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Sommario

Durante la fase di progetto e design di un aereo é importante verificare che
il velivolo sia in grado di rispondere alle specifiche di progetto. A tale sco-
po si effetuano test in galleria del vento, e qualora i risultati non fossero
soddisfacenti si modifica il progetto di conseguenza. Le stime provenienti
da tali test sono accurate e affidabili, ma l’utilizzo della galleria del vento,
delle opportune strumentazioni e la creazione di modelli che riproducano il
piú fedelmente possibile il reale velivolo costituiscono dei costi aggiuntivi.
Per poter ridurre tali costi prima dei test in galleria si utilizzano dei modelli
computazionali in grado di simulare la distribuzione delle forze aerodinami-
che con un buon indice di fedeltá; alcuni esempi sono i programmi Datcom,
Tornado, ed in generale programmi di implementazione degli algoritmi riso-
lutivi delle equazioni di Eulero. Esistono diversi programmi di questo tipo,
ognuno col proprio livello di accuratezza. Di norma maggiore é la precisione
del modello usato maggiore é il costo computazionale per il suo utilizzo, il
che puó risultare un’ulteriore complicazione in fase di progetto1.
Al fine di ovviare tale problema é stata creata una procedura chiamata “Data
Fusion Approach” il cui scopo é quello di fornire delle stime sufficientemente
accurate tramite la fusione di stime a basso livello di precisione con poche mi-
surazioni piú accurate. I primi dovrebbero determinare l’andamenteno delle
quantitá in analisi, mentre i secondi dovrebbero correggere tali “trend” otte-
nendo delle distribuzioni piú vicine a quelle reali. Questo approccio risulta
sufficientemente accurato per semplici casi, ma perde di fedeltá nel momento
in cui viene applicato a casistiche meno lineari.
Nonostante ció, il concetto alla base della procedura, vale a dire il progres-
sivo miglioramento degli andamenti stimati tramite aggiunta di ulteriori mi-
surazioni, puó essere comunque utilizzato al fine di ottimizzare l’utilizzo dei
modelli computazionali. In questo report viene presentata una procedura
iterativa basata su tale concetto, la quale una volta applicata permette di
generare database contenenti migliaia di stime con poche centinaia di com-
putazioni, con conseguente risparmio in elaborazione e tempo.
Prima viene introdotta e descritta nel dettaglio la “Data Fusion Approach”,
si procede poi con l’analisi degli algoritmi di interpolazione conosciuti col
nome “Kriging”, si introducono i criteri di campionamento che permettono
di identificare le misure da aggiungere per le correzioni nel processo iterativo,

1Utilizzo di supercomputers in grado di gestire database di dimensioni notevoli, nonché
lunghi tempi di attesa per ottenere le stime



ed infine si mostrano i risultati provenienti dall’applicazione di tale proce-
dura al simulatore “Tornado”; i risultati mostrati sono relativi ad un Boeing
747 e ad un caso ipotetico creato al fine di evidenziare la qualitá delle stime
anche in casi piú complessi.



Abstract

The object of this report is to introduce an iterative procedure based on
the basic concept of the data fusion approach whose aim is to optimize the
usage of computational models. By using such a procedure the estimates
are highly accurate and require lower computational costs, speeding up the
usage of these models.

Keywords : Computer Experiments, Correlation Parameter, Data Fusion,
Extrapolation, Kriging, Sampling
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Chapter 1

Introduction

During the design phase of an aircraft it is important to verify that such a
project is able to respond to the specifics the airplane itself is designed for.
One way to do that is to test a model of the designed aircraft in a wind
tunnel session, and according to the consequent results modify the project
whenever it seems necessary to. Unfortunately this kind of test can be quite
expensive, and that would increase the total cost of the aircraft production.
In order to reduce those costs computational models are available, and by
using them it is possible to get a good estimate of the aerodynamic proper-
ties and of the performances of the airplane. That is why simulators such as
Datcom, Tornado or Euler Equations have been developed.
Datcom (Data Compendium) is a program written in Fortran IV, whose aim
is to derive some aerodata by using some statistical result obtained for cer-
tain aircraft configurations and then adapting them to the actual airplane
by introducing its geometrical and envelope features. It allows to analyze
the aircraft aerodynamic characteristics in all of the flight regimes, although
some of them are limited or not accessible depending on the aircraft attitude.
As stated in [10], its fundamental purpose is to provide a systematic summary
of methods for estimating stability and control characteristics in preliminary
design applications. Consistent with this philosophy, the development of the
Digital Datcom computer program is an approach to provide rapid and eco-
nomical estimation of aerodynamic stability and control characteristics. As
stated in [6], it requires flight conditions and geometry description in order
to estimate the required output. Its estimate are quite accurate for most
of the conventional aircraft for subsonic and supersonic regimes. Transonic
data are found from subsonic and supersonic data, leading to uncertainty in
the results. This method is based on inviscid flow assumption, and friction
correction are later added to the results. It can be downloaded on [14].
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CHAPTER 1

