00 337.5 30 90 1194.98 50.10 1.30 9.94E-13 

7.0737 9.43 157.5 70 90 1194.98 50.10 1.30 2.32E-17 

7.0737 9.43 337.5 30 90 1194.98 50.10 1.30 7.13E-13 

7.0737 9.43 337.5 10 90 1194.98 50.10 1.30 4.25E-17 

7.3203 1.00 157.5 50 90 2108.29 70.44 1.73 3.30E-16 

7.3203 1.00 157.5 70 90 2108.29 70.44 1.73 1.05E-16 

7.3203 1.00 157.5 90 270 2108.29 70.44 1.73 1.94E-16 

7.3203 1.00 337.5 30 90 2108.29 70.44 1.73 3.45E-13 

7.3203 11.58 157.5 50 90 2108.29 70.44 1.73 5.44E-17 

7.3203 11.58 337.5 50 90 2108.29 70.44 1.73 7.61E-17 

7.3203 11.58 337.5 30 90 2108.29 70.44 1.73 1.48E-13 

7.5435 1.00 157.5 50 90 3524.55 95.87 2.24 1.96E-16 

7.5435 1.00 157.5 70 90 3524.55 95.87 2.24 7.34E-17 

7.5435 1.00 337.5 50 90 3524.55 95.87 2.24 1.78E-16 

7.5435 1.00 337.5 30 90 3524.55 95.87 2.24 2.51E-13 
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7.7453 1.00 337.5 30 90 5608.92 126.69 2.82 3.83E-15 

Table 11: Features and Λ ψ ≥ 1m|H , σ  of the Q∗ = 38 selected scenarios 

Parameter 𝑥  𝑥  𝑥  𝑥  𝑥  𝑥  𝑥  𝑥  

V
al

ue
s 

6.5000 1.00 22.5 10 90 318.95 22.68 0.67 

6.8012 7.56 157.5 30 270 638.11 34.39 0.95 

7.0737 9.43 337.5 50  1194.98 50.10 1.30 

7.3203 1158  70  2108.29 70.44 1.73 

7.5435 14.12  90  2133.31 95.87 2.24 

7.7453     3524.55 126.69 2.82 

     5608.92   

Table 12: Support values of the selected scenarios 

2.3.1 Magnitude 

The DE search engine has not selected, because negligible (red in Figure 22), those 
scenarios characterised by large magnitudes (𝑥 = 7.7453, 8.0933): in such cases, the 
annual rates are negligible and do not bring any significant contribution to the 
hazard curve estimation (see Eq. (19)), even if a relatively large threshold of 𝜓 = 1𝑚 
at 50m is assumed. 
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Figure 22: Values of the magnitude (green) and non-selected ones (red) in the 
selected scenarios 

2.3.2 Depth 

The DE search engine has identified as relevant mainly those scenarios characterised 
by a depth value of 1𝑘𝑚, along with a few scenarios characterised by depth values of 
7.56𝑘𝑚, 9.43𝑘𝑚, 11.58𝑘𝑚, and 14.12𝑘𝑚 calculated in line with NEAMTHM18 
documentation [60], [61] (green in Figure 23). This result is justified by the 
dependence of the depth on the magnitude: a depth equal to 1𝑘𝑚 is considered for 
all magnitudes whereas larger depths, instead, are modelled for smaller magnitudes 
only, that have been found as important (see Figure 23).  



 43 

 

 

 

Figure 23: Values of the depth (green) and non-selected ones (red) in the selected 
scenarios  

2.3.3 Strike 

The DE search engine has identified as relevant (green in Figure 24) those scenarios 
characterised by strike angle values of 22.5°, 157.5°, 337.5°, i.e., directions 
approximately perpendicular to the source-to-site tsunami propagation path (see 
Figure 18). 

