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Abstract

With progress in enabling autonomous cars to drive safely on the road, a

new concern is emerging about how they should be driving. A common

thought is that they should be adopting their users’ driving style, but new

studies suggest that this is not the best solution. The goal of this work is

to search for a correlation between environmental and vehicle’s data from

car sensors and level of stress for the driver obtained from physiological sen-

sors. To reach this goal a modified car, on which we have installed cameras

and Inertial Measurement Unit (IMU), magnetometer, Global Positioning

System (GPS) and Light Detection and Ranging (LiDAR) sensors, has been

driven through an urban environment while measuring sweating and heart

beat rate of the driver. Once data has been collected, a software system has

processed the data and it has obtained indicators of stress of the driver and

through these the correlation between the level of stress for the driver and

the data from environment and car.
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Sommario

Grazie ai progressi ottenuti sulla questione sicurezza per le autovetture au-

tonome, un nuovo quesito sta sorgendo a proposito di che stile di guida

dovrebbero avere. Un pensiero comune è che dovrebbero adottare lo stile di

guida del conducente, ma recenti studi hanno dimostrato che questa non è

la soluzione migliore. L’obiettivo di questa tesi è di trovare una correlazione

fra i dati ambientali e del veicolo ottenuti dai sensori installati sulla vettura

e il livello di stress del conducente ottenuto da alcuni sensori fisiologici. Per

raggiungere questo obiettivo è stata utilizzata una autovettura modificata,

sulla quale sono state installate diverse telecamere e alcuni sensori quali In-

ertial Measurement Unit (IMU), magnetometro, Global Positioning System

(GPS) e Light Detection and Ranging (LiDAR). L’esperimento è stato con-

dotto in un ambiente urbano, ed indici fisiologici come sudorazione e battito

cardiaco sono stati misurati nel conducente. I dati sono stati quindi raccolti

e analizzati da un sistema software dal quale sono stati estratti alcuni in-

dicatori di stress del conducente e attraverso questi il livello di correlazione

fra lo stress e i dati dell’ambiente e dell’autovettura.

XIX





Acknowledgments

I would like to truly thanks Giulia, who supported and helped me throughout

my university carrier and my 1 year old daughter Sofia that was present for

all the writing of this thesis.

Thanks to my parents, Fernando and Daniela, and my brother, Matteo, who

always believed in me.

Deeply thanks to Alessandro that helped and guided me from the beginning

of the thesis and to professor Matteucci that allowed me to be part of this

stimulating project.

Last but not least thanks to all professors through these unforgettable years

for their dedication and passion that enlightened my interest.

XXI





Chapter 1

Introduction

“In a properly automated and educated world, then, machines may prove to

be the true humanizing influence. It may be that machines will do the work

that makes life possible and that human beings will do all the other things

that make life pleasant and worthwhile ”

Isaac Asimov - Robot visions

The I.DRIVE project is an interdisciplinary Politecnico di Milano project

which goal is to acquire, analyse, and model the interaction between driver,

vehicle and environment. The thesis work described in this paper was car-

ried out as part of the project. Indeed, we have collected, cleaned and

analysed data from a car with full sensors’ equipment then various Machine

Learning (ML) algorithms have been compared to extract the correlation

between environmental data and physiological data in order to find which

condition, between environmental and mechanical, has the highest proba-

bility to increase the level of stress of the driver.

1.1 Motivation

In last decades the Autonomous cars (AC) have been obtaining an emer-

gent role [1], it is possible to find early examples since 1920, while the first

semi-automated car was developed in 1977 by Japan’s Tsukuba Mechanical

Engineering Laboratory. Since then there have been many projects that im-

proved the autonomous driving such as the Autonomous Land driven Vehicle

(AVL) funded by United States Department of Defense’s agency DARPA,

that made use of new technologies developed by the University of Mary-

land, Carnegie Mellon University, the Environmental Research Institute of

Michigan, Martin Marietta and SRI International achieved a milestone for



autonomous vehicles using sensors such as LiDAR, computer vision and au-

tonomous robotic control to direct the vehicle up to 31 km/h [2]. In 1987,

HRL Laboratories (formerly Hughes Research Labs) demonstrated the first

sensor-based autonomous drive on the ALV when the vehicle traveled for

610 m on complex terrain. By 1989 Carnegie Mellon University used Neural

Networks (NN) to steer and control autonomous vehicles. In 1995, Carnegie

Mellon University’s Navlab project completed a 5.000 km cross-country jour-

ney, the AC used a NN to control the steering wheel, while throttle and

brakes were human-controlled mainly for safety reasons. In 1996, Profes-

sor Alberto Broggi of the University of Parma launched the ARGO project,

which allowed a modified Lancia to follow the normal painted lines of an un-

modified highway. In the 2000s DARPA organized some Grand Challenges

in which offered a prize of 1$ million prize to any team that would succeed

in creating an AC that would be able to complete a 150-mile course in the

Mojave Desert. In 2005, the second Grand Challenged, five vehicles com-

pleted the course. In last years many automotive manufactures, including

General Motors, Ford, Mercedes Benz, Volkswagen, Audi, Nissan, Toyota,

BMW and Volvo are in the process of testing driverless car systems. On

May 27 2014, Google announced to unveil 100 AC prototypes and on Oc-

tober 2014 Tesla announced its first version of AutoPilot with Tesla Model

S which, based on signals image recognition, is capable of lane control with

autonomous steering, braking and speed limit adjustment.

Interest in AC shifted from academic and Defense projects to automotive

manufactures for customers cars, the every day application brought to light a

trust issue between the driver and the AC’s driving style [3]. Many different

approaches have been studied, such as which style should adopt the AC [4],

how different kind of drivers would impact on human-machine-iterations [5]

and comparing different AC’s driving styles, focusing on different features

[6]. All these studies show that the AC’s driving style impact on the level

of stress of the driver and that finding the right style to decrease the level

of stress is not an easy task as each user has different demands and the

requested AC’s driving style could also be different from user’s personal

driving style.

Correlation between environmental data and physiological driver’s data

has been analyzed because in a fully AC, the disengagement of the driver

implies the loss of control on the car and this condition, as shown later in this

work, causes insecurity and stress. So, in order to make people comfortable

while driving AC we have to detect which situations maximize the level

of stress of the driver in order to change the driving style of the AC to

decrease the level of stress and make more comfortable the driver in future
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driving sections. The main goal of this work is to develop an algorithm that

automatically extracts data from driving sections and gives as result the

correlation between style of driving and level of stress of the driver.

1.2 Contributions

To achieve this goal, we need to retrieve as much information as possible in

order to obtain the level of stress of the driver and to detect all the pos-

sible external conditions that could cause a rise in driver’s level of stress.

To do this we used some sensors attached to the driver monitoring some

physiological signals such as the Elecrocardiogram (ECG), from the Heart

Beat Rate (HBR), from which we obtained signals of Ratio Low Frequency

High Frequency (LFHF) and Heart Rate Variability (HRV) and the Skin

Conductance (SC) from sweating from which we obtained phasic and tonic

signals of Galvanic Skin Response (GSR). We used a properly modified

car on which we have installed cameras, Inertial Measurement Unit (IMU),

magnetometer, Global Positioning System (GPS) and Light Detection and

Ranging(LiDAR). From these sensors we obtained information about speed,

acceleration and jerk of the car in the three axes, number and category of

obstacles detected, their position and their time headway with respect to

the leading car, among many others. The results obtained show that for

each user there are from three to five external situations that maximize the

level of stress, while these situations reflect the ones that have been selected

from previous studies, they differ from user to user. These results have been

obtained analyzing more driving sections for each user and finding a confi-

dence interval of the probability that each condition could have increased

the driver’s stress level. For future work a fully-AC could be employed and

a live analysis could bring to minimize the level of stress of the driver while

driving and new algorithms to detect stressing situations could be employed.

With the increase of number of driving sections and the employment of sur-

veys, to obtain a driver’s consideration about stressing conditions, training

and testing of new techniques to extract the level of stress could be found.

The level of stress has been obtained using sensors attached to user’s

body and through questionnaires which objective was to obtain a gap be-

tween emotive reactions before and after the driving [7]. In order to obtain

an indicator of user’s stress level through all the driving some sensors have

been attached to user’s body, main physiological data that has been analyzed

in studies are:

• Heart Beat Rate (HBR) from which we obtained Heart Rate Vari-
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Figure 1.1: Tazzari Zero used for I.DRIVE project

ability (HRV), High Frequency (HF) signal and Low Frequency (LF)

signal and ratio between LF and HF (LFHF).

• Galvanic Skin Response (GSR) from which we obtained Skin Conduc-

tance (SC) with Phasic and Tonic signal.

• Pupil dilation from which we obtained the pupil diameter trend.

In order to analyze the driving style some factors of the driving have been

analyzed:

• Speed, Acceleration and Jerk in XYZ axes of the vehicle thanks to

IMU sensor.

• Distance, number and category of obstacles from the vehicle thanks to

cameras and LiDAR.

• Time Headway of obstacles thanks to both IMU sensor and LiDAR.

All these physiological and environmental data have been collected in a

MongoDB Database during drivings conducted in an urban area in daylight

thanks to the system mounted on Tazzari car (Figure 1.1), just before the

start of driving it was requested to the user to stay still with closed eyes

for 3 minutes in order to normalize the level of stress and consider this as

the ground zero, then the length of drivings would be between 15 and 30

minutes. The collected data has been then cleaned and analyzed through
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automatic software that, through different ML algorithms, checked for cor-

relation between physiological and environmental data giving as output the

characteristics of the driving style that increased the level of stress in the

user. During the work of this project it was possible also to verify the results

of state of art’s documents considered for analysis of physiological data in

order to obtain user’s level of stress.

1.3 Thesis outline

The structure thesis is the following:

• Chapter 2: lists all the progress made with AC’s technology and how

human-machine interactions changed through time until recent times.

Lists main studies conducted concerning physiological stress indexes

and analysis of driving styles in correlation to level of stress detected.

Then lists ML algorithms employed for this thesis.

• Chapter 3: describes briefly the experimental car used for this work

thesis, describing all sensors mounted on the car and sensors attached

to the user and the computer hardware that made possible to collect

data through the drivings.

• Chapter 4: describes the software architecture used for the work.

• Chapter 5: focuses on data preparation, data processing, description

of applied algorithms and correlation extraction.

• Chapter 6: describes the experiments conducted with description of

used protocol and final results.

• Chapter 7: lists conclusion of this work and possible future works.

• Appendix A: provides software requirements to execute the scripts.

• Appendix B: provides Programming Documentation for main algo-

rithms.

• Appendix C: provides a Manual for the user.

• Appendix D: provides the proposed questionnaire.
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Chapter 2

State of art

In this chapter we see the state of art concerning autonomous driving, as

one possible application of I.DRIVE project is to develop an AC that cares

about the passengers analyzing their mood and changing the driving style in

order to decrease the level of stress. We give an explanation of what exactly

means autonomous driving and AC, then we see a brief history of ACs

through the years until recent years and show the importance of the work

we are conducting and how interest shifted from academic and government

to every days as automotive manufactures become more and more interested

in this area. We talk about definition of stress and studies concerning how

to measure and which sensors to use, we see which are the driving style

factors that in normal driving sections could increase the level of stress and

consider these factors in autonomous driving to see which change and which

keep the same and how to measure these factors. Finally we talk about the

state of art in algorithms used to check for correlation in this work area and

others work areas but that could be useful for our work.



2.1 Autonomous driving

Before describing existing projects we give a definition of AC and autonomous

driving. In 2014, SAE International published a formal classification system

with six levels from fully manual to fully autonomous [8] in contrast to the

classification published in 2013 from National Highway Traffic Safety Ad-

ministration (NHTS) [9] that was abandoned in 2016 in favor of the SAE

International’s new standard J3016. The six level identify how much control

has the car over the driver:

• Level 0: No automation, full-time performance by the human driver

of all aspects of the dynamic driving task, even when enhanced by

warning or intervention systems.

• Level 1: Driver assistance, driving mode-specific execution by a driver

assistance system of either steering or acceleration/deceleration using

information about the driving environment and with the expectation

that the human driver perform all remaining aspects of the dynamic

driving task.

• Level 2: Partial automation, driving mode-specific execution by one

or more driver assistance systems of both steering and acceleration/

deceleration using information about the driving environment and with

the expectation that the human driver performs all remaining aspects

of the dynamic driving task.

• Level 3: Conditional automation, driving mode-specific performance

by an automated driving system of all aspects of the dynamic driving

task with the expectation that the human driver will respond appro-

priately to a request to intervene.

• Level 4: High automation, driving mode-specific performance by an

automated driving system of all aspects of the dynamic driving task,

even if a human driver does not respond appropriately to a request to

intervene.

• Level 5: Full automation, full-time performance by an automated

driving system of all aspects of the dynamic driving task under all

roadway and environmental conditions that can be managed by a hu-

man driver.
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Some key definitions in SAE International standard J3016 include:

• Dynamic driving task includes the operational (steering, braking,

accelerating, monitoring the vehicle and roadway) and tactical (re-

sponding to events, determining when to change lanes, turn, use sig-

nals, etc.) aspects of the driving task, but not the strategic (determin-

ing destinations and waypoints) aspect of the driving task.

• Driving mode is a type of driving scenario with characteristic dy-

namic driving task requirements (e.g., expressway merging, high speed

cruising, low speed traffic jam, closed-campus operations, etc. . . ).

• Request to intervene is notification by the automated driving sys-

tem to a human driver that s/he should promptly begin or resume

performance of the dynamic driving task.

These six level of automatism identify how much control has the car over

the driver, a relevant change happens between level 2 and 3 when the human

driver does not need anymore to monitor the environment. In Washington

DC’s district code the legal definition of an AC is:

“Autonomous vehicle” means a vehicle capable of navigating District road-

ways and interpreting traffic-control devices without a driver actively oper-

ating any of the vehicle’s control systems. The term “autonomous vehicle”

excludes a motor vehicle enabled with active safety systems or driver- assis-

tance systems, including systems to provide electronic blind-spot assistance,

crash avoidance, emergency braking, parking assistance, adaptive cruise con-

trol, lane-keep assistance, lane-departure warning, or traffic-jam and queuing

assistance, unless the system alone or in combination with other systems en-

ables the vehicle on which the technology is installed to drive without active

control or monitoring by a human operator.

Washington, DC’s district code [10]

In 2020 there are no cars available to customers that provide full automation,

it is possible on the other hand to find ACs for research purpose, but looking

at the history of ACs it is possible to see how the interest of automotive

manufactures has shifted toward this new technology.

2.1.1 Brief History of Autonomous Cars

The history of ACs starts from 1925 with the Linriccan Wonder, it was

a radio controlled car built by Houdina Radio Control through New York

City streets [11]. The car was a 1926 Chandler equipped with an antenna

on the tonneau that received radio signal by a person in another car that
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(a) (b)

(c) (d)

Figure 2.1: First AC prototipes: (a) ALV (b) VaMP (c) Vita-2 (d) ARGO

was following it. The radio impulses gave signal to small eletric motors that

directed every movement of the car. There were other demonstrations of this

radio controlled car over the years. RCA Labs made significantly improves

for the ACs as in the 1953 built a miniature car that, through wires laid in

a pattern on a laboratory floor, was able to move automatically [1]. Leland

Hancock, a traffic engineer in Nebraska, and L.N. Ress, a state engineer

extended this idea to a greater scale experimenting the system in an actual

highway. The experiment was conducted in 1958 and took place in a 121

m strip of highway outside of Lincoln city, Nebraska. A series of detector

circuits buried in the pavement and a series of light along the edge of the

street were able to send impulses to guide the car. Also General Motors

collaborated in the experiment, and paired two standard models equipped

with radio receivers, audible and visible warnings that were able to simulate

brake, steering and acceleration control.

In 1959 and throughout the 1960s some advanced models of previous

self-driving cars were tested and showcased in Motorama, an auto show

by General Motors. Firebird was a series of experimental cars which had

an electronic guide system that allowed the car to rush over an automatic
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(a) (b)

(c) (d)

Figure 2.2: Modern AC: (a) Google car prototitpe (b) Ford AC (c) Lexus model in

Google car project (d) Uber AC

highway without any control from the driver. These experiments led in 1966

to Ohio State University’s Communication and Control Systems Laboratory

to develop a project of a self-driving car activated by electronic devices

embedded in the highway. In same years United Kingdom’s Transport and

Road Research Laboratory tested a Citroen DS that through interaction

with magnetic cables embedded in the road was able to drive at 130 km/h

through a track with no deviation in speed or direction in any weather

condition [12][13].

