




‘We choose to go to the moon in this decade and do the other things, not

because they are easy, but because they are hard, because that goal will serve to

organize and measure the best of our energies and skills, because that challenge

is one that we are willing to accept, one we are unwilling to postpone, and one

which we intend to win, and the others, too...Many years ago the great British

explorer George Mallory, who was to die on Mount Everest, was asked why did

he want to climb it. He said, Because it is there. Well, space is there, and we

are going to climb it, and the moon and the planets are there, and new hopes

for knowledge and peace are there. And, therefore, as we set sail we ask God’s

blessing on the most hazardous and dangerous and greatest adventure on which

man has ever embarked.’

J.F.Kennedy, May 25, 1961
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Chapter 1

Introduction

The term model is used in several senses indicating an essential scheme of physical

phenomena. It can be seen as tool to simulate these phenomena [51].

In space applications, but also in many other technological fields, there is a huge

use of models. This aspect is related to the impossibility to work on prototypes

or from an economic point of view their development is always less expensive

[51]. These simulation models can be used to design the control strategy and

also to simulate it before the implementation on the real system. Regarding the

relationship between a model and theory, it can be observed that often models are

considered the first stage of an investigation in order to have depth knowledge

of a wide range of phenomena and mechanisms before the experimental step.

The formulation of a mathematical model follows an interpretation of the real

phenomena. The model is a translation of these aspects into mathematical and

physical variables. This work focus its attention on the mathematical modeling

and optimal control of tumor growth, its interaction with the immune system

and the therapeutic treatment. This simulations can be viewed as potentially

powerful tools in the development of a therapy [36].

1.1 Cancer Immunotherapy

Cancer is one of the five leading causes of death in all age groups among both

males and females. Cancer is the leading cause of death among women aged 40

to 79 years and among men aged 60 to 79 years. Cancer is the leading cause of

death among men and women under age 85 years1.

Patients with metastatic melanoma or renal cancer cell have a life expectancy

of less than five years in 95% of the cases [42]. No effective chemotherapies are

available for regression of the tumor as for prolonging survival.

1Source: US Mortality Data, 2005, National Center for Health Statistics, Centers for Disease
Control and Prevention, 2008.
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Tumors despite the general mechanism of origin is unique, they may experience a

very wide range of changes and symptoms. In all, however, there is a continuous

increase in the number of cancer cells, due to the increased rate of cell division.

In this way a greater number of tumor cells multiply and fewer of them die,

while those who survive are increasing. Usually the growth of a tumor follows a

geometric law: it is very slow at first, but accelerates with increasing mass of the

tumor. The critical size of a tumor is about 1 cubic centimeter: the tumor reached

such a dimension starts to grow very quickly and lead to the early symptoms,

and becomes detectable by medical examinations and analyses [36, 38, 42].

Figure 1.1: Mortality rates of patients with metastatic melanoma, UK (source

cancer research institute UK)

The number of melanoma cases worldwide is increasing faster than any other can-

cer and remains one of the most treatment-refractory cancers. Despite decades

of clinical trials testing chemotherapy, a standard first line treatment has not

yet been established. The disappointing results with single and multiple agent

chemotherapy led to the evaluation of alternative treatments. The relationship

between melanoma and the immune system has been recognized for decades

[6, 37]. Case reports of spontaneous tumor regression in patients with metastatic

melanoma have suggested that immunotherapy can influence the regression of

the tumor growth [37]. There are still many unanswered questions about the

mechanisms that regulate the interaction between these two populations. In par-

ticular one of the main difficulties is determine which components of the immune

system play significant roles. The development of models that will describe in

a detailed way the phenomenon will lead to a better understand of the different

interactions and the governing mechanisms. The next step is the definition of

therapy protocol that will be able to defeat the tumor in a permanent way. The

numerical simulation aims to be a valid tool that will be able to provide guidance
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on the direction to follow in clinical trials [36]. As a matter of fact, especially

in the medical field, testing must follow strict rules and results of simulations

can be taken to justify the clinical researches. However, on the one hand, the

theoretical predictions made with the numerical simulation must be validated ex-

perimentally, on the other side testing it is necessary in order to obtain reasonable

estimates of the parameters considered in the model.

1.2 Optimal Control

The theory and framework of optimal control, often referred also as dynamic

optimization, allows analysis of problems, in which a dynamic system is to be

controlled in an optimal manner according to some performance index. The dy-

namics describes the evolution of the system’s state and how the controls affect it.

The performance index is a functional of the state and the control and gives the

cost to be minimized or utility to be maximized. The history of optimal control

reaches back to the Brachistocrone problem [8, 18], proposed by John Bernoulli

in the 17th century, and calculus of variations, from which optimal control theory

is developed [17]. Calculus of variations leads to the Euler-Lagrange equations,

which are first order necessary conditions of optimality for a function to minimize

or maximize a functional. In problems for which the dynamics evolves in discrete

steps, the name dynamic programming problem is often used. The term also

refers to the solution method developed by Bellman [4]. The method is based

on the principle of optimality, which states that ’On an optimal path each con-

trol is optimal for the state at which it is executed, regardless of how that state

was arrived at’, and is valid for continuous as well as for discrete time problems.

The dynamic programming method, when extended to continuous time problems,

leads to the Hamilton-Jacobi-Bellman equation [4] [12], which is a partial differ-

ential equation defining the optimal cost to go function, i.e., performance index

value from current time to the end, on the optimal trajectory.

For continuous time optimal control problems the necessary conditions of opti-

mality are provided by the Pontryagin maximum principle [35], which relates the

optimality of the control to minimizing or maximizing the Hamiltonian function

of the problem at each time instant by the control value subject to control con-

straints. These necessary conditions define a two point boundary value problem

for the dynamics of the system and the adjoint states also known as co-states. An-

alytical as well as indirect numerical methods of solving optimal control problems

are based on the maximum principle [9].

The solution of an optimal control problem can be found either by solving the

boundary value problem formulated by the optimality conditions of the maximum

principle, by application of dynamic programming or direct optimization of the
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objective functional. For example, if the dynamics of a discrete time problem with

finite number of time steps is given in state space form, the problem can easily be

written as a parameter optimization problem with the state transition equations

as constraints, or the dynamics can be inserted into the objective function, so

that only controls are to be chosen. For a continuous time problem the solu-

tion can be found in a approximative way by representing the state and control

functions by a finite number of parameters, and thus transcribing the problem

into a parameter optimization problem, (see [24]). Finding a solution in closed

form for an optimal control problem, by any method, is usually possible only for

very simple problems [9]. Also, the solution is often available only in the form of

open loop control, i.e., the solution applies only to a given initial state instead

of being in feedback form in which the control is related to the current state. A

special situation is if the dynamics is linear, the objective functional is quadratic,

and there are no constraints, except for fixed initial state. Then, a closed loop

formulation of the control is available, it is a linear function of the state, and

the problem and solution are referred to as linear quadratic (LQ) problem and

control [9]. Dynamic programming provides the solution in feedback form but

is in practice limited by the size of the problem [4]. The term curse of dimen-

sionality refers to the fact that the computational and memory requirements of

using dynamic programming increase exponentially with the size of the problem.

An approximate method to generate a feedback formulation is by receding hori-

zon approach, where the problem is re-solved at each (discrete) control instant

and only the part of the solution before the next control instant is used. The

principle of optimality still holds in the sense of expected or average objective

value, and the method of dynamic programming leads to the solution. These

techniques have been developed in the aerospace field and in these years they

have been applied with success in different areas. The fields in which optimal

control is applied ranges from industrial engineering and military applications to

economics, medicine, biology and electromagnetism. In industrial application, as

an example, optimal control serves the management of a distillation process. Mil-

itary applications are focused in context of aircraft trajectory optimization. In

economics, optimal control is applied, e.g., in real option pricing and management

of resources. Design of effective medical treatments is formulated as an optimal

control problem. Many biological and ecological systems are dynamic and, e.g.,

[21] studies airflow in breathing while [27] considers flight paths of flying fish. For

example these techniques is applied to the optimal control of electromagnetic and

acoustic waves propagation [5].
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1.3 Principal aim and contents of the thesis

This work aims to create a wide overview of optimal control problems. The

attention is focused on the tools used in modelisation and in the resolution of

such kind of problems.

A wide discussion about the different methods with the analysis of the advantages

and disadvantages is presented. An algorithm to solve optimal control problems

will be proposed and will be then applied to a biological system. This method can

be also applied to any ODE system models without modification of the algorithm

by the users. The user will be able to solve various problems only defining the

parameter of the problem and defining some setting of the algorithm. This aspect

is used as a demonstration the versatility of this approach in different research

fields.

Obviously the core of the work is the application of these techniques on a cancer

immunotherapy problem. The goal is to identify an optimal drugs administration

protocol that will decrease or completely defeat the tumor. The therapy will be

analyzed taking into consideration the actual clinical applicability and the side

effects related to the protocol.

In order to do this, in the early chapters a background on the optimal control

theory and immunotherapy field will be created. In this way it is possible to

better understand the biological models that will be presented in the following

chapters. The theory of optimal control is introduced in Chapter 1. After an-

alyzing the formulation of a general constrained problem of control, direct and

indirect methods are discussed.

The numerical techniques are analyzed in order to have a subsequent conscious

and rational use of the algorithms used. The basics of the technique of nonlin-

ear programming and genetic algorithms will be analyzed. To get a complete

overview, after introducing the ingredients of the technique of optimal control, a

problem is analyzed to verify and test the algorithms.

Chapter 2 describes cancer immunotherapy. In particular all the aspects related

with immune system response will be analyzed. The immune system defense

and the tumor growth phase are considered in this section. In order to compare

the results of our optimized treatment, the actual clinical strategy that has been

tested on humans will be reported highlighting the positives and negatives. A

knowledge of the variables described in the mathematical models presented sub-

sequently leads to a physical evaluation of the results obtained from simulations,

so allowing developing a critical maturity.

In Chapter 3 the Kirschner-Panetta model is analyzed. It is the first mathematical

models of interaction between the immune system and cancer cells; it represents

a necessary step before undertaking the analysis of more complex models. After

the dynamic characterization of the system, the optimal control problem is con-
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sidered. Continuous and discrete solutions will be presented, using both direct

and indirect methods described in Chapter 1. The model is a simple representa-

tion of the dynamic interaction between the tumor cells and the immune system,

because as described in Chapter 2 there are many actors that take part in the

immune response.

Chapter 4 presents the Castiglione-Piccoli model. This is an improved model

of the previous one that consider various kinds of immune system cells, but it

takes into account only vaccine treatment. As done for the previous model, after

analyzing the dynamics of the system, the optimal control of both the continuous

and discrete problem is considered. Discrete control is analyzed starting from the

solution evaluated with the continuous control problem, and also with a genetic

algorithm. The final solution obtained by minimizing the final concentration of

tumor cells will be obtained by trying to optimize the dose, the schedule and the

number of drugs injections. A test of robustness of the control solution has been

made using a Monte Carlo methods and considering a modification of the basic

model. At the end of the chapter a comparison of the results obtained with the

different resolution strategy has been analyzed.

Chapter 5 describes the problem of an optimal control of satellite trajectory. In

fact, while these methods are used consistently for the optimization of trajectories,

only in recent years they are applied to problems in the dynamics of the immune

system and pharmacokinetics. A brief overview of the n-body problem will be

given and then a series of model approximation will be presented. Interplanetary

transfers will form a basis of comparison between the resolution of problems

inherent astrodynamics and immunotherapy. The optimal control problems are

solved using the same algorithm used in immunotherapy problems. The idea is

to create a perfect analogy between the two fields of research.

In conclusion further development of the algorithm and of the immunotherapy

models will be proposed analyzing the main advantages that could be obtained.



Chapter 2

Optimal Control Problem

Optimal control theory deals with the analysis and design of complex dynamical

systems, in details with the definition of the optimal way to guide or control such

systems. In aerospace field, problem of satellite guidance, design of trajectories,

shape optimization and many others can be stated as optimal control problems.

This chapter describes briefly the theory associated with optimal control problem

formulation and its following transcription into a nonlinear programming prob-

lem, together with its more efficient solution techniques. It is possible to assert

that the optimal control theory is an extension from the calculus of variation

[7, 9, 17]. In this section the optimal control is presented using the variational

approach, leaving at the next section the discussion about the algorithm used

in the numerical approach. The scheme followed in the discussion describes the

development of a classical optimal control problem as an extension of the calculus

of variation called dynamical programming.

In particular OCP applied to time-continuous differential systems is treated as

an expansion of a nonlinear programming NLP problem, with an infinite number

of variables.

We start considering a simple constrained non linear optimal control problem

OCP. The problem consists in finding a continuously differentiable or a piece-

wise continuos function u(t) that minimize a given functional cost with different

constraints on the state and control variables. These constraints contain bound-

ary conditions and the state equations that define the dynamic system:

ẏ(t) = f(y(t),u(t), t) (2.1)

where y(ti) is given and ti ≤ t ≤ tf .

The number of the constraints is generally different from the number of problem

variables, this leads to a non single defined solution. It is worth noticing that the

constraints can be both continuous and discrete.

In fact the solution of optimal control problems can be inexistent, unique or it is

possible to find different solution that depends from the starting guess solution.
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This aspect is strictly related with the system controllability in the classical con-

trol theory. If the system is uncontrollable it is not possible to transfer from any

initial state to any desidered final state in a desidered time.

The functional cost is a performance criterion used in order to evaluate the per-

formance of a system. There are different forms that should be used; the most

general is the Bolza form

J := Φ(ytf , tf ) +

∫ tf

t0

F (y(t),u(t), t)dt (2.2)

Lagrange form consists only in the integral term, while the Mayer form is repre-

sented with the first term of the functional. The three formulations are theoreti-

cally different but it is possible to translate the functional from a form to another

with simple operations. In order to maintain more generality the Bolza form will

be considered in the following discussion.

Considering a functional cost with boundary conditions at the end of the time

interval defined as

φ(ytf , utf , tf ) = 0 (2.3)

and subject to state equations, it is possible to form an augmented performance

index

Ĵ := [Φ + νTφ]tf +

∫ tf

t0

{
F (y(t),u(t), t) + λT (t) [f(y(t),u(t))− ẏ]

}
dt (2.4)

where λ and ν are multiplier functions.

In order to use a standard convention the Hamiltonian is a scalar function defined

as

H(y(t),u(t), λ(t), t) = F (y(t),u(t), t) + λT (t)f(y(t,u(t)) (2.5)

The necessary conditions for the optimum are obtained after integrating the right

hand side of (2.4) and they are identified setting the variation δĴ = 0. These

conditions are always referred as Euler-Lagrange equations.

δx = 0 ⇒ λ̇T = −∂H
∂x

δu = 0 ⇒ ∂H
∂u

= 0
(2.6)

The first one is the adjoint equation that describes the dynamics of the adjoint

variables, while the other are algebraic equations for the control functions. The

problem is completed with the so called transversality equations defined as:

λ(tf ) = [Φ + νTφ]tf
0 = H + ∂[Φ + νTφ]/∂t

0 = λ(ti)

(2.7)
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The problem, as stated previously, is known as two-point boundary-value prob-

lem, TPBVP, and the complete set of necessary conditions consists of a differential-

algebraic (DAE) system.

2.1 Numerical solution of optimal control prob-

lems

Solving simple problems with a functional cost and constraints is a hard task.

With the development of computer it is now possible to solve complicated prob-

lems in a reasonable computational time. The methods used are generally clas-

sified in three categories: dynamic programming, direct methods and indirect

methods.

Dynamic programming computes recursively a feedback control. In continuous

problem this approach leads to the solution of Hamilton-Jacobi-Bellman PDE.

This method have several difficulties and limitation such as the restricted small

state dimensions required.

The numerical solution of the Euler-Lagrange equations is the basis of the so-

called indirect methods. Indirect methods lead to the solution of a boundary

value problem (BVP). A TPBVP consists essentially in the process of solving a

set of differential equations whose solution has to satisfy initial and final boundary

conditions [2]. Solving TPBVPs is computationally intensive, because the simple

integration from initial conditions almost fails to reach an adequate solution that

respects the final conditions [2, 7, 8]. The techniques involved in solving this

problem is often trial-and-error in nature. The numerical solution of the TPBVP

is mostly performed by shooting techniques or by collocation.

The two major drawbacks are that the differential equations obtained are often

difficult to solve due to strong nonlinearity and instability and also define a guess

initial solution for the Lagrangian multiplier. As a matter of fact these variables

do not have a physical meaning, this leads to problems in the definition of an ini-

tial guess solution to start the algorithm. Another problem that it is necessary to

take into account in the resolution of a BVP is that the existence and uniqueness

of solution is not guaranteed as in an initial value problem [10]. Each problem

may have a unique solution, several solutions or no solution at all.

Indirect methods have been largely used for the solution of optimal control prob-

lems in the past when the computation performances are not enough to solve

complex problems. Nowadays the trend [8] is to use direct methods that gener-

ally require more computational effort but they do not require the solution of the

Euler-Lagrange equations. A direct method attempts to converge at the mini-

mum of an objective function F, in contrast to an indirect method that look for

the minimum finding the root of the necessary condition F ′ = 0. The solution of
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a direct method can avoid the resolution of a BVP using nonlinear programming,

in fact they transform the original infinite problem into a finite dimensional non-

linear programming problem. One of the main advantages of these methods is

that they can easily treat constraints. All the direct methods are based on the

discretization of the control variables and differs in the way the state trajectory

is handled.

2.1.1 Direct transcription and nonlinear programming

The basic idea of the direct transcription involves a discretization of the state and

the control space in a continuous problem [7]. This means that the method leads

to an approximate solution, in fact the technique allows converting an optimal

control problem into a nonlinear programming problem.

This involves different steps:

• transcription: formulation of the continuous problem with a finite-dimension

set of variables;

• solution: computation of the value of the unknowns through a parametric

optimization approach;

• verification: evaluation of the accuracy of the discrete approximation of the

problem.

The first phase requires knowledge about the basic elements and the solution of

a nonlinear programming problem. The solution of the optimal control problem

will be an easy extension of this method.

Direct transcription is a direct methods that implies, as said in the previous

section, to find xT such that the function F(x) is a minimum. The solution of

the problem starts with a Taylor approximation of the cost functional about the

point x:

F (x̄) = F (x) + gT (x)(x̄− x) +
1

2
(x̄− x)TH(x̄− x) (2.8)

Where g(x) is the gradient of the functional and H is the Hessian matrix. Defining

the search direction as p = x̄− x the Taylor expansion can be written as

F (x̄) = F (x) + gT (x)p+
1

2
pTHp (2.9)

x̂ is the minimum point if the objective function in all the neighboring points is

larger, that means that the directional slope must be zero in all the directions at

x̂.

gT (x̂)p = 0⇒ g(x̂) = 0 ∀p 6= 0 (2.10)
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This condition is necessary but not sufficient to define the stationary point x̂

as a strong local minimum. The required condition is that the curvature in the

direction p is positive definite that means

pTHp ≥ 0 (2.11)

The previous formulas simply define the application of the Newton method to a

generic minimum problem. An addition to this method is the optimization of an

objective function subjected to equality constraints.

The equality constraints are defined as c(x) = 0. Using the Lagrange multipliers

as in the classical variational approach it is possible to define the Lagrangian as

L(x, λ) = F (x)− λT c(x) (2.12)

In analogy with the consideration 2.10 the minimum necessary conditions on the

gradients are:

∇xL = O (2.13)

∇λL = O (2.14)

In order to define a complete set of necessary and sufficient conditions the Hessian

of the Lagrangian must be positive definite in order to distinguish a minimum

stationary point.

