
POLITECNICO DI MILANO

Facoltà di Ingegneria Industriale

Corso di Laurea in Ingegneria Aeronautica

Multidisciplinary Multirate
Co-simulations in Multibody

Dynamics

Relatore: Prof. Pierangelo Masarati

Tesi di Laurea di:

Tommaso Solcia, matr. 706895

Anno Accademico 2008− 2009

Contents

1 Introduction 13

1.1 Thesis Objectives . 14

1.2 Free Software . 14

1.3 Thesis Structure . 15

2 Multirate Co-simulations 17

2.1 Introduction . 17

2.2 Multirate Systems . 17

2.3 Co-simulation Architecture . 19

3 Multirate Algorithms 21

3.1 Introduction . 21

3.2 Multirate Formulae . 22

3.2.1 Slowest first . 22

3.2.2 Fastest first . 23

3.2.3 Compound - Fast . 24

3.2.4 Generalized Compound-Fast 25

3.2.5 Mixed Compound-Fast 25

3.3 New Algorithm Definition . 27

3.3.1 Extrapolation method 28

3.4 The Single-rate Layout . 28

3.5 Stability Analysis . 29

3.5.1 Compound Matrix . 29

3.5.2 Test Equation and Results 32

3.5.3 Validity of Stability Results 36

3.6 Accuracy . 37

3.7 Overcoming the Synchronization Restriction 38

3

4 CONTENTS

4 Software Environment Design 43
4.1 Software Tools Selection . 43

4.1.1 Multibody Simulator . 43
4.1.2 Block Scheme Simulator 47

4.2 Inter-process Communication 47
4.3 A Simple Test . 48
4.4 Future Enhancement . 49

5 Wind Energy Application 51
5.1 CART Description . 51
5.2 Multibody Model . 52
5.3 Controller . 53
5.4 Wind Turbine General Behavior 56
5.5 Results and Costs . 56
5.6 Multirate CPU Time Saving . 61
5.7 Wind Turbine Modeling Objective 62

6 Helicopter Dynamics Application 65
6.1 Bo 105 Description . 66
6.2 The Multibody Model . 67

6.2.1 Main Rotor and Fuselage 68
6.2.2 Tail Rotor . 68

6.3 Submodels Connection and Control 68
6.4 Results and Costs . 69

7 Conclusions 75

List of Figures

2.1 Mutlirate systems examples . 19
2.2 A co-simulation setup . 20

3.1 Slowest First chronological sequence 23
3.2 Fastest First chronological sequence 24

3.3 Double Extrapolation chronological sequence. 27
3.4 Stability region of the BDF Method 34

3.5 Stability region of the Slowest First Method 35
3.6 Stability region of the Fastest First Method 36

3.7 Stability region of the Double Extrapolation Method 37

3.8 Stability region of the Double Extrapolation Method 38
3.9 Stability region of the Double Extrapolation Method 39

3.10 Multirate methods convergence 40
3.11 Synchronized time grids setup 41

3.12 Non-synchronized time grids . 42

4.1 Inverse pendulum multibody model 48

4.2 PD controller . 49
4.3 Inverse pendulum results . 49

5.1 The Control Advanced Research Turbine at NWTC, Colorado . 52
5.2 Graphical representation of the CART multibody model 53

5.3 Electrical generator working function 54
5.4 Block Scheme of the controller implemented in Scicos 55

5.5 PID controller superblock . 55

5.6 Electrical generator superblock 56
5.7 CART available power diagram 57

5.8 Blade pitch, wind magnitude and rotor speed as functions of time 57

5

6 LIST OF FIGURES

5.9 PID controller action in terms of components 58
5.10 Time history of CART blades internal forces over blade radius . 59
5.11 Time history of CART blades internal moments over blade radius 60
5.12 Results for steps in wind magnitude 63

6.1 The MBB Bo 105 . 66
6.2 The MBB Bo 105 three-view sketch 67
6.3 Scicos scheme for the submodels integration 69
6.4 Helicopter relative altitude during the simulation 70
6.5 Helicopter yaw angle as function of time 71
6.6 Controller action: pitch angle 72
6.7 Reaction force at the interface of tail rotor and fuselage 73

List of Tables

5.1 Summary of CART multibody model 53
5.2 Processor performances . 58

6.1 Typical helicopter subsystems frequencies 65
6.2 Computational costs for the different layouts 71

7

Abstract

Simulations of mechatronic systems quite always imply interaction between
numerous and multidisciplinary components. In addition, it is common that the
involved components and subsystems show different time scales and frequencies.