In 1980s, Ernst Dickmanns and his team at the Bundeswehr University

Munich, Germany, designed a vision-guided driverless Mercedes-Benz van

that was able to drive at speed of 63 km/h on streets without traffic. In

same years Defense Advanced Research Projects Agency (DARPA) showed

interest in this emerging technology by funding Autonomous Land driven

Vehicle (ALV) [2] project using new technologies developed by the University

of Maryland, Carnegie Mellon University, the Environmental Research Insti-

tute of Michigan, Martin Marietta and SRI International. The self-driving

car used LiDAR and computer vision as sensors and autonomous robotic

control to achieve a speed of 31 km/h [14]. HRL (formerly Hughes Research
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Labs) using the ALV demonstrated the first off-road map and sensor-based

autonomous navigation. The vehicle traveled through complex terrain with

natural obstacles at 3.1 km/h for 610 m [15].

The progress allowed the newer AC to be more and more efficient with

time. Daimler-Benz and Ernst Dickmanns of Bundeswehr University Munich

in 1991 tested twin robot vehicles VaMP and Vita-2 that drove more than

1.000 km on a Paris three-lane highway in standard traffic at max speed of

130 km/h semi-autonomously with human intervention [16]. In 1995, Dick-

mann’s autonomous S-Class Mercedes-Benz drove from Munich, Germany,

to Copenhagen, Denmark, covering a 1.590 journey and using computer

vision and microprocessors with integral memory designed for parallel pro-

cessing to react in real time. Results achieved are: speed exceeding 175

km/h on the German Autobahn, with 95% autonomous driving and one hu-

man intervention in average every 9 km. The AC drove in traffic, executed

various maneuvers to pass other cars [17][18]. In 1995, a semi-AC that used

a NN to control the steering wheel while throttle and brakes were human

controlled was created by Carnegie Mellon University. The car achieved

98,2% of autonomous driving over a 5.000 km cross-country journey [19].

In 1996, an AC project was presented by Alberto Broggi of the University

of Parma. The project was called ARGO and was an autonomous vehicle

that could follow the normal painted marks on the highway. The car suc-

ceeded in driving for 1.900 km in Northern Italy’s highways over 6 days with

an average speed of 90 km/h, the car drove in automatic mode for 94% of

the journey, covering up to 55 km/h without human interaction [20]. With

new millennium dawn the interest in AC shifted to various sectors which

comprehend autonomous public transportation and private cars.

2.1.2 Contemporary progresses

Modern companies keep coming up with new features for ACs. Main features

include: self-parking, lane-keeping, collision avoidance, Adaptive Cruise

Control (ACC) and power assisting steering. In Table 2.1 main present

and future features are summarized. All these features of autonomous driv-

ing make it possible in a near future to use everyday an AC, while this

technology keeps improving and new ACs will be available on market a new

issue must be considered. Will the passenger willingly choose ACs over non-

autonomous vehicles? And how will passenger feel throughout the ride? In

our work we consider these questions and try to answer considering how the

passenger feels comfortable while driving ACs.
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Table 2.1: Confirmed and predicted features on ACs

2.1.3 Do people trust autonomous cars?

The question if people trust ACs has increased importance in recent years

as shown in recent studies. In 2018, Kaur and Rampersad [3] used a ques-

tionnaire to obtain the level of trust in ACs. Pertinent technology adoption

theories include TAM [21] (Technology Adoption Model) and UTAUT [22]

(Unified Theory of Acceptance and Use of Technology), from these theories

some relevant factors have been extracted such as reliability, performance

expectancy, trust, security and privacy. TAM theory was developed in 1989

by Davis F.D. in which acceptance was the decision of the user to use tech-

nology. Two main factors would decide the level of acceptance and they

would be:

• Perceived usefulness: defined as “the degree to which a person believes

that using a particular system would enhance his or her job perfor-

mance”, which is how the user perceives the new technology useful or

not for the job that he wants to do;

• Perceived ease-of-use (PEOU): defined as “the degree to which a per-

son believes that using a particular system would be free from effort”,

which is how the user perceives how easy is the adoption of the new

technology.

However, with later studies, it was believe that these two only factors would

not be enough to define the level of acceptance by the user of technology. In

2003 Venkatesh V. developed the UTAUT theory, by this theory the reasons

for a user to use a technology can be found in main 4 factors:

• Performance expectancy;

• Effort expectancy;
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Figure 2.3: Key literature and factors influencing the adoption of ACs[22]

• Social influence;

• Facilitating conditions.

Considering these two theories the application on ACs focuses on some main

factors, as shown in Figure 2.3. Kaur and Rampersad[3] made 5 hypothesis

on these factors:

• Performance expectancy positively influences the adoption of driver-

less cars: ACs’ performance must outperform non-ACs’ performance

both in terms of security but also in terms of passengers’ performance

as an AC would allow much more free time at user’s hands;

• Reliability positively influences the trust in driverless cars: the relia-

bility of the user in AC is fundamental, it can be achieved with many

demonstrations in different conditions in order to increase trust in how

the ACs would handle unlikely events;

• Security positively increases trust in driverless cars: not only security

in terms of driving but also security from car hacking, remote access,

remote control of the vehicle, computer virus’s malwares and spoofing

must be taken in account. Higher level in security would increase the

trust of the user;

• Privacy positively influences trust in driverless cars: the loss of au-

tonomy extends to the loss of privacy. The user might feel a loss in

privacy due to the car choices of road, constant control over location

and choice of future travels, some privacy protection must be taken

into account in order to increase the level of trust of the user;
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• Trust positively influences the adoption of driverless cars: all these

hypothesis together aim to increase the level of trust of the user and

with the increase of trust increases also the probability of adoption of

ACs.

One of I.DRIVE project goals is to increase the level of trust in ACs by

decreasing the level of stress during drivings which can be considered in

both performance expectancy and reliability. Some studies were conducted

in order to increase the level of trust by changing the human-machine in-

teractions, an example is the study conducted by Helldin T. in 2013 [23].

The study shows how using an User Interface (UI) that keeps monitored the

level of uncertainty of ACs’ sensors increase the level of trust of passengers.

While the amount of time the passenger is focused on the road decreases,

which leads to increase performance expectancy, the passenger is ready to

react faster having under control the level of uncertainty. The experiment

was carried out at the Human Machine Interaction (HMI) laboratory at

Volvo Car Corporation in Sweden, the participants drove the car through a

snowed two-lane country-side road with sharp turns and no other traffic.

Other studies focused not only on giving to the passenger the information

about the level of uncertainty but giving to the user information on what the

car is going to perform. In 2014 Jeamin Koo [24] conducted an experiment

to analyze the importance in giving feedback to passengers of ACs on what

is going to happen. The experiment consisted in 4 scenarios:

• No information given to passengers.

• “How” information: internal activity of what the car is going to per-

form.

• “Why” information: information of external environment.

• Both “How” and “Why” information: internal and external informa-

tion referring to automation.

The “How” is the information given by the car to the passenger of actions

that is going to perform, a voice with no particular mood would advise the

passenger of various actions like “Car is braking”, on the other hand “Why”

information refers to external environment, the car advise the passenger

of the reason in taking action like “Obstacle ahead”. Giving both “How”

and “Why” information leads to both internal and external activity, for the

given example the car would advise the passenger “Car is braking due to

obstacle ahead”. Sixty-four students were recruited to participate in the

15



study and the results showed that highest level of acceptance was when only

“Why” information was given, worst results when only “How” was given.

The reason behind this is that both “How+Why” was considered too much

of information and the passenger felt anxious when the car advised him,

only “How” information obtained worst level of acceptance because left the

user with a question of why the car would had to take that particular action.

“Why” information would allow the user to know what the car was sensing

without at the same time giving too much information.

Many other studies showed the importance of human-machine interac-

tion and how a right interaction leads to increase of trust in the ACs and

consequently in increasing the level of acceptance. A fundamental factor

is the ACs driving style, in the next section we discuss different features

of driving styles and how these change how the passenger feels during the

driving which could lead to different level of acceptance by the user.

2.1.4 Autonomous driving: driving styles

There are different definitions of driving style as the one given by Lajunen

and Ozkan in 2011 [25] similar to Elander, West and French’s definition in

1993 [26] which focuses on observable behaviour. Murphey, Milton and Kil-

iaris 2009 [27] definition differs considerably and its definition is too general

to be useful. Deery 1999[28] definition focuses on decision making, while

Ishibashi, Okuwa, Doi and Akamatsu 2007 [29] definition on ways of think-

ing. Although all these, and many more, definitions there are some factors

common to most of them that have been summarize by Sagberg F. in 2015

study [30]:

• Driving styles differ across individuals or between groups of individu-

als;

• A driving style is a habitual way of driving, which means that it rep-

resents a relatively stable aspect of driving behavior;

• Driving styles reflect conscious choices made by the driver.

Therefore the driving style can be defined as “habitual way of driving, which

is characteristic for a driver or a group of drivers” and by “habitual way of

driving” we mean the driving behaviours that tend to occur while driving

in both cases in a conscious way or automatized way by the driver. Driving

behaviours change with respect to road, traffic and driving conditions as can

be weather, light conditions and so on. Considering that each individual has

its own driving style it could be an idea to have the AC to learn passenger
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Features Definitions

Mean distance to lead

car

During car following (with 200 meters dis-

tance) the average distance between middle

of the driver car and the lead car.

Mean Time Headway

During car following (with 200 meters dis-

tance) average time headway, defined as ratio

of Distance headway and speed of the driver

car.

Time Headway during

Lane change

Distance headway divided by the speed of the

driver car during lane change.

Distance Headway dur-

ing Lane change

Distance between the middle of the driver car

and the lead car during lane change

Distance Headway

Merge Back

This is the same as Distance Headway dur-

ing lane change except measured in between

driver car and the following car in the desti-

nation lane.

Braking Distance from

the Intersection

Braking distance divided by the speed of the

car right before brake is applied.

Maximum Turn Speed
Maximum speed of the driver car over a time

window during a left turn or a right turn.

Speed at the Intersec-

tion
Instantaneous speed at the intersection.

Average Speed for 20

meters before Intersec-

tion

This is the speed of the driver car averaged

over a distance range of 20 meters from the

intersection.

Table 2.2: Driving features for style classification

driving style and emulate it following the hypothesis that the passenger

wants the AC to drive with the same driving style of its own.

Basu C. in 2007 study [31] confuted this hypothesis. The experiment was

conducted using a driving simulator and it was divided in two parts. In the

first one the data of participants driving styles was collected by letting them

drive in the simulation environment, in the second part the participants

experienced their own driving style. The driving styles were divided in

4 categories: aggressive, defensive, own style and distractor style (driving

style of different participant). In order to learn the driving style some driving

features have been considered as summarized in Table 2.2. The first part

of the experiment was a 15-20 minutes driving on a 9.6 mile long test track
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Figure 2.4: Mean Defensiveness score across participants in Basu’s experiment[31]

with 14 different driving tasks, each driving task consisted in a sequence

of driving manoeuvres in response to traffic conditions. In the second part

the participants experienced 6 of these 14 tasks performed by AC of four

different styles. To simplify the 6 tasks have been combined in 4 tasks. In

Figure 2.4 it is possible to see how the participants preferred a style different

from their own and in particular they preferred a much more defensive style.

From Basu study it is possible to see how the driving style perceived by

passenger differs from their own, which leads to better understand features

of driving styles in order to automatically learn which driving style makes

more comfortable the passenger.

Another study on driving styles has been done by Bellem in 2016 [32]

comparing results from rural, urban and suburban drivings with maximum

speed of 100 km/h and results from highway drivings with maximum speed of

120 km/h. Bellem considered maneuvers that are common used in both rural

and highway drivings and considered the ones with maximum frequency as

stated in literature’s studies of Manstetten in 2014 [33], Toledo, Musicant

and Loatin in 2018 [34] and Wu, Yeh and Chen in 2014 [35] extracting these

main 4 different maneuvers:

• Decelerating to a moving target: approx 16% of maneuvers, the vehicle

decelerates from steady velocity upon closing in on another vehicle;

• Accelerating from non-zero speed: approx 18% of maneuvers, the ve-

hicle accelerates from non-zero speed to a goal speed without a leading

vehicle;
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Table 2.3: Results obtained in the urban environment showing comparisons between

the driving styles comfortable and dynamic driving

• Lane change: approx 20% of maneuvers, the vehicle changes lanes;

• Following at a non-varying speed: approx 27% of maneuvers, the ve-

hicle follows a leading vehicle, both without change velocity.

For each maneuver a variety of data was collected, the study focused in

metrics that can be perceived by the vestibular system as it plays a key

role in development of nausea or motion sickness as showed in Reason’s

1978 study [36] and for the perception of driving in general as showed in

Lange’s 2014 [37] and Muller’s 2013 [38] studies. Humans’ vestibular system

is able to perceive acceleration both linear, as happens in decelerating to a

moving target and accelerating from non-zero speed maneuvers, and angular,

as happens when changing lane, but is not able to perceive speed itself.

However, humans are more sensitive to rapid changes in acceleration, which

is the jerk and can be calculated as the first derivative of acceleration. In

the study both acceleration and jerk have been considered.

Bellem considered three different driving style: comfortable, dynamic

and every day trip. The perceived comfort should be maximal for com-

fortable driving and minimal for dynamic driving. The participants were

randomly asked to choose one of the three driving styles. We show results

for the first part of the study, in urban streets, as for I.DRIVE project we

are working on same environment. In Table 2.3 it is possible to view the

considered results. It is possible to see how, considering acceleration from

non-zero speed, everyday and comfortable driving are much more closer than

everyday and dynamic driving. Overall the only proposed metric which was

not able to discriminate between driving styles is standard lane deviation.

The study demonstrates how acceleration and jerk are important param-

eters and that a maneuvers-based study can help in better understanding

driving styles. We have seen how the AC’s driving style affects passenger’s
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Figure 2.5: Lever used by passenger throughout autonomous drive to indicate the level

of comfort in Scherer’s study[39]

Figure 2.6: General structure of the transformation of manual driving parameters into

optimized automated driving parameters[39]

comfort, we question now if it is possible to customize AC’s driving style.

In 2015, Scherer S. tried to answer this question [39]. The study was

divided in two sessions, in the first the participants drove manually through

different scenarios and applying different main maneuvers. After a short

break the participants experienced their own driving style as highly auto-

mated drive with no possibility in intervention. Throughout the ride the

passenger pressed a level, as can see in Figure 2.5, from which it was pos-

sible to obtain the level of comfort indicating from 0 (very comfortable) to

100 (very uncomfortable). The more the level was pressed by participant,

the more uncomfortable situations he felt. In second session the participant

would experience three different driving styles in random order. One would

be their own driving style, while the others two would be random picked

from other participants’ driving style. Scherer used information from the

lever, questionnaires after the ride and data from the AC to extract an op-

timized automated driving profile. The general structure of transformation

from manually driving to automated driving profile is shown in Figure 2.6.

The study shows how a custom driving profile can be achieved but proof of

increase in passenger’s comfort was left for future studies.

2.2 Physiological indexes of stress

In shown studies it has been tried to find by questionnaires, giving possibility

to passengers to indicate level of comfort throughout the ride or by just

considering AC’s data how the passenger felt as experiencing autonomous
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Table 2.4: Stress definitions in Literature

drive. In our work we want to understand the level of stress of the passenger

throughout the ride, the objective is to better understand what parameters

make one driving style more comfortable than others and which feature

increases the level of stress. To do so we need first to understand what is

stress and which physiological information we can retrieve from passenger.

2.2.1 What is exactly the stress?

In 2015, Shahsavarani published on International Journal of Medical Re-

views a review [40] of stress trying to cover all facts and theories. In psycho-

logical sciences stress can be defined as a feeling of mental press and tension.

Many formal definitions have been proposed in recent years, some of these

definitions can be found in Table 2.4. We use Shahsavarani’s 2013 definition

“Any effect of change in surrounding environment on living being which re-

sults in disruption of homeostasis (internal balance) of that living being is

called stress.” Stress has a positive form that can improve bio psychological

health and facilitate performance, but high level of stress could result in

biological, psychological and social problems. Stress can be external with

environmental sources, as could be in our work, or caused by internal per-

ceptions of the individual. Other factor that influences the level of stress is
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the exposure time of stressors that could be acute or short-term, chronic or

long-term, for our work we consider only short-term.

