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Abstract

In the last decades, considerable progress has been made in the field of miniaturization:
it is now possible to miniaturize all kinds of systems (e.g., mechanical, fluidic, thermal)
down to submicrometric sizes. These achievements gave rise to a new kind of technology,
known as MEMS (micro-electro-mechanical systems), employed in a wide variety of ap-
plications. The challenge has now become that of integrating, into a simple micro-sized
system, operations that commonly solicit a whole laboratory. Such microfluidic devices
exploit the physical and chemical properties of gases at the microscale, offering several
benefits over conventionally sized systems. Since usually the characteristic length of
such devices, operating in gaseous environments, is comparable with (or smaller than)
the mean free path of the gas molecules, the gas cannot be treated as a continuous
medium and the kinetic theory of rarefied gas flows must be applied. In particular, the
Boltzmann equation is the fundamental equation for the dynamics of dilute gases. In
such flow conditions, other phenomena, not foreseen by the classical fluid dynamics,
appear. An example is the thermal creep flow. This physical process can be used to
design a Knudsen pump, a particular thermally driven micropump with no moving
parts.
The aim of this thesis is to study the thermomolecular pressure difference (TPD) ex-
ponent, a physical quantity correlated to the thermal creep and the performance of a
Knudsen pump. This analysis will be done in two parts.
In the first part, we consider an analytical expression of the TPD exponent for a sin-
gle monatomic gas in a planar channel and we exploit this expression to assess, via
experimental data, suitable values of the accommodation coefficients of the Cercignani-
Lampis model for boundary conditions. From the practical point of view, five noble
gases are considered.
In the second part, we address the problem of giving an appropriate definition of the
TPD exponent for a binary gaseous mixture, a rather unexplored issue by now, and we
consider the case of such mixture in a planar channel, trying to validate the suitability
of this definition via comparison with numerical results.
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Sommario

Negli ultimi decenni, enormi progressi sono stati fatti nel campo della miniaturizza-
zione: è ora possibile miniaturizzare ogni tipo di sistema (per esempio, meccanico,
fluidodinamico, termico) a scala micrometrica. Ciò ha dato vita a un nuovo tipo di tec-
nologia, noto come MEMS, impiegato in una grande varietà di applicazioni. L’obiettivo
è ora quello di integrare, in un semplice microdispositivo, operazioni che comunemente
richiederebbero un intero laboratorio. Tali sistemi sfruttano le proprietà fisiche e chi-
miche di liquidi e gas alla microscala, offrendo numerosi vantaggi rispetto ai sistemi
di dimensioni convenzionali. Poiché solitamente la lunghezza caratteristica di tali di-
spositivi, operanti in ambienti gassosi, è paragonabile al (o più piccola del) cammino
libero medio delle molecole di gas, il gas non può essere trattato come un mezzo con-
tinuo e si deve applicare la teoria cinetica dei gas rarefatti. In particolare, l’equazione
di Boltzmann è l’equazione fondamentale della dinamica di tali gas. In tali condizioni
compaiono altri fenomeni, non previsti dalla classica fluidodinamica. Un esempio è il
thermal creep. Questo fenomeno fisico può essere utilizzato per progettare una pompa
di Knudsen, un particolare tipo di micropompa termicamente guidata e senza parti
mobili.
Lo scopo di questa tesi è quello di studiare il TPD exponent, una quantità fisica cor-
relata al fenomeno del thermal creep e alla performance di una pompa di Knudsen.
Questa analisi verrà condotta in due parti.
Nella prima parte, consideriamo un’espressione analitica del TPD exponent per un gas
monoatomico tra due piastre parallele, utilizzando tale espressione per determinare,
attraverso dati sperimentali, valori appropriati dei coefficienti di accomodamento del
modello di condizioni al bordo di Cercignani-Lampis. A questo scopo, consideriamo
cinque gas nobili.
Nella seconda parte, affrontiamo il problema di dare una corretta definizione del TPD
exponent per una miscela binaria di gas, un problema ancora piuttosto inesplorato, e
consideriamo il caso di tale miscela tra due piastre parallele, per provare ad avvalorare
la correttezza di tale definizione tramite un confronto con dati numerici.

III





Contents

Abstract I

Sommario III

List of Figures VII

List of Tables IX

List of Abbreviations XI

1. Introduction 1
1.1. Kinetic theory, MEMS and Microfluidics . . . . . . . . . . . . . . . . . . 1

1.1.1. About Microfluidics . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2. More about MEMS . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3. Micropumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2. The problem under study . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3. Structure and aim of the thesis . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1. Original contributions . . . . . . . . . . . . . . . . . . . . . . . . 8

2. Background 11
2.1. Elements of Kinetic Theory of Gases and the Boltzmann equation . . . 11

2.1.1. The Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2. Macroscopic quantities . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3. Equilibrium states . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4. Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.5. Model equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2. Gaseous mixtures theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1. General description . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2. Kinetic modeling of gas mixtures . . . . . . . . . . . . . . . . . . 16

2.3. The Knudsen pump and the TPD exponent . . . . . . . . . . . . . . . . 19
2.3.1. The Knudsen number . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2. The thermal creep . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3. The Knudsen pump . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4. Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3. TPD exponent for a single gas 35
3.1. Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2. Reference value of the TPD exponent . . . . . . . . . . . . . . . . . . . 37

3.2.1. Preliminary considerations . . . . . . . . . . . . . . . . . . . . . 39
3.2.2. Analytical behaviour of the reference expression . . . . . . . . . 42

3.3. Series expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.1. Order 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

V



3.3.2. Higher orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4. Comparison with numerical results: reliability of the variational approach 56

3.4.1. Reference values . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.2. Truncation at order 2 . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.3. Truncation at higher orders . . . . . . . . . . . . . . . . . . . . . 59
3.4.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5. Presentation of the experimental results . . . . . . . . . . . . . . . . . . 65
3.5.1. Experimental method . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6. Assessment of the accommodation coefficients . . . . . . . . . . . . . . . 74
3.6.1. Assessment of the accommodation coefficients from the thermal

slip coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.6.2. Assessment of the accommodation coefficients from the TPD ex-

ponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.6.3. Comparison of the two assessment procedures . . . . . . . . . . . 88

4. Binary gas mixtures: thermal creep and thermomolecular pressure
difference 89
4.1. General considerations about gaseous mixtures . . . . . . . . . . . . . . 89

4.1.1. TPD effect and TPD exponent . . . . . . . . . . . . . . . . . . . 89
4.2. The thermal creep problem for a binary mixture . . . . . . . . . . . . . 90

4.2.1. Projection procedure for the thermal creep problem . . . . . . . 93
4.3. The coupled Poiseuille and thermal creep problems . . . . . . . . . . . . 95

4.3.1. Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.2. Definition of the TPD exponent in the case of a binary gas mixture 97

4.4. Numerical behaviour of the TPD exponent . . . . . . . . . . . . . . . . 98
4.4.1. Effect of the intermolecular potential . . . . . . . . . . . . . . . . 99
4.4.2. “Single-gas” and “global” definitions . . . . . . . . . . . . . . . . 101
4.4.3. Effect of the collision model . . . . . . . . . . . . . . . . . . . . . 104

5. Conclusions and future research 107
5.1. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1.1. Single gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1.2. Gaseous mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2. Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2.1. Single gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2.2. Gaseous mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

References 111

A. Chapman-Cowling integrals 117
A.1. Maxwell molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.2. Hard-sphere molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.3. (6-12) Lennard-Jones model . . . . . . . . . . . . . . . . . . . . . . . . . 118



List of Figures

1.1. IBM: acting at the microscale . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1. Flow setting in thermal transpiration flow . . . . . . . . . . . . . . . . . 23
2.2. Thermal creep flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3. Gas at rest with a temperature gradient . . . . . . . . . . . . . . . . . . 24
2.4. Thermal creep mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6. Thermal creep and back pressure flow . . . . . . . . . . . . . . . . . . . 27
2.5. Temperature and pressure gradients . . . . . . . . . . . . . . . . . . . . 27
2.7. KP on a MEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.8. Thermal transpiration through a channel . . . . . . . . . . . . . . . . . 29
2.9. Early thermal creep flow KP . . . . . . . . . . . . . . . . . . . . . . . . 29
2.10. Cascaded KP with periodic temperature . . . . . . . . . . . . . . . . . . 30
2.11. A “useless” cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.12. Illustrative i-th stage of a cascaded KP . . . . . . . . . . . . . . . . . . 31
2.13. Two-stage KP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.14. Some more involved KP designs . . . . . . . . . . . . . . . . . . . . . . . 33
2.15. Scheme of a Knudsen pump . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1. γ = γ(αt, αn) locally increasing . . . . . . . . . . . . . . . . . . . . . . . 43
3.2. γ = γ(αt, αn) uniformly decreasing . . . . . . . . . . . . . . . . . . . . . 43
3.3. γ = γ(αt, αn) locally negative . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4. γ = γ(δ) for αn fixed and different increasing αt . . . . . . . . . . . . . . 44
3.5. γ = γ(δ) for large αn fixed and different increasing αt . . . . . . . . . . 44
3.6. γ = γ(δ) for αt fixed and different increasing αn . . . . . . . . . . . . . . 45
3.7. γ = γ(αn) for δ and αt < 1 fixed . . . . . . . . . . . . . . . . . . . . . . 45
3.8. γ = γ(αn) for δ and αt > 1 fixed . . . . . . . . . . . . . . . . . . . . . . 46
3.9. % variation of γ = γ(αn) . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.10. γ = γ(αt) for δ small and intermediate and αn < 0.75 fixed . . . . . . . 48
3.11. γ = γ(αt) for δ big and αn < 0.75 fixed. . . . . . . . . . . . . . . . . . . 48
3.12. γ = γ(αt) for δ small and intermediate and αn = 1. . . . . . . . . . . . . 49
3.13. γ = γ(αt) for δ big and αn = 1 . . . . . . . . . . . . . . . . . . . . . . . 49
3.14. γ(2) = γ(2)(αt, αn) for different fixed δ . . . . . . . . . . . . . . . . . . . 51
3.15. Comparison between γ and γ(2) for quite large δ . . . . . . . . . . . . . 51
3.16. Comparison between γ and γ(2) for large δ . . . . . . . . . . . . . . . . . 51
3.17. γ(2) = γ(2)(δ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.18. γ(2) = γ(2)(δ) for αt fixed and different αn . . . . . . . . . . . . . . . . . 53
3.19. γ(2) for the fixed AC strictly smaller than 1 . . . . . . . . . . . . . . . . 54
3.20. γ(2) for the fixed AC strictly bigger than 1 . . . . . . . . . . . . . . . . . 55
3.21. GP , QP and γ in the Poiseuille flow between two parallel plates . . . . . 57
3.22. Experimental setup for measurement of the TPD exponent in the single-

gas case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

VII



3.23. Experimental TPD exponent for He . . . . . . . . . . . . . . . . . . . . 70
3.24. Experimental TPD exponent for Ne . . . . . . . . . . . . . . . . . . . . 70
3.25. Experimental TPD exponent for N2 . . . . . . . . . . . . . . . . . . . . 71
3.26. Experimental TPD exponent for Ar . . . . . . . . . . . . . . . . . . . . 71
3.27. Experimental TPD exponent for Kr . . . . . . . . . . . . . . . . . . . . 71
3.28. Experimental TPD exponent for Xe . . . . . . . . . . . . . . . . . . . . 72
3.29. Experimental TPD exponent for each gas and both series . . . . . . . . 73
3.30. Experimental TPD exponent for each series for all gases . . . . . . . . . 74
3.31. Experimental TPD exponent: comparison between light gases . . . . . . 74
3.32. Experimental TPD exponent: comparison between heavy gases . . . . . 75
3.33. Error in fitting TSCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.34. He and Ne: validation of ACs from TSCs . . . . . . . . . . . . . . . . . 79
3.35. Ar and Kr: validation of ACs from TSCs . . . . . . . . . . . . . . . . . . 79
3.36. Xe: validation of ACs from TSCs . . . . . . . . . . . . . . . . . . . . . . 79
3.37. Optimal TPD exponent fitting for He . . . . . . . . . . . . . . . . . . . 82
3.38. Optimal TPD exponent fitting for Ne . . . . . . . . . . . . . . . . . . . 83
3.39. Optimal TPD exponent fitting for N2 . . . . . . . . . . . . . . . . . . . 84
3.40. Optimal TPD exponent fitting for Ar . . . . . . . . . . . . . . . . . . . 84
3.41. Optimal TPD exponent fitting for Kr . . . . . . . . . . . . . . . . . . . 85
3.42. Optimal TPD exponent fitting for Xe . . . . . . . . . . . . . . . . . . . 86

4.1. Ne-Ar mixture: TPD exponent via kinetic coefficients . . . . . . . . . . 99
4.2. Ne-Ar mixture: TPD exponent via kinetic coefficients . . . . . . . . . . 100
4.3. He-Xe mixture: TPD exponent via kinetic coefficients . . . . . . . . . . 100
4.4. He-Xe mixture: TPD exponent via kinetic coefficients . . . . . . . . . . 101
4.5. Ne-Ar mixture: TPD exponent via species-specific fluxes . . . . . . . . . 102
4.6. Ne-Ar mixture: TPD exponent via species-specific fluxes . . . . . . . . . 102
4.7. Ne-Ar mixture: TPD exponent via species-specific fluxes . . . . . . . . . 102
4.8. He-Xe mixture: TPD exponent via species-specific fluxes . . . . . . . . . 103
4.9. He-Xe mixture: TPD exponent via species-specific fluxes . . . . . . . . . 103
4.10. He-Xe mixture: TPD exponent via species-specific fluxes . . . . . . . . . 104
4.11. Ne-Ar mixture: TPD exponent via species-specific fluxes . . . . . . . . . 105
4.12. He-Xe mixture: TPD exponent via species-specific fluxes . . . . . . . . . 106



List of Tables

3.1. Accurate numerical results for γ via LBE . . . . . . . . . . . . . . . . . 58
3.2. Comparison between reference γ and numerical results . . . . . . . . . . 60
3.3. γ(2) and numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4. γ(3) and numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5. γ(4) and numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6. γ(5) and numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.7. Gas molecular masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.8. Experimental values of the thermal slip coefficients . . . . . . . . . . . . 75
3.9. ACs from TSCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.10. ACs from TSCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.11. ACs assessed from TSCs . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.12. ACs assessed from TPD exponent . . . . . . . . . . . . . . . . . . . . . . 86
3.13. First-order TSCs: validation of ACs from γ . . . . . . . . . . . . . . . . 87
3.14. Second-order TSCs: validation of ACs from γ . . . . . . . . . . . . . . . 87
3.15. ACs assessed from both procedures . . . . . . . . . . . . . . . . . . . . . 88

IX





List of Abbreviations

TPD Thermomolecular Pressure Difference

KP Knudsen Pump

MEMS Micro-Electro-Mechanical System

NEMS Nano-Electro-Mechanical System

BE Boltzmann Equation

LBE Linearized Boltzmann Equation

HS Hard Sphere

LJ Lennard-Jones

BGK Bhatnagar-Gross-Krook

CL Cercignani-Lampis

AC Accommodation Coefficient

TSC Thermal Slip Coefficient

XI





1. Introduction

1.1. Kinetic theory, MEMS and Microfluidics

In the last decades, considerable progress has been made in the field of miniaturiza-
tion: it is now effectively possible to miniaturize all kinds of systems (e.g., mechanical,
fluidic, electromechanical, thermal) down to submicrometric sizes.
In the 1980s, these achievements gave rise to a new kind of technology, known as
MEMS (micro-electro-mechanical systems). This nomenclature generally refers
to devices that have a characteristic length of less than 1 mm but more than 1 µm,
that combine electrical and mechanical components and that are fabricated using inte-
grated circuit batch-processing technologies. Later, in the 1990s, this domain became
considerably diversified, with MEMS devices being fabricated for chemical, biological,
and biomedical applications. Electrostatic, magnetic, electromagnetic, pneumatic and
thermal actuators, motors, valves, gears, cantilevers, diaphragms and tweezers less than
100 µm in size have been fabricated. These have been used as sensors for pressure, tem-
perature, mass flow, velocity, sound and chemical composition; as actuators for linear
and angular motions; and as simple components for complex systems such as robots,
micro-heat-engines and micro-heat-pumps, mass spectrometers, gas chromatographs,
optical spectrometers, electron beam optics, and on-demand gas generators.
In this wide variety of applications, encountered in our everyday life, gas flows are very
important. For example, gas sensors, chemical reactors, and electron optical systems
usually require a vacuum pump to draw in a gas sample or to evacuate an air space.
The development of such devices has opened up an entirely new field of research where
the behaviour of flows far from equilibrium conditions is very important. In some cases,
the equations of mass, momentum and energy equilibrium, combined by the Newton-
Fourier-Fick constitutive equations, describe their behaviour very well and have been
actually applied successfully for many years. However, this formulation is subject to cer-
tain limitations due to the underlying assumption that the gas must be considered as a
continuum medium. Even though this is a reasonable assumption for many cases, there
are situations where this hypothesis fails. This happens, for example, when the mean
free path between intermolecular collisions may become comparable to a characteristic
length, due to conditions of low pressure or if the gas is confined in a region of very
small dimensions: in such cases the continuum medium assumption collapses. Beyond a
certain limit, it is not possible to investigate such phenomena accurately without taking
into account the molecular nature of the gas. In this case, we may say that the gas is
in a rarefied state, for which the departure from the thermodynamic equilibrium leads
to a failure of the macroscopic equations. To deal with these cases, several approaches
are used depending on the application under study. Concepts derived from statistical
mechanics and kinetic theory of gases need to be involved.

Statistical mechanics may be naturally divided into two branches, one dealing



1. Introduction

with equilibrium systems, the other with non-equilibrium systems. Nonequilibrium phe-
nomena are much less understood at the present time, but a notable exception is offered
by the case of dilute gases, studied in the framework of the kinetic theory of gases.
Here a basic equation was established by Ludwig Boltzmann in 1872.
The so-called Boltzmann equation appears as a prototype of a reduced description
taking into account only partial information about the underlying microscopic state
(fully described by the coordinates and momenta of all the molecules), but nevertheless
undergoing an autonomous time evolution. This equation, used to describe transport
phenomena in the framework of kinetic theory, concerns the distribution function of
particles, a 7-dimensional probability density distribution of molecules in the physical
space, molecular velocity space and time. The Botzmann equation is quite complex and
can be solved analytically only for very specific situations, a fact that often leads to
the pursuit of numerical solutions, since the experimental investigation is, usually, very
costly. However, the solution of this equation is widely used today and leads to a good
approach for a large number of problems with satisfactory results.

As an important example of exploitation of this method, it allowed scholars to study
fluid flows operating under unusual and unexplored conditions, peculiar feature of
MEMS devices, which naturally led to the need for the creation of a new discipline:
microfluidics, which can be defined as “the study of flows that are simple or complex,
mono- or multiphasic, which are circulating in artificial microsystems”1. This engineer-
ing development allowed the implementation of a whole new kind of experiments.

1.1.1. About Microfluidics

In the early 1990s, microchannel flow experiments revealed intriguing results for both
liquids and gases that sparked excitement and new interest in the study of low Reynolds
number flows at microscales. Another influential development at about the same time
was the fabrication of the first microchannel with integrated pressure sensors. Indeed,
while the experimental results indicated global deviations of microflows from canoni-
cal flows, pointwise measurements for gas flows with pressure sensors, and later with
temperature sensors, revealed a new flow behavior at microscales not captured by the
familiar continuum theory.
In microgeometries the flow is granular for liquids and rarefied for gases, and the walls
“move”. In addition, other phenomena such as thermal creep, electrokinetics, viscous
heating, anomalous diffusion, and even quantum and chemical effects may become sig-
nificant. Most important, the material of the wall and the quality of its surface play a
very important role in the momentum and energy exchange between the flowing fluid
and its solid container.
One could argue that at least for gases the situation is similar to low-pressure high-
altitude aeronautical flows, which were studied extensively more than 50 years ago.
Indeed, there is a similarity in a certain regime of rarefaction. However, most gas mi-
croflows correspond to a low Reynolds number and low Mach number, in contrast to
their aeronautical counterparts. Moreover, the typical microgeometries are of very large
aspect ratio, and this poses more challenges for numerical modeling, but also creates

1P. Tabeling. Introduction to Microfluidics. Oxford University Press, 2005.
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opportunities for obtaining semianalytical results 2.
The main differences between fluid mechanics at microscales and in the macrodomain
can be broadly classified into four areas:

• non-continuum effects;

• surface-dominated effects;

• low Reynolds number effects;

• multiscale and multiphysics effects.

For gas microflows, compressibility effects are very important because of relatively
large density gradients, although the Mach number is typically low. Depending on the
degree of rarefaction, corrections at the boundary or everywhere in the domain need to
be incorporated. Increased rarefaction effects may make the constitutive models for the
stress tensor and the heat flux vectors in the Navier-Stokes equations invalid. This is
the main reason why the Boltzmann equation and the whole construction of the kinetic
theory play a fundamental role: they are the main tool for the study of these problems,
because they are valid where the continuum model fails.

1.1.2. More about MEMS

Miniaturization and MEMS gave birth to microfluidics in the 1990s and today still con-
stitute a large portion of this relatively new discipline. MEMS are electro-mechanical
systems whose total size varies between 1 and 300 µm. Although these numbers are
rough limits (there are actually MEMS of submicrometer size and MEMS larger than
300 µm), the majority of MEMS devices fabricated today have typical dimensions of
this order, and actually “acting” at a micrometric scale, rather than just “observing”
(for which it is sufficient an optical microscope, invented centuries ago), is precisely
what MEMS technology allows us to do.
However, the industrial success of MEMS is not solely due to the improvement in sensor
response and sensitivity, but also due to the ability to integrate detection, information
analysis, and signal processing all on one single chip. Just as with integrated circuits,
this chip can, in principle, be easily reproduced by the millions. As an example: the
cost, which is so critical in the field of automobile manufacturing, becomes very advan-
tageous as compared to traditional systems, and for this reason all modern automobiles
now use MEMS for their airbags. Today, the volume of MEMS activity is estimated to
be worth between several billion and several tens of billions of dollars. In the United
States, there was on average 2-5 MEMS per person in the 2000s. Today, there are nu-
merous industries involved in MEMS: both new industries, appeared in just the last
few years, as well as more traditional ones that use MEMS in a significant way in their
sector of activity, or that profit from developing novel ventures by taking advantage of
the potential of this young technology (see [1] for more details).

2This happens because a large disproportion between the dimensions of a computational domain
may cause problems in the numerical computation, but also simplify some analytical procedures
(think about a rectangular channel with width much larger than height: hence, the channel can be
approximated with a planar channel, with a much simpler analytical treatment).
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1. Introduction

(a) The word ‘IBM’ spelled with 35 Xenon atoms ar-
ranged individually with a STM (from [3]).

(b) A frame of A Boy And His Atom: The World’s
Smallest Movie.

Figure 1.1.: “Observing” and “acting” at the microscale... yes, they are atoms! (Courtesy of IBM.)

The history of the field of MEMS is an interesting one. The year 1959 is often consid-
ered to be the beginning of the history of micro- and nano-technologies. In December of
that year a visionary speech was given by Richard P. Feynman during the APS (Amer-
ican Physical Society) meeting at Caltech. This speech was entitled There is plenty of
room at the bottom, whose beginning went as follows:

I would like to describe a field, in which little has been done, but in which an enormous
amount can be done in principle. This field is not quite the same as the others in that it will
not tell us much of fundamental physics (in the sense of, “What are the strange particles?”)
but it is more like solid-state physics in the sense that it might tell us much of great interest
about the strange phenomena that occur in complex situations. Furthermore, a point that
is most important is that it would have an enormous number of technical applications.
[2]

These suggestions did not remain just a part of a fantasy world. In 1989, at IBM’s Al-
maden lab, Don Eigler and Erhard Schweizer sprayed a nickel substrate with vaporized
Xenon, and by bringing the probe tip of their scanning tunnelling microscope (STM)
close to the sample, they precisely placed 35 of these atoms to spell the word ‘IBM’,
which was just a few nanometers long at the end ([3]). Later, in 2013, in the same
lab and with the same technique, IBM Research released A Boy And His Atom: The
World’s Smallest Movie, a stop-motion animated short film composed by 242 frames of
few hundreds of carbon monoxide molecules each, manipulated into place on a copper
substrate with a copper needle, each frame measuring 45 by 25 nanometres (the video
is freely available at [4] and [5]).
The first MEMS devices were created a decade after Feynman’s speech, and the in-
vention of new microsystems has been the center of activities of laboratories involved
in MEMS in the 1990s. Today, a sort of maturation in the domain of MEMS prevails,
resulting in less time being spent on creating new systems and more time being spent
on investigating concrete applications.

It is now clear that the relation which occurs between MEMS and microfluidics is
almost symbiotic: MEMS are the only way to study micro-flows from an experimental
point of view, and in turn theoretical microfluidics, thanks to these experimental data,
can be developed to improve the design and performance of MEMS themselves.
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1.1.3. Micropumps

Micromachined pumps have many potential uses: they may be used to create a high
pressure (compressors), create a low pressure (vacuum pumps), or transport gases with
no substantial change in pressure. Potential applications for these devices include driv-
ing gases for gas chromatography, spectroscopy, and µ-plasmas; pneumatic pumping
of liquids for spectroscopy; or to maintain vacuum on-chip without requiring hermetic
packaging for vacuum encapsulated applications.

From biology and medicine to space exploration and microelectronics cooling, fluid
volumes on the order of a milliliter and below figure prominently in an increasing num-
ber of engineering systems. The small fluid volumes in these systems are often pumped,
controlled or otherwise manipulated during operation. For example, biological samples
must be moved through the components of miniature assay systems, and coolant must
be forced through micro heat exchangers. Microfluidic transport requirements such as
these can sometimes be met by taking advantage of passive mechanisms, most notably
surface tension. For other applications, macroscale pumps, pressure/vacuum chambers
and valves provide adequate microfluidic transport capabilities. Yet for many microflu-
idic systems, a self-contained, active pump, the package size of which is comparable
to the volume of fluid to be pumped, is necessary or highly desirable. Nonetheless, the
pumps available during the late 1990s were greatly oversized for the tiny flows needed
for the above mentioned MEMS devices. Moreover, in terms of size, weight, cost, and
power consumption, pumps remain the single largest component. Let us consider briefly
a few applications to gain insight into design parameters relevant to micropumps.

Dispensing therapeutic agents into the body has long been a goal of micropump de-
signers. Among the first micropumps, those developed by Jan Smits in the early 1980s
were intended for use in controlled insulin delivery systems for maintaining diabetics’
blood sugar levels without frequent needle injections. Micropumps might also be used
to dispense engineered macromolecules into tumors or the bloodstream. High volumet-
ric flow rates are not likely to be required of implanted micropumps (the amount of
insulin required by a diabetic per day, for example, is less than a milliliter) but precise
metering is of great importance. The pressure generation requirements for implantable
micropumps are not insignificant, as the back pressure encountered in vivo can be as
high as 25 kPa. Reliability, power consumption, cost and biocompatibility are critical.
To date, deficiencies in these areas have precluded widespread implantantion of mi-
cropumps. For example, currently available implanted insulin delivery systems employ
static pressure reservoirs metered by solenoid-driven valves and are over 50 cm3 in size.

A number of researchers have sought to develop micropumps for use in single- or two-
phase cooling of microelectronic devices. Microelectronics cooling is highly demanding
with respect to flow rate. For instance, Tuckerman and Pease’s seminal paper on liquid-
phase chip cooling contemplated flow rates of several hundred milliliters per minute.
Recent studies indicate that two-phase convective cooling of a 100 W microchip will re-
quire flowrates of order 10 ml min−1 or more. The fundamental scaling associated with
pressure-driven flow dictates that high pressures (100 kPa or greater) will be required
to force such high flow rates through microchannels and/or jet structures found in mi-
cro heat sinks. In the laminar regime, an order-of-magnitude decrease in the hydraulic
diameter of a channel (the channel cross-sectional area multiplied by four and divided
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by its perimeter) increases by two orders of magnitude the pressure difference required
to maintain a constant average flow velocity. Cost and power consumption are also im-
portant considerations, the latter especially for mobile units. Micropumps might also
be built directly into integrated circuits to cool transient hot spots, and so fabrication
methods and temporal response characteristics may be particularly important. Insen-
sitivity to gas bubbles is also important as bubbles are present in and detrimental to
many microfluidic systems.

Much attention has been focused recently on miniature systems for chemical and
biological analysis. Miniaturization of chemical assays systems can reduce the quanti-
ties of sample and reagents required, often allows assays to be performed more quickly
and with less manual intervention and also enables portability. Miniaturization some-
times offers the further advantage of enabling use of inexpensive disposable substrates.
Although fluids (typically liquids) must typically be introduced into, and transported
within, these micro total analysis systems (µTAS) during operation, micropumps are
found in very few current-generation systems. Liquid transport is instead often accom-
plished through manual pipetting, with external pneumatic sources, or by inducing
electro-osmotic flow. The limited use of micropumps in µTAS may be partly due to the
lack of available micropumps with the necessary combination of cost and performance.
Compatibility with the range of fluid volumes of interest will be necessary if micropumps
are to become more widely used in µTAS. Monitoring single cells may require manipula-
tion of fluid volumes on the order of 1 pl. Microchip-based systems used in drug discov-
ery amplify DNA, separate species through capillary electrophoresis, and/or interface
with mass spectrometers with sample volumes ranging from hundreds of picoliters to
hundreds of microliters. Patient pain considerations have prompted manufacturers of
in vitro blood glucose monitors for diabetics to minimize sample size requirements; cur-
rent systems need a sample volume of only one-third of a microliter. Detecting microbes
in human body liquids often requires somewhat larger sample volumes; for example,
a common immunoassay-based blood test for malaria uses a sample volume of 10 µl.
Other parameters important for µTAS include working fluid properties such as pH, vis-
cosity, visco-elasticity and temperature, as well as the presence of particles (e.g., cells or
dust) which may disrupt operation of pumps and valves. Secondary effects associated
with reliability and corrosion include the impact of mechanically shearing the sample,
chemical reactions, adsorption of analytes and wear of moving parts.

Space exploration is another exciting area for micropump technologies. Miniature
roughing pumps are needed for use in mass spectrometer systems to be transported
on lightweight spacecrafts. Such a pump would likely be required to achieve a vac-
uum of approximately 0.1 Pa, the level at which high vacuum pumps typically become
effective. Miniature roughing pumps have been sought for other applications as well.
Micropropulsion is another potential application of micropumps in space. For example,
ion-based propulsion systems proposed for future 1-5 kg “microspacecraft” may require
delivery of compressed gases at 1 ml min−1 flow rates.