Considering the constraint vector c a linear approximation at x̄ is defined as

c(x̄) = c(x) +G(x̄− x) (2.15)

where G is the Jacobian matrix of the constraint vector. Solving for c(x̄) = 0 it

is possible to evaluate the search direction with this linear system

Gp = −c(x) (2.16)

The analogous approximation step is required for the gradient respect to direction

x. The gradient is defined as

∇xL = g −GTλ (2.17)

Expanding 2.17 about x and λ through a Taylor expansion

0 = g −GTλ+Hp−GT (λ̄− λ) (2.18)

This equation with the linear approximation of the constraints lead to the Karush-

Kuhn-Tucker KKT linear system[
H GT

G 0

][
∆x

∆λ

]
=

[
−g
−c

]
(2.19)
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An equivalent definition of the search direction p derives from the minimization

of the quadratic function

gTp +
1

2
pTHp (2.20)

subjected to the constraints

Gp = −c (2.21)

If the constraints of the problem are inequalities it is possible to extend what we

have previously stated.

The nonlinear problem can be solved using several methods that are available:

Collocation, Shooting Techniques, Legendre Pseudospectral Method [43] [30]. In

section 2.1.1 we will analyze the first two approaches.

In this thesis we will use numerical techniques that consider initial value problems

IVP instead of BVP. This because the techniques for solving IVP are well estab-

lished and can be divided into two categories: one-step or multistep integrators.

Among the first, the classic Runge-Kutta RK scheme reads:

yn+1 = yn + h
s∑
i=1

biki (2.22)

where ki is defined as

ki = f

(
tn + cih, yn + h

s∑
j=1

aijkj

)
(2.23)

s is the number of scheme stage, and a, b, c are the method coefficients.

The other class of integration methods are the multistep schemes, which have the

following general form:

yi+1 =
k−1∑
j=0

αjyi+1 + h
k∑
j=0

βjfi+j (2.24)

With respect to the specific coefficients of the methods (either one-step or multi-

step), the schemes may be explicit or implicit. In any case, for a boundary value

problem any scheme becomes effectively implicit. In this work both methods are

used, the first will be used as verification of the solution because of their high

order of convergence, while the latter will be implemented in the algorithm to

describe the dynamics.

2.1.2 Trajectory optimization problem

A trajectory optimization problem must be reformulated so as to be easily im-

plemented in a numerical algorithm. This section aims to present the general
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procedure to translate this kind of OCP into NLP.

The problem time domain is divided into K intervals, called phases, and for each

k phase the dynamics of the system is described by the following variables:

z = [yk(t),uk(t)] (2.25)

that for a system with n states and m controls is a vector made up by (n +

m)(K + 1) elements. In addition, there is the bk-dimensional parameter vector

p, which is not a function of the independent time variable t. From now on, for

sake of clarity, the phase-dependent notation is omitted, without losing validity.

The differential equations of the problem are defined as

ẏ = f[y(t),u(t),p, t] (2.26)

while the initial and final conditions are stated as

ψil ≤ ψ[y(ti),u(ti),p, ti] ≤ ψiu
ψfl ≤ ψ[y(tf ),u(tf ),p, tf ] ≤ ψfu

(2.27)

where the subscript l and u defines respectively a lower or an upper bound.

In addition, the solution is subject to the following path constraints

gl ≤ g[y(t),u(t),p, t] ≤ gu (2.28)

together with simple bounds on state variables:

yl ≤ y ≤ yu (2.29)

and on the control variables:

ul ≤ u ≤ uu (2.30)

The determination of the control vector history u(k)(t), and of the parameters

p(k), that minimize the following performance index:

J = ψ[y(t1i ),u(t1i ),y(t1f ),u(t1f ),pi, ...,y(tK+1
i ),u(tK+1

i ),y(tK+1
f ),u(tK+1

f ),pf ]

(2.31)

corresponds to the basic optimal control statement.

According to the formalism associated with the concept of a phase partition of

the time domain, the dynamics equations cannot change within a phase, but may

change from one to another. This idea can be used considering combined ther-

apy, e.g. chemotherapy together with immunotherapy. It is possible to consider

different set of differential equations that describes the different treatment. In

aerospace problems this idea is widely used, as it makes possible to use different

sets of differential equations during a complicated interplanetary transfer.
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The performance index 2.31 can be written in Mayer, Lagrange or Bolza form.

The last two forms contain an integral that in order to be translated in the

algorithm is approximated using a numerical method.

2.1.3 Collocation

The standard collocation methods discretize the time domain into N equal seg-

ments

t0 = t1 < t2 < .. < tN < tN+1 = tf (2.32)

with the endpoints of each segment being the grid points. A vector p ∈ R(N+1)(N+M)

is defined as

p =
{
xT (t1), ..,x

T (tN+1),u
T (t1), ..,u

T (tN+1)
}

(2.33)

whose elements are the values of the state and control variables at grid points.

The vector p is the independent variable that will be determined in the opti-

mization process. Hence the performance index and all of the constraints should

be transcribed with p. The set of differential equation that describes the dy-

namics are approximated using an approximate scheme that use as points for

the evaluation those belonging to vector p. The number of points in this way

strictly determines the accuracy of the dynamics representation, because in order

to have the real solution the dimension of the NLP variables must be infinite.

This method is useful when considering a continuous control, while in the other

case it is better to consider a single or multiple shooting approach in order to

reduce the number of variables and correctly integrate the dynamics.

2.1.4 The simple shooting method

As written previously, the global optimization problem is a BVP, while in gen-

eral numerical methods for solving initial values problem IVP are relatively well

established than the techniques for solving BVP [10].

The basic idea is to determine the IVP that produce the solution of the BVP. A

general BVP in the interval [a,b] read as

r(y(a),y(b)) = 0 (2.34)

Function r depends on both initial and final values. The evolution of this non-

linear system can be demanded to the solution of an IVP. The final state values

are obtained following this dependence y(a) = s⇒ y(b) = y(b, s). Consequently

we obtain the nonlinear system

r(y(a),y(b)) = r(s,y(b, s)) = 0 (2.35)
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The problem is now demanded to find the zero of the function F (s) = y(b, s) −
y(b), which it is also called discrepancy vector. Starting with an initial approxi-

mation s0 it is necessary to compute the iteration

si+1 = si − F (si)

F I(si)
(2.36)

The iteration stops when the norm of F is in a sufficiently small neighborhood of

zero, condition that is necessary and sufficient to translate the BVP into an IVP.

The major difficulties in this procedure is that highly nonlinear system are very

sensitive on initial solution, this leads to a hard convergence in the iterative

procedure [10]. Other serious problem with the convergence lead to the selection

of an initial solution s not close to the real value. To sum up the simple shooting

method is not a very practical method [23].

The application of this procedure to indirect methods leads to the propagation

of a guess unknown initial values of the Lagrange multiplier using the optimal

control. The use of a gradient method to adjust the initial solution and respect the

final boundary constraint often does not converge. These because the sensitivity

of the Lagrange multipliers on initial conditions, and also often the system is

unstable.

For sake of clarity, assuming a single phase problem, the complete set of NLP

variables becomes

x = {y(ti), ti,y(tf ), tf ,p} (2.37)

The associated constraint and objective function associated with the NLP for-

mulation are quantities evaluated at both ends of the trajectory. Therefore the

constraint vector is organized as follows

c(x) = {ψi[y(ti), ti,p], ψf [y(tf ), tf ,p]} (2.38)

2.1.5 Multiple shooting method

It is possible to extend the previous method by dividing the time domain into

subdomains and using for each of them the single shooting approach. In the

multiple shooting methods one selects the unknown parameters s at the initial

time just like in the simple shooting method, but does not integrate all the way to

the final time. Instead the distance from a corresponding point on a preselected

grid is checked continuously as the integration proceeds. The goal is to match-up

the discontinuous trajectory segments. In this way the nonlinear effects of the

continuity conditions are distributed over the whole time horizon. It combines

some of the advantages of simultaneous methods as collocation and the simplicity

of the single shooting approach. This approach starts discretizing the control on
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a grid u(t) = qi for t that resides in the interval [ti, ti+1]. The algorithm proceeds

solving the ODE problem on each interval independently, starting with an initial

guess solution s0
i :

ẏi(t) = f(yi(t), qi) (2.39)

yi(ti) = s0
i (2.40)

The objective is to evaluate the control law in order to satisfy the dynamics and

the initial and final conditions written in the form

ψi[y(ti),u(ti), ti,p) = 0 (2.41)

ψf [y(tf ),u(tf ), tf ,p) = 0 (2.42)

The algorithm procedure is similar to that presented in the collocation approach.

The trajectory is divided into N segments as in 2.32 and the vector of NLP

variables is defined as in 2.33. If necessary, it is possible to append as additional

variables ti and tf .

The difference with the collocation approach is the solution of dynamics. As in

the simple shooting an approach IVP is solved by means of a given integration

scheme. In this work a RK method of the seventh order has been used.

The satisfaction of the global dynamics of the problem is obtained joining together

the time segments at their boundaries with the conditions

ηj = Φ(yj,p, t)− yj+1 = 0 (2.43)

where Φ is the flow representing the dynamics.

These conditions can be modified for consider a discrete impulsive control at each

grid point j as

ηj = Φ(yj,p, t)− yj+1 + uj = 0 (2.44)

where uj is a vector that contains the impulsive controls. Obviously its structure

depends from the problem equations and it should be not completely full.

Finally the complete constraint vector is assembled in the following form

c(x) = {ψi[y(ti), ti,p], η1, .., ηN−1ψf [y(tf ), tf ,p]} (2.45)

As far as it concerns the multiple shooting approaches, the size of the NLP

increases with respect to simple shooting. Fortunately the Jacobian matrix is

sparse thanks to the fact that the variables of the problem are uncoupled, i.e.

variables playing an active role in the first part of the trajectory do not influence

the constraints at the end of it.
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Figure 2.1: Multiple shooting technique [7]

2.2 Simple example

As an exercise we consider the example described in [17] at page 181. The problem

statement as follows:

minimize

F (u) :=

∫ 1

0

(x1(t)
2 + x2(t)

2 + ρu(t)2)dt (2.46)

subject to

ẋ1(t) = x2(t)

ẋ2(t) = −x2(t) + u(t)
(2.47)

with the initial conditions x1(0) = 0 and x2(0) = −1 and the following inequality

constraints

x2(t) + 0.5− 8(t− 0.5)2 ≤ 0 (2.48)

−20 ≤ u(t) ≤ 20 (2.49)

This problem is a good test on the algorithm implemented because it contains

both equality and inequality constraints. The formulation of the problem leads to

a resolution of an optimal control problem using the direct collocation nonlinear

programming DCNLP.
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2.2.1 Direct transcription formulation using collocation

It is possible to solve the optimal control problem with a discretization of the

solution into a grid of N points. For each N − 1 intervals it is possible to identify

a vector of variables that includes the n states and also the m controls. For the

problems in the example the vectors looks as follows:

xT =
{
x

(1)
1 , x

(1)
2 , u(1), .., x

(N)
1 , x

(N)
2 , u(N)

}
(2.50)

The cost functional must be discretized for every phase with the trapezoidal

method.

Obviously considering high order integration scheme such as Hermite-Simpson or

Runge Kutta methods will lead to a more accurate approximation of the system

trajectory. In the problem considered in this thesis the trapezoidal scheme is not

used out of this example. Considering the Lagrangian defined as

L(x1, x2, u, t) = x1(t)
2 + x2(t)

2 + ρu(t)2 (2.51)

The integral approximated with the numerical scheme is:

N−1∑
i=1

L(x
(i)
1 , x

(i)
2 , u

(i), t(i)) + L(x
(i+1)
1 , x

(i+1)
2 , u(i+1), t(i+1))

2
h (2.52)

As we have previously described it is necessary to translate the dynamics into

nonlinear equality constraints using discrete approximations.

The differential equations that describes the system are replaced with a finite

difference approximation using Euler method. For each phase it is possible to

determine n defects equations for a total number of n(N − 1)

ςk = yk+1 − yk − hkfk (2.53)

where y is the n = 2 rows vector of the system variables, and fk is the right-hand-

side of the system equation evaluated at each time k.

Initial boundary conditions must be defined in this vector adding several rows as

the number of the conditions. For the example it is possible to define a vector

ΦI = [g1, g2] where g1 = x
(1)
1 −x1(0) and g2 = x

(1)
2 −x2(0). The nonlinear equality

vectors can be written as:

c(x) = [ς1, ..., ςN−1,ΦI ]
T (2.54)

The problem contains also inequality constraints. These are very common in

several optimization problems, because often the variables can vary in a specific

range.

The inequalities with the state x2 is defined using a vector: c(x) ≤ 0. For each

phase the c(x) is defined as

c(x)k = x
(k)
2 − 0.5− 8(t(k) − 0.5)2 (2.55)



2.2 Simple example 19

The inequalities on the control can be written defining upper and lower bounds

for the variable y with the following structure:

lb = [−∞,−∞,−20]T

ub = [∞,∞, 20]T
(2.56)

It is also possible to consider these limits as inequalities and add two rows to

vector c(x) changing the inequality sign as specified in the definition. These

alternatives lead to an inequality constraint vector defined for each phase as:

c(x)k = [x
(k)
2 − 0.5− 8(t(k) − 0.5)2, u(k) − 20,−u(k) − 20]T (2.57)

2.2.2 Optimization results

The results obtained with one hundred phases are shown in the figures 2.2 and

2.3.

Figure 2.2: x2 with ρ=5e-3

The solution is obtained following a mesh refinement from a coarse mesh with

a tecnique that will be described in the next section. The comparison of the

solution for x2 and its inequality constraint shows that equation 2.55 is solved as

equality (constraint active) for the major part of the integration time.

2.2.3 Verification

The transcription method translates the optimal control continuous problem into

a finite dimension nonlinear programming problem. The last necessary step is to
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Figure 2.3: Control variable with ρ=5e-3

verify the results obtained in comparison from those obtained from the starting

problem. In this way it is possible to evaluate the respect of the accuracy con-

straints and, if necessary, repeat the optimization varying different parameters

of the discretization. The discretized control vector must be interpolated with

a cubic spline and consequently an integration of the system equations must be

performed. The integration scheme is Runge-Kutta. The tolerance has been fixed

for the state variable x at the end of the time interval as

‖x(tf )− xN‖ ≤ ε (2.58)

In order to reduce the error between the solution obtained through the real inte-

gration and those evaluated with the approximate integration scheme and satisfy

the tolerance in 2.58, we use a progressive enrichment of the grid. This method

is known in literature as nested iteration [1] and it is the most ancient and even

the most intuitive method that use a hierarchical grid. The process consists in

the resolution of the model in a coarse grid and in an iterative way interpolate

the results on an accurate mesh with an increased number of grid points. The

meshes can be uniform or not and the process can be adaptive in the sense that

the algorithm will increase the number of points in critical part of the solution.

In this work we consider only uniform non adaptive mesh refinement, this will

provide a simple algorithm that can give several advantages to the simulation.

The respect of the fixed tolerance proves the consistency between the solution of

the discretized problem and that of the original continuous time problem. The
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Figure 2.4: Verification results comparison

solution of the old mesh is interpolated in the new grid points and used as a

guess solution of the optimization. In this way it is possible to accelerate the

convergence of the optimization algorithm. This method may guarantees a good

initialization for the refined mesh necessary to have the convergence to the opti-

mal solution.

As a general consideration for direct methods a larger mesh size is always linked

with an improvement of accuracy required. In order to capture the irregularities in

the control and in the state variables a mesh refinement is necessary. Usually the

common solution is to increase the number of grid points and in this way increase

the computational time. There is also another opportunity that is related with

the distribution pattern of grid points.

Figure 2.4 shows the comparison between the solution obtained with the trape-

zoidal integration method and the real solution that it evaluated using a 7/8th

Runge Kutta scheme. The residuals are O(10−4), this value can be decreased

using a high order integration scheme such as Hermite-Simpson.

2.3 Genetic algorithm optimization

Methods that are based on deterministic calculations, which are the subject of

numerous theoretical studies and applications, trying to get the local extreme by

solving a nonlinear system of equations, often through the application of the gra-

dient method. In fact all methods starting from the condition that the gradient
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of the function exists (differentiability of the functional) make an approxima-

tion sufficiently accurate and numerous evaluations (through discretization of an

adjoint equation, with automatic differentiation or finite difference). These meth-

ods have the advantage of having a high speed of convergence (asymptotically) if

the initial guess solution is sufficiently close to the optimum or the functional is

convex [33].

The methods that are based on random search do not require knowledge of the

gradient and they are based solely on the evaluation of the functional. These

methods are more robust in identifying a global optimum for their lower sensitivity

to initial conditions. For this reasons, these methods have a remarkable success

in solving coupled problems where the classical assumptions of differentiability

and convexity are not justified [33].

Evolutionary algorithms (EAs) are optimization procedure that search for the

solution that minimizes or maximizes a given function in a prescribed space.

There are different kind of EAs [44]: differential evolution, particle swarm opti-

mization, genetic algorithm. In our work only genetic algorithm (GA) are used.

These represent a robust parameter optimization techniques based on the Dar-

winian concept of evolution that use selection and specific recombination of a

chromosome-like data structure [22]. These mechanisms are selection operators

and they are based on reproduction, mutation, recombination, natural selection,

and survival of the fittest.

We have focused our attention on GA because this is a pseudo-aleatory method

in which a random generation of the variables is guided by an intelligent method

of exploration of the search space. The advantage is that GAs algorithm well

suited to optimization of nonlinear problems and/or where traditional methods

are not very robust.

One of the main problems related to Genetic algorithm is the implementation

of the constraints [50]. The solution proposed consists in using the Augmented

Lagrangian Genetic Algorithm (ALGA) in order to solve a nonlinear optimiza-

tion problem with nonlinear constraints, linear constraints, and bounds. In this

approach, bounds and linear constraints are handled separately from nonlinear

constraints. A subproblem is formulated by combining the fitness function and

nonlinear constraint function using the Lagrangian and the penalty parameters.

A sequence of such optimization problems are approximately minimized using the

genetic algorithm such that the linear constraints and bounds are satisfied.

This method born in the 1970s [22] and it is a current research issue. The al-

gorithm starts with a random initial population. This population consists in

individuals that show a genotype, or chromosome, based on the variables to be

optimized.

The procedure for the generation of a new population can be divided into two

phases [22]. In the first one selection is applied to the current population generat-
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Figure 2.5: Scheme for the creation of a new generation

ing an intermediate population. The probability that an individual is duplicated

and placed in the intermediate population is proportional to its fitness value.

Recombination and mutation are then applied to the intermediate population in

order to generate the next population. Cross-over consists in a random selec-

tion of a point in the chromosome of two individuals. The fragments obtained

splitting the chromosome in two parts from the point selected are then swapped

between the two parents. Mutation children are created by a random change in

the genes of the individual parent. The other children taken into account are the

so called elite children. These ones are the individuals that survive unchanged

between two different generations. The principle of elitism is used to avoid the

loss of good individuals with high fitness score. One generation of the algorithm

is obtained after the processes of evaluation, selection, and recombination. In

our algorithm the process is repeated until the change in the fitness function be-

tween the current generation and the next generation is less than a tolerance of

1e-6. The result is a direct consequence of the survival of the fittest, the final

population consists in individuals that are better suited to the environment as in

natural adaptation.

To sum up a genetic algorithm is essentially based on:

• A chromosomal representation of solutions of the problem;

• An evaluation that plays the role of the environment: it classify the solution

as function of their fitness;

• Genetic operators that define the transmission mechanisms of the genotypes
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Figure 2.6: Hypercube and 4D hyperspace

alleles from parents to descendant;

• The value of the parameters used in the algorithm (Population size, number

of generations, genetic operator percentage).

GAs search from multiple points in the design space simultaneously and stochas-

tically, this lead to the fact that GAs can be processed in parallel [33]. In our

work GAs run in parallel on two 1.66 MHz Intel core.

In order to understand how it is possible that the solution obtained via GA is a

form of optimization, we consider a simple modelisation used by Holland in its

work [22]. The genetic algorithm is a search method on hyperplane partitions of

the search space. We consider a chromosome that consists in a string of 3 bits.

Each of these bits can assume the value 0 and 1. These chromosomes can be

represented in the 3 dimensional space. A cube with corners numbered by bit

strings that differ by 1 bit is the geometrical representation of the global search

space.