 

Figure 24: Values of the strike (green) and non-selected ones (red) in the selected 
scenarios  
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2.3.4 Dip 

The DE search engine has identified as relevant (green in Figure 25) all dip angles in 
the selected scenarios: thus, dip is not a distinguishing characteristic of the scenarios. 

 

Figure 25: Values of the dip (green) and non-selected ones (red) in the selected 
scenarios  

2.3.5 Rake 

Only scenarios with rake values of 90° and 270° have been selected (green in Figure 
26). This result is expected, as only dip-slip earthquakes can generate a significant 
deformation of the sea bottom, thus generating higher tsunami waves. 
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Figure 26: Values of the rake (green) and non-selected ones (red) in the selected 
scenarios 

2.3.6 Area 

Area values are computed relying on empirical scaling relationships from magnitude 
(e.g. log 𝐴𝑟𝑒𝑎 = 𝐴 + 𝐵 × 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒), using different relationships for dip-slip (𝑥 =

 90°, 270°) and strike-slip (𝑥 =  0°, 180°) earthquakes [73]. Only the scenarios with 
area values of 318.5𝑘𝑚 , 638.11𝑘𝑚 , 1194.98𝑘𝑚 , 2108.29𝑘𝑚 , 3524.55𝑘𝑚 , 
5608.92𝑘𝑚  (green in Figure 27) have been selected, i.e., those scenarios 
corresponding to small magnitude dip-slip earthquakes. In other words, larger area 
values, corresponding to larger magnitudes, have not been coherently selected as 
well as smaller area values, corresponding to smaller magnitudes and strike-slip 
earthquakes. 
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Figure 27: Values of the area (green) and non-selected ones (red) in the selected 
scenarios 

2.3.7 Length 

Length values are computed relying on empirical scaling relationships from 
magnitude (e.g. log 𝐿𝑒𝑛𝑔𝑡ℎ = 𝐴 + 𝐵 × 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒), using different relationships for 
dip-slip (𝑥 =  90°, 270°) and strike-slip (𝑥 =  0°, 180°) earthquakes [73]. Only the 
scenarios with length values of 22.68𝑘𝑚, 34.39𝑘𝑚, 50.10𝑘𝑚, 70.44𝑘𝑚, 95.87𝑘𝑚, 
126.69𝑘𝑚 (green in Figure 28), i.e., those scenarios corresponding to small 
magnitude dip-slip earthquakes. In other words, larger length values, corresponding 
to larger magnitudes, have not been coherently selected as well as smaller length 
values, corresponding to smaller magnitudes and strike-slip earthquakes. 
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Figure 28: Values of the length (green) and non-selected ones (red) in the selected 
scenarios 

2.3.8 Slip 

Slip values are computed relying on empirical scaling relationships from magnitude 
(e.g. 𝑆𝑙𝑖𝑝 ∝ 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝐴𝑟𝑒𝑎⁄ ), using different relationships for dip-slip (𝑥 =

 90°, 270°) and strike-slip (𝑥 =  0°, 180°) earthquakes [73]. Only the scenarios with 
slip values of 0.67, 0.95, 1.30, 1.73, 2.24, 2.82 (green in Figure 29) have been selected, 
i.e., those scenarios corresponding to small magnitude dip-slip earthquakes. In other 
words, larger slip values, corresponding to larger magnitudes, have been coherently 
selected as well as smaller slip values, corresponding to smaller magnitudes and 
strike-slip earthquakes. 
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Figure 29: Values of the slip (green) and non-selected ones (red) in the selected 
scenarios 

As a result of the MODE selection, the analyst may simulate the scenarios 
characterised by:   

- Magnitude 𝑥 ∈ (6.5000, 6.8012, 7.0737, 7.3203, 7.5435, 7.7453) 

- Depth 𝑥 ∈ (1, 7.56, 9.43, 11.58, 14.12);  

- Strike 𝑥 ∈ (22.5, 157.5, 337.5);  

- Dip 𝑥 ∈ (10, 30, 50, 70, 90);  

- Rake 𝑥 ∈ (90, 270);  

- Area 𝑥 ∈ (318.5, 638.11, 1194.98, 2108.29, 3524.55, 5608.92);  

- Length 𝑥 ∈ (22.68, 34.39, 50.10, 70.44, 95.87, 126.69);  

- Slip 𝑥 ∈ (0.67, 0.95, 1.30, 1.73, 2.24, 2.82). 