Inspired by this wide range of applications, several archival journal papers reporting
new micropumps or analyzing micropumps operation have been published since Smits’
micropump was first developed in the 1980s.
From now on, let us focus on gas pumps, and specifically vacuum pumps (or com-
pressors).
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Vacuum pumps may be divided into two broad classes: entrapment pumps and gas
transfer pumps. Examples of entrapment pumps include adsorption, getter, and cryop-
umps. Gas transfer pumps may be divided into two further classifications: those using
positive displacement to achieve compression, and those using kinetic forces to com-
press. Common displacement pumps are piston, diaphragm, rotary vane, roots, and
gear pumps, all of which have moving parts. Kinetic pumps include those with mov-
ing parts such as turbine and drag pumps, and those without moving parts such as
diffusion, jet/ejector, and ion pumps, a characteristic the latter group shares with the
entrapment pumps. To the category of kinetic pumps with no moving parts belong the
thermal molecular (or thermally driven) pumps, such as thermal transpiration
and accommodation pumps, which are particularly suited to miniaturization and fab-
rication by integrated circuit lithographic techniques.
Displacement pumps have potential mechanical reliability concerns (e.g., stiction, wear-
and-tear of the moving parts, etc.) as well as problems related to particulate generation,
friction power losses, leakage at sliding or rotating shaft feedthrough seals, acoustic
noise, and pulsating flows. Conversely, thermally driven micropumps with no moving
parts, such as the Knudsen pump, have high reliability and uses a low operating
voltage. Moreover, the absence of moving parts allows a simple fabrication process.

In thermal molecular pumps, pumping energy is supplied by temperature changes
alone. As we shall see in detail, a general feature of such pumps is that the upper pres-
sure limit is reached when the mean free path becomes small relative to the physical
dimensions of the pump in the region of the temperature transition. Thus, the upper
pressure limits of these pumps have been determined by the microfabrication limits
of the day; they have operated at relatively low pressures, with low throughputs, and
have not become main line pumps. In recent years, however, MEMS has introduced a
whole new level of miniaturization to devices in general, including vacuum devices, and
hence has raised the upper pressure limits, and thus the throughputs of thermal mole-
cular pumps to atmospheric levels. The general pumping phenomenon has had various
names: Knudsen compressor; thermal transpiration; thermal creep; thermodynamic,
thermolecular, thermal molecular, and accommodation pumping. In this work, we shall
consider this kind of pumps.

To deepen the study of the basic and guide concepts of statistical mechanics of non-
equilibrium, the great book by Cercignani, [6], is highly recommended.
The informations and details reported here about the birth of MEMS and microfluidics
have been taken from [1, 7].
For the section on micropumps, we relied on [8, 9, 10, 11].
It has also been useful the reading of the basic but rather complete and effective intro-
duction of [12].

1.2. The problem under study

Now that the interest in microfluidics, MEMS and micropumps has been fully justified,
we shall present the main topic of this thesis.

We will deal with the study of the thermomolecular pressure difference (or
TPD) exponent, also denoted by γ: it is a physical quantity correlated, from a prac-
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tical point of view, to the analysis of the performance of a Knudsen pump. We shall
give a description of the functioning of the Knudsen pump as well as the definition of
the TPD exponent later on.

We will study the TPD exponent in two different situations:

• first, we will consider a single gas between two infinite parallel plates and in the
slip and transition regime;

• then, a binary gaseous mixture will be studied, likewise entrapped in a planar
channel but for arbitrary rarefaction regime.

The Boltzmann equation will be exploited. Further mathematical and physical details,
such as the kinetic models, the boundary conditions and the intermolecular interaction
employed, will be specified in the dedicated chapters.

1.3. Structure and aim of the thesis

The thesis is structured as follows.
In Chapter 2 we provide the theoretical framework in which we will deal with our

problem, in order to give a common notation and an overview of the most important
concepts and techniques in the field of kinetic theory of gases. Also, the functioning
mechanism of the Knudsen pump is presented, along with its connection with the TPD
exponent γ.

In Chapter 3 we study in detail the TPD exponent in the case of a single gas. In
particular, we present an analytical expression, valid in a particular rarefaction regime,
whose numerical behaviour is widely explored, we verify its reliability comparing it with
other accurate numerical results, and finally we use it to reproduce some experimental
data.

In Chapter 4 we deal with the thermal creep problem for a binary gas mixture
with a particular kinetic model, the McCormack model, and we exploit some dataset,
already present in literature, concerning numerical results about mass fluxes in order
to compute the TPD exponent and study its numerical behaviour.

In Chapter 5 we summarize our work and discuss possible future developments and
improvements.

The aim of this work is twofold. From one side, it is guided by the theoretical interest
in a better explanation and a deeper understanding of a phenomenon which is still not
much studied and investigated, both theoretically and experimentally. From the other
side, from a practical point of view, it can be seen as a small step toward an improved
modelling of the gas-surface interaction, mandatory in the treatment of rarefied flows,
and a refined description of the different rarefaction regimes, in particular about the
extendibility of the use of the Navier-Stokes equations into the transition regime.

1.3.1. Original contributions

The original contributions in this work consist in the systematic and detailed numerical
analysis of the TPD exponent for the case of a single gas. In this case, experimental data
will be considered and exploited for the assessment of the accommodation coefficients,
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which describe the gas-surface interaction. For what concerns the case of gas mixture,
a suitable definition of the TPD exponent is conjectured, the thermal creep problem is
formulated and numerical data from literature are used for the analysis of the behaviour
of such TPD exponent in different situations.
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2. Background

In this chapter we outline the framework in which we will work in the following chapters,
with the aim of introducing a theoretical background, a common notation, and a general
view of some of the most important techniques in each area.

2.1. Elements of Kinetic Theory of Gases and the
Boltzmann equation

The Boltzmann equation can be derived rigorously from Newton’s laws at least for
the low-density limit, but it is also used for the dense limit, although there is no to-
tally rigorous theoretical basis for the latter (see [7, 13]). Research efforts focused on
obtaining most of the fluid-dynamics limits of the Boltzmann equation including the
incompressible limit (see [14, 15, 16, 17]).
In this work, we assume that microscale fluidic and thermal gas transport in the entire
rarefaction regime is governed by the Boltzmann equation (BE), which describes the
evolution of the velocity distribution function of gas molecules through binary inter-
molecular collisions.

2.1.1. The Boltzmann equation

Let us consider monoatomic gases, the state of which can be described by a velocity
distribution function f(t,x, ξ), where x denotes the position and ξ denotes the velocity
of the molecules. The set of all possible positions x and velocities ξ is the so-called phase
space. The distribution function represents the total mass of the molecules contained
in dxdξ, the element of volume of the phase space, at time t. This distribution function
obeys the Boltzmann equation ([6, 18, 19, 20])

∂f

∂t
+ ξ · ∂f

∂x + F · ∂f
∂ξ

= Q(f, f∗) (2.1)

with x ∈ Ω, ξ ∈ R3 and Ω is the space domain where the gas is moving.
F is an external body force. Since we shall usually consider cases where the external
action on the gas is exerted only through solid boundaries (surface forces), we shall not
usually consider the term describing body forces (so, if not differently specified, we shall
always consider F = 0); it should be kept in mind, however, that such simplification
implies neglecting, inter alia, gravity.
The term on the right-hand side represents molecule collisions: it is called collision
integral and it is given by

Q(f, f∗) = 1
m

∫
R3

∫
S+
B(V · n, |V|)

[
f(x, ξ′∗)f(x, ξ′)− f(x, ξ∗)f(x, ξ)

]
dndξ∗ (2.2)

where the quantity B(V · n, |V|) depends on the intermolecular interaction potential.
In the case of a hard-sphere gas, it is B(V · n, |V|) = |V · n|.
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The quantity defined by Eq. (2.2) represents collisions of two molecules with post-
collision velocities ξ and ξ∗, and corresponding pre-collision velocities denoted in addi-
tion by primes. Here, the integration is taken over the three-dimensional velocity space
R3 and the hemisphere S+, which includes the particles moving away from each other
after the collision. Also, we have the definitions

V = ξ − ξ∗ ξ′ = ξ − n(n ·V) ξ′∗ = ξ∗ + n(n ·V) , (2.3)

where n is the unit vector along ξ − ξ′.

2.1.2. Macroscopic quantities

All the macroscopic quantities, which are the quantities of main practical interest,
are defined in terms of moments of the distribution function:

density: ρ(x, t) =
∫
fdξ (2.4)

bulk velocity: ρv(x, t) =
∫

ξfdξ (2.5)

temperature: T (x, t) = 1
3ρR

∫
c2fdξ (2.6)

stress: Pij(x, t) =
∫
cicjfdξ (2.7)

heat flux: q(x, t) = 1
2

∫
cc2fdξ (2.8)

where c := ξ − v is called peculiar velocity.
We define also the

number density: n(x, t) = ρ(x, t)
m

(2.9)

where m is the molecular mass.

2.1.3. Equilibrium states

The solution of the Boltzmann equation (2.1) for an equilibrium state (i.e., ∂f/∂t =
0, ∂f/∂xi = 0) is given by the following (absolute) Maxwell distribution or Maxwellian
with five constant parameters n0, v and T0:

f0 = n0β3
0

π3/2 exp
(
−β2

0 |ξ − v|2
)

= n0

(
m

2πkBT0

)3/2
exp

(
− m

2kBT0
|ξ − v|2

)
(2.10)

with
β2

0 = m

2kBT0
, (2.11)

and kB being the Boltzmann constant, n0 being the equilibrium number density, T0
being some reference temperature.
The equilibrium distribution with variable parameters n, v and T is called local Maxwellian.
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2.1.3.1. Linearization

Since in microchannel flow applications one usually deals with small deviations from
the basic equilibrium state, Eqs. (2.1) and (2.2) can be linearized representing the
distribution function as

f = f0(1 + h) |h| � 1 (2.12)
with f0 being the Maxwellian configuration 2.10.
The small perturbation h satisfies the following linearized Boltzmann equation

∂h

∂t
+ ξ · ∇xh = Lh , (2.13)

where Lh is the linearized collision operator given by

Lh = n0

(
m

2πkBT0

)3/2 ∫
R3

∫
B+

[
h(ξ′) + h(ξ′∗)− h(ξ)− h(ξ∗)

]
×

× exp
(
− m

2kBT0
ξ∗

2
)
B(V · n, |V|)dndξ∗

=
∫
R3

∫
B+

[
h(ξ′) + h(ξ′∗)− h(ξ)− h(ξ∗)

]
f0∗B(V · n, |V|)dndξ∗ . (2.14)

2.1.4. Boundary conditions

Accurate modelling of gas-surface interaction is very important for external rarefied
gas flows, such as those around shuttles and satellites, as well as for internal rarefied or
small-scale flows, such as those in MEMS or in gas shale reservoirs, both characterized
by large surface area-to-volume ratios ([7]).
The boundary conditions for the BE must be formulated on a probabilistic ground
by specifying the relation between the velocity distribution function of the reflected and
the incident gas molecules on the solid surface. The wall characteristics can be taken
into account via the non-negative scattering kernel

R(ξ′ → ξ; x, t) (2.15)

representing a probability density that molecules hitting the wall with velocity between
ξ′ and ξ′ + dξ′ at location x at time instant t will be reflected with velocity between ξ
and ξ+dξ. If R is known, then we can obtain the boundary condition for the distribution
function as ([21, 6, 13, 22])

f(x, ξ, t)|ξn| =
∫
ξ′n<0

|ξ′n|R(ξ′ → ξ; x, t)f(x, ξ′, t)dξ′ (x ∈ ∂Ω , ξn > 0) (2.16)

where ξn = ξ · n is the velocity normal to the surface. If the wall restitutes all the gas
molecules (i.e., it is nonporous and nonadsorbing), then∫

ξ′n>0
R(ξ′ → ξ; x, t) = 1 . (2.17)

Moreover, the scattering kernel satisfies the reciprocity condition ([6, 19])

|ξ′ · n|f0(ξ′)R(ξ′ → ξ) = |ξ · n|f0(ξ)R(−ξ → −ξ′) (ξ · n > 0, ξ′ · n < 0) (2.18)

also known as preservation of equilibrium.
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2.1.4.1. Maxwell boundary conditions

In [23], Maxwell proposed to treat the surface as something intermediate between a
perfectly reflecting and a perfectly absorbing surface. In particular, he supposed that
a portion of every surface element absorbs all the incident molecules, and afterwards
allows them to re-evaporate with the velocities corresponding to those in a still gas at
the temperature of the solid wall, while the remaining portion perfectly reflects all the
molecules incident upon it ([21]).
If we call α the fraction of evaporated molecules (and so 0 ≤ α ≤ 1), Maxwell’s
assumption is translated mathematically in the Maxwell model or diffuse-specular
model (see, e.g., [24, 25])

RM (ξ′ → ξ) = α|ξn|f0(ξ) + (1− α)δ(ξ′ − ξ + 2nξn) (ξn > 0, ξ′n < 0) (2.19)

where T0 is the temperature of the wall and f0

f0 = n0

(
m

2πRT0

)3/2
exp

(
− ξ2

2RT0

)
(2.20)

is called wall Maxwellian.
For α = 1 we obtain a purely diffuse scattering, which physically means that we have
perfect accommodation, in the sense that the molecules “forget their past” and re-emerge
after the wall collision with a Maxwellian distribution function. On the other hand, for
α = 0 we have that the wall specularly reflects the molecule.
Maxwell’s boundary conditions are frequently used for their simplicity and reasonable
accurateness, but are by no means the only possible ones, and not very satisfactory in
general.

2.1.4.2. Cercignani-Lampis boundary conditions

The Cercignani-Lampis model, introduced for the first time in [26], makes use
of two accommodation coefficients: the tangential accommodation coefficient αt
(0 ≤ αt ≤ 2), and the normal accommodation coefficient αn (0 ≤ αn ≤ 1). It has the
form (see, e.g., [24, 25, 27, 28])

RCL(ξ′ → ξ) = 2ξn
παtαn(2− αt)

I0

(
2
√

1− αn
αn

ξnξ
′
n

)
×

× exp
(
− [ξt − (1− αt)ξ′t]

2

αt(2− αt)

)
exp

−
[
ξn

2 + (1− αn)ξ′n
2
]

αn

 (2.21)

where I0 is the modified Bessel function of first kind and zeroth order.
The CL model recovers, as limiting cases, the specular reflection (αt = 0, αn = 0)
and the diffuse re-emission (αt = 1, αn = 1). Moreover, it includes the back scattering
(ξ = −ξ′) when αt = 2, αn = 0.

2.1.5. Model equations

One of the main difficulties in dealing with the Boltzmann equation is the complicated
structure of the collision integral, Eq. (2.2). Therefore, alternative, simpler expressions
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have been proposed for the collision term: they are known as collision (or kinetic)
models, and any Boltzmann-like equation where the Boltzmann collision integral is
replaced by a collision model is called a model equation.
The idea behind this replacement is that a large amount of detail of the two-body inter-
action (which is contained in the collision term) is not likely to influence significantly
the values of many experimentally measured quantities: therefore, when one is not in-
terested in too much fine details, it is possible to obtain reasonable results by replacing
the collision integral by the collision model J(f), that retains only the qualitative and
average properties of the collision term Q(f, f).

2.1.5.1. BGK model for monatomic gases

The most widely known collision model is the Bhatnagar-Gross-Krook model
(BGK), proposed for the first time in 1954 in [29, 30]. It reads as follows:

J(f) = ν[Φ(ξ)− f(ξ)] (2.22)

where the collision frequency ν is independent of ξ (but depends on ρ and T ), and Φ is
the local Maxwellian which has at any space point and time instant the same density,
velocity and temperature of the gas given by the distribution function f .
The idea behind this model is to express in the simplest way the tendency of the gas
to a Maxwellian distribution (i.e., to an equilibrium state): we assume that the average
effect of collisions is to change the distribution function f by an amount proportional
to the departure from a Maxwellian Φ ([6]).
The main disadvantage of the BGK model is that it yields a wrong Prandtl number
(PrBGK = 1 instead of the correct value 2/3). As a consequence, it can be proved that
(see e.g. [31]) no choice of the parameter ν is compatible with both viscosity and thermal
conductivity, and hence the BGK model is inadequate in the case of heat transfer ([7]).

This model can be generalized to the case of gaseous mixtures (see Section 2.2.2).

2.2. Gaseous mixtures theory

The kinetic description of a mixture of gases with different particle masses (and possibly
with different internal energies) is not a trivial generalization of the classical Boltzmann
theory for a single gas since the collision operators have to take into account exchanges
of momentum and energy among the different species (and also mass exchanges, in the
case of reacting mixtures) ([32]).

2.2.1. General description

In kinetic theory, the evolution of a mixture of N elastically scattering gases, labelled
with letter i, is usually described by a set of N integro-differential Boltzmann-type
equations for the species distribution functions fs(t,x, ξ):

∂fs
∂t

+ ξ · ∇xfs =
N∑
r=1

Qsr(fs, fr) s = 1, . . . , N (2.23)

where the collision operator Qsr is given by

Qsr(fs, fr) =
∫
R3

∫
S+

[
fs(ξ′)fr(ξ′∗)− fs(ξ)fr(ξ∗)

]
Bsr(V · n, |V|)dndξ∗ . (2.24)
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Here, ξ is the molecular velocity, Bsr is computed from the interaction law between the
s-th and r-th species, V = ξ − ξ∗ is the relative velocity of the molecule of the s-th
species with respect to a molecule of the r-th species, n is the unit vector along ξ− ξ′,
and S+ is the semisphere defined by n ·V ≥ 0. The post-collisional velocities ξ′ and ξ′∗
are given by

ξ′ = ξ − 2µ
sr

ms
n [(ξ − ξ∗) · n]

ξ′∗ = ξ∗ + 2µ
sr

mr
n [(ξ − ξ∗) · n]

where ms is the mass of the s-th species and µsr = msmr

ms +mr
is the reduced mass.

2.2.1.1. Linearization

Repeating the arguments of Section 2.1.3.1, Eqs. (2.23) and (2.24) can be linearized
representing the distribution functions of the species as

fs = fs,0(1 + hs) |hs| � 1 (2.25)

with fs,0 being the Maxwellian configuration

fs,0 = ns,0

(
ms

2πkBT0

)3/2
exp

(
− ms

2kBT0
ξ2
)

(2.26)

where ns,0 the equilibrium number density of the s-th species and T0 a reference tem-
perature.
The small perturbation hs satisfies the following Boltzmann equation

∂hs
∂t

+ ξ · ∇xhs =
N∑
r=1

Lsrhs s = 1, . . . , N (2.27)

where Lsrhs is the linearized collision operator given by

Lsrhs = nr,0

(
mr

2πkBT0

)3/2 ∫
R3

∫
B+

[
hs(ξ′) + hr(ξ′∗)− hs(ξ)− hr(ξ∗)

]
×

× exp
(
− mr

2kBT0
ξ∗

2
)
Bsr(V · n, |V|)dndξ∗

=
∫
R3

∫
B+

[
hs(ξ′) + hr(ξ′∗)− hs(ξ)− hr(ξ∗)

]
fr,0Bsr(V · n, |V|)dndξ∗ . (2.28)

2.2.2. Kinetic modeling of gas mixtures

We report here the generalization of Section 2.1.5 to the case of gaseous mixtures, and
another model, also suitable for mixtures.

2.2.2.1. BGK-type model

In [33], a BGK relaxation model for mixtures was proposed, which satisfies the following
properties:
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2.2. Gaseous mixtures theory

• the correct Boltzmann collision invariants and Maxwellian equilibria are properly
recovered;

• the H-theorem is fulfilled;

• the indifferentiability principle holds (when the N gases coincide, the classical
BGK model for a single gas is correctly reproduced).

For a mixture of two gases, this BGK model reads as

∂fs
∂t

+ ξ · ∇xfs = νs(Ms − fs) s = 1, . . . , N (2.29)

where νs are suitable collision frequencies (independent from the molecular velocity ξ,
but possibly dependent on the macroscopic fields) and Ms are the Maxwellian attrac-
tors

Ms = ns

(
ms

2πkBTs

)3/2
exp

(
− ms

2kBTs
|ξ − vs|2

)
. (2.30)

Auxiliary parameters vs and Ts are determined in terms of the moments of the dis-
tribution functions fs (that is, the number density ns, the mass velocity v(s) and the
temperature T (s)), by imposing that the exchange rates for species momenta and en-
ergies given by the BGK operator reproduce the exact corresponding rates calculated
by the Boltzmann collision operators Eq. (2.24) (see [33, 32]).

2.2.2.2. McCormack model

In 1973, McCormack ([34]) presented a simple method of constructing explicit linearized
kinetic models, up to a certain order.
For the k-th order model, the method, called equivalence of moments method, consists
of writing the collision term Eq. (2.28) in the form

Lsrhs ≈ L̂sr(k)hs = −γsrhs(t,x, ξ) +
∑
j≤k

Aj(t,x)ψj(ξ) , (2.31)

where γsr is a constant collision frequency, hs is the perturbation of the distribution
function fs from the Maxwellian fs,0, fs = fs,0(1 + hs), and ψj is a suitably chosen
complete orthonormal set of functions, while the expansion coefficients Aj , j ≤ k can
be evaluated by equating certain physically significant moments of the model

(∆φ)M,sr =
∫
φ(ξ)fs,0L̂sr(k)hsdξ (2.32)

to the corresponding moments of the full linearized collision operator (2.28), calculated
with the k-th order approximation to the distribution function.
It automatically gives the correct behaviour in the continuum limit of the k-th order
moment of the distribution function: if in Eq. (2.32) k is large enough to include the
heat flux moment (k = 3 using a particular complete orthonormal set, see [34]), then
the correct hydrodynamic behaviour of the model is automatically ensured.
For a third-order model, which is the lowest order that gives a correct hydrodynamic
description, the collision term moments corresponding to the species density (φ = 1),
drift velocity (φ = ξi), energy (φ = 1

2ξ
2), stress (φ = ξiξj − 1

3ξ
2δij) and heat flux
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(φ = 1
2ξi
(
ξ2 − 5

2

)
) have been computed ([35, 36]) by using a third order, thirteen-

moment approximation to the distribution function.
The resulting explicit McCormack collision term for a binary mixture reads ([32, 37])

Lh(1)
MC = γ1

ρ(1) + 2
(
1− η(1)

1,2

)
c · v(1) − 2η(2)

1,2c · q(1) +

1−
2η(1)

1,2M12

1 +M12

(|c|2 − 3
2

)
τ (1)

+2
(
1 + η

(4)
1,1 − η

(3)
1,1 − η

(3)
1,2

)
cicjP

(1)
ij + 8

5
(
1 + η

(6)
1,1 − η

(5)
1,1 − η

(5)
1,2

)(
|c|2 − 5

2

)
c · q(1)

−η(2)
1,2

(
|c|2 − 5

2

)
c · v(1) + 2η(1)

1,2c · v(2) + 2M12η
(2)
1,2c · q(2) + η

(2)
1,2

(
|c|2 − 5

2

)
c · v(2)

+
2η(1)

1,2M12

1 +M12

(
|c|2 − 3

2

)
τ (2) +

2η(4)
1,2

M12
cicjP

(2)
ij +

8η(6)
1,2

5
√
M12

(
|c|2 − 5

2

)
c · q(2) − h1


(2.33)

Lh(2)
MC = γ2

ρ(2) + 2
M12

(
1− η(1)

2,1

)
c · v(2) −

2η(2)
2,1

M12
c · q(2) +

1−
2η(1)

2,1
1 +M12

( |c|2
M12

− 3
2

)
τ (2)

+ 2
M12

2

(
1 + η

(4)
2,2 − η

(3)
2,2 − η

(3)
2,1

)
cicjP

(2)
ij + 8

5M12

(
1 + η

(6)
2,2 − η

(5)
2,2 − η

(5)
2,1

)( |c|2
M12

− 5
2

)
c · q(2)

−
η

(2)
2,1
M12

(
|c|2

M12
− 5

2

)
c · v(2) +

2η(1)
2,1

M12
c · v(1) +

2η(2)
2,1

M12
2 c · q(1) +

η
(2)
2,1
M12

(
|c|2

M12
− 5

2

)
c · v(1)

+
2η(1)

2,1
1 +M12

(
|c|2

M12
− 3

2

)
τ (1) +

2η(4)
2,1

M12
cicjP

(1)
ij +

8η(6)
2,1

5
√
M12

(
|c|2

M12
− 5

2

)
c · q(1) − h2


(2.34)

where it should be noted that, in combining the self- and cross-collision terms in
Eq. (2.27), the γ coefficients appear only in the combinations γ1 = γ11 + γ12 and
γ2 = γ21 + γ22.
In Eqs. (2.33) and (2.34) the following normalizations have been introduced:

c = ξ√
2 kB
m1
T0

f̂1,0 = f1,0
n1,0

= e−|c|
2

π3/2 f̂2,0 = f2,0
n2,0

= e
− |c|

2
M12

(πM12)3/2 (2.35)

where M12 = m1/m2 is the mass ratio. The other symbols appearing in Eqs. (2.33)
and (2.34) are defined in the following:

η(k)
s,r = ν

(k)
s,r

γs
s, r = 1, 2 k = 1, . . . , 6 , (2.36)

where the collision frequencies are expressed as

γ1 =
(
ψ1ψ2ν

(4)
1,2ν

(4)
2,1

) (
ψ2 + ν

(4)
1,2

)−1
, (2.37)

γ2 =
(
ψ1ψ2ν

(4)
1,2ν

(4)
2,1

) (
ψ1 + ν

(4)
2,1

)−1
, (2.38)
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with
ψ1 = ν

(3)
1,1 + ν

(3)
1,2 − ν

(4)
1,1 ψ2 = ν

(3)
2,3 + ν

(3)
2,1 − ν

(4)
2,2 (2.39)

and
ν(1)
s,r = 16

3
µsr

ms
nrΩ11

s,r ν(2)
s,r = 64

15

(
µsr

ms

)2
nr

(
Ω12
s,r −

5
2Ω11

s,r

)
(2.40)

ν(3)
s,r = 16

5

(
µsr

ms

)2 ms

mr
nr

(10
3 Ω11

s,r + mr

ms
Ω22
s,r

)
(2.41)

ν(4)
s,r = 64

15

(
µsr

ms

)2 ms

mr
nr

(10
3 Ω11

s,r − Ω22
s,r

)
(2.42)

ν(5)
s,r = 64

15

(
µsr

ms

)3 ms

mr
nrΓ(5)

s,r ν(6)
s,r = 64

15

(
µsr

ms

)3 (ms

mr

)3/2
nrΓ6

s,r , (2.43)

with
Γ(5)
s,r = Ω22

s,r +
(15ms

4mr
+ 25mr

8ms

)
Ω11
s,r −

(
mr

2ms

)(
5Ω12

s,r − Ω13
s,r

)
(2.44)

Γ(6)
s,r = −Ω22

s,r + 55
8 Ω11

s,r −
5
2Ω12

s,r + 1
2Ω13

s,r . (2.45)

Ωij
s,r are the Chapman-Cowling integrals ([38]), which contain the dependence on the

intermolecular interaction potential (see Appendix A for some explicit expression of
these quantities for important particular cases).
Furthermore, the dimensionless macroscopic perturbed density ρ(s), velocity v(s), tem-
perature T (s), stress tensor P (s)

ij , and heat flux q(s), appearing in the McCormack model,
are defined as follows:

ρ(1) = 1
π3/2

∫
R3
h1e
−|c|2dc ρ(2) = 1

(πM12)3/2

∫
R3
h2e
− |c|

2
M12 dc (2.46)

v(1) = 1
π3/2

∫
R3

ch1e
−|c|2dc v(2) = 1

(πM12)3/2

∫
R3

ch2e
− |c|

2
M12 dc (2.47)

τ (1) = 1
π3/2

∫
R3

(2
3 |c|

2 − 1
)
h1e
−|c|2dc τ (2) = 1

(πM12)3/2

∫
R3

( 2
3M12

|c|2 − 1
)
h2e
− |c|

2
M12 dc

(2.48)

P
(1)
ij = 1

π3/2

∫
R3

(
cicj −

1
3 |c|

2δij

)
h1e
−|c|2dc P

(2)
ij = 1

(πM12)3/2

∫
R3

(
cicj −

1
3 |c|

2δij

)
h2e
− |c|

2
M12 dc

(2.49)

q(1) = 1
π3/2

∫
R3

1
2c
(
|c|2 − 5

2

)
h1e
−|c|2dc q(2) = 1

(πM12)3/2

∫
R3

1
2c
(
|c|2

M12
− 5

2

)
h2e
− |c|

2
M12 dc

(2.50)

2.3. The Knudsen pump and the TPD exponent

With the fast progress in micro/nanoscale devices and components, it is desired to
obtain fundamental understanding of the transport phenomena in these devices. Addi-
tionally, a deep understanding of the hydrodynamics and thermal physics of rarefied gas
flows is crucial in design, fabrication and operation of MEMS/NEMS. For this reason,
the flow analysis should be performed using accurate approaches based on the solution
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of the Boltzmann equation ([39]). In particular, thermally driven mass flows, which are
peculiar to rarefied gases (or gases in the kinetic regime), have potential applicability
as non-mechanical controllers of mass and energy flow rates in micro/nano-channels
([40]). As thermally driven flows, mention should be made of the thermal creep flow,
or thermal transpiration, which is a flow along the non-uniformly heated wall in the
direction of the gradient of the temperature. It is a classical phenomenon in rarefied
flows and has been investigated by many scientists. A notable application of this flow
is the Knudsen pump or compressor and its variants, which therefore, unlike most con-
ventional pumps, do not require moving parts or supplementary pumping fluids ([41]).

The phenomenon of thermal transpiration was originally investigated experimentally
by Reynolds in 1880, based on earlier experimental observations from 1831 to 1863 by
Graham. It is used to describe what occurs in transitional rarefied flows, primarily along
walls with a superimposed wall surface temperature gradient. Substantially diffuse and
thermally accommodated reflections are required at the surface for thermal creep to be
significant. As we shall see in more detail, thermal creep flow is from the cold end of a
tube toward the hot end. For free molecular flow, thermal creep flow will fill the entire
tube, while in the case of transitional flow, the thermal creep occurs closer to the tube’s
walls ([41]). As a consequence of the cold to hot flow, a pressure difference between the
hot and cold ends can be established and a pressure return flow will occur, partially or
completely balancing the thermal creep flow. Thus, thermal creep can produce both a
net gas flow and a pressure difference, which are the requirements for a pump.