2.2.2 What happens to human body in a stressful situation?

Autonomic nervous system (ANS) has the central role in mechanism of

stress. ANS is composed of Parasympathetic Nervous System (PNS) and

Sympathetic Nervous System (SNS), two branches both tonically active with

opposing activities. SNS is activated as primary response to stress in what

is called “fight or flight” response so that the living being can adapt to

environment as faster as possible, sympathetic nerves exert their effects in

more than 5 seconds. In the process of stress response it involves mydriasis

(pupil dilatation), increased heart rate and force contraction, vasoconstric-

tion, bronchodilation, sweating and many more. PNS is then activated as

secondary response in what is called “rest and digest” and involves return

to maintaining homeostasis, parasympathetic nerves exert their effects in

less than 1 second. The hypothalamic-pituitary-adrenal axis (HPA axis) is

a neuroendocrine system that mediates a stress response between SNS and

PNS activity. From this information the changes in physological indexes

that could be useful to determine the level of stress are mydriasis, change

in heart rate and sweating. Mydriasis, or pupil dilatation, has been stud-

ied by Pedrotti in 2014 [41] in response of external stimuli like auditory,

tactile, gustatory, olfactory or noxious. Given this knowledge he tried to

extract level of stress of participants to experiment in a driving simulation.

Maintaining a constant level of light he succeeded in measuring the pupil

dilatation when stressful events occurred, building a NN he was able to clas-

sify stress moments from pupil diameter. For our work it is impossible to

maintain a constant level of light, this factor introduces noise in measure-

ments and make it harder to find a valid correlation between stress events

and pupil diameter. For our work we use pupil eye tracker, which allows

to analyse driver gaze and we have also information about pupil diameter

throughout the ride.

2.2.3 Heart Beat Rate

Heart Beat Rate (HBR), the number of heartbeats per minute, is another

physiological index that could help in detecting the level of stress. It has

been studied [42] that HBR has to be analyzed in order to extract informa-

tion and the first index to be considered is Heart Rate Variability (HRV)

which consists of changes in time interval between consecutive heartbeats

called Interbeat Intervals (IBI). HRV has an impact in 24h-term, short term
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Table 2.5: HRV time-domain measures

Table 2.6: HRV frequency-domain measures

(∼5 minutes) and ultra-short term(<5 minutes). For our work we are more

interested in ultra-short term in order to identify the singular driving feature

that causes stress. We need to analyze HRV in time-domain and frequency-

domain. In Table 2.5 it is possible to see main measures for time-domain.

In Table 2.6 it is possible to see main measures for frequency-domain, heart

rate oscillations have been divided in ultra-low-frequency (ULF), very-low-

frequency (VLF), Low Frequency (LF), and High Frequency (HF) bands.

LF band is 0.04-0.15 Hz which means that is comprised of rhythms from 7

to 25 seconds. HF band is 0.15-0.40 Hz which means that is comprised of

rhythms from 2.5 to 7 seconds. The ratio of LF and HF power (LFHF) may
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Figure 2.7: Illustration of a possible combination of sympathetic and parasympathetic

activity of LFHF[43]

Table 2.7: Comparing HR and HRV across different conditions

estimate the ratio between SNS and PNS under controlled conditions. As

demonstrated by Billman in 2013 [43] the effects of varying cardiac sympa-

thetic and cardiac parasympathetic nerve activity on LFHF are non-linear

as shown in Figure 2.7, this leads to an accurate analysis of LFHF in order

to obtain valid information, on the other hand it has been demonstrated

that cardiac parasympathetic is exclusively responsible for HF peak, while

cardiac sympathetic nerve activity is only responsible for a major part in

LF peak. Taelman in 2009 [44] summarized how various parameters change

from condition of rest to mental task with linear methods, results can be

seen in table 2.7. In our study we have information about HRV with its
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Figure 2.8: Skin conductance measurement locations: 1)fingers, 2) distal wrist, 3)

central wrist, 4) vertical wrist, 5) chest, 6) foot (instep), 7) calf, 8) forehead, 9) neck,

10) shoulders,11) back, 12) buttock, 13) abdomen, 14) armpit, 15) upper arm, and

16) thighbone. [45]

parameters in time and frequency domain such as HF,LF and consequently

of ratio LFHF.

2.2.4 Galvanic Skin Response

Another stress index is GSR, which is the measurement of skin resistance

and skin conductance. As we have seen that stress response includes sweat-

ing and altering cutaneous blood flow and these in turn change GSR. To

extract Skin Resistance (SR) it is enough to place two electrodes on skin

and record the electrical resistance between them. SC is the inverse of SR.

For best positioning we can look at Dooren’s 2012 study [45], he tried 16

different measurement locations on body to explore which could have best

results. On Figure 2.8 and of Figure 2.9 it is possible to see results from each

location. Best results are obtained on forehead, foot, finger and shoulders.

Considering our work we need to choose best location with less movements

that could cause noise between these 4. Villarejo in 2012 described in their

work how to build a galvanometer using ZigBee and which were the data

collected in rest and high effort conditions. In 2016, Matteucci,Fontana

and Galimberti [46] considered SC as a sum of two components: a Phasic

Component (PC) and a Tonic Component (TC). PC is the result of convo-

25



Figure 2.9: Results for each of 16 measurement locations [45]

lution of a signal defined driver, this signal indicates impulses sent through

nerves, in response to a stressful event, to sweat glands that causes increase

in sweating, which concentration is defined by Bateman function. PC indi-

cates the measurement of conductance of this phenomena. The driver signal

represents the quantity of sent impulses, so PC has to be deconvoluted to

obtain the driver signal and convoluted with a Gaussian filter to remove

high-frequency noise. Then they obtained PC by extracting local maxima,

sections not included in local maxima have no PC component, thus they

represent TC. Interpolating data in these sections reconstructing TC signal

where also PC was present it is possible to obtain the complete TC. By

subtracting it to the original to obtain PC which is more informative as it

is related with SNS activity. In Figure 2.10 it is possible to see the SC as

the sum of the two components.

2.2.5 Analysis of Physiological indexes

In 2005, Healey and Picard [47] used all these physiological measurements to

study stress level by collecting data of GSR, ECG, EMG and chest expan-

sion. The study has been conducted in real-world and not in a simulation

as previous works, they used a questionnaire to validate information ex-

tracted from physiological indexes. Results showed that HR and SC have

the highest correlation with driver’s continuous stress level. In our work we

have information about all these physiological indexes, from pupil dilatation,

ECG and GSR and we compare obtained results analyzing the correlation

with environmental and vehicle data. In 2019, Matteucci, Gabrielli and

Sesto[48] have studied stress indexes for I.DRIVE project, results of work
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Figure 2.10: SC as sum of PC (green) and TC (yellow) [46]

Figure 2.11: Example of temporal order between Time-Serie CPU Usage and Temporal

Event System Event [49]

are explained in Chapter 6.

2.3 Correlation algorithms

For our work we have information about physiological indexes and envi-

ronmental data, we need to find the level of correlation between these two

samples. This is a problem of two-sample testing but as during acquisition

we have multiple features we need to find a way to isolate the feature we

are considering. Similar studies have been conducted in different areas, in

2014 Luo [49] studied correlation between time-series and temporal event

data in incident investigation of online services. Luo analyzed a two-sample

testing problem between CPU usage and System Event as shown in Figure

2.11. The used approach is to analyze sub-series of Time-Serie considering

front and rear sub-series of same length, as shown in Figure 2.12, when an

Event, defined by System Event serie, happens. When front and rear are

statistically different this might mean that the Event brought a change in
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Figure 2.12: Example of front and rear sub-series [49]

the Time-Serie, otherwise the Event has not cause any change in the Time-

Serie. This operation must be repeated for every event and then a statistical

analysis defines most emergent Events that caused a change in the Time-

Serie.

Luo used different algorithms used to compare front and rear sub-series,

comparing baseline algorithms such as PCC (Pearson Correlation Coeffi-

cient), as defined in Statistical Power Analysis for the Behavioral Sciences

of Jacob Cohen[50] and ARMA models (Auto-Regressive Moving Average)

as defined in Time series analysis : forecasting and control [51], and two

main specific algorithms such as NNSBM (Nearest Neighbor Statistic Based

Method)[52] and ET (Energy Test)[53]. For our work we consider these main

algorithms and compare results obtained. In Chapter 5 we look in detail to

each of these algorithms, and analyze their complexities. From Basseville

and Nikiforov “Detection of Abrupt Changes: Theory and Application”

book [54] we extracted definitions of abrupt changes in time analysis, ap-

plying these definitions for our project and considering which characteristic

fits better for our model, we see in detail this part in Chapter 5.

28



Chapter 3

I.DRIVE Hardware

To achieve our goal, we need to obtain information of vehicle, environment

and driver’s physiological data. In 2015 Matteucci and Gabrielli [55] de-

scribed the structure of sensor systems, communication protocols, power

consumption and acquisition and storing methods. In this chapter we give

a description of all the hardware used for I.DRIVE system, which compre-

hends of the vehicle and all equipped sensors.

3.1 I.DRIVE Vehicle

The vehicle is a modified Tazzari Zero (Figure 3.1) which has been used

for every I.DRIVE project so far, it is a 2 seats electric citycar with an

asynchronous brushless engine that supplies 15 KW power and max torque of

150 Nm, the car can reach a max speed of 100 km/h and has autonomy of 140

km given by lithium ion battery with nominal voltage of 80 V and capacity

of 160 Ah. Maximum autonomy of battery is 9 hours but considering that

all sensors are attached to battery this results in a limited autonomy, for our

work this is not a problem as drivings last up to 30 minutes. The vehicle

supports 4 driving styles:

• Standard: preferable for everyday use in urban environment

• Economy: limits acceleration and max speed but increases autonomy

• Rain: does not differ much from standard style but with limits to

brake assist and acceleration in order to increase grip in case of rainy

weather

• Race: maximum performance in terms of acceleration and speed at

the expense of autonomy



Figure 3.1: Tazzari Zero without external sensors

Figure 3.2: An Example of Point cloud(b) of Velodyne HDL-32E(a)

3.2 Environmental sensors

In this section we go through all equipped environmental sensors.

3.2.1 LiDAR

LiDAR (Light Detection and Ranging) is a technology that measures dis-

tance by lightning a target with a laser and analyzing the reflected signal.

For our we work we have installed Velodyne HDL-32E (Figure 3.2a), that

thanks to 32 laser layers allows to reconstruct the surrounding environment

with a point cloud (Figure 3.2b) with vertical field view between +10.67°
and -30.67° and horizontal field view of 360°, with a rotating head at fre-

quency from 5Hz to 20Hz, user can choose custom frequency while standard

one is 10 Hz, it reaches a 700.000 samples/sec. Velodyne HDL 32-E gets
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Figure 3.3: Internal sensors of Velodyne HDL-32E: IMU(a) and GPS(b)

information of environment from 1 m to 70 m with an accuracy of ±2cm.

Velodyne HDL 32-E has an internal IMU consisting in 3 gyroscopes, 3

accelerometers and 2 axes positioned as in Figure 3.3a. Accelerometers allow

to retrieve information of acceleration in 3 axes and gyroscopes to retrieve

information of angular velocity in 3 axes. Velodyne HDL 32-E has also an

external GPS Garmin 18LV (Figure 3.3b) to retrieve information of position

and is used to synchronized data generated from Velodyne with precision

of impulses given by GPS. If GPS is not connected an internal clock is

used, which is much less precise than GPS. GPS Garmin 18LV generates

data according to standard $GPRMC NMEA with frequency of 1Hz and is

linked to Velodyne through a serial port RS-232.

3.2.2 GPS receiver

Beyond GPS Garmin 18LV another external GPS Yuan10 (Figure 3.4) has

been used. The use of a second GPS is due to problems of synchronicity,

through ROS, between PC and GPS. GPS Yuan10 data is used only to

synchronize data to PC and no other information is stored. GPS Yuan10

has an internal receiver Skytraq S1315F-RAW, this receiver has a sensitivity

when tracking of -161 dBm, which allows to retrieve information of position

in almost every condition. This device can retrieve information at max

frequency of 20 Hz but for our work we use it with a frequency of 1 Hz

with NMEA standard. Using RTKLIB, an open source library, is possible to

obtain precise position through GNSS (Global Navigation Satellite System),

which allows to use modality DGPS (Differential Global Positioning System)
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Figure 3.4: GPS Yuan10 with Skytraq S1315F-RAW receiver

Figure 3.5: IMU Xsens MTi with fixed reference system

that uses two GPS one placed on top of the car and another on the ground

in a fixed position. This modality reduces error from 3-5 m to 10 cm. GPS

Yuan10 is connected to PC through a standard USB.

3.2.3 IMU

Used IMU is a Xsens MTi (Figure 3.5) that contains a 3D magnetometer

that retrieves information of Earth’s magnetic field, a 3D accelerometer that

retrieves information of linear accelerations and a 3D gyroscope that retrievs

information angular velocities. Xsens MTi maximum sampling rate is 100

Hz, for our work we keep this sampling rate. Positioning of 3 axes, as

shown in Figure 3.5, has a fixed reference system which is independent from

positioning of device and is defined as:

• X: positive in direction of magnetic North;

• Y: follows right-hand rule (magnetic West);
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Figure 3.6: Prosilica GC1020/650 (a) with Theia wide-angle optics (b)

• Z: positive if upward.

IMU Xsens MTi is linked to PC through an USB adapter.

3.2.4 External cameras

On the roof of the car two cameras Prosilica GC1020 have been mounted,

one facing the street and one facing the right side of the vehicle. These cam-

eras are used to acquire images of external environment. Prosilica GC1020

(Figure 3.6a) is a network camera connected through an ethernet cable to

PC, it works at 30 fps with resolution of 1024 x 768 and uses BayerRG8 to

limit dimension of images. Prosilica GC1020 facing street mounts a wide-

angle lens Theia MY125M (Figure 3.6b) with a 125° horizontal field and

109° vertical field with very low distortion.

3.3 Physiological sensors

In this section we’ll go through all equipped sensors to acquire information

of the driver. Two different kind of sensors have been used to retrieve

information of physiological index of the driver.

3.3.1 Procomp Infiniti

Procomp Infiniti card (Figure 3.7a) is 8 channels encoder used to acquire

in real time, using different sensors (Figure 3.7b), physiological indexes of

human body. 2 of 8 channels have sampling rate of 2048 Hz, remaining ones

of 256 Hz. Procomp Infiniti samples input signals from sensors, encodes

and sends to TT-USB interface. For transmission from encoder to interface

a fiber optic cable is used, in order to have the best electrical insulation.

The cable can reach up to 7.62 m without losing quality in signal. TT-
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Figure 3.7: Procomp Infiniti (a) with a set of available sensors (b) top from left: EMG,

ECG, EEG and SC. Bottom from left: body temperature, breathing and HBR

USB interface transform signal in USB format and sends it to PC through

a standard USB. Standard Procomp Infiniti sensors are:

• Electromyogram

• Elecrocardiogram

• Electroencephalography

• Skin Conductance

• Body temperature

• Breathing

• Heart Beat Rate

These sensors are not invasive. Sensors for SC are placed on participant’s

shoulder, as we have seen in Chapter 2 this solution is between the best

4 measuring locations. Each channel of Procomp Infiniti can acquire any

sensor’s data, the only sensor that requires 2048 Hz is EMG. Encoder is

powered by batteries and has an autonomy of 20/30 hours, which is not

limiting for our project.

3.3.2 Eye tracker

The eye tracker used for our work is the Pupil Labs® (Figure 3.8, Kassner

in 2014 [56] explained in detail the device. The device has 3 cameras, 1 for

world image and 2 for the eyes. World camera can acquire images at different

resolution and frame rate: 1920x1080 @30fps, 1280x720 @60fps, 640x480

@120fps. For our work we have chosen 1280x720 @60 fps which is a good
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Figure 3.8: Pupil Labs® eye tracker

Figure 3.9: Shuttle Slim

trade-off between resolution and sampling frequency. Eyes cameras have 3

different configurations: 1920x1080 @30fps, 1280x720 @60fps and 640x480

@120fps. For our work we have used 640x480 @120fps in order to have the

maximum sampling rate. Along with the headset Pupil Labs® implemented

a software that allows to change some parameters of acquisition.