These results are expected, based on the tsunamigenic capability of earthquakes (see 
[78] and references therein). They depend both on the particular case study analysed 
and on the specific tsunami threshold of 𝜓 ≥ 1𝑚 chosen. Larger tsunami intensities, 
e.g., 𝜓 ≥ 10𝑚, would have involved different (probably larger) magnitudes. On the 
other hand, the results for the Strike, Dip, and Rake angles are probably more 
general, and they are possibly still valid for larger tsunami intensities.
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3. Conclusions 

In this thesis, we have proposed two SA methods to deal with the computational 
issues of the SPTHA related with:  

i) The identification of the model parameters most affecting the PGA;  

ii) The identification of the features of the seismic model worthy to be fed to 
the seismic-induced tsunami simulation code. 

In Chapter 1 “A Bootstrapped Modularised method of Global Sensitivity Analysis for 
Probabilistic Seismic Hazard Assessment”, we have proposed a novel Bootstrapped 
Modularised Sensitivity Analysis (BMGSA) method based on bootstrapping, MGSA 
and ensemble strategies to identify the input parameters which the output of a PSHA 
model is most sensitive to, assuming that only an input-output dataset is given 
whereas the model is not available. The novelty and strength of the proposed 
BMGSA method is that to be applied it only needs data and not the source 
simulation code.  

The capability of the proposed method is tested on a benchmark case study. The 
results have been compared with a standard variance-based GSA method of 
literature, showing that the proposed method and the standard GSA agree on the 
identification of the three by-far most important input variables. Furthermore, the 
BMGSA has proved to be reliable even when applied to very small datasets.  

The application of the developed technique to PSHA demonstrates its capability of 
scoring correctly the importance of existing epistemic uncertainty factor, needing 
only the input and the output data. This allows applying the technique to any hazard 
model in which epistemic uncertainty is to be evaluated. Its systematic application to 
hazard studies to detect the most influential parameters, would allow hazard 
practitioners to both improve the sanity checks during the assessment and to focus 
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future research toward the reduction of epistemic uncertainty by further 
characterisation of the important factors.  

The results of our applications, for example, highlight the importance of small 
magnitudes near to the seismic source areas, showing the importance of the 
definition of the minimum magnitude and the potential impact of the tail of the 
uncertainty distributions on GMPE on seismic hazard evaluation. 

In Chapter 2 “A heuristic feature selection approach for scenario analysis of a 
Regional Seismic Tsunami Hazard Assessment”, a novel approach for reducing the 
number of seismic scenarios to be considered for SPTHA has been presented. The 
approach is a wrapper-based feature selection heuristic approach based on MODEA. 
It selects the relevant features of the seismic scenarios to be simulated.  

The proposed approach has been applied to a case study with reference to the 
estimation of the annual rate of exceedance of a height threshold 𝜓 = 1𝑚 of tsunami 
waves caused by crustal earthquakes that might be generated on the Kefalonia-
Lefkada region in North-western Greece and propagated to a target site 𝑎 on the 
eastern coast of Sicily (Italy).  

The proposed approach is shown to be able to significantly reduce the number of 
features describing the seismic source variability and, thus, the number of scenarios 
to be considered in the analysis without affecting the accuracy of the estimate of the 
annual rate of exceedance. A geophysical interpretation of the results has been 
provided.  