Tornado is a 3D-vortex lattice program with flexible wake coded in Matlab.
It is based on the Vortex Lattice Method, which works with the actual geom-
etry of the airplane wing and tail1, dividing them into a certain number of
panels in which both a lifting vortex and a control point are located. In this
way the program can take the effects of the mutual induction of the lifting
surfaces into account, and it can also estimate the entity of the loads both
spanwise and chordwise, although it shows some problem when it comes to
handle transonic regimes. Its outputs are: 3D forces acting on each panel,
aerodynamic coefficients in both body and wind axis and stability derivatives
with respect to angle of attack, angle of sideslip, angular rates and rudder
deflections. It can be downloaded on [15].
The Euler equations are a simplified version of the Navier-Stokes ones, which
have been gotten by assuming with zero viscosity and heat conduction terms.
The Euler equations can be applied to compressible as well as to incompress-
ible flow by using either an appropriate equation of state or that the diver-
gence of the flow velocity field is zero, respectively.
In order to simulate the force distribution over the aircraft, some program
such as CEASIOM are still developing as well. As it is possible to read in
[3] the aim of this program is exactly to make the aircraft conceptual design
phase easier and cheaper.
There are several kind of computational models, all of them with different
levels of accuracy. Usually the best way to get precise results is to use the
model with the highest accuracy, but that comes together with high compu-
tational costs. For this reason the data fusion approach has been developed.
As it is possible to read in [5], this is a procedure that let to obtain quite
accurate results by using a data set coming from a poorly accurate model and
improving them by using few results coming from more accurate ones. This
approach is based on the concept that the initial data set gives the trend of
the analyzed quantity, while the high-fidelity models adjust such a trend to
its actual values, and is effective as far as it is used on simple cases, in which
the force distribution is quite linear and predictable. As this methodology
is applied on more complicated and less linear cases the results worsen in
quality, making the entire procedure less reliable.
Nonetheless the idea of improving a trend by adding additional samples can
still be used to optimize the usage of the computational models previously
mentioned, in order to get accurate results with less computational costs.
Based on this concept an iterative procedure has been developed, which is
applied on one model, the initial trend is given by a data set collecting few

1For the time being the fuselage is not simulated, but they are working on a new version
of the program in which both the fuselage contribution to the drag and the wing stall are
taken into account.
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INTRODUCTION

estimates of the studied responses and the final data set collects thousands
of them.
This report goes through the theoretical bases behind the procedure, showing
also the features of the several toolboxes and simulators used in the program,
and at last shows some results coming from its application on a simple case,
a Boeing 747 with no control surfaces, and on a hypothetical case which
was created to demonstrate that this approach can handle complicated and
non-linear responses as well.

3
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Chapter 2

Data Fusion Approach

This chapter gives an introduction to the
Data Fusion Approach, with a brief discus-
sion on the concept of low fidelity and high
fidelity results.

Flight simulation and aircraft performance estimates require a database of
look-up tables for aerodynamic forces and moments as functions of the flight
state - velocity, angle of attack, sideslip, control surface deflections, etc. The
database is a set of tables of all the required forces and moments with around
ten independent variables/dimensions and it is queried by interpolation. A
ten-dimensional table of sufficient resolution would be enormous, and it is
simplified by exploiting weak dependencies and approximate linearization
into a number of three-dimensional or two-dimensional tables.
The task addressed in this work is to fill such a 3-D m×n× k table by com-
putation of only a small number of strategically chosen points from which the
rest can be interpolated by some method for interpolation from an “unstruc-
tured” set of points. Kriging with a linear trend was employed, implemented
in the DACE Toolbox as referred in [4], and an iterative procedure, which
adds points incrementally until an accuracy estimate criterion is satisfied, as
well.
The independent variables in the aerodatabase application are angle of attack
α, Mach number M and side slip angle β, x = (M,α, β), and the dependent
variables are coefficients of lift , drag, pitching moment, roll moment, and yaw
moment, summarized into f = (CL, CD, Cm, Croll, Cn) , f1 = CL (M,α, β),
etc. The iterative procedure previously mentioned is based on the basic con-
cept of the so called data fusion approach.