Micro/mesoscale gas pumps are essential for the realization of completely miniatur-
ized devices such as gas sensors, fuel cells, and lab-on-a-chip systems. Numerous mi-
croscale gas pumps have been proposed and studied. Some microscale pumps have been
developed as simple scaled-down versions of conventional macroscale pumps. Nonethe-
less, in other cases unconventional pumping techniques have been investigated for
unique application to microscale pumping needs, since only a few types of vacuum
pump scale well to small dimensions. Moreover, most vacuum pumps also have com-
plicated machinery that does not scale well to microfabrication by planar techniques.
Thermal molecular pumps can serve this purpose: they are well-suited for miniaturiza-
tion because efficiency improves with surface-to-volume ratio, and they have no valves
that must seal.
Among the different kinds of thermal molecular pumps, the Knudsen pump, or Knudsen
compressor, a solid-state micro/mesoscale gas pump with no moving parts, provides the
highest compression ratio and its performance is independent of the material surface
conditions. Invented almost a century ago, the Knudsen pump was long regarded as a
relatively inefficient option for achieving high vacuum, despite its attractive feature of
no moving parts. In theory, the Knudsen pump has many potential advantages, such
as high reliability and the ability to efficiently pump light gases, such as hydrogen and
helium, which many types of pumps do not pump well. A barrier to acceptance has been
that sub-micron feature sizes are required for the pump to operate at atmospheric pres-
sure. Nonetheless, the evolution of micromachining technology has rekindled interest
in this kind of pump.
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2.3. The Knudsen pump and the TPD exponent

2.3.1. The Knudsen number

Rarefied gas flows are mainly found in small-scale flow fields and/or low-pressure envi-
ronments. The characteristic number that determines the degree of rarefaction and the
area in which continuum model equations are valid is the Knudsen number (Kn),
which is defined by the relationship

Kn = λ

L
(2.51)

where λ is the mean free path of the particles and L is a characteristic dimension of
the problem (e.g., the distance between two parallel plates, o the radius of a pipe).
The mean free path cannot be measured directly and may be calculated on the basis
of measured macroscopic quantities in accordance to the relationship ([42])

λ =
√
πµ

2p v0 , (2.52)

where p is the local pressure, µ the dynamic viscosity at local temperature T , and

v0 =
√

2kBT
m

=
√

2RT (2.53)

is the most probable velocity (valid for the hard-sphere model). Thus, for some given
gas, the Knudsen number is a function of the pressure and temperature: Kn = Kn(p, T ).
Also, the gas rarefaction parameter δ is frequently used, which is linked to the
Knudsen number as follows ([42]):

δ =
√
π

2
1
Kn

. (2.54)

The value of Kn (or, equivalently, δ) characterizes the flow of gas: in particular, the local
value of the Knudsen number in a certain flow determines the degree of rarefaction
of the flow itself, and hence the validity of the continuum model. In general: in the
limit of a zero Knudsen number, the mean free path is zero, i.e., for p 6= 0 the viscosity
is zero and then the Navier-Stokes equations reduce to the inviscid Euler equations; as
Kn increases, rarefaction effects become more important and, eventually, the Navier-
Stokes equations break down.
The different Knudsen number regimes can be summarized as follows (see, e.g., [43]):

• Kn < 0.001 (δ > 1000): hydrodynamic regime. The mean free path is so small
that the flow is dominated by collisions between gas molecules, the gas can be con-
sidered as a continuous medium and the Navier-Stokes equations are applicable,
coupled with no-slip boundary conditions;

• 0.001 < Kn < 0.1 (1000 > δ > 10): slip regime. Non-equilibrium phenomena
start manifesting in the boundary regions of the domain. In particular, velocity
slip and temperature jump are observed on the walls: Navier-Stokes equations are
applicable, but with suitable slip boundary conditions;

• 0.1 < Kn < 10 (10 > δ > 0.1): transition regime. A kinetic description of the gas
is necessary, since intermolecular collisions are reduced: the Boltzmann equation
is valid here;
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• Kn > 10 (δ < 0.1): free-molecular regime. The mean free path is so large that the
collisions of molecules with the boundary walls occur much more frequently than
the collisions between molecules: under this condition we may discount the inter-
molecular collisions and consider that every molecule undergoes ballistic motion
and moves independently of each other, remaining unaffected by other molecules.

This division of the regimes of flow, although only qualitative and not strictly rigorous,
is very useful because it suggests the most effective methods to be used for calculation
of the gas flows.

In the hydrodynamic regime, classical hydrodynamics prevails, with well-known ef-
fects such as stresses caused by velocity gradients, as expressed in the Navier-Stokes law,
and heat flux caused by temperature gradients, as expressed in Fourier’s law. When,
however, the Knudsen number becomes larger, so-called rarefaction effects influence
the flow.
Moreover, also the interaction between gas and solid boundaries depends on the degree
of rarefaction. In classical hydrodynamics, one commonly assumes no-slip and no-jump
boundary conditions, where the gas at the wall assumes velocity and temperature of
the wall. Rarefaction leads to non-equilibrium phenomena and deviations from this be-
haviour, so that the gas experiences velocity slip and temperature jump at the wall:
the gas and the wall surface do not have the same velocity and temperature, secondary
flows are induced by temperature gradients (or concentration gradients for mixtures),
and so on.
These phenomena cannot be captured by the classical hydrodynamic equations and can
be examined via the kinetic theory of gases, in which the problem is correctly described
by the Boltzmann equation.

2.3.1.1. Slip regime and boundary conditions

In the slip regime non-equilibrium phenomena begin to influence the global gas flow.
Anyway, they are not predominant yet, and the continuum description can still be
exploited, as long as some corrections are introduced: in particular, the Navier-Sokes
equations are still usable, if coupled with slip boundary conditions.
For pressure-driven flows, assuming a first-order boundary condition at a flat wall, in
the isothermal case, the slip velocity reads as

vPs = APλ

(
∂v

∂x

)
w
, (2.55)

where AP is called viscous slip coefficient, x is the coordinate normal to the wall
and λ is the mean free path.
Likewise, for thermal-driven flows one can write the following first-order slip boundary
condition on a flat wall:

vTs = AT
µ

ρT

(
∂T

∂z

)
w
, (2.56)

where AT is called thermal slip coefficient, z is the longitudinal coordinate, µ is
the gas viscosity and ρ is the density. In both cases, the subscript w means that the
gradients are evaluated at the wall.
It is generally accepted that the classical hydrodynamical equations can supply realistic
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results well beyond the slip region, provided that higher-order boundary conditions are
employed (see [27, 28]); explicitly:

vPs = AP1 λ

(
∂v

∂x

)
w
−AP2 λ2

(
∂2v

∂x2

)
w

(2.57)

and
vTs = AT1

µ

ρT

(
∂T

∂z

)
w

+AT2
µ2

ρ2T

(
∂2T

∂z2

)
w

, (2.58)

where AP1 and AP2 are the first- and second-order viscous slip coefficients, AT1 and AT2
are the first- and second-order thermal slip coefficients, respectively.
We may refer to the domain of validity of this second-order slip model as “extended”
slip regime.

2.3.2. The thermal creep

In the framework of classical fluid dynamics, there is no time-independent flow induced
by virtue of only the temperture field without external forces such as gravity and pres-
sure ([43]). Nonetheless, in rarefied gases, the temperature field plays an important
role in inducing time-independent flows. Among the various types of thermally induced
flows, nowadays, the theories and applications of the thermal creep effect seem to be
the richest.

Figure 2.1.: Flow setting in thermal tran-
spiration flow ([44]).

Thermal creep flow (also known as thermal
transpiration flow) is the macroscopic move-
ment of a rarefied gas induced by a temperature
gradient.
It is a particularly interesting boundary effect,
where a velocity slip is induced by a temperature
gradient in the wall, i.e., the gas is forced into
motion at the boundary by a non-uniform tem-
perature distribution in the boundary itself. This
simple condition induces a tangential creep veloc-
ity in the interior gas close to the walls such that
the gas flows in the direction of the temperature
gradient, i.e., from cold to hot (as in Fig. 2.1).

Figure 2.2.: Thermal creep flow is induced
primarily near the walls ([39]).

This thermally induced velocity initiates within
a thin boundary layer, and the thickness of this
creep layer is proportional to the Knudsen num-
ber ([39, 44]), as represented in Fig. 2.2. Therefore,
thermal creep effect can occur in a perceptible way
only in sufficiently rarefied flows. In this case and,
for example, in sufficiently long channels, the ve-
locity gradient within the creep layer might fill the
whole channel width, as the result of shear stress
diffusion. (It may be worth noting that some au-

thors use the nomenclature “thermal transpiration flow”, instead of “thermal creep”,
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only for the situation in which the thermal creep layer fills the entire channel. Anyway,
as in most of the literature, we will use the two terms with no distinction.)
Thermal creep problem is investigated by several authors using kinetic models of the
Boltzmann equation. The flow between two parallel plates, where a constant unidimen-
sional temperature gradient is applied to the plates, is a common flow configuration
which is used in kinetic approaches.

This phenomenon was first reported in 1879 by Reynolds as an experimental result,
and called “thermal transpiration flow” ([45]). In an investigation with a porous plate
separating two gas regions, maintained at different temperatures Tc and Th, he showed
that at very low densities the equilibrium pressures on the two sides are related by the
law

ph
pc

=
√
Th
Tc
. (2.59)

Almost at the same time, Maxwell ([23]) investigated the problem from a theoretical
point of view, studying the stresses in an unequally heated stationary mass of gas,
in order to provide a physical explanation for this problem. At an unequally heated
boundary of the gas, Maxwell showed that a special effect was to be expected in the
form of a steady creep of the gas over the surface from colder to hotter regions.

Later experimental observations by Knudsen (in 1909-1910) proved the existence of
a pumping effect in thermal creep flows using experimental observations ([46, 47]).
Knudsen’s research led to the supposition that Eq. (2.59) was valid only at a zero-flow
final equilibrium state, which followed a transitional stage of gas displacement.

Figure 2.3.: Gas at rest with a tempera-
ture gradient ([43]).

To explain the physical mechanism of thermal
creep flow ([19, 43, 48, 49]), we consider the
static gas on a wall with a temperature gradient
(Fig. 2.3). Take a small area dS of the wall, and
consider the momentum transferred to dS when
gas molecules impinge on it. The molecules im-
pinging on dS come from various directions di-
rectly (or without molecular collisions) over a dis-
tance of the order of the mean free path, keeping

the property of their origins. Since the molecules coming from the hotter region have a
larger average speed than the molecules coming from the colder region, the momentum
transferred to dS (or wall) by the molecules impinging on it has a tangential component
in the direction opposite to the temperature gradient on the wall. More precisely, in a
static gas, the number of molecules in the colder region is larger than that in the hotter
region (the molecular density in the hotter region is smaller), but the molecules from
these two regions impinging on dS per unit time are the same. Moreover, the molecules
from the hotter region have a larger average speed. Thus, the momentum transferred
to dS by the molecules impinging on it has a tangential component in the direction
opposite to the temperature gradient. Note that, for the diffuse reflection, the contri-
bution of the molecules leaving the wall to the tangential component of the momentum
transfer is highly small (almost zero). (Generally, except in the specular reflection, the
velocity distribution function of the molecules leaving the wall, characterized by the
wall condition, is qualitatively different from that of the impinging molecules, formed
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Figure 2.4.: Scheme of the physical mechanism of thermal creep phenomenon ([43]).

by collisions of surrounding gas molecules. Thus the two contributions are generally dif-
ferent.) Summarizing, a net force (FW in Fig. 2.4) towards the colder region is produced
by the molecules on the wall. Therefore, the gas is subjected to a reaction force acting in
the direction of the temperature gradient (FG in Fig. 2.4) according to Newton’s third
law, and a gas flow results in this direction. Finally, in a gas in motion, a momentum
in the direction of motion is transferred to the wall or dS. Thus, a time-independent
flow is established when the two contributions of momentum transfer balance.
Obviously from the above explanation, the boundary (or, more precisely, the quali-
tative difference of the velocity distribution functions of the molecules impinging on
the boundary and those leaving there) plays an essential role in inducing the thermal
creep flow. For example, if the gas molecules impinge on a VDM (velocity dependent
Maxwell) wall boundary, inverted thermal creep flow will be produced with a flow di-
rection opposite to that of thermal creep flow (see [43]). Note that the inverted thermal
creep is only observed theoretically ([50]), has not yet been verified in experiments.

Thermal creep will obviously have an effect upon the motion of gases in tubes, and in
some cases this may be of practical importance. If the tube is unequally heated, there
may be a resulting flow of gas along it, even in the absence of a pressure gradient; or, if
the circumstances are such as to prevent such a flow (e.g., the system is closed), then a
steady pressure gradient may be set up with the gas at rest. Measurements of gaseous
pressure by means of external gauges at a different temperature may require correction
for pressure differences arising in this way in the connecting tubes ([48]).

2.3.2.1. Cross effects and Onsager relations

It has been noted that the consideration of rarefied slip flow in the boundary condi-
tions can introduce large deviations of transport in conditions of thermal and pressure
gradients when compared to a classical no-slip treatment. In addition to the direct
thermal and mass fluxes caused by thermal and pressure gradients, mass and heat
transport cross terms given by the mechanocaloric effect and thermal transpi-
ration are present. These cross effect terms are defined by the mass flux transport
due to a temperature gradient (thermal transpiration) and heat flux due to a pressure
gradient (mechanocaloric effect). In the continuum limit, where the mean free path of
the gas is much less than the characteristic dimension, these cross effects disappear.
In the transition region and free molecular region, where the mean free path of the
gas becomes on the same order of the characteristic dimension or greater, these effects
become significant.
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The cross phenomena of thermal transpiration and mechanocaloric effect constitute
an interesting and simple problem for the illustration of Onsager’s ideas ([51]). Physi-
cally, we consider the flow and heat transfer in a gas in two vessels that are connected by
a capillary. In vessel 1, the gas is maintained at a pressure p and a temperature T , while
in vessel 2 the respective values of these parameters are p+∆p and T +∆T . Now, if JM
and JQ are, respectively, the mass flux (mass/time) and the heat flux (energy/time)
through the capillary, then, by the principles of non-equilibrium thermodynamics ([52]):

JM = γMMxM + γMQxQ (2.60)
JQ = γQMxM + γQQxQ (2.61)

where the phenomenological kinetic coefficients γ form a positive matrix, and have
the Onsager reciprocity relation γMQ = γQM . The driving terms x are given by (ρ
indicates the density)

xM = − 1
ρT

∆p (2.62)

xQ = − 1
T 2 ∆T (2.63)

Thus, the thermodynamic results clearly indicate that, in general, there exists a mass
flux due to a temperature gradient and a heat flux due to a pressure gradient. It is
also well-known that in the continuum limit γMQ, γQM = 0 and that the cross effects
become important only in the transition region and the free molecular limit.

We assume now parallel plates, BGK model, diffuse reflection boundary conditions.
The various phenomenological coefficients can be more conveniently expressed in the
following non-dimensional forms:

JMM = 2
(

m

2kBT0

)1/2 p0

T0ρ02δ̃2γMM (2.64)

JMQ = 2
(

m

2kBT0

)1/2 1
T0ρ0δ̃2γMQ (2.65)

JQQ = 2
(

m

2kBT0

)1/2 1
p0T0δ̃2γQQ (2.66)

where subscript 0 indicates some mean value of the corresponding parameter and δ̃ =
δ/λ. Then, it is observed that ([53]):

• JMM clearly exhibits a minimum at δ ≈ 1 (the so-called Knudsen minimum, see
[54]);

• JMQ diminishes monotonically with increasing δ and vanishes as δ → ∞, i.e.,
in the continuum limit both the thermal transpiration and the mechanocaloric
effect vanish;

• for δ → 0 it is shown that JMQ = 1
2JMM which, under the condition JM = 0,

gives the well-known result (p1/p2) = (T1/T2)1/2 (Eq. (2.59)).
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2.3. The Knudsen pump and the TPD exponent

Figure 2.6.: Scheme of the steady state of the thermal creep flow: the flow near the wall is maintained
by the temperature gradient at the boundary, the bulk flow is due to the pressure gradient generated
during the transient phase and maintained at the steady state.

2.3.2.2. The thermomolecular pressure difference

Figure 2.5.: Temperature gradi-
ent on the wall and consequent
pressure gradient ([48]).

Let us consider two vessels containing the same gas at
different temperatures T1, T2 and connected by a capil-
lary. To maintain the temperature difference between the
vessels, the gas begins to move from the cold vessel to
the hot one even when there is no pressure drop ([55]).
If the system is closed, a pressure drop, called thermo-
molecular pressure difference (TPD), is established
between the vessels (Fig. 2.5). The pressure drop causes
a gas flow which is opposite to the thermal creep (TPD
effect) so that the whole mass flow through the capillary
vanishes in the stationary state (TPD state). Fig. 2.6

depicts the situation. Practically, we have that the gas is creeping steadily along the
walls of the tube and is at the same time flowing back through the central part; the
TPD is necessary in order to maintain the return flow and is the maximum pressure
drop that the imposed temperature gradient can maintain at the steady state.

The TPD effect is very important in engineering practice, because in many studies it
is necessary to calculate the pressure p1 in a chamber at a given temperature T1 from
a measured pressure p2 in another chamber at a given temperature T2: if the chambers
are joined by a capillary and the relation of p1 with p2, T1, and T2 is known, one easily
obtains p1. The scientific importance of the effect is also great because it is sensitive
to many properties of the gas: viscosity, thermal conductivity, gas-surface interaction,
etc. So it can be used to verify a validity of kinetic models describing both gas-gas and
gas-surface interactions. TPD measurements can be used to calculate several thermal
properties of polyatomic gases as well.
Thus, due to the great practical and scientific importance, the thermal transpiration
phenomena continue to attract the attention of theoretical and experimental researchers
as well.

The relation between p1, p2, T1, and T2 in a general form can be written as ([42, 55,
56, 57, 58])

p1
p2

=
(
T1
T2

)γ
, (2.67)

where the coefficient γ, called TPD exponent, depends on many factors, such as ge-
ometry of the capillary, type of the gas, nature of the gas-surface interaction. But the
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2. Background

coefficient γ also significantly depends on Kn (and thus also on p and T ).

In order to derive a particular expression for γ, let us consider the flow of a rarefied
monatomic gas through a cross section of a long capillary caused by longitudinal pres-
sure and temperature gradients. We assume that these gradients are so small that the
reduced mass flow rate G can be split into two independent parts as ([55, 59])

G = −GPκ+GT τ (2.68)

with
κ = L

p

∂p

∂z
τ = L

T

∂T

∂z
(2.69)

where z is the longitudinal coordinate. The coefficients GP and GT are determined only
by the local Knudsen number Kn = Kn(p, T ) and do not depend on the gradients. If
the pressure and temperature drops are small we may consider that these coefficients
do not vary along the capillary.
To find the coefficient γ we assume to be in the TPD state, so we put G = 0 in
Eq. (2.68): integrating it with respect to z, it is easily obtained that

γ = GT
GP

. (2.70)

As already said, γ depends strongly on the rarefaction parameter. In particular: as δ is
increased, γ is decreased, since as the atmosphere becomes more dense the thermal creep
flow is decreased and therefore larger temperature drops are needed to maintain the
no-net flow condition; and viceversa, as δ decreases, γ increases, since in highly rarefied
atmospheres the effect of the thermal creep flow is significant and larger pressure drops
are needed to counterbalance this flow. Therefore, γ should be monotonically decreasing
as δ increases. We can state precisely the two limiting cases ([53]):

• in the continuum limit we have γ → 0 (the cross effects vanish);

• in the free molecular limit we have γ → 1/2 (as in Eq. (2.59)) .

It should be noted that, even for cases where the mass flow rate is zero, if Kn is finite
then γ < 1/2 ([9]).

2.3.3. The Knudsen pump

Figure 2.7.: Cross-sectional schematic of a
MEMS fabricated thermal transpiration pump
([9]).

In recent years, the advent of MEMS made
way for new perspectives on thermal transpi-
ration. The interest in temperature induced
flows has grown in connection with micro-
machine engineering, since a pumping system
making use of this kind of flow has no moving
parts and no mixing process or working flu-
ids. The possibility of using the pumping ef-
fect of thermal transpiration to create a micro-
compressor without moving parts led to vari-
ous experimental works by several researchers,
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2.3. The Knudsen pump and the TPD exponent

in which the attention is mainly focused on the pressure increase due to the application
of a temperature gradient along the channel.

The Knudsen pump (KP) is a kind of vacuum pump that, working by the principle
of thermal transpiration, can form thermally induced flows in rarefied gas environments.
It has the advantages of having no moving parts (and hence high reliability), simple
structure, easy construction and extension, a wide range of energy sources and low
energy consumption. With the development of MEMS and NEMS, extensive studies
have been conducted on KPs, and their applications have widened.
Potential applications for the Knudsen pump with respect to sensors include chemical
preconcentration, gas chromatography and spectroscopy. Other microfluidic applica-
tions include moving gases on chips and providing power for microactuators. The pump
is also conducive to passive applications such as power scavenging since it has no mov-
ing parts and is powered by a thermal gradient. A particularly interesting application
is forced convection cooling: the heat of the surface provides the energy to power the
pump while the pump cools this surface.

Figure 2.8.: If two chambers are connected by a channel that restricts flow to the free-molecular regime,
the ratio of pressures at equilibrium is nominally equal to the ratio of the square root of their absolute
temperatures ([60]).

A basic configuration of a KP consists of two chambers, maintained at different tem-
peratures, connected by a narrow channel that restricts gas flow to the free-molecular
regime (Fig. 2.8). Due to the temperature gradient along the channel walls, the gas
starts flowing from the colder region to the hotter one until equilibrium is reached: at
this point, a pressure increase is established from the colder region to the hotter one.

2.3.3.1. Cascading of KPs

Figure 2.9.: Model of an early thermal creep flow KP ([46,
43]).

As demonstrated by Knudsen, a
straightforward generalization of
the basic “single-stage” KP is a
periodic structure consisting of
alternately arranged narrow and
wide pipes (tubes and volumes).
The result is a KP able to gen-
erate large changes in pressure
by utilizing a cascade of multiple
stages. Referring to Fig. 2.9, each
stage is composed of two parts:

• a capillary, between the cold inlet chamber and the heated chamber, is where the
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pressure change occurs: here a temperature increase, produced by a heater, results
in a pressure increase due to the thermal transpiration, which is the dominant
mass flow phenomenon;

• a connector section (e.g., a larger tube), dominated by pressure flow, in which the
pressure is approximately constant, used to transport the gas to the next stage.

In order to have a working pump, from a purely theoretical point of view, the be-
haviour of the temperature in the connector sections is not so important.
However, some observations have to be made, in order to improve the behaviour and
efficiency of this design:

• it is fundamental to maintain a flow as rarefied as possible in the capillaries (to
guarantee an effective thermal creep);

• it is desirable not to deal with (too high temperatures or) too high temperature
differences (which are not efficiently maintained).

The second point is easily satisfied by imposing a temperature decrease along the
connector, usually to return the gas to its original temperature prior to entering the next
stage. For example, it can be done with a periodic temperature with the same period
as the structure, such as a sawtooth distribution increasing in the narrow segments and
decreasing in the wide segments (see Fig. 2.10). This is done to facilitate the cascade of
stages that comprise a KP: as it enters the cold-side end of the next stage’s capillary,
the working gas is at a manageable temperature, assuring that a maximum temperature
difference is available to drive the thermal creep flow. The result is the achievement
of a required pressure increase for a specified upflow, without a net change in the
temperature of the working gas.

Figure 2.10.: Schematic of the KP
with a periodic temperature distri-
bution ([61]).

If a negative temperature gradient along the wall of
the hot-side connector section is imposed, it does not
cause a significant decrease of the stage exit pressure,
but only if the flow regime is sufficiently far from the
free-molecular regime. If this is not true, a “reverse”
thermal creep flow may occur, i.e., in the opposite di-
rection as the primary thermal creep. However, since
the dimensions of the connector section are larger than
those of the narrow channel, the flow regime in the con-
nector section is less rarefied than in the membrane
channels: as a result, the reverse thermal creep flow in
the connector section is of reduced relative effective-
ness compared to the creep in the narrow channel.

By this means, a significant pressure rise can be ac-
complished, since for N stages the total pressure ratio
goes as

ph
pc

=

√(
Th
Tc

)N
. (2.71)
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2.3. The Knudsen pump and the TPD exponent

Figure 2.11.: Thermal transpiration in a tube with alternating hot and cold surfaces: the result is a
“useless cascade” ([62]).

Note that simply imposing a periodic temperature distribution on a tube with con-
stant cross section, as shown in Fig. 2.11 (where flow is from left to right), would be
useless since, though pressure drops would be established from right to left in sections
AB, CD and EF, the effect would be reversed in sections BC and DE. The result would
be a one-stage device with the pressure ratio set by the temperature ratio between A
and F.

Another interesting improvement is about the throughput. One may reasonably ar-
gue that, with this setup, the throughput of this pump is too low, because of the
bottleneck given by the narrow channel. In order that the throughput of the pump
is not too small, the capillaries should be as large in cross-sectional area as possible.

Figure 2.12.: Illustrative i-th stage of a
cascaded KP ([63, 64, 41]).

Nonetheless, this fact clashes with the require-
ment that molecular flow be established in them.
Baum overcame this by making the tube an-
nular in cross section; thus its area was large
while its width was small ([62]). The cross sec-
tion of such a pump would look like in Fig. 2.12.
In place of a single capillary, we have a mem-
brane consisting of a parallel array of small
gas flow channels: this maintains in the cap-
illary section practically the same cross-section
area (and so throughput) as in the connec-
tor section and a relatively large mean free
path.

Two further remarks:

• the basic single-stage KP can be easily arrayed, rather than cascaded: this would
improve the throughput, instead of the pressure ratio;

• as correctly shown in Fig. 2.12, there is actually a drop of pressure in the connector
stage, which is obviously needed to drive the viscous flow: anyway, it is negligible
with respect to the pressure increase obtained in the capillary.

2.3.3.2. Working pressure

Another general feature of such pumps is that they have specific and rigorous require-
ments about the value of pressure with which they work. In particular, these pumps
generally have an upper and a lower pressure limit, which have to be respected in order
to have an efficient device, or even to guarantee a proper functioning. This is due to
the fact that the channels in a KP must operate in the proper flow regime: ideally, the
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Figure 2.13.: A two-stage Knudsen pump which alternates hot and cold chambers with a periodic
temperature distribution ([65]). Note that the channels connecting the chambers have different hydraulic
radii: one is the capillary, and one is part of the connector.

narrow channels should have a hydraulic diameter less than 1/10 of the mean free path
of the gas (free-molecular flow regime, Kn > 10) and the wide channels should have a
hydraulic diameter greater than 20 times the mean free path of the gas (viscous flow
regime, Kn < 0.05). While these conditions can be closely matched in laboratory com-
pressors, it is expected in practice that both the capillary and connector sections of the
compressor frequently will operate in the transitional flow regime (0.05 < Kn < 10),
with a possible loss of compression.
These observations imply that:

• upper pressure limit, reached when the backing pressure (that is, the starting
pressure) is such that the gas mean free path is less than the width of the capillary,
is determined by the hydraulic diameter of the narrow channels: the smaller the
narrow channels are, the higher the operating pressure can be;

• lower pressure limit, reached when the backing pressure is such that the ultimate
pressure of the pump is below the limiting pressure, (i.e., when molecular flow
begins to occur in the intermediate volumes), is determined by the hydraulic
diameter of the wide channels: the larger the wide channels are, the lower the
attainable pressure is.

For example (see [65]), the maximum height of the narrow channels is 6 nm if operation
in the free molecular flow regime is to be achieved because the mean free path of
air is approximately 60 nm at STP (standard temperature and pressure). This small
dimension makes it more convenient to design a Knudsen pump that operates in the
transition flow regime at its input stage for atmospheric operation.

This is the reason why the upper pressure limits of these pumps have been determined
by the microfabrication limits of the day: they have operated at relatively low pressures,
with low throughputs, and have not become main line pumps for a long time. In recent
years, MEMS have introduced a whole new level of miniaturization to devices in general,
including vacuum devices, and hence have raised the upper pressure limits, and thus
the throughputs of thermal molecular pumps to atmospheric levels.
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2.3.3.3. Other examples of Knudsen pumps

The flow of a gas in a grooved channel (Fig. 2.14a), due to an imposed temperature
gradient in the longitudinal direction, has also been investigated ([66]). This flow has
common characteristics with the classical Poiseuille flow and is found in thermal creep
problems, but the presence of rectangular grooves that are placed periodically in one
of the two stationary walls, results in a two dimensional flow pattern.
The feasibility of making a Knudsen pump by using a two-dimensional channel with a
“snaky” shape has also been investigated ([67]). The channel is composed of alternately
arranged straight and semicircular segments, with a periodic temperature distribution
(Fig. 2.14b).

(a) Grooved configuration for the KP ([66]).
(b) Snaky cascade arrangement
for the KP ([67]).

Figure 2.14.: Some more involved KP designs.

A slight variation of the implementation in Fig. 2.10 is given in [68] (see Fig. 2.15).
The length of the hot chamber is set to zero, so the setup is the following. The pump
consists of two reservoirs filled with a gas, which are sequentially connected by a narrow
and a wide channels with equal length. At the reservoirs walls the constant temperature
T1 is kept. Along the walls of the narrow channel the temperature increases from T1
to T2 at the joint of the channels, and then decreases again to T1 along the wall of the
wide channel. The stationary state therefore corresponds to the two chambers at the
same temperature but at different pressure.

2.4. Subjects

In the following, we shall deal with two main subjects.
The first subject is the study of the behaviour of the TPD exponent for a single

gas. Specifically, we shall consider the case of a monatomic gas trapped between two
infinite parallel plates. The collision model is the true linearized collision operator for
hard-sphere molecules, and the boundary conditions are modelled with the Cercignani-
Lampis model. We shall consider explicitly only the hydrodynamic and the slip regime,
since analytical solutions in this limits are available, and we are interested in checking
their reliability and maybe in extending their validity into the transition regime. We will
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Figure 2.15.: Scheme of the Knudsen pump ([68]).

do this by comparing the results from the analytical expression with accurate numerical
data, but also with some experimental data, that hopefully will be reproduced by our
formulas.

