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1. Introduction
In the past 60 years interplanetary spaceflight
has shown the great scientific value of data gath-
ered from the observation of the Solar System.
A growing need for missions that enable deep in-
terplanetary travel has brought forward the de-
velopment of new technologies and strategies to
overcome the limitations dictated by the current
propulsion systems.
A solution to this issue has been identified in ex-
ploiting Gravity Assist Maneuvers (GAMs). A
gravity assist manoeuvre is the use of the rela-
tive movement and gravity field of a planet or
other massive celestial body to change the ve-
locity of a spacecraft. This is achieved with a
close proximity swing-by of the celestial body
so that its gravity produces a change in the ve-
locity vector of the spacecraft [6]. This idea has
been exploited widely in the last decades, in mis-
sions such as Bepicolombo, Cassini-Huygens and
many others.
However, in many cases, a single GAM is not
sufficient to achieve the mission target and it is
necessary to perform a definite number of GAMs
to reach the objective. These kind of missions
are identified as Multiple Gravity Assist mis-
sions (MGA).
In the last decades, several methods were pro-

posed to tackle this issue, based on the keplerian
map [7] or the Tisserand-Poincarè map [2] and
the flyby [8].
In this work, an alternative solution to the prob-
lem is proposed: following the idea outlined by
Menzio et al.[3], the trajectory is designed by
means of the syzygy algorithm. The model
presented by Menzio is further improved by re-
moving one of its main simplifying assumptions,
namely that the transfer leg must either start
or end at one of it’s absidal points, and it’s ex-
tended to hyperbolic orbits. The initial model
is then augmented by implementing the B-plane
formalism introduced by Öpik, [4] and following
Carusi et al. [1], the flyby problem is resolved.
The developed model is finally combined with a
dynamic programming approach to address the
design of an optimal solution.

2. The Syzygy Algorithm
The design of the interplanetary arcs is per-
formed in a circular, planar two body problem,
in a patched conics framework. Under this as-
sumptions, once the wanted planetary sequence
is defined, and removing the assumption of tan-
gential departure and arrival, an interplanetary
transfer is completely defined by parameterizing
the departure time t1, the eccentricity and the
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true anomaly at departure θ1(t1).
Interception with the target planet occurs after
travelling an aperture of [3]:

∆θ21(e1) = acos(
1

e1
(
rp
r2
(1− e21)− 1)) (1)

θ2 = ∆θ21(e1) (2)

Evaluating the time of flight relative to the aper-
ture just computed, the encounter takes place if
the feasible transfer condition (FTC), defined as
[3]:

FTC = n2tof + ϕ21(t1)− θ2(t2) + θ1(t1) (3)

where n2 is the angular velocity of the target
planet, ϕ21(t1) is the initial phasing between the
celestial bodies, tends to zero.
The FTC represents the difference, in terms of
angular position, between the spacecraft and the
target planet. As the FTC tends to zero, so does
the difference of angular position between the
spacecraft and the target planet, meaning that
the two objects share the same spatial position.
The trajectory design problem is therefore re-
duced to a fully combinatorial matter: finding
the correct combinations of shaping parameters
(ti, ei, θi) that make the FTC null.

3. Close Encounters In The B-
plane And Flyby Character-
ization

3.1. Encounter in the B-plane
Once the pre-encounter interplanetary leg has
been evaluated in terms of Keplerian parame-
ters by means of the syzygy algorithm, the post-
encounter orbital elements can be evaluated by
exploiting the B-plane and Öpik theory for close
encounters.
Following the procedure outlined by Carusi et
al. [1], the components of the spacecraft veloc-
ity are computed in a planetocentric reference
frame (X, Y, Z), centred in the planet’s center
of mass such that the X-axis is directed from
the Sun to the planet’s position, the Y-axis is
aligned with its direction of motion and the and
Z-axis completes the right-handed triad. In this
framework, all the orbital parameters are com-
puted by using Jacobi normalized units. The

expressions for the velocity components are:
Ux = ±

√
2− 1

a − a(1− e2)