The front plane of the cube shown in figure 2.6 contains all the solutions that

begin with 0. This plane can be identified as 0**, and it is also called hyperplane

of order 1. In general a hyperplane of order n contains n bits with a definite

value. A chromosome matches a particular hyperplane if its bit strings can be

constructed from the label of the hyperplane by replacing the symbol ‘*’ with the

appropriate bit value. Every chromosome belongs to 2L−1 different hyperplanes,

where L is the number of the value that a single bit can assume. The total num-

ber of hyperplane partitions of the search space is 3L − 1 . When the algorithm

evaluate a chromosome many hyperplanes are sampled (2L− 1) and evaluated in

an implicit parallelism.
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Implicit parallelism implies that many hyperplane competitions are simultane-

ously solved in parallel. The theory suggests that through the process of re-

production and recombination the competing hyperplanes increase or decrease

their representation in the population according to the relative fitness score of

the strings that lie in those hyperplane partitions [47]. Setting cross-over and

mutation at low level maximizes the preservation of hyperplane samples obtained

in the intermediate generation, while this aspect minimizes the disruptive effect

of cross-over and mutation. It is important to consider always mutation in or-

der to prevent a premature convergence. In fact it is possible that after several

generations all the bit of a string will converge to the same value, causing the

permanent loss of an allele and a not satisfactory solution. Without mutation it

is impossible to reintroduce the bit value.

2.4 Hybrid algorithm

Gradient search methods efficiency in reaching global optimum relies on the users

in providing right initial guess. A hybrid algorithm overcomes this limitation

with a simultaneous exploitation of the gradient method’s capability to quickly

converge to the local optimum and GA’s capability to explore the entire design

space [46].

If the choice of the initial guess is the right one a gradient based method will

converge effectively to the global minimum. In a hybrid algorithm GA guides to

explore the promising good initial guesses spread over design space, while gradient

based methods GBM identifies the global optimum.

GAs algorithm are not efficient in solving constrained problems, but with this kind

of procedure the solution can be useful also if the constraints are not satisfied.

The respect of the constraints is delayed to the following gradient based algorithm

that can permit an easy implementation of these conditions.

The hybrid algorithm starts using the genetic algorithm that begins its search

with a random solution. The GA optimization explore the entire design space and

can be terminated at convergence of the fitness function. The best individual of

the final population is then passed to the GBM as the initial solution of a NLP.

The NLP problem must be carried out until it reach the convergence to the

minimum.

This method as we will demonstrate in the work is a robust and efficient opti-

mization algorithm capable of locating global optimum.
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Figure 2.7: Hybrid algorithm flowchart
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2.8.1: Evolution without corrections 2.8.2: Evolution with velocity corrections

Figure 2.8: Evolution of the boundary points[20]

2.5 Uncertainties analyses

One of the main aspect that have to be taken into account analyzing non linear

systems is the uncertainty on boundary conditions and on the parameter set of the

model considered. In this research highly non-linear systems are considered and

one of the major obstacles is the accurate definition of the initial conditions. It is

therefore necessary to attach to the nominal solution evaluated with the reference

parameters and boundary conditions, a check in order to prevent mistakes in real

scenarios. It is then possible to evaluate corrective scenarios in order to achieve

the targets.

In the spacecraft trajectory design the lack of knowledge of the initial configura-

tion of the system, the lack of available data, refer to a certain level of uncertainty.

To prevent failure in real scenarios we can follow two strategies. The first refers

to statistic and Monte Carlo methods, while the second one leads to differential

algebra, no longer based on the evaluation of functions at specific points, but

working on the function rather than its mere values [20].

In carrying out the research methods from the first class will be taken into ac-

count for problems related to immunotherapy, while the similar analysis for the

optimization and design of interplanetary trajectories consider results obtained

through differential algebra.

Considering the interplanetary transfer problem presented in the last section, it

is possible to analyze a general statement that refers to the classic Lambert‘s

problem. Given the initial position and the final position desidered the goal is to

identify the conic arc that connects the two positions in a given time. Assuming

an uncertainty on the initial position vector involving a maximum displacement

of 0.1AU in [20] the propagation of the error is analyzed. Figure 2.8 shows

the evolution of the error box without corrective actions and with correction
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on velocity. This demonstrate that the application of the nominal solution into

real scenarios can leads to solution that violate the constraints also in a simple

TPBVP.



Chapter 3

Cancer immunotherapy

Tumor depends from the uncontrolled proliferation of clones of transformed cells

and their diffusion in the entire organism (metastasis). The process starts from an

evolutionary process which may give rise to abnormal DNA when a cell duplicates

its genome due to defects in tumor suppressor or DNA mismatch repair genes [6].

The therapeutic task is to eradicate these diseased cells without any side effects on

the healthy tissues. Conventional therapies against cancer (surgery, chemother-

apy and radiotherapy) have gradually evolved over the years. These techniques

increase the survival of patients, however, the percentage of patients treated not

exceed the total of 45-50% [38, 39, 40, 41, 42].

In the last years the research is directed towards new less invasive techniques. In-

novative anticancer strategies that, alone or combined with conventional, leading

to enlargement of therapeutic possibilities. One possible strategy is the exploita-

tion of the immune response. In 1909 Paul Erlich first suggested that the immune

system defend organism from developing tumors, otherwise they would have been

much frequent [37]. Until the end of the 20th century there was no concrete evi-

dence of the cancer antigens existence or any measurable immune system response

against cancer. Recently evidence has been shown in different situation[49]:

• spontaneous remissions of cancer without external treatment;

• the presence of immune system cells (monocytic, lymphocytic and plasmatic

cells) in the neoplasia mass;

• the increased tumor growth in immunosuppressed patients.

The immune system is able to promote a response that can recognize, destroy

cancer cells and maintain long-term memory, provided that the tumor antigens

are recognized efficiently. Immunosurveillance is the term that describes the

tendency of the immune system to prevent neoplasia.
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The immune system acts with two different strategies against the guest: innate

immune response and the adaptive or acquired immune response [37, 36].

Innate immune response is rapid but less specific than the second technique.

In this category are included physicochemical barriers (e.g. skin and mucosa),

blood proteins, phagocyte cells (macrophages, Dendritic cells [DC] and natural

killer cells [NK]) and cytokines.

Adaptive immunity is more specific and consists in the ability to remember the

previous existence of the pathogen and differentiate from self to non self. In this

way the response to a repeated external agent attack can be more active and

vigorous. In this category are included B and T cells. B cells are less impor-

tant than T cell for the immune response. Scientific evidence supports the role

of these cells [39]. Mice lacking the major components of the adaptive immune

response (T and B cells) have a high rate of spontaneous tumors. In particular

two major classes of T lymphocytes are involved in the dynamic interaction be-

tween cancer cells and immune system: CD8 and CD4 cells. CD4 are necessary

to activate and sustain the survival of CD8 cells. The innate and the adaptive

strategies are not mutually exclusive, but they can influence each other and they

can work in parallel. Immune responses can be also divided into active response,

induced by an exogenous antigen, or passive response. In the last case the for-

eign antigen is transferred through serum or lymphocytes from an immunized

individual. The passive response typical of the models that will be presented

later is unable to confer memory. The immune response is provided by differ-

ent actors: lympochocytes, lymphokines/cytokines and antigen presenting cells.

This differentiation is the most important in the analysis of the tumor immune

system models, because several models describe the population concentration of

these different categories. The effector cells or lymphocytes that act specifically

against cancer are T cell, natural killer NK cells, Lymphokine activated cells LAK

and K cells.

The lymphokines or cytokines are biological response modifiers or growth stim-

ulating substances biosynthesized by certain immune cells. In particular Inter-

leukin 2 is biosynthesized by a subset of the T cell called helper T cells.

The antigen presenting cells are responsible for presenting cancer antigens to T

cells in order to control the immune activity. Tumor infiltrating lymphocytes TIL

are an antitumor population that infiltrate in the growing cancer. The prolifera-

tion of the TIL cells is regulated through IL2.
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3.1 Tumor development. Interaction between

the immune system and cancer cells

In this section the development phase of the tumor is described. A knowledge on

this topics permits an accurate analysis of the parameter that will be introduced

in the control strategies. In particular it is possible to select initial guess solution

taking into account the therapeutical limits. Considering the physical processes

described through the equations it is possible to evaluate the dynamic behavior

of the system.

The first step is the development of cancer cells in the human anatomy. In order

to consider the most general phenomenon these cells could be immunogenic or

non-immunogenic.

The cancer cells proliferate despite the immuno-surveillance activity provided by

Natural Killer (NK) cells (which can kill cancer cells whether immunogenic or

not).

The cancer cells grow above the subclinical threshold of 103 cells and reach 109

cells that is the X-ray detectable threshold [42]. During this period of development

the unique contrast activity is provided by the immune system. When antigen-

presenting cells, particularly macrophages, encounter the cancer cells they act in

order to eliminate the foreign agent. They internalize the cancer cells and dissolve

them into fragments called epitopes. These epitopes bear the cancer-associated

antigens. The macrophages then exhibit the cancer antigens on their surfaces and

circulate into the vicinity of helper T-cells and increase their awareness about

the antigens. The antigen-sensitized helper T-cells then release the immuno-

stimulatory growth substance called IL-2. The stimulus to the cytotoxic T-cell to

mature and proliferate is given by IL-2. These subset of the T-cell are the direct

responsible for the cancer killing.

The other important contribution made by Interleukin-2 is the enhancement of

the proliferation of NK and LAK cells. These activated lymphocytes acts together

in a search-and-destroy anticancer activity.

From clinical studies it appears evident that despite the response of the immune

system there are other mechanisms or other phenomenon that can permits the

growth of the neoplasia [40]. This aspect depends from several factors due to tu-

mor and lymphocytes characteristics. Tumor should produce immunosuppressive

factors or can show low antigenicity. The antitumor T cells should be insufficient,

inadequate, tolerated by the tumor cells or they cannot enter inside the tumor

(TIL cells).

We have identified the phase that describe the development of the immune system

response. Focusing the attention on the tumor cells, their development follows

four major phases according to [16]: the first phase occurs when normal cells

mutate into tumor cells and begin dividing out of control; the second phase is



32 Cancer immunotherapy

Figure 3.1: Melanoma development phases [modified from livingdhealth.com]

called carcinoma in situ and is classified by the presence of a tumor mass that

has not yet invaded other tissues. This phase is limited by the nutrient flow to

the tumor; if blood vessels can be induced to grow into the tumor (angiogenesis),

the tumor will progress to the next phase, called the invasive stage; metastasis,

or dissemination to other tissues, is the final phase.

3.2 Immunotherapy from dream to reality

The prospects of immunotherapy for clinical cancer have been kept bright for

almost a century by promises and pretences that this notion indulges in peo-

ple. Nowadays trends can be explained with two quotations from Dr. Weiss ‘The

central hypothesis underlying all attempts at immunological intervention in neo-

plastic disease is today in danger of falling’ and ‘It is forbidden to despair’. These

techniques must be not only a tool that restores the depression state of patient

familiar, giving them a false hope to believe.

The section aims to identify the major steps in the cancer immunotherapy re-

search. The progress in immunobiology and immunogenetics associated with

experimental confirms about the existence of tumor antigens (TAA) are the pre-

cursors of the hypothesis of immunosurveillance [37]. This theory explain that

the immune system constantly control the host cells in order to prevent malignant

transformations.
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The specific tumor antigens should stimulate the immune system that identifies

the growing neoplasia and then it should eradicate these cells. This fact is due

to an evolutif necessity as for the other common infections [37]. The immune

system evolves recognizing the different cells and it takes actions to survive.

According to Thomas [37], also the organisms have evolved mechanisms of pro-

tection from cancer, similar to those that mediate allogenic rejection, thus main-

taining the tissue homeostasis in complex multicellular organisms. The following

considerations are natural consequences of this theory:

• The number of potential cancers is much higher than those that reach clin-

ical observation

• The reducing at the current level is an output of the work of immunity cells

• Tumors that grow up becoming clinically obvious are cases in which the

immune system have not worked

A series of experiments has been performed from the ‘70 in order to confirm this

hypothesis. Initially experimental models of induced immunosuppression have

been used [37] in order to explore the relationship between an immune system

suppressed and the development of the tumor cells (figure 3.2).

Figure 3.2: Experimental strategies with immunosuppressed animals [modified

from [37]]

Results are discordant and show only that those animals which are immuno-

compromised have a greater susceptibility to infectious agents and, consequently,

to tumors of viral origin and into tumors caused by stimulation due to chronic
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lymphocytic deficiencies, but not to spontaneous tumors. Immunodepression has

several effects also on human body. The human immunodeficiency can be con-

genital or acquired. In general in immunosuppressed patients does not change

the impact of the ”big killers” (colon carcinomas, lung, breast, prostate), but

increases the incidence of lymphoid neoplasms and of viral origin tumors.

3.2.1 Clinical and experimental therapies

Immunotherapy can be viewed as an external help to the immune system in order

to stimulate it and increase its performances. The immune system coordinates the

interaction between the host cells and the protective cells when foreign cells are

encountered. The purpose of the immune response is to restore the homeostasis

state.

Unfortunately often the body natural defense not leads to a complete immune

response, despite the presence of specific antigen. There are significant barrier to

an effective antitumor immunity by the host. Many tumors can grow in immuno-

competent hosts as can be seen from the number of people affected to advanced

cancer state.

In order to decrease the immune tolerance to the tumor, in the last decades

several immunotherapy approaches have been tried [38, 42]. In the first trials

to increase the antitumor response, vaccines were made up of tumor cells killed,

irradiated or also infected with the virus to increase its immunogenicity. Results

were overall poor.

Since the eighties the knowledge on cytokines and the ability to dispose of recom-

binant products permit the study of their possible use as therapeutic agent [42].

The results encourage the research in this field despite the clinical limits.

Cancer immunotherapy can be referred with the use of cytokines usually together

with an adoptive cellular immunotherapy (ACI). Cytokines are hormones that

control the immune system.

Some cytokines biological activities can be used in tumor therapy such as:

• Enhancing the immune response against the tumor, through induction of

antigen processing or stimulation of cells of innate and specific immunity.

• Inhibition of tumor angiogenesis.

• The proliferation stop of tumor cells, or the modulation of their profile of

expression of membrane antigens

Unfortunately, this approach was accompanied by unacceptable toxic effects. As

a result immunotherapeutic strategies focus their attention on the local admin-
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istration of low amounts of cytokines [39], obtaining a high concentration in the

only site of tumor growth.

Since the beginning of the nineties, with the improvement of knowledge about

gene transfer, the concept of obtaining cell vaccines through the transduction

of cytokine genes into cells tumor has evolved. These vaccines are expected to

achieve a high local concentration of cytokines, maintaining low systemic concen-

tration. The results have actually shown that toxic effects associated with this

strategy are scarce, if not entirely absent [39]. In several models, both experi-

mental and clinical, transduction of cytokine genes use as recipient normal cells,

as tumor-infiltrating lymphocytes (TIL) or the same cells tumor [36].

The most obvious application of this approach is the therapeutic vaccination of

patients already carrying the tumor to elicit an immune response able to eliminate

it. Since it is known that the effectiveness of immune response is limited to small

tumors, the best strategy could be the therapeutic vaccination of patients with

minimal residual disease.

Figure 3.3: Immunotherapy drugs development [Source Informa UK 2006]

A number of successful immunotherapeutic agents are now under development

(Fig 3.3); however, the majority are primarily in the early stages. Additional

forms of experimental immunotherapy for stage IV patients with immune stimu-

lant such as interleukin-2 are under studies. One of these is Proleukin a high-dose

IL- 2-only regimen for the treatment of stage IV melanoma. Several experimen-

tal melanoma vaccines are also being tested in clinical trials in stage III and IV

patients.

IL-2 monotherapy

During the eighties several preclinical and clinical studies underscored sporadic

but impressive tumor regression following the repeated and systematic admin-

istration of massive doses of cytokines such as interleukin 2 [42]. IL-2 has not
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an active action on the cancer cells, but it is one of the major regulators of the

immune reactions.

IL-2 is responsible for stimulating antigen-sensitized NK cells, cytoxic T cells

and LAK cells to develop into mature antitumor effector lymphocytes and also

provides the growth stimulus for these lymphocytes to proliferate and create an

effective attack against the tumor cells.

The results of the first clinical treatment with the administration of this cy-

tokine were published in 1985. Two hundred eighty three patients with metastatic

melanoma or metastatic renal cells who had failed standard treatment have been

treated with a high dose of IL2 from 1985 to 1992 [42]. These clinical results pre-

sented in table 3.1 led to the approval of the interleukin treatment for metastatic

melanoma or kidney cancer. A high dose IL-2 therapy can produce positive re-

sponses for 15-20% of metastatic melanoma and renal cells carcinoma with a

durable complete response in 5-10% of patients. The treatment consists in the

administration of IL2 intravenously every 8 hours with a concentration of 720000

cells/kg [42] [26]. This concentration was chosen to avoid exceeding certain levels

of toxicity tolerated by the human organism.

Each treatment consists of 2 courses containing a maximum of 15 doses of IL2

drugs separated by 10 days of holiday. If after 40-50 days from the end of the

cycle the patient shows a regression no further therapy are administered, and if

the disease is stable the protocol is discontinued.

Diagnosis Total Complete regression Partial regression

Melanoma 182 12 16

Renal cell cancer 227 21 22

Total 409 33 38

Table 3.1: Response of patients treated with interleukin 2 [40]

Figure 3.4: Duration of the response and proportion of patients surviving [42]

Figure 3.4 shows that the percentage of the patients that survive after 5 years is

increased by 500% compared to the values mentioned in the introduction. Nowa-
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day chemotherapy is the basic approach for cancer treatment. It acts reducing

the growth factor of the tumor cells, but some tumors are considered highly

resistant to this treatment. In fact some natural cells have high growth rate,

such as the skin, the stomach, and mouth, these cells can be adversely affected

by chemotherapy. Important clinical evidence states that the types of tumors for

whom immunotherapy shows the best results are those resistant to chemotherapy.

Administration of interleukin can be performed in combination with chemother-

apy. Several studies have been made to optimize the combination of these two

treatments with good results [26]. The choice to not consider the chemotherapy

is mainly due to the fact that the treatment protocol is closely dependent on the

patient and so the response. This makes unreliable and not generalizable the

dynamic simulation.

Figure 3.5: Typical IL-2 therapy standard treatment

Immunotherapy should be the primary choice for patient that can sustain high

dosage of IL-2. The immune system stimulation can mediate the regression of

the tumor mass. The major problem of this treatment is linked with a signifi-

cant toxicity and no trascurable side effects. These side effects consist in cardiac

problems that lead to hypotension, pulmonary edema, anemia, altered mental

status, arrhythmias. Despite the toxicity of this treatment, it has led to a mor-

tality of 0.7% [42] and all the side effects are reversible in the short period. It is

to emphasize that few can tolerate the maximum dosage and administration so

close together. It thus appears the need to propose a new protocol of treatment

widely supported by the patients that exploit the knowledge of the dynamics of

the phenomenon. Some studies have shown that administration of lower doses of

IL2 can lead to regression of tumor cells. ”‘There have been considerable efforts

aimed at reducing the frequency and severity of IL2, and these will require further
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clinical investigation before they can be recommended”’[36].

Figure 3.6: Immunotherapy process

Cell transfer therapy

This therapeutical technique consists in the infusion in the patient of in vitro

selected lymphocytes that show a high sensibility to the specific tumor. In par-

ticular these lymphocytes are genetically modified in order to express anti-tumor

T cell receptors

This kind of passive therapy do not depends upon the activation properties of

the tumor (tumor antigenicity activate the immune system response). The cy-

tokine administration and the cells transfer are not mutually exclusive; indeed it

is possible to encourage the development of highly specific cells in an IL2 envi-

ronment. The standard IL-2 protocol is similar to the previous described in the

high dose monotherapy. Different studies analyzed a low dose treatment in order

to decrease the side effects [39]. The amount of cells that a patient receive during

the entire treatment is > 1010.