The second subject is the study of the behaviour of the TPD exponent for a binary
gaseous mixture. In particular, we will consider the case of a mixture of monatomic
gases trapped between two infinite parallel plates. The collision model will be the
McCormack model, and Maxwell boundary conditions are adopted. We will consider
the whole regime of rarefaction, since we will rely on numerical computations, which
hence hold in any regime of rarefaction.
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In this chapter we analyse the first main topic of this thesis:
we deal with the computation of the TPD exponent for a single gas flowing between two
infinite parallel plates. The Boltzmann equation based on the true linearized collision
operator for hard-sphere molecules and the Cercignani-Lampis boundary conditions is
used.

We shall study in detail the behaviour of our “reference” analytical expression of
the TPD exponent with respect to the rarefaction parameter and the accommodation
coefficients. The TPD exponent is here computed from its definition Eq. (2.70) via
the formulas in [27, 28] (obtained with a variational method). Then we shall check its
validity with a comparison with numerical and experimental data from the literature.
From the analytical reference expression we shall also try to compute some simplified
formulas, via a series expansion.
In both papers [27, 28], the purpose of the authors was to compute the coefficients for
second-order slip boundary conditions to be associated with the LBE describing the
problem at hand ([27] is dedicated to the study of the viscous slip coefficients, while
in [28] the thermal coefficients are investigated). Therefore, to this aim, analytical
expressions for the Poiseuille and thermal creep mass flow rates were obtained, which
however do not hold in arbitrary regimes of rarefaction. The TPD exponent is hence
simply computed, from Eq. (2.70), as the ratio between these quantities: the result is
an analytical expression for γ, but valid only for certain rarefaction regimes.

3.1. Statement of the problem

Let us consider two infinite parallel plates separated by a distance d and a single species
of monatomic gas flowing between them due to longitudinal gradients of pressure and
temperature. In the (x, z) plane, the z axis coincides with the direction of the fluid
motion, while the two walls are fixed at x = ±d/2. If the pressure and temperature
gradients are taken to be small, it can be assumed that the velocity distribution of the
flow is nearly the same as that occurring in an equilibrium state. This means that the
Boltzmann equation can be linearized about a Maxwellian f0 by putting

f(x, z, c) = f0

[
1 + kz +

(
c2 − 5

2

)
τz + h(x, c)

]
, (3.1)

where f is the distribution function for the molecular velocity c expressed in units of√
2RT (withR being the specific gas constant and T being the equilibrium temperature)

and h is the small perturbation on the basic equilibrium state. The above-mentioned
Maxwellian is given by

f0(c) = ρ0
π3/2 exp

(
−c2

)
, (3.2)
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where ρ0 is the equilibrium gas density and

k = 1
p

∂p

∂z
τ = 1

T

∂T

∂z
, (3.3)

with p and T being the local gas pressure and temperature, respectively.
The steady LBE satisfied by the perturbation h is

cx
∂h

∂x
+ kcz +

(
c2 − 5

2

)
τcz = Lh , (3.4)

where Lh is the linearized collision operator defined in Eq. (2.14).
In general, it is difficult to manage the Boltzmann operator L as such, and simplified
kinetic models of the exact collision integral are widely used in practice for both an-
alytical computations and numerical simulations (e.g., BGK, S-model, etc.). Anyway,
in this chapter the Poiseuille and thermal-creep flows are analysed on the basis of the
exact linearized collision operator for hard-sphere molecules in order to obtain a better
approximation of real-gas behaviours.
The boundary conditions for Eq. (3.4) can be written as

h+(− (d/2) sgn cx, c) =
∫
c′x<0

RCL(−c→ −c′)h−(− (d/2) sgn cx, c′)dc′ (3.5)

where h± are the restrictions of the function h, defined on the boundary, to positive
(negative) values of cx (that is, h+ and h− concern the re-emitted and the impinging
molecules on the boundaries, respectively) and RCL is the Cercignani-Lampis scattering
kernel, given by Eq. (2.21).
The pressure and temperature gradients cause a gas flow and heat transfer in the z-
direction. The bulk velocity vz(x) and the heat flux qz(x) are defined as

vz(x) = π−3/2
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
e−c

2
czh(x, c)dc , (3.6)

qz(x) = π−3/2
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
e−c

2
cz

(
c2 − 5

2

)
h(x, c)dc . (3.7)

Hence, the mass Ṁ and heat flow rate Q̇ (per unit time through unit thickness) are
given by

Ṁ = ρ

∫ d/2

−d/2
vz(x)dx , (3.8)

Q̇ =
∫ d/2

−d/2
qz(x)dx , (3.9)

which, within the framework of a linearized analysis, can be expressed by the sum of
the Poiseuille and thermal creep contributions as

Ṁ = d2p [−GPk +GT τ ] (3.10)

Q̇ = d2

2 p [QPk −QT τ ] (3.11)

whereGP , GT , QP , andQT are dimensionless coefficients (defined to be always positive)
that represent the Poiseuille coefficient, the thermal creep coefficient, the mechanoca-
loric coefficient and the reduced heat flux, respectively.
In [53, 69, 70], it was proven that the cross coefficients GT and QP obey the Onsager
relation

GT = QP . (3.12)
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3.2. Reference value of the TPD exponent

To apply the variational formulation, a suitable functional J is introduced, which at-
tains its minimum when the test function solves Eq. (3.4); the stationary value of J has
a direct connection with the quantities of physical interest for the problem at hand.
Since the purpose of the authors was to provide an analytical expression for the slip
coefficients, it has been sufficient to consider asymptotic results (near-continuum) for
mass flow rates. Therefore, J was evaluated on a simplified test function, with some
adjustable constants to be varied in order to obtain the best value of the functional.
The results of all the computations are ([27])

GP = δ

σP0
+ σP1 + σP2

δ
+ . . . (3.13)

and ([28])

GT = σT1
δ

+ σT2
δ2 + . . . , (3.14)

both valid, a priori, only for δ � 1.
From a comparison between Eqs. (3.13) and (3.14) and the pressure- and thermal-driven
mass flow rates obtained by using the Navier-Stokes equations with second-order slip
boundary conditions, it can be found that the σ coefficients are related to the slip
coefficients defined in Section 2.3.1.1 through the formulas

AP1 = σP0 σ
P
1

3
√
π

(3.15)

AP2 = σP0 σ
P
2

3π (3.16)

and
AT1 = σT1 (3.17)
AT2 = σT2 (3.18)

From a comparison with results obtained by a direct numerical solution of the LBE, it
has been assessed that the validity of Eqs. (3.13) and (3.14) extends up to δ ' 3, hence
beyond the classical slip regime.

Therefore, from Eq. (2.70), the resulting expression for γ is

γ =
σT1
δ

+ σT2
δ2

δ

σP0
+ σP1 + σP2

δ

. (3.19)

In this section, we analyse what we shall call the “reference value” of the TPD expo-
nent γ, that is, we study the analytical behaviour of Eq. (3.19) without any substantial
simplification:

γ = σT1 δ + σT2
1
σP0

δ3 + σP1 δ
2 + σP2 δ

= σT1 δ + σT2

δ

(
1
σP0

δ2 + σP1 δ + σP2

) =
σT1 + σT2

δ
1
σP0

δ2 + σP1 δ + σP2

.
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The coefficients are (see [27, 28]):

σT1 =
[
64Ĵ4

(
2Ĵ1
π3/2 + 1

)]−1 [
16
(
5Ĵ1 − 10Ĵ3 + 2Ĵ4

)
+ 10π3/2 (αt + αn − αtαn + 4)

]
(3.20)

σT2 =
[
2
√
πAT

]−1
[
BTCT
AT

− ET
]

(3.21)

AT = 32Ĵ4
3
√
π

[
2Ĵ1
π3/2 + 1

]
αt (3.22)

BT =− 128
π
Ĵ4αt(1− αt) [F0αn + F1(1− αn)]− 8Ĵ4

[ 4
π

+ αt

]
αt (3.23)

+ 16
3
√
π

[
2Ĵ1
π3/2 + 1

] [
αn + 7αt + 2αt3 − 6αt2 − αtαn

]
αt (3.24)

CT = −16
3
[
5Ĵ1 − 10Ĵ3 + 2Ĵ4

]
αt −

10
3 π

3/2 [αt + αn − αtαn + 4]αt (3.25)

ET = −32
√
π
[
5Ĵ3 − Ĵ4

]
αt + 160παt(1− αt) [F0αn + F1(1− αn)]

+ 10π2αt [2αt + αn − αtαn]− 32
3 παt

[
αt − 2αn − 3αt2 + αt

3 + 2αtαn −
15
4

]
(3.26)

σP0 =
(
4
√
π
)−1

[96
π
Ĵ1 + 48

√
π

]
' 5.8883 (3.27)

σP1 =
(
4
√
πAPαt

)−1
[
DP −

16
9 πCPαt

]
(3.28)

σP2 =
(
4
√
πAPαt

)−1
[
EP + 16

9 πCP
2αt −

16
9 πBPαt − CPDP

]
(3.29)

AP = 32
3π Ĵ1 + 16

3
√
π ' 4.6385 (3.30)

BP = AP
−1
[128
π
Ĵ2 − 16

√
παt − 16

√
παn + 16

√
παtαn

]
(3.31)

CP = AP
−1 [−16− 4παt − 64F0αn(1− αt)− 64F1(1− αt)(1− αn)] (3.32)

DP = 128
3 Ĵ1 −

32
3 π

3/2αt + 64
3 π

3/2 (3.33)

EP = −64π + 64
3 παt − 256πF0αn(1− αt)− 256πF1(1− αt)(1− αn) (3.34)

with the numerical parameters

Ĵ1 = −1.4180 Ĵ2 = 1.8909 (3.35)

Ĵ3 = 0.9449 Ĵ4 = 4.7252 (3.36)
F0 = 0.196079 F1 = 0.247679 (3.37)

We are interested in studying the dependence of γ on the rarefaction parameter δ and
on the accommodation coefficients αt and αn.
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3.2.1. Preliminary considerations

For what concerns the behaviour with respect to δ, we have that:

1. δ =
−σP1 ±

√
σP1

2 − 4σP2 /σP0
2/σP0

⇒ γ →∞ ;

2. δ → 0 ⇒ γ →∞ ;

3. δ = −σT2 /σT1 ⇒ γ = 0 ;

4. δ →∞ ⇒ γ → 0 and ∝ 1/δ2 .

Since the expressions of all the coefficients reported above are obtained in the case
δ � 1, we can neglect case 1 (in which, via numerical check, we have δ < 0, which does
not make physical sense) and 2 (δ → 0). Moreover, as observed in Section 2.3.2.2, γ
should be monotonically decreasing as δ increases, therefore the minimum δ for which
the model is correct will be for sure strictly bigger than the one reported in case 3.
Finally, the trend described in case 4, that is, the vanishing and the particular asymp-
totic behaviour of the TPD exponent as the rarefaction parameter is in viscous flow
regime, is exactly what we expected, according to Section 2.3.2.2 and [56].

For what concerns the accommodation coefficients, we observe that the above coeffi-
cients contain denominators proportional to αt: precisely, we find divergent denomina-
tors in σT2 , σP1 and σP2 when αt = 0. Therefore, we look for some simplifications.
We rewrite the coefficients in order to highlight their dependence on the accommodation
parameters:

AT = 32Ĵ4
3
√
π

[
2Ĵ1
π3/2 + 1

]
αt = A′Tαt A′T = 32Ĵ4

3
√
π

[
2Ĵ1
π3/2 + 1

]
' 13.9535 (3.38)

BT =
[
−32
π
Ĵ4(4F1 − 1)

]
αt +

[
128
π
Ĵ4F1 − 8Ĵ4 + 112

3
√
π

(
2Ĵ1
π3/2 + 1

)]
αt

2 (3.39)

+
[
−128

π
Ĵ4(F0 − F1) + 16

3
√
π

(
2Ĵ1
π3/2 + 1

)]
αtαn

+
[

128
π
Ĵ4(F0 − F1)− 16

3
√
π

(
2Ĵ1
π3/2 + 1

)]
αt

2αn

+
[
−32
√
π

(
2Ĵ1
π3/2 + 1

)]
αt

3 +
[

32
3
√
π

(
2Ĵ1
π3/2 + 1

)]
αt

4

= B′Tαt

B′T =
[
−32
π
Ĵ4(4F1 − 1)

]
+
[

128
π
Ĵ4F1 − 8Ĵ4 + 112

3
√
π

(
2Ĵ1
π3/2 + 1

)]
αt (3.40)

+
[
−128

π
Ĵ4(F0 − F1) + 16

3
√
π

(
2Ĵ1
π3/2 + 1

)]
αn
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+
[

128
π
Ĵ4(F0 − F1)− 16

3
√
π

(
2Ĵ1
π3/2 + 1

)]
αtαn

+
[
−32
√
π

(
2Ĵ1
π3/2 + 1

)]
αt

2 +
[

32
3
√
π

(
2Ĵ1
π3/2 + 1

)]
αt

3

CT =
[
−16

3
(
5Ĵ1 − 10Ĵ3 + 2Ĵ4

)
− 40

3 π
3/2
]
αt (3.41)

+
[
−10

3 π
3/2
]
αt

2 +
[
−10

3 π
3/2
]
αtαn +

[10
3 π

3/2
]
αt

2αn

= C ′Tαt

C ′T =
[
−16

3
(
5Ĵ1 − 10Ĵ3 + 2Ĵ4

)
− 40

3 π
3/2
]

(3.42)

+
[
−10

3 π
3/2
]
αt +

[
−10

3 π
3/2
]
αn +

[10
3 π

3/2
]
αtαn

ET =
[
−32
√
π(5Ĵ3 − Ĵ4) + 40π(4F1 + 1)

]
αt +

[
160π(F0 − F1) + 64

3 π
]
αtαn (3.43)

+
[
−160π(F0 − F1)− 10π2 − 64

3 π
]
αt

2αn

+
[
−160πF1 + 20π2 − 32

3 π
]
αt

2 + [32π]αt3 +
[
−32

3 π
]
αt

4

= E′Tαt

E′T =
[
−32
√
π(5Ĵ3 − Ĵ4) + 40π(4F1 + 1)

]
+
[
160π(F0 − F1) + 64

3 π
]
αn (3.44)

+
[
−160π(F0 − F1)− 10π2 − 64

3 π
]
αtαn

+
[
−160πF1 + 20π2 − 32

3 π
]
αt + [32π]αt2 +

[
−32

3 π
]
αt

3

AP = 16
3

( 2
π
Ĵ1 +

√
π

)
BP = 16

AP

[ 8
π
Ĵ2 −

√
παt −

√
παn +

√
παtαn

]
(3.45)

CP = −161 + 4F1
AP

+
[
416F1 − π

AP

]
αt+

[64(F1 − F0)
AP

]
αn+

[
−64(F1 − F0)

AP

]
αtαn (3.46)

DP = 64
3
(
2Ĵ1 + π3/2

)
+
[
−32

3 π
3/2
]
αt (3.47)

EP = [−64π − 256πF1]+
[64

3 π + 256πF1

]
αt+[256π(F1 − F0)]αn+[256π(F0 − F1)]αtαn

(3.48)
Therefore:

σT2 = 1
2
√
π

[
BTCT

AT
2 −

ET
AT

]
= 1

2
√
π

B′TC ′Tαt2
A′T

2αt
2 −

E′Tαt
A′Tαt

 = 1
2
√
π

[
B′TC

′
T

A′T
2 −

E′T
A′T

]
,

(3.49)
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hence, σT2 is non-singular for every choice of the accommodation coefficients;

DP −
16
9 πCPαt = 64

3
(
2Ĵ1 + π3/2

)
+
[
−32

3 π
3/2
]
αt −

16
9 π

{
−161 + 4F1

AP
+
[
416F1 − π

AP

]
αt

+
[64(F1 − F0)

AP

]
αn +

[
−64(F1 − F0)

AP

]
αtαn

}
αt

=
[64

3
(
2Ĵ1 + π3/2

)]
+
[
−32

3 π
3/2 + 256

9 π
1 + 4F1
AP

]
αt

+
[
−64

9 π
16F1 − π
AP

]
αt

2 +
[
−1024

9 π
F1 − F0
AP

]
αtαn +

[1024
9 π

F1 − F0
AP

]
αt

2αn

⇒ DP −
16
9 πCPαt 6= 0 if αt = 0 ,

therefore σP1 is singular for αt = 0;

finally, after some elementary manipulations:

EP + 16
9 πCP

2αt −
16
9 πBPαt − CPDP = EP −

(
DP −

16
9 πCPαt

)
CP −

16
9 πBPαt

(3.50)
= σP2

′
αt

with

σP2
′ =

64
3 π + 16π2 − 32π5/2 1 + 4F1

2Ĵ1 + π3/2
+ 16π3

(
1 + 4F1

2Ĵ1 + π3/2

)2

− 128
3 πĴ2

1
2Ĵ1 + π3/2


(3.51)

+
[
8π5/2 16F1 − π

2Ĵ1 + π3/2
− 8π3 (1 + 4F1)(16F1 − π)

2Ĵ1 + π3/2

]
αt +

π3
(

16F1 − π
2Ĵ1 + π3/2

)2
αt2

+
[
128π5/2 F1 − F0

2Ĵ1 + π3/2
− 128π3 (F1 − F0)(1 + 4F1)

(2Ĵ1 + π3/2)2
+ 16

3
π5/2

2Ĵ1 + π3/2

]
αn

+
[
128π5/2 F1 − F0

2Ĵ1 + π3/2
+ 128π3 (1 + 4F1)(F1 − F0)

(2Ĵ1 + π3/2)2
+ 32π3 (16F1 − π)(F1 − F0)

(2Ĵ1 + π3/2)2

−16
3 π

5/2 1
2Ĵ1 + π3/2

]
αtαn

+
[
−32π3 (16F1 − π)(F1 − F0)

(2Ĵ1 + π3/2)2

]
αt

2αn +

256π3
(

F1 − F0

2Ĵ1 + π3/2

)2
αn2

+

−256π3
(

F1 − F0

2Ĵ1 + π3/2

)2
αtαn2 +

256π3
(

F1 − F0

2Ĵ1 + π3/2

)2
αt2αn2 .

In the numerator of σP2 , the coefficients of the terms constant with respect to αt are
identically zero, so αt at the denominator simplifies and therefore σP2 is non-singular
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for every choice of the accommodation coefficients.
To sum up: the only divergent coefficient for some choice of the accommodation coef-
ficients is σP1 , and precisely γ → 0 for αt → 0.

The final expressions for the σ coefficients are:

σT1 =
[
64Ĵ4

(
2Ĵ1
π3/2 + 1

)]−1 [
16
(
5Ĵ1 − 10Ĵ3 + 2Ĵ4

)
+ 10π3/2 (αt + αn − αtαn + 4)

]
(3.52)

σT2 = 1
2
√
π

[
B′TC

′
T

A′T
2 −

E′T
A′T

]
(3.53)

σP0 =
(
4
√
π
)−1

[96
π
Ĵ1 + 48

√
π

]
(3.54)

σP1 =
(
4
√
πAPαt

)−1
[
DP −

16
9 πCPαt

]
(3.55)

σP2 = σP2
′

4
√
πAP

(3.56)

3.2.2. Analytical behaviour of the reference expression

3.2.2.1. γ for fixed δ and varying αt and αn

Here, we consider γ as a two-dimensional function of the accommodation coefficients
only, considering δ as a parameter, and we study the 3-D plot of γ = γ(αt, αn) as δ
varies.
In general, we observe the foreseen trend γ → 0 as δ → +∞, but this behaviour is
uniform (that is, true for every choice of αt and αn) only for δ large enough: for δ < 5
there is a region (αt ' 2, αn ' 0, and the bigger the δ, the smaller the region) where
γ locally increases as δ increases (Fig. 3.1), while for δ > 5 we have that, for every
αt, αn fixed, γ is monotonically decreasing as δ increases (Fig. 3.2). This could be an
indication that this model of the boundary conditions in the TPD effect may be not
suitable if the gas is too rarefied and a large αt and a small αn are needed.
Moreover, we observe that for δ < 3 there is a region (αt ' 2, αn ' 0) where γ < 0
(Fig. 3.3), but we already knew, and we find a confirm here, that in this regime of (high)
rarefaction the previous expressions of the mass flow rates are not valid, especially for
these particular values of the accommodation coefficients.
Finally, we observe, here only in a qualitative sense and more quantitatively in the
following, that for δ ≥ 5 γ is visibly more sensible on the choice of αt rather than of
αn.

3.2.2.2. γ for fixed αt and αn and varying δ

Here, we consider γ as a function of the rarefaction parameter only, and we study the
graph of γ = γ(δ) as αt and αn vary.
The qualitative trend is the same for every choice of the parameters: γ has a maximum
for relatively small δ, and goes to 0 as δ →∞.
Moreover, for fixed αn, as αt increases (see Fig. 3.4):

• the maximum is reached for bigger δ;
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3.2. Reference value of the TPD exponent

(a) δ = 3. (b) δ = 5.

Figure 3.1.: γ = γ(αt, αn) for different fixed δ: as δ increases, γ is locally increasing for αt ' 2 αn ' 0.

(a) δ = 10. (b) δ = 20.

Figure 3.2.: γ = γ(αt, αn) for different fixed δ: if δ is large enough, γ is uniformly decreasing as δ
increases.

(a) δ = 1.8. (b) δ = 2.5.

Figure 3.3.: γ = γ(αt, αn) for different fixed δ: if δ is too small, γ is locally negative.

43



3. TPD exponent for a single gas

1 2 3 4 5 10 20 50 100

0

0.05

0.1

0.15

0.2

0.25
n
=0.25

t
=0.75

t
=1

t
=1.25

t
=1.5

t
=1.75

t
=2

maxima
t
 increases

(a) αn = 0.25.

1 2 3 4 5 10 20 50 100

0

0.05

0.1

0.15

0.2

0.25
n
=0.5

t
=0.75

t
=1

t
=1.25

t
=1.5

t
=1.75

t
=2

maxima

t
 increases

(b) αn = 0.5.
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(c) αn = 0.75.

Figure 3.4.: γ = γ(δ) for αn fixed and different increasing αt: the point of maximum moves towards
bigger δ, and the maximum first increases and then decreases.
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Figure 3.5.: γ = γ(δ) for large αn fixed and different increasing αt: the maxima tend to align on a
vertical line.

• the value of the maximum increases (and after a certain αt also decreases if
αn < 0.7);

• as αn gets closer to 1, the maxima tend to lie on a vertical line (Fig. 3.5).

Viceversa, for fixed αt, as αn increases (see Fig. 3.6):

• the maximum is reached for bigger δ if αt < 1, and for smaller δ if αt > 1;

• the value of the maximum decreases if αt < 1, and increases if αt > 1;

• for αt = 1, γ is exactly the same for every αn.

Even just looking at the graphs, we can make some qualitative observations:

• with fixed αn, γ varies sensibly as αt varies, especially for about δ < 10;

• viceversa, for αt fixed, the dependence of γ on αn is rather weak, especially for
δ > 4÷ 5.

These remarks qualitatively agree with what was observed at the end of the previous
section. The consequence is that, in order to describe correctly the phenomenon, we
expect that it is more important to tune precisely αt rather than αn, especially near
the transition regime.
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Figure 3.6.: γ = γ(δ) for αt fixed and different increasing αn: the point of maximum moves towards
bigger or smaller δ and the maximum decreases or increases depending on the value of αt.
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Figure 3.7.: γ = γ(αn) for δ and αt < 1 fixed.

Moreover, the fact that γ must be strictly decreasing with respect to δ forces a lower
bound for the domain of validity of the model with respect to the rarefaction regime:
the rarefaction parameter must be greater than the point of maximum of the curve.
In particular, even if it was assessed, through numerical simulations, that Eqs. (3.13)
and (3.14) hold up to δ ' 3, this model is actually unable to describe correctly the
TPD phenomenon if we are dealing with large αt and small αn (see Figs. 3.4 and 3.6)
and δ < 5, in agreement with previous observations.

3.2.2.3. γ for fixed δ and αt and varying αn

Here, we consider γ as a function of αn, considering δ and αt as parameters, and we
study the graph of γ = γ(αn) as δ and αt vary.
αt < 1 (Fig. 3.7): γ is strictly decreasing for δ small, has a maximum for δ interme-

diate, strictly increasing for bigger δ, is almost linear for δ big enough.
αt = 1: for every δ, γ has a constant value as αn varies, as already observed. This is

a strong indication that, if αt = 1, then the TPD effect is not influenced by the part of
the mathematical model (and maybe of the physical problem) described by αn.
αt > 1 (Fig. 3.8): γ is strictly increasing for δ small, has a maximum for δ interme-

diate, strictly decreasing for bigger δ, is almost linear for δ big enough.
It may be interesting to study the percent variation of γ = γ(αn) through the domain

of αn for fixed δ and αt, defined as

∆% =
max
αn

γ −min
αn

γ

min
αn

γ
. (3.57)

For different values of δ and αt, ∆% takes in general different values, so we can actually
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Figure 3.8.: γ = γ(αn) for δ and αt > 1 fixed.

write ∆% = ∆%(δ, αt). Let us have a look at the dependence of this quantity on δ for
different values of αt.

Treating αt as a parameter and δ as the only independent variable (but always with
δ > 3), we can see (Fig. 3.9) that the behaviour of ∆% is qualitative similar for every
αt: it rapidly decreases for small δ, has a deep minimum for a certain intermediate δ,
and tends to a constant value as δ increases.
For what concerns the quantitative values, we can see that the closer αt is to 1 the
smaller is the percent variation of γ (i.e., the lesser γ changes by changing αn), that is,
the weaker is the dependence of γ on αn. As a limit case, for αt = 1, ∆% is identically
zero, no matter what δ is. For example, for 0.8 < αt < 1.2 the percent variation of
γ as αn goes from 0 to 1 is less than 10%, and for 0.6 < αt < 1.4 is less than 15%
for practically every δ. We actually have a pretty large variation of γ for αt = 1.4
in the interval 3 < δ < 4, and it becomes even worse with bigger αt. This seems to
indicate a very sensible γ with respect to αn in this interval of δ, but indeed we al-
ready know that this region of rarefaction regimes is a “grey area” of the model if αt
is big: as a consequence, it is unlikely that this strong dependence of γ on αn is realistic.

These merely numerical considerations have practical consequences: for example, for
αt ' 1, and indifferently on the rarefaction regime, it may be difficult, but probably also
useless, to tune experimentally αn with high precision, since the percent variation of γ
might be similar to the relative sensitivity of the instruments. The same considerations
may be done even for αt not too close to 1, but coupled with a particular rarefaction
regime, well described by the point of minimum of ∆% for that specific αt. Another
consideration is related to ∆% at large δ: the fact that it tends to a constant value at
large δ means that after a certain point the sensitivity of γ with respect to αn is not
influenced by the regime of rarefaction any more. Therefore, the importance of tuning
αn accurately in order to have a correct model is always the same, for every δ large
enough. Actually, concerning this last remark, it is worth noting that the intensity
of the phenomenon of thermal creep, measurable for example by the TPD exponent
itself, fades as δ increases: once a certain regime of (low) rarefaction is reached, it
may be literally impossible, regardless the sensitivity of γ on αn, even to detect the
phenomenon, and all this work loses its point.

3.2.2.4. γ for fixed δ and αn and varying αt

Here, we consider γ as a function of αt, considering δ and αn as parameters, and we
study the graph of γ = γ(αt) as δ and αn vary.
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Figure 3.9.: ∆% for different αt in the entire range of δ.
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Figure 3.10.: γ = γ(αt) for δ small and intermediate and αn < 0.75 fixed.
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(a) δ = 100, αn = 0.5.
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(b) δ = 900, αn = 0.5.

Figure 3.11.: γ = γ(αt) for δ big and αn < 0.75 fixed.

αn < 0.75: γ has a maximum for small δ (> 3) and becomes strictly increasing for
bigger δ (Fig. 3.10); from δ > 100 (and more and more evidently as δ increases) it starts
to show a sort of boundary layer for small αt, where it grows faster than for bigger
values of αt; out of this boundary layer, it is almost linear (Fig. 3.11).

αn ≥ 0.75: γ is strictly increasing for every δ > 3 (Fig. 3.12); from δ > 100 (and
more and more evidently as δ increases) it starts to show again the boundary layer
(Fig. 3.13); out of it, γ is almost linear, and almost constant for αn = 1.
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Figure 3.12.: γ = γ(αt) for δ small and intermediate and αn = 1.
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Figure 3.13.: γ = γ(αt) for δ big and αn = 1.
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3. TPD exponent for a single gas

3.3. Series expansion

In this section, we approximate the TPD exponent γ with the series expansion of
Eq. (3.19) truncated at order n in 1/δ: precisely, we rewrite γ as

γ =
σT1
δ

+ σT2
δ2

δ

σP0

(
1 + σP0 σ

P
1

δ
+ σP0 σ

P
2

δ2

) =

σP0
δ

(
σT1
δ

+ σT2
δ2

)

1 + σP0 σ
P
1

δ
+ σP0 σ

P
2

δ2

=

σP0
δ2

(
σT1 + σT2

δ

)

1 +
(
σP0 σ

P
1

δ
+ σP0 σ

P
2

δ2

)
(3.58)

and develop the denominator in the form 1
1 + x

= 1− x+ x2 − x3 + ... for x� 1.

3.3.1. Order 2

(
1 + σP0 σ

P
1

δ
+ σP0 σ

P
2

δ2

)−1

= 1− . . .

Hence:
γ(2) = σP0 σ

T
1

δ2 , (3.59)

which resembles what is reported in [71]. The subscript (2) denotes the order of trun-
cation.
We recall the expressions of the parameters:

σP0 =
(
4
√
π
)−1

[96
π
Ĵ1 + 48

√
π

]
' 5.8883

σT1 =
[
64Ĵ4

(
2Ĵ1
π3/2 + 1

)]−1 [
16
(
5Ĵ1 − 10Ĵ3 + 2Ĵ4

)
+ 10π3/2 (αt + αn − αtαn + 4)

]
We are interested in studying the dependence of γ on δ and on the accommodation

coefficients αt and αn.

3.3.1.1. γ(2) for fixed δ and varying αt and αn

γ(2) is always positive, for every (αt, αn) and for every δ (Fig. 3.14). Moreover, we
observe clearly the trend γ(2) → 0 as δ → ∞, which is now uniform in the whole
domain.
A comparison with the reference γ for the same δ shows that even for a pretty big
δ (δ = 20, Fig. 3.15) there is a visible discrepancy: the minimum relative difference
(which happens for αt = 2) is still 15%, and even quite far from the boundary layer in
αt = 0 (precisely, in αt = 1) the difference is 40%.
Only for δ = 100 (Fig. 3.16) we reach a 10% discrepancy also for αt closer to the
boundary layer (αt = 0.8).
Finally, γ(2) always overestimate the actual reference value of γ, for every (αt, αn) and
for every δ.
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3.3. Series expansion

(a) δ = 3. (b) δ = 5. (c) δ = 9.