5
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The aim of this procedure is to “fuse” low fidelity data with a few high-
quality ones so that the resulting data set is quite accurate, as close as
possible to the high fidelity one, and cheap to get computationally speaking.
As explained in [5], this approach is based on the estimate of the so called
increment function β (x), which is defined as follows

β (x) = fhf (x)− flf (x) , (2.1)

where fhf and flf represent the estimates of the analyzed quantity by an high-
fidelity and a low-fidelity method respectively. By this definition, β (x) can
be considered as an indicator of the error in the low fidelity estimate. This
parameter is first estimated in specific points which are localized by following
specific criteria1, then it gets interpolated over the computational domain
and at last it is used to correct the low-fidelity results getting something
supposedly more accurate, as shown in the following equation

f (x) ≈ flf (x) + β (x) , ∀x ∈
−→
X, (2.2)

where
−→
X is the vector containing all the design sites. According to [5], the

low-fidelity data is used to predict trends, while high fidelity data is used
to provide absolute values, so that combining them together the final results
turn out to be both quite accurate and cheap computationally speaking. This
is the standard data fusion procedure, in this study everything is inserted
in an iterative loop, so that the final results can be more accurate, but still
being computationally cheap. Moreover just one model is used, so the aim
of the procedure is not to improve the results coming from a poorly accurate
model anymore, but to optimize the usage of the model itself. In this way
the number of computation required to get the analyzed responses will be
smaller than the number of element of the 3-D table the model is used for.
However, when it comes to categorize low fidelity and high fidelity models it
is not possible to classify them universally, but such a classification depends
on the purpose of the study one is leading. For instance, considering Dat-
com and Tornado 2, according to [10] and [12] when it comes to analyze the
aerodynamic forces distribution over an aircraft flying in subsonic regime the
Tornado results seems to be more reliable since they come from calculations
evaluated on the real aircraft while Datcom gives results based on statistics.
On the other hand, since Tornado is based on the Vortex Lattice Method,
everything coming from Tornado at an high Mach number M is no longer
reliable and its usage is limited to the subsonic regime, so for analyses in

1See Chapter 4 for more informations about them.
2See Chapter 5 for a detailed description of the models.
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transonic regime Datcom plays the role of high fidelity model. The following
pictures show such results for a simple case such as the Boeing 747 with no
control surfaces coming from the usage of the two models mentioned above
for an angle of attack α of 6◦. These responses have been obtained by us-
ing the CEASIOM package, which contained all the geometrical information
regarding this aircraft, both for the Datcom estimates and for the Tornado
ones
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Figure 2.1: Datcom Results, α = 6◦.
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Figure 2.2: Tornado Results, α = 6◦.
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The transonic Tornado results are obtained by the Prandtl-Glauert correc-
tion, and as it is possible to notice, beyond M = 0.6 these estimates are not
reliable. Moreover, in the subsonic regime Tornado shows a slight sideslip
angle dependence which is totally ignored by Datcom3, and this is another
reason to choose Tornado as an high fidelity model in this regime. An-
other thing that may be noticed is that the lift coefficient estimates for low
Mach numbers are quite different, and between the two of them the Tornado
ones are more reliable since the model works with the actual geometry of the
wing, while Datcom adjusts statistical results to the analyzed case. Although
Tornado does not consider some term such as the effect of the fuselage, in
subsonic regime its estimates should be more accurate.
Anyway, both of them can be seen as low fidelity model if compared to the
Euler Equation model, which in turn has low fidelity if compared to a DNS.
In conclusion, it is not possible to classify a model univocally and a priori, but
its fidelity level depends on the work conditions and on the models available
to the user.

3Such a discrepancy is more evident without using the Prandtl-Glauert correction.
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Kriging

This chapter goes through the specific of Krig-
ing, how it works and what it requires in order
to work, introducing also the actually used
toolbox, the DACE Kriging Toolbox.

Kriging has been characterized as “Optimal interpolation based on regres-
sion against observed values of surrounding data points, weighted according
to spatial covariance values”. As stated in [7], all interpolation algorithms,
such as inverse distance squared, splines, radial basis functions, triangulation,
etc., estimate the value at a given location as a weighted sum of data values
at surrounding locations. Almost all assign weights according to functions
that give a decreasing weight with increasing separation distance. Kriging
assigns weights according to a user-chosen and data-driven weighting func-
tion, rather than an arbitrary function, but it is still just an interpolation
algorithm and will give very similar results to others in many cases

• if the data locations are densely and uniformly distributed throughout
the domain of interest, any interpolation algorithm will do;

• if the data locations fall in a few clusters with large gaps in between,
the estimates will be unreliable regardless of interpolation algorithm;

• Almost all interpolation algorithms will underestimate the highs and
overestimate the lows.

Kriging has few strong points

9
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• it helps compensate for the effects of data clustering, assigning indi-
vidual points within a cluster less weight than isolated data points, or
treating clusters more like single points;

• it gives estimates of error - known as ”kriging variance” - along with es-
timate of the value itself. Note, however, that the error map is basically
a scaled version of a map of distance to nearest data point;

• The available estimation error provides basis for adaptive procedures
for building tables, such as done in this work.

Kriging, initially developed by D. Krige and G.Matheron, originated in geo-
statistics and then became a widespread technique for interpolation in mul-
tidimensional, unstructured sets of points, [4]. Kriging uses the model

ŷ = F (γ:, x) + z (x) . (3.1)

to define the value f̂ from the regression model F (γ, x) and the “residual”
which is treated as a random function z (x).