An efficient way to build computer simulation models is to use a multidis-
ciplinary environment, in which co-simulation setups are available, in order to
simplify the definition of the computer model and improve the computational
efficiency. Multirate methods can be used to further improve the efficiency.

Most multirate methods are designed to be applied to monoblock equation
systems, and used in single disciplinary simulations. The application of these
methods in co-simulations setups may be not straightforward.

The main concern of this thesis is to study properties and performances of
multirate co-simulations, and to demonstrate it is possible to build a free soft-
ware environment capable of integrating a Multibody simulator with a general
purpose block diagram simulator, exploiting also the multirate layout. In par-
ticular, the co-simulation setup is formed by the multibody simulator MBDyn
and the general purpose block diagram simulator Scicos.
The tool derived from this integration is finally applied to simulate the behavior
of a controlled wind turbine and a helicopter, to show the computational costs
and the effort needed in building the model for possible real cases.

A new multirate scheme is also presented, for which stability and accuracy
results are given.

Keywords: Co-simulations, Multirate, Multibody, Block Diagram, Free
Software.

Sommario

La simulazione dei sistemi meccatronici quasi sempre implica interazioni tra
numerosi componenti, spesso studiati da discipline diverse. Inoltre, è comune
che componenti e sottosistemi coinvolti mostrino diverse scale temporali.

Un metodo efficiente per costruire modelli computazionali è utilizzare am-
bienti multidisciplinari, in cui sia possibile eseguire co-simulazioni, in modo da
semplificare la descrizione dei modelli e migliorare l’efficienza di calcolo. I metodi
Multirate possono essere utilizzati per migliorare ulteriormente le prestazioni

Per la maggior parte, i metodi di tipo Multirate sono stati progettati per
essere applicati a sistemi di equazioni monoblocco, risolte da singoli simulatori.
L’applicazione di tali metodi alle co-simulazioni pu essere complicata.

Il primo obiettivo di questa tesi è studiare le proprietà e le prestazioni delle
co-simulazioni Multirate, e dimostrare che è possibile costruire un ambiente di
tipo free software capace di integrare un simulatore multicorpo con uno schema
a blocchi generico, sfruttando anche la tecnica multirate.

In particolare, il setup presentato è formato dal simulatore multicorpoMBDyn

e dal simulatore basato su schemi a blocchi Scicos.
Lo strumento risultante da questa integrazione verrà infine utilizzato per simu-
lare il comportamento di una turbina eolica controllata automaticamente e di un
elicottero, per mostrare i costi computazionali e lo sforzo per costruire il modello
di calcolo applicazioni reali.

Inoltre, un nuovo metodo multirate viene presentato, di cui sono date le
propriet di stabilit e accuratezza.

Parole chiave: Co-simulazioni, multirate, multicorpo, schemi a blocchi,
software libero.

Chapter 1

Introduction

The dynamical behavior of mechanical systems can be analyzed by means of
multibody simulators. This kind of tool is developed by researchers since the
1960s, and during the decades lots of improvements have been reached also due
to the fast growing of computational capabilities.

Nowadays, the simulation of mechanical systems very often implies a strict in-
tegration between different disciplines, such as mechanics, electronics, hydraulics
and active controls [1].

This kind of integrated systems usually brings to different approaches to
analyze the behavior of the interacting components: for example, Multibody and
Finite Elements are supposed to be used for structural, kinematic and dynamic
analyses of mechanical systems, while to define the characteristics of controllers,
sensors and actuators, designers widely exploit general purpose block scheme
simulators.
Using different approaches leads to some advantages, going from the ease in
defining the model, to the efficiency of the built-in algorithms, to the fact that
every specialist has good skills in using the software related to his own discipline,
and everything includes all the benefits coming from many years of development
and testing.
In the last years lots of efforts have been spent trying to extend multibody
simulators with multidisciplinary tools, in order to keep the benefits coming
from using multiple approach techniques.

An interesting example is represented by multidisciplinary co-simulation en-
vironments, which keep advantages from both using different softwares and
building a single model to run a complete single analysis. By this approach,
the multibody simulator and the block scheme coexist, thus allowing the de-

13

14 CHAPTER 1. INTRODUCTION

signer to build a model of each component employing one of the two ways.