Figure 3.14.: γ(2) = γ(2)(αt, αn) for different fixed δ.

(a) γ = γ(αt, αn), δ = 20. (b) γ(2) = γ(2)(αt, αn), δ = 20.

Figure 3.15.: Comparison between γ and γ(2) for quite large δ.

(a) γ = γ(αt, αn), δ = 100. (b) γ(2) = γ(2)(αt, αn), δ = 100.

Figure 3.16.: Comparison between γ and γ(2) for large δ.
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Figure 3.17.: γ(2) = γ(2)(δ) for αt and αn fixed: the qualitative behaviour is the same for every choice
of the accommodation coefficients.

3.3.1.2. γ(2) for fixed αt and αn and varying δ

For what concerns the behaviour with respect to δ, we have that γ(2) ∝ 1/δ2, therefore:

1. δ → 0 ⇒ γ(2) →∞ ;

2. δ →∞ ⇒ γ(2) → 0

3. γ(2) is strictly decreasing for every δ.

As we already know very well by then, case 1 is well out of the domain of validity
even for the original model (as well as physically wrong). Moreover, case 3 is physically
consistent in principle, so we cannot use the lack of monotonicity to assess a lower bound
for δ (as we did in Section 3.2.2.2). Finally, for what concerns case 2, we have that γ(2)
tends to zero as δ → ∞ with the correct asymptotic trend. The overall qualitative
behaviour is the same for every choice of the parameters αt and αn (see Fig. 3.17).

We can perform the same kind of analysis as in Section 3.2.2.2, that is, we consider
how γ(2) changes using different values of an accommodation coefficient, keeping the
other one fixed. For example, we fix αt and we let αn span the whole interval [0, 1].
Looking at Fig. 3.18, we can see that the behaviour is somewhat specular with respect
to αt = 1: as αt increases, but always remaining less than 1, the bundle of curves,
parametrized by αn, shrinks, until αt = 1, for which the bundle is actually formed by
just one curve (we trivially observe that if αt = 1 then, due to a simplification in σT1 , γ(2)
is independent of αn); as soon as αt > 1 the bundle starts to spread again. Moreover, as
αn increases, the curve “moves” in opposite directions depending on whether αt is bigger
or smaller than 1. Now we note that γ(2) is symmetric with respect to the exchange
αt ↔ αn: if we write αn in place of αt and viceversa, γ(2) is unchanged. Therefore,
thanks to this trivial observation, the analysis for the opposite case, in which we fix
αn and we let αt vary, is straightforwardly recovered from what we just said. The only
difference is that αt goes from 0 to 2, while αn only from 0 to 1: the simple consequence
is that the bundle will be wider.

52



3.3. Series expansion

2 3 4 5 10 20 50 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(2
)

t
=0.5

n
=0

n
=0.25

n
=0.5

n
=0.75

n
=1

n
 increases

(a) αt = 0.5.

2 3 4 5 10 20 50 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(2
)

t
=0.75

n
=0

n
=0.25

n
=0.5

n
=0.75

n
=1n

 increases

(b) αt = 0.75.

2 3 4 5 10 20 50 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(2
)

t
=1.25

n
=0

n
=0.25

n
=0.5

n
=0.75

n
=1

n
 increases

(c) αt = 1.25.

2 3 4 5 10 20 50 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(2
)

t
=1.5

n
=0

n
=0.25

n
=0.5

n
=0.75

n
=1

n
 increases

(d) αt = 1.5.

Figure 3.18.: γ(2) = γ(2)(δ) for αt fixed and different αn.
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(a) δ = 3, αt = 0.5.
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(b) δ = 3, αn = 0.25.

Figure 3.19.: γ(2) for the fixed accommodation coefficient strictly smaller than 1.

3.3.1.3. γ(2) for fixed δ and fixed one of the two accommodation
coefficients, letting the other vary

Thanks to the previous observation, we can talk about varying and fixed accommoda-
tion coefficient (AC), without specifying which is αn and which is αt. Hence, let us fix
one of the AC and vary the other, thinking of γ(2) as a function of δ and of the varying
AC only. It is easily seen that γ(2) is:

• linear with respect to the varying AC;

• strictly increasing (decreasing) if the fixed AC is chosen strictly smaller (bigger)
than 1 (Figs. 3.19 and 3.20);

• constant if the fixed AC is chosen equal to 1.

The first two points (linearity and monotonicity) coincide with the results of Sec-
tion 3.2.2 for the case of δ large (cfr Figs. 3.7, 3.8, 3.11 and 3.13). For what concern
the third point (constantness): for δ fixed, the reference γ was actually constant with
respect to αn if αt = 1, but not with respect to αt if αn = 1. Anyway, the last state-
ment tends to become true for (very) large δ (see Fig. 3.13). Moreover, for any choice
of the fixed AC, the percent variation of γ(2) as the free AC varies is always the same
(up to all the digits after the decimal point that MATLAB® allows) for every δ, and
this percent variation gets smaller as the fixed AC gets closer to 1. We have already
discussed (Section 3.2.2.3) what a constant and a small percent variation mean from
a practical point of view. The difference is that here ∆% is constant through all the
regimes of rarefaction, while in the previous model it was approximately constant only
for large δ.

The conclusion is that the result of the approximated model are qualitatively recov-
ered through the reference one by letting δ increase, as one should actually expect.
Nonetheless, the quantitative agreement is good only for δ very big, almost in the hy-
drodynamic regime: therefore, it is likely that the approximated model is not suitable
if the aim is to model the boundary conditions of a pressure- and temperature-driven
flow, or to discriminate with high accuracy the actual domain of validity of a descrip-
tion which couples Navier-Stokes equations and higher-order slip boundary conditions.
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Figure 3.20.: γ(2) for the fixed accommodation coefficient strictly bigger than 1

A final remark could be made on the physical meaning of the symmetry of γ(2) with
respect to the exchange αn with αt and viceversa: this fact may be an indication that
at large δ the two-parameter CL model may be reduced to a single-parameter one.

3.3.2. Higher orders

For the next orders, we limit ourselves to give the expression of the approximated γ,
without any numerical or graphical analysis.

3.3.2.1. Order 3
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Hence:

γ = σP0 σ
T
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δ3 . (3.60)

3.3.2.2. Order 4
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3.3.2.3. Order 5
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(3.62)

3.4. Comparison with numerical results: reliability of the
variational approach

In this section, we present briefly the numerical results reported in [24] and compare
them with our analytical solution.

The assumptions are the same of our model: the authors consider the LBE for a gas
of hard spheres between two infinite parallel plates with Cercignani-Lampis boundary
conditions and the true linearized collision operator. The difference with our work
is that they directly solve numerically the LBE, without resorting to any variational
method or analytical or semi-analytical approach. Therefore, their analysis holds for
a wider range of rarefaction regimes, but coding and computational effort are not a
trivial issue.
Making use of the Onsager-Casimir relation (with a different sign convention as it was
written in previous sections)

GT = −QP , (3.63)

where QP is the heat flow rate in Poiseuille flow (that is, heat flow due to the mechano-
caloric effect), the authors limit their attention to the Poiseuille problem, considering
both mass and heat flow rate, rather than compute only mass flow rate but in two
different cases (Poiseuille flow and thermal creep).
Therefore, γ can be rewritten as

γ = −QP
GP

. (3.64)

The main points highlighted in the paper concerning the behaviour of QP and GP are
the following:

• fixed accommodation coefficients:QP always increases when δ decreases, whileGP
first decreases and then increases with δ, with the minimum (Knudsen minimum,
see [54]) at δ ≈ 1 (see Figs. 3.21a and 3.21b);

• δ and αn fixed: GP increases rapidly when αt decreases;

• δ and αt fixed: GP increases slightly when αn increases (decreases) if αt > 1
(αt < 1), and does not change if αt = 1;
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3.4. Comparison with numerical results: reliability of the variational approach

(a) CL b.c.: αt = 1, αn = 1. (b) CL b.c.: αt = 0.75, αn = 1. Maxwell b.c.: α = 0.75.

(c) The TPD exponent, γ.

Figure 3.21.: GP , QP and the TPD exponent in the Poiseuille flow between two parallel plates, when
the Cercignani-Lampis and Maxwell boundary conditions are used. Triangles: hard-spheres molecules
(CL b.c.). Dashed lines: helium (CL b.c.). Dash-dotted lines: xenon (CL b.c.). Pentagrams: hard-spheres
molecules (Maxwell b.c.). (from [24])

• δ and αn fixed: QP increases slightly with αt at large values of δ (' δ > 3), and
increases with decreasing αt at small values of δ (' δ < 2.5);

• δ and αt fixed: QP decreases slightly when αn increases (decreases) if αt < 1
(αt > 1) and if δ is small (' δ < 2.5), viceversa with large values of δ (' δ > 3),
and does not change if αt = 1 (it can be proven that in this case the CL boundary
condition is reduced to the diffuse boundary condition).

For what concerns the interval of δ of interest for us, we can immediately deduce
that:

• fixed accommodation coefficients: γ is surely strictly decreasing as δ increases for
δ larger than the Knudsen minimum;

• δ and αn fixed: γ surely strictly increasing with αt for δ > 3;

• δ and αt fixed: γ constant with respect to αn if αt = 1, surely strictly increasing
(decreasing) if αt < 1 (αt > 1) at large δ.
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3. TPD exponent for a single gas

δ αt αn = 0.25 αn = 0.5 αn = 0.75 αn = 1
0.5 0.0571 0.0577 0.0580 0.0586

3.5 1 0.1160 0.1160 0.1160 0.1160
1.5 0.1768 0.1758 0.1739 0.1722
0.5 0.01844 0.01907 0.01968 0.02025

10 1 0.03298 0.03298 0.03298 0.03298
1.5 0.04538 0.04410 0.04280 0.04158
0.5 0.00709 0.00738 0.00765 0.00791

20 1 0.01101 0.01101 0.01101 0.01101
1.5 0.01387 0.01346 0.01303 0.01258
0.5 4.674e-4 4.833e-4 5.041e-4 5.250e-4

100 1 5.719e-4 5.719e-4 5.719e-4 5.719e-4
1.5 6.459e-4 6.276e-4 6.038e-4 5.858e-4

Table 3.1.: γ for HS molecules between two infinite parallel plates, obtained from the linearized Boltz-
mann equation with the Cercignani-Lampis boundary conditions ([24] reports the values of GP and
QP , γ is computed by a plain ratio).

The exact values of γ computed in [24] are reported in Table 3.1.
It is definitely worth noting that in [24] the influence of the intermolecular potential

between gas molecules is also investigated, as one can see from Figs. 3.21a and 3.21b.
The influence of the intermolecular potential is obvious at small values of δ (δ < 1).
On the other hand, for δ > 2 the results derived from the Boltzmann equation for
hard-spheres and for the Lennard-Jones potential (which is considered a realistic po-
tential) are closely related to each other: therefore, our use of the rigid spheres does
not represent a limitation with respect to the generality of our results.
Finally, we highlight that we can consider Fig. 3.21c as a reliable substitute of actual
experimental data (compare, e.g., with Fig. 11 and Fig. 12 of [72]), at least in a qual-
itative sense: in particular, we observe a clear inflection point at around δ = 1, and a
probable limit to a constant value as δ → 0, which has to be, as we know from the
theory, γ = 0.5.

We now proceed with the comparison between the numerical results reported in [24]
(Table 3.1) and the ones computed via our analytical expressions, which have been
presented in Section 3.2 and Section 3.3.

3.4.1. Reference values

The comparison with the relative discrepancies between the results given in [24] and
the ones computed via our reference model Eq. (3.19) is reported in Table 3.2.
The discrepancy is less than 10% already for δ = 3.5, apart for small δ (δ = 3.5), large
αt (αt = 1.5) and small αn (αn = 0.25, 0.5): however, this may be expected, since it
has already been noticed that our model is unreliable if δ ' 3, αt is large and αn is
small. For δ ≥ 20, the match is a bit better for small αt.
We observe that for δ small (e.g., δ = 3.5) and αt fixed, the qualitative behaviour of γ
with respect to αn is the opposite in the two cases:

• if αt < 1, our reference γ decreases as αn increases, while the numerical values
from [24] increase with αn;
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3.4. Comparison with numerical results: reliability of the variational approach

• if αt > 1, reference γ increases with αn, while the numerical values from [24]
decrease as αn increases.

Moreover, we can observe that, apart from the border case δ = 3.5, the reference γ
systematically overestimate the “true” numerical result.

3.4.2. Truncation at order 2

The comparison with the relative discrepancies between the results given in [24] and
the ones computed via the truncated model Eq. (3.59) is reported in Table 3.3.
Approximating γ with only the second order in 1/δ is not enough to have good numerical
results: this approximation does not make sense for δ ≤ 10, especially with small αt,
and with δ = 100 we still have a discrepancy of 10− 25%.
This was to be expected too, since γ(2) always overestimates γ, for every (αt, αn) and
for every δ, and the deviation is practically a non-sense for αt small, even for δ quite
big, because of the boundary layer of γ.

3.4.3. Truncation at higher orders

If we try to obtain a better approximation by using higher-order truncations of the
reference model, that is, γ(n) given by Eqs. (3.60) to (3.62), things do not get much
better (see Tables 3.4 to 3.6):

• for small δ and small αt the absolute value of γ(n) explodes, and we even have a
negative sign if the order of approximation is odd (n = 3, 5), while for big αt the
different values of γ become at least comparable;

• for bigger δ, the discrepancy between approximations and numerical results is
comparable with the one between numerical results and the reference value, but
we still have some problems for too small δ if αt is small.

3.4.4. Conclusion

To conclude, we can say that we found our reference model quite satisfactory: the varia-
tional approach turned out to be a powerful technique in order to obtain fairly accurate
numerical results with trivial coding and negligible computational effort.
The same surely does not hold for the series expansions of various orders of the reference
γ, presented in Section 3.3: they are not suitable to obtain accurate numerical results
even for δ = 10, especially for small αt, and they seem to become reliable only for δ
very big, for which, conversely, as already noticed, these computations are quite useless.

The physical explanation for this behaviour may be the following. Writing the dimen-
sionless mass fluxes for the Poiseuille and the thermal creep problems as in Eq. (3.13)
and Eq. (3.14) respectively, we obtain expressions for the solution of the LBE which
involve terms up to the second order in the Knudsen number Kn (see, e.g., [27, 73]).
A further comparison of these resulting expressions with the solution of the Navier-
Stokes equations coupled with the boundary conditions Eq. (2.57) and Eq. (2.57) gives
the relations Eqs. (3.15) to (3.18), which links the actual slip coefficients, which appear
in the boundary conditions, and the σ coefficients, which appear in the expressions
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3. TPD exponent for a single gas

δ αt αn = 0.25 αn = 0.5 αn = 0.75 αn = 1
3.5 0.5 γL 0.0625 0.0609 0.0590 0.0569

WS 0.0571 0.0577 0.0580 0.0586
% 9.5 5.5 1.7 -3

1 γL 0.1153 0.1153 0.1153 0.1153
WS 0.1160 0.1160 0.1160 0.1160
% -0.6 -0.6 -0.6 -0.6

1.5 γL 0.1444 0.1554 0.1657 0.1754
WS 0.1768 0.1758 0.1739 0.1722
% -22 -13 -5 1.9

10 0.5 γL 0.01974 0.02034 0.02085 0.02136
WS 0.01844 0.01907 0.01968 0.02025
% 7.1 6.7 6 5.5

1 γL 0.03511 0.03511 0.03511 0.03511
WS 0.03298 0.03298 0.03298 0.03298
% 6.5 6.5 6.5 6.5

1.5 L 0.04762 0.04670 0.04572 0.04468
WS 0.04538 0.04410 0.04280 0.04158
% 5 5.9 6.8 7.5

20 0.5 γL 0.00749 0.00779 0.00808 0.00838
WS 0.00709 0.00738 0.00765 0.00791
% 5.6 5.6 5.6 5.9

1 γL 0.01173 0.01173 0.01173 0.01173
WS 0.01101 0.01101 0.01101 0.01101
% 6.5 6.5 6.5 6.5

1.5 L 0.01493 0.01447 0.01400 0.01353
WS 0.01387 0.01346 0.01303 0.01258
% 7.6 7.5 7.4 7.6

100 0.5 γL 4.863e-4 5.093e-4 5.321e-4 5.550e-4
WS 4.674e-4 4.833e-4 5.041e-4 5.250e-4
% 4 5.4 5.6 5.7

1 L 6.096e-4 6.096e-4 6.096e-4 6.096e-4
WS 5.719e-4 5.719e-4 5.719e-4 5.719e-4
% 6.6 6.6 6.6 6.6

1.5 γL 7.080e-4 6.821e-4 6.562e-4 6.302e-4
WS 6.459e-4 6.276e-4 6.038e-4 5.858e-4
% 9.6 8.7 8.7 7.6

Table 3.2.: γL indicates the value of γ obtained by the reference expression Eq. (3.19), WS indicates
the value of γ reported in [24]. % is the percent difference between the two values.
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3.4. Comparison with numerical results: reliability of the variational approach

δ αt αn = 0.25 αn = 0.5 αn = 0.75 αn = 1
3.5 0.5 γ(2) 0.4668 0.4894 0.5119 0.5345

WS 0.0571 0.0577 0.0580 0.0586
% 720 750 780 810

1 γ(2) 0.5345 0.5345 0.5345 0.5345
WS 0.1160 0.1160 0.1160 0.1160
% 360 360 360 360

1.5 γ(2) 0.6021 0.5796 0.5570 0.5345
WS 0.1768 0.1758 0.1739 0.1722
% 240 230 220 210

10 0.5 γ(2) 0.05719 0.05995 0.06271 0.06547
WS 0.01844 0.01907 0.01968 0.02025
% 210 210 220 220

1 γ(2) 0.06547 0.06547 0.06547 0.06547
WS 0.03298 0.03298 0.03298 0.03298
% 99 99 99 99

1.5 γ(2) 0.07376 0.07100 0.06823 0.06547
WS 0.04538 0.04410 0.04280 0.04158
% 63 61 59 57

20 0.5 γ(2) 0.01430 0.01499 0.01568 0.01637
WS 0.00709 0.00738 0.00765 0.00791
% 100 100 110 110

1 γ(2) 0.01637 0.01637 0.01637 0.01637
WS 0.01101 0.01101 0.01101 0.01101
% 49 49 49 49

1.5 γ(2) 0.01844 0.01775 0.01706 0.01637
WS 0.01387 0.01346 0.01303 0.01258
% 33 32 31 30

100 0.5 γ(2) 5.719e-4 5.995e-4 6.271e-4 6.547e-4
WS 4.674e-4 4.833e-4 5.041e-4 5.250e-4
% 22 24 24 25

1 γ(2) 6.547e-4 6.547e-4 6.547e-4 6.547e-4
WS 5.719e-4 5.719e-4 5.719e-4 5.719e-4
% 14 14 14 14

1.5 γ(2) 7.376e-4 7.100e-4 6.823e-4 6.547e-4
WS 6.459e-4 6.276e-4 6.038e-4 5.858e-4
% 14 13 13 12

Table 3.3.: Approximation of order 2: γ(2) indicates the value of γ obtained by Eq. (3.59), WS indicates
the value of γ reported in [24]. % is the percent discrepancy between the two values.
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3. TPD exponent for a single gas

δ αt αn = 0.25 αn = 0.5 αn = 0.75 αn = 1
3.5 0.5 γ(3) -1.8601 -1.9630 -2.0663 -2.1702

WS 0.0571 0.0577 0.0580 0.0586
% - - - -

1 γ(3) -0.5777 -0.5777 -0.5777 -0.5777
WS 0.1160 0.1160 0.1160 0.1160
% - - - -

1.5 γ(3) -0.0969 -0.0799 -0.0636 -0.0477
WS 0.1768 0.1758 0.1739 0.1722
% - - - -

10 0.5 γ(3) -0.04258 -0.04520 -0.04783 -0.05049
WS 0.01844 0.01907 0.01968 0.02025
% - - - -

1 γ(3) 0.01779 0.01779 0.01779 0.01779
WS 0.03298 0.03298 0.03298 0.03298
% -85 -85 -85 -85

1.5 γ(3) 0.04379 0.04272 0.04163 0.04051
WS 0.04538 0.04410 0.04280 0.04158
% -3.6 -3.2 -2.8 -2.6

20 0.5 γ(3) 0.00183 0.00184 0.00186 0.00187
WS 0.00709 0.00738 0.00765 0.00791
% -290 -300 -310 -320

1 γ(3) 0.01041 0.01041 0.01041 0.01041
WS 0.01101 0.01101 0.01101 0.01101
% -5.8 -5.8 -5.8 -5.8

1.5 γ(3) 0.01469 0.01421 0.01373 0.01325
WS 0.01387 0.01346 0.01303 0.01258
% 5.9 5.6 5.4 5.3

100 0.5 γ(3) 4.721e-4 4.943e-4 5.166e-4 5.388e-4
WS 4.674e-4 4.833e-4 5.041e-4 5.250e-4
% 1 2.3 2.5 2.6

1 γ(3) 6.070e-4 6.070e-4 6.070e-4 6.070e-4
WS 5.719e-4 5.719e-4 5.719e-4 5.719e-4
% 6.1 6.1 6.1 6.1

1.5 γ(3) 7.076e-4 6.817e-4 6.557e-4 6.298e-4
WS 6.459e-4 6.276e-4 6.038e-4 5.858e-4
% 9.6 8.6 8.6 7.5

Table 3.4.: Order 3: γ(3) indicates the value of γ obtained by Eq. (3.60), WS indicates the value of γ
reported in [24]. % is the percent discrepancy between the two values.
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3.4. Comparison with numerical results: reliability of the variational approach

δ αt αn = 0.25 αn = 0.5 αn = 0.75 αn = 1
3.5 0.5 γ(4) 9.201 9.609 10.01 10.40

WS 0.0571 0.0577 0.0580 0.0586
% - - - -

1 γ(4) 1.220 1.220 1.220 1.220
WS 0.1160 0.1160 0.1160 0.1160
% - - - -

1.5 γ(4) 0.1428 0.1901 0.2320 0.2687
WS 0.1768 0.1758 0.1739 0.1722
% -24 8 33 56

10 0.5 γ(4) 0.1234 0.1285 0.1334 0.1382
WS 0.01844 0.01907 0.01968 0.02025
% 570 570 580 -

1 γ(4) 0.04476 0.04476 0.04476 0.04476
WS 0.03298 0.03298 0.03298 0.03298
% 36 36 36 36

1.5 γ(4) 0.04739 0.04677 0.04606 0.04526
WS 0.04538 0.04410 0.04280 0.04158
% 4.4 6.1 7.6 8.9

20 0.5 γ(4) 0.01220 0.01270 0.01319 0.01367
WS 0.00709 0.00738 0.00765 0.00791
% 72 72 72 73

1 γ(4) 0.01209 0.01209 0.01209 0.01209
WS 0.01101 0.01101 0.01101 0.01101
% 9.8 9.8 9.8 9.8

1.5 γ(4) 0.01492 0.01448 0.01401 0.01354
WS 0.01387 0.01346 0.01303 0.01258
% 7.6 7.6 7.5 7.6

100 0.5 γ(4) 4.887e-4 5.117e-4 5.347e-4 5.576e-4
WS 4.674e-4 4.833e-4 5.041e-4 5.250e-4
% 4.6 5.9 6.1 6.2

1 γ(4) 6.097e-4 6.097e-4 6.097e-4 6.097e-4
WS 5.719e-4 5.719e-4 5.719e-4 5.719e-4
% 6.6 6.6 6.6 6.6

1.5 γ(4) 7.080e-4 6.821e-4 6.562e-4 6.302e-4
WS 6.459e-4 6.276e-4 6.038e-4 5.858e-4
% 9.6 8.7 8.7 7.6

Table 3.5.: Order 4: γ(4) indicates the value of γ obtained by Eq. (3.61), WS indicates the value of γ
reported in [24]. % is the percent discrepancy between the two values.
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3. TPD exponent for a single gas

δ αt αn = 0.25 αn = 0.5 αn = 0.75 αn = 1
3.5 0.5 γ(5) -43.38 -44.98 -46.53 -48.01

WS 0.0571 0.0577 0.0580 0.0586
% - - - -

1 γ(5) -1.640 -1.640 -1.640 -1.640
WS 0.1160 0.1160 0.1160 0.1160
% - - - -

1.5 γ(5) 0.2266 0.1993 0.1735 0.1495
WS 0.1768 0.1758 0.1739 0.1722
% 28 13 0.23 -15

10 0.5 γ(5) -0.1527 -0.1583 -0.1636 -0.1686
WS 0.01844 0.01907 0.01968 0.02025
% - - - -

1 γ(5) 0.02974 0.02974 0.02974 0.02974
WS 0.03298 0.03298 0.03298 0.03298
% -11 -11 -11 -11

1.5 γ(5) 0.04783 0.04682 0.04576 0.04463
WS 0.04538 0.04410 0.04280 0.04158
% 5.4 6.2 6.9 7.3

20 0.5 γ(5) 0.00357 0.00374 0.00391 0.00408
WS 0.00709 0.00738 0.00765 0.00791
% -99 -97 -96 -94

1 γ(5) 0.01162 0.01162 0.01162 0.01162
WS 0.01101 0.01101 0.01101 0.01101
% 5.5 5.5 5.5 5.5

1.5 γ(5) 0.01493 0.01447 0.01400 0.01353
WS 0.01387 0.01346 0.01303 0.01258
% 7.6 7.5 7.4 7.5

100 0.5 γ(5) 4.859e-4 5.088e-4 5.317e-4 5.546e-4
WS 4.674e-4 4.833e-4 5.041e-4 5.250e-4
% 4 5.3 5.5 5.6

1 γ(5) 6.096e-4 6.096e-4 6.096e-4 6.096e-4
WS 5.719e-4 5.719e-4 5.719e-4 5.719e-4
% 6.6 6.6 6.6 6.6

1.5 γ(5) 7.080e-4 6.821e-4 6.562e-4 6.302e-4
WS 6.459e-4 6.276e-4 6.038e-4 5.858e-4
% 9.6 8.9 8.7 7.6

Table 3.6.: Order 5: γ(5) indicates the value of γ obtained by Eq. (3.62), WS indicates the value of γ
reported in [24]. % is the percent discrepancy between the two values.
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3.5. Presentation of the experimental results

of the mass fluxes. This means that Eq. (3.13) and Eq. (3.14) are actually solutions
of precise and consistent kinetic problems, and therefore a physical meaning may be
ascribed to those expressions, although truncated at a certain order in Kn. This is in
turn connected with the consistency of the coupling of the Navier-Stokes equations with
higher-order boundary conditions, which in this way can supply realistic results well
beyond the “usual” slip region, as it is by now generally accepted.
Most likely, the same does not hold for γ: probably, a series expansion of this quantity
truncated at a finite order does not give good approximations of the TPD exponent
because the truncations themselves does not have a physical meaning on their own.

For this reason, in the following only the reference model will be considered for the
numerical computations of the quantity γ.

3.5. Presentation of the experimental results

The experimental data that we will consider refer to the experiment described in [74].

In this article, the thermal transpiration flow through a single channel with a rectan-
gular cross-section is studied for various gas species. Five rare (noble) gases (Helium,
Neon, Argon, Krypton and Xenon) and Nitrogen are employed to evaluate the influ-
ence of different molecular properties on the thermal transpiration flow. This flow is
investigated as a function of the rarefaction parameter δ. The conditions for δ range
from 0.7 up to 80 depending on the gas species, which corresponds to the rarefaction
range from the transitional to the slip flow regime. The thermal transpiration flow de-
pendence on the gas species is shown by evaluating three common parameters for the
final equilibrium characteristics: the thermomolecular pressure difference (∆p), defined
as the pressure difference between the hot side and the cold side; the thermomolecular
pressure ratio (TPR), which is cold side to hot side pressure ratio; the TPD exponent
γ, which we know very well by this time.
Moreover, another kind of data is available for this experiment: precisely, in the same
experimental setup also the first- and second-order thermal slip coefficients for all the
five noble gases considered (but not for Nitrogen) are measured, and presented in [75].

3.5.1. Experimental method

3.5.1.1. Experimental apparatus

A schematic image of the experimental set-up is shown in Fig. 3.22. The micro-channel
has a rectangular cross-section with dimensions: height H = 0.22± 0.01 mm, width
W = 6 mm, and length L = 73 mm. The channel was grooved on a plate and covered
by a flat plate. The plates were made of polyether ether ketone (PEEK), whose thermal
conductivity is low, 0.25 W m−1 K−1. The advantage of this system is that the channel
characteristics, such as material, geometry and dimensions, are easily interchangeable.
However, a single geometry with a single material is used, in order to study the effect of
the gas species on the phenomenon. Note that the geometry presented is consistent with
our assumptions made in the theoretical deductions of the analytical expressions: the
aspect ratio (height/width) is 27.27, large enough to be well approximated by a planar
channel. To realize a temperature gradient along the micro-channel, two blocks with gas
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3. TPD exponent for a single gas

reservoirs inside were placed vertically at each end of the channel. The two blocks were
made of stainless steel (1.4301), whose temperatures were controlled by an electrical
heater for the hot side and circulating water for the cold side, respectively. The pressure
was measured at each reservoir by a high-speed response in time (30 ms) capacitance
diaphragm gauge (CDG). The measurement accuracy for the pressure gauges were
0.15 % and 0.2 % for the hot and the cold side, respectively. The absolute pressure
was measured by a CDG at the hot side, and the zero point of the CDG at the cold
side was set equal to that of the hot side. There was a small difference in temperature
between the reservoirs and the CDGs, and a possible parasitic thermal transpiration
flow between the reservoir and the CDG for each side was found to be very small by
using a semi-empirical formula. The temperature of each block was monitored by a
K-type thermocouple (TC) placed on the outside of the blocks, and it was maintained
constant during the measurement. However, there might be a small discrepancy between
the monitored temperature and that at the channel wall. The hot and the cold reservoirs
were connected not only by the micro-channel, but also by a tube with a large diameter
compared to the micro-channel, forming a circuit, as in Fig. 3.22. A micro-valve was
inserted in the large-diameter tube connection to capture the developed stationary
thermal transpiration flow at the beginning of each experiment. The voltage applied
to the micro-valve was monitored at 300 Hz to determine a precise closing time. The
data from the CDGs and the TCs and the voltage of the micro-valve were captured by
a data acquisition system (DAQ). The test section was also connected to a gas supply
and a vacuum pump to control the pressure conditions.