The regression model is given by a linear combination of p chosen func-
tions gj

F (γ, x) =

p∑
j=1

γjgj(x) (3.2)

The random function is a stochastic process which is assumed to have
mean zero and covariance between z (w) and z (x) equal to

E [z (w) z (x)] = σ2R (θ, w, x) , (3.3)

where σ2 is the process variance of the response, and R (θ, w, x) the correla-
tion model with parameter θ standing for the correlation function parameter.

The general definition of the correlation model is

R (θ, w, x) =
n∏
j=1

Rj (θ, wj − xj) , (3.4)

where n is the number of independent variable.

This correlation function parameter controls the range l around which
the measurement affects its surroundings. It has to be defined per each
independent variable, and the relation between θ and l is

θ ∝ 1

l2
(3.5)

10
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The higher is the value of θ, the smaller is the size of the region in which the
sampled values affect the appearance of the resulting response.
In this study the Matlab DACE kriging toolbox has been used, it can be
downloaded on [16]. By using this toolbox, the increment function β (x)
introduced in Chapter 2 is estimated over the computational domain, given
few exact estimates on specific points x0. As stated in [6], the accuracy of
kriging function always increases with an increase in the number of samples,
although the computational time gets longer. The usage of such a package
requires the user to establish both the regression and the correlation model.
The choice of such terms is based on the quantities the toolbox is dealing
with, and the following sections go through the detail of such choices.

3.1 Regression and Correlation Models

Usually low order polynomials are used for the regression model. Numerical
problems were encountered with quadratic regression, so a linear model was
chosen here,

g1 (x) = 1, g2 (x) = x1, ..., gn+1 (x) = xn. (3.6)

The choice of the correlation one depends on the analyzed phenomenon. The
picture shows a few commonly used correlation function for 0 ≤ d ≤ 2, where
d is the distance between design sites1

Figure 3.1: Correlation Functions.

1Points in the computational domain, see [3] for more explanations.
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Usually for continuously differentiable f Gaussian, cubic or spline functions
are chosen, since they are several times differentiable at d = 0 , as explained
in [3], and in this study the Gaussian one has been used. The following
formula represents such a model

R (θ, w, x) =
n∏
j=1

exp
(
−θj|wj − xj|2

)
=

n∏
j=1

exp

[
−
(
|wj − xj|

lj

)2
]

(3.7)

As stated in the previous paragraph, the correlation function parameter θj
must be estimated for each independent variable. The choice of such a pa-
rameter determine the results of the kriging interpolations, usually linear
responses need small value of this amount while nonlinear ones require larger
value, meaning that the single data point affects locally the final result. How-
ever, guessing its value can be notoriously difficult, particularly using data
with more than 2 independent variables. Therefore, the DACE kriging tool-
box uses a maximum likelihood estimate to find the statistically best θ, once
its lower and upper limits are defined. It basically determines θ∗ that solves

min
θ
{ψ (θ) ≡ |R|

1
mσ2} (3.8)

Optimizing this likelihood function, however, is a very hard problem, since
the region around the minimum is very flat, causing problems for any opti-
mization algorithm. The following figure shows a typical trend of the function
previously stated

Figure 3.2: Correlation Function Parameter: Estimate.

Given the flatness of the graph, in order to define the correlation model that

12
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suits the analyzed responses the best it is not necessary to estimate θ∗ pre-
cisely, any value of the correlation function parameter within a small range
around the statistically best θ would give an accurate model. For this rea-
son the used toolbox does not really estimate the minimum of ψ (θ), but it
stops after at most 4 iterative steps giving a result that is a good compro-
mise between efficiency and desired accuracy, as stated in [2]. Moreover, the
regression function is affected by the number of used data points. The larger
is such a number the greater is the degree of local information available, and
consequently the estimate of the correlation function parameter changes de-
pending on it.
The lower limit for the estimate of this parameter is usually set as close to
zero as possible2, the upper one depends on the linearity of the analyzed
response as previously stated.

2Given its definition it can not be exactly equal to zero.
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Chapter 4

Procedure Features

This chapter goes through the DFIP specifics
focusing on the sampling criteria, the crite-
rion used to stop the iterative procedure, and
the user interface.

Applying the concepts described in the previous chapter, an optimizing
procedure has been developed, which basically works following these steps

• it loads the initial data set input by the user obtained by using a certain
model, which collects few results;

• it defines the final computational domain with the dimensions input by
the user;

• it samples few points on which the computational model will be applied
again;

• it fuses the previous data set with the estimates on the sampling points
by using interpolation algoriths;

• it repeats the last two points iteratively until the stop criterion is sat-
isfied.