3.4 On-board Computer

In the car has been installed an on-board mini-pc Shuttle Slim (Figure 3.9)

that is equipped with an Intel Core i7-4790S with 4 cores in Hyperthreading,

base clock frequency of 3,2 GHz, 8 GB of RAM and 64 GB SSD for OS and

750GB HDD for usage. Installed OS is Ubuntu-Linux v 14.04.
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Chapter 4

Software Architecture

Matteucci and Gabrielli explained in detail in their work[55] the software

architecture of I.DRIVE project. The pipeline of the system is illustrated in

Figure 4.1. We now see every single module of the architecture with their

components. Later we have a look to the form of data of some sensors. Then

we finally see the dependencies of the scripts that have been used to extract

data, with their flow and characteristics.

Figure 4.1: Pipeline of information flow from Sensors to MongoDB Database



Sensor Static IP Address

Computer 192.168.1.3

Virtual Machine 192.168.1.10

Velodyne 192.168.1.201

Prosilica GC1010 1 192.168.1.121

Prosilica GC1010 2 192.168.1.122

Axis P1343 1 192.168.1.101

Axis P1343 2 192.168.1.103

Table 4.1: Table of static IP Addresses

4.1 Integration and acquisition framework (ROS)

To develop the system it has been used Robot Operating System (ROS),

an open-source framework widely used for robotics. One of main charac-

teristics of ROS is the modularity obtained by the communication between

nodes, this characteristic is needed for our project as we could constantly

change environment and physiological sensors attached to the system with-

out the need to rewrite the code but by inserting or removing nodes. ROS

nodes are contained in packets by creation of a folder containing a XML file

that describes the content and the dependencies. Nodes can be written in

four languages: C++, Python, Octave and LISP. Nodes written in different

languages can still communicate between them, this allows the framework

to be able to extract strengths from each language. To support the multi

language feature, the sent messages between different nodes are defined by

Interface Definition Language (IDL).

One node sends a message on a specific topic which is identified by

a string that represents its name. Another node that is interested to a

certain type of message subscribes to the appropriate topic. We can have

multiple nodes sending messages at the same time and multiple nodes that

subscribe to the same topic and a single node can send and subscribe to

many topics. Peer-to-peer technology needs a mechanism to allow processes

to find each other at run-time, the master has this role. The master node

handles communication between node that is sending the message (Talker)

and node that is subscribing to the message (Listener). Once nodes have

found each other they communicate with a peer-to-peer communication. We

installed Ubuntu Linux OS on Shuttle Slim in order to use ROS, which is

compatible with almost every used sensors, the only exception is Procomp

Infiniti that needed a Windows OS. To overcome this we used a Virtual

Machine, using VirtualBox, running Windows 8.
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Figure 4.2: Example of RVIZ window with 4 cameras, on the left, and point cloud

Virtual Machine and Shuttle Slim have been provided of a static IP to

be able to easily communicate over TCP socket, also sensors with Ethernet

interface have been provided with a static IP as reported in Table 4.1

RVIZ is a ROS tool that allows to graphically visualize some data, in

particular for our work we can visualize images from cameras Axis P1343,

cameras Prosilica GC1020 and Velodyne point cloud as shown in Figure 4.2.

It is very useful to visualize obstacles, such as cars and pedestrians, in four

directions with different maximum distance.

4.2 Big Data storage (MongoDB)

For Big Data storage we have chosen a NoSQL database, which means that

a database that does not use the relation model usually used for normal

databases. The NoSQL database chosen is MongoDB, due to its wide popu-

larity and high performances with respect to other NoSQL databases. Fur-

thermore ROS contains a packet that handles saving to MongoDB.

MongoDB is a NoSQL open source document oriented, it uses JSON

documents with a dynamic schema that are called BSON. BSON format is

a data structure composed by value and field. The advantage to use dynamic

documents is the possibility to change data structures easily, this is allows

to keep the modularity obtained by ROS. MongoDB data structure (Figure

4.3) is defined as follows:

• Database that contains one to many collections;
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Figure 4.3: MongoDB data structure organization

Figure 4.4: MongoDB document example

• Collection contains one to many documents;

• Document contains a set of fields, each of these fields is a key-value

pair where the key is a string and the value can be a value, a document

or an array of values as is illustrated in the example in Figure 4.4.

ROS natively allows to interact with MondoDB through mongodb store

packet. On MongoDB we have a different collection for each sensor’s data,
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through C++ or Python scripts it is possible to retrieve all information from

database. For our work we have used Python 3.6. The packet has two sub

packets with different functions:

• mongodb store: this packet interfaces with database and allows to

save and to recovery data;

• mongodb log: this packet that handles data from topic and to save

them in the database. To saved document some metadata is added,

such as date, name of topic and type of message used by the topic.

This metadata is used later to retrieve saved data.

4.3 Scripting and processing

For the work we have used mainly Python language due to its flexibility. In

Appendix C we see in detail requirements, input data and output for each

script. The only exceptions are the main script that handles the calls to

other scripts that has been written in Linux Bash in order to be more com-

patible with Linux System and scripts to extract Physiological indexes from

ECG and SC data that have been written in Matlab®. The bash script calls

various Matlab® and Python scripts in sequence, in Figure 4.5 is represented

the Dependencies graph for the flow to obtain probabilities of correlation.

The architecture has been projected, as the hardware component, to be

able to add physiological indexes and environmental data without changing

the flow by just adding new data between MongoDB and the script fea-

ture extraction.py. In case of failure of one or more sensors the flow would

not fail but would continue the execution with remaining data, obviously at

least one physiological index and one environmental index must be present

to obtain a result in correlation. The output of single acquisition is com-

pared with output of previous acquisitions, if the acquisition considered is

the first or previous acquisitions are not available the script is still able to

give the results as output.

4.4 Synchronization

A fundamental part of the whole project is the synchronization of data from

various sensors. Most used sensors do not have any protocol to ensure syn-

chronization, the only sensor to have a synchronization protocol is Prosilica

GC1020 while Velodyne is equipped with a GPS Garmin from which it en-

sures an updated acquisition time. To ensure synchronization we have to
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Figure 4.5: Dependencies graph of the order of the scripts called by Bash

data extraction for correlation.sh: dashed arrows indicate calls that do not prevent

the flow if fail or absent, solid lines indicate calls that would block the flow if a failure

happens, blank boxes represent data’s file and coloured boxes represent scripts.

use a GPS, which using GPS satellites ensures a precise acquisition time.

For PC synchronization we have used Network Time Protocol (NTP) which

is a synchronization protocol used to synchronize computers in the same

network. Functioning is based upon detection latency times of travelling

packets on the network. In optimal conditions NTP can ensure an accuracy

of 200 µs. NTP server is organized on different levels (Figure 4.6) from

initial stratum that is synchronized with an external time source, as can be

GPS for our project, to next stratum that receives time data from previous

stratum. Maximum number of stratums is 15, as 16th stratum is used to

detect an asynchronous stratum. In order to use NTP in Linux is possible

to call daemon ntpd. NTP server can be configured in configuration file

/etc/ntpd.conf. This daemon can both keep the system time updated and

estimate the error, correcting it in case of systematic error.

Prosilica GC1020 uses Precision Time Protocol (PTP), this protocol is

used to synchronize clocks between computers in a network. PTP has a

structure master-slave (Figure 4.7). In this architecture, a system PTP

consists in one or more network segments and one or more clocks. An

ordinary clock is a device with a singular network connection and either be
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Figure 4.6: Hierarchical structure of NTP

the source (Master) or the recipient (Slave) of synchronization. A boundary

clock has multiple network connections and can synchronize one network

segment with another one. A simplified PTP system can be built without

use of boundary clock, in this case a PTP Grandmaster is elected and all

others clocks synchronize directly with it. For our project is possible to

see a delay of 33 ms between PC time and Prosilica time, this delay is

due to exposure time of camera as the timestamp indicates the starting of

acquisition. Considering that Prosilica camera works at 30 fps, it is easy to

see how subtracting the acquisition time the delay is almost 0.

Velodyne uses the GPS Garmin to synchronize, but all other sensors

that do not have a synchronization protocol use as acquisition timestamp

the time defined by PC when data arrives to ROS driver. To decrease error

we have synchronized PC time using NTP protocol with a GPS.

4.5 System performance

We have tested the system to check for RAM usage and occupied space

over time since each acquisitions lasts up to 20 minutes. In Table 4.2 and

in Figure 4.8 are summarized the obtained results, the increase of occupied

space fits perfectly a linear interpolation with an increase of 2.2GB for every
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Figure 4.7: Architecture of PTP

Minutes RAM usage Occupied space

0 min 5.2 GB 0 GB

5 min 6.2 GB 17.1 GB

10 min 6.2 GB 27.9 GB

15 min 6.3 GB 39.8 GB

20 min 6.2 GB 47.2 GB

25 min 6.2 GB 57.9 GB

Table 4.2: Amount of data needed for the system

minute of the acquisition. The on-board mini-pc has a HDD dimension of

750GB, which means that it can record more than 5 hours of acquisitions.

Almost 80% of available RAM (8 GB) has been used for the experiment,

so for further acquisitions with more sensors this could be a critical issue.
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Figure 4.8: Increase of occupied space over time with linear interpolation:

y = x ∗ 2.2 + 3.7

CPU usage was between 35% and 55%, so far below the critical threshold.

Dectected offset between GPS Yuan10 time given by NTP server and PC

time fluctuated between 3 ms and -3 ms with maximum offset of 6 ms.
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Chapter 5

Processing pipeline

In this chapter we are going to see the pipeline of the flow of information

after the acquisition. Data of acquisition is stored in MongoDB, we need

to perform extraction of sensors’ data and extraction of new features and

physiological indexes from acquired data and filtering. We use different

algorithms, performing comparison between them in term of accuracy and

of computational complexity, to extract correlation between each feature and

different physiological indexes. Once these results have been obtained we

consider which of these results have obtained best correlation and compare

these results with State of art from Chapter 2.

5.1 Pipeline

The pipeline can be split into two specific parts, the first part of the pipeline,

Data preparation, (Figure 5.1) starts from acquisition data stored in Mon-

goDB Database. We need to extract data from database, two different

scripts have been used. For Physiological indexes two Matlab® scripts have

been use to extract data from ECG obtaining time-series of HRV,LF,HF

and LFHF, and from Skin Conductance (SC) obtaining time-series of Pha-

Figure 5.1: Pipeline of processes from MongoDB Database to DataFrame with extracted

data



Figure 5.2: Diagram of all steps from Environmental and Physiological Data to Ex-

tracted probabilities

sic Component (PC) and Tonic Component (TC). For environmental data

we have used one script to extract data from all sensors except Velodyne

point cloud, for this we need to extract first of all a JSON file that con-

tains information about identified objects, to do so a NN has been used.

Once all these extractions have been performed, data has to be filter in

order to remove noise and additional driving style’s features not directly

obtainable from sensors can be extracted, such as time-headway, jerk and

speed. Down-sampling is performed in order to be able to compare time-

series with different sample rate, feature extraction is performed before the

down-sample, and down-sample is performed without losing any useful in-

formation. The result is saved on a DataFrame, this DataFrame is saved in

a CSV in order to be able to retrieve this information without the need to

start the process from the beginning.

The second part of the pipeline, Data processing, (Figure 5.2) starts from

DataFrame saved in previous part, in this part we perform segmentation of

time-series from environmental data in order to transform a time-serie in

an event sequence. For Physiological indexes we extract some correlation

thresholds in order to understand, by random iterations, the random per-

centage of events that increase the physiological index. These thresholds are

compared with event sequences in order to understand if the environmental

data increases or not the percentage of events increasing stress. We obtain

a DataFrame with probabilities of correlation between each pair Physiologi-

cal index and Environmental data, these probabilities need to be compared

between more acquisitions in order to detect a stronger correlation.
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Table 5.1: 3D Detection Performance comparison [57]

Figure 5.3: Structure of SECOND detector [57]

5.2 Data preparation

We have seen how data is stored on MongoDB, now we see how data has been

prepared for processing. Velodyne point cloud’s data needs to be extracted

in order to be analyzed, a CNN (Convolutional Neural Network) named

SECOND has been used as proposed in Yan 2018 [57] study. In this study it

has been considered objects of cars, pedestrians and cyclists. The used CNN

SECOND has been proven to be much faster then precedent methods as

shown in Table 5.1. The structure of SECOND (Figure 5.3) is composed of a

voxelwise feature extractor,a sparse convolutional middle layer and an region

proposal network. The script velodyne extraction.py extracts information

from point cloud into a json file that is organized in frames, every frame

contained information of each identified object seen as 3D box as follows:

• box3d lidar: Array with information of position in xyz axes, size in

xyz axes, rotation on z axe, in Figure 5.4 is possible to see how the

axes are positioned.

• label preds: Array with information of which object has been iden-

tified, defined by a number. The identified objects with their identi-

fication number are: 0 car, 1 bycicle, 2 bus, 3 construction vehicle, 4

motorcycle, 5 pedestrian, 6 traffic cone, 7 trailer, 8 truck and 9 barrier.

• scores: Array with information of probability that the identified ob-

ject is correct.

47



Figure 5.4: Axis position

• pointcloud id: name of bin file from which information has been

extracted. The name of bin file is a timestamp in nanoseconds, we

extract information of timestamp directly from this name.

An example of a frame with two identified objects, a car and a pedestrian:

• box3d lidar: [[8.977237701416016,10.217676162719727,-1.246170282

3638916,1.887690782546997,4.4023356437683105,1.5308451652526855

,1.556740164756775],[9.452740669250488,7.507191181182861,-1.01073

8492012024,1.9031622409820557,4.432695388793945,1.5714941024780

273,4.6955342292785645]]

• label preds: [0,5]

• scores: [0.8672887086868286, 0.7873099446296692]

• pointcloud id: LIDAR TOP/1544711841262000000.bin

From the acquisition we have extracted position of identified objects and

distance from car. In Figure 5.5 it is possible to see every identified object

with a score greater than 0.6 and maximum distance of 20 m. Figure 5.6

shows the nearest identified object with a score greater than 0.6 and maxi-

mum distance of 20 m for every timestamp. Figure 5.7 illustrates how many

identified objects are present with a score greater than 0.6 and maximum

distance of 20 m in each frame.

We need than to extract some features from available data:

• Speed: extracted from linear velocities in Velodyne Data as:√
linear.x2 + linear.y2 (5.1)
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Figure 5.5: Relative position of identified objects, defining front, back, right and left

position of acquisition on 2018/12/13

• Time headway: time difference between the nearest identified object

and is calculated as:

distance of nearest object

speed of car
(5.2)

• Jerk: first derivative of acceleration, indicates the amount of sudden

movements

For HRV extraction we have used Python Neurokit2 [58] module, which

is a widely used package used to extract physiological indexes. The used

function is nk.ecg process(ecg signal, sampling rate = sample rate) with

sample rate being the sample rate used for the acquisition and ecg signal

the time serie obtained from acquisition.

We need to check the alignment of timestamp between all sensors to Unix

timestamp as not all sensors are automatically aligned to it as an example

the Pupil Eye Tracker. To do so we applied the formula to all timestamps
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Figure 5.6: Distance of nearest identified object for category of acquisition on

2018/12/13

in acquisition as:

taligned[i] = toriginal[i] + tUnix[0]− toriginal[0]

i ∈ 0 . . . T
(5.3)

As we have seen in Chapter 3 different sensors have different sampling

frequency, in order to prepare data to correlation analysis we need every

sensors’ data to have same sampling frequency and this frequency to be

fixed. Figure 5.8 shows that the frequency is not fixed but varies throughout

the acquisition.

We merged all sensors data and down-sample this merge at 100 Hz,

which is the most common frequency of sensors. The frequency of 100 Hz is

much higher than the needed for physiological data, which changes with an

average frequency of 1 Hz, this allows us not to lose any useful information

about body sensors. The down-sample to 100Hz allows us not to lose any

useful information in sensors with lower and higher sample rate. Due to

down-sampling we interpolate data when there are missing values only if the

missing is surrounded by valid data, missing information after interpolation

is considered as NaN from the script.
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Figure 5.7: Number of identified objects in each frame for category of acquisition on

2018/12/13

Figure 5.8: Frequency analysis of Xsens IMU

At the end of the acquisition ROS shuts down the nodes in random se-

quence, taking up to 5 seconds to shut down all nodes. In this condition the

closed nodes information are NaN, while open nodes continue the acquisi-

tion. The script avoids this situation by considering the acquisition over the

moment one of the nodes is shut down in shutting down operation.
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5.3 Data processing

In order to find a solution to the problems explained in Chapter 2 we

need firstly to understand the level of correlation between driver’s physi-

ological data and car’s environmental data. Many of next definitions can

be found in An Introduction to Statistical Learning [59] written by Gareth

James, Daniela Witten, Trevor Hastie and Robert Tibshirani and Pattern

Recognition and Machine Learning [60] written by Christopher M. Bishop.