3.5.1.2. Measurement procedure

The measurement procedure was as follows. Before the measurement, the whole system
was evacuated for a long time, and the temperatures of the hot and the cold sides
were set and controlled to a certain value. The temperature of each side was kept
constant during the whole procedure. First, the pressure of the flow circuit was set to
a certain condition, and then the line to the gas supply and the vacuum pump was
disconnected by closing a bellows-sealed valve. At this moment, the pressures of both
sides were equal due to the circuit connected by the large-diameter tube. After a certain
period needed to stabilize pressure variations due to the closing of the bellows-sealed
valve, the micro-valve was closed too. The pressure started to vary due to the thermal
transpiration flow from the cold to the hot side. The closing of the micro-valve was
monitored by an applied voltage, and the moment, time t = 0, was decided from this
monitoring signal. Since the pressures of the two sides varied differently according to the
thermal transpiration flow, a pressure-driven backflow was induced, and then these flows
tended to reach equilibrium. After the pressures of the two reservoirs reached their final
equilibrium state, the micro-valve was opened again to confirm the pressure equality
after the measurement, accomplished by connecting the tube with a large diameter,
and by checking the leakage rate throughout the measurement. The leakage rate was
calculated from the pressure variation before closing and after opening the micro-valve,
and it was checked to be small enough compared to the thermal transpiration flow rate.
The pressure variation due to leakage was subtracted from the experimental pressure
data to investigate only the thermal transpiration flow. It is clear that the pressures
for both sides are equal to the initial pressure pi before the closing of the micro-valve
at time t = 0, and they gradually change their values from t = 0 to t > 0; the pressure
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3.5. Presentation of the experimental results

Figure 3.22.: Schematic image of experimental apparatus. Pressures for hot and cold sides were measured
by capacitance manometers (CDGs). Temperatures were measured by thermocouples (TCs). Data were
recorded by a data acquisition system (DAQ) (from [74]).
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3. TPD exponent for a single gas

decreases in the cold side whereas it increases in the hot side. Then, the pressures reach
their final equilibrium states as ph,∞ and pc,∞. The accomplished pressure differences
for the cold and the hot sides are not the same due to the difference in volume for each
side. Instantly after the opening of the micro-valve, the pressures return to the same
initial pressure pi. A comparison between the speeds of the pressure variation after the
closing and the opening of the micro-valve confirms that the diameter of the connecting
tubes is large enough.

3.5.1.3. Data analysis

Two series of experiments are performed, with temperatures for the hot and the cold
reservoirs fixed to about 346 K and 289 K, and 336 K and 299 K, respectively. The tem-
perature difference ∆T between the hot and the cold sides of every measurement was
in the range 57.9± 0.6 K and 37.9± 0.6 K respectively, where twice the standard devi-
ation (2σ) was used as the uncertainty. For both the experiments, the initial pressure
pi was varied from 66.66 Pa to 1266 Pa for every gas species.

The thermal transpiration flow was evaluated by three parameters for the final equi-
librium characteristics: the thermomolecular pressure difference (∆p), the thermomolec-
ular pressure ratio (TPR) and the TPD exponent (γ), defined as

∆p = ph,∞ − pc,∞ , (3.65)

TPR = pc,∞
ph,∞

, (3.66)

ph,∞
pc,∞

=
(
Th
Tc

)γ
. (3.67)

It is important to notice that in the above equations ∆p is a dimensional value, while
TPR and γ are dimensionless values.
These parameters were analysed as a function of the rarefaction parameter

δ = pL

µv
, (3.68)

where

v =
√

2kBT
m

(3.69)

is the most probable molecular velocity, kB is the Boltzmann constant, m is the mo-
lecular mass, p and T are the gas pressure and temperature, respectively, and L is
the characteristic length of the system, represented here by the channel height H. The
variable hard-sphere (VHS) model ([18]) was employed to evaluate the gas viscosity

µ = µref

(
T

Tref

)ω
, (3.70)

where ω is the viscosity index, which depends on the nature of the gas, and µref is the
gas viscosity at temperature Tref = 273 K.

Since the temperatures of the hot and cold sides were different, the mean tempera-
ture Tav = (Th +Tc)/2 was employed in order to characterize the rarefaction level δ for
each experiment. Note that Tav was the same for each of the two series of experiments,
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3.5. Presentation of the experimental results

Gas Symbol Mass [amu]
Helium He 4.002602
Neon Ne 20.1797

Nitrogen N2 28.0134
Argon Ar 39.948

Krypton Kr 83.798
Xenon Xe 131.293

Table 3.7.: Molecular masses of the different gases employed in the experiments.

that is, Tav = 317.5 K. Let us recall that the temperatures Th and Tc are maintained
constant during the whole experimental series.
The pressure range that was used in order to perform the experimental campaign was
the same for the whole of the experimental series, independently of the gas species
used. Therefore, it is chosen to characterize a single experiment by associating the rar-
efaction parameter δ with the initial pressure p = pi, where the thermal transpiration
flow is stationary, fully developed and not yet perturbed by the subsequent pressure
variation with time. Even if the pressure range chosen for the experimental series did
not vary as a function of the gas species used, the rarefaction parameter range did.
The rarefaction parameter is directly proportional to the square root of gas molecular
mass, too, which makes the rarefaction ranges investigated slightly different for every
gas species used. By setting the range of the initial pressure pi between 66.66 Pa and
1266 Pa, the range varied from 0.7 to 80 when considering all the gas species used. For
the different values of the molecular masses of the employed gases we refer to Table 3.7.

It is worth noticing that the experimental data rely on measurements of pressures,
and therefore the TPD exponent is computed through its actual definition Eq. (2.67);
on the other hand, the analytical expression is derived from mass fluxes, as in Eq. (2.70):
any agreement between numerical and experimental results would support the use of
the second expression of γ and of the linearization assumption Eq. (2.68).

3.5.2. Results

The ∆p turned out to be strongly dependent on the gas species; conversely, TPR and
γ, closely related via

γ = ln(ph,∞/pc,∞)
ln(Th/Tc)

∝ ln ph,∞
pc,∞

= − ln TPR (3.71)

and, therefore, mirror images of each other, are very weakly dependent on the gas
species. The explanation for that is exactly that ∆p is a dimensional quantity (it is a
pressure), while TPR and γ are dimensionless numbers. We underline that γ is calcu-
lated directly from its definition as

γ = ln(ph,∞/pc,∞)
ln(Th/Tc)

, (3.72)

that is, from measurements of pressure (and temperature) instead of mass fluxes.
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3. TPD exponent for a single gas
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Figure 3.23.: Experimental TPD exponent for He.
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Figure 3.24.: Experimental TPD exponent for Ne.

3.5.2.1. Visualization of the data for the TPD exponent

The plots of the raw data are reported and commented in the following. The expres-
sions “1st series” and “2nd series” refer to the series of experiments with Th,1 = 346 K
and Tc,1 = 289 K, and Th,2 = 336 K and Tc,2 = 299 K, respectively. For every gas and
every series, approximately 30 different δs are picked, more or less uniformly distributed
(in a logarithmic scale). For each plot, we maintain the axes limits to 0.6 ÷ 100 (in a
logarithmic scale) for the abscissae axis (δ) and to 0÷ 0.2 for the ordinates axis (γ) to
ease visual comparison between different graphs.

In Figs. 3.23 to 3.28 the TPD exponent for each gas and each experimental series sep-
arately are reported. It is immediate to observe that the heavier the gas is, the wider the
explored range of δ is: for example, we go from 0.6 to 13 for He, and from 2 to 80 for Xe,
the two limit cases. For every plot, we note that γ is always strictly decreasing (up to
experimental error and statistical fluctuations) and tending to zero as δ goes to infinity.

In Fig. 3.29 we plot in the same graph, for each gas separately, both the experimental
series of that gas. We know that, as we said in Section 2.3.2.2, the coefficient γ depends
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Figure 3.25.: Experimental TPD exponent for N2.
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Figure 3.26.: Experimental TPD exponent for Ar.
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Figure 3.27.: Experimental TPD exponent for Kr.
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Figure 3.28.: Experimental TPD exponent for Xe.

mainly on geometry of the capillary, type of the gas, nature of the gas-surface interaction
and, especially, degree of rarefaction. Moreover, being the range of initial pressures
the same for both the experimental series, also the range of δ (that, we recall, is
characterized by the value of the initial pressure) is, for each gas singularly, practically
the same for both series (depending on the precision of pi). Therefore, the practical
consequence is basically that for each gas we have two values of γ for every δ considered
and, since each of the most important parameters on which γ depends are the same
in the two series, these two values must be the same. Luckily, this is exactly (up to
experimental error and statistical fluctuations) what happens: the overlapping between
the data of the two different series is evident, they are indistinguishable. We are then
allowed to consider the data of the two experimental series as belonging to the same
physical phenomenon: therefore, in the data analysis performed in Section 3.6, we shall
merge, for each gas, the two series, treating them as one single experiment, forgetting
the origin of the single data.

Finally, in Fig. 3.30, we consider in the same graph, for each series separately, all the
gases at the same time. Geometry and material of the channel are always the same,
for each gas and each series (the experimental set-up does not change), and the ranges
of δ for the different gases largely overlap, so most of the different measurements are
comparable, referring to the same regime of rarefaction. The only thing that changes
is the gas flowing in the channel, but, apart from the case of nitrogen, this is not a big
deal: the noble gases have all very similar physical structure and very similar chemical
properties one to each other, so the role of gas-surface interaction is likely to be almost
the same. (In principle, a quite different issue may be the case of nitrogen, being not
only a non-noble gas, but also non-monatomic.) It seems that the only gas property
that varies significantly is the molecular mass: Kr has about half of the mass of Xe, and
is twice heavier than Ar and 4 times heavier than Ne, which is 5 times heavier than He.
However, despite this apparently large mass difference, the different plot are actually
very similar as the gas varies. In general, we observe that, as the mass increases, the
different curves are slightly shifted to the right; that is, the same value of γ is reached
for bigger values of δ if the mass is bigger, or equivalently, for the same value of δ the
TPD exponent is bigger if the mass is bigger. Actually, this trend is not clearly visible
for He, Ne and N2 (Fig. 3.31), if not even the opposite behaviour is present, while for
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(c) Nitrogen.
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(d) Argon.
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(e) Krypton.
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Figure 3.29.: Experimental TPD exponent: overlapping of the two experimental series for each gas.
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Figure 3.30.: Experimental TPD exponent: overlapping of all gases for each of the two experimental
series.
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Figure 3.31.: Experimental TPD exponent: comparison between the TPD exponent of the three lighter
gases.

Ar, Kr and Xe the shift is small but visible (Fig. 3.32).

3.5.2.2. The thermal slip coefficients

In Table 3.8 the experimental measurements of the thermal slip coefficients for the
different gases (except nitrogen) are reported (given in [75]). Qualitatively, we can
observe that the (absolute value of) the second-order coefficient increases with the
molecular mass, while almost the same is true for the first-order coefficient, apart for
the anomaly of Ne, whose coefficient is slightly smaller than the one of He.

3.6. Assessment of the accommodation coefficients

In this section we commit ourselves to the assessment of the accommodation coefficients
starting from the experimental results presented in the previous section. Obviously, note
that the ACs, in general, will be different from gas to gas.
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Figure 3.32.: Experimental TPD exponent: comparison between the TPD exponent of the three heavier
gases.

Gas AT1 exp AT2 exp
He 1.006 ± 0.020 -1.147 ± 0.113
Ne 0.998 ± 0.029 -1.226 ± 0.172
Ar 1.017 ± 0.057 -1.274 ± 0.406
Kr 1.061 ± 0.053 -1.327 ± 0.400
Xe 1.102 ± 0.085 -1.746 ± 0.626

Table 3.8.: Experimental values of the thermal slip coefficients for the five noble gases (reported in
[75]).
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3. TPD exponent for a single gas

Practically, we will proceed as follows. We start from certain experimental data and
try to reproduce them with the analytical expressions of the corresponding physical
quantity presented in Section 3.2: the right ACs are the ones which, inserted in these
analytical expression, allow the best approximation of the experimental data. We finally
validate the results using the assessed ACs to compute other physical quantities from
their analytical expression, comparing it with the corresponding experimental data.
Depending from the experimental data at our hand, this analysis can be performed
essentially in two ways:

• we extract the accommodation coefficients from the thermal slip coefficients and
validate the results comparing the data concerning the TPD exponent;

• we extract the ACs from the TPD exponent and validate the results comparing
the data concerning the TSCs.

We shall follow both these paths and compare the results.

3.6.1. Assessment of the accommodation coefficients from the
thermal slip coefficients

In this section we use our analytical expression of the thermal slip coefficients to repro-
duce the experimental results reported in Table 3.8 and consequently extract appro-
priate accommodation coefficients for every gas considered. The resulting ACs will be
validated by comparing experimental and analytical data about the TPD exponent.

3.6.1.1. Extraction of the accommodation coefficients

What we have to face now is basically an optimization problem of a particular kind:
the aim is to find for each gas the αt and αn in order to obtain the best fit between the
experimental data and our analytical expression of the slip coefficients.
The implementation of this optimization procedure in MATLAB® is quite intuitive: it
is sufficient to nest two for loops to span the whole domain of both the accommodation
coefficients, compute in the inner loop the thermal slip coefficients from their analytical
expression for the fixed values of αt and αn, compute the value of the (relative) error
between the experimental values and the analytical ones related to these particular
αs storing it, e.g., in a matrix, and, once outside the outer loop, find the minimum
and finally recover the corresponding αs. The results of this procedure are reported
in Table 3.9. The agreement between the analytical outputs obtained via variational
techniques and the experimental data looks quite good for each of the gases considered,
but some comments are in order.

With a more careful analysis of the error, we find that the pairs of ACs which
guarantees relative errors similar to the ones reported in Table 3.9 spread along a
stripe that spans almost all the values of αn and about half of the domain of αt (see
Fig. 3.33): this means that a priori a pair of ACs which gives an error very close to the
optimal one may be very different from the optimal pair, so the procedure described
above may look intrinsically unstable. Actually, this is why the validation a posteriori
is needed. In particular, we observe that the ACs for Xe are likely to be far from the
correct ones, being at the boundary of their domain of validity, especially regarding
αt. Indeed, the physical meaning of αt = 2 is that all the molecules of that gas are
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Gas αt αn AT1 exp AT2 exp AT1 AT2 ∆max (%)
He 0.80 0.08 1.006 ± 0.020 -1.147 ± 0.113 1.0429 -1.1067 3.7
Ne 0.79 0.26 0.998 ± 0.029 -1.226 ± 0.172 1.0536 -1.1615 5.6
Ar 0.77 0.45 1.017 ± 0.057 -1.274 ± 0.406 1.0644 -1.2174 4.7
Kr 0.87 0.36 1.061 ± 0.053 -1.327 ± 0.400 1.0807 -1.3028 1.9
Xe 2 0.93 1.102 ± 0.085 -1.746 ± 0.626 1.1382 -1.6938 3.3

Table 3.9.: ACs extracted from the error-minimizing fitting of the TSCs through their analytical ex-
pressions; also the TSCs are reported, both the experimental ones and the ones obtained via analytical
expressions with the corresponding ACs. The last column is the maximum relative discrepancy between
experimental and analytical TSCs.

Gas αt αn AT1 exp AT2 exp AT1 AT2 ∆max (%)
He 0.80 0.15 1.006 ± 0.020 -1.147 ± 0.113 1.0481 -1.1334 4.2
Ne 0.80 0.25 0.998 ± 0.029 -1.226 ± 0.172 1.0556 -1.1718 5.7
Ar 0.83 0.28 1.017 ± 0.057 -1.274 ± 0.406 1.0659 -1.2255 4.8
Kr 0.88 0.33 1.061 ± 0.053 -1.327 ± 0.400 1.0817 -1.3083 1.9
Xe 1.16 0.35 1.102 ± 0.085 -1.746 ± 0.626 1.1509 -1.6881 4.4

Table 3.10.: ACs reported in [28] with corresponding experimental and analytical values of the TSCs
and their maximum relative discrepancy.

back-scattered by the gas surface interaction, which seems very unlikely to be actually
true. For this reason, for what concerns Xe, we choose to refer to the ACs tuned in
[28], which turned out to be appropriate to fit the dimensionless mass flow rate for the
thermal creep problem. These values, for all the noble gases, are reported in Table 3.10.
Finally, we note that, apart from Xe, the values of αt and αn in Tables 3.9 and 3.10
are quite similar for the same gas, in particular αt, and give rise to similar errors.

3.6.1.2. Validation of the results: comparison of the TPD data

We now try to validate the results obtained previously: in particular, we use the ac-
commodation coefficients reported in Table 3.9 (“first table”) and Table 3.10 (“second
table”) to compute the TPD exponent for all the gases, in order to compare these values
with corresponding experimental results.

Helium The comparison is shown in Fig. 3.34a. The agreement between analytical
and experimental data is acceptable: the qualitative behaviour is captured by the ana-
lytical values, but the experimental data are slightly overestimated. The two different
choices of the accommodation coefficients lead to two practically identical γ: this is not
surprising, since the αt are the same and the αn are quite similar, and we know that γ
is very weakly dependent on αn, especially when αt is close to 1. Both the choices lead
to an error in fitting γ of about 11% at δ = 4.18 (the error is computed as defined in
Eq. (3.73), in the next section).

Neon The comparison is shown in Fig. 3.34b. The considerations are the same as
in the case of He: the qualitative behaviour is correct, but the experimental data are
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Figure 3.33.: Samples of the (relative) fitting error for the TSCs of He, Ar and Xe for all the possible
pairs of ACs: the blue dots indicate the pairs (αt,αn) for which the discrepancy between analytical and
experimental values is less than 5%. We observe the particular distribution of the pairs of ACs with
low fitting error: in particular, they can have very different values of both αt and αn.

overestimated, and more evidently than in the previous case. The two choices of αt and
αn lead to practically the same γ, with a fitting error of about 20% in δ = 3.144.

Argon The comparison is shown in Fig. 3.35a. The fitting of the experimental data
through analytical ones is very good. The two different αt used are quite similar, and
this reflects in similar γ; as already seen in previous sections, the discrepancy becomes
more evident for small δ.

Krypton The comparison is shown in Section 3.6.1.2. The quantitative agreement be-
tween the two datasets is quite good. In this case, both the accommodation coefficients
are practically the same, and the two analytical γ overlap.

Xenon The comparison is shown in Fig. 3.36. We can clearly see that the accommoda-
tion coefficients obtained with the optimization procedure introduced at the beginning
of this section are totally inadequate to describe the behaviour of the TPD exponent
for Xe, especially for small δ, as we may have expected. For what concerns the second
choice of αt and αn, we have a good agreement for δ > 10, but for smaller δ experi-
mental data are again overestimated, with a local error comparable with the one in the
case of Ne.

The fitting error for Ar, Kr and Xe is not reported because it is neither meaningful
nor reliable: in all three cases, the largest discrepancy appear at big δ, where the
values of γ are rather small, so experimental error, sensitivity of the instruments and
statistical fluctuations play an important role. Actually, we highlight that the global
fitting error for these gases is always achieved in correspondence of a δ for which the two
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Figure 3.34.: He and Ne: validation of ACs extracted from experimental TSCs. Solid lines: first table;
dashed lines: second table.
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Figure 3.35.: Ar and Kr: validation of ACs extracted from experimental TSCs. Solid lines: first table;
dashed lines: second table.
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Figure 3.36.: Xe: validation of ACs extracted from experimental TSCs. Solid lines: first table; dashed
lines: second table.

79



3. TPD exponent for a single gas

Gas αt αn

He 0.80 0.08
Ne 0.79 0.26
Ar 0.77 0.45
Kr 0.87 0.36
Xe 1.16 0.35

Table 3.11.: Accommodation coefficients assessed from the fitting of the thermal slip coefficients.

experimental series give very different values, one well-fitted and the other much further.
This is a strong indication that we may be in presence of statistical fluctuations and/or
experimental error, which are more dangerous if the value of the physical quantity to
be measured is comparable with the amplitude of the fluctuation or with the sensitivity
of the measure itself. This fact may suggest that a better way to compute the fitting
error could be to consider only the fit for δ under a certain value, or at least to give to
these δ more importance in the computation of the error. This problem will be faced
in the next section.

3.6.1.3. Conclusions

After the validation, the accommodation coefficients are assessed, and are resumed in
Table 3.11.

Despite its apparent intrinsic instability, the optimization procedure employed for
the extraction of the ACs through the fitting of the thermal slip coefficients produced
quite acceptable results in general. The different masses do not appear to play a main
role for what concerns αn, in the sense that the variation of this AC from gas to gas
does not seem to be strongly related to the value of molecular masses (e.g., it is not
monotonically increasing or decreasing as mass increases). Regarding αt, it is practically
the same for the two lighter gases, He and Ne, while for the three heavier gases, Ar,
Kr and Xe, it strictly and sensibly increases as the molecular mass increases. This
behaviour is very similar to the one of AT1 , as observed in Section 3.5.2.2.
About the validation step, we can observe that:

• for He, Ne, Ar and Kr the optimization procedure of the TSCs turned out to be a
useful technique to capture the qualitative behaviour of the TPD exponent, with
also acceptable or even good quantitative matching, especially for Ar and Kr;

• for Xe, the plain optimization process leads to accommodation coefficients which
are unable to reproduce the TPD exponent for δ < 15, but even with a more
careful choice the qualitative and quantitative match is good only above a certain
regime of rarefaction. This may even give rise to some doubts about the suitability
of such a model for the boundary conditions in the case of Xe.

3.6.2. Assessment of the accommodation coefficients from the TPD
exponent

In this section we use our analytical expression of γ to reproduce the experimental
results on the TPD exponent and consequently extract appropriate accommodation
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coefficients for every gas considered. The resulting ACs will be validated by comparing
experimental and analytical data about the slip coefficients.

3.6.2.1. Extraction of the accommodation coefficients

The optimization problem is practically the same as in the previous section: the aim
is to find for each gas the αt and αn in order to obtain the best fit between the ex-
perimental data and our analytical expression of γ. However, there are some critical
differences, and some important remarks are in order.
The first thing to notice is that we cannot hope to find a good fit in the whole experi-
mental domain of δ, but in general we have to exclude a priori all the too small δ (at
least δ < 3, as already seen), since we know that they are out of the rigorous regime of
validity of the model, assessed numerically in Section 3.4 and in [28]. The best we can
do to consider also these data is to find the best fit between model and experimental
data in the domain of validity of the model, and check only a posteriori the agreement
between this best model and the experimental data also beyond the validity domain.
This may be useful also to determine in a more precise way the actual domain of va-
lidity of the second-order slip model for Eq. (3.13) and Eq. (3.14).
The second issue is the definition of “best fit”. The most intuitive way to proceed is to
define an “error” as a function of the accommodation coefficients and the experimental
data: for each gas, the couple (αt, αn) which minimizes this error is considered to be
the most suitable choice to obtain the best fit. An appropriate definition of the error
may be the following:

err(αt, αn) = max
δ

γ(δ, αn, αt)− γexp(δ)
min {γ(δ, αn, αt), γexp(δ)} , (3.73)

where γ is the well-known reference model for the TPD exponent, given by Eq. (3.19),
γexp are the experimental data (which are given as a function of δ), and the denomi-
nator is needed in order to be allowed to call this quantity “relative error”. Practically
speaking, the idea is to find the αt and αn which minimizes the largest relative discrep-
ancy between the reference model and the experimental data. We highlight again that
this procedure has to be made separately for each gas, since the two accommodation
coefficients which describe the gas-surface interaction may be different from gas to gas.
A slightly different definition of the error may be

err′(αt, αn) = max
δ

γ(δ, αn, αt)− γexp(δ)
δmin {γ(δ, αn, αt), γexp(δ)} , (3.74)

where the δ at denominator is an attempt to weigh more the errors at small δ, since
it may be reasonably more probable to find larger percent discrepancies with smaller
values of the measured quantity γ, and therefore at bigger δ, due to the sensitivity and
accuracy of the instruments: the smaller the measured value is, the more it becomes
comparable to the amplitude of possible fluctuations and to the accuracy of the instru-
ment itself. The effect of minimizing this quantity instead of the first one should be to
obtain a better fit for smaller δ as it would be with the minimization of Eq. (3.73). This
different choice of the quantity to be minimized makes sense also from a purely physical
point of view: we know that the thermal creep, and consequently the TPD effect, is
more important at higher degrees of rarefaction, therefore we may be reasonably more

81



3. TPD exponent for a single gas

3 3.5 4 5 6 7 8 9 10 11 12 13
0

0.02

0.04

0.06

0.08

0.1

0.12

He - optimal fitting of 

t
=0.74, 

n
=0.19

experimental

(a) Second-order slip regime.

0.6 0.8 1 1.5 2 2.5 3 4 5 7 10 14
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
He - optimal fitting of 

t
=0.74, 

n
=0.19

experimental

(b) Whole experimental range.

Figure 3.37.: He: optimal fitting of the experimental TPD exponent.

interested in having a better fit in that domain of δ.
A final general remark on the choice of the best accommodation coefficients is that
a bit of common sense from the human being is not inappropriate: for example, as
already observed, even if the optimal choice, from a purely numerical point of view, is
a very small or a very large AC, it may be physically inadequate and only due to some
statistical fluctuation in the measurement, or to a not perfect choice of the definition
of the “error” to be minimized. In general, therefore, our opinion is that it is important
not to rely completely on some dumb automated numerical procedure, but also to look
directly at the data. This problem appeared also in the previous section, regarding the
accommodation coefficients for Xe extracted by a purely numerical minimization of the
fitting error for the thermal slip coefficients.

The implementation of this optimization procedure in MATLAB® is similar to the one
in the previous section: it is sufficient to nest two for loops to span the whole domain
of both the accommodation coefficients, compute in the inner loop the reference γ on
the experimental range of δ for the fixed values of αt and αn, compute the value of the
above-mentioned error related to these particular αs storing it, e.g., in a matrix, and,
once outside the outer loop, find the minimum and finally recover the corresponding
αs.
We present now the results for every gas.

Helium The optimal accommodation coefficients for He, according to the minimiza-
tion of the quantity Eq. (3.73), are

αt = 0.74 αn = 0.19 , (3.75)

and the resulting plots are reported in Fig. 3.37. The maximum relative error is 2.9 %
and is attained for δ = 4.180, where γ = 0.0772 and γexp = 0.075.
The fit is therefore very good for δ ≥ 3, and the validity of the “extended” slip regime
is confirmed.
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Figure 3.38.: Ne: optimal fitting of the experimental TPD exponent.

Neon The optimal accommodation coefficients for Ne, according to the minimization
of the quantity Eq. (3.73), are

αt = 0.68 αn = 0.35 , (3.76)

and the resulting plots are reported in Fig. 3.38. The maximum relative error is 4.4 %
and is attained for δ = 15.667, where γ = 0.0136 and γexp = 0.013.
The considerations about the domain of validity of the model are the same as in the
case of He.

Nitrogen The optimal accommodation coefficients for N2, according to the mini-
mization of the quantity Eq. (3.73), are

αt = 0.71 αn = 0.35 , (3.77)

and the resulting plots are reported in Fig. 3.39. The maximum relative error is 11 %
and is attained for δ = 37.460, where γ = 0.0033 and γexp = 0.003.
The considerations on the validity domain are exactly the same as in the case of He
and Ne.

Argon In the case of Ar, we perform the optimization considering both the mini-
mization of Eq. (3.73) and Eq. (3.74).

The optimal accommodation coefficients according to the minimization of the quan-
tity Eq. (3.73) are

αt = 0.85 αn = 0.95 . (3.78)

The maximum relative error in this case is 18 % and is attained for δ = 13.097, where
γ = 0.0213 and γexp = 0.018.

The optimal ACs according to the minimization of the quantity Eq. (3.74) are

αt = 0.80 αn = 0.37 . (3.79)

The maximum relative error in this case is 25 % and is attained for δ = 34.827, where
γ = 0.0040 and γexp = 0.005. Both the resulting plots are reported in Fig. 3.40.
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Figure 3.39.: N2: optimal fitting of the experimental TPD exponent.
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Figure 3.40.: Ar: optimal fitting of the experimental TPD exponent.

For both models, the fit is quite good for δ ≥ 3, and the validity of “extended”
slip model is confirmed also in this case. Moreover, for δ < 7, both models apparently
slightly overestimate the experimental results, but the agreement is a bit better for
the second choice. They are practically equivalent for bigger δ. The result is that the
second model looks overall better, for both the graphical fit and the ACs, which seem
more reasonable and similar to the ones for lighter gases. Therefore, we choose to keep
as final values for the ACs the second ones.

Krypton In the case of Kr, we perform the optimization considering both the mini-
mization of Eq. (3.73) and Eq. (3.74).

The optimal accommodation coefficients according to the minimization of the quan-
tity Eq. (3.73) are

αt = 1.01 αn = 0.00 . (3.80)

The optimal ACs according to the minimization of the quantity Eq. (3.74) are

αt = 0.83 αn = 0.95 . (3.81)

All the resulting plots are reported in Fig. 3.41.
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Figure 3.41.: Kr: optimal fitting of the experimental TPD exponent.

For δ > 3, the first model visibly overestimates the experimental data for δ < 7,
but the second one slightly underestimate data for 7 < δ < 12; they are practically
equivalent for bigger δ. The result is that the overall fit is not bad, for both models,
but the second one looks better.

At this point, we resort to some of the above-mentioned common sense, also in view
of the rigorous considerations made in Sections 3.2.2.2 and 3.2.2.3. We note that both
the values αn = 0 and αn = 0.95 are very different from the values of αn previously
assessed for other gases, and also a bit “strange”, since they are close to the extremal
values for αn, 0 and 1 . Furthermore, we recall that the dependence of γ on αn is quite
weak for δ > 4, especially if αt is close to 1, as in this case. Therefore we choose to
study the model with parameters

αt = 0.83 αn = 0.40 , (3.82)

that is, αt is unchanged from the second model, and αn is almost the mean value
between the other two.
As foreseen, this model is practically equivalent, for δ > 3, to the second one, for both
the graph and the maximum relative deviation, therefore the same considerations as
before hold. What is quite different is what happens beyond δ = 3: the extension of
the third model, almost up to δ = 2, looks better than the second one, and way better
than the first one. Therefore, we choose to keep as final values for the ACs the third
ones.