Uy =
√
a(1− e2)cos(i)− 1

Uz = ±
√

a(1− e2)sin(i)

(4)

Calling with T the Tisserand parameter of the
particle’s orbit, it can be shown a relation be-
tween T and the magnitude of the planetocentric
velocity U:

U = 3− T =

√
3− 1

a
− 2

√
a(1− e2)cos(i)

(5)
T is an invariant for the CR3BP, therefore, both
U and T are conserved during a close encounter.
By tackling the close encounter with this strat-
egy, the flyby will automatically respect the con-
servation of the Tisserand parameter.
The encounter is then characterized geometri-
cally by means of two angles, θ and ϕ, where θ
is the angle between U and the y-axis, and ϕ, the
angle between the y-z plane and that containing
U and the x-axis, as shown in figure 1:

cos(θ) =
1− 1

a − U2

2U
(6)

Being the problem bi-dimensional ϕ is null (the
same holds for the post-encounter ϕ′), and the
rotation of the incoming velocity is planar of
magnitude γ. It’s possible to derive the deflec-
tion angle γ, from:

tan(
γ

2
) =

c

b
(7)

Where b is the impact parameter and c the char-
acteristic length defined by:

c = m/U2 (8)

Where m is the planet’s mass in terms of the
Sun mass.
Computing the post-encounter angle θ′ by
means of a rotation γ, finally, the post-encounter
orbital parameters are evaluated as:U ′

x

U ′
y

U ′
z

 =

Usin(θ′)sin(ϕ′)
Ucos(θ′)

Usin(θ′)cos(ϕ′)

 (9)
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a′ =
1

1− U2 − 2U ′
y

(10)

e′ =
√

U4 + 4U2
y
′ + U2

x
′(1− U2 − 2U2

y
′) + 4U2U ′

y

(11)
Now that the close encounter effect has been
evaluated, the specific point where the flyby
takes place can be identified on the B-plane. The
B-plane is defined as the plane orthogonal to U
and containing the centre of the planet. In this
context it is introduced another planetocentric
reference frame (ξ, η, ζ) such that the (ξ, ζ)-
axes lie on the b-plane and η is perpendicular to
it. In particular, ζ is parallel to the projection
of the planet’s velocity Vpl on the b-plane but
with opposite direction and ξ completes a right-
handed reference system, as shown in figure 1:

η̂ =
U

|U |
(12)

ξ̂ =
U × vpl
|U × vpl|

(13)

ζ̂ = ξ̂ × η̂ (14)

Figure 1: The figure shows the two reference
frames presented: B-plane and planetocentric
frame. The figure is taken from Campiti et al.
work [5]

Starting from the geometry considerations made
so far, it is possible to identify the point on
the B-plane corresponding to the close encounter

considered:

ζ =
(b2 + c2) ∗ cos(θ′)

2csin(θ)
− (b2 − c2) ∗ cos(θ)

2csin(θ)

(15)

ξ =
√
b2 − ζ2 (16)

η = 0 (17)

3.2. Flyby Characterization
It is possible to employ the classical Orbital Me-
chanics relations for the characterization of the
flyby, in order to verify if the deflection studied
by means of the B-plane is actually feasible for
the unique incoming interplanetary leg designed
with the syzygy algorithm.
By first evaluating the specific angular momen-
tum of the planet and spacecraft, it is possible
to compute the radial and orthogonal compo-
nents of the spacecraft and planet’s velocity. At
this point, it is possible to compute the plan-
etocentric relative velocity (velocity at infinity)
of the spacecraft, first evaluating it’s radial and
orthogonal components:

vr∞ = vrpl − vrsc (18)

vo∞ = vopl − vosc (19)

v∞ =

[
vr∞
vo∞

]
(20)

By fixing the impact parameter, it is possible to
completely define the close encounter hyperbolic
trajectory in terms of pericenter radius rp:

rp =
−µpl

v2∞
+

√
µ2
pl

v4∞
+ b2 (21)