The problem we are considering is an inference problem, we need to un-

derstand which, between available factors, might be the cause of increase

in driver’s stress. We do not know yet how the relationship between envi-

ronmental and physiological data could be summarized but we expect the

relationship to be much more complicated than a linear equation considering

all physiological processes that happens in human body during a stressful

situation.

We are dealing with a non-parametric model as we do not make any

assumption about the relationship form, the disadvantage is that we may

need much more acquisitions but on the other hand it has been proven in

Chapter 2 that physiological process can be very complicated.

The learning problem for our work is unsupervised, which means that

we do not use any control a priori to check for valid relationships. The

reason for this choice is that we do not want to introduce a bias that could

penalize our results as the only way to check for driver’s stress is through

questionnaires or using tools to allow driver to indicate the level of stress as

shown in Chapter 2 and this is linked to driver’s perception of stress that

could differ from user to user. We still use two different questionnaires, one

proposed before the driving and one after the driving in Appendix D we

have inserted the proposed questionnaire.

The problem, at first step, can be considered as a Classification problem

as we want to know which feature affect level of stress in driver and on second

step as a Regression as we want to know which values of single feature affect

and in which way the level of stress. Considering these assumptions and data

saved on MongoDB Database these are the features we are considering:

• Angular velocity: obtained from Xsens IMU data on axes xyz;

• Linear acceleration: obtained from Xsens IMU data on axes xyz;

• Jerk: extracted from Xsens IMU data on axes xyz as first derivate of

linear acceleration;

• Linear velocity: obtained from Velodyne data on axes xyz;
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• Angular velocity: obtained from Velodyne data on axes xyz;

• Linear acceleration: obtained from Velodyne data on axes xyz;

• Number of identified objects: extracted by Velodyne point cloud,

identified objects are cars, bycicles, buses, construction vehicles, mo-

torcyles, pedestrians, traffic cones, trailers, trucks and barriers. Posi-

tion of objects is divided in back, front, left and right;

• Distance of nearest identified object: extracted by Velodyne

point cloud, identified objects are the same as above and position is

divided in back, front, left and right;

• Speed: extracted by Velodyne data;

• Timeheadway: extracted from Velodyne point cloud and speed.

Some of these features are obtained from both Xsens IMU and Velodyne to

check if data is consistent. Other features could be not considered as too

few data in the acquisition, this is considered in the part of preparation. For

physiological data these are the indexes that we are considering:

• ECG: not elaborated data of ECG;

• SC: not elaborated data of SC;

• LF: norm of LF extracted from ECG;

• HF: norm of HF extracted from ECG;

• LFHF: ratio LFHF extracted from ECG;

• Tonic signal: TC of SC;

• Phasic signal: Phasic Component of Skin Conductance;

• SC signal: sum of tonic and PCs of SC;

• HRV: extracted from ECG.

As we have seen in Chapter 2 not all these indexes are useful and each of

this index must be considered in a different way, we are also able to check

studies referenced in Chapter 2.

Once obtained physiological data from body sensors and environmental

data from car sensors we need to find, if it exists, a correlation between

these two samples. We consider N physiological indexes one by one and

comparing them with M driving features one by one, we could obtain N x

M level of correlations.
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5.3.1 Extraction of Event Sequence

As described in book “Detection of Abrupt Changes: Theory and Applica-

tion” [54], our problem is an Off-line Hypothesis Test. We need to consider

two hypothesis “with change” and “without change” in time-serie at occur-

ring of the event. Given a finite sample y1, . . . , yN , and pθ the sequence

parameters, we need to test between:

H0 : for 1 ≤ k ≤ N :

pθ(yk|yk−1, . . . , y1) = pθ0(yk|yk−1, . . . , y1)

H1 : with t0 ∈ (1 . . . N) such that :

for 1 ≤ k ≤ t0 − 1 : pθ(yk|yk−1, . . . , y1) = pθ′0(yk|yk−1, . . . , y1)

for t0 ≤ k ≤ N : pθ(yk|yk−1, . . . , y1) = pθ1(yk|yk−1, . . . , y1) (5.4)

In our problem t0 is defined by the extraction of Event Sequence (ES).

The criterion used in hypothesis testing is a trade-off between the ability to

detect actual changes when they occur and the ability not to detect changes

when no change occurs. We need to define the threshold of this trade-off. We

need to consider five performances indexes for change detection algorithms:

• mean time between false alarms;

• probability of false detections;

• mean delay for detection;

• probability of nondetection;

• accuracy of the change time and magnitued estimates.

Each algorithm has also different robustness to noise and modelling errors,

this is a characteristic that we must consider. As shown in Chapter 2 we

considered Luo studies [49] to find the correlation between driver’s physio-

logical indexes and environmental data. We need first of all to define the

events in environmental data, as we do not have any kind of information

of which thresholds to use to define these events we use percentiles with

respect to all acquisition. The used algorithm to obtain sequence of events

from Time-Serie (TS) is defined in Algorithm 1.

An example of an extracted ES can be found in Figure 5.9 as red vertical

lines indicate the found events. In the example it was considered a 99th

percentile, with steps of 1th percentile. The threshold is 11.17 m/s2. In

params.py we have defined an array of all used percentiles, while 0th and

100th are not significant as they would only consider, respectively, the global
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Algorithm 1 Transform TS to ES

1: return Events

2: require TS = time-serie with timestamps, Percentile, PercentileStep,

min = minimum time between two events from 0 to T

3: define Events = [ ]

4: if Percentile > 50 then

5: CurrentPercentile = 100

6: while CurrentPercentile > Percentile do

7: for i in 0. . . T do

8: if TS[i] >= CurrentPercentile of TS then

9: Events← i

10: i+ = min

11: end if

12: end for

13: CurrentPercentile − = PercentileStep

14: end while

15: else

16: CurrentPercentile = 0

17: while CurrentPercentile < Percentile do

18: for i in 0. . . T do

19: if TS[i] <= CurrentPercentile of TS then

20: Events← i

21: i+ = min

22: end if

23: end for

24: CurrentPercentile + = PercentileStep

25: end while

26: end if

27: Drop Duplicates of Events
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Figure 5.9: Plot of acceleration from IMU Data with found events at 99 percentile

Figure 5.10: Event Sequence (red vertical lines) on Phasic Component (PC) Time-Serie

(TS)

minimum and maximum, we have used from 1st to 45th and from 99th to

55th percentiles. Values of min and PercentileStep are defined in params.py

and not defined by user. In Figure 5.10 is possible to see the ES extracted

from nearest car on front side with threshold of 5 m defining on TS of PC

from SC physiological data.

As shown in Luo study [49] we compare the sub-sequence before and

after the event occurred. As we have seen in Chapter 2 each physiological

index has different time characteristics, we then apply some rules to identify

rear and front sub-sequences to be compared:

• Latency: defined as the time between the end of event and the start

of the effect on physiological index, if 0 it means that the change in

physiological index is considered immediately when the event occurs.

Latency cannot be negative for definition;

• Duration: defined as the time window needed for the physiological
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Figure 5.11: Example of rules on time characteristics: A 0s Latency, 0s Shift 5s Du-

ration; B 0s Latency, +1s Shift 5s Duration; C 1s Latency, 0s Shift 5s Duration; D 0s

Latency, 0s Shift 10s Duration. Front sub-sequence is defined by backgroud color red,

rear sub-sequence by backgroud color green

index to change, rear and front sub-sequences must always have same

size to be comparable;

• Shift: defined as a shift in time between when the event occurred and

when it must be considered, it can be either negative which means

that the physiological index changes before the event occurs as can

happen when the body reacts before an event occurred (for example

before braking) or positive which means that the physiological index

changes after the event occurs as the physiological index changes after

a certain amount of time.

In Figure 5.11 is shown an example of latency, duration and shift use. In

params.py we have defined 3 arrays with values of latencies, delays and

durations. After extraction of ESs we need to extract segmentation of the

time-serie.

5.4 Algorithms definition

Once obtained the ES, as shown in Algorithm 1, we apply it to every TSs

with different percentiles, latencies, shifts and durations applying Algorithm

2. Considering Equation 5.4 we need to consider different situations:

• θ1 is known, in this case we have information of what implicates the

change;

• few information of θ1 is known, in this case we do not exactly know

the value of θ1 but we have some information about the change
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Algorithm 2 Apply percentiles and time characteristics

1: result Correlations

2: require TS = time-serie with timestamps from 0 to T

3: define Arrays of percentiles[0. . . P],latencies[0. . . L],shifts[0. . . S] and du-

rations[0. . . D], Correlations=[ ]

4: for percentile in percentiles do

5: Events = Algorithm 1(TS, percentile)

6: for latency in latencies do

7: for shift in shifts do

8: for duration in durations do

9: FrontStart = −duration+ shift

10: FrontEnd = +shift

11: RearStart = +shift+ delay

12: RearEnd = +duration+ shift+ delay

13: for event in Events do

14: Front = TS[event+FrontStart : event+FrontEnd]

15: Rear = TS[event+RearStart : event+RearEnd]

16: Correlations← Algorithm(Front,Rear)

17: end for

18: end for

19: end for

20: end for

21: end for

• θ1 is unknown, in this case no information is known and this compli-

cates detection algorithms.

In our problem θ1 is unknown, so we need to consider algorithms that allow

us to detect a change without knowing what this change means exactly. We

need also to consider two different situations:

• Additive changes, changes do not affect the whole system and they

can be considered one at a time;

• Non Additive changes, changes do affect the whole system, this means

that after a change the system does not return to initial state but to

a changed one.

In general changes in our problem changes are Non Additive, as different

kind of stresses can sum up, from short to long term. If we consider T0 as

initial state of body stress of driver, when a stressful event occurs, due to
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short-term stress, the state changes in T1. After a certain amount of time,

depending on the user and on which physiological index we are considering,

the influence of short-term stress decreases but longer term stress could

remain transforming body stress state to T0′ . In our problem we are just

considering short-term stress and not the influence in longer term stress,

this allows us to consider changes as Additive as long as the time between

events is equal or greater to the duration of short-term stress.

In Additive changes we can define four cases:

• θ0 and θ1 are known;

• θ0 is known and the magnitude of change is known but not its direction

is known;

• θ0 is known and the direction of the change is known but not its

magnitude;

• θ0 is known but nothing is known about θ1.

In our problem we can extrapolate from physiological characteristics of

indexes the direction of the change. In Chapter 2 we have seen how a

stressful event causes the activation of SNS and increase of HF, but we do not

know, and most importantly it depends of each user, how much it changes.

This means that our problem can be defined as we know the direction but

not the magnitude of the change. Our algorithms need then to be able to

consider each occurred event as a singular event, it must search for increase

or decrease, depending on used physiological indexes, and give as an output

the number of events that caused an abrupt change in time-series.

We look in detail the algorithms used to compare Rear and Front sub-

sequences, which must always be of the same length, in Algorithm 2 are the

ones defined in Chapter 2:

• PCC;

• ARMA;

• NNSBM;

• ET.

5.4.1 Pearson Correlation Coefficient

PCC is a statistic that measures correlation between two variables X and

Y , for our work we consider the population PCC which is defined as follows:
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ρX,Y =
cov(X,Y )

σXσY
(5.5)

where

covX, Y = exp[(X − µX)(Y − µY )] (5.6)

• σX is the standard deviation of X

• σY is the standard deviation of Y

• µX is the mean of X

• µY is the mean of Y

The correlation coefficient ranges from -1 to 1, a value of 1 implies a linear

correlation between X and Y, while a value of -1 implies a total negative

linear correlation and a value of 0 implies no linear correlation. PCC is

weak to outliers and might not be efficient if the population is not normal.

Python already has a built-in function pearsonr(x, y) in scipy.stats module.

5.4.2 ARMA Model

ARMA Models are widely used in forecasting of time-series. For our problem

we compare prediction, based on Front sub-sequence’s data, and Rear sub-

sequence’s data. The value of error between the two indicates the probability

of change in time-series. The AR (Auto-Regressive) part indicates that the

evolving variable of interest is regressed on its own lagged values. The MA

(Moving Average) part indicates that the regression error is actually a linear

combination of error terms.

Given a time-series Xt an ARMA(p, q) Model is defined as:

Xt − α1Xt−1 − . . .− αp′ = εt + θ1εt−1 + . . .+ θpεt−q (5.7)

To compare prediction vs Rear sub-sequence we use RMSE, which is defined

as:

RMSE =

√√√√ n∑
i=1

(Xt −X0)2

n
(5.8)

with Xt being the forecast observation (prediction) and X0 the actual value

(Rear sub-sequence). We need to define parameters of ARMA, in Subsection

5.6 we compare results using different parameters. In Figure 5.12 we can

see two different situations, on the right graph the time-serie has an abrupt
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Figure 5.12: Comparison of two different sub-sequences with ARMA Model. On the

left time-series has an abrupt change, on the right time-series has no abrupt change

change and it is possible to see how the prediction cannot fit the Rear sub-

sequence, on the left graph there is no abrupt change in the time-serie and

prediction is able to fit much better the Rear sub-sequence. RMSE is 160

times higher on the left with respect to the example with no abrupt change.

Python already has a built-in function ARMA(array,(p,q)) in statsmodels

module.

5.4.3 Nearest Neighbour Statistical Based Method

There exist a substantial number of non-parametric methods based on KNN,

the one presented in this section is a distribution-free test for the general

multivariate two-sample problem.

Let X1, . . . , Xn1 and Y1, . . . , Yn2 be independent random samples of <d

from unknown distributions F (x) and G(x), respectively, with correspond-

ing densities f(x) and g(x). The Two-sample problem is the test between

hypothesis H0 : F (X) = G(X) against the hypothesis H1 : F (x) 6= G(X).

Take n = n1 + n2, Ω1 = {1, . . . , n1} and Ω2 = {n1 + 1, . . . , n} and label the

pooled samples as Z1, . . . , Zn where:

Zi = Xi i ∈ Ω1

= Yi−n1 i ∈ Ω2

NNi(r) represents the rth nearest neighbour to the sample point Zi.

Define:

Ii(r) = 1 if NNi(r) belongs to same sample as Zi

= 0 otherwise

The statistic considered for testing H is the quantity:

Tk,n =
1

nk

n∑
i=1

k∑
r=1

Ii(r) (5.9)
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Figure 5.13: Comparison of two different sub-sequences with NNSBM Algorithm. On

the left time-series has an abrupt change, on the right time-series has no abrupt change

which is the proportion of all k nearest neighbour comparisons in which a

point and its neighbour are members of the same sample. Tk,n is small under

null hypothesis H0 and large when the two sub-sequences are different.

In Figure 5.13 we can see Front and Rear sub-sequences compares using

NNSBM Algorithm, on the right the two sub-sequences overlap much more

then on the right, this can be seen also in the correlation coefficient which

is 10 times higher on the left, when an abrupt change is present, as Nearest

Neighbour is most probably in the same sample from the considered point.

Python has some Nearest Neighbour functions in sklearn that we have

rewritten in order to optimize our NNSBM.

5.4.4 Energy Test

Energy statistics are functions of distances between statistical observations.

The concept is based on Newton’s gravitational potential energy. The idea

of energy statistics is to consider statistical observations as bodies governed

by a statistical potential energy, which is zero if and only if null hypothesis

is true. For our problem we are going to consider the two-sample energy

statistic ε(X,Y ) for independent random samples X = X1, . . . , Xn1 and

Y = Y1, . . . , Yn2 :

εn1,n2(X,Y ) =
2

n1n2

n1∑
i=1

n2∑
m=1

|Xi − Ym|−

1

n21

n1∑
i=1

n1∑
j=1

|Xi −Xj | −
1

n22

n2∑
l=1

n2∑
m=1

|Xl −Xm| (5.10)

The statistic:

Tn1,n2 = (n1n2/(n1 + n2))εn1,n2 (5.11)

is applied to test equality of distributions X and Y, H0 null hypothesis is

rejected for large values of Tn1,n2 .
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AUC Range Classification

0.9 < AUC < 1.0 Excellent

0.8 < AUC < 0.9 Good

0.7 < AUC < 0.8 Worthless

0.6 < AUC < 0.7 Not Good

Table 5.2: Accuracy classification by AUC

5.5 Algorithms comparison

Algorithms have been compared using a set of arrays extracted from ac-

quisitions with and without abrupt changes. We compare accuracy and

complexity.