The block scheme can also be used to simplify the description of some me-
chanical components, which are not important by themselves, and are only
needed to define their main effects on the system.

In addition, different frequencies can be experienced by the subsystems that
form the whole layout. In this case also, the co-simulation setup can be helpful,
because the two simulators can be driven by different timesteps.

The drawback coming from such a layout, however, is that integration of
different systems can be not straightforward.

1.1 Thesis Objectives

The main objective of this work is to study the co-simulations integrating multi-
body and block scheme simulators, both in single-rate and multirate layout. A
theoretical study will be developed about the properties and performances of
the numerical methods needed. Two softwares (a multibody and a block scheme
simulator) will be selected, and an interface will be implemented to build the
multidisciplinary environment. Also, to complete the advantages given by a
co-simulation setup, the generated environment will support the multirate tech-
nique.

The extensions built will be applied on a real case, to check whether the
benefits are interesting, both in terms of versatility and computational perfor-
mances.

An additional concern of this thesis is to demonstrate that it is possible to
build such an architecture exploiting free software only (see section 1.2 for an
explanation).

The result will give the user the possibility of building models of mechatronic
systems in a co-simulation environment, thus offering benefits in both simplifying
the model construction and improving the efficiency of the simulations.

1.2 Free Software

In contrast to the proprietary software, the free software was born to give the
users the opportunity to study, improve and distribute the software itself. The
idea is even different from the open-source aims, which are limited to give the
source code and have nothing to deal with the freedoms guaranteed by free

1.3. THESIS STRUCTURE 15

software distributions. “Free” is indeed to be intended as freedom (liberty, the
condition of being free of restraints) and not as a matter of price.
For a software to be defined free it is necessary to guarantee four essential
freedoms:

Freedom 0 The freedom to run the program, for any purpose;

Freedom 1 The freedom to study how the program works, and change it to
make it do what you wish. Access to the source code is a precondition for
this;

Freedom 2 The freedom to redistribute copies so you can help your neighbor

Freedom 3 The freedom to distribute copies of your modified versions to oth-
ers. By doing this you can give the whole community a chance to benefit
from your changes. Access to the source code is a precondition for this.

For sure, a free software implementation running on low cost hardware gives
anybody both the opportunity to use advanced simulation techniques and the
possibility to even explore the contents of the methods implemented and the
computer techniques involved. This is, without any doubt, a great chance for the
academic world, being much easier for the users to get involved in the developing
of new techniques. Also, it is likely that small enterprises have an easier life if
such a setting is available.

1.3 Thesis Structure

In chapter 1, a brief description of the topics touched by thesis is given.
Chapter 2 describes the multirate co-simulations and the possible applica-

tions in which they can be useful.
Chapter 3 gives the analytical definition of the numerical methods consid-

ered, mainly aimed to give a detailed description of the multirate schemes that
could be used in the environment presented in chapter 4. Also, a new multirate
scheme is presented. For all the most indicative cases, the stability and accuracy
analysis are performed, both to show the properties of the methods in general
and to give a comparison between them.

Chapter 4 presents the working environment built in this context. The de-
scription of the softwares used for the co-simulations is given, together with the
definition of the intercommunicating process exploited.

16 CHAPTER 1. INTRODUCTION

After the description of the computational tool is given, in chapter 5 results
of a possible application are given. A controlled wind turbine is modeled to
show both the computational cost relative to a real application and to give an
idea of the effort needed to build the numerical model.

Finally, chapter 7 summarizes the conclusions and results achieved by this
work.

Chapter 2

Multirate Co-simulations

2.1 Introduction

Simulation of complex mechatronic systems in which mechanical components
interact with sensors, actuators and controllers can be achieved exploiting dif-
ferent software tools, each simulating the dynamical behavior of one subsystem.
Possible practical cases are automobiles (Anti-lock Braking Systems, Traction
Controls, Electronic Stability Controls), robots, airplanes (Stability Augmenta-
tion Systems, Flutter Suppression Systems) and many others.

Many multibody system softwares can internally model multidisciplinary
components (like hydraulic and electrical actuators, aerodynamic surfaces or
control loops). It is often convenient, however, that the multibody simulator in-
teract with an external software, such as a block diagram simulator. In this way
many benefits arise: the model definition becomes easier, much more tools are
available, algorithms are already optimized for controller simulations, and so on.
Nevertheless, the integration of different systems can be not straightforward.