Where µpl is the gravitational parameter of the
flyby planet, v∞ is the magnitude of v∞ and b
is the impact parameter. The flyby hyperbola
will feature an eccentricity given by:

e = 1 +
rpv

2
∞

µpl
(22)

and turn angle δ computed as:

δ = 2asin(
1

e
) (23)
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The data gathered by means of these computa-
tions can be exploited in order to evaluate the
feasibility of the close encounter prescribed by
the B-plane deflection model, by checking if the
perigee radius rp is actually greater than the
planetary radius of the flyby planet. The fea-
sibility condition therefore reads:

rp > rplanet (24)

Any flyby that respects this condition is consid-
ered feasible.

4. Dynamic programming
Dynamic programming is a useful mathematical
technique for making a sequence of interrelated
decisions. It provides a computationally effi-
cient method for finding optimal solutions to
problems that can be formulated as multi-stage
decision processes, where the decisions made at
one time influence the later available choices.
The general approach requires to structure the
problem as a multistage decision process, where
the stages identify the points in which a policy
decision is required. The problem is tackled
starting from either the first or last stage and
proceeding one stage at a time, such that the
solution to a stage is necessary to solve the next
one. At each stage, the system might be in
different possible conditions called states, and a
policy decision has the effect to transform the
current state into a different one associated with
the next stage. The problem must comply with
the so called Markovian property [9], which
prescribes that the chosen state must retain
all the necessary information to determine the
optimal policy henceforth.
In practice, the optimization is carried out by
defining a recursive relationship that provides
the optimal policy to any sub-problem, given
the solution to all the smaller sub-problems.

5. Solution Strategy
The preliminary design problem addressed in
this work can be expressed as: given a space-
craft departing from a given position at an ini-
tial time, evaluate the optimal trajectory that
leads the spacecraft to a target celestial object,
performing ballistic flybys on a sequence of se-
lected planets.

The problem is tackled under the following as-
sumptions:
• patched-conics model
• planets move on circular, co-planar orbits
• no resonant flybys
• unpowered flybys
• no orbital perturbations

Following the ideas presented in sections 2 and 3,
finding the optimal sequence of GAMs therefore
translates into the search of the optimal triplet
(ei, θ1i, ti) for the first arc and the optimal se-
ries of couplets (ti, γi) that lead from the initial
planet to the target one by performing an arbi-
trary number of flybys:

Initial planet −→ (e1, θ1, t1) −→ (t2, γ2) −→ ... −→
Target planet

The approach proposed in the thesis features
a structure with a variable number (depend-
ing on the number of wanted GAMs) of nested
for loops, used to analyse all possible combi-
nations of departure date, eccentricity and de-
parture true anomaly on the first transfer orbit,
and combinations of departure date and deflec-
tion angle for the following arcs, that satisfy the
chosen optimality policy, The objective function
is defined as:

fn(sn, xn) =
N∑
i=1

|FTC| (25)

As already stated, the function FTC represents
the precision of the interplanetary transfer: the
closer it is to zero, the more precisely the trans-
fer arc leads the spacecraft to the target planet.
The dynamic programming approach is then ex-
ploited to evaluate the optimal solution between
the ones identified by the algorithm.

6. Test Cases and Results
The proposed solution strategy performance is
assessed by reproducing Voyager-like trajecto-
ries and by designing a third arbitrary mission
towards the inner planets, in the framework in-
troduced in the previous sections.
The goodness of the proposed solutions is as-
sessed by a validation process using a Lambert
solver, that showed that the relative error com-
mitted by the syzygy is negligible from a trajec-
tory design point of view, and doesn’t depend
on the number of close encounters underwent.
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In this summary only the Voyager-1 mission will
be reported, for the sake of conciseness.