It has been demonstrated experimentally [38, 40, 39]that a lymphocytes deplet-

ing chemotherapy pretreatment eliminates lymphocytes near the tumor site that

are contrary to the transplanted cells. In this way the rate of survival of spe-

cific cells transferred increases significantly. These suppressive factors limit the

effectiveness of stimulants such as IL-2 and probably are the causes of ineffective

cancer vaccines. As a matter of fact IL-7 and IL-15 detectable near the tumor



3.2 Immunotherapy from dream to reality 39

Figure 3.7: Regression of cutaneous metastases following sequential treatments

in a patient with melanoma [40]

site act in a sort of competition. The presence of a huge number of T cell near

the tumor site is not sufficient to determine a tumor regression. This aspect

is strictly dependent on the local tumor microenvironment and in particular on

down regulation mechanisms that are not clear nowadays [41]. Many mechanisms

regulating the interaction between the immune system, cancer growth and thera-

peutic control strategy are closely dependent on mechanisms not described in the

dynamic models considered. Although this it is possible to obtain a valid simula-

tion considering as initial condition a state of lymphodeplection that means low

concentration of the immune system cells.

The number of the objective response depends from the previous treatment of

lymphodeplection but at least 30% of the patients have an objective durable

response [39].

A future development of the dynamic models must take into account the use of

the adoptive cell therapy, not only because this is nowadays the best treatment

for patients with metastatic melanoma [39], but because this therapy should be

applied to many different kind of cancer. This treatment is very effective in

the control and regulation of the tumor regression in 50-70% of the cases [41],

doubling the percentage obtained with IL2 monotherapy.





Chapter 4

Panetta-Kirschner model

The research in the immunotherapy modelisation is a continuous balance between

clinical and experimental data and the construction of a mathematical model ca-

pable of representing the real behavior of the system. With this tool it is possible

to study and analyze in depth the phenomenon, predicting the real life observation

and define possible therapeutic strategies that can lead to the results required.

One of the first attempts to consider the effects of the interaction between tumor-

immune system-immunotherapy was made by Panetta and Kirschner [28]. Before

starting in the description of the dynamics model, it should be stressed that all

the models considered can be valid only for early stages of tumor growth when

the processes of invasion and metastasis are not of critical importance.

Panetta-Kirschner model takes into account the interactions between three dif-

ferent populations:

• Activated immune system effector cells x(t);

• Tumor cells y(t);

• Cytokine Interleukin-2 z(t);

The model is as follows

dx
dτ

= cy − µ2x+ p1xz
g1+z

+ s1

dy
dτ

= r2y (1− by)− axy
g2+y

dz
dτ

= p2xy
g3+y
− µ3z + s2

(4.1)

The immunotherapy is studied considering the inflow of both IL-2 s2 and adoptive

cells s1.

The first equation describes the effector cells population. The growth of these

cells are stimulated by the presence of the tumor and by the stimulation by IL-2.

The tumor influences the rate of change of the effector cells with its antigenicity
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Parameter Description Value Unit

c antigenicity of the tumor [0-0.05] days−1

µ2 Inverse of the effector cells lifespan 0.03 days−1

p1 Effector cells proliferation term 0.1245 days−1

g1 Michaelis constant 2x107 vol

g2 Michaelis constant 105 vol

r2 Logistic equation parameter 0.18 days−1

b Logistic equation parameter 10−9 vol

a Strength of the immune response 1 days−1

µ3 loss/degraded rate of IL-2 10 days−1

g3 Michaelis constant 103 vol

Table 4.1: Parameters of Panetta-Kirschner model

(cy). The stimulation by IL-2 is described with a term of Michaelis-Menten1 form

that takes into account the saturation of the immune system. s1 represents the

control term that describes the injection of effector cells such as LAK or TIL

cells. LAK cells are obtained from in vitro culturing of blood leukocytes removed

from patients with high concentration of IL-2, while TIL cells are obtained from

lymphocytes recovered from the patient tumors, which are then incubated with

high concentration of IL-2 in vitro. The natural death of these cells is represented

through a term that depends from the inverse of the average life of the effector

cells (µ2x).

The second equation describes the tumor cells behavior. A logistic term describes

the rate of change of tumor cells. The interaction between the tumor and the

immune system response is described with a Michaelis-Menten term that depends

from the strength of the immune response (
axy

g2 + y
). This term indicates the

limited immune system response.

The third equation describes the rate of change for the concentration of IL-2.

The tumor cells stimulate the effectors cells to produce IL-2. This aspect is

described with another Michaelis-Menten term that takes into account the self

limiting production of IL-2 (
p2xy

g3 + y
). As for the effectors cells there is a term

that describes the degradation rate. s2 is the treatment term that consists in the

external input of IL-2.

The model behavior strictly depends on the antigenicity of the tumor. Antigenic-

ity is the property of a substance to act as an antigen and in this way to stimulate

the immune system and activate effectors cells. In a patient that shows low anti-

genicity the response of the organism tends to a tumor regime state. The growth

1Michaelis-Menten equation describes enzyme catalytic reactions in physiological process
[source wikipedia]
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of the tumor cells is rapid and the trend is monotone with a magnitude near its

carrying capacity. Setting c = 0.02 a stable limit cycle is shown in figure 4.2.

The tumor is detectable only during some small time intervals. The magnitude

of this case is in order of 10% of the tumor carrying capacity.

Figure 4.1: System variables without controls. Tumor carrying capacity is scaled

to 1e+5. Antigenicity is set as c=5e-5

With value of the antigenicity set to 0.035 the oscillations of the system become

small and damp out quickly. The system appears hard to control in the cases

with low antigenicity, because growth is rapid and takes place from the early days

even when the tumor is not detectable.

The dynamics of the system is strictly dependent on the parameters choice. The

parameters vary not only for the specific cancer considered, but also from one

individual to another. The parameters used in the following analysis are the most

typical [28] and are reported in table 4.1. The solution of the optimal control

problem has been evaluated in a nominal condition, and only with a statistic

analysis on the variation of both the initial values and on the parameter it is

possible to evaluate the robustness of the strategy.

A sensitivity analysis has been done on the model parameters in order to identify

the component of the model that influences most significantly the final tumor

concentration after a system evolution of 100 days. Each parameter was perturbed

from the nominal value by 1%, and the variation of the final tumor concentration

was evaluated. In the nominal condition the value of the antigenicity has been set

at the value 5e-5. The results of this parameter sensitivity analysis are shown in

figure 4.4. The system is most sensitive on the parameter of the logistic equation
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Figure 4.2: System variables without controls. Tumor carrying capacity is scaled

to 1e+5. Antigenicity is set as c=0.02

Figure 4.3: System variables without controls. Tumor carrying capacity is scaled

to 1e+5. Antigenicity is set as c=0.035
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Figure 4.4: Parameters sensitivity analysis

that represents the growth model of the tumor. This aspect suggests that the

aggressiveness of the tumor is the main factor that influences the clinical therapy.

Less important appear the factors representing the immune response. The system

is not sensible to small variation of the tumor antigenicity, thus in contrast with

high variation that can determine a completely different dynamic behavior of the

system if sufficiently far from bifurcation points.

The previous figures show the behavior of the system without control, it is also

important to analyze the system dynamics considering the actual standard treat-

ment therapy (see figure 4.5). Analyzing an IL2 monotherapy with doses of

720000 I.U/kg administered following the scheme presented in figure 3.5 the re-

sults are shown in figure 4.6 et 4.7.

In presence of a tumor with antigenicity less than the value 0.02, the treatment

is inefficient. The results are essentially side effects due to toxicity of the drug

and the tumor shows a stable progression. The standard treatment appears to be

ineffective in stimulating the immune system. It is necessary to evaluate different

treatment strategies to obtain favorable results. These strategies will then be

subsequently verified experimentally, but certainly a numerical evaluation can

also serve as a spin off to study new therapeutic strategies.

Despite these results the outcome are completely different for a patient with

antigenicity higher than the value 0.02. After the first treatment cycle the tumor

cells reach their maximum peak of concentration and then in the break period

they start a rapid decreasing. The second cycle is useless, because the immune

system reach the concentration required to eradicate the tumor.

The standard therapy appears to be effective for patients with higher value of

antigenicity, and the structure of the treatment appears related with the tumor-

immune system dynamic. To sum up the result shows two completely different

biological outcomes:
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Figure 4.5: Standard drugs therapy

Figure 4.6: System dynamics with standard treatment therapy. High antigenicity

c=0.035
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Figure 4.7: System dynamics with standard treatment therapy. Low antigenicity

c=5e-5

• the effective action of the immune system ends up with the destruction of

the aggressive host;

• the ignition of the immune system ends up with an uncontrolled growth of

the immune system cells concentration.

Particular attention is required for low value of antigenicity. These cases must

be analyzed in order to define a strategy that can permit the eradication of

the neoplasia or in the worst cases an increment of the expected life time. In

Panetta-Kirschner the dynamics of the controlled system is considered, and one

of the main considerations about monotherapy is that if IL-2 administration is

low, there is no tumor free state. However if the IL-2 input is high, the tumor can

be cleared but the immune system grows without bounds. This aspect is related

with a constant rate of administration. The following analysis aims to clear the

tumor limiting the immune system growth. An optimal control therapy will be

presented, but only as a prologue for the next chapter in which a more detailed

model will be analyzed. In fact the PK model was developed in order to analyze

the tumor dynamics and not specifically for describe the immunotherapic therapy

and an optimal control problem.
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4.1 Equilibrium points

This section aims to identify the dynamic properties of the PK system. In par-

ticular the attention is focused on the existence of equilibrium points. From the

therapeutical point of view the existence of stable free tumor state equilibrium

leads to a permanent response to the therapy protocol. This aspect may not only

increase the expectancy of life, but it can also means a complete tumor regression.

The first step is the identification of the equilibrium points. A generic nonlinear

system could have a number of equilibrium points starting from zero to infinity

[10].

In order to identify all the variety of equilibrium point of F (y(t),u(t), t) = 0

a numerical procedure has been implemented. An initial values grid has been

created. This one respect the condition y0 ∈ D where D is the admissible domain.

In this way it is possible to explore all the attraction regions. The equilibrium

points vector y must be positive definite in order to respect the physics of the

problem. The positivity of the solution is due to the Yang lemma [5] if the initial

solution y0 is such that y0 ∈ R3
+.

The roots of the equation F ((t),u(t), t) = 0 has been evaluated using a solver that

is an implementation of the Trust-Region Dogleg Method. In brief this technique

aims to increase the robustness of the Newton method when starting far from

the solution and it consists in the minimization of a functional cost that evaluate

if the solution obtained at the current iteration is better than the previous. An

example of this functional implemented in the Matlab function fsolve is

mindf(d) =
1

2
F (xk + d)T (F (xk + d) (4.2)

In order to identify the dynamic properties of the system we have to identify

the analytic Jacobian matrix, in this way the next step is the evaluation of the

stability of the equilibrium points indentified. The Jacobian matrix of the PK

system is

J =


−µ2 + p1y3

g1+y3
c p1y1g1

(g1+y3)2

− ay2
g2+y2

r2 (1− 2by2)− ay1g2
(g2+y2)2

0
p2y2
g3+y2

y1p2g3
(g3+y2)2

−µ3


In order to evaluate the stability of the system we have to evaluate the eigenvalues

of the Jacobian matrix at each equilibrium points. In particular the analysis has

been made for different values of the parameter c as specified in [28]. As the

parameter change the trivial solution is always a saddle point. It is possible to

divide the dynamical behavior of the system in three relevant cases:

1. c = 5e-5. In this case two different unstable areas are identified with dif-

ferent physic characteristics. The variable that represents the tumor cells
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assumes values at the extreme of the domain. These ones represent the

two main states: tumor free or tumor regime. A stable region is localized

with high value of the tumor cell concentration (major than 0.98) near the

carrying capacity. The initial grid must be accurate enough to identify this

singular point.

2. c = 0.025. With this value of the parameter all the stable regions disappear.

All of the unstable singularities are in the region tumor free.

3. c = 0.04. The unstable region remains similar as with the previous value

of the parameter. There is a stable region with high values of the three

variables; this means a tumor regime state.

From the results (Figures 4.8 - 4.10 ) we cannot say anything about the future

evolution from the unstable points. It is impossible to say a priori that starting

from an unstable equilibrium point we will reach a tumor-free or a tumor-regime

state.

A condition required for the presence of free-tumor equilibrium states can be

evaluated considering planar equilibrium.

In particular the x-z planar equilibrium is(
s1 (g1µ3 + s2)

µ2 (g1µ3 + s2)− p1s2

, 0,
s2

µ3

)
(4.3)

and exists if

µ2 >
p1s2

g1µ3 + s2

(4.4)

A simple consideration leads to the fact that with the IL-2 monotherapy (s2 = 0)

it is possible to reach a tumor clear state, while considering a general therapy no

further considerations can be done. Another important consideration from the

planar equilibrium with tumor free state is that it is possible to have equilibrium

with zero tumor cells different from the trivial solution in case of therapeutic

treatment.
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Figure 4.8: Equilibrium points c= 5e-5 with an initial grid of 503 points

Figure 4.9: Equilibrium points c= 0.025 with an initial grid of 103 points

Figure 4.10: Equilibrium points c= 0.04 with an initial grid of 203 points
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4.2 Optimal control Problem

The goal of the control is to identify the correct scheduling and dose of the drugs

in order to decrease the tumor mass. The dynamics of the PK model in a compact

explicit form is written as

ẏ = f(y(t),u(t)) (4.5)

where f stands for the vector field of the PK system, u = {s1, s2}T is the drugs

injections and y = {x, y, z}T . We need to identify a functional cost F. The first

step is to use Mayer form trying to minimize the final tumor concentration

F = Φ(y(tf )) (4.6)

where Φ(y(tf )) is equal to y(tf )− ρ = 0 and ρ is equal to zero.

This solution poses no limits on the controls and contains no costs related to the

dynamic evolution of the systems. The solution prescribed in [14] defines costs

related with the treatment process and considers a running cost on the tumor cells

aims to make the control active against the tendency of a uncontrolled tumor to

growth to its tumor regime state.

We consider this performance index as a first step of the optimization, because

both the constraints and the problem are well-posed. Analyzing the results ob-

tained with this cost, which identify the primary target, we can improve the cost

to be minimized after an accurate analysis of the results obtained from 4.6.

Boundary conditions

In general in a minimization problem we have to define initial and final conditions.

In particular almost every astrodynamics trajectories design problems defines an

initial orbit, e.g. LEO parking orbit, thrust arc, and a final target orbit. This

final condition must be satisfied in order to accomplish the mission. Think about

a rendez-vous problem the accuracy of the final position is one of the main targets.

In an immunotherapy optimal control problem this aspect is a little more different.

The initial conditions are defined by the healthy state of the patient. These initial

conditions can be also defined as an output of a previous treatment. Clearly every

patient has different initial conditions and the final optimal protocol in general is

not good if considering a different subject. We select a possible scenario in which

the patient have an amount of 8 x 106 tumor cells after a surgical treatment as

in [26]. The other conditions are left free to the optimization; this because this

model does not describes the dynamics of the different types of immune system

cells. It considers only a term that describes only in general the dynamic behavior

of the immune system. With this level of approximation is not required to define

an accurate initial condition, while in the following model we will impose all the
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values from literature. The formalization of the initial boundary condition can

be written as

φi : y(0)− 8 · 10−6 = 0 (4.7)

where φi is a scalar.

As a difference from a classical astrodynamics problem in trajectory design the

final conditions are not specified. This because the final tumor condition has to be

minimized, and the other state variables can assume every values that are in their

admissible domain D ∈ [0, 1]. This assumption is verified with the introduction

of lower and upper bounds on the state y. The vector of lower and upper bounds

for the adimensional problem is respectively a vector of zeros and a vector of ones.

4.2.1 Direct transcription formulation via collocation

The optimal control problem can be view as a time discretization of the continuous

problem. Time is divided with a grid of N points in order to define N-1 intervals.

For each phase it is possible to define a vector of variables defined as

xT = (x(1), y(1), z(1), s
(1)
1 , s

(1)
2 , .., x(N), y(N), z(N), s

(N)
1 , s

(N)
2 ) (4.8)

The respect of the differential equations of the system can be reached with an

approximation. We use the Hermite-Simpson method in order to define n(N-1)

defects equation :

ςk = yk+1 − yk −
hk
6

(
fk + 4f̂ + fk+1

)
(4.9)

where y is the n=3 rows vector of the system variables, and fk is the right-hand-

side of the system equation evaluated at each phase k. f̂ is defined as

ŷ =
yk+1 + yk

2
+ hk

8
(fk − fk+1)

f̂ = f (ŷ, tk + hk/2)
(4.10)

Considering the initial boundary condition we can define a nonlinear constrain

vector as:

c(X) = {φi, ς1, .., ςN−1}T (4.11)

As said previously, one of the advantages of the direct transcription method is that

it can be carried out avoiding the explicit derivation of the necessary conditions

for the optimality. Such feature makes the method appealing for complicated

applications and assures versatility and robustness. Furthermore, this procedure,

in contrast to indirect methods, does not need to deal with the Lagrange mul-

tipliers, whose lack of physical meaning makes very difficult to find appropriate

initial guess solutions.
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In summary the NLP problem states to find the optimal vector x that is the

solution of

minF (x) (4.12)

subject to c(x)=0.

Where F(x) is the objective function translated in the formalism of the direct

transcription as

F (y) = yN − 0 (4.13)

Figure 4.11: States and controls. Minimization of tumor cells at therapy conclu-

sion.

Figure 4.11, obtained with a uniform mesh of 133 points, confirms the results

predicted in [28]. The case analyzed is a low antigenicity tumor with c=5e-5.

The choice of this value for the antigenicity is due to the fact that this is the

worst condition possible. From the figures that show the trend of the free system

dynamics this is the worst scenario for the control. Low input of controls are

not sufficient to contrast the tumor growth and to decrease the final tumor mass.

With large amounts of administrated IL-2, the tumor is cleared but the immune

system grows unbounded as the IL-2 concentration reaches a steady-state value.

The optimization does not have any constraints on the control maximum values

and this aspect can be seen in the final period of treatment. This uncontrolled

growth of the immune system represents a side effect explained in the previous
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section. The control acts with success only at the end of the treatment, leaving

the cancer constant for the most part of the protocol. This is related to the path

constraints on the system variables that limit their growth.

It seems that without an adequate concentration of LAK or TIL cells injected,

the IL-2 administration during the first stage of the treatment is not sufficient to

defeat the tumor. Recent studies [39] are in perfect agreement with this result,

confirming that the best immunotherapic treatment consists in the cells transfer.

With the functional 4.13 the optimal solution tends to increase the concentration

of effector cells to infinite. The solution obtained is due only to the fact that this

variable is limited, and a solution that leads to a growth of these immune system

cells at the beginning or in the middle of the treatment tend to be an unfeasible

solution. The goal is to limit these effects in order to reach a real minimum. The

solution obtained, despite it leads to zero the final tumor cells concentration,

appears to be completely unsatisfactory.

In order to reduce this side effect a term that takes into account the total amount

of drugs administered during the therapy has been added to 4.13.

The new performance index can be defined as:

F (x) = Φ(y(tf )) + w

∫ t0

tf

u(t)uT (t)dt (4.14)

where w is a weight that can tune an appropriate balance between the two con-

trasting objective.

Considering Lagrange formulation of the functional leads to an integral compu-

tation by numerical quadrature once the controls uj , j = 1, . . . , N are

given.

Using as initial guess solution the one obtained with the previous functional,

figure 4.12 and 4.13, show the dynamic behavior of the controlled system and the

control variables respectively.

The tumor in the first phase of therapy from the initial concentration underwent a

considerable decrease. In this period the initial population of cells of the immune

system performs this task. In fact, the aid provided by the external control is

minimal.

When the cells of the immune system cannot effectively carry out their action

of contrast, cancer cells start to grow. As a result, the control, in particular the

administration of LAK or TIL cells begins to increase. Their action is only useful

when the tumor cells have reached a concentration approximately equal to half

the initial one.

The treatment protocol begins a new period lasting 200 days, in which the control

action performs the task of maintaining nearly constant the concentration of

tumor cells. The tendency to growth of the tumor is countered by a further

increase of adaptive cells implanted.
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Figure 4.12: State variables. Minimization of tumor cells at therapy conclusion

and minimize drugs assumption.