2.2 Multirate Systems

Complex systems, in addition to multidisciplinary components, may show dif-
ferent time scale subsystems. Every time such a situation occurs, it would be
convenient to simulate the dynamic behavior integrating the state motion with
different frequencies, in order to save computational efforts.

Multirate methods have been studied for many years (since the late 1970s),
but their application in co-simulations is not yet developed, mainly because

17

18 CHAPTER 2. MULTIRATE CO-SIMULATIONS

this kind of methods have always been based on monolithic sets of equations
integrated by a single process.

However, the argument is recently showing up in the multibody community,
since it happens very often to face with mechatronic systems showing multirate
behaviors. In fact, every time electronic components show up in the system, they
usually exhibit a faster dynamics than mechanical components. A combination
of multibody and block diagram simulators (a common setup in mechatronic
industry), working in a multirate layout, has been presented in [2] and [3]. In
[2], an in-house developed multibody simulator is coupled to a commercial block
diagram simulator (Simulink) in a multirate layout. The setup is applied to the
simulation of the dynamics of a kart. The multiphysics model is divided into
two subsystems: a multibody model of the mechanical components of the vehi-
cle, including the steering column, tyres and suspensions, and a thermodynamic
model of a fourcylinder spark ignition engine, implemented in a Simulink block
diagram. The Simulink model is then integrated with a time step of 10−4s,
while the multibody model is integrated with a 10−2s time step. In [3], the
commercial multibody software SIMPACK is interfaced with the simulation en-
vironment Modelica/Dymola. The application is the dynamic simulation of a
car with servo-hydraulic steering system. In this case, a multibody model in
SIMPACK describes the mechanical components, while the steering system has
been described based on the general purpose Modelica language.

Also, it is possible that mechanical subsystems have different frequencies. In
a helicopter, for example, the tail rotor usually rotates 6/7 times faster than
the main rotor, and this last is 3/4 times faster than the flight dynamic (figure
2.1(a) shows characteristic values). Systems where mechanical and electrical
components are coupled together quite always show multirate behavior, as the
electrical subsystems are always faster: figure 2.1(b) shows a wind turbine, as
example: the gearbox ratio is about 40, making the electrical generator shaft
much faster than the turbine rotor. The possibility of handling a multirate setup
in all these situations leads to a series of benefits, such as saving of computa-
tional time, respecting real-time constraints in complex model and enhancing
the productivity when numerous analyses have to be run (for example if different
configurations have to be considered).

2.3. CO-SIMULATION ARCHITECTURE 19

(a) Helicopters: different frequencies between
the main and tail rotors and flight dynamics

(b) Wind turbines: electrical
generators rotate much faster
than turbine rotors

Figure 2.1: Mutlirate systems examples

2.3 Co-simulation Architecture

Simulation of multiphysic systems can be carried out splitting the main model
into different subsystems, each of those is defined by means of different model,
and maybe in different languages or softwares. This kind of layout has been
defined as the optimal one to perform multidisciplinary simulations [4]. In co-
simulation layouts, two or more simulators are exploited to integrate the motion
of the states of the subsystems. For this architecture to work, the tools involved
need to communicate during the execution of the simulation, in order to emulate
the real physical interactions.

As already stated, even though multirate algorithms have been studied for
many years, their application in co-simulations is still an open field of research,
especially for the interaction between multibody and block scheme simulators.

The already mentioned wind turbine example (figure 2.1(b)) is also a test
bench for co-simulation architectures. In figure 2.2 it is shown how the wind tur-
bine can be split in different subsystems, each of those is modeled in a different
environment: the mechanical and aerodynamic behavior of the turbine are sim-
ulated as a multibody system, while the controller and the electrical generator
are described in a block diagram.

20 CHAPTER 2. MULTIRATE CO-SIMULATIONS

Figure 2.2: A co-simulation setup: the wind turbine in the center is split in a
multibody system (on the right) and a block diagram (on the left)

Chapter 3

Multirate Algorithms

The idea behind Multirate Methods was born in the Seventies. The first try
in studying the stability is presented in [5], one of the first works about the
Multirate Methods.
The basics consist in a numerical method that uses more than one time grid to
integrate the ODE system. Once the system is split in more subsystems present-
ing different time scales, the fast subsystems are integrated with finer time grid
than the slow ones. The terms defining the coupling between the subsystems
are evaluated by means of interpolation or extrapolation.
Since Gear and Wells [5], a lot of effort has been spent in upgrading and extend-
ing the possible applications, as well as in studying the mathematical properties
of the methods. However, a complete study on this kind of algorithms for co-
simulations has been not proposed yet, mainly because multirate methods are
usually applied to monolithic sets of equations, solved by a single simulator.