The core of the program is basically given by the choice of proper sampling
criteria. In fact once these criteria get properly established it does not matter
what kind model the program is supplied with, and that makes the usage of
the program itself more flexible, giving the possibility of using it, or at least
part of it, even in other engineering fields.

15



CHAPTER 4

4.1 Sampling Criteria

As stated in the introduction of this chapter, the choice of the right points
where the high fidelity model must be applied on is a very important step.
There are several elements that must be taken into account in order to select
the best candidates as such points. Some of them are more important than
others, but still it is necessary to consider all of them, their relative impor-
tance can be defined by setting the right priority for their execution. Those
terms are the increment function β (x), the Mean Squared Error MSE, the
geometrical feature of the surface that describes the distribution of the esti-
mated coefficients geom and at last the density of the sampling point in the
computational domain void. Once the total number of sampling points N
is fixed, it can be considered as equal to the summation of sampling points
coming from the listed elements, as shown in the following equation

N = Nβ(x) +NMSE +Ngeom +Nvoid. (4.1)

They have been listed in their priority order. As it is possible to notice,
the increment function term and the mean squared error one are the ones
with the highest priority. That is due to the fact that they represent how
much the current distribution of the analyzed quantities fails to represent
the actual one. As stated in Chapter 2, β (x) can be seen as an expression
of the error in the estimate of a certain quantity due to the usage of models
with different accuracy level, and since this kind of error seems to be larger
than the one due to the usage of the kriging toolbox, it has higher priority.

4.1.1 Increment Function β (x)

As stated in Chapter 2, from the data fusion procedure it is possible to
estimate β (x), which in this case represents the difference between the results
at a certain step and the those ones associated to the previous step. The
value of such a term is supposed to decrease in the iterative loop, converging
to zero. So, once the loop is over, the distribution of β (x) for a two sweeping
variables case should be a flat plate. First the program tries to get all of the
sampling points from the β (x) analysis, so that

Nβ(x) = N. (4.2)

For each force coefficient fi it checks the β (x) distribution, identifies the
maximum/minimum points for such a distribution, which supposedly rep-
resent the worst estimates in the current iterative step, and uses them as
sampling points. That means that

Nβ(x),i =
Nβ(x)

n
=

{
x | ∂β (x)

∂xj
= 0

}
, ∀fi (4.3)
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where n represents the number of analyzed quantities. Since it is not possible
to say a priori which force coefficient requires a more thorough analysis, the
available number of sampling points has been equally split among the stud-
ied responses. Once these points are gotten, they are collected all together
defining a unique matrix of sampling points. Since such points are obtained
analyzing individually each non-dimensional coefficient, it might happen that
several coefficients share same sampling points, and that could generate some
problem in the data fusion procedure1. In order to avoid such a problem,
the program checks whether there are some double point; and in that case it
eliminates the extra points. As a consequence of that, at the end of such an
analysis there could be two different cases

1. Nβ(x) < N : the program goes on with the next step in the sampling
procedure;

2. Nβ(x) ≥ N : the program stops the sampling procedure taking the first
N sampling points.

An important thing to highlight is that this step occurs anytime β (x) is
available, that means that before the iterative loop occurs it is skipped.
The following picture shows an example of sampling following the criteria
mentioned above for a two sweeping variables case
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Figure 4.1: Increment Function Sampling.

1The DACE Toolbox does not allow multiple design sites.
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4.1.2 Mean Standard Error MSE

As stated in [3], the approximation models used to estimate the analyzed
variables are deterministic, so they lack of random error and the only one
they are affected is MSE, which is related to the used correlation models.
The larger MSE in a certain point, the worse the interpolation in that point,
so this factor must be taken into account. Once the β (x) step is over, the
program goes on and gives half of the remaining sampling points to the MSE
analysis, getting

NMSE =
N −Nβ(x)

2
. (4.4)

NMSE = {x | MSE (x) = MSEmax} . (4.5)

In this case the available number of sampling points is not split among the
several force coefficients, since all of them are estimated over the computa-
tional domain by using the same correlation model, so the MSE distribution
is the same as well. The following picture shows an example of sampling fol-
lowing the criteria mentioned above for a two sweeping variables case
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Figure 4.2: Mean Standard Error Sampling.

4.1.3 Geometrical Features geom

Another important element to take into account is the shape of the surface
describing the distribution of the estimated variables. According to the an-
alytical geometry bases, to sketch a generic function maximum, minimum,
inflection and border points have to be identified. That would give a general
idea of the function trend. However, several tests showed that while the bor-
der points analysis is quite effective, the maximum/minimum and inflection
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points analyses are not2, slowing the entire procedure down. For this reason
only the border points has been considered, reducing the sampling procedure
as follows

Ngeom = N −Nβ(x) −NMSE (4.6)

Ngeom = {x | x ∈ ∂Ω}. (4.7)

In the equation above ∂Ω stands for the border of the surface in a two
sweeping variables case, analyzed side by side. In a three sweeping variables
case it would represent the external surfaces described by the conditions
α = α1, α = αend, M = M1, M = Mend, β = β1 and β = βend.
The picture below shows an example of the sampling criteria mentioned above
for a two sweeping variables case
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Figure 4.3: Geometrical Sampling.