Figure 4.13: Control variables. Minimization of tumor cells at therapy conclusion

and minimize drugs assumption.
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After an interval of 300 days, the control is able to reverse the trend of the tumor

to reach a state of high concentration tumor-regime.

The PK model has been developed to describe the dynamic characteristics of the

tumor, in particular it manages to describe states in which the cancer is dormant

and the tendency of oscillatory growth. This is what happens in the third and

final phase of treatment. The decrease of tumor cells is the cause of the decrease

of the control actions required. Further reductions would lead to a regime state

for the concentration of tumor cells, or given the concavity to a further increase

in the population.

For this reason, further increasing of the concentration of LAK or TIL cells leads

to the presence of an inflection in the evolution of the cancer population that

ultimately leads to a complete regression.

The main control action is carried out by adaptive cells that remain throughout

the processing of an order of magnitude higher than the dose of IL-2. They start

to increase their dose when the Effector cells population reaches concentration

values higher than those of the neoplasia.

The greater relevance of the action taken by the administration of LAK or TIL

cells is to confirm that at present is the most effective treatment in immunother-

apy.

The constraints on the drugs assumption permits a solution with injections dif-

fused over the entire period with doses less than three orders than the first solu-

tion.

As we have seen in the first optimization this aspect is of primary importance

in order to prevent side effects. The growth of the immune system cells remain

constant, but with an increase rate limited.

4.3 Hybrid Algorithm optimization

The strategy we adopted is continuous type and can be administered through an

elastomeric or electronic pump. Current practice, as we have seen in the previous

chapter, consists of treatments at discrete time intervals. More significant is to

evaluate improvements in what has already been tested at the clinical level. Fur-

thermore, the pumps have a range of flows defined and therefore they cannot be

used to administer arbitrary dose. It is therefore necessary to analyze a strategy

involving discrete doses of drug.

The purpose of the analysis of the optimal control problem on this model is that of

being the prologue to the subsequent analysis of a more complex model developed

specifically to analyze the treatment. We leave to a subsequent analysis, the

analysis of how to make the matching problem between continuous and discrete

approach. Indeed we are not going to use the solution to the problem continuing
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to do some initial considerations on the solution of the discrete problem, but the

hybrid method we have developed. Before analyzing the algorithm it is necessary

to reformulate the problem through the multiple shooting approach.

The time domain is always divided into intervals. Unlike the formulation through

collocation, the number of intervals does not affect the accuracy of the dynamic

that is assessed accurately through a Runge-Kutta integration of 7-8th order. The

number of intervals must however define the structure of the multiple shooting

approach and it is closely linked to the number of injections. The time domain

is in fact divided into m +1 intervals, where m is the number of the injections.

t0 = t1 < .. < tm+1 = tf (4.15)

The optimization variables can be written as

xT = (s
(1)
1 , s

(1)
2 , ..., s

(m)
1 , s

(m)
2 ,∆t(1), ...∆t(m+1)) (4.16)

where s
(i)
1 and s

(i)
2 are the control at each period i and ∆t(i) is the drug holiday.

We have chosen to administer at the same moment both the adaptive cells and

IL-2, in this way the drugs holiday intervals are the same. Considering different

intervals of administration lead only a doubling of ∆t(i) variables.

At every interval the free dynamics are integrated starting from the state variable

yi+ at the previous interval and obtaining

yi+1
− = φ(yi+, t

i+1, s
(i)
1 = 0, s

(i)
2 = 0) (4.17)

where φ is the flow of the PK system at time ti+1.

The impulsive control at each interval lead to a new state yi+1
+ defined as

yi+1
+ = yi+1

− + Iui (4.18)

where ui =
{
s
(i)
1 , 0, s

(i)
2

}T
.

The algorithm starts from i=1 and with yi+ equal to the initial healthy state of

the patient.

The hybrid algorithm does not require an initial guess solution. Each individ-

ual of the population is generated with a random procedure. This aspect makes

unnecessary to provide an initial solution a priori, and also combined with the

characteristic of genetic algorithms to search on the entire space, allows the eval-

uation of a global optimal solution and avoid the fallout on local minima.

An extensive search in the space of solutions is guaranteed by the average distance

between individuals. This value should not be too high because the algorithm

would not find an optimal solution and should not be too low because it would lead

to fall on a local optimum solution. Figure 4.14 shows how the set of parameters

allows us to have a good diversity among individuals in the initial generations
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Figure 4.14: Genetic Algorithm optimization. Fitness function

in order to have a global search, while the distance is then decreased in order to

refine the optimal solution.

The performance index is the same used in 5.10 in order to take into accounts

limit in the drugs assumption. In fact we have described in the introduction on

optimization algorithms that one of the GAs challenge is the inclusion of con-

straints. In order to avoid finding a solution completely infeasible it is therefore

necessary to introduce the penalty function. Otherwise there is an indiscriminate

growth of immune system cells.

This method introduces the so called soft constraints which cannot be satisfied,

but the evolution of the population will tend to eliminate those individuals who

show high levels of control and in this way tend to have a Dendritic cells concen-

tration over the upper-bound.

The chromosome of the best individual of the last generation is used as a first

solution of the direct transcription via multiple shooting. As described in the

previous chapter this procedure is designed to prevent that the final solution is

sensitive to an arbitrary initial solution that can lead to convergence on a local

minimum. Furthermore, the gradient-based methods allow easy management of

constraints. So with this hybrid algorithm we can exploit the advantages of both

methods, converging to a global optimum that satisfies the constraints.
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Figure 4.15: Controlled system dynamics

The first oscillation in the concentration of the population of tumor cells deter-

mines the time interval in which it is conducted the first control action. The

injections act to prevent the tendency of the uncontrolled system to reach a value

close to that of the carrying capacity of the tumor. It is possible to see from

figure 4.15 that the population is kept under control during the entire protocol.

With the discrete optimal control there is no evidence of the general trend of the

continuous controlled system in which there is a central phase of treatment where

the concentration reaches a local maximum or global.

The optimal solution determines a treatment that can be divided into two similar

phases with time duration equal to half the entire time interval. In each of these

two phases injections of adaptive cells have a structure in which the first injection

has a high dose and the subsequent maintains the concentration of the helper cells.

Injections of IL-2 instead present a maximum concentration in the middle of the

treatment. We demanded that the injections of the two different drugs were

made at the same time point. Although this, the solution presents time instants

in which it is present only one kind of control. The optimization has led to zero

the concentration of the other control. This is not a consequence of the fact that

the two drugs are mutually exclusive.

The two controls could lead to a better solution if given at different time instants.
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Figure 4.16: LAK or TIL cells administrations

In order to take into account this aspect the best solution is to consider the same

algorithm structure that includes both injections of LAK cells and IL-2 in the

same time instant. At the same time it is possible to increase their number so

that the optimizer, if required, bring one or all the two concentrations levels to

zero.

The solution does not show similarities with those assessed through continuous

control. The genetic algorithm in fact analyzes the entire search space in stochas-

tic manner without any sensitivity on the initial solution generated randomly.

One way to go and assess a discrete solution that does not deviate from the solu-

tion of the continuous problem is to use this one to evaluate a first guess solution

of the discrete problem. This procedure avoids considering the optimization with

the genetic algorithm.

We will discuss in the next chapter on a more complex model that this techniques

does not necessarily lead to a global optimum solution because of the sensitivity

of algorithms based on the gradient to the initial solution.
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Figure 4.17: IL-2 injections

4.4 Conclusions

PK model describes the role of IL-2 in tumor dynamics, particularly, long-term

tumor recurrence and short-term oscillation in a mathematical perspective. The

aims of our analysis are only to describe the different phases involved in the

resolution of an optimal control problem, because of the simplicity of the model.

Despite this, the results obtained are in full agreement with [28] and all the

subsequent work on the same dynamic system:

• If the IL-2 input is high, the tumor can be cleared but the immune system

grows without bounds causing problems such as a capillary leak syndrome.

• With the combined treatment with ACI and IL-2 and in presence of low-

antigenicity there is a region of tumor clearance.

• The results indicate that a treatment with ACI may be a better option

either as a monotherapy or in conjunction with IL-2.

One of the fundamental aspects of the analysis of a nonlinear ODE system is the

identification of all the equilibrium points and the evaluation of their stability.
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The free dynamics showed that without any control the patient that presents a

tumor with low antigenicity may tend to two areas of stable attraction: the first

without the neoplasia while the second one is a tumor regime state. We can

define the ultimately optimal solution the one that determines the final state of

the system at the end of therapy in the first type of stable equilibrium so that

the patient’s response is stable and permanent.

Starting from these informations we have analyzed the problem of optimal control.

The choice of continuous or discrete type of approach is essentially due to the

next stage of clinical trials. In fact at numerical level both choices give rise to

acceptable solutions.

The algorithm that we have developed has allowed us to obtain the same consid-

erations that were made in [28]. This results served as a validation of these tools

that will be used on a more complex model in the next chapter.

Obviously, given the origin of the mathematical model and particularly its aim

for the study of oscillatory dynamics of the tumor mass in the interaction with

the immune system rather than the study of control therapy the results obtained

in terms of therapy protocol can only provide some general guidance.
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Castiglione-Piccoli model

Kirschner-Panetta model is one of the first models that describe the dynamics

relationship between tumor and immune system. As we have seen in chapter 2

the immune system response is not unique. It is necessary to consider a model

that takes into account the dynamics of different immune system cells, describing

the dynamics of each different population.

The ODE model of the tumor-immune interaction proposed by Castiglione and

Piccoli [16] is quite simple and is likely to be one of the few specialized for

autologous dendritic cell transfection therapy. Dendritic cells that are the most

efficient antigen representing cells in vertebrate immune systems, are used in this

model as the source of tumor associated antigen TAA presentation. Dendritic cells

are introduced externally and ignite the immune response against themselves and,

as side effect, also against the tumor cells. The model proposed by Castiglione

and Piccoli is the following:

dH

dt
= a0 + b0DH

(
1− H

f0

)
− c0H (5.1)

dC

dt
= a1 + b1I (M +D)C

(
1− C

f1

)
− c1C (5.2)

dM

dt
= b2M

(
1− M

f2

)
− d2MC (5.3)

dD

dt
= −d3DC + u (5.4)

dI

dt
= b4DH − e4IC − c4I (5.5)

The first equation models the concentration of the tumor-specific CD4 T cells.

The first (a0) and last term (c0H) represent the birth and natural death of cells.

Another term (b0DH (1−H/f0)) is the proliferation of cells induced by dendritic

cells. This element can consider a phenomenon of saturation. The second equa-

tion represents the tumor-specific CD 8 T cells. The cytokine IL-2 stimulates
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Parameter Description Value Unit c=cells

a0 CD4 T birth rate 10−4 ch−1mm−3

b0 CD4 T proliferation rate 10−1 c−1h−1mm−3

c0 CD4 T death rate 0.005 h−1

f0 Carrying capacity of CD4 T 1 cmm−3

a1 CD8 T birth rate 10−4 ch−1mm−3

b1 CD8 T proliferation rate 10−2 c−1h−1mm−3

c1 CD8 T death rate 0.005 h−1

f1 Carrying capacity of CD8 T 1 cmm−3

b2 1/2 saturation const of tumor 0.02 h−1

d2 killing by CD8 of tumor 0.1 c−1h−1mm−3

f2 Carrying capacity of tumor 1 cmm−3

d3 CD8 T killing of DC 0.1 c−1h−1mm−3

b4 IL-2 production by CD4 T 10−2 c−1h−1mm−3

c4 IL-2 degradation rate 10−2 h−1mm−3

e4 IL-2 uptake by CD8 T 10−7 c−1h−1mm−3

Table 5.1: Parameters of Castiglione-Piccoli model

CD8 T cells recruitment and proliferation. In analogy to the helper cells there

are terms (a1, c1C) that describe the birth and natural death of these types of

cells. The term (b1I (M +D)C (1− C/f1)) that describes the proliferation takes

into account the complicated interaction with the tumor and dendritic cells, show-

ing in this case a phenomenon of saturation. The population of tumor cells is

described in the third equation. Similarly to the previous equations, there is a

term (b2M (1−M/f2)) of proliferation and saturation. The law of growth of

tumor cells is logistic type and is based on experimental data obtained from im-

munodeficient mice. A term (d2MC) that causes the regression of tumor mass is

directly proportional to the presence of cytotoxic CD8 T cells. The fourth equa-

tion describes the population of dendritic cells. These cells act as an activator

on cytotoxic CD8 T cells. This action characterizing their contribution to the

response of the immune system and leads them to decay. In fact, after a certain

number of activations these cells are destroyed by the immune system. The in-

jection of cells u is the control variable. Dendritic cells specific for the tumor are

prepared in vitro and then administered as a vaccine.

The last equation takes into account the dynamics of interleukin IL-2. The first

term (b4DH)shows that an increase in concentration is due to dendritic cells and

thus also to CD4 T cells. The production of IL-2 due to the cytotoxic CD8 T

cells is neglected, because these cells produce small quantities compared to CD4

T cells. The other members describe the consumption of this cytokine due to

natural death and decay that occurs when they have done their task to stimulate
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the immune system response.

In practice, however, there are other mechanisms of immune evasion of cancer

due to its ability to down regulate the immune recognition. Those mechanisms

are not taken into account in the present model and we will stress on this point

during the work.

The other aspect to consider is that the immune system is able to act before the

cancer has reached the phase of carcinoma in situ simply because, after a solid

tumor is formed, it is usually unable to get in contact and kill malignant cells

that are in the inner part of the tumor mass.

Table 5.1 shown the parameter used in the model. The setting of these param-

eters starts from the set of values used in Kirschner and Panetta (1998) and by

tuning the system to reproduce qualitatively the dynamics of the tumor-immune

competition.

Figure 5.1: Parameter sensitivity analysis

In order to identify the sensitivity of the system to the parameter figure 5.1 shows

the parameter sensitivity analysis of the system. This evaluation has been done

considering a variation of ±1% in the parameter and then integrating the system

equation over 25 days. The results emphasize that the tumor growth is controlled

with the parameter of the logistic growth law in particular the system presents

an high sensitivity to the variation of the tumor carrying capacity. The tumor

growth law is one of the most studied aspects in the tumor immune system mod-

elisation. At the end of the chapter we will consider another growth law in order

to evaluate the robustness of the solution obtained. The other parameter that

strictly influences the dynamic behavior of the cancer population is the antigenic-

ity. This aspect does not create any surprise, because we have stated before that

the value of this parameter influences the interaction of the tumor-immune sys-

tem. In the analysis only slightly different value has been considered, while we

have seen in the Panetta-Kirschner model that considering very different values
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5.2.1: System variables 5.2.2: Without tumor cells

Figure 5.2: System behavior without control

of the tumor antigenicity determines a radical change in the system trajectory.

In fact KP model was created in order to analyze this particular aspect of the

neoplasia. Figure 5.2 shows the dynamic behavior of the system without control.

It is evident that the value of the antigenicity leads to a solution that we have

identified previously as tumor regime state. In the Panetta Kirschner model this

solution is obtained with patients that show low-antigenicity values. The final

concentration of the cancer cells is near their carrying capacity.

The other variables that identify the immune system reach asymptotic value in

half time interval considered. In particular the concentrations of the IL-2 and of

the dendritic cells tend to decrease. This aspect is strictly related to the fact that

in equation 5.4, that describe the population of dendritic cells, it survives only a

term that it is necessarily negative over the whole integration time.

5.1 Equilibrium points

In this section, as in the analysis of PK model, a grid of initial values was used

in order to identify all the stationary points of the system. As a matter of fact

different initial conditions can lead to different points of attraction. In particular

we are interested in the equilibrium points that show a low final tumor concen-

tration. The solution of the nonlinear system of equation F (ŷ) = 0 is obtained

via Trust-Region Dogleg Method implemented in the fsolve Matlab function.

A linearization of the CP model is required in order to make an eigenvalues
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analysis. The Jacobian matrix is

J =



b0D
(
1− 2Hf0

)
− c0 0 0 ...

0 b1I (M + D)
(
1− 2C

f1

)
− c1 b1IC

(
1− C

f1

)
...

0 −d2M b2

(
1− 2M

f2

)
− d2C ...

0 −d3D 0 ...

b4D −e4I 0 ...

... b0H
(
1− H

f0

)
0

... b1IC
(
1− C

f1

)
b1 (M + D) C

(
1− C

f1

)
... 0 0
... −d3C 0
... b4H −e4C − c4


From the eigenvalues analysis of the Jacobian it is possible to identify the stable

and unstable region of the system. In particular if all the eigenvalues of J have

negative real parts that the equilibrium point obtained is asymptotically stable.

Figure 5.3: Equilibrium points with an initial grid of 105 points

Figure 5.3 shows the equilibrium points of the system focusing the attention on

the variables that represent effector cell, tumor cell and IL-2.

Considering the results obtained with PK model we can make some comparison

and assumptions. As in the previous model with a low value of the antigenicity

the stable regions are strictly related with the extreme value of the tumor-regime

state with low values of the interleukin concentration. Interesting results is the

identification of stable points with medium concentration of tumor cells [0.2-

0.5]. These points identify a state in which the tumor is dormant. The tumor is

present but it not decreases or increases its mass. We have to note that there are

no stable equilibrium points with a final cancer cells concentration equal to zero.

This aspect leads to two main consequences:
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• a final state in which the tumor concentration is less than 0.1 can be main-

tained only with a permanent protocol;

• if the final tumor concentration after the protocol is around 0.2 then the

system tends naturally to be attracted to a stable equilibrium state with a

low cancer concentration.

When we have identified the solution of the optimal control we have to compare

the final concentration of the tumor cells to those of the stable equilibrium points

in order to consider the future development of the solution and of the protocol.

5.2 Optimal control Problem

This section aims to present the problem of the optimization of the CP system

of equations considering the implementation in the algorithm formalism. This

process looks like a map between the physical phenomenon, the required per-

formances and constraints and the algorithm structure. The structure of the

variables that are the base of the algorithm will be presented in order to better

understand the direct methods of optimization used.

Boundary conditions

Boundary conditions are defined in terms of initial values of the state vector.

Initial conditions can be different from one patient to another. As reported in

[26] the different cells populations have the same magnitude, with a concentration

almost twice than the other for the tumor cells. We consider a condition in

which the tumor cells are over the 50% of its carrying capacity, and the other

population shows values mediated from those presented in the reference [26]. The

formalization of the initial boundary condition can be written as

φi : y(0)− yi = 0 (5.6)

where yi is a vector whose components are represented in table 5.2. The adimen-

Cell Helper Cytoxic Tumor Dendritic IL2

Concentration [adim] 0.1 0.1 0.6 0.1 0.1

Table 5.2: Initial patient condition

sionalization of the variable allows generalizing the problem also considering an

initial situation in which a surgical treatment has been made to reduce tumor. In

this case the number of cells can be considered reduced by an order of magnitude

[31][26]. The role of this surgery pretreatment is not completely clear, but from
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a clinical study [31] there was evidence of positive results. Surgical treatment

before immunotherapy improves response and increases the chance of survival.

This aspect is related to the fact that in addition to a decrease in tumor mass,

there is a reduction of immunosuppressive factors. It is possible to proceed in a

different way by considering a pre-treatment of chemotherapy to reduce the im-

munosuppressive factors. In this case it is necessary to have a dynamic model that

describes the interactions with the tumor and the immune system. The initial

conditions are not provided directly, but are the result of optimization. Knowing

the initial state of the patient before the pretreatment ypt, the condition at the

beginning of the immunotherapy are given by yi(t0) = ϕ(

As in the previous model it is possible to identify a variables vector with the

following structure:

xT = (h1, c1,m1, d1, i1, u1, .., hN , cN ,mN , dN , iN , uN , tf ) (5.7)

The limits of each variable are fixed to their maximum normalized value. In this

model the lower and the upper bounds are fixed with vectors of zeros and ones.

The other equality constraints are defined in order to respect the differential equa-

tions of the system. The Hermite-Simpons method define N − 1 defects equation

that approximate each system equation. To sum up a total of n(N − 1) defect

equations can be defined. It is worth observing that this integration scheme

allows computing analytically the Jacobian of both the equality and inequality

constraints, and the gradient and the Hessian of the objective function. These

feature speeds-up the solution of the Karush-Kuhn-Tucker for the nonlinear pro-

gramming and avoids the introduction of any numerical error.