Xenon In the case of Xe, we perform the optimization considering both the mini-
mization of Eq. (3.73) and Eq. (3.74).

The optimal accommodation coefficients according to the minimization of the quan-
tity Eq. (3.73) are

αt = 1.51 αn = 0.00 . (3.83)

The optimal ACs according to the minimization of the quantity Eq. (3.74) are

αt = 0.91 αn = 1.00 . (3.84)

All the resulting plots are reported in Fig. 3.42.
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Figure 3.42.: Xe: optimal fitting of the experimental TPD exponent.

Gas αt αn

He 0.74 0.19
Ne 0.68 0.35
N2 0.71 0.35
Ar 0.80 0.37
Kr 0.83 0.40
Xe 0.91 0.45

Table 3.12.: Accommodation coefficients assessed from the fitting of the TPD exponent.

For δ > 3, the first model visibly overestimates the experimental data for δ < 16,
but the second one slightly underestimate data for 7 < δ < 14; they are practically
equivalent for δ > 25. Moreover, the first model has a visible maximum for 3 < δ < 3.5,
therefore its validity domain cannot reach δ = 3.

Finally, repeating the same exact argumentations as in the case of Kr, we choose to
study the model with parameters

αt = 0.91 αn = 0.45 , (3.85)

that is, αt is unchanged from the second model, and αn is almost the mean value be-
tween the other two.
As foreseen, this model is practically equivalent to the second one for δ > 3, for both
the graph and the maximum relative deviation, therefore the same considerations as
before hold. Furthermore, it seems slightly better than the second model for δ = 2.5,
while the first one, as already said, is inadequate for δ = 3, and therefore also for δ
smaller. Therefore, we choose to keep as final values for the ACs the third ones.

Observe that also in this case the relative discrepancy of Kr and Xe between analyt-
ical and experimental results is not reported, with the same exact considerations made
at the end of Section 3.6.1.2.

We sum up all the extracted accommodation coefficients in Table 3.12.
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Gas AT1 exp AT1 (Eq. (3.17)) ∆%

He 1.006 ± 0.02028,76 1.0329 2.7
Ne 0.998 ± 0.02928,76 1.0339 3.6
Ar 1.017 ± 0.05728,76 1.0646 4.7
Kr 1.061 ± 0.05328,76 1.0736 1.2
Xe 1.102 ± 0.08528,76 1.0933 0.79

Table 3.13.: First-order thermal slip coefficients: validation of ACs extracted from experimental TPD
exponent.

Gas AT2 exp AT2 (Eq. (3.18)) ∆%

He -1.147 ± 0.11328,76 -1.0563 7.9
Ne -1.226 ± 0.17228,76 -1.0611 13
Ar -1.274 ± 0.40628,76 -1.2185 4.4
Kr -1.327 ± 0.40028,76 -1.2656 4.6
Xe -1.746 ± 0.62628,76 -1.3702 22

Table 3.14.: Second-order thermal slip coefficients: validation of ACs extracted from experimental TPD
exponent.

3.6.2.2. Validation of the results: computation of the thermal slip
coefficients

We now try to validate the results obtained previously: in particular, we use the accom-
modation coefficients reported in Table 3.12 to compute first- and second-order thermal
slip coefficients for all the gases, in order to compare these values with corresponding
experimental results. The comparison is reported in Table 3.13 and Table 3.14.
We observe that:

• the results about the first-order TSC are very good in all the cases considered;

• the relative error in the computation of the second-order TSC is in general worse
than for the first-order one, but still acceptable, apart from the cases of Ne (for
which the relative error was the highest one also in the extraction of αt and αn
directly from the TSCs, see Tables 3.9 and 3.10) and Xe (for which, again, this
model of the gas-surface interaction does not seem to be the best one).

3.6.2.3. Conclusions

The optimization procedure for the three lighter gases (including N2) was plain and
always the same, and lead to similar results in all three cases (similar numerical values
of αt and relative deviations, similar qualitative considerations). The different masses
do not appear to play a main role, in the sense that the variation of the accommodation
coefficients from gas to gas does not seem to be strongly related to the value of molecular
masses (e.g., they are not monotonically increasing or decreasing as mass increases).
For the three heavier gases, the procedure was more involved than the lighter ones:
we had to change slightly the formulation of the optimization problem (in particular,
the quantity to be minimized), and for Kr and Xe we also had to adjust a coefficient

87



3. TPD exponent for a single gas

Gas via slip coefficients via TPD exponent
αt αn αt αn

He 0.80 0.08 0.74 0.19
Ne 0.79 0.26 0.68 0.35
Ar 0.77 0.45 0.80 0.37
Kr 0.87 0.36 0.83 0.40
Xe 1.16 0.35 0.91 0.45

Table 3.15.: Accommodation coefficients assessed from the fitting of the thermal slip coefficients (first
two columns) and of the TPD exponent (second two columns).

“manually”, in order to obtain more appealing results. The mass, conversely, seems
to be related to the variation of αt, which increases as the mass increases. The same
consideration cannot be made for αn, which in all these cases is pretty “artificial”.
About the optimization procedure used to extract the accommodation coefficients from
TPD data, we observe that for Ar and Kr the solutions that it produces look unstable
in the coefficient αn with respect to the “norm” chosen to minimize the error: with
different “norms”, i.e. Eq. (3.73) and Eq. (3.74), the resulting αn are pretty different.
This may be due to the fact that in these two cases both norms gives an αt quite
similar and close to 1, and γ itself is weakly dependent on αn in this situation. For
the Xe case, also αt changes quite a lot if the norm varies: this is another indication
that, as observed in previous section, this model of the boundary conditions may be
inappropriate to describe the behaviour of this gas.

3.6.3. Comparison of the two assessment procedures

The accommodation coefficients obtained in the two different ways presented in previous
sections are resumed and compared in Table 3.15.

Apart from Xe, we observe a fairly good agreement for what concerns αt for all
gases, and in the cases of Ar and Kr also αn has an acceptable match (even though
we remember that αn in the case of Kr is somewhat artificial). However, in general,
the agreement is better for αt rather than αn, and this may be an indication of some
sort of instabilities in the extraction of αn, probably due to a weaker dependence of the
physical quantities on this AC, as happens in the case of the TPD exponent.
It is interesting to notice that, in extracting the ACs from the TSCs and consequently
trying to reproduce the TPD exponent through the boundary conditions assessed in
this way, we are actually reproducing a phenomenon which involves both pressure- and
thermal-driven flows, that is, the TPD effect, from the knowledge of quantities which
involves only thermal-driven flows, that is, the TSCs. Therefore, we should be able to
reproduce results concerning pressure-driven flows, such as the viscous slip coefficients:
this may actually be an important benchmark for a further and more precise validation
of the ACs.
We remain skeptical about the case of Xe, for which the agreement between the two
assessed αt is not very good, and for which both the validation steps were not so satis-
factory (ACs which guarantee a good fit for the TSCs do not entail a good reproduction
of the TPD effect, and viceversa).
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4. Binary gas mixtures: thermal creep
and thermomolecular pressure
difference

In this chapter we address the second main topic of this thesis:
we deal with the concept of TPD effect in the case of gaseous mixtures and outline a
path that can be followed to study this particular phenomenon when more than one
gas is present. Note that, even if the generalization to the case of three or more gases
could be straightforward, at least conceptually, from the practical point of view we
shall consider only binary mixtures.

4.1. General considerations about gaseous mixtures

In many practical problems, one is dealing not with pure gases but with gas mixtures.
A wide range of applications include scientific and industrial processes: there are many
gas mixtures used in clinical and medical practice, in the food industry and in manu-
facturing (see [77] for more details). Moreover, thanks to the technological progress, the
challenge has become that of integrating into a simple micro-sized system, operations
that commonly solicit a whole laboratory: as already seen in Chapter 1, microfluidic
devices exploit the physical and chemical properties of liquids and gases at the mi-
croscale, offering several benefits over conventionally sized systems. For these reasons,
internal flows of rarefied gaseous mixtures caused by pressure, temperature and density
(or concentration) gradients are of major importance in several applications in physics
and engineering. Despite this fact, compared to the huge amount of work done for the
case of a single gas, the available literature for the case of gas mixtures is not extensive.
In particular, we are not aware of previous works that try to deal in a systematic way,
either theoretically (or numerically) or even experimentally, with the study of the TPD
effect in a quantitative way, through the TPD exponent.

4.1.1. TPD effect and TPD exponent

All the considerations made in Section 2.3.2 hold unchanged if more than one gas is
present: hence, the qualitative description of the TPD effect is exactly the same in the
case of gas mixtures. The second step is the definition of the TPD exponent. To this
aim, an idea may be to move from the single-gas case, starting from Eq. (2.70):

γ = GT
GP

. (4.1)

In Section 2.3.2.2, this formula was derived rigorously for the case of single gas, and a
basic starting approach for mixtures could be to take it as a definition. We shall adopt
this point of view in the following.



4. Binary gas mixtures: thermal creep and thermomolecular pressure difference

Nonetheless, some problems may arise. For example, a significant question is: what
actually are GP and GT in this case? In the framework of single-gas flow, they were the
kinetic coefficients of the mass flux, that is, the coefficients of the linear combination
that allows to write the dimensionless mass flux in terms of the dimensionless gradients
of pressure and temperature respectively. Trivially, they can be seen as the mass fluxes
due to a pressure and a temperature gradient separately (thanks to the linearization)
and represent the Poiseuille flow and the thermal creep flow, respectively. The point is
that now we have two different gases, so we can further split these fluxes into two more
contributions due exactly to these gases. Eventually, we realize that we can define the
TPD exponent in two ways:

• defining a global coefficient as the ratio between the mass fluxes due to the tem-
perature and pressure gradients without splitting them in the two single-gas con-
tributions;

• defining a coefficient for each gas involved as the ratio between the thermal creep
and Poiseuille mass fluxes due to that specific gas.

Both definitions seem to have advantages and disadvantages and may be complemen-
tary: with the first definition, we sketch the behaviour of the mixture as a whole, while
with the second one we try to extract the contribution of the single gas to the phe-
nomenon.

Concerning mixtures, a last remark is in order. In this case, there is another way
to induce a mass flux, apart from pressure (Poiseuille flow) and temperature (thermal
creep flow) gradients: the diffusion flow, induced by a concentration gradient,
which does not occur in single-component gases. We do not consider it even in this
case because, via linearization, if the gradients are sufficiently small, we can distinguish
each contribution and consider them separately, limiting our attention to fluxes caused
by pressure and temperature differences only.

4.2. The thermal creep problem for a binary mixture

Let us consider a binary gaseous mixture confined between two flat, infinite and parallel
plates located at x = −d/2 and x = d/2. A temperature gradient is imposed at the
boundaries. We assume that the mixture flows parallel to the plates, in the z direction,
due to this gradient, which is taken to be small. Under these conditions, following
for example[37, 78], the Boltzmann equation can be linearized about local Maxwellian
distributions by putting

fs(x, z, ξ) = fs,0

[
1 +

(
λsξ

2 − 5
2

)
τz + hs(x, ξ)

]
s = 1, 2 (4.2)

where
fs,0 = ns,0

(
λs
π

)3/2
exp

(
−λsξ2

)
, λs = ms/(2kBT0) . (4.3)

Here, kB is the Boltzmann constant, ms and ns,0 are the mass and the equilibrium
number density of the s-th species, x is the spatial variable in the transverse, or cross-
channel, direction, z is the spatial variable in the longitudinal direction, ξ is the mole-
cular velocity, and T0 is a reference temperature. s = 1 shall always denote the lighter
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4.2. The thermal creep problem for a binary mixture

gas species.
Finally, |hs| � 1 is the small perturbation with respect to the equilibrium state, and
τ = 1

T

∂T

∂z
is the small and constant temperature gradient which drives the flow. Then,

the perturbations hs satisfy the system of coupled Boltzmann equations

ξx
∂hs
∂x

+ ξz

(
λsξ

2 − 5
2

)
τ = Lh(s)

MC s = 1, 2 (4.4)

where Lh(s)
MC is the linearized collision operator modelled with the McCormack model,

introduced in Eqs. (2.33) and (2.34) (we shall omit the subscript MC in the following).
We introduce the dimensionless quantities

M12 = m1
m2

µ12 = m1m2
m1 +m2

c =
√
λ1ξ = c1 c2 = c√

M12
. (4.5)

Moreover, we define the characteristic times

θs = 1
γs

(4.6)

where γs is the same as in Eqs. (2.33) and (2.34), and

Θ12 = θ1
θ2

= γ2
γ1

(4.7)

is the macroscopic collision frequency ratio.
Therefore we can define consistently the dimensionless lengths

x̃ = x

θ1/
√
λ1

z̃ = z

θ1/
√
λ1

δ = d

θ1/
√
λ1
. (4.8)

δ is the dimensionless distance between the channel walls as well as the rarefaction
parameter (inverse Knudsen number) of the species s = 1.
Finally we define the dimensionless constant temperature gradient as

τ̂ = 1
T

∂T

∂z̃
; (4.9)

therefore
τ̂ = 1

T

∂T

∂z̃
= 1
T

∂T

∂z

θ1√
λ1

= τ
θ1√
λ1
. (4.10)

We proceed now with the adimensionalization of the equations, substituting Eqs. (4.5),
(4.8) and (4.10) in Eq. (4.4):

cx√
λ1

∂h1
∂x̃

√
λ1
θ1

+ cz√
λ1

(
λ1
c2

λ1
− 5

2

)
τ̂

√
λ1
θ1

= Lh(1)

⇒ cx
∂h1
∂x̃

+ cz

(
c2 − 5

2

)
τ̂ = θ1Lh

(1) (4.11)

cx√
λ1

∂h2
∂x̃

√
λ1
θ1

+ cz√
λ1

(
λ2
c2

λ1
− 5

2

)
τ̂

√
λ1
θ1

= Lh(2)
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⇒ cx
∂h2
∂x̃

+ cz

(
c2

M12
− 5

2

)
τ̂ = θ1Lh

(2) (4.12)

Substituting explicitly Eqs. (2.33) and (2.34) and Eqs. (4.6) and (4.7):

cx
∂h1
∂x̃

+ cz

(
c2 − 5

2

)
τ̂ + h1 = ρ(1) + 2

(
1− η(1)

1,2

)
c · v(1) − 2η(2)

1,2c · q(1)

+

1−
2η(1)

1,2M12

1 +M12

(c2 − 3
2

)
τ (1)

+ 2
(
1 + η

(4)
1,1 − η

(3)
1,1 − η

(3)
1,2

)
cicjP̃

(1)
ij + 8

5
(
1 + η

(6)
1,1 − η

(5)
1,1 − η

(5)
1,2

)(
c2 − 5

2

)
c · q(1)

− η(2)
1,2

(
c2 − 5

2

)
c · v(1) + 2η(1)

1,2c · v(2) + 2M12η
(2)
1,2c · q(2) + η

(2)
1,2

(
c2 − 5

2

)
c · v(2)

+
2η(1)

1,2M12

1 +M12

(
c2 − 3

2

)
τ (2) +

2η(4)
1,2

M12
cicjP̃

(2)
ij +

8η(6)
1,2

5
√
M12

(
c2 − 5

2

)
c · q(2) (4.13)

cx
∂h2
∂x̃

+ cz

(
c2

M12
− 5

2

)
τ̂ = Θ12

ρ(2) + 2
M12

(
1− η(1)

2,1

)
c · v(2) −

2η(2)
2,1

M12
c · q(2)

+

1−
2η(1)

2,1
1 +M12

( c2

M12
− 3

2

)
τ (2)

+ 2
M12

2

(
1 + η

(4)
2,2 − η

(3)
2,2 − η

(3)
2,1

)
cicjP̃

(2)
ij + 8

5M12

(
1 + η

(6)
2,2 − η

(5)
2,2 − η

(5)
2,1

)( c2

M12
− 5

2

)
c · q(2)

−
η

(2)
2,1
M12

(
c2

M12
− 5

2

)
c · v(2) +

2η(1)
2,1

M12
c · v(1) +

2η(2)
2,1

M12
2 c · q(1) +

η
(2)
2,1
M12

(
c2

M12
− 5

2

)
c · v(1)

+
2η(1)

2,1
1 +M12

(
c2

M12
− 3

2

)
τ (1) +

2η(4)
2,1

M12
cicjP̃

(1)
ij +

8η(6)
2,1

5
√
M12

(
c2

M12
− 5

2

)
c · q(1)

−Θ12h2

(4.14)

where the definitions of the macroscopic quantities η(s)
i,j , ρ(s), v(s), τ (s), P̃ (s)

ij , q(s), are
the same as in Section 2.2.2.2.
Without any computation, we can immediately observe that, due to the symmetry of
the problem, the macroscopic quantities v(s)

y , q(s)
y , P̃ (s)

xy , P̃ (s)
yz , s = 1, 2, are zero. The

resulting equations are

cx
∂h1
∂x̃

+ cz

(
c2 − 5

2

)
τ̂ + h1 = ρ(1) + 2

(
1− η(1)

1,2

)
cxv

(1)
x + 2

(
1− η(1)

1,2

)
czv

(1)
z

− 2η(2)
1,2cxq

(1)
x − 2η(2)

1,2czq
(1)
z +

1−
2η(1)

1,2M12

1 +M12

(c2 − 3
2

)
τ (1)

+ 2
(
1 + η

(4)
1,1 − η

(3)
1,1 − η

(3)
1,2

)
c2
xP̃

(1)
xx + 2

(
1 + η

(4)
1,1 − η

(3)
1,1 − η

(3)
1,2

)
c2
yP̃

(1)
yy

+ 2
(
1 + η

(4)
1,1 − η

(3)
1,1 − η

(3)
1,2

)
c2
zP̃

(1)
zz + 2

(
1 + η

(4)
1,1 − η

(3)
1,1 − η

(3)
1,2

)
cxczP̃

(1)
xz
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+ 8
5
(
1 + η

(6)
1,1 − η

(5)
1,1 − η

(5)
1,2

)(
c2 − 5

2

)
cxq

(1)
x

+ 8
5
(
1 + η

(6)
1,1 − η

(5)
1,1 − η

(5)
1,2

)(
c2 − 5

2

)
czq

(1)
z

− η(2)
1,2

(
c2 − 5

2

)
cxv

(1)
x − η

(2)
1,2

(
c2 − 5

2

)
czv

(1)
z + 2η(1)

1,2cxv
(2)
x + 2η(1)

1,2czv
(2)
z

+ 2M12η
(2)
1,2cxq

(2)
x + 2M12η

(2)
1,2czq

(2)
z + η

(2)
1,2

(
c2 − 5

2

)
cxv

(2)
x + η

(2)
1,2

(
c2 − 5

2

)
czv

(2)
z

+
2η(1)

1,2M12

1 +M12

(
c2 − 3

2

)
τ (2)+

2η(4)
1,2

M12
c2
xP̃

(2)
xx +

2η(4)
1,2

M12
c2
yP̃

(2)
yy +

2η(4)
1,2

M12
c2
zP̃

(2)
zz +

2η(4)
1,2

M12
cxczP̃

(2)
xz

+
8η(6)

1,2
5
√
M12

(
c2 − 5

2

)
cxq

(2)
x +

8η(6)
1,2

5
√
M12

(
c2 − 5

2

)
czq

(2)
z (4.15)

cx
∂h2
∂x̃

+cz
(
c2

M12
− 5

2

)
τ̂+Θ12h2 = Θ12

{
ρ(2) + 2

M12

(
1− η(1)

2,1

)
cxv

(2)
x + 2

M12

(
1− η(1)

2,1

)
czv

(2)
z

−
2η(2)

2,1
M12

cxq
(2)
x −

2η(2)
2,1

M12
czq

(2)
z +

1−
2η(1)

2,1
1 +M12

( c2

M12
− 3

2

)
τ (2)

+ 2
M12

2

(
1 + η

(4)
2,2 − η

(3)
2,2 − η

(3)
2,1

)
c2
xP̃

(2)
xx

+ 2
M12

2

(
1 + η

(4)
2,2 − η

(3)
2,2 − η

(3)
2,1

)
c2
yP̃

(2)
yy + 2

M12
2

(
1 + η

(4)
2,2 − η

(3)
2,2 − η

(3)
2,1

)
c2
zP̃

(2)
zz

+ 2
M12

2

(
1 + η

(4)
2,2 − η

(3)
2,2 − η

(3)
2,1

)
cxczP̃

(2)
xz + 8

5M12

(
1 + η

(6)
2,2 − η

(5)
2,2 − η

(5)
2,1

)( c2

M12
− 5

2

)
cxq

(2)
x

+ 8
5M12

(
1 + η

(6)
2,2 − η

(5)
2,2 − η

(5)
2,1

)( c2

M12
− 5

2

)
czq

(2)
z

−
η

(2)
2,1
M12

(
c2

M12
− 5

2

)
cxv

(2)
x −

η
(2)
2,1
M12

(
c2

M12
− 5

2

)
czv

(2)
z +

2η(1)
2,1

M12
cxv

(1)
x +

2η(1)
2,1

M12
czv

(1)
z +

2η(2)
2,1

M12
2 cxq

(1)
x

+
2η(2)

2,1
M12

2 czq
(1)
z +

η
(2)
2,1
M12

(
c2

M12
− 5

2

)
cxv

(1)
x +

η
(2)
2,1
M12

(
c2

M12
− 5

2

)
czv

(1)
z

+
2η(1)

2,1
1 +M12

(
c2

M12
− 3

2

)
τ (1)+

2η(4)
2,1

M12
c2
xP̃

(1)
xx +

2η(4)
2,1

M12
c2
yP̃

(1)
yy +

2η(4)
2,1

M12
c2
zP̃

(1)
zz +

2η(4)
2,1

M12
cxczP̃

(1)
xz

+
8η(6)

2,1
5
√
M12

(
c2

M12
− 5

2

)
cxq

(1)
x +

8η(6)
2,1

5
√
M12

(
c2

M12
− 5

2

)
czq

(1)
z

 (4.16)

4.2.1. Projection procedure for the thermal creep problem

Since the problem under consideration is one-dimensional in space, the unknown per-
turbed distribution functions hs, as well as the overall quantities, depend only on the x
coordinate. Likewise, we can reduce the dimensionality of the molecular-velocity space
by the projection procedure, presented for example in [37] and [78].
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4. Binary gas mixtures: thermal creep and thermomolecular pressure difference

4.2.1.1. Projection for s = 1

First, we multiply Eq. (4.15) by 1
π
cze
−(c2

y+c2
z) and we integrate over dcydcz, defining

the reduced unknown distribution function

Z(1)(x, cx) = 1
π

∫ +∞

−∞

∫ +∞

−∞
h1(x, c)cze−(c2

y+c2
z)dcydcz . (4.17)

In order to compute these integrals, it may be useful to observe that the macroscopic
quantities do not depend on c and that∫ +∞

−∞
x2ne−x

2
dx = (2n)!

22nn!
√
π .

The resulting equation is

cx
∂Z(1)

∂x̃
+Z(1)+1

2

(
c2
x −

1
2

)
τ̂ =

(
1− η(1)

1,2

)
v(1)
z −η

(2)
1,2q

(1)
z +

(
1 + η

(4)
1,1 − η

(3)
1,1 − η

(3)
1,2

)
cxP̃

(1)
xz

+ 4
5
(
1 + η

(6)
1,1 − η

(5)
1,1 − η

(5)
1,2

)(
c2
x −

1
2

)
q(1)
z −

1
2η

(2)
1,2

(
c2
x −

1
2

)
v(1)
z + η

(1)
1,2v

(2)
z

+M12η
(2)
1,2q

(2)
z + 1

2η
(2)
1,2

(
c2
x −

1
2

)
v(2)
z +

η
(4)
1,2
M12

cxP̃
(2)
xz +

4η(6)
1,2

5
√
M12

(
c2
x −

1
2

)
q(2)
z (4.18)

Then, we multiply Eq. (4.15) by 1
π

(
c2
y + c2

z − 2
)
cze
−(c2

y+c2
z) and we integrate over

dcydcz, defining the reduced unknown distribution function

Y (1)(x, cx) = 1
π

∫ +∞

−∞

∫ +∞

−∞
h1(x, c)cz

(
c2
y + c2

z − 2
)
e−(c2

y+c2
z)dcydcz . (4.19)

The resulting equation is

cx
∂Y (1)

∂x̃
+ Y (1) + τ̂ = −η(2)

1,2v
(1)
z + 8

5
(
1 + η

(6)
1,1 − η

(5)
1,1 − η

(5)
1,2

)
q(1)
z + η

(2)
1,2v

(2)
z +

8η(6)
1,2

5
√
M12

q(2)
z

(4.20)
The macroscopic fields appearing on the right-hand side of these equations can be

written as

v(1)
z (x) = 1√

π

∫ +∞

−∞
Z(1)e−c

2
xdcx (4.21)

q(1)
z (x) = 1

2
√
π

∫ +∞

−∞

[(
c2
x −

1
2

)
Z(1) + Y (1)

]
e−c

2
xdcx (4.22)

P̃ (1)
xz (x) = 1√

π

∫ +∞

−∞
cxZ

(1)e−c
2
xdcx (4.23)

4.2.1.2. Projection for s = 2

First, we multiply Eq. (4.16) by 1
πM12

cz√
M12

e
−(c2

y+c2
z)

M12 and we integrate over dcydcz,
defining the reduced unknown distribution function

Z(2)(x, cx) = 1
πM12

3/2

∫ +∞

−∞

∫ +∞

−∞
h2(x, c)cze

−(c2
y+c2

z)
M12 dcydcz . (4.24)
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The resulting equation is

cx
∂Z(2)

∂x̃
+Θ12Z

(2)+
√
M12
2

(
c2
x

M12
− 1

2

)
τ̂ = Θ12

{ 1√
M12

(
1− η(1)

2,1

)
v(2)
z −

1√
M12

η
(2)
2,1q

(2)
z

+ 1
M12

3/2

(
1 + η

(4)
2,2 − η

(3)
2,2 − η

(3)
2,1

)
cxP̃

(2)
xz

+ 4
5
√
M12

(
1 + η

(6)
2,2 − η

(5)
2,2 − η

(5)
2,1

)( c2
x

M12
− 1

2

)
q(2)
z −

η
(2)
2,1

2
√
M12

(
c2
x

M12
− 1

2

)
v(2)
z +

η
(1)
2,1√
M12

v(1)
z

+
η

(2)
2,1

M12
3/2 q

(1)
z +

η
(2)
2,1

2
√
M12

(
c2
x

M12
− 1

2

)
v(1)
z +

η
(4)
2,1√
M12

cxP̃
(1)
xz +

4η(6)
2,1
5

(
c2
x

M12
− 1

2

)
q(1)
z


(4.25)

Then, we multiply Eq. (4.16) by 1
πM12

(
c2
y + c2

z

M12
− 2

)
cz√
M12

e
−(c2

y+c2
z)

M12 and we inte-

grate over dcydcz, defining the reduced unknown distribution function

Y (2)(x, cx) = 1
πM12

3/2

∫ +∞

−∞

∫ +∞

−∞
h2(x, c)cz

(
c2
y + c2

z

M12
− 2

)
e
−(c2

y+c2
z)

M12 dcydcz . (4.26)

The resulting equation is

cx
∂Y (2)

∂x̃
+Θ12Y

(2)+
√
M12τ̂ = Θ12

− η
(2)
2,1√
M12

v(2)
z + 8

5
√
M12

(
1 + η

(6)
2,2 − η

(5)
2,2 − η

(5)
2,1

)
q(2)
z

+
η

(2)
2,1√
M12

v(1)
z +

8η(6)
2,1
5 q(1)

z

 (4.27)

The macroscopic fields appearing on the right-hand side of these equations can be
written as

v(2)
z (x) = 1√

π

∫ +∞

−∞
Z(2)e−c

2
x/M12dcx (4.28)

q(2)
z (x) = 1

2
√
π

∫ +∞

−∞

[(
c2
x

M12
− 1

2

)
Z(2) + Y (2)

]
e−c

2
x/M12dcx (4.29)

P̃ (2)
xz (x) = 1√

π

∫ +∞

−∞
cxZ

(2)e−c
2
x/M12dcx (4.30)

4.3. The coupled Poiseuille and thermal creep problems

In order to consider also the Poiseuille problem, whose equations are available in [37]
and are obtained with the same projection procedure described above, it is sufficient to
add to the left-hand side the corresponding source term; the resulting equations are:

cx
∂Z(1)

∂x̃
+Z(1)+1

2

(
c2
x −

1
2

)
τ̂+k̂ =

(
1− η(1)

1,2

)
v(1)
z −η

(2)
1,2q

(1)
z +

(
1 + η

(4)
1,1 − η

(3)
1,1 − η

(3)
1,2

)
cxP̃

(1)
xz
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+ 4
5
(
1 + η

(6)
1,1 − η

(5)
1,1 − η

(5)
1,2

)(
c2
x −

1
2

)
q(1)
z −

1
2η

(2)
1,2

(
c2
x −

1
2

)
v(1)
z + η

(1)
1,2v

(2)
z

+M12η
(2)
1,2q

(2)
z + 1

2η
(2)
1,2

(
c2
x −

1
2

)
v(2)
z +

η
(4)
1,2
M12

cxP̃
(2)
xz +

4η(6)
1,2

5
√
M12

(
c2
x −

1
2

)
q(2)
z (4.31)

cx
∂Z(2)

∂x̃
+Θ12Z

(2)+
√
M12
2

(
c2
x

M12
− 1

2

)
τ̂+
√
M12k̂ = Θ12

{ 1√
M12

(
1− η(1)

2,1

)
v(2)
z −

1√
M12

η
(2)
2,1q

(2)
z

+ 1
M12

3/2

(
1 + η

(4)
2,2 − η

(3)
2,2 − η

(3)
2,1

)
cxP̃

(2)
xz

+ 4
5
√
M12

(
1 + η

(6)
2,2 − η

(5)
2,2 − η

(5)
2,1

)( c2
x

M12
− 1

2

)
q(2)
z −

η
(2)
2,1

2
√
M12

(
c2
x

M12
− 1

2

)
v(2)
z +

η
(1)
2,1√
M12

v(1)
z

+
η

(2)
2,1

M12
3/2 q

(1)
z +

η
(2)
2,1

2
√
M12

(
c2
x

M12
− 1

2

)
v(1)
z +

η
(4)
2,1√
M12

cxP̃
(1)
xz +

4η(6)
2,1
5

(
c2
x

M12
− 1

2

)
q(1)
z


(4.32)

cx
∂Y (1)

∂x̃
+ Y (1) + τ̂ = −η(2)

1,2v
(1)
z + 8

5
(
1 + η

(6)
1,1 − η

(5)
1,1 − η

(5)
1,2

)
q(1)
z + η

(2)
1,2v

(2)
z +

8η(6)
1,2

5
√
M12

q(2)
z

(4.33)

cx
∂Y (2)

∂x̃
+Θ12Y

(2)+
√
M12τ̂ = Θ12

− η
(2)
2,1√
M12

v(2)
z + 8

5
√
M12

(
1 + η

(6)
2,2 − η

(5)
2,2 − η

(5)
2,1

)
q(2)
z

+
η

(2)
2,1√
M12

v(1)
z +

8η(6)
2,1
5 q(1)

z

 (4.34)

where k̂ = 1
p

∂p

∂z̃
is the small and constant dimensionless pressure gradient. The defini-

tions of the unknown distribution functions and of the macroscopic quantities are the
same as before.
Therefore, the complete set of equations governing the Poiseuille-thermal creep prob-
lem is given by Eqs. (4.31) to (4.34). As before, it is a system of four coupled integro-
differential equations in the four unknown functions Z(1), Y (1), Z(2), Y (2).