After the double-points check, the final result is

Ngeom ≤ N −Nβ(x) −NMSE (4.8)

In this case the double-points analysis checks whether the external surfaces
share common sampling points or not. If there are some point left, the
procedure goes through the last sampling criterion.

4.1.4 Sampling Point Density void

At last, assuming that there are some point left it could be useful to check
those spots in the computational domain where there are no sampling points
and to fill them with the remaining points. In order to do that, the program

2That is due to the fact that they are applied on local results in the iterative loop.
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identifies the largest empty sphere in the computational domain and then it
locates one point in its center. Such a step is repeated as many times as the
number of left points is. The following equations recap such a step

Nvoid = N −Nβ(x) −NMSE −Ngeom (4.9)

Nvoid = {x | sphere = ∅ ∧ r = ‖x− xsampled‖ = rmax}, (4.10)

where r is the radius of the sphere, and xsampled is one of the sampling points
already gotten. Also in this case it is not necessary to check for the double-
points.
The following picture shows an example of sampling following the criteria
mentioned above

Figure 4.4: Sampling Point Density Sampling.

In conclusion this criterion basically does the same thing the MSE criterion
does, that is filling up the empty spaces in the computational domain3. The
only difference is that while the MSE criterion somehow takes the distri-
bution of the analyzed variables into account, the void criterion considers
only the distribution of the sampling points. That means that theoretically
well estimated areas but poor of sampling points would be filled up by this
criterion.

4.1.5 Statistical Results

This section collects some statistic regarding the usage of the criteria listed
above, in order to better understand how the final results are influenced by
their usage.

The number of sampling points coming from the β (x) analysis is always
smaller than the maximum number of sampling points established by the

3High mean squared errors are due to a lack of points in that area.

20



PROCEDURE FEATURES

user, and usually leaves a quite large number of points for the next analyses.
That is probably due to the good quality of the results coming from the used
kriging toolbox.

The number of sampling points coming from the MSE analysis is almost
as big as the number of points allowed to this criterion, which is largely
conditioned by the number of sampling points left from the β (x) analysis.
That means that the double-point analysis does not find so many overlap-
ping points, and probably the MSE distribution for each force coefficient is
different.

The geometrical criterion usually uses almost all the remaining points,
leaving to the void analysis few sampling points.

The following table collects the percentages of occurring of the listed
criteria, recapping what stated in the paragraphs above, allowing 50 sampling
points per each iterative step

β (x) MSE geom void

23.2% 34% 39.6% 3.2%

Table 4.1: Criteria Statistical Results.

4.2 Stop Criterion

Since the procedure runs iteratively, it needs a criterion to stop itself at a
certain point. This criterion is based on checking the average value of the
increment function expressed as a percentage of an indicative maximum value
of the corresponding force coefficient CF,i in the current iterative step, β̄i,%.
As stated in Chapter 2, such a parameter represents the error between one
solution and the previous one estimated in the iterative loop. So, β̄i,% is
defined as follows

β̄i,% =
β̄i

max (fi)
· 100, ∀fi, (4.11)

where β̄i is the increment function β (x) averaged over the whole compu-
tational domain associated to fi. Calling m the number of element in the
computational domain

β̄i =

∑m
i=m βi (x)

m
, ∀fi. (4.12)
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Then β̄i,% is compared to a relative tolerance factor tol chosen by the user,
so that the user himself can set the program according to his needs.

Moreover, since the procedure is dealing with variables depending on
three sweeping amounts, such variables would be portrayed by 4D surfaces.
When the number of sampling points increases, the 4D surface coming from
the usage of the kriging toolbox could be either very close to the previous
estimate or totally different, and there is no way to say which one of the two
cases occurs a priori, so it may happen that β̄i,% satisfies the tolerance factor
by a lucky strike. In order to counter such a problem, the stop criterion must
be satisfied three times in a row. After that it is reasonable to assume that
the convergence is reached, although that means adding some computation
that anyway refines the final results. That also means that the minimum
number of iterative steps is equal to 3.