5.5.1 Accuracy

We have then compared output of each algorithm with true positives and

true negatives and building ROC Curves and calculating AUC [61]. In ROC

we have calculated TPR (True Positive Rate) as:

TPR = TP/(TP + FN) (5.12)

and FPR (False Positive Rate) as:

FPR = FP/(FP + TN) (5.13)

while AUC is the area beneath the curve as:

AUC =

∫ 1

0
ROC(t)dt (5.14)

The closer to 1 is AUC the more accurate is the test, while a value around

0.5 indicates an accuracy similar to a random test. In Table AUC we can see

a classification for AUC accuracy. We do not have any parameters in PCC

and ET algorithms. In Figure 5.14 we can see results for PCC algorithm, the

resulting AUC is 0.77, which is not a sufficient result for the base algorithm.

For ET the result is 0.91, which is an excellent result. For ARMA we need

to define p and q parameters, we have tested from 0 to 5. In Table 5.3 we

present AUC results for each pair (p,q). Best results have been obtained with

ARMA(4,2) with a AUC value of 0.90, for our problem we use this model.

In Figure 5.15 we can see ROC Curve for ARMA(4,2). For NNSBM we

need to define k, we have tested from 1 to 10. In Figure 5.16 we can see all

AUC results, best result is obtained with k = 4 with a value of 0.889, for our

problem we use k = 4 In Figure 5.17 we can see ROC Curve for 4-NNSBM.
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Figure 5.14: ROC curves with relative AUC for PCC and ET algorithms

p\q 0 1 2 3 4 5

0 - 0.75 0.56 0.52 0.56 0.77

1 0.78 0.79 0.80 0.75 0.70 0.64

2 0.79 0.79 0.81 0.69 0.63 0.56

3 0.84 0.85 0.87 0.82 0.79 0.61

4 0.79 0.83 0.90 0.77 0.70 0.59

5 0.77 0.85 0.82 0.74 0.72 0.61

Table 5.3: AUC results for ARMA(p,q)

Figure 5.15: ROC curve with relative AUC for ARMA algorithms

Algorithms ET,NNSBM and ARMA have obtained similar results in

term of accuracy, while PCC has obtained very low accuracy.
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Figure 5.16: AUC value for every k-NNSBM

Figure 5.17: ROC curve with relative AUC for 4-NNSBM

5.5.2 Computational complexity

In this section we consider complexity applied to a single sequence of length

n, comparing Front sub-sequence and Rear sub-sequence. In Chapter 6 we

consider complexity applied to the acquisition.

• PCC: the complexity is linear f(n) = O(n), as it grows linearly with

the size of sample when calculating standard deviations and covari-

ance;

• ET: the complexity is quadratic f((2n2 )2) = O(n2), as the equation

5.10 has two nested loops on n
2 ;

• ARMA: complexity of model depends on parameters (p, q), the model

needs to build the forecast f(n) = (p + q) ∗ (n2 )2 and then compare
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it with Rear sub-sequence with RMSE f(n) = n for a complexity of

O((p+ q)n2);

• NNSBM: complexity of model depends on parameter k, we have

succeeded in optimize it not to compare every point of the sequence but

only a smaller subset that contains nearest neighbours. The algorithm

checks every n point with the k nearest before and after in same sub-

sequence and in the other sub-sequence f(4k(n2 )), then repeats the

procedure with k = k + 1 from 1 until goal k is reached f(n2
(4k)2+4k

2 )

which leads to O(k2n). If all pairs were to be compared the complexity

would be O(kn2).

We have ran some tests to check complexity. The test is a run of 1000

randomly selected sequences with a length of n = 1000, Front and Rear

sub-sequences of n1,2 = 500, these are the results in average for a single

execution:

• PCC: 84 ∗ 10−6 seconds

• NNSBM: 13 ∗ 10−3 seconds

• ET: 124 ∗ 10−3 seconds

• ARMA: 312 ∗ 10−3 seconds

Results are in line with complexities. As we have seen in previous subsection

the algorithm PCC had a very low accuracy, despite the lowest complexity

we cannot consider it as the best algorithm. The remaining algorithms had

same level of accuracy but in terms of complexity the algorithm NNSBM is

the best one for one order, so it is the main used.

5.6 Correlation extraction

From considered algorithms we obtain a value of correlation between Rear

and Front sub-sequences, but this alone might not be enough to understand

if there is been a change in TSs after the event occurred. In order to un-

derstand this we need to sample whole acquisition and obtain an average

level of correlation. In order to do so we use Algorithm 3 In Figure 5.18 an

example of results using Algorithm NNSBM on different TSs, it is possible

to see how each TSs has a different average correlation. We applied the CLT

in Algorithm 3 as correlations of random Front and Rear sub-sequences are

independent their sum tends toward a normal distribution. We defined a
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Figure 5.18: Results with Algorithm NNSBM with some TSs

Figure 5.19: Example of defining the limit for average correlation, green background

indicates the CI

minimum number of iterations with minIterations, which can be the stan-

dard 30, and a maximum number of iterations with maxIterations, which

can be the 5% of all population. The obtained sample mean correlation is

a good estimator of population mean. The algorithm stops when maximum

number of iterations is reached or when the Confidence Interval (CI) is suf-

ficient small. All these values are defined in params.py. In Figure 5.19 is

possible to see an example of Algorithm 3 applied. Once obtained the aver-

age level of correlation of the population we need to understand on average

if the TSs increases or decreases.

In order to extract this information we apply Algorithm 4 Algorithm

4 compares random Front and Rear sub-sequences, if level of correlation

if below the average level it might mean that the event occurred cause a
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Algorithm 3 Extraction of average level of correlation

1: result AverageCorrelation

2: require TS = time-serie with timestamps from 0 to T, Latency, Shift,

Duration, maxIterations, minIterations, maxConfidence

3: define Correlations=[ ]

4: FrontStart = −duration+ shift

5: FrontEnd = +shift

6: RearStart = +shift+ delay

7: RearEnd = +duration+ shift+ delay

8: for iterationsin[0 . . .maxIterations] do

9: r = Random i ∈ [0 . . . T ]

10: Front = TS[r + FrontStart : r + FrontEnd

11: Rear = TS[r +RearStart : r +RearEnd]

12: Correlations← Algorithm(Front,Rear)

13: if iterations > minIterations then

14: if Confidence(Correlations) ≤ maxConfidence then

15: break loop

16: end if

17: end if

18: end for

19: AverageCorrelation = average(Correlations)

change between Front and Rear. It then compares the two sub-sequences to

check if it was present an increase or decrease and adds result to an array,

to compare the sub-sequences a tscore has to be calculated using Equation

5.15, if tscore < −α with α predefined in params.py Event cause a decrease

in TS, while if tscore > α Event cause an increase in TS, if tscore < |α| it is

impossible to say if the Event cause an increase or decrease but this should

not happen due to Algorithm used to check for correlation.

tscore =
µfront − µrear√

σ2
front+σ

2
rear

n

(5.15)

In Figure 5.20 is illustrated an example of application of Algorithm 4.

In Figure 5.21 we have checked that the real value of average correlation

and average increasing and decreasing probabilities calculated is between

the obtained CI.

Once obtained average increasing and decreasing probabilities we need to

obtain exact increasing and decreasing probability for each time-characteristic,

this can be obtained using Algorithm 2 and Algorithm 4 where instead of
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Algorithm 4 Extraction of average probability of events increasing and

decreasing TS

1: result AverageIncreasing,AverageDecreasing

2: require TS = time-serie with timestamps from 0 to T, Latency, Shift,

Duration, maxIterations, minIterations, maxConfidence

3: define Increasing = [ ], Decreasing = [ ]

4: AverageCorrelation = Algorithm 3(TS)

5: FrontStart = −duration+ shift FrontEnd = +shift

6: RearStart = +shift+ delay RearEnd = +duration+ shift+ delay

7: for iterationsin[0 . . .maxIterations] do

8: r = Random i ∈ [0 . . . T ]

9: Front = TS[r + FrontStart : r + FrontEnd]

10: Rear = TS[r +RearStart : r +RearEnd]

11: Correlation = Algorithm(Front,Rear)

12: if Correlation < AverageCorrelation then

13: if Front > Rear then

14: Increasing ← 1 Decreasing ← 0

15: else

16: if Front < Rear then

17: Increasing ← 0 Decreasing ← 1

18: else

19: Increasing ← 0 Decreasing ← 0

20: end if

21: end if

22: else

23: Increasing ← 0 Decreasing ← 0

24: end if

25: if iterations > minIterations then

26: if Confidence(Increasing) ≤ maxConfidence then

27: if Confidence(Decreasing) ≤ maxConfidence then

28: break loop

29: end if

30: end if

31: end if

32: end for

33: AverageIncreasing = average(Increasing)

34: AverageDecreasing = average(Decreasing)
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Figure 5.20: Example of defining the limit for average increasing and decreasing prob-

abilities, red background indicates the CI for Percentage Decreasing, blue background

indicates the CI for Percentage Increasing

Figure 5.21: Comparing of Average with CI and Exact value calculated over all popu-

lation for average correlation, increasing and decreasing probabilities

picking random points we pick each one of the event of the ES extracted

with its CI, in order to have a significant CI we need to consider only ESs

with at least 30 events. In Figure 5.22 we have an example of extracted

events, red vertical lines indicate events that cause a decrease in TS while

blue vertical lines indicate events that cause an increase. We then need to

compare probabilities of increasing and decreasing events between random

one and the extracted from ES. In Figure 5.23 it is possible to see difference

in increasing probabilities between different ESs and random extractions, CI

of random extraction is much smaller due to higher number of iterations.

Finally we need to compare these CI, as the samples have different size,

unknown mean and unknown variance. In order to compare them we use
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Figure 5.22: Example of defining increasing and decreasing events extracted from ES

linear acceleration on X axis over Phasic Component of Skin Conductance

Figure 5.23: Comparing Increasing probabilities between Random one and ESs with

their CI at specific percentile and using Phasic Component time-serie

Welch’s t-test[62] using formula:

t =
µX − µY√
σ2
X
n1

+
σ2
Y
n2

(5.16)

Using Welch’s t-test we obtain probability that increasing or decreasing

probability of ES is higher than random extracted one. In Figure 5.24 we

have an output of probabilities between ES and Random extracted one.

Results are plot with respect to percentiles and with relative probability

of correlation, in this way it is much more clear to understand how different

percentiles influence on probability of increasing or decreasing the time-serie.
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Figure 5.24: Probability of ES increasing probabilities being higher than Random ex-

tracted at specific percentile and using Phasic Component time-serie

Figure 5.25: Graph of probability of correlation for percentiles from 0th to 100th for

Jerk x with respect to Phasic Component of Skin Conductance

In Figure 5.25 we can see an example with Jerk on X axis considering PC

time-serie with shift of 1 second and latency of 2 seconds. It is possible

to see as we get near the 50th the probability gets around 50% as with

the increase of the event considered the result is not much different from

considering random ones, we have a peak at around 10th-20th percentile

with a probability over 90%, which is not high enough to prove a correlation

but indicates that at lower values of Jerk on X axis (decrease of Acceleration

on X axis due to braking of the vehicle) the correlation increases, at 85th-

90th percentile we have another peak, which coincides with high Jerk due to

increase of acceleration. In Chapter 6 we see in detail the obtained results.
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Figure 5.26: Detected curve from 0th to 100th percentile with comparison to full range

stress-relevant and no-stress-relevant curves.

Figure 5.27: Detected curve from 50th to 100th percentile with comparison to high

values range stress-relevant and no-stress-relevant curves.

In order to understand if a feature of driving style is relevant for stress

detection or not we need to compare the curve obtained with percentiles

with two different curves. One curve is defined as stress-relevant at high

values and starts from 1.0 at the 100th percentile and decreases to 0.5 at

50th percentile, while the curve no-stress-relevant is a flat line at 0.5. For

low values the stress-relevant curve starts from 1.0 at the 0th percentile and

decreases to 0.5 at 50th percentile, while the curve no-stress-relevant is the

same as before and is flat at 0.5 for all percentiles. We need, by RMSE,

if our detected curve is nearer to stress-relevant or no stress-relevant curve.

In Figure 5.26 we can see the curve of Figure 5.25 compared to theoretical

stress-relevant and no-stress-relevant curves. In Figure 5.27 we can see the

part for only high values from 50th to 100th percentile, the comparison

has been obtained with RMSE and we can see how the detected curve is

much near to stress-relevant, as its RMSE is almost 10 times smaller than
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RMSE with no-stress-relevant. A good ratio must be at least of 2 in order

to have a good confidence that the curve is much closer to stress relevant

than no-stress relevant. This procedure must be applied for all acquisitions,

an average with its CI must be done over multiple acquisitions in order to

obtain a more significant result. With the increase of number of acquisitions

the algorithm detects false positives decreasing their probability.
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Chapter 6

Results

In this chapter we are going to see the experimental setup with its protocol,

the acquisition of the driving we have obtained and listing all results, in term

of correlation between driving style’s feature and physiological indexes.

6.1 Experimental setup

The protocol of the experiment has been defined by Matteucci and Gabrielli[63].

Inclusion criterion for participants are:

• Age: 18+

• Holding valid driving licence B

• Phd students or professors of Politecnico di Milano

Participants must wear following sensors already described in Chapter 3:

• Pupil eye tracker;

• Physiological sensors of Procomp Infiniti.

The protocol includes some operations that must be done outside and in-

side of the vehicle. The experimenter follows the participant in every step.

Operations carried out outside of the vehicle are the following:

• A short questionnaire pre-driving is proposed to participant, the ques-

tionnaire can be seen in Appendix D;

• In order to decrease interference with Procomp Infiniti, the participant

is asked to remove any electronic device;



• Some electrodes are attached to participants chest and shoulder for

reading of Elecrocardiogram and Skin Conductance physiological in-

dexes;

• The participant are asked to wear glasses for eye tracking. Eye tracker

needs a short calibration that consists in looking at a specific marker

moving the head while staying sit

Once these operations have been performed the participant takes place as

driver in the car, Procomp Infiniti sensors are attached and some test is

performed to check functioning of every sensor. Experimenter asks to par-

ticipant not to talk from this point on, if not strictly necessary, in order

not to distort physiological indexes as talking changes breathing and conse-

quently the heart rate. Operations carried out inside of the vehicle are the

following:

• The participant needs to relax with closed eyes for three minutes in

order to have a base ground level of stress;

• The participant manually drives for two rounds of a pre-defined route;

• A short questionnaire is asked to the participant to describe the man-

ual drive;

• The participant needs again to relax with closed eyes for three minutes;

• The participant automatically drives for two rounds of the same pre-

defined route;

• Another short questionnaire is asked to the participant to describe the

autonomous drive;

• The sensors are dis-attached from the participant, and the participant

takes place as passenger and sensors are re-attached to the car system.

The experimenter performs again test to check functionality of the

sensors;

• The participant needs again to relax with closed eyes for three minutes;

• The participant assists to a manual drive on the same pre-defined route

as a passenger;

• The participant has to answer to a final questionnaire about driving

experience.

Once all these operations are performed the experimenter removes every

sensor and ask to participant to remove electrodes.
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6.2 Acquisition

The acquisition we are considering for the results is the acquisition on 13th

December 2018. The participant of the experiment was Alessandro Gabrielli.

The acquisition started at 15:37:12 and ended at 15:54:32 with a length of

17 minutes and 20 seconds. Collected data comprehends:

• Axis Cameras;

• Velodyne and its IMU;

• Xsens IMU;

• Prosilica Camera;

• ECG;

• SC;

• Pupil Diameter.

Pupil Diameter information has been discarded because, as shown in Mat-

teucci, Gabrielli and Sesto work[48] in a open world the measurement is

too noisy due to continues change of environmental light, the balancing of

external light did not succeed in increasing quality of data.