6.1. Voyager-1
The computed trajectory is shown in figure 2:

Figure 2: Optimal trajectory in terms of transfer
precision (FTC). In blue Earth’s orbit, in light
blue Jupiter’s orbit and in red Saturn’s orbit.
The small circles represent the planetary posi-
tion at encounter.

The orbital elements of the transfer legs are
reported in table 1:

a e ω θ

6.54 ·
108

km

0.783 -2.45 rad 5.79 rad

−5.29 ·
108

km

2.306 0.19 rad -0.0204 rad

Table 1: Orbital elements of the computed
transfer legs.

The presented trajectory shows the minimum
value for the FTC function, corresponding to
the most precise transfer, that leads to a dis-
tance error with respect of the target planets
shown in table (table 2):

Planet FTC value Distance Error

Jupiter 2.28 · 10−4 1.7749 · 105 km
Saturn −7.7369 · 10−4 1.108 · 106 km

Table 2: FTC value and associated distance er-
ror of each interplanetary leg.

The departure and arrival time for each leg, cor-
responding to the shown planetary configuration
are reported in table 3:

Departure date 02-01-82
First encounter date 05-08-83

Arrival date 04-08-85

Table 3: Departure, first encounter and arrival
date for the computed solution.

Finally, the flyby is characterized more in detail.
In order to obtain the prescribed variation of
keplerian parameters, the close encounter must
take place at a specific location in the B-plane,
namely (table 4):

ξ η ζ

0 0 8.2426 ·10−4

Table 4: B-plane coordinates of the close en-
counter. Note that all the values are adimen-
sional, due to the fact that all quantities used in
the B-plane computations are normalized.

It is also interesting to evaluate the character-
istic quantities that define the close encounter,
shown in table 5:

b rp e δ

−6.4167·
105

km

1.7225 · 105 km 1.1553 2.0926 rad

Table 5: Values of the impact parameter b,
perigee radius of the flyby hyperbola rp, eccen-
tricity and turn angle δ.

Both the values for perigee radius and impact
parameter show a value compatible with the
minimum flyby altitude (the planetary radius),
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making the presented close encounter indeed
feasible.
The algorithm took 246.69 s for the first arc
generation, 9.582 s for the second arc and
only 0.085 s for the dynamic programming
optimization.
.

7. Conclusions and Outlook
The developed algorithm was used to simulate
two real-life missions, Voyager-1 and Voyager-2.
The computed solutions present differences with
the baseline mission profiles, mainly due to the
bi-dimensionality of the model, but nevertheless
can be considered good initial guesses for more
complex solution strategies.
The algorithm was finally validated by compar-
ing the goodness of the computed solutions with
the typical and fool-proof Lambert solver, show-
ing very small discrepancies between the two so-
lutions. The performance might be comparable
in terms of solution goodness, but the syzygy al-
gorithm real merit is the great quickness in the
solution space search.
The main limitation of the proposed procedure
is the bi-dimensionality of the model: the out of
plane motion leads to non-negligible differences
in the trajectory computed. The B-plane pro-
cedure to evaluate post encounter parameters is
already defined in the three dimensional case,
so future works could focus on the extension of
the syzygy algorithm to the 3-D case, exploiting
considerations on spherical geometry. Another
step forward could be to include perturbations
within the planet’s SOI in the model, similarly
to what has already been introduced in the res-
onant close encounter scenario.
The complexity of the problems presented lies in
the size of the solution space and on the highly
combinatorial nature of the latter. The compu-
tational quickness of the dynamic programming
approach, together with the speed of the syzygy
formulation of the problem, represent a very use-
ful tool for the preliminary trajectory design for
MGA mission scenarios.
A possible direction that could be followed in the
future works to fully exploit the presented opti-
mization strategy is looking for more complex
and efficient optimality policies for the selection
of the optimal trajectory.

In conclusion, the proposed algorithm provides
a fast and reliable implement for the preliminary
design of MGA trajectories, which could serve as
reasonable starting point for numerical methods
to faster converge to more complete trajectory
solutions.
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