The final time is added to the variables vector, in this way the optimization

process will look for therapy time span. It is necessary to set a guess for the final

time in order to start the iteration.

If the cost function does not directly depend from time variable, the result ex-

pected tends to an optimal solution with a final time slightly different from the

first iteration value. The consequence is that the guess final time is a crucial

parameter to set. In order to prevent the convergence to wrong solution the time

constraint inequality tf greater than the initial time ti should be added as a row

to the constraint vector. Another solution is to set a lower bound major than the

initial time.

The initial time is fixed and set to zero because the problem is autonomous.

The first step of the optimization is to use Mayer form trying to minimize the

final tumor concentration as in the previous model. This is the main task of

the optimization. No other terms in the functional cost means no limit or soft

constraints on the other state and control variables. The merit function is
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F (x) = Φ(M(tf )) (5.8)

where Φ(M(tf )) is equal to M(tf )− ρ = 0

Figure 5.4: State variables

Figures 5.4 and 5.5 shows the optimization results with a uniform grid of 235

points. In order to minimize the amount of tumor cells an initial high dose of

drug is injected in the patient. With this solution there is a rapid increase in

concentration of the immune system cells. These ones in less than one hundred

therapy days reach their maximum values over the malignant cells concentration.

This aspect is in analogy with the PK model, where a high dose of drugs lead to

a tumor-free state with side effects on the immune system.

The simulation results shows that with an adequate control the tumor cells con-

centration should be decreased. One of the main issues is that the concentration

cannot be equal to zero. This aspect is related to the fact that we have limited

the uncontrolled growth of the dendritic cells concentration. Simulation without

these constraints has lead to a solution in which the neoplasia has been defeated,

but the immune system grows unbounded. The optimization takes into account

the physical limits of the normalized system variables setting the lower and the

upper bound. This action prevents the possible side effects of a free boundary
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Figure 5.5: Control

problem as already seen in the previous chapter. The optimization in this way

converges at a solution that limits the immune system growth.

We have limited this aspect with path constraints but in order to reduce the

toxicity of the treatment during the application of the control, as in the PK op-

timization problem, we have to consider a penalty function on the total drug

administered during the immunotherapy. The aims are to prevent a control that

consists in a high initial impulse, and to optimal distribute the drugs adminis-

tration during the whole interval of therapy. The modified functional that takes

into account this goal is:

F (x) = Φ(m(tf )) + w

∫ t0

tf

u2(t)dt (5.9)

where w is a weight selected in order to balance the two terms that are in contrast

each other.

Figure 5.10 shows the behavior of the controlled system with a uniform mesh of

280 points. The functional, that we have selected acts in order to prevent the

saturation of the dendritic cells at the beginning of the therapy. The optimized

control consists in a diffused continuous administration during the entire protocol

interval. When the concentration of dendritic cells reaches its maximum admissi-

ble value, the dosage of the injection decreases in order to satisfy the constraints,
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Figure 5.6: State variables

until the concentration level of IL-2 reaches its saturation level. At this point the

control decreases and in the same way the concentration of the dendritic cells,

while the task of IL-2 is to stimulates the production of cytokines and so contrast

the tumor growth. These cells act directly on the tumor before they reach their

saturation value. After this point no further decrease of the neoplasia is possible.

We have to notice that the final concentration of tumor cells is higher than the

previous obtained with a functional cost that does not take into account a penalty

on the total amount of drugs administered. A compromise between the two

situations can be done with an appropriate tuning of the weight w.

In order to solve the continuous problem direct transcription approximate the

problem with the Hermite-Simpson integration scheme. The resulting solution

is verified by numerical integration adopting a 7th/8th order Runge-Kutta inte-

gration scheme with absolute and relative tolerances set to 10−8. The forward

integration is carried out taking the optimal first grid point y1 as initial condition,

and with a cubic spline of the controls uj . This higher order method is useful

to evaluate the accuracy of the solutions found, here obtained with a low-order

method. Figure 5.8 shows that the maximum residuals on the tumor cells vari-

ables between the approximate and the real solution is O(10−5). The state vector

respects the following condition:
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Figure 5.7: Control

‖y(tf )− yN‖ ≤ ε (5.10)

where y(tf ) is obtained through the Runge-Kutta integration, while yN is ob-

tained with the Hermite-Simpson integration. The tolerance is set to 10−4. In

order to respect this condition a grid refinement has been done.

As we have previously stated the algorithm starts with a coarse mesh in order

to speed up the convergence. The solution obtained is then interpolated on a

refined mesh and the optimization repeated. This process must be iterated until

condition 5.10 is respected.

5.2.1 Discrete control approach

We have analyzed a continuous control approach in which cells are continuously

being implanted in patients in the interval of care. If computationally it has been

possible to arrive at a feasible solution, the same cannot be said for the practical

feasibility.

Discrete is defined in term of the control strategy, because also the continuous

control problem is discrete, but only in term of the computational approximation.

As mentioned earlier, in medical practice the administration are made for short



74 Castiglione-Piccoli model

Figure 5.8: Tumor error verification

periods of time, separated by intervals of drugs holiday. We must therefore move

from a continuous to a discrete formulation for the control. This basically deter-

mines the transition from the solution of the optimization problem by collocation

to a solution with the multiple shooting approach.

The time domain is divided into m + 1 interval, where m is the number of the

injections. The variables vector to be optimized is defined as

xT = (u1, .., um,∆t1, ..,∆tm+1) (5.11)

where ui is the control at each i-period and ∆ti is the drugs holiday interval. Using

the drugs interval instead of the time at which administer the drugs prevents the

introduction of inequality constraints on the time variables.

The structure is different from the collocation method because the dynamics

variable does not appear in this vector. In fact assuming the variables yj , for

j= 1, . . .m+1, as the initial value of the dynamics for each trajectory segment,

such initial conditions are propagated forward under the flow of the differential

Castiglione-Piccoli system in time interval ∆tj.

The dynamics is integrated and not approximated as in the previous method

and do not appear in the variable to be optimized that is always smaller than

the previous one. This aspect can be useful if we want to use an evolutionary
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algorithm, as in the following section.

The first step is the identification of a first guess solution. The parameters re-

quired are the number of the injections, the interval between each of them and

the dosage. The number of injections clearly is linked with the implementation

of the multiple shooting algorithm and this value is fixed, while the drugs holiday

is not an important parameter. The idea is to administer the same drug amount

as in the optimized continuous problem, in order to use a feasible protocol.∫ tf

ti

u(t)dt =
n∑
i=0

ui (5.12)

where n is the total number of injections and ui is the i-th dosage of the injection.

Figure 5.9: Control discretization

Each discrete injection is considered impulsive because the clinical time required

to administer the drug is around 15 minutes, as we have seen in the standard

approach, that in comparison with the interval of therapy is negligible. The

number of the total injections is set a priori to the value of 8, and the drugs

holiday between each administration is 50 days.

The guess solution for the control variable is shown in figure 5.9, while the inte-

gration of the system is reported in figure 5.10.

The solution is qualitatively similar to that presented for the continuous control

except for the discontinuity in the immune system cells concentration due to
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Figure 5.10: State variables with the initial control discretization

the discretization of the drug administrations. As in the continuous problem

the variables that identify the immune system population reach their maximum

value with complete respect of the path constraints. The value of the final tumor

concentration and the dynamic behavior during the therapy is quite similar to

the result obtained previously. The final concentration of tumor cells is less than

5% higher than the previous one.

The results obtained confirms that is an appropriate method use the continuous

solution in order to define a discrete control therapy. We expect that using this

solution as a first guess for an optimal discrete control problem will lead to a

better result.

In figure 5.11 it is shown the optimized solution of the state variables with a

minimization of the final concentration of tumor cells as in the functional 5.8.

The administration maintains approximatively the same drugs holiday period

and in this way the administration frequency is similar to that in the initial guess

solution. This aspect is a consequence to the fact that in the functional we have

not take into account any term directly dependent with the total duration of the

therapy. The optimal strategy aims to bring the concentration of the dendritic

cells at its maximum level and maintain it during the protocol. This aspect is

related to the high dose of the first injection shown in figure 5.12, while the other
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Figure 5.11: State variable impulsive control. Minimization of final tumor cells

concentration.
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are always less than the first one but they tend to increase as the concentration

of cytotoxic cells increase.

Figure 5.12: Injections schedule and dose, impulsive control. Minimization of

final tumor cells concentration.

Period Dosage [adim] Holiday [days] Period Dosage [adim] Holiday [days]

1 0.91 5 5 0.50 55

2 0.51 85 6 0.51 50

3 0.48 70 7 0.53 55

4 0.49 75 8 0.61 55

Table 5.3: Drugs holiday period and administration dosage. Minimization of final

tumor concentration.

At this point following the same scheme introduced with the continuous problem

we consider a problem with the functional 5.9, in which there is a penalty that

tries to reduce the total drug administered. In the therapeutic practice we have

stated before that this aspect is strictly related with the reduction of the side

effects of the therapy. If the therapy defeats the initial problem, but introduces

other ones is not efficient. In figure 5.13 the dynamic behavior of the optimal

controlled system is shown. The final tumor concentration of the tumor cells is
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Figure 5.13: State variable impulsive control. Minimization of final tumor cells

concentration and drugs administration penalty.
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the 90% of the initial concentration and the trajectory shows an elongation the

reach a maximum peak that is the global maximum. This aspect is related to

the weight on the control that limits the level of the dosages. As we can see in

figure 5.14 the initial and the final concentrations have a dosage equal to zero.

The trajectory of the dendritic cells population is qualitative similar to that in

the continuous problem, this because of the elimination of the initial and final

injections.

Figure 5.14: Injections schedule and dose, impulsive control. Minimization of

final tumor cells concentration and drugs administration penalty.

Period Dosage [adim] Holiday [days] Period Dosage [adim] Holiday [days]

1 0 - 5 0.30 51

2 0.37 55 6 0.34 52

3 0.72 52 7 0 -

4 0.29 51 8 0 -

Table 5.4: Drugs holiday period and administration dosage. Minimization of final

tumor concentration and penalty on the control.

To sum up we have obtained an optimal discrete solution that respects the prob-

lem constraints. The main problem is the introduction of the penalty on the
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maximum administered drugs that lead to not satisfactory solution.

This problem is a consequence to the fact that a gradient based method is very

sensitive on the initial solution. The control strategy that we have identified

depends on the initial guess solution. In order to prevent this aspect and find a

better solution in the next section we use a robust algorithm that prevents this

fact. The aim is to prevent the convergence to a local minimum solution, that it

is acceptable but not efficient.

5.3 Hybrid algorithm optimization

Following the same procedural scheme that we have introduced in chapter 1 and

used for the optimal control of the PK model, this section aims to use genetic

algorithms in order to produce an initial solution for the direct method. Using an

initial solution for the discrete problem that derives from the continuous problem

in terms of total drugs administered do not lead to satisfactory results. This

aspect is due to the therapy protocol strategy that is selected without any physical

considerations. Running the optimization algorithm with these initial guess does

not determine the convergence to a good solution in terms of final tumor cells

concentration. Running the so-called hybrid algorithm can determine a final

solution obtained joining together the advantages of the two methods that we

have previously described.

The structure of the algorithm is influenced by the number of injections, and

these parameters are one of the main factors that influence the final solution.

A parametric analysis has been done in order to evaluate the best number of

drug injections. This value cannot be added to the optimization variable vectors,

because the structure of the discretization strictly depends on this parameter.

In order to overcome this problem several genetic algorithm optimization and

then direct transcription have been done. The results are shown in figure 5.15.

It is evident that there is not any direct proportionality between the number of

injections and the tumor cells concentration. The tumor concentration reaches

its minimum between 15 and 20 injections. Further increase in the number of

injections lead to an increase of the tumor concentration global maximum and

an increase of the therapy time interval. These aspects are no related with a

decrease of the final tumor cells population. This analysis shows that the best

number of injections must in be in the range between 15-20 during the entire

therapy protocol, in this way it is possible to reach a final concentration < 80%

of the initial concentration with low global maximum. This solution is also an

optimal compromise in terms of the total therapy time horizon.

Using a fixed structure with 18 injections we have run the hybrid algorithm.

Figure 5.16 shows the value of the function cost minimized by the algorithm and
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Figure 5.15: Tumor cells concentration as function of the number of injections

the average diversity of individuals from the previous generation. The distance be-

tween individuals is an important parameter that can determine the convergence

of the optimization. Low distance should compromise the rate of convergence,

otherwise high distance determines a rapid convergence but the best individuals

are far from the optimal solutions. The solution shows a good compromise in

terms of average distance that lead to a good diversity between individuals that

enables the algorithm to search a large region of the space.

The population size at each generation has been selected in order to enlarge the

search space of the algorithm and consequently obtain better results.

Figures 5.17 and 5.18 the result after the optimization using the hybrid algorithm.

One of the relevant aspect of the results is the frequencies of the injections. In

the first part of the protocol, the control aims to quickly bring the concentration

of Helper cells to the value of maximum saturation. This value we call maximum

saturation level for helper cells is closely related to the maximum concentration

established for dendritic cells.

As we have seen previously, from this point without control the neoplasia tends

to grow in order to reach the tumor regime state.

The control prevent this growth with a first injection, see figure 5.18, which is

the one with the highest dosage. This aspect is strictly related to the strategy
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Figure 5.16: Genetic algorithm optimization

that aims to bring the concentration level of the dendritic cells at their maximum

admissible value. In this way a new saturation level is fixed for the Helper cells

concentration. As a matter of fact we have to emphasize that in the equation 5.1

the level of saturation defined with the second term is strictly dependent from

the concentration of dendritic cells.

The first stage with duration of around 300 days consists in a low frequency -

high dosage drugs administration. During this period the control gives the way

of countering the growing of the tumor cells population and at the same time

allows increasing the concentration of Interleukin. This dynamic behavior is in

fact dependent on the term related to Dendritic and Helper cells that forced the

growth of IL-2 population. As mentioned earlier, the main task of IL-2 is to

create an environment that stimulates the growth of the immune system cells.

The growth of the cytotoxic cells concentration is precisely due to the combination

of phenomenon described.

It is here where the trends to increase and decrease, respectively, for the tumor

and cytotoxic cells were reversed that the optimized control strategy enters a new

phase. Starting from the fourth injection the frequency of the administration

increases while the dosage decreases. In this way you can keep almost the same

value of Helper cells concentration, and this stage is where most enforcement
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Figure 5.17: State variables optimized with direct transcription with initial con-

ditions generated through GA

Period Dosage [adim] Holiday [days] Period Dosage [adim] Holiday [days]

1 0.93 38 10 0.35 21

2 0.56 94 11 0.34 25

3 0.50 80 12 0.35 20

4 0.50 65 13 0.36 23

5 0.43 66 14 0.41 24

6 0.38 32 15 0.40 17

7 0.39 21 16 0.49 39

8 0.38 31 17 0.66 55

9 0.36 25 18 0.58 32

Table 5.5: Drugs holiday period and administration dosage. Minimization of final

tumor concentration and penalty on the control with hybrid algorithm
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Figure 5.18: Control variables optimized with direct transcription with initial

conditions generated through GA
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efforts on the growth of tumor cells have been done. In a period of time similar

to that of the first phase the tumor mass is reduced by over 60%, thanks to the

growth of cytotoxic cells population.

The optimal care protocol consists in a further stage in which the frequency

of administration is low. This stage that we can define conservation, serves to

maintain the concentration of tumor cells at the levels achieved in the previous

period.

Itis possible to state in this this period of care that the consumption of dendritic

cells is higher compared to the previous phases. This happens because the de-

crease is directly dependent on the value of cytotoxic cells that as a result of

the previous phase is increased. This phenomenon leads to an increase in the

injections dosage in this final interval of treatment.

5.4 Monte Carlo statistic analysis

In this section we want to analyze the robustness of the control and the sensitivity

of the model to small changes in initial conditions. The initial patient conditions

are generated through Monte Carlo method in order to explore the solution in

a dense space. The first analysis implies a 10 % variation on the initial tumor

cells concentration. The average of the initial tumor concentration µTi
evaluated

over 1000 samples and the standard deviation σTi
are reported in table 5.6. The

statistic parameters related to the final cancer cells concentration are also shown.

Dynamics µTi
σTi

µTf
σTi

Free 0,5982 0,0584 0,8853 4,5969e-5

Controlled 0,6004 0,0571 0,0854 1,2907e-5

Table 5.6: Statistic values. Monte Carlo generation of initial tumor concentration

The average of the initial tumor concentration generated are very close to the

nominal value with a high σTi
in both free and controlled dynamics, while the

results are completely different in the final condition. The control appears to be

robust from disturbance in the initial condition, because the final tumor concen-

tration is close to the nominal condition for all the samples considered. Figure

5.19 and 5.20 shows respectively the behavior of the tumor variable in the limit

concentration cases and the tumor cells concentration for the free dynamics case.

These graphs highlight the results given by statistical parameters. It is possible

to see that the final condition of tumor regime is reached in the case of free

dynamics, thus demonstrating the existence of a strong attractor. After a period

of less than one year the solutions converge approximatively at the same value,

in fact, the final standard deviation is O(10−4).
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Figure 5.19: Tumor cells concentration versus time, with a Monte Carlo genera-

tion of initial tumor concentration. Free dynamic

Figure 5.20: Initial and final concentration of tumor cells with a Monte Carlo

generation of initial tumor concentration. Free dynamic
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The same graphs for the controlled dynamics are reported in figure 5.22 and 5.21.

The controlled solution is non sensitive on the variation of the initial tumor cells

concentration. The final average tends to converge to the nominal value with a

small standard deviation. This appear a great result, the optimal control strategy

is robust and can be used with high uncertainty on the initial concentration

obtaining positive final results.

Figure 5.21: Tumor cells concentration versus time, with a Monte Carlo genera-

tion of initial tumor concentration.

The same procedural scheme was adopted for the evaluation of system sensitivity

due to a variation on the initial state vector. This analysis can evaluate the influ-

ence of great disturbance on the dynamics of the free system, but also determines

the possibility to use the same protocol therapy for different patients. This aspect

is relevant for the clinical application of the treatment proposed.

Dynamics µTi
σTi

µTf
σTi

Free 0,6011 0,0566 0,8852 0,0095

Controlled 0,6024 0,0573 0,0827 0,0044

Table 5.7: Statistic values. Monte Carlo generation of initial conditions

Table 5.7 confirms the previous results obtained with fewer disturbances. The

final concentration average is quite similar to the previous.

The free dynamics shows and confirm the presence of a tumor regime state at-

traction that we have previously identified in the Monte Carlo generation of the

initial tumor cells concentration.
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Figure 5.22: Initial and final concentration of tumor cells with a Monte Carlo

generation of initial tumor concentration.

Figure 5.23: Tumor cells concentration versus time, with a Monte Carlo genera-

tion of initial conditions. Free dynamic



90 Castiglione-Piccoli model

Figure 5.24: Initial and final concentration of tumor cells with a Monte Carlo

generation of initial conditions. Free dynamic

The controlled system tends to converge at the nominal value of concentration.

The final standard deviation for the controlled system is bigger than that evalu-

ated previously, this aspect is confirmed in figure 5.25 and 5.26. This value is due

to the fact that the initial conditions considered are very different, but do not

influence the good results of the optimal solution. The tumor concentration at

the end of the treatment is always below the initial condition. The standard de-

viation suggests that the best results are given considering individual therapeutic

strategy.
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Figure 5.25: Tumor cells concentration versus time, with a Monte Carlo genera-

tion of initial conditions

Figure 5.26: Initial and final concentration of tumor cells with a Monte Carlo

generation of initial conditions
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5.5 Gompertz tumor growth law

One of the most interesting aspects in cancer research and in the mathematical

modelisation of the phenomenon is the study of the tumor carcinogenesis. This is

the process that leads from the onset of a single cancer cell at the time in which

the tumor becomes detectable. Crucial in this area is the development of models

that are able to correctly describe from appropriate supposes the growth of tumor

cells.