Environmental indexes extracted from data are:

• Angular velocity on XYZ axes from Xsens IMU;

• Linear acceleration on XYZ axes from Xsens IMU;

• Linear velocity on XY axes from Velodyne IMU;

• Speed from Velodyne IMU;

• Jerk on XYZ axes from Xsens IMU;

• Timeheadway to nearest object detected in front position divided in

categories from Velodyne.

Physiological indexes extracted from data are:

• LF from ECG;

• HF from ECG;

• LFHF from ECG;
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• HRV from ECG;

• TC from SC;

• PC from SC.

In order to test all Environmental indexes with different Physiological

indexes we need to understand which of Physiological indexes are more reli-

able. In order to do so we consider the main Environmental index that has

always been considered as stress-relevant feature, such as Jerk on X axe, in

Chapter 2. Considering that this feature is stress-relevant we test Physiolog-

ical indexes using different time characteristics of duration, latency and shift

and compare results with state of art as seen in Chapter 2. A good indicator

of correlation is a ratio between RMSE no-stress relevant and RMSE stress

relevant:

• Ratio above 2 means strong correlation as the curve is clearly better

approximated to the stress relevant curve;

• Ratio between 1 and 2 means weak correlation as the curve does not

approximate clearly enough to the stress relevant curve;

• Ratio below 1 means no correlation as the curve approximates better

the no-stress relevant curve.

6.3 Time Characteristics Analysis

We now see in detail results obtained from each Physiological index when

considering correlation with Jerk on X axe. We first test different durations

in order to see if there is a value of duration that obtains a RMSE ratio

equal or greater to 2 with values between 1s and 20s, then we test latencies

with values between 0s and 10s and finally we test shifts with values from

-5s and 5 s in order to obtain the best time characteristics for every single

Physiological index.

6.3.1 Low Frequency

We have a peak at 4s of duration but below 1 of ratio, which means that

LF has results closer to no-stress relevant to stress-relevant, after 10s of

duration the ratio seems to converge at 0.645. Considering that no value of

duration gives a results above 2 it means that we cannot use LF as a index

to find stress relevant environmental indexes. This is in line with State of

Art as in Chapter 2 as LF is connected to PNS activity to decrease stress
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Figure 6.1: RMSE no-stress relevant/stress relevant from LF with different durations

Figure 6.2: RMSE no-stress relevant/stress relevant from HF with different durations

and its behaviour is not linear. Durations of increase in short-term stress

for LF in literature are above 10s, but in our study for this acquisition we

did not find any increase in correlation from 10s to 20s. We could find more

information in HF or LFHF.

6.3.2 High Frequency

For HF we have two peaks at 2s and 10s but both below 1 of ratio. From

duration of 15s the curve seems to converge to a value of ratio of 0.65. Also

for HF we do not have any value of ratio above 2, which makes also this

Physiological index useless in order to find a correlation. In Chapter 2 we

have found that HF is correlated to SNS activity and indicates the increase

of stress, but still we have not found prove in our acquisition.
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Figure 6.3: RMSE no-stress relevant/stress relevant from LFHF with different durations

Figure 6.4: RMSE no-stress relevant/stress relevant from HRV with different durations

6.3.3 Low Frequency High Frequency Ratio

For LFHF we have a peak at 4s but below 1 of ratio. From duration of 10s

the curve tends to increase slowly but stays steady below 1. We cannot find

useful correlation for LFHF index. In Chapter 2 we have seen as LFHF has

a non linear behaviour, future acquisitions might be able to detect useful

time characteristics to obtain a useful correlation.

6.3.4 HRV

For HRV we have a peak at 10s with value of ratio above 2. Before and

after this the ratio decreases with values under of 1. We consider 10s as the

duration for HRV. As we have seen in Chapter 2 the duration for ECG are

longer comparing to duration for SC so we expect duration of TC or PC to

be shorter. We need now to extract the best value for latencies. In Figure

6.5 we can see how we have a peak at value of latency of 2s and a continuous

decrease after this value, so we consider a value of 2s for HRV latency. Last
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Figure 6.5: RMSE no-stress relevant/stress relevant from HRV with different latencies

Figure 6.6: RMSE no-stress relevant/stress relevant from HRV with different shifts

time characteristic left is shift. In Figure 6.6 we can see how values between

0s and 3s have a ratio around 2, but the best results is obtained with a ratio

of 1s.

For HRV we consider as time characteristics:

• Duration: 10s;

• Latency: 2s;

• Shift: 1s.

The sum between latency and shift is of 3s, which is plausible time for

activation of SNS and reaction of PNS. The duration can be very variable,

depending on situation and on user, but 10s is a plausible time. These

values could certainly change when considering different users and must

be re-calculated for each user. Considering same user small changes might

happen between different acquisitions.
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Figure 6.7: RMSE no-stress relevant/stress relevant from TC with different durations

Figure 6.8: RMSE no-stress relevant/stress relevant from PC with different durations

6.3.5 Tonic Component

For TC of SC we have 3 peeks, at 2s, 5s and 10s but none of them are above

2, with maximum at 2s with a ratio of 1.6 which is not enough to distinguish

between no-stress relevant and stress relevant. We cannot consider TC, in

Chapter 2 we have seen how PC should hold more information than TC.

6.3.6 Phasic Component

In contrast to TC the curve of PC has a single peek at 5s with a ratio above

3, which indicates a strong difference between no-stress relevant and stress

relevant.

In Figure 6.9 we can see a peek at value of latency equal to 3s and a

constant decrease after this value. We consider then latency with a value of

3s.

In Figure 6.10 we can see that on value of 0s we have a peek with ratio
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Figure 6.9: RMSE no-stress relevant/stress relevant from PC with different latencies

Figure 6.10: RMSE no-stress relevant/stress relevant from PC with different shifts

around 2, we consider this for PC which means that no shift has to be

inserted.

For PC we consider as time characteristics:

• Duration: 5s;

• Latency: 3s;

• Shift: 0s.

These time characteristics are plausible values with respect to what we have

seen in Chapter 2, as SC durations are shorter than ECG. PC has been

proven also in Matteucci, Sesto and Gabrielli[48] work as been the best

physiological index for stress detection.
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Jerk X 2.75

Jerk Y 1.70

Jerk Z 1.59

Speed 1.27

Timeheadway pedestrians —

Timeheadway cars 1.55

Angular velocity X 0.48

Angular velocity Y 1.47

Angular velocity Z 1.38

Linear acceleration X 1.64

Linear acceleration Y 0.54

Linear acceleration Z 1.63

Linear velocity X 2.88

Linear velocity Y 1.30

Table 6.1: Ratio of driving style’s features in correlation with PC index at high per-

centiles

6.4 Physiological Indexes Analysis

We now extract which feature of driving style has highest stress relevant

correlation with considered Physiological Indexes.

6.4.1 Phasic Component

Using time characteristics extracted in previous section we have obtained

ratio results for high percentiles shown in Table 6.1.

In Table 6.1 we can see how each feature performed in correlation with

PC for high percentiles, the only two feature that showed a ratio above 2 are

Jerk X and Linear velocity X. Timeheadway for pedestrians is not available

due to few events through acquisition. High value of Jerk X indicate sudden

increase in acceleration, this happened mostly when starting from stationary

vehicle. High linear velocity X indicates moment at highest speed, especially

on straight segments of road. With this results we can conclude that for PC

in this single acquisition these are the two feature that might have increased

stress in driver, with multiple acquisitions we can obtain a higher level of

confidence in this results. In Figure 6.11 and Figure 6.12 we can see curves

from 50th to 100th percentiles. In Table 6.2 we considered results for low

percentiles.

For low percentiles the unique feature with ratio above 2 is Angular ve-

locity Y, in Figure 6.13 we can see the curve from 0th to 50th percentiles.
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Figure 6.11: Jerk X RMSE no-stress relevant/stress relevant from PC at high percentiles

Figure 6.12: Linear velocity X RMSE no-stress relevant/stress relevant from PC at high

percentiles

Low angular velocity Y indicates negative values of angular velocity, in par-

ticular high values of angular velocity in direction of passenger, as happens

on curves. Considering that we do not have a strong correlation for high

value of angular velocity Y we can conclude that in this acquisition signal

of stress were detected only on negative values of angular velocity.

6.4.2 HRV

Using time characteristics extracted in previous section we have obtained

ratio results for high percentiles shown in Table 6.3.

Features with ratio greater than 2 are Jerk x and Linear velocity X for

percentiles from 50th and 100th. For high percentiles the stress relevant

features are the same obtained using PC.
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Jerk X 1.34

Jerk Y 1.72

Jerk Z 0.75

Speed 0.46

Timeheadway pedestrians —

Timeheadway cars 1.68

Angular velocity X 0.64

Angular velocity Y 2.73

Angular velocity Z 1.59

Linear acceleration X 1.03

Linear acceleration Y 0.67

Linear acceleration Z 1.71

Linear velocity X 1.71

Linear velocity Y 1.82

Table 6.2: Ratio of driving style’s features in correlation with PC index at low percentiles

Figure 6.13: Angular velocity Y RMSE no-stress relevant/stress relevant from PC at

low percentiles

In Figure 6.14 is shown the curve from 50th to 100th percentiles for Jerk

x. In Figure 6.15 the curve from 50th to 100th percentiles for Linear velocity

X. These features are the same detected with PC.

For low percentiles from 0th to 50th HRV considers Angular Velocity Y

as stress relevant similarly to PC but considers also Jerk Z as stress relevant,

while using PC index the ration was very low, this could be a false positive,

with the increase of the number of acquisitions such false positives could be

detected and not considered.

The results presented are from an unique acquisition, this might intro-
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Jerk X 2.35

Jerk Y 1.50

Jerk Z 1.95

Speed 1.09

Timeheadway pedestrians —

Timeheadway cars 1.62

Angular velocity X 0.91

Angular velocity Y 0.48

Angular velocity Z 0.40

Linear acceleration X 0.45

Linear acceleration Y 0.54

Linear acceleration Z 0.35

Linear velocity X 2.47

Linear velocity Y 1.51

Table 6.3: Ratio of driving style’s features in correlation with HRV index at high

percentiles

Figure 6.14: Jerk X RMSE no-stress relevant/stress relevant from HRV at low per-

centiles

duce some errors due to some event not considered that could have happened

in the same moment as the feature’s events considered. Considering more

acquisitions would decrease the number of false positives due to external

not considered events. False negatives are more rare but depend on each

user, as same values of the feature (acceleration, speed, time-headway, etc...)

could cause stress on a particular acquisition and not on another. Also for

false negatives a higher number of acquisitions could decrease them. The

curves would obtain a CI for each percentile giving more information of
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Figure 6.15: Linear velocity X RMSE no-stress relevant/stress relevant from HRV at

low percentiles

Jerk X 1.57

Jerk Y 1.44

Jerk Z 2.36

Speed 0.83

Timeheadway pedestrians —

Timeheadway cars 1.12

Angular velocity X 0.57

Angular velocity Y 2.16

Angular velocity Z 0.42

Linear acceleration X 1.16

Linear acceleration Y 1.84

Linear acceleration Z 0.58

Linear velocity X 1.56

Linear velocity Y 1.59

Table 6.4: Ratio of driving style’s features in correlation with HRV index at low per-

centiles

stress relevant features.

6.5 Conclusions

The software has been developed to be as flexible as possible, new driving

style’s features and physiological indexes can be inserted or present indexes

can be removed or not considered without any change in code. The software

allows the user to choose freely value of duration, latency and shift, having
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Figure 6.16: Jerk Z RMSE no-stress relevant/stress relevant from HRV at low per-

centiles

Figure 6.17: Angular velocity Y RMSE no-stress relevant/stress relevant from HRV at

low percentiles

possibility to choose the same values as found in State of Art or, as has been

done for our results, choose the best result by checking for correlation ratio

and comparing it with State of Art.

Best results are obtained with the increase in number of acquisitions,

the model tends to converge to the real value of correlation for each feature

and can show how the correlation increases or decreases with the change

in driving style. For our single acquisition we have found that just two

Physiological Indexes have proven to have correlation and they are HRV

extracted from ECG and PC extracted from SC, which, as we have seen in

Chapter 2, were the most promising, while LFHF and HF did not obtain

sufficient correlation ratio to be considered. Feature with most correlation

were Jerk x and Linear velocity X for high percentiles, which brings in
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the case of Jerk x to abrupt accelerations and Linear velocity x to high

velocity but only on X axe, as speed that considers also Y axis did not

obtain a sufficient correlation ratio. Angular velocity Y and Jerk z obtained

a sufficient correlation ratio for low percentiles, while Angular velocity Y is

due to velocity on curves and low percentiles does not mean 0 but negative

(positive is on direction of passenger while negative on direction of driver),

Jerk z compares only in PC and not in HRV which means that it could be a

false positive, as the meaning of Jerk z is an abrupt change in deceleration

on Z axe, perpendicular to floor, could be due to some difference in height

of the floor or as mentioned a false positive. New acquisitions could answer

these questions.

Each user could have different time characteristics for different Physio-

logical Indexes and could also change in time, when getting more comfortable

with autonomous driving. A constant study for each user with multiple ac-

quisitions could lead to detection of Concept Drifts and detect in this way

a decrease or increase level of stress in general. The goal is that no feature

is stress relevant but flattens to no-stress relevant curve because this would

mean that no driving style’s feature cause stress in driver.
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Chapter 7

Conclusions and future works

The goal of this work was to search for a correlation between environmental

and vehicle’s data from car sensors and level of stress for the driver obtained

from physiological sensors. The approach of this work is different from

previous approaches and concentrates on analysis of physiological indexes of

the driver.

The developed software is able to detect the probability of correlation

between the time-serie of a set of Physiological indexes and the event se-

quences extracted from Vehicle and Environmental’s data, this correlation

indicates an increase in level of the stress for the driver. Through many

acquisitions is possible to detect, with higher confidence, the driving style’s

features that cause stress for the driver and consequently change the driving

style of the autonomous car in order make more comfortable the driver, and

through this increase trust of user in the autonomous car. The obtained

driving style does not consider user’s personal driving style, as this has been

proven not to be conclusive by previous works, but considers only the stress

extracted from physiological sensors. Between all Physiological indexes con-

sidered the ones that obtained higher correlation were Heart Rate Variability

and Phasic Component of Skin Conductance, results obtained between the

two indexes are much similar and this could prove that the analysis correctly

detects stress for the driver. These results must be confirmed with many

more acquisitions.

One of the characteristic of the developed software was to be modular,

in order to be able to insert and remove sensors. This modularity has been

obtained in both hardware and software part. Other characteristic is the

ability to detect different behaviours for different users, this change is ob-

tainable by extraction of different time characteristic for each user. The

system can analyze acquisitions in order to obtain best time characteristic



for each Physiological index, and these time characteristic could differ from

user to user.

7.1 Future works

Main future developments comprehend the use of a fully-autonomous car in

order to delete eventual biases caused by the use of a not AC. Increasing the

number of acquisitions could confirm the found correlations, new correlations

could be found. Once correlation are confirmed the driving style of the AC

could be modified in order to decrease the stress relevant driving style’s

feature, checking for correlation after this change in driving style it will

be possible to check if correlation has changed transforming stress relevant

feature into a no-stress relevant feature.

The work could be carried on introducing new driving style’s feature and

driving style’s event such as driving conditions or obstacles, such as differ-

ent road signs. Another step would be to change the urban environment to

extra-urban, such as high roads, to introduce some other driving style’s fea-

ture, such as change of line, and also in these environment the speed could

obtain a different level of correlation from urban speeds’ correlation. Anal-

ysis could be done online, especially for long acquisitions, in order to detect

on the air stressful driving style’s features and modifying them through the

acquisition.
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Appendix A

Software installation

Below a list of requirements and third-party Python modules.

A.1 Requirements

Following requirements have to be satisfied:

• Ubuntu Linux operating system version 16.04 LTS or above;

• ROS framework Kinetic version;

• Python 2.7 version or above (compatible with ROS version).