In this chapter, the analytical description of the implemented algorithms is
presented, together with a stability and accuracy performances description.

3.1 Introduction

Let the system of ODE be partitioned into two subsystems

{

y′ = f(t, y, z) y(t0) = y0;

z′ = g(t, y, z) z(t0) = z0;

(3.1.1a)

(3.1.1b)

The equation (3.1.1a) represents the fast subsystem and the equation (3.1.1b)

21

22 CHAPTER 3. MULTIRATE ALGORITHMS

the slow subsystem.
A linear multirate formula which uses k steps is defined by the operator Lk

Lk[y(t); h] =
k

∑

r=0

αry(t− rh) + hβry
′(t− rh) (3.1.2)

If the local truncation errors satisfy the relation in (3.1.3)

‖Lk[y(t); h]‖ >> ‖Lk[z(t); h]‖ ∀t ∈ [t0, tf] (3.1.3)

then the system (3.1.1) can be integrated using larger steps in (3.1.1b) than in
(3.1.1a), without increasing the maximum local truncation error.

A numerical method exploiting this possibility is called a Multirate Method.
In order to achieve good stability properties, it is desirable to integrate the

system by an implicit method, such as the Backward Difference Formula (BDF).

3.2 Multirate Formulae

A quick recall to some traditional implicit schemes is given below.

3.2.1 Slowest first

With this approach, the slow variable is integrated first (with a large time step
H). Since the fast variable values are not computed yet, an extrapolation is
used to predict them. Then the fast variable is integrated with a small step size
h, exploiting interpolation to compute the slow variable values on the finer grid.

Often, a zero order extrapolation is used to predict the fast variable ex-
trapolation. This is due to two main reasons: firstly, an accurate prediction is
impossible to compute, due to the fact that the time step is incompatible (too
large) with the fast variable rate of change. Moreover, only the slow components
of the fast subsystem matter in the slow simulator, because of the multirate be-
havior of the system.

A graphical representation of this scheme is shown in figure 3.1: in step 1
(figure 3.1(a)), the fast variable extrapolation (×) is computed and communi-
cated to the slow simulator, which in step 2 (figure 3.1(b)) computes the new
slow variable value; based on this last value, in step 3 (figure 3.1(c)) the fast
simulator finally computes all the new fast variable values, for time steps from

3.2. MULTIRATE FORMULAE 23

k + 1 to k + r (the last being the new value used for the next extrapolation),
where r = H

h
.

k-r k-3 k-2 k-1 k k+1 k+2 k+r

Fast Variable

y
stored values

yextrap

k-r k k+r

Slow Variable

z
stored values

(a) Step 1

k-r k-3 k-2 k-1 k k+1 k+2 k+r

Fast Variable

y

k-r k k+r

Slow Variable

z
new value

(b) Step 2

k-r k-3 k-2 k-1 k k+1 k+2 k+r

Fast Variable

y
new value

k-r k k+r

Slow Variable

z
new value

(c) Step3

Figure 3.1: Slowest First chronological sequence

3.2.2 Fastest first

The fast variable is integrated, based on extrapolated slow variable values. Then
the slow variable is computed by means of an implicit step. This approach
can exploit higher order prediction algorithms, and the relative error related to
them lowers when the fast components of the fast variable are less important
in the slow variable motion integration. The drawback is that if the larger
time step is reduced (due to unsatisfactory tolerances in the slow integrator),
and the procedure has to be repeated, previous solutions of the fast subsystem
are required to cover the whole large time step, thus implying more memory
resources. Figure 3.2 gives a representation of this method: in step 1 3.2(a),

24 CHAPTER 3. MULTIRATE ALGORITHMS

the slow variable extrapolation (×) is computed and communicated to the fast
simulator, which in step 2 3.2(b) computes all the new fast variable values, for
time steps from k+1 to k+ r; based on the last value, in step 3 3.2(c) the slow
simulator finally computes the new slow variable value.