The correctness of the model determines the validity of the solution obtained

through optimization. To further verify the robustness of solutions we are going to

use a different tumor cells law of growth. In [25] different models that describe the

dynamics of the tumor with both deterministic and stochastic laws are presented.

In this work we have considered only deterministic models leaving to further

development the analysis of models with random variables. Given the purely

deterministic nature we focus our attention on the Gompertz model.

In the early seventies Falkman [25] assumed that most of the tumor growth de-

velops in two stages: in the initial phase (avascular), the tumor providing nour-

ishment and eliminates what does not serves through transportation only by

diffusion. During this phase, tumor growth is limited (no more of few mm) and

its shape is roughly spherical. This happens when the cancer consumes the nu-

trients with a rate proportional to its volume, while the supply of nutrients is

achieved with a rate proportional to its surface area.

The second stage (clinically more relevant) is the so-called vascular phase, which

can only take place in vivo. This phase involves the formation of new capillary

vessels acquired from the surrounding tissues: the phenomenon is called angio-

genesis.

Tumors begin the vascularization process secreting a large number of chemical

compounds in the surrounding tissues. These compounds are known as angiogenic

factors. These factors spread around the tumor and ensure adequate nutrition

and adequate oxygenation to invoke surrounding tissues and metastasize also

distant tissues.

The deterministic Gompertz model, introduced by Benjamin Gompertz in 1825, is

a continuous time model particularly suitable for describing the dynamics of pop-

ulation growth. It is universally adopted to reproduce the growth of organisms,

tissues and populations, and is now considered the principal model for describing

the growth of tumors. What proposed is a modified exponential growth: it has a

growth rate that decrease over time and mortality rate constant. Because of the

deceleration in the rate of growth, the tumor size reaches an asymptotic value

(carrying capacity).
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The model is expressed by the following differential equation:

dM

dt
= aM − bM lnM − d2MC (5.13)

where a is the intrinsic growth rate of the tumor and it is a parameter related to

the initial mitotic cell rate, b is the deceleration factor related with antiangiogenic

processes. Unlike the classic model presented in [16], we introduce in the model

the term already presented in the equation 5.3 that link the population of tumor

cells to cytotoxic cells. In this way we can model the interaction between the

immune system and cancer, and then control the system even after the change

in the growth law. In order to set the parameter we integrate the first part of

Figure 5.27: Dynamics of the uncontrolled system. Tumor cells concentration

equation 5.13. The asymptotic value must be below the carrying capacity of the

tumor.

lim
t→∞

x0e
a
b

(
1− e−bt

)
= x0e

a
b < 1 (5.14)

The correct integration must consider that the initial concentration must be el-

evated to e−bt, but many Gompertz model do not take into account this factor.

The relationship obtained from 5.14 tells us that

a

b
= ln

l

x0

(5.15)
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Where l ∈ (0, 1). Setting l = 0.85 is a good compromise considering the approxi-

mation in the integration and that we have neglect to take into account the term

that show the relationship with the immune system cells. This term in fact plays

its role in the definition of the asymptotic value of the concentration. A change

in the single parameter a or b that respect the ratio, determines a change in

the time required to the population to reach the regime value. The solution ob-

tained with an appropriate tuning of these parameters compared to the solution

obtained with the previous model is shown in figure 5.27. The difference between

the two model increases in a monotonically direct proportionality with time.

Figure 5.28: Dynamics of the controlled tumor cells population

We want to verify the robustness of the control strategy evaluated through the

hybrid algorithm of the CP system modified with the equation 5.13 instead of

the 5.3. The following integration scheme is used

y(t) =

{
ϕ(u = 0, t, xi−1) t 6= ti , (ti−1, ti)

y(t) + p(ui) t = ti
(5.16)

where ϕ is the flow of the system CP modified with the Gompertz law and p

is a row vector that add the control to the appropriate equation. The solution

is shown in figure 5.28 and demonstrate that the optimal control law evaluated

with the classical CP model can be applied in order to diminish the cancer cells
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concentration in this modified model. In particular it seems that with this tumor

growth law the control acts efficiently when the frequency of the injections is high.

As a matter of fact in the medium phase of the therapy, when the drugs holiday

time is limited, the trajectory of the tumor concentration in the two models are

really close each other.

The concentration at the end of the treatment is 15% higher than the one obtained

with the classic tumor growth law, but the concentration is around the 30% of the

initial concentration. This means that the optimal control identified is a robust

strategy that can be applied also with uncertainties on the model.

These uncertainties mainly depends on the fact that obviously this mathematical

modelisation of a physical phenomenon that are formalized with observation,

experience and interpolation of the database.

5.6 Conclusions

Following the same procedure adopted in the discussion of the PK system, starting

from the analysis of the free dynamics, we have proposed an optimal control

strategy.

From the numerical results it can be seen that the best outcome in terms of final

tumor cells concentration is achieved with a strategy not applicable at a clinical

level. The best solution consists in a continuous strategy that does not take

into account side effects which are not present in the dynamic model, but which

characterize the physical phenomenon.

The analysis has evolved looking for solutions that take into account these as-

pects, but at the same time trying to get closer to the results obtained with the

continuous-high dosage therapy. To ensure that the final solution is sensitive to

the first guess solution sets a priori without any physical consideration, we have

adopted a hybrid algorithm that allowed us to propose an optimal control proto-

col feasible at a clinical level. The cancer concentration is close to that obtained

with the continuous strategy and the control avoids the rapid growth of the im-

mune system cells. This result was achieved by increasing the time horizon of

therapy. Furthermore, a complete conclusion of the treatment is possible only

if the evolution of the uncontrolled system at the end of the therapy tends to

the low tumor concentration stable equilibrium that we have identified in the

dynamic analysis. This is not possible starting directly from the final conditions

of the therapy. A post-treatment is necessary to bring the values of the immune

system cells concentration to the equilibrium values.

The subsequent control robustness analysis respect to uncertainties on param-

eters, initial conditions and on the tumor dynamic shows that the controlled

system despite the disruption can limit in each case the tumor growth.





Chapter 6

Analogies between astrodynamics

and immunotherapy

This section aims to describe the analogies between the processing of a dynamic

model and its control in the different fields of cancer immunotherapy and astro-

dynamic.

In the previous chapters is described in a specific way the dynamics and control

models for immunotherapy against cancer. The models that are used for opti-

mization of spacecraft trajectories are introduced here, and in particular with the

problem of interplanetary transfer will be used as comparisons.

The aim is not to solve with the direct or indirect methods described above a

complex problem of trajectories optimal control. The dynamic models and the

control strategies adopted will be taken into analysis, and it will be given emphasis

to the similarity in the resolution.

What we want to demonstrate is that despite the diversity of physical models

analyzed in the two areas, the philosophy which leads to an optimal final solution

is the same.

6.1 The n-body problem

In this section, as a difference from the cancer immunotherapy problem, the

analysis of the astrodynamic problem starts with the most complex model. With

a series of approximations and hypothesis we arrive to more simple models that

are used in practice.

In astrodynamic the motion of a body like a spacecraft or a meteorit is studied

under the gravitational influeces of primary bodies (Sun, planets and moons e.g.).

These entities are considered primaries because the spacecrafts or the meteorites

can be approximated as massless in comparison to them.

The Newtonian inverse square distance law describes the motion of n≥2 mass mk
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k = 1,..n moving in the three dimensional space (x,y,z):

mkr̈k =
∑n

j=1
G
mjmk

r3
jk

(rj − rk) (6.1)

where rk is the position vector of the k-th body and rjk =
√

(xj − xk)2 + (yj − yk)2 + (zj − zk)2

is the Euclideian distance between two different masses.

Equation 6.1 states that the motion of a single body is influenced by the vector

field generated by the other masses. It describes the dynamics of all the n body

and it shows that they influence each other through the gravitational acceleration.

In astrodynamics the trajectories of the primaries are given as a function of the

time and the problem is restricted to study the motion of the n-th infinitesimal

mass. The hypothesis of the restriced n-body problem are:

- the primaries moves under their mutual influences;

- the n-th body does not influence the motion of the primaries, but it moves in

the vector field generated by the n-1 bodies.

The system of equation of the restricted n-body problem that describes the motion

of the spacecraft is

r̈k =
∑n

i=1
Gmi

ri − r
‖ri − r‖3

(6.2)

6.2 Two-body problem

The basic approach to the problem is determining the motion of two bodies due

solely to their own mutual gravitational attraction. Considering the Spacecraft

and a planet, the effects of gravitational attraction on the planet due to the

spacecraft is negligible. The dynamics derives from the system 6.2 for k=1:2 can

be written as

R̈1 = −Gm2
R1−R2

R3
21

R̈2 = −Gm1
R2−R1

R3
12

(6.3)

where the subscripts refer respectively to the planet and to the spacecraft. With

the assumption that the mass of the spacecraft is negligible with respect to the

planet mass, the dynamics of the spacecraft obtained from the previous system

is written as:

r̈ = −µ r

r3
(6.4)

where r is the relative position between the spacecraft and the planet and µ is

the gravitational constant of the planet considered.

In this case it is often useful to switch to polar coordinates (r,θ), since the motion

is planar.

Equations 6.4 translated in polar coordinates are:
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(
r̈ − rθ̇2

)
r̂ + rθ̈ + 2ṙθ̇θ̂ = −µ r̂

r2
(6.5)

Splitting equations 6.5 in the transverse and tangential component with u radial

velocity and v = rθ̇2, the 2BP can be written in a set of first order differential

equations:

ṙ = u

u̇ =
v2

r
− µ

r2

v̇ = −uv
r

(6.6)

6.3 Interplanetary transfer solved via direct tran-

scription

In previous chapter all the ingredients of the direct transcription and genetic algo-

rithm have been presented and we have applied these numeric algorithm in order

to solve cancer immunotherapy problems In perfect analogy, the versatility of this

approach can permits to solve an optimal control problem for an interplanetary

transfer using the simple model presented in the previous section.

The equation for the controlled motion of the spacecraft obtained form 6.6 adding

the term that takes into account the propulsive thrust are:

ṙ = u

u̇ =
v2

r
− µ

r2
+
T

m
sin Φ

v̇ = −uv
r

+
T

m
cos Φ

(6.7)

where

r = radial distance of spacecraft from the attracting center

u = radial velocity

v = transverse velocity

T = propulsive thrust

m = spacecraft mass

Φ = thrust angle

µ = gravitational constant

The problem goal is to maximize the radius of the final circular orbit in a given

time tf .

The spacecraft at the beginning is orbiting around a circular path. The initial
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Figure 6.1: Earth-Mars transfer problem

boundary conditions are defined as:

r(ti) = r0 (6.8)

u(ti) = 0 (6.9)

v(ti) =

√
µ

r0
(6.10)

It is possible to formalize it as

φi : y(ti)−
{
r0, 0,

√
µ/r0

}T
(6.11)

The final boundary conditions are selected in order to define a circular orbit:

u(tf ) = 0 (6.12)

v(tf ) =

√
µ

r(tf )
(6.13)

In the transcription formalism these conditions are defined as

φf : y(ti)−
{
u(tf )− 0, v(tf )−

√
µ/r(tf )

}T
(6.14)

Considering fuel consumption it is possible to define the spacecraft mass as :

m(t) = m0 − ṁt (6.15)

where m0 is the initial mass and ṁ is the propellant flow rate.

In order to solve numerically the problem it is necessary to adimensionalize the

problem.

The adimensionalized equation are

ẋ1 = x2

ẋ2 =
(
x2

3 − 1
x1

)
/x1 + γ sin(u)

ẋ3 = −x2x3

x1
+ γ cos(u)

(6.16)
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where γ = α
1−βt and the state vector is defined as y = {x1, x2, x3}. The dynamics

is translated into 3(N-1) defect equations ξk, with N equal to the number of grid

points and k=1,..N-1. These equations are equality constraints that represent the

Hermite-Simpson numerical integration over the sub-interval [tj, tj+1], j=1,...,N-1.

In this way it is possible to determine an equality constraint vector as

c(x) = {φi, ξ1, ..., ξN−1, φf} (6.17)

The performance to be maximized is the final radius and can be stated in the

NLP formalism as

F (x) = −rN (6.18)

Figure 6.2: Radial distance

The solution for the control is shown in figure 6.5. The thrust angle determines a

trust direction outward in the first half of the trajectory and inward in the second

half, obtaining a final radius that is close with Mars orbit.
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Figure 6.3: Radial velocity

Figure 6.4: Transverse velocity
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Figure 6.5: Thrust angle

6.4 Interplanetary transfer solved via genetic al-

gorithm

GAs are actractive when the number of variables is limited such as in impulsive

control problems that will be considered later. In this section an interplanetary

low-thrust transfer solved via genetic algorithm will be presented in order to

procede in analogy with the immunotherapy optimization problem. The problem

is similar to that analyzed with direct transcription and it is formulated in [13].

The goal is determine the control profile that minimizes propellant consumption

while satisfying specified boundary conditions. The planar dynamic in the polar

coordinates (r, θ) is rewritten as a first order ODE system:

ṙ = u

θ̇ =
v

r

u̇ =
v2

r
− µ

r2
+
T sin (Φ)

m0 − ṁt
v̇ =

uv

r
+
T cos (Φ)

m0 − ṁt

(6.19)

As a difference from the previous problem in this case the control variables are

the thrust magnitude T and the thrust direction Φ that resides between 0 and 360

deg. The thrust can range between 0 and 3.787N, the maximum provided by the

electric motor. The transfer time is fixed in 200 days. In addition circular orbits
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for both Earth and Mars are assumed. The boundary initial and final conditions

represent respectively Earth and Mars orbit:

x0 = [1, 0, 1, 0]

xf = [1.524, 0, 0.81, free]
(6.20)

where the dimension used are distance unit and time unit.

Solve a low-thrust problem with this optimization procedure is strictly linked

with a loss of accuracy.

The genetic algorithms are used for unconstrained problem, because they do not

take into account any constraints directly. It is possible to overcome this aspect

introducing a penalty function in the cost functional that maximize its value if

the constraints are not respected. The direct consequence is that the individuals

that do not respect the constraints will be discarded by the optimization because

of the survival of the fittest. This modification is called Augmented Lagrangian

Genetic Algorithm [50].

Representing the 3-dimensional vector of the constraints by

g = [rf − xf (1), uf − xf (2), vf − xf (3)] (6.21)

The functional cost J is equal to the mass consumption defined as:

ṁ(t) = −T (t)

ve
(6.22)

where ve is the gas exhaust velocity.

The fitness function can be written as

Ĵ = J + wggT (6.23)

where J is the cost functional and w is the weight of the penalty function.

Figure 6.6 shows the trend of the fitness function 6.23 at each generation and fig-

ure 6.7 shows the creation of a new population using the genetic mechanisms. The

red lines indicate children obtained after mutations, blue lines indicate crossover

children while black lines indicate elite individuals.

Solve a low-thrust problem with this optimization procedure is strictly linked

with a loss of accuracy, but the solution obtained can results useful as an initial

guess for a direct transcription algorithm. In fact the final conditions on the state

are not completely satisfied figure (6.9) and (6.8).
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Figure 6.6: Genetic algorithm fitness value

Figure 6.7: Algorithm genealogy over 10 generations
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Figure 6.8: State variables

Figure 6.9: Spacecraft trajectory
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Figure 6.10: Control variables

6.5 The restricted three-body problem

The two-body problem is a simple model but do not satisfy accuracy requirements

in the final solution. In this section and in the following we want to upgrade the

model such as in the immunotherapy problem and optimize the trajectory design

using direct transcription. Euler’s three-body problem describe the motion of

a mass under the influence of two centers that attract the particle with central

forces that decrease with distance as an inverse-square law, such as Newtonian

gravity. The equations of motion of the restricted three body problem derives

from the system 6.2 for k=1:3

R̈1 = −Gm2
R1−R2

R3
21
−Gm3

R1−R3

R3
31

R̈2 = −Gm1
R2−R1

R3
12
−Gm3

R2−R3

R3
32

R̈3 = −Gm1
R3−R1

R3
13
−Gm2

R3−R2

R3
32

(6.24)

where R are the position vectors described in an inertial frame (figure 6.11).

The first two equations describe the motion of the primaries, while the last one

represent the spacecraft dynamics.

Introducing the hyphothesis that the spacecraft gravitational attraction on the

primaries is negligible, the restricted three body problem becomes
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Figure 6.11: Three body problem

R̈1 = −Gm2
R1−R2

R3
21

R̈2 = −Gm1
R2−R1

R3
12

R̈3 = −Gm1
R3−R1

R3
13
−Gm2

R3−R2

R3
32

(6.25)

The system states that the primaries interact each other through the Kepler

problem. The primaries are assumed to move in circular orbits around their

common center of mass. This assumption defines the circular restricted three

body problem - RTBP from now on for brevity. The last system of equations

study the influence of the primaries on the motion of the spacecraft. These three

second order differential equations can be rewritten in an inertial frame centered

at the baricenter of the primaries

R̈3 = −Gm1
R−R1

R3
1

−Gm2
R−R2

R3
2

(6.26)

where R, R1, R2 are the spacecraft position and its distances to the primaries

respectively.

System 6.26 is time dependent, because the vectors are defined as function of the

time. In order to get the equations autonomous we rewrite the equations in the

synodic system. This frame is centered at the baricenter of the primaries and

rotate uniformely with them. The plane of motion of the primaries is the y-axis

and they are fixed in the x-axis.

The spacecraft position in the synodic system r is related to the position R in the

sideral system through the rotation matrix T(t) defined by the uniform angular
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velocity ω = {0, 0, n}T .

R(t) = T (t)r (6.27)

Applying this system transformation, the equations of the RTBP can be rewritten

d2r

dt2
+ 2ω × dr

dt
+ ω × (ω × r) = −Gm1

R−R1

R3
1

−Gm2
R−R2

R3
2

(6.28)

The rotation of the reference frame introduce the centrifugal and Coriolis terms.

Considering r = {x, y, z}T the coordinates of the spacecraft and {0, 0, x1}T

{0, 0, x2}T the fixed positions of the primaries, the equations 6.28 can be rewritten

explicitly

ẍ− 2nẏ − n2x = −Gm1
x−x1

r31
−Gm2

x−x2

r32

ÿ − 2nẋ− n2y = −Gm1
y
r31
−Gm2

y
r32

z̈ = −Gm1
z
r31
−Gm2

z
r32

(6.29)

The next step is to introduce a dimensionless set of equations where the distance

between the two primaries, their angular velocity and the sum of the masses m1

and m2 are set to one. The dimensionless equations of the RTBP are

ẍ− 2ẏ = Ωx

ÿ − 2ẋ = Ωy

z̈ = Ωz

(6.30)

where the subscripts denote the partial derivatives of the auxiliary function

Ω(x, y, z) =
1

2
(x2 + y2) +

1− µ
r1

+
µ

r2
+

1

2
µ(1− µ) (6.31)

where µ is the mass parameter

µ =
m2

m1 +m2

(6.32)

with this choice G=1 and the position of the primaries are set to r1 = {−µ, 0, 0}T

and r2 = {1− µ, 0, 0}T , while r1 and r2 are the euclideian distances between the

spacecraft and the primaries.

6.6 Low thrust transfer

We have introduced the free dynamics of the spacecraft. In this section we want

to introduce the optimal control theory, in particular the design of an optimal

low thrust arc. The equations of the controlled RTBP states as follows

ẍ− 2ẏ = Ωx + u

ÿ − 2ẋ = Ωy + v

z̈ = Ωz + w

(6.33)
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In the case of low thrust trajectory the control u = {u, v, w}T is the force per

unit mass

6.6.1 The optimal trajectory design problem

The equations of the controlled RTBP must be written in the first order form

ẏ = f(y(t),u(t), t) in order to design the optimal control. The problem states :

ẋ = vx
ẏ = vy
ẏ = vz
v̇x = 2vy + Ωx + ux
v̇y = −2vx + Ωy + uy
v̇z = Ωz + uz

(6.34)

The objective is to design the optimal low thrust transfers to the Earth-Moon

Halo orbit that minimizes the following scalar performance index

J =
1

2

∫ tf

ti

uTudt (6.35)

while satisfying certain mission constraints.