Finally, we define the reduced mass and heat flow rates as

G
(s)
i = − 1

δ2

∫ δ/2

−δ/2
v

(s)
z,i (x)dx (4.35)

and
Q

(s)
i = − 1

δ2

∫ δ/2

−δ/2
q

(s)
z,i (x)dx (4.36)

where s = 1, 2 represents the gas species and i = P, T indicates to which effect (pressure
or temperature gradient) that physical quantity is due (e.g.: Q(1)

T is the heat flow rate
of species 1 due to the temperature gradient).
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4.3.1. Boundary conditions

Due to the much greater complexity of the governing equations of this problem with
respect to the single-component case, the most used model for the boundary conditions
is the Maxwell model; the two accommodation coefficients are denoted by αs, s = 1, 2,
and need not be the same. In terms of the perturbed distribution functions hs, the
model is written as ([78])

hs

(
−δ2 , cx, cy, cz

)
= (1− αs)hs

(
−δ2 ,−cx, cy, cz

)
+ αsI {hs}

(
−δ2

)
hs

(
δ

2 ,−cx, cy, cz
)

= (1− αs)hs
(
δ

2 , cx, cy, cz
)

+ αsI {hs}
(
δ

2

) (4.37)

for cx > 0 and all cy, cz. The diffuse term is

I {hs} (x) = 2
π

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
0

e−c
2
cxhs(x,−cx, cy, cz)dcxdcydcz . (4.38)

In terms of the reduced distribution functions we have

Z(s)
(
−δ2 , cx

)
= (1− αs)Z(s)

(
−δ2 ,−cx

)
Z(s)

(
δ

2 ,−cx
)

= (1− αs)Z(s)
(
δ

2 , cx
)

Y (s)
(
−δ2 , cx

)
= (1− αs)Y (s)

(
−δ2 ,−cx

)
Y (s)

(
δ

2 ,−cx
)

= (1− αs)Y (s)
(
δ

2 , cx
)

(4.39)

In Section 4.4 we shall consider almost only the case of diffuse reflection, for which
α1 = α2 = 1.

4.3.2. Definition of the TPD exponent in the case of a binary gas
mixture

Following what we said in Section 4.1.1, we will consider two different definitions for
the TPD exponent: the “single-gas” definition,

γs = G
(s)
T

G
(s)
P

, (4.40)

and the “global” definition,

γglobal = C0G
(1)
T + (1− C0)G(2)

T

C0G
(1)
P + (1− C0)G(2)

P

, (4.41)

where C0 = n1,0
n1,0 + n2,0

is the equilibrium molar concentration. In the global definition,
in order to consider correctly the contributions of both gases to the total mass flux, we
weight each term by the molar concentration of the corresponding gas.
Note that ([79, 80])

ΛPi = C0G
(1)
i + (1− C0)G(2)

i i = P, T (4.42)

97



4. Binary gas mixtures: thermal creep and thermomolecular pressure difference

are the kinetic coefficients representing the mass fluxes caused by gradients of pressure
and temperature, respectively. Hence, we can actually rewrite Eq. (4.41) as

γglobal = ΛPT
ΛPP

. (4.43)

4.4. Numerical behaviour of the TPD exponent

In general, there are several aspects to be considered in the analysis of the behaviour
of a mixture, and this holds for the particular case of the TPD effect. This analysis can
be more easily performed by changing, one by one, different physical parameters of the
problem under study, such as:

• molecular masses and diameters, in order to simulate the behaviour of combina-
tions of different gases;

• relative molar concentrations;

• intermolecular potential, in order to deduce how the behaviour of the mixture
changes by using different models of molecular interaction.

For example, by changing some of the above-mentioned parameters, it is possible to
obtain the limit of single gas: by letting the relative concentration C0 go to 0 or to 1,
or by choosing equal the molecular masses and diameters. It may be useful to compare
the actual behaviour of the single gas with these limits of the binary mixture: indeed,
we expect them to be the same.
Another feature of γ is its behaviour in the limit cases δ → 0 and δ → ∞, for which,
in the single-gas case, we have γ → 0.5 and γ → 0 respectively (for diffuse boundary
conditions). We expect these conditions to be verified also in the mixture case: at very
low densities, the gas-gas interaction does not play a relevant role, and therefore the
behaviour of the mixture is likely similar to the single-gas case; on the other hand,
the thermal creep phenomenon is a peculiar feature of rarefied flows, and therefore, as
all the cross effects, it vanishes in the hydrodynamic regime. For this same reason, we
expect a strictly decreasing γ also in the mixture case (see Section 2.3.2).
A general remark about the influence on the numerical results of the mathematical
model used in the study of the physical problem is the following. The choice of a par-
ticular model for the boundary conditions does not necessarily entail a loss of generality
in a merely qualitative analysis. Indeed, we expect that a possible discrepancy of the
functional dependence of γ on δ in the mixture case with respect to, for example, the
single-gas case will appear for every choice of the boundary conditions, since this differ-
ence would probably be due to the gas-gas interaction, rather than to the gas-surface
one. In this regard, what should have a much more relevant effect in the behaviour of
the TPD exponent for a mixture is the model of the gas-gas interaction, rather than
the boundary conditions. Therefore, it may be useful to compare the results obtained
not only with different intermolecular potentials, but also with different models of the
whole collision integral.

The approach to the numerical analysis of the TPD exponent in this chapter is com-
pletely different from the one adopted for the single-gas case: in Chapter 3 we exploited
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(b) C0 = 0.5.
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Figure 4.1.: Ne-Ar mixture: TPD exponent computed via Eq. (4.43) for different values of C0 (NV). ◦:
HS interaction; ∗: LJ potential; •: single-gas experimental data for Ne and Ar.

a variational method to obtain analytical expressions of the physical quantities of in-
terest valid only in some rarefaction regime; viceversa, here we will rely on numerical
computations, but performed for a much wider range of rarefaction.
To perform the numerical analysis, we shall rely on some datasets already present in
literature about kinetic coefficients and mass fluxes computed as a function of the rar-
efaction parameter. In particular, we shall refer to [79, 78, 81]. Two different mixtures
of noble gases will be studied: Ne-Ar mixture, for which the two molecular masses are
quite similar, and He-Xe, for which, viceversa, the masses are very different.

4.4.1. Effect of the intermolecular potential

In [79] (NV) are reported numerical data on the kinetic coefficients for both mixtures for
a wide range of δ and for different relative concentrations. The reported results refer to
the case of diffuse reflection and the collision model is the McCormack model. Moreover,
to study the influence of the intermolecular interaction potential, two molecular models
are used: the rigid spheres and a more realistic potential, that is, the Lennard-Jones
model.
Since the available data concern the kinetic coefficients, we will study the TPD exponent
as defined in Eq. (4.43), γglobal.

4.4.1.1. Ne-Ar mixture

The results concerning Ne-Ar mixture are reported in Figs. 4.1 and 4.2.
From Fig. 4.1, in which we compare the intermolecular potentials for fixed values of
C0, we deduce that γ does not depend on the intermolecular potential for all molar
concentrations. This is not necessarily in contrast with the fact that a correct descrip-
tion of the interparticle force law is of paramount importance to reproduce properly
experimental results for gas mixtures ([37]). Indeed, being the TPD exponent a ratio
between quantities, it may involve a sort of “normalization” with respect the effect of
the potential. Actually, the effect of the potential is visible in the kinetic coefficients
involving the concentration gradient, particularly when δ > 10−1, but our definitions
of γ are independent from this effect.
In Fig. 4.2, we compare the different molar concentrations for the same potential: we
see that γ is practically independent also from the value of C0 for both potentials.
Both these facts agree with what is observed by the authors:
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Figure 4.2.: Ne-Ar mixture: TPD exponent computed via Eq. (4.43) for different intermolecular poten-
tials (NV). ◦: C0 = 0.1; ∗: C0 = 0.5; O: C0 = 0.9; •: single-gas experimental data for Ne and Ar.
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(b) C0 = 0.5.
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Figure 4.3.: He-Xe mixture: TPD exponent computed via Eq. (4.43) for different values of C0 (NV). ◦:
HS interaction; ∗: LJ potential; •: single-gas experimental data for He and Xe.

• ΛPP is practically insensitive to the intermolecular potential, and ΛPT is only
slightly sensitive on it;

• in the Ne-Ar case, both ΛPP and ΛPT are practically independent from the molar
concentration.

Finally, we notice that in all cases the numerical TPD exponent has the correct limits
for δ → 0 and δ → ∞ and a qualitative behaviour similar to the numerical single-gas
one presented, e.g., in Fig. 3.21c. Moreover, in the experimental range of δ the trend is
similar to the experimental single-gas TPD exponents.

4.4.1.2. He-Xe mixture

The results concerning He-Xe mixture are reported in Figs. 4.3 and 4.4.
From Fig. 4.3, in which we compare the intermolecular potentials for fixed values of
C0, we see that γ is slightly dependent on the interaction potential, especially for
intermediate regimes of rarefaction (δ ≈ 1).
In Fig. 4.4, we compare the different C0 for the same fixed potential: we see that the
value of the molar concentration has a visible effect on γ, especially for 10−1 < δ < 10.
In particular, we can observe that γ for large C0 (C0 ≈ 1) is similar to the one for small
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Figure 4.4.: He-Xe mixture: TPD exponent computed via Eq. (4.43) for different intermolecular poten-
tials (NV). ◦: C0 = 0.1; ∗: C0 = 0.5; O: C0 = 0.9; •: single-gas experimental data for He and Xe.

C0 (C0 ≈ 0), and is bigger than both of these for intermediate values of C0 (C0 ≈ 0.5).
Both these facts agree with what is observed in the paper:

• ΛPP is still practically insensitive to the intermolecular potential, and ΛPT is still
only slightly sensitive on it, but the effect of the intermolecular potential is more
dominant in the He-Xe mixture rather than in the Ne-Ar mixture, so a possible
discrepancy between the effects of the two potentials is amplified in the He-Xe
case;

• in the He-Xe case, the variation of C0 has a much more significant effect on both
ΛPP and ΛPT than in the Ne-Ar case, but each of these kinetic coefficients has
practically the same value for the two concentrations C0 = 0 and C0 = 1.

Finally, we notice that, as for the Ne-Ar mixture, in all cases the numerical TPD
exponent has the correct limits for δ → 0 and δ → ∞ and a qualitative behaviour
similar to the numerical single-gas one. Moreover, in the experimental range of δ the
trend is similar to the experimental single-gas TPD exponents.

4.4.2. “Single-gas” and “global” definitions

In [78] (SV) are reported numerical data, for a wide range of δ, on the species-specific
mass and heat fluxes due to both pressure and temperature gradients for both mixtures.
Also in this case, the effect of different relative concentrations is studied. The reported
results refer to the case of hard-sphere interaction and diffuse boundary conditions, and
the collision model is still the McCormack model.
In this case, since species-specific data are available, we can analyse both the definitions
of TPD exponent for a mixture that we conjectured in Section 4.3.2: the single-gas
definition Eq. (4.40), γs, and the global definition Eq. (4.41), γglobal.

4.4.2.1. Ne-Ar mixture

The results concerning Ne-Ar mixture are reported in Figs. 4.5 to 4.7.
In Fig. 4.5, we compare the single-gas and global definitions of the TPD exponent for
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(b) C0 = 0.5.
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Figure 4.5.: Ne-Ar mixture: TPD exponent for different values of C0 (SV). ◦: single-gas γ computed via
Eq. (4.40) for Ne; ∗: single-gas γ computed via Eq. (4.40) for Ar; O: global γ computed via Eq. (4.41);
•: single-gas experimental data for Ne and Ar.
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Figure 4.6.: Ne-Ar mixture: TPD exponent computed via Eq. (4.40) for both Ne (Fig. 4.6a) and Ar
(Fig. 4.6b) (SV). ◦: C0 = 0.1; ∗: C0 = 0.5; O: C0 = 0.9; •: single-gas experimental data for Ne and Ar.
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Figure 4.7.: Ne-Ar mixture: TPD exponent computed via Eq. (4.41) (SV). ◦: C0 = 0.1; ∗: C0 = 0.5; O:
C0 = 0.9; •: single-gas experimental data for Ne and Ar.
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(b) C0 = 0.5.
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Figure 4.8.: He-Xe mixture: TPD exponent for different values of C0 (SV). ◦: single-gas γ computed via
Eq. (4.40) for He; ∗: single-gas γ computed via Eq. (4.40) for Xe; O: global γ computed via Eq. (4.41);
•: single-gas experimental data for He and Xe.
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Figure 4.9.: He-Xe mixture: TPD exponent computed via Eq. (4.40) for both He (Fig. 4.9a) and Xe
(Fig. 4.9b) (SV). ◦: C0 = 0.1; ∗: C0 = 0.5; O: C0 = 0.9; •: single-gas experimental data for He and Xe.

different fixed values of C0. We can observe that for C0 = 0.1 the single-gas γ for Ar is
very similar to the global one, while for C0 = 0.9 γglobal is closer to the single-gas one
for Ne. We may interpret this as the fact that for extremal values of C0 we reach the
limit of single-gas behaviour.
In Fig. 4.6, we evaluate the effect of different values of C0 on the single-gas TPD
exponent Eq. (4.40) for both gases separately. Also in this case, we observe that the
single-gas γ for Ne (Fig. 4.6a) seems to tend to the single-gas experimental one as
C0 → 1. In the case of Ar (Fig. 4.6b), the behaviour is more ambiguous.
In Fig. 4.7, we consider the effect of different values of the molar concentration on
the global TPD exponent. Since Eq. (4.42) holds, this graph is exactly the same as
Fig. 4.2a, up to at most a negligible discrepancy due to different numerical schemes.
Hence, the considerations are the same.
Finally, we notice that, as in the previous cases, the numerical TPD exponent has
the correct limits for δ → 0 and δ → ∞ and a qualitative behaviour similar to the
numerical single-gas one. Moreover, in the experimental range of δ the trend is similar
to the experimental single-gas TPD exponents.
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Figure 4.10.: He-Xe mixture: TPD exponent computed via Eq. (4.41) (SV). ◦: C0 = 0.1; ∗: C0 = 0.5;
O: C0 = 0.9; •: single-gas experimental data for He and Xe.

4.4.2.2. He-Xe mixture

The results concerning He-Xe mixture are reported in Figs. 4.8 to 4.10.
In Fig. 4.8, we compare the single-gas and global definitions of the TPD exponent for
different fixed values of C0. We can observe that for C0 = 0.1 the single-gas γ for Xe
is closer to γglobal, while for C0 = 0.9 γglobal is much more similar to the single-gas one
for He. We may interpret this as the fact that for extremal values of C0 we reach the
limit of single-gas behaviour. We observe that the convergence of γglobal to γs is much
faster when C0 → 1 (that is, converging toward the lighter species, s = 1, He) rather
than C0 → 0 (that is, converging toward the heavier species, s = 2, Xe). In fact, when
C0 = 0.5 γglobal is visibly closer to γHe rather than to γXe. Actually, this seems to be
true also for the Ne-Ar mixture, but it is much more evident in the He-Xe case.
In Fig. 4.9, we evaluate the effect of different values of C0 on the single-gas TPD
exponent Eq. (4.40) for both gases separately. We observe that γHe (Fig. 4.9a) seems
to tend to the single-gas experimental γ as C0 → 1. In the case of Xe (Fig. 4.9b), the
behaviour is even more evident: for C0 = 0.1, γXe and γXe,exp practically overlap in the
experimental range.
In Fig. 4.10, we consider the effect of different values of the molar concentration on
the global TPD exponent. Since Eq. (4.42) holds, this graph is exactly the same as
Fig. 4.4a, up to at most a negligible discrepancy due to different numerical schemes.
Hence, the considerations are the same.
Finally, we notice that, as in the previous cases, the numerical TPD exponent has
the correct limits for δ → 0 and δ → ∞ and a qualitative behaviour similar to the
numerical single-gas one. Moreover, in the experimental range of δ the trend is similar
to the experimental single-gas TPD exponents.

4.4.3. Effect of the collision model

In [81] (GS) are reported numerical data, for a wide range of δ, on the species-specific
mass and heat fluxes due to both pressure and temperature gradients for both mixtures.
Only the case C0 = 0.4 is considered. The reported results refer to the case of hard-
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Figure 4.11.: Ne-Ar mixture: TPD exponent computed via Eq. (4.40) and Eq. (4.41) (GS). ◦: γ via
Eq. (4.40) for Ne; ∗: γ via Eq. (4.40) for Ar; O: global γ; •: single-gas experimental data for Ne and Ar.

sphere interaction and Maxwell boundary conditions, chosen differently in the lower
and upper plates: α1 = 0.2, α2 = 0.4 for the lower plate, β1 = 0.6, β2 = 0.8 for the
upper plate. This time, the LBE is solved, so no kinetic model is used.
In this case, since species-specific data are available, we can analyse both the definitions
of TPD exponent for a mixture that we conjectured in Section 4.3.2: the “single-gas”
definition Eq. (4.40) and the “global” definition Eq. (4.41).

4.4.3.1. Ne-Ar mixture

The results concerning Ne-Ar mixture are reported in Fig. 4.11, in which we compare
the single-gas and global definitions of the TPD exponent with experimental data. We
observe that γglobal is about the mean between the two numerical single-gas γ, but
closer to γAr: this makes sense, since C0 = 0.4.
Moreover, we notice that, as in the previous cases, the numerical TPD exponent has
the correct limits for δ → 0 and δ → ∞ and a qualitative behaviour similar to the
numerical single-gas one.

4.4.3.2. He-Xe mixture

The results concerning He-Xe mixture are reported in Fig. 4.12, in which we compare
the single-gas and global definitions of the TPD exponent with experimental data. We
observe that γglobal is about the mean between the two numerical single-gas γ, but
closer to γXe: this makes sense, since C0 = 0.4.
Moreover, we notice that, as in the previous cases, the numerical TPD exponent has
the correct limits for δ → 0 and δ →∞.
and a qualitative behaviour similar to the numerical single-gas one. Moreover, in the ex-
perimental range of δ the trend is similar to the experimental single-gas TPD exponents.

However, even if some of the qualitative features of the TPD exponent (limits as
δ → 0 and δ → ∞, strict monotonicity, inflection point at δ ≈ 1) seem to appear also
in the LBE description, the quantitative values are rather different. In particular, the
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Figure 4.12.: He-Xe mixture: TPD exponent computed via Eq. (4.40) and Eq. (4.41) (GS). ◦: γ via
Eq. (4.40) for He; ∗: γ via Eq. (4.40) for Xe; O: global γ; •: single-gas experimental data for He and
Xe.

results in (GS) often underestimates the ones in (NV) and (SV), which on the other
hand seem to be physically more consistent, both in the quantitative values in the
experimental range and in the behaviour of single-gas limit. (Actually, this last remark
cannot be done for (GS) data, since only one value of C0 is considered.) It is difficult
to tell precisely if this fact is due to the different choice of the collision model or to
the different boundary conditions (which, in (GS), are chosen in a rather arbitrary and
probably non physical way), so this comparison is not useful to conclude whether the
McCormack model is a valid alternative to the LBE, at least in the study of the TPD
effect.
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5. Conclusions and future research

5.1. Conclusions

5.1.1. Single gas

In the case of single gases, the aim was to exploit the TPD effect in order to improve
the gas-surface models in a rarefied gas and to refine the description of second-order
slip boundary conditions in the transition regime.

Concerning the first goal, we have studied the linearized Boltzmann equation for the
Poiseuille-thermal creep problem for a single monatomic gas flowing between two infi-
nite parallel plates. The Cercignani-Lampis boundary conditions have been considered.
Firstly, we have recalled that, via a variational method, it is possible to obtain analyt-
ical expressions of slip coefficients and mass flow rates (and, hence, also of the TPD
coefficient). The analytical expressions presented here are valid only, a priori, in the slip
(and hydrodynamic) regime. Then, we have tried to extract the two accommodation
coefficients describing the CL model by the use of these analytical expressions for five
noble gases: Helium, Neon, Argon, Krypton, Xenon.
Despite an apparent intrinsic instability in both the extraction procedures presented,
especially about αn, we have found a quite good agreement in the numerical values
of both accommodation coefficients, obtained in two independent ways, and in their
validation, for almost all the noble gases involved. The only unsatisfactory case was the
one of Xenon, for which the validation step and the agreement between the two pairs
of accommodation coefficients were the worst.

About the second goal, we have confirmed that the “extended” slip regime goes well
beyond the classical one, including a part of the transition regime: the second-order
slip model can be considered reliable up to a rarefaction regime of at least δ = 3 for all
gases involved.

5.1.2. Gaseous mixtures

Previous literature concerning the TPD effect in gaseous mixtures is rather poor, es-
pecially about the rigorous definition of the TPD coefficient and its systematic study
through numerical results. For this reason, we have chosen as starting point the formu-
lation of a good definition of the TPD exponent in the case of mixtures. In order to
achieve this, we have moved directly from its definition in the single-gas case, simply
as the ratio between the thermal creep and the Poiseuille mass fluxes, but considering
first the two gases separately and then the mixture as a whole.
The second step has been to derive, via the projection procedure, the Boltzmann-type
equations governing the thermal creep problem in a planar channel for a binary mix-
ture described by the McCormack model. Due to the much higher complexity of these
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equations with respect to the single-gas case, we have chosen the Maxwell model for
boundary conditions. Then, we have exploited some datasets, already present in lit-
erature, derived from the numerical solution of the same equations we reported here,
for two different binary mixtures (Ne-Ar and He-Xe). Hence, we could use both the
new definitions of the TPD coefficient to compute this quantity, for diffuse boundary
conditions but for a much wider range of the gas rarefaction than the single-gas case,
thanks to the direct numerical solution of the Boltzmann equation (rather than the
Navier-Stokes ones with slip boundary conditions).
Despite the quite näıve approach, we were able to point out several interesting aspects
of the TPD effect for a gaseous mixture. For example, we found that the functional
dependence of γ on δ and its qualitative behaviour seem to be the same as the single-gas
one in the whole regime of rarefaction, including the limit cases of free-molecular and
continuum regimes.
We have also tried to evaluate the effect of the choice of different intermolecular interac-
tion potentials. Our conclusion is that the TPD effect seems to be practically insensitive
to the interaction potential (and hence the hard-spheres model can be adopted) if the
molecular masses are close enough (Ne-Ar), while the discrepancy is still small, but
visible, if the mass ratio is sufficiently large (He-Xe), especially for δ ≈ 1 and C0 ≈ 0.5.
Finally, we have also compared the effect of different choices of the model for the colli-
sion integral. Due to the limited data available in this case, we have not been able to
conclude whether the McCormack model is a valid alternative to the LBE description.

5.2. Future research

There are still several issues that deserve to be analysed.

5.2.1. Single gas

Extension of the rarefaction range The variational approach turned out to be
very useful in order to determine analytical expressions for various physical quantities,
to obtain a very precise assessment of the accommodation coefficients. The limitation is
that these expressions, in particular the ones of the Poiseuille and thermal creep mass
fluxes, are obtained with a comparison with the analytical solutions of the Navier-
Stokes equation with second-order slip boundary conditions, and therefore are valid
only in the slip regime. A step further may be to solve numerically the LBE with
the CL boundary conditions assessed in this work and compare the results with some
experimental data, in order to check if these accommodation coefficients can reproduce
the real behaviour of the gases considered in the whole rarefaction regime. To this
end, much more experimental data will be needed, especially in conditions of very high
rarefaction.

Different geometries The channel flow was a good benchmark case to test the
reliability of the TPD effect in the study of single-gas flows driven by pressure and
temperature gradients. Nonetheless, it would be useful to generalize this procedure to
other geometries (e.g., circular, elliptical or square tubes), to perform a systematic
study on the influence of the shape of the gas container on the gas-surface interaction
and on the TPD phenomenon.
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5.2.2. Gaseous mixtures

Accurate numerical analysis Even for binary mixtures, there are much more pa-
rameters that may influence the behaviour of the mixture than in the single-gas case.
These parameters are, for example, the diameters, masses and number densities of
the species, or the accommodation coefficients. An accurate and systematic numerical
analysis on the behaviour of such a mixture could be useful to analyse in detail how
the different physical quantities of interest (mass flow rates, kinetic coefficients, etc.)
change when, for example, one gas is much or slightly heavier than the other, or as
the relative molar concentration C0 change continuously from 0 to 1. To this end, one
should have the possibility to change arbitrarily the above-mentioned physical param-
eters, and therefore a code should be exploited, to solve numerically the equations for
whatever choice of the parameters.

Different boundary conditions The CL model for the boundary conditions is more
refined than the Maxwell model, but it is much more complex. This complexity is still
manageable in the single-gas case, but this is no more true when dealing with mixtures.
Nonetheless, to obtain accurate model for mixture-surface interaction, in the future it
may be necessary to try to implement some more refined model. To begin with, it would
be useful to have complete and detailed datasets, concerning the quantities of interest,
not only for diffuse boundary conditions, but for at least different values of the only
accommodation coefficient of the Maxwell model, to perform a rigorous analysis of its
effects on the TPD phenomenon.

Different collisional models One of the most critical issues in this problem is the
choice of a realistic collisional model. The McCormack model is often chosen because
it is able to give correct results in both Poiseuille and thermal creep problems, which
both, in turn, have a leading role in the study of the TPD effect. Nonetheless, as already
seen, a more rigorous analysis on its reliability as an alternative to the LBE for gas
mixtures is mandatory (see [81]). On the other hand, this model, although being already
an “economical alternative” to the LBE, is still quite complex to manage from both
analytical and numerical point of view. Hence, another idea, in contrast with preferring
the LBE instead of a less refined model, is to simplify more: for example, it would be
useful to compare the results of the modified-BGK model (see [37]) for thermal creep
problem with the McCormack ones. If they turn out to be quite similar, the BGK-type
model will be an interesting alternative to the McCormack one, due to its much simpler
equations, allowing even a semi-analytical representation of the solution.

Experimental data What is lacking in the mixtures case, with respect to the single-
gas case, is the availability of experimental data about the TPD effect, to be used to
check the reliability of the many approximations used to model a problem of such
complexity.
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A. Computation of the
Chapman-Cowling integrals

With the same definitions of the different physical quantities as in Section 2.2, the
general expression of the Chapman-Cowling integrals Ωij

s,r is (see [38, 34])

Ωij
s,r =

(
kBT

2πµrs
)1/2 ∫ ∞

0

∫
Ω
e−g

2
g2r+3

(
1− (cosθ)l

)
σrs (|V|,Ω) dΩdg

g =
(
µrs

2kBT

)1/2
|V| (A.1)

where σrs is the differential scattering cross section for collisions between a molecule of
the s-th and a molecule of the r-th species in which the relative velocity V is deflected
through an angle θ and turned into the solid angle dΩ.
In the following, we report the explicit expressions of the Ωij

s,r integrals for some notable
intermolecular interaction potentials (see also [82, 37]).

A.1. Maxwell molecules

In this model, the interaction potential is

U sr = Ksr

rν−1 (A.2)

with ν = 5; r is the distance between the center of the molecules and Ksr is the
interparticle force law constant. The Ω-integrals are therefore given by

Ωij
s,r = Ai(5)

2

√
πKsr

µsr
Γ
(
j + 3

2

)
(A.3)

where Γ is the gamma function.
Ai(5) represents the dimensionless collision cross sections, whose values are tabulated
in [38].
K11 and K22 can be written in terms of the single gas viscosity coefficients ηs with the
aid of the first Chapman-Enskog expressions for these quantities,

ηs = 1
3π

(2ms

Kss

)1/2 kBT

A2(5) (A.4)

while K12 may be determined from the method of the combination rule,

K12 =
(
K11K22

)1/2
. (A.5)

In order to specify the force constants K11 and K22, experimental data on the viscosities
ηs of the single gases at the temperature T = 300 K may be used, for example given in
[83].



A. Chapman-Cowling integrals

A.2. Hard-sphere molecules

Rigid elastic spherical molecules may be regarded as a limiting case of the inverse
power-law potential model Eq. (A.2) corresponding to ν = ∞. For this rigid sphere
model, the Ωintegrals read

Ωij
s,r = (j + 1)!

8

[
1− (1 + (−1)i)

2(i+ 1)

](
πkBT0
2µsr

)1/2
(ds + dr)2 (A.6)

where ds is the molecular diameter of species s. Following [79], it can be computed via
the expression

ηs = 1.016034 5
16

√
mskBT√
πds

2 (A.7)

and the experimental data on the viscosities ηs of the single gases at the temperature
T = 300 K have been used, given in [83].
Note that Eq. (A.6) takes the form

Ω12
s,r = 3Ω11

s,r Ω13
s,r = 12Ω11

s,r Ω22
s,r = 2Ω11

s,r (A.8)

with
Ω11
s,r = 1

4

(
πkBT0
2µsr

)1/2
(ds + dr)2 (A.9)

A.3. (6-12) Lennard-Jones model

In this model, the potential of intermolecular force is given by

U sr = 4εsr
[(

dsr

r

)12
−
(
dsr

r

)6]
(A.10)

where r is the distance between the center of the molecules, εsr is the depth of the
potential well (the maximum energy of attraction), and dsr is the reference collision
diameter [defined so that U sr(dsr) = 0]. In this case, the Ω-integrals cannot be evaluated
analytically in closed form and numerical integrations have to be used, for example
the ones tabulated in [84], assuming the same temperature as that for the Maxwell
molecules and the rigid spheres, i.e., T = 300 K.
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