k-r k-3 k-2 k-1 k k+1 k+2 k+r

Fast Variable

y
stored values

k-r k k+r

Slow Variable

z
stored values

zextrap

(a) Step 1

k-r k-3 k-2 k-1 k k+1 k+2 k+r

Fast Variable

y
new value

k-r k k+r

Slow Variable

z

(b) Step 2

k-r k-3 k-2 k-1 k k+1 k+2 k+r

Fast Variable

y
new value

k-r k k+r

Slow Variable

z
new value

(c) Step 3

Figure 3.2: Fastest First chronological sequence

3.2.3 Compound - Fast

In this approach, the integration is carried once (implicitly) for the whole system
(3.1.1), with the large step H , so that yk+r and zk+r are computed. Afterwards,
only equation (3.1.1a) is integrated with the small step h, using interpolated
values of zk+1 . . . zk+r−1.
It has to be noted that yk+r is updated at the end of the time step computation,
thus is computed twice. This is used to improve stability with respect to the

3.2. MULTIRATE FORMULAE 25

previous methods, where extrapolation brings unstable behavior. A more precise
description of this algorithm can be found in [7].

3.2.4 Generalized Compound-Fast

As for the Compound−Fast scheme, the integration is carried once for both the
fast and slow components, but computing yk+αr together with zk+r, where αr ∈
N and 1 < αr < r. Afterwards, yk+1 . . . yk+r−1 are computed using zk+1 . . . zk+r−1

from interpolation. This time it is yk+αr which is computed twice. A detailed
description can be found in [8].

3.2.5 Mixed Compound-Fast

This method is obtained as a derivation from theGeneralized Compound−Fast,
using α = 1

r
. In this way, yk+1 and zk+r are computed first, then yk+2 . . . yk+r−1

are determined based on interpolated values of z. With this algorithm, there
are no values that have to be computed twice.

When a co-simulation setup is considered, the subsystems (3.1.1a) and (3.1.1b)
are integrated by independent processes. This means that performing an im-
plicit integration for the whole system is not possible in one iteration only. In
fact, the fast simulator solving (3.1.1a) for the time step k + r (thus computing
yk+r) would need f at time tk+r, and so needs zk+r. In the same way, the slow
simulator needs yk+r to compute zk+r, and this brings to an inconsistency. The
Compound − Fast-like methods (the last three presented), once introduced in
a co-simulation setup, have exactly this problem.

The only way to compute a completely implicit step is to use a Predictor-
Corrector method, thus iterating until convergence at every time step. This
setup would be heavily time consuming.

A workaround to this problem is to use a prediction (extrapolation) for
the unknown external variable, based on old values. The first two methods
(Slowest F irst and Fastest F irst) are based on this kind of approach. If, for
example, a prediction ˆyk+r of the fast variable y is computed based on old values

26 CHAPTER 3. MULTIRATE ALGORITHMS

yk yk−1 . . . and passed to the slow simulator, the slow simulator can compute
zk+r, which would be then passed to the fast simulator, so that yk+r can be
finally computed. In this case (it is nothing but the Slowest F irst method)
only one iteration would be performed at every time step, and the same would
happen if the prediction of the slow variable were given to be used in the fast
simulator (Fastest F irst method).
Such an organization implies that the extrapolation introduces an explicit behav-
ior in the method, and, very likely, the stability properties will be lower than in
fully implicit methods. Together with this goes the fact that also the accuracy
of such methods will be poorer, and should be analyzed before implementing
these kind of algorithms in a software.

Both the Slowest F irst and the Fastest F irst methods, moreover, imply
dead times between the iterations of each subsystem: for such schemes, one
simulator needs to wait the other to give results before proceeding with the
computations, so that every time one simulator is working, the other is idle.
This might be not important for serial simulation, in which only one processor
is used to run both the slow and the fast simulators, because if this was the case,
the CPU would always be working. But if the processes were run on distinct
machines or on multiple processors, the CPUs would advance one at a time, and
the simulation would require more time than it was actually necessary.
An application in a co-simulation setup of these two methods is given in [9],
where a simple application is described as test case.

The dead time issue would not disappear neither with the Compound−Fast-
like algorithm. Thus the defect about computational costs of the last three
methods would be further exaggerated in a parallel co-simulation layout.

The method presented in this work uses a setup similar to the Slowest F irst

and Fastest F irst methods, but aims to overcome the dead time issue. The
solution is to give predictions for both the fast and slow variables (the fast
process sees only an extrapolation of the slow variable, and vice versa). By
doing this it is not necessary that one process waits for the other to give results,
but only needs to wait for a prediction (internally or externally computed),
and both simulators can advance at the same time. The figures 3.3 represents
the chronological sequence of such a layout: step 1 (figure 3.3(a)), both the
slow and fast variables extrapolations are computed and exchanged between the
simulators; step 2 3.3(b), the fast and slow simulators perform the integrations
at the same time. In what follows, this method will be referred to as Double
Extrapolation Method.