Figure 6.12: Lagrangian points

Halo orbits are strictly linked with the identification of the five equilibrium of

the R3BP, called Lagrangian points (figure 6.12). All of these points lie in the

primaries plane and two of them L4 and L5 form equilater triangles with the

primaries, while the other lies on the joining line of the primaries and are called

collinear libration points (L1,L2 and L3). Halo orbits are three-dimensional pe-

riodic orbits around the collinear points. The motion on these orbits is not

constrained to lie on the primaries plane, but it can presents an out-of-plane

component. Their interesting characteristic is the constant relative position of

the orbit with respect to the primaries.
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6.6.2 Boundary and saturation conditions

The problem consists in a two point boundary value problem. In order to define

the correct initial condition the mission strategy has been selected. The spacecraft

is propelled tangentially in order to raise its semimajor axis in the minimum

time and then the optimal control problem is solved between the tangential spire

and the stable manifold. Hence the initial state of the optimal control problem

y(ti) correspond to the end point of the tangential arc thrust starting from the

perigee y0 of the initial GTO. The initial condition y(ti), considering this strategy,

depends on two scalar:

• ω, the perigee anomaly of the initial GTO respect to the x-axis of the syn-

odic frame. [0,2π]

• τl, time necessary to elevate the spacecraft starting from the GTO perigee

and then duration of the tangential arc thrust.

The end point of the tangential arc thrust can be written as

yl(ω, τl) = ϕu(0)(y0(ω), t0 = 0, τl) (6.36)

where ϕu(τ)(y0(ω), t0, t) is the flow at time t of system 6.34 starting from the

initial condition y, with the control law u=u(τ), [t0,t]. u(0) is equal to ūv/ ‖y‖,
where v = {vx, vy, vz}T , τ ∈ [0, τl] and ū is the maximum thrust level.

Figure 6.13: Initial and final boundary conditions for the optimal low-thrust leg

[45]
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It possible to formalize the first point of the optimization represented in figure

6.13 as

φi : y(ti)− yl(ω, τl) = 0 (6.37)

The final point of the low thrust arc must lie on the stable manifold associated to

the nominal halo orbit chosen for the mission. A generic point on the halo orbit

depends from τh, that is the time variable taken along the orbit, starting from

the nominal initial conditions yh,i necessary to generate the orbit. If T is the

period of the halo orbit τh ∈ [0, T ]. A point ∈ at the halo orbit can be written as

yp(τh) = ϕu(0)(yh,i(ω), t0 = 0, τh)

In order to identify a point on the stable manifold it is necessary to introduce

another parameter. If τsm is a time parameter along the stable manifold, the

generic point ysm can be computed by backward integration from yp(τh) (figure

6.13).

The final boundary condition is

φf : y(tf )− ysm(τh, τsm) = 0 (6.38)

Before starting the transcription of the problem it is necessary to introduce a path

constraint due to saturation of the electric ion propulsion system. This system

provides a maximum level of thrust T̄ . In order to translate this constraint into a

consistent value for the optimization the istantaneous thrust T(t)/m(t) is equal

to the acceleration magnitude ‖u(t)‖ acting on the spacecraft. The nonlinear

constraints can be introduced in the optimization as

‖u(t)‖ ≤ ū (6.39)

where the maximum acceleration is evaluated from the maximum thrust T̄ and

the initial mass of the spacecraft.

6.6.3 Direct transcription and collocation formulation

Following the same scheme used in the immunotherapy optmization problem the

method used to design the low thrust trajectory involves discretizing the states

and the controls of the continuos problem. The time domain is discretizatize into

N-1 intervals, where N is the uniform mesh points. The variables of the nonliner

programming problem are the state and the control variable at each grid point.

It is possible to define the variable optimization vector as

x = {y1,u1, ...,yN ,uN ,p, ti, tf} (6.40)

This 9N+6 dimensional vector contains 6 state and 3 controls for each grid

point and it is augmented in order to take into account the parameter p =
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{ω, τl, τh, τsm} which are described in the previous section, and also the initial

and final time of the optimal control in order to have a variable formulation of

the optimal control problem.

In the immunotherapy optimization there are no parameter, but it is possible to

extend the model considering parameters that influence the initial condition such

as variable related to the lymphodeplection treatment. In this way it is possible

also to generalize the problem considering the initial time as an optimization

variable. This modification of the problem needs an adequate knowledge on the

dynamics describing the pre-treatment.

Considering the low-thrust problem, the ODE model described by system 6.34 is

transcribed into a set of 6(N-1) defects ςi = 0. Each of this defect is an equality

constraint that rapresent a numerical integration over the sub-interval [tj, tj+1],

j=1,...N-1.

The equality constraints vector is then completed including the 12 two-point

boundary conditions 6.37 and 6.38:

c(x) = {Φi, ς1, ..., ςN−1,Φf} (6.41)

In the same way the saturation condition 6.39 is written for each N grid point.

The objective function 6.35 is translated in the algorithm formalism using the

same numerical integration scheme of the defects.

The optimal control problem translated into a NLP states as follow: Find the

9N+6 variables that solve the problem

minxF (x) (6.42)

subject to c(x) = 0 and g(x) ≤ 0.

The formulation is the same for every optimal control problem considered and

demonstrates the extreme versatility and power of this algorithm. Indeed once

created an efficient algorithm is possible to apply it to solve various optimization

problems.

In order to complete the problem defined using the RTBP, the results presented in

[45] are reported. In particular figure 6.14 shows the trajectory optimization for

a mission Earth to Halo transfer. The design strategy consider the begin of the

transfer at the perigee of an initial GTO. The low-thrust arc connect this point

to the stable manifold associated to the final Halo. The optimal solution lead to

increase the energy in the minimum time, after this first stage the spacecraft is

the stable manifold associated to the final Halo. In this way it is the dynamical

behaviour of the system that bring the spacecraft to the desiderd orbit. It is

possible to see from the figure reported here that all the boundary and saturation

condition that have been translated into the algorithm formalism are respected.
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Figure 6.14: Transfer trajectory from the Earth to a L2halo orbit [45]

6.6.4 The Sun-Perturbed Earth Moon Bicircular Model

In immunotherapy Panetta-Kirschner model takes into account the dynamics of

CD8 T cells neglecting the dynamics of CD4 cells. CD4 are necessary to activate

and sustain the survival of CD8 cells and it is an important class of lymphocytes

that have to be considered in an accurate model. Castiglione-Piccoli upgrade the

PK model considering these cells, but also dendritic cells. These kind of cells

described in chapter 2 are part of the innate immune response strategy. Their

action is less specific than the adaptive response, but it is more rapid and it is

the first stage of defense. Not consider this variable can influence negatively the

simulation of the interaction between tumor and immune system.

In analogy we have studied in the previous section the dynamics of a low thrust

Earth-Moon transfer using a RTBP. Nevertheless, the same model becomes not

so accurate when the spacecraft moves in regions far from both the Earth and

the Moon, or when it remains for long times about the EarthMoon equilibrium

points, especially in the region around L2. In these cases, the perturbation due

to the Sun must be taken into account, in order to be consistent with the real

dynamics [32].

In this case the dynamics is described with a Four-body problem in which the

primaries are Sun, Earth and Moon. With the hypothesis of planar dynamics the

equations derived from 6.2 with n=4 are:
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R̈1 = −Gm2
R2−R1

R3
21
−Gm3

R3−R1

R3
31

R̈2 = −Gm1
R1−R2

R3
12
−Gm3

R3−R2

R3
32

R̈3 = −Gm1
R1−R3

R3
13
−Gm2

R2−R3

R3
23

R̈4 = −Gm1
R1−R4

R3
14
−Gm2

R2−R4

R3
24
−Gm3

R3−R4

R3
34

(6.43)

At this point it is possible to consider the R4BP and operate with this dynamics

model or taking into account some usefull approximation that leads to the more

simple Bicircular problem BCP [3]. In the continuation of this work both BCP is

considered and applied at the Earth-Moon trajectories optimization using respec-

tively direct transcription. In this way it is possible to have a complete analogy

with the resolution strategy applied to immunotherapy. In fact the simple models

are improved considering other variables that influence the dynamic behaviour

of the system, while the optimization tools available shows their versatility to

move from one model to another and from one research field to another. A good

command of these optimization techniques can eliminate barriers and limitations

on their scope. Like all the algorithms of solution you may not be limited to

use it unconscious as black box, it is necessary to have a broad knowledge of the

dynamics in order to rational translate the problem in the algorithm language

and then evaluate the results, taking into account the limits of the computational

procedures.

In the Bicircular R4BP (BR4BP) considered, the primaries are the Earth, the

Moon and the Sun with their respective mass denoted with m1,m2,m3. As a

difference from a classical RTBP the system is non autonomous since the Sun

does not have a fixed position in the synodic frame. Some assumptions are taken

into account [32]:

• the Earth and the Moon are revolving in circular orbits around their center

of mass;

• the Earth-Moon barycenter is moving in a circular orbit around the center

of mass of the Sun-Earth-Moon system;

• orbits of the primaries show low eccentricity values and the Moon inclination

with respect to the ecplitic is little.

These hypotheses lead to a perturbation of the RTBP due to the presence of the

Sun, that it is assumed to orbit around the barycenter of the other two primaries.

The equations of the three-dimensional BR4BP are similar to those presented in

RTBP, but include another equation that describe the angolar acceleration of the

Sun:



116 Analogies between astrodynamics and immunotherapy

ẍ− 2ẏ = Ω4x

ÿ − 2ẋ = Ω4y

z̈ = Ω4z

θ̇ = ωs

(6.44)

where ωs is the absolut angular velocity of the Sun. The auxiliary function is

defined adding at the classic RTBP auxiliary function another term that describes

the perturbation due to the Sun gravitation. The auxiliary function reads

Ω4(x, y, z, θ) = Ω(x, y, z, θ) +
ms

rs
− ms

ρ2
s

(x cos θ + y sin θ) (6.45)

where ms and ρs are the dimensionless mass and the dimensionless distance from

the origin of the reference frame. The rotating location of the Sun is defined as

r3 = {ρs cos θ, ρs sin θ, 0}, such that the Sunspacecraft distance reads:

r2
s = (x− ρs cos θ)2 + (y − ρs sin θ)2 + z2 (6.46)

With this improvement of the model the problem presented in 6.34 can be rewrit-

ten as in [32] considering the perturbation of all the bodies involved in the inter-

planetary transfer (i.e. the Sun, the Earth and the Moon)

ẋ = vx
ẏ = vy
v̇x = 2vy + Ω4x + Tx/m

v̇y = −2vx + Ω4y + Ty/m

θ̇ = ωs
ṁ = −T/ISPg0

(6.47)

Considering a state vector defined as y = {x, y, vx, vy, θ,m}T and a thrust vector

defined as T = {Tx, Ty}T equations 6.47 can be rewritten in a compact form as

ẏ = f (y (t) ,T (t) , t) (6.48)

6.6.5 Moon Low-thrust trasfer with Sun perturbation

The results of the problem considered and analyzed in [32] will be presented in

order to to complete the analogy with the immunotherapy problem in which we

have improved the first model in order to consider other interactions.

The translation of the problem defined by the equations 6.48 into a discrete finite

form lead to the definition of a NLP vector defined as

x = {(y,T)1 , .., (y,T)N , t1, tN}
T (6.49)
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The performance index is slightly different from the previous one because before

the low-thrust phase there is an initial impulsive translunar manouver in which

a launcher fournish a ∆v and read as follow

J = ∆v
1

2

∫ tf

t1

uTudt (6.50)

Considering initial boundary condition of a LEO and a final boundary condition

of LMO and saturation on the thrust magnitude it is possible to arrive at a

formulation that looks like the other NLP problems that we have considered:

min J subject to c(x) = 0

x g(x) ≤ 0
(6.51)

Figure 6.15: Optimized low-thrust transfer to a LLO [32]





Chapter 7

Conclusions

In this thesis we addressed two issues of current investigation in engineering and

in general in the scientific area: the mathematical modeling of phenomena and

the solution of optimal control problems.

The generality and breadth of this topic could fill pages and pages of pure the-

oretical discussion, this without the emergence of the salient aspects, the main

problems and the necessary steps to be followed in practical application. For this

reason, the ambitions of this work are numerous and essentially arising at two

levels: one general and one local, specific and applied to real problems. These

parts are not independent but closely allied as a single-stage process that starts

from the observation of a phenomenon and has as its goal finding a way to control

it.

We have seen that the mathematical modeling of a physical phenomenon can fa-

cilitate full understanding of it, using a synthetic representation of the relations

between the different parameters of the system. Such modeling has as its ultimate

goal the prediction of the system state in a finite time and if necessary the imple-

mentation of a control to arrive at a final state set. One of the limitations of this

work is the impossibility of achieving a model starting from the observation of

the phenomenon, but this is a matter of those who play the role of scientists that

they must have the ability to know the problem but they also have the ability to

use the mathematical tools to build a model.

The problem from an engineering standpoint assumes essentially a different per-

spective. Key point appears the choice of model to use. In the analysis of prob-

lems in immunotherapy and in astrodynamics we followed the principle of Oc-

cam’s razor entia non sunt multiplicanda praeter necessitatem1, that leads to the

conclusion that the simplest solution is the correct one.

In our analysis we start from simple models certainly correct, that take into con-

sideration few variables and then move on to the analysis of more accurate models

follow as a guideline for evaluating the new results those obtained previously.

1entities must not be multiplied beyond necessity



120 Conclusions

Obviously there are always same limits on the modelization of phenomenon that

are the consequence of the limited accuracy of the results. This aspect is par-

ticular evident in the analysis of the cancer immunotherapy problem. We must

stress that the numerical results presented are higly dependent on the values of

parameters used, and the dataset should be completely different for other tumors

and other drugs, so that any generalisation of these results to clinical conclusions

would at this stage be completely hazardous.

Despite this the results show that an approach through the theory of optimal

control is efficient and effective in order to solve problems of immunotherapy,

and the versatility and robustness of the algorithms minimize the problems of

uncertainty in models and parameters.

Using an hybrid algorithm, we eliminate the gradient-based optimization ten-

dency to converge to a local optimum if the solution does not lie close to the

global optimum.

We also exploit the gradient-based algorithm to introduce the constraints that can

not be introduced directly into the GA. Finally, we have shown how the approach

and resolution of a problem of optimal control in cancer immunotherapy and in

astrodynamics are in perfect analogy. To demonstrate that the algorithms used

to solve an OCP immunotherapy have been used to solve optimization problems

of low-thrust trajectory in astrodynamics.

Our procedure overcomes the problems highlighted in [16], avoiding the use of

hybrid controls that approximate the problem and providing a valuable tool for

immunotherapy cancer analysis.

The study of an optimal control problem related to immunotherapy against can-

cer has led to confront with a phenomenon modeled by non-linear equations.

Academic studies have generally presented the modeling of systems to be solved

through simplifications that lead to problems of linear type. If for some con-

trol problems e.g. active damping of vibrations of structures, LQR, LQG this

technique provides a valid approximation, the linearization approach applied to

immunotherapy models determines relevant change in the dynamics behaviour.

The study has broadened my knowledge about issues of control starting from the

knowledge on the calculus of variations to arrive at the numerical techniques that

are used today for solving complex problems.

The fundamental limitation of this work is the validity of the results obtained in

practice. While at the numerical level the solution has been validated in different

scenarios, the key step is the translation into practice. Obviously this is a problem

similar to the creation of a mathematical model albeit in the opposite direction.

The comparison with experts in the medical field has given rise to this difference

in language that are born into a problem that need to be multidisciplinary also

in the solution strategy.
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7.1 Future developments

We have tested the quality of the solution and the robustness and versatily of the

algorithm in models relatively simple and well established. The developments aim

to consider as for the astrodynamics problems more sofisticated model that takes

into account with increased accuracy the tumor-immune system mechanisms. In

the chapter related to the analysis of Castiglione Piccoli model we have modified

the tumor cells growth law. Laws of type exponential, logistic and Gompeterz

are macroscopic and the simplest one. An extension would be to consider a

Gompeterz model modified with the dynamics of two tumor cell compartments,

proliferating and quiescent. Kozusko-Bajzer in [29] were the first to describe this

with an ODE model. The tumor growth law is described as

N(t) = N0exp

[
k+

k−
(1− exp (−kt))

]
(7.1)

where N0 is the initial population and k+,k− represents respectively the growth

rate constant and the retardation of growth. A two compartment model de-

scribes the evolution of the two compartments of a tumor. This model consists

of proliferating P and quiescent Q cell compartments.

The two evolution of each of these compartments can be expressed by the follow-

ing ordinary differential equations

dP

Dt
= [β − µ− r0(N)]P + r1(N)Q

dQ

Dt
= r0(N)P − [µ+ r1(N)]Q

(7.2)

where N = P +Q and r0,r1 represent the rate of inactivation of proliferant cells

and the rate of recruitment from quiescence to proliferation.

One of the main step to improve the models considered is the extension of the

ODE model to a PDE model in order to include the spatial variables of cells and

drugs distribution. In this way it is possible to consider local mechanisms of down

regulation of the immune system response due to the inibitory presence of IL10

or TGF [41]. In addition this aspect is strictly related with the pretreatment of

lymphodepletion that permits us to eliminate the lymphocytes that compete with

the transferred cells. This kind of model permits to evaluate local therapeutic

strategies, in fact recent studies focus their attention on the administration of

high dosage IL-2 only at a local level in order to avoid any side effects.

The evolution of the system with a PDE and 2 cell compartments lead to a tumor

growth law described with

∂P (t, x)

∂t
+
∂P (t, x)

∂x
+ [K(x) + γ(t)]P (t, x) = 0

∂Q(t, x)

∂t
+
∂Q(t, x)

∂x
+ [β(t) + δ(t)]Q(t, x) = 0

(7.3)
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with K=term describing cells leaving proliferation to quiescence, due to mitosis;

β= term describing recruitment from quiescence to proliferation.

With the initial conditions defined as

Q(0, x) = Q0(x)

P (0, x) = P 0(x)

P (t, 0) = β(x)
∫∞

0
Q(t, ξ)dξ

Q(t, 0) = 2
∫∞

0
K(ξ)P (t, ξ)dξ

(7.4)

Clinical evidence has shown that other cytokines act as immune responce stim-

ulator, eradicating or substaintially attenuating tumor mass. Nowadays these

proteins increase the expectative of scientists because their limited side effects

in contrast with IL2 treatment. Interleukin 21 [15] stimulates Dendritic cells,

lymphocytes and natural killer cells and seems to be a promising weapon against

tumor growth. The model presented in the research must be validated with sci-

entific datas in order to consider IL-21 instead of IL-2. In [15] a model that

considers the interaction between this cytokine and immunotherapy is presented,

but several aspects are neglected such as the factors that influence CD8, the dy-

namics of CD4 cells and the infiammation related consequences of the therapy.

The Castiglione-Piccoli model must be improved in order to consider the use of

other cytokines in the immunotherapic treatment. This add-on can be useful

for these new clinical researches. Optimal therapy evaluated with the model can

be then tested in laboratory. At this moment the role of IL-2 in combination

with other biological agents, such as IL-6,IL-10,IL-12 and probably many others,

remains to be further elucidated by carefully designed protocols with a proven

record of safety and tolerability, and appropriate correlative laboratory studies.

Considering the dynamics of IL-2 clinical trial shows that there are immune stim-

ulation effects from treatment with IL-2 (Keilholz et al., 1994; Gause et al., 1996;

Hara et al., 1996; Kaempfer et al., 1996; Curti et al., 1996), and there is a time

lag between the production of interleukin-2 by activated T-cells and the effector

cell stimulation from treatment with IL-2. Hence, it is possible to modify the

models considering a discrete time delay.

These different improvements can be combined together and determine a macro-

scopic model that takes into account this advance in the cancer research mod-

elling. The optimal control theory and the algorithm that we developed, after

some modification if the set of equations are PDE instead of ODE, can be applied

to new models thanks to the robustness of the method.
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