4.3 User Interface

In order to test such a procedure on some aeronautical case, it has been
coded in Matlab, creating a program that applies the procedure itself on
Tornado, one of the aeronautical simulator introduced in Chapter 1. It has
been supplied with an user interface which resembles the Tornado one. This
choice is not related to any low fidelity/high fidelity consideration, but on
the fact that a multiple choices interface would simplify the usage of the
program itself. Moreover, showing the several possibilities directly on the
command windows does not requires further m-files that would code the
possible GUI interface, without compromising its ease of use. Among the
such choices, the program offers the possibility to choose both the initial
data set and the geometrical features once they are collected in their proper
folders, so it can be used to estimate the aerodynamic properties of another
aircraft without directly modifying the code. It asks the user to input the
dimension of the final data set, the number of the sampling points to use in
each iterative step, the correlation lengths for each independent variable, the
aircraft model, whether to use the Prandtl-Glauert correction or not in the
Tornado estimates and at last the relative tolerance factor. Regarding the
dimension of the final data set, it is limited to at most 10000 results per force
coefficient. Every time the kriging toolbox has to interpolate/extrapolate
over that limit, Matlab runs out of RAM memory and the program stops.
For this reason the dimension of the final data set must be set in order to
get a manageable computational domain.
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Once its sequence is activated the program displays the number of sampling
points used in each iterative step and how they are distributed in the four
points described in Section 4.1. Once the procedure is over, the program
recaps the total number of sampling points and how they are distributed
over the several criteria, and it gives the user the possibility to display some
graph representing the estimates responses.
The following figure portrays such an interface

Figure 4.5: Matlab User Interface.
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Test Case

This chapter shows the results gotten by us-
ing the iterative procedure and analyzes them
changing some parameter such as the num-
ber of sampling points per iterative step and
comparing them with the actual results.

In order to show the quality of what comes from the usage of such a
procedure, it has been tested first on a simple case, such as a Boeing 747
with no control surfaces, then a hypothetical case which was created in order
to challenge the procedure itself1. The initial dataset is quite poor, just 8
values in the first test case and 4 values in the second one. By using this
iterative procedure the purpose is to generate a larger and more accurate
dataset limiting the computational costs. In order to show such results by
3D surfaces, one of the three sweeping variables have been fixed one at the
time, first the angle of attack α at 13◦, then the Mach number M at 0.3 and
at last the sideslip angle β at 6◦2. The used aerodynamic model was Tornado,
which has been set with a fixed wake and the Prandtl-Glauert correction has
been used on the final results, although one has to remember that it works
in subsonic regime, so any result related to a Mach number larger than 0.6
is not reliable.

1Those responses
2These are just example parameters, they do not have a particular meaning.
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5.1 Results

5.1.1 Boeing 747

All these results shown below have been gotten by using a relative tolerance
factor tol = 1% and applying the Prandtl-Glauert correction. The force dis-
tributions for this case are quite linear, so the correlation function parameters
are defined assuming that each data point affects the whole response. That
means that the lengths that define such a parameter as stated in Chapter 3
have to be at least as large as the range of each independent variable. The
following table collects these values

l1 l2 l3
18 0.7 12

Table 5.1: Correlation Lengths.

These amounts have been used to define the upper limits of θ, then the DACE
kriging toolbox calculates its statistically best estimate.
The accuracy of the final estimates should not depend on the number of sam-
pling points per iterative step, assuming a proper choice of the correlation
lengths. To verify that, the following figure sketches the trend of the aver-
aged difference between the estimated results and the exact ones3 expressed
as a percentage of an indicative value of the maximum force coefficients e%,i
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Figure 5.1: e% Trend.

3Results that come from the standard usage of the computational model on the estab-
lished domain.
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As it is possible to notice, the error assumes an unexpected values for NSP =
10, but it is about the same for all the other cases. A reasonable explanation
for this behavior at NSP = 10 is that since the program adds few sampling
points in each iterative step, the changes in the results in each step may be
not considerable, and consequently the stop criterion is satisfied even though
the final response is not highly accurate. However, even in this case the
largest error is of about 1.6%, so still quite reliable. Anyway, since this be-
havior can be expected a good rule of thumb is to use a number of sampling
points per iterative step which let to use at least the first three sampling
criteria stated in Chater 4.1, in this case NSP ≥ 20.
The presence of bumps on the different curves are due to the chosen correla-
tion lengths for that specific case, but in general it is possible to observe that
the accuracy of the results is quite the same. The following table collects
some of the values of e%

Force Coefficients
CL CD Cm Croll Cn

NPS

20 0.03 0.11 0.06 0.11 0.28
30 0.03 0.11 0.06 0.08 0.22
40 0.02 0.10 0.05 0.08 0.23
50 0.02 0.11 0.05 0.07 0.24
60 0.02 0.11 0.03 0.07 0.23
70 0.02 0.11 0.04 0.05 0.24
80 0.01 0.10 0.05 0.05 0.23

Table 5.2: Error Percentage on Final Result.