3.3. NEW ALGORITHM DEFINITION 27

k-r k-3 k-2 k-1 k k+1 k+2 k+r

Fast Variable

y
stored values

yextrap

k-r k k+r

Slow Variable

z
stored values

zextrap

(a) Step 1

k-r k-3 k-2 k-1 k k+1 k+2 k+r

Fast Variable

y
new value

k-r k k+r

Slow Variable

z
new value

(b) Step 2

Figure 3.3: Double Extrapolation chronological sequence.

3.3 New Algorithm Definition

As already stated, in the case the two subsystems are integrated by different
processes, it is convenient to carry out the integration using predicted values of
the external variable, and then advance by an implicit scheme.

The method described in this work makes use of a linear multistep implicit
method. In contrast to a single-rate method (defined in (3.1.2)), the solution of
(3.1.1) in a multirate layout is given by (3.3.1).

yi+1 =

p−1
∑

j=0

(ajyi−j + hbj f̂i−j) + hbpf̂i+1 (3.3.1a)

z(i+1)r =

p−1
∑

j=0

(ajz(i−j)r +Hbj ĝ(i−j)r) +Hbpĝi+1 (3.3.1b)

where f̂i = f(ti, yi, ẑi), ĝi = g(ti, ŷi, zi) and ŷ and ẑ are approximation to y

and z respectively. Both methods have order p. Note that both methods have
bp 6= 0, i.e. both are implicit. In addition, the two subsystems are integrated
with different timesteps (h and H), thus giving a multirate scheme. The ratio
r = h

H
is called the multirate ratio.

In general, different strategies could be adopted to approximate y and z, and
even if the same Multistep Method is adopted as internal solver, the approxima-
tion strategies may generate even extremely different performances, especially
in terms of stability.

28 CHAPTER 3. MULTIRATE ALGORITHMS

As already stated, the method proposed in this work makes use of extrapola-
tions (based on explicit Linear Multistep Methods) to predict both the fast and
the slow variable. Moreover, a 2 steps BDF will be selected as internal solver
for both processes.

3.3.1 Extrapolation method

Extrapolation is given based on state variable and state derivative old values,
as for the explicit Multistep Methods.

Considerations about accuracy, efficiency, memory usage and computational
costs bring to the conclusion that the best choice is to use a maximum of 2 steps
for predictions, thus relating the computation on already stored old variables
values (being the integrators built on a BDF 2 steps).

The slow integrator uses a constant (zero-order) extrapolation of the fast
variable, because it is not possible to determine a higher order formula showing
good behavior in every situations, being the extrapolation step always too large
compared to the frequency of the signal.

For use in the fast integrator, the slow variable can be predicted by a higher
order scheme (linear or quadratic), using the values of the most recent steps
available. Increasing the order to a cubic extrapolation will decrease the stability
performance if only 2 steps are used, and will increase the memory requirements
if more than 2 steps are required. Thus, no cubic extrapolation is considered in
this work.
Even if both linear and quadratic extrapolations will be implemented in the
software, the rest of the thesis will focus only on quadratic extrapolation, since
this algorithm shows better performances.

3.4 The Single-rate Layout

The case in which the two subsystems are integrated with the same time step is
of course a special case of the general layout described in the previous sections.

This case is referred to as single-rate (multirate ratio r = 1). If this were the
case, the distinction between fast and slow variables does not exist any more,
and the considerations in section 3.3.1 are no longer valid: in a sinlge-rate layout
the extrapolation of both variables can be carried out by the same higher order
method.

3.5. STABILITY ANALYSIS 29

3.5 Stability Analysis

Traditionally, Multistep Methods applied to test problems generate difference
equations [11]. Once the difference equation is determined, the stability con-
dition is translated in the roots condition: the method is said to be absolutely
stable if and only if all the roots of the characteristic polynomial have an absolute
value less than or equal to one.