Further research work will be devoted to the comparison of the proposed approach 
to other existing methods that may be applied with similar goals, e.g., a standard 
disaggregation procedure [25], [59], [79]. 
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A. Appendix A 

Differential Evolution (DE) is a parallel direct search method which utilizes 𝑁𝑃 𝐷-
dimensional parameter vectors 𝑥 , , 𝑖 = 1,2, … , 𝑁𝑃 as a population for each generation 
𝐺. 𝑁𝑃 does not change during the minimisation process. The initial vector population 
is chosen randomly and should cover the entire parameter space. DE generates new 
vectors by adding the weighted difference between two population vectors to a third 
vector in an operation called “mutation”. The mutated vector’s parameters are then 
mixed with the elements of another predetermined vector, the target vector, to yield 
the so-called trial vector, in an operation referred to as “crossover”. If the trial vector 
yields a lower cost function value than the target vector, the trial vector replaces the 
target vector in the following generation. This last operation is called selection. Each 
population vector has to serve once as the target vector so that 𝑁𝑃 competitions take 
place in one generation. DE’s basic strategy can be described as follows. 

Mutation 

For each target vector 𝑥 , , 𝑖 = 1,2, … , 𝑁𝑃, a mutant vector is generated according to: 

𝑣 , = 𝑥 , + 𝐹 ∙ 𝑥 , − 𝑥 ,  (A.1) 

with random indexes 𝑟 , 𝑟 , 𝑟 ∈ {1,2, … , 𝑁𝑃}, integer, mutually different and 𝐹 >  0. 
The randomly chosen integers 𝑟 , 𝑟 , 𝑟  are also chosen to be different from the 
running index 𝑖, so that 𝑁𝑃 must be greater or equal to four to allow for this 
condition. 𝐹 is a real and constant factor ∈ [0, 2] which controls the amplification of 
the differential variation 𝑥 , − 𝑥 , .  

Crossover 

In order to increase the diversity of the perturbed parameter vectors, crossover is 
introduced. To this end, the trial vector: 
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𝑢 , = 𝑢 , , 𝑢 , , … , 𝑢 ,  (A.2) 

is formed, where 

𝑢 , =
𝑣 ,

𝑥 ,

𝑖𝑓 (𝑟𝑎𝑛𝑑𝑏(𝑗) ≤ 𝐶𝑅) 𝑜𝑟 𝑗 = 𝑟𝑛𝑏𝑟(𝑖)

𝑖𝑓 (𝑟𝑎𝑛𝑑𝑏(𝑗) > 𝐶𝑅) 𝑎𝑛𝑑 𝑗 ≠ 𝑟𝑛𝑏𝑟(𝑖)
 

𝑗 = 1,2, … , 𝐷 
(A.3) 

In (A.3), 𝑟𝑎𝑛𝑑𝑏(𝑗) is the 𝑗-th evaluation of a uniform random number generator with 
outcome ∈ [0;  1]. 𝐶𝑅 is the crossover constant ∈ [0;  1] and has to be determined by 
the user. 𝑟𝑛𝑏𝑟(𝑖) is a randomly chosen index ∈ 1, 2, … , 𝐷 which ensures that 𝑢 ,  
gets at least one parameter from 𝑣 , .  

Selection 

To decide whether or not it should become a member of generation 𝐺 + 1, the trial 
vector 𝑢 ,  is compared to the target vector 𝑥 ,  using the greedy criterion. If vector 
𝑢 ,  yields a smaller cost function value than 𝑥 , , then 𝑥 ,  is set to 𝑢 , ; 
otherwise, the old value 𝑥 ,  is retained. 

The above scheme is not the only variant of DE which has proven to be useful. In 
order to classify the different variants, the notation: DE/x/y/z is introduced where: x 
specifies the vector to be mutated which currently can be “rand” (a randomly chosen 
population vector) or “best” (the vector of lowest cost from the current population); y 
is the number of difference vectors used; z denotes the crossover scheme. The current 
variant is “bin” (Crossover due to independent binomial experiments). Using this 
notation, the basic DE-strategy described can be written as DE/rand/1/bin. 

This whole section is extracted from [58]. 
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