The number of sampling points NSP must be chosen in order to be sure
that the final results converge to an accurate estimate in short computa-
tional time. The following figure, sketching how the number of iterative
steps NIS changes with NSP and how the total number of sampling points
TNSP changes with NSP , can better explain that phenomenon. The tri-
angles identify NSP = 20, and the red lines represent the average trends of
these parameters. As it is possible to notice, TNSP tends to increase with
NSP as it was expected, while NIS tends to decrease, meaning that the
regression model gets more accurate. The values of these two parameters
at a specific value of NSP are related to the way the used kriging toolbox
works, so it can not be estimated a priori and it should not surprise that the
actual trends do not go directly from high values to lower one or vice versa
as NSP increases
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Figure 5.2: TNSP and NIS Trends.

The following graphs sketches some of the results coming from the usage
of the procedure at the attitude stated at the beginning of this chapter and
setting the number of sampling points per iterative step as equal to 20. Each
one of them is followed by the contour plot of the difference between the
estimated results and the exact ones, so that one can better appreciate their
quality. On the contour plots the sampling points that influenced the corre-
sponding distribution are sketched as well. These specific graphs have been
chosen because these results are quite sensible to the choice of the correlation
model, so by representing them one can appreciate even better the quality
of the final results.

Since the total number of sampling point is quite small in this case, the
representation of the used sampling points does not help too much under-
standing how such results have been gotten; but generally speaking that
could show the critical areas on which the program focused in order to get
the final responses.

The total number of sampling points used to get a database of 7400
elements is equal to 140, which means that the program saved about the
98, 1% of the computations to get them.
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5.1.2 Hypothetical Case

In order to verify the quality of the results coming from the application of
this procedure, it has been tested on the two nonlinear responses described
by the following equations

w (x, y) = y sin (x)− cos (y) cos (x) .3− 2 sin (n (y)) sin (m (x))− e−p(x) (5.1)

z (x, y) = sin (y)3 sin (x)2 + sin (y) cos (x) + e−q(y) (5.2)

m (x) =
2x+ π

4
n (y) =

2y + π

4

p (x) =
2x+ π

π
q (y) =

2y + π

π

x, y ∈
[
−π

2
,
3

2
π

]
. (5.3)

The following figures sketches such distributions
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Figure 5.15: Second Test Case - 1.
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These are the results obtained by using the iterative procedure on this new
dataset. They have been obtained by using NSP = 20 and a relative toler-
ance factor of 1%. Given the non-linearity of these responses, the correlation
function parameters have been defined so that each data point affects the fi-
nal results just locally. Their upper limits have been set based on an affected
range equal to 1/5 of the independent variables ranges for the first response
and 1/10 for the second one4.
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Figure 5.17: Data Fusion Results - 1.

4Since the second response is more nonlinear than the first one its correlation function
parameters have to be larger.
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Figure 5.18: Data Fusion Results - 2.

As it is possible to see those results are quite alike to the expected ones,
meaning that the program seems to work properly. To better appreciate the
quality of these results, the following graphs sketch the difference between
the estimated results and the exact ones, visualizing also the used sampling
points to simplify the analysis
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It is possible to notice how some sampling point seems to follow a sort of
pattern. This is due to the application of the sampling criteria, meaning that
those were probably the most critical areas for the program to get the final
results, so it filled them with data points in order to fix the problem.
Going through the statistical results, the following figure sketches the trend
of the percentage errors e%
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Figure 5.21: e% Trend, Test Case 2.

Also in this case it is possible to observe that for NSP ≥ 20 the percentage
errors are about constant for the two responses, as it was expected, showing
the same behavior noticed in the first test case. The following table collects
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some result to analyze it in detail

Responses
#1 #2

NSP

20 0.53 0.38
30 0.14 0.05
40 0.10 0.12
50 0.13 0.06
60 0.02 0.06
70 0.01 0.03
80 0.00 0.02

Table 5.3: Error Percentage on Final Result, Test Case 2.

The same tendency noticed in the first test case can be noted also for the
TNSP and NIS, as skeyched in the following figure
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Figure 5.22: TNSP and NIS Trends, Test Case 2.

Also in this case the results show that as the number of sampling points
increases, the number of iterative step decreases and the total number of
sampling points increases as well.
In the test case NSP is equal to 20 giving a total number of sampling points
equal to 240 to generate a database of 6400 responses, saving about the
96, 25% of the computations.
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Chapter 6

Conclusion

In conclusion, the procedure seems to work properly. The final results are
satisfying and saving a large number of computations. As stated in Chapter
4, the core of the procedure is given by the sampling function and the cor-
recting steps, then it is just supplied with the computational model whose
usage has to be optimized, and with a kriging package which not necessarily
has to be the DACE toolbox. Generally speaking, the model itself could be
any model,and since the procedure has been developed to work with generic
data set, one could also think to use it with models that are not necessarily
related to aerodynamics. The sampling function would remain intact as long
as the user is working with at most three independent variables data set.
The only limit in this analysis is given by the fact that the used kriging tool-
box requires to know the regularity of the final responses in order to define
a proper upper limit for the correlation function parameter, but this is just
related to the specific package that as been used in this study.
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