In this work, it is not possible to select a single differential equation as a test
problem, since the aim is to analyze the interaction between different systems.
A system of ODEs is instead to be used, for which the application of a Multistep
Method gives a system of difference equations. This system can be written
by means of a matrix, called the Compound Matrix. The stability analysis is
thus carried out through the study of the compound matrix, as in [7], [10]. In
particular, the roots condition becomes the spectral radius condition, and the
method is said to be absolutely stable if and only if the spectral radius of the
compound matrix is less than or equal to one.

3.5.1 Compound Matrix

Here below a method is given to build the compound matrix for the general
cases of Multistep Linear Multirate Methods, where the coupled terms are ap-
proximated either in terms of interpolation or extrapolation, considering both
implicit and explicit schemes. After this, such a method will be applied to the
particular case of interest. The reason why no restrictions are imposed at this
level is to build an instrument giving the possibility to evaluate, also in the
future, possible modifications and improvements.

The compound matrix is built for the (Nf+Ns)×(Nf+Ns) system in (3.5.1),
where, without loss of generality, the system is partitioned into two subsystems
(the procedure can be easily extended to the case of more subsystems).

(

y′

z′

)

=

(

Λ1 µ

ε Λ2

)(

y
z

)

(3.5.1)

where y contains the Nf fast variables, and z contains the Ns slow variables.
Once the relations below are defined

αf = (fa0,
fb0, . . . ,

fap−1,
fbp−1,

fbp) (3.5.2a)

αs = (sa0,
sb0, . . . ,

saq−1,
sbq−1,

sbq) (3.5.2b)

30 CHAPTER 3. MULTIRATE ALGORITHMS

Af = A(αf) =

fa0I
fb0I · · · · · · fap−1I

fbp−1I
0 0 · · · · · · 0 0

I ...
...

(3.5.3a)

As = A(αs) =

sa0I
sb0I · · · · · · saq−1I

sbq−1I
0 0 · · · · · · 0 0

I ...
...

(3.5.3b)

βf = β(αf) =(fbpI, I, 0, . . . , 0)
T (3.5.4a)

βs = β(αs) =(sbqI, I, 0, . . . , 0)
T (3.5.4b)

Yi = (yT
i , f̂

T
i , . . . ,y

T
i−p+1, f̂

T
i−p+1)

T (3.5.5a)

Znk = (zTnk, ĝ
T
nk, . . . , z

T
(n−q+1)k, ĝ

T
(n−q+1)k)

T (3.5.5b)

the multistep method (3.3.1) applied to (3.5.1) gives the following relations

Yi+1 = AfYi + hβf f̂i+1 (3.5.6a)

Z(n+1)k = AsZnk +Hβsĝ(n+1)k (3.5.6b)

where i = nk, . . . , (n+ 1)k, and

f̂i+1 = Λ1yi+1 + µẑi+1 (3.5.7a)

ĝ(n+1)k = Λ2z(n+1)k + εŷ(n+1)k (3.5.7b)

A general way to define approximated values used in the simulation, consid-
ering both extrapolation-based and implicit methods, is the following.

ŷ(n+1)k = φfY(n+1)k (3.5.8)

ẑi+1 = φjZ(n+1)k (3.5.9)

with j = i− nk + 1. Details about φf and φj will be given in (3.5.13)

3.5. STABILITY ANALYSIS 31

Defining the rectangular matrices

E11 = (hΛ1, 0, . . . , 0)

E22 = (HΛ2, 0, . . . , 0)

E12 = (hµ, 0, . . . , 0)

E21 = (Hε, 0, . . . , 0)

leads to

Yi+1 = AfYi +B11Yi+1 +B12φjZ(n+1)k (3.5.10a)

Z(n+1)k = AsZnk +B22Z(n+1)k +B21φfY(n+1)k (3.5.10b)

where:

B11 = βfE11

B12 = βfE12

B21 = βsE21

B22 = βsE22

Defining the new matrices

Λf = (I+B11)
−1Af

Λs = (I+B22)
−1As

Γf i = (I+B11)
−1B12Φj

Γs = (I+B22)
−1B21Φf

the system (3.5.10) can be written using a more compact notation:

Yi+1 = ΛfYi + Γf iZ(n+1)k (3.5.11a)

Z(n+1)k = ΛsZnk + ΓsY(n+1)k (3.5.11b)

and the compound step is finally given by

Y(n+1)k = Λf
kYnk +

k−1
∑

i=0

Λf
(k−1−i)Γf iZnk (3.5.12a)

Z(n+1)k = ΛsZnk + ΓsYnk (3.5.12b)

32 CHAPTER 