A.2 Python modules

Below a list of non-standard Python modules that need to be installed using

command

pip install [Python module]

• Pymongo for MongoDB elaborations;

• Pandas for DataFrame elaborations;

• Numpy that comes with useful array methods;

• Matplotlib for Matlab®-like plot methods;

• Sklearn used for NNSBM algorithm;

• Statsmodels used for ARMA algorithm;

• Scipy used for data filtering and PCC.
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A.3 Download scripts

All scripts are stored online on bitbucket repository and can be downloaded

after registration and login with command:

git clone

https://username@bitbucket.org/airlab-polimi/idrive_ros.git

Scripts of these thesis can be found at:

idrive ros > script > correlation

Bash script can be found at:

idrive ros > script

A.4 MongoDB

In order to correctly install MongoDB the following steps must be followed:

• Download MongoDB community edition following instructions on:

https://docs.mongodb.com/manual/tutorial/install-mongodb-

enterprise-on-ubuntu/;

• Create folder with MongoDB permission by using command

sudo chown -r mongodb:mongodb [folder path]

• Modify /etc/mongodb.conf by opening it with root privilege and

change dbpath with path of created folder;

• Restart MongoDB with command

sudo service mongodb restart

A.5 ROS

To install ROS Kinetic version useful instructions can be found at:

http://wiki.ros.org/kinetic/Installation/Ubuntu

https://username@bitbucket.org/airlab-polimi/idrive_ros.git
https://docs.mongodb.com/manual/tutorial/install-mongodb-enterprise-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-enterprise-on-ubuntu/
http://wiki.ros.org/kinetic/Installation/Ubuntu


Appendix B

Programming documentation

Below we will describe in detail the code used for each algorithm used for

correlation.

B.1 PCC

For PCC we have used Python module scipy.stats.pearsonr(x,y) which given

two arrays x and y it calculates the correlation using Equation 5.5. Result

are the correlation coefficient at position [0] which is -1 if perfect inverse

correlation is found, +1 if linear correlation and p-value at position [1].

Due to the fact that the others algorithms have a greater value when no

correlation is found we needed to change the output of scipy.stats.pearsonr

to have a result that is comparable to the others algorithms. The considered

output will be

1−s c ipy . s t a t s . pearsonr (x , y ) [ 0 ]

Applying this formula the correlation coefficient is ranged between 0 perfect

correlation and 2 perfect inverse correlation.

B.2 ET

For ET we have applied Equation 5.10 merging in one for cycle first two

sums.

def e n e r g y t e s t (x , y ) :

a = 0

b = 0

for i in x :

a += sum(abs ( i−y ) )
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b += sum(abs ( i−x ) )

c = 0

for l in y :

c += sum(abs ( l−x ) )

abc = 2/( len ( x )∗ len ( y ) )∗ a−b/( len ( x)∗∗2)−
c /( len ( y )∗∗2)

return abc ∗( len ( x )∗ len ( y )/ ( len ( x)+len ( y ) ) )

B.3 ARMA

For ARMA we have used Python module’s statsmodels.tsa.arima model

method arma and module’s sklearn.metrics method mean squared error and

parameter from params to choose if down-sample the TS using a moving av-

erage (a value equal to length of population indicates no down-sample).

def arma (x , y , p , q ) :

x avg = np . mean( x . reshape (−1 ,

int ( len ( x )/ params . s p l i t s a r m a ) ) ,

a x i s =1)

f o r e c a s t = [ ]

for i in range ( params . s p l i t s a r m a ) :

model = ARMA( x avg ,

order=(p , q ) )

m o d e l f i t = model . f i t ( d i sp =0,

transparams=False ,

trend=’ nc ’ ,

s o l v e r=’nm ’ )

output = m o d e l f i t . f o r e c a s t ( )

f o r e c a s t . append ( output [ 0 ] )

x avg=np . append ( x avg [ 1 : ] ,

output [ 0 ] )

out = i n t e r p o l a t i o n . zoom( f o r e c a s t ,

zoom=len ( y )/ len ( f o r e c a s t ) )

return mean squared error ( out , y )
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B.4 NNSBM

For NNSBM we have used Python module’s sklearn.metrics method pair-

wise distances that outputs a matrix with all pair distances between points

of array x and y.

def nnsbm(x , y , k t o t ) :

x=x . reshape (−1 ,1)

y=y . reshape (−1 ,1)

y = y−np . mean( y)+np . mean( x )

same = 0

t o t a l = 0

r f = sk l e a rn . met r i c s . p a i r w i s e d i s t a n c e s (x , y )

f f = s k l e a r n . met r i c s . p a i r w i s e d i s t a n c e s (x , x )

for k in range (1 , k t o t +1):

for p in range ( len ( r f ) ) :

i f (p−k>0 and p+k+1<len ( x ) ) :

a = np . s o r t ( r f [ p ] [

p−k : p+k ] )

b = np . s o r t ( f f [ p ] [

p−k : p+k+1])

e l i f (p−2∗k<0):

a = np . s o r t ( r f [ p ] [

: p+k−1])

b = np . s o r t ( f f [ p ] [

: p+k ] )

else :

a = np . s o r t ( r f [ p ] [

p−k : ] )

b = np . s o r t ( f f [ p ] [

p−k−1 : ] )

r e s = np . s o r t (

np . append ( a , b ) )

i f ( r e s [ k ] in b and

not r e s [ k ] in a ) :

same+=1

t o t a l+=1

return same/ t o t a l
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Manual

In this section we will describe in detail every script used to obtain final

results with correlation probabilities. The pipeline, as showed in Figure

4.5, can be resumed in case of errors without loss of information and it

allows to start after data preparation and from correlation analysis in order

to change parameters of analysis. The pipeline is handled by bash script

data extraction for correlation.sh.

For each script we will describe:

• Functionality: implemented function;

• Required input: list of input to be passed;

• Parameters: list of parameters, both optional and mandatory;

• Output: shape and meaning of output.

C.1 Params.py

This file contains all parameters used for all the scripts, it must be imported

in all scripts. We will see a list of all parameters:

• resample frequency: chosen frequency of down-sample defined in date-

time.timedelta expression (for our work the frequency was 100Hz so it

has been defined as 10ms);

• percentage drop: minimum percentage of data in MongoDB collections

in order not to drop the collection, if percentage is below the collection

will be dropped as it does not contain enough information (for our work

it is 0.10, if no drop is wanted it is enough to give 0 to this parameter);
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• collections to extract: list of collections to extract from MongoDB,

when a new data is inserted or one present has to be removed this

parameter has to be updated;

• velodyne threshold: minimum score of identified objects, below this

value the object is not considered (for our work this value is 0.6 as we

have seen in Chapter 5;

• velodyne max distance: maximum distance of identified objects, above

this distance the object is not considered (for our work this value is

20m);

• alfa: α value for p-value to detect if Rear sub-sequence is greater or

less than Front sub-sequence (for our work is 1.97);

• percentile step: step of increasing or decreasing of considered per-

centile when extracting the ES (for our work is 1th);

• n min: minimum number of iterations when calculating correlation

thresholds (for our work is 100, higher than the standard 30 in order

to obtain a thinner CI);

• n max: maximum number of iterations when calculating correlation

thresholds (for our work is 5000);

• percentage max iterations: maximum percentage of iterations when

calculating correlation thresholds over the whole acquisition, when the

first between n max and percentage max iterations is reached the cy-

cles stops (for our work is 0.05);

• features: list of features to be considered for correlation, this list is

used for extraction correlation.py and can be modified after the data

preparation has been executed and DataFrame obtained, in this way

different correlation analysis can be executed (for our work this list

has been changing with different correlation analysis from all features

to a single feature);

• time series: as above but with respect to Physiological indexes (for

our work this list has been changing following the same reasoning of

features);

• k NNSBM: value of k (k tot in the code listed in Appendix B for

NNSBM (for our work we have used k=4 as we have seen in Chapter

5;
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• p arma: value of p for ARMA (for our work we have used p=4 as we

have seen in Chapter 5;

• q arma: as above but for q value (for our work we have used q=2);

• splits arma: moving average of n points in order to consider more of

the sub-sequence as we have seen in Appendix B (for our work we have

used 25);

• durations: list of used durations for correlation analysis, this value can

change when changing correlation analysis (for our work we have first

tried different durations and once obtained the best duration in term

of ratio no-stress relevant / stress relevant we did our analysis with

this duration that changes using different Physiological indexes);

• shifts: list of used shifts for correlation analysis, as above;

• latencies: list of used latencies for correlation analysis, as above;

• percentiles: list of used percenetiles for correlation anal-

ysis from 0th to 100th (for our work we have used per-

centiles of [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45] and

[55, 60, 65, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99].

C.2 Extract mongo collections.py

This is the first script that has to be executed, it extracts data from Mon-

goDB collections. It loads collections defined in params.py, they are all saved

in same way in MondoDB except collection vel that needed an implementa-

tion on its own. The collections will be then saved to a DataFrame.

Input

The script needs the acquisition to be present on MongoDB and MongoDB

to be active. If requested a timestamp correction is performed using file

info.player.json.

Parameters

• –output: Destination folder in which to save output files;

• –timestamp: Input folder of info.player.json used for timestamp cor-

rection, if no input folder is given or the file is not present or unreadable
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the timestamp correction will not be performed, an error message will

be displayed but the extraction will not stop;

• -p: option to plot results, if present the script will save plot results to

output folder;

• –csv: option to save csv, if present the script will save CSV of results

to output folder, this can be useful in case of errors and to increase

modularity as the pipeline can be restored from error point using saved

CSV.

Output

The script will output a DataFrame with data from MongoDB collections.

C.3 Extract velodyne.py

This script will extract Velodyne information, it needs the file *.json ex-

tracted using velodyne extraction.py as input.

Input

The script needs the full path of file *.json with identified objects from

SECOND.

Parameters

• –input: Full path of *.json file;

• –output: Destination folder for output files;

• –timestamp: Input folder of info.player.json, see previous subsection

for details;

• -p: if present the script will save plots in output folder;

• –csv: if present the script will save csv in output folder, see previous

subsection for details.

Output

The script will output two DataFrames, one with number of identified ob-

jects for each frame and one with minimum distance of identified objects for

each frame.
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C.4 Extraction features.py

This is the main script for data preparations, the script will merge in-

formation from extraction mongo collection.py, extraction velodyne.py and

Matlab® scripts. The script will perform down-sampling, filtering, drop

of collections with too few information and extract features from mongo

collections such as Timeheadway, Jerk and Speed.

Input

The script needs all DataFrames from previous scripts, Matlab® scripts will

automatically save them to DataFrames, while Python scripts will return

DataFrame as output and saving them only if parameter –csv has been

given. This script automatically saves the CSV as result because it can be

used for different correlation analysis without executing the data preparation

from 0.

Parameters

• –input: Input folder in which Matlab® scripts have saved CSV;

• –output: Output folder in which to save CSV and eventual plots;

• –timestamp: Input folder of info.player.json file;

• -p: if present the script will save plots in output folder.

Output

The script output is a DataFrame that contains all information extracted

from previous scripts and of feature extracted. The output is automatically

saved in a CSV because it might be used multiple times for correlation

analysis.

C.5 Correlation extraction.py

This is the main script for correlation analysis, it contains the algorithms

explained in Chapter 5 which code has been presented in Appendix B, the

algorithm to extract ES and all iterations to extract correlation thresholds,

actual number of increasing and decreasing events and output the correlation

probabilities.
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Input

The script needs the DataFrame extracted from Extraction features.py.

Parameters

• –input: Input folder containing DataFrame extracted from extrac-

tion features.py ;

• –output: Output folder to save CSV and eventual plots;

• -p: if present the script will save plots in output folder;

• –alg: chosen algorithm for correlation analysis between

PCC,ET,NNSBM and ARMA;

• -f : if present the script will try to find CSV files of correlation thresh-

olds and increasing, decreasing percentage thresholds, if not present

the script will always recalculate them. This is useful in case of er-

rors since calculating correlation thresholds and increasing, decreasing

percentages can be computationally demanding and take up to hours

depending on the length of acquisition.

Output

The script will output a DataFrame with all probabilities for every time

charateristic, percentile, features and TS.
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Questionnaire

These are the pre and post driving questionnaires proposed to participant

of the experiment as defined in the protocol[63] with goal to understand if

there has been any change in driver’s mood.

Pre-Driving Questionnaire

1. What is your gender?

• Male

• Female

• Other

• Prefer not to say

2. How old are you? ............

3. Do you own a driving license?

• Yes

• No

4. How long have you had your driving license?

• Less than 5 months

• From 5 months to 1 year

• From 1 year to 2 years

• From 2 years to 5 years

• For more than 5 years

5. Do you or your family own a car?



112 Appendix D. Questionnaire

• Yes

• No

6. How often do you drive a car?

• Never in last 3 months

• Twice a month

• Once a week

• Twice or three times a week

• Everyday

7. The following questions relate to your experience as a driver in an

everyday driving scenario. Please circle the appropriate number - there

are no right or wrong answers.

• I feel unsafe at high speeds:

Not at all / Somewhat / Moderately / Very much

• I get uncomfortable with heavier congestion:

Not at all / Somewhat / Moderately / Very much

• Getting close to other vehicles make me feel uncomfortable:

Not at all / Somewhat / Moderately / Very much

8. The following questions relate to your experience as a passenger in

an everyday driving scenario. Please circle the appropriate number -

there are no right or wrong answers.

• I feel unsafe at high speeds:

Not at all / Somewhat / Moderately / Very much

• I get uncomfortable with heavier congestion:

Not at all / Somewhat / Moderately / Very much

• Getting close to other vehicles make me feel uncomfortable:

Not at all / Somewhat / Moderately / Very much

9. How do you consider your driving style?

• Very Defensive

• Defensive

• Aggressive

• Very Aggressive

10. Which is your favourite driving style as passenger?
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• Very Defensive

• Defensive

• Aggressive

• Very Aggressive

11. Have you ever ridden an autonomous vehicle?

• Yes

• No

12. On a scale from 1 to 10 ( being 1 Not Trusting and 10 being Fully

Trusting) please rate your overall trust in autonomous vehicles and

their safety:

1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10

Emotional State Analysis

SAM (Self-Assessment Manikin) Scale

Choose the figure that better describes your emotional state

1. Emotive state

From very distressed to very euphoric

2. Degree of agitation

From very calm to very agitated

3. Degree of self-control

From no control to full control of situation
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Post-Driving Questionnaire

1. How do you rate the experience of autonomous driving?

From 0 very negative to 5 very positive

0 / 1 / 2 / 3 / 4 / 5

2. Did you feel comfortable wearing physiological sensors?

From 0 very uncomfortable to 5 very comfortable

0 / 1 / 2 / 3 / 4 / 5

3. Would you like to repeat the autonomous driving?

From 0 absolutely no to 5 absolutely yes

0 / 1 / 2 / 3 / 4 / 5

Please read each statement and circle the appropriate number to indicate

how you felt during the drive about various situations and driving charac-

teristics. There are no right or wrong answers. Do not spend too much time

on any one statement.

1. Vehicle speed?

Very Uncomfortable / Uncomfortable / Comfortable / Very Comfort-

able

2. Vehicle acceleration?

Very Uncomfortable / Uncomfortable / Comfortable / Very Comfort-

able

3. Vehicle jerk?

Very Uncomfortable / Uncomfortable / Comfortable / Very Comfort-

able

4. Vehicle speed on turns?

Very Uncomfortable / Uncomfortable / Comfortable / Very Comfort-

able

5. Vehicle braking?

Very Uncomfortable / Uncomfortable / Comfortable / Very Comfort-

able

6. Distances from other vehicles?

Very Uncomfortable / Uncomfortable / Comfortable / Very Comfort-

able

7. Distances from pedestrians?

Very Uncomfortable / Uncomfortable / Comfortable / Very Comfort-

able
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Please read each statement and circle the appropriate number to indicate

how you felt during the drive. There are no right or wrong answers. Do not

spend too much time on any one statement.

1. I felt nervous

Not at all / Somewhat / Moderately / Very Much

2. I felt jittery

Not at all / Somewhat / Moderately / Very Much

3. My body felt tense

Not at all / Somewhat / Moderately / Very Much

4. I felt tense in my stomach

Not at all / Somewhat / Moderately / Very Much

5. My body felt relaxed

Not at all / Somewhat / Moderately / Very Much

6. My heart rate was racing

Not at all / Somewhat / Moderately / Very Much

7. I felt my stomach sinking

Not at all / Somewhat / Moderately / Very Much

8. My hands were clammy

Not at all / Somewhat / Moderately / Very Much

9. My body felt tight

Not at all / Somewhat / Moderately / Very Much

Emotional State Analysis

SAM (Self-Assessment Manikin) Scale

Choose the figure that better describes your emotional state

1. Emotive state

From very distressed to very euphoric
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2. Degree of agitation

From very calm to very agitated

3. Degree of self-control

From no control to full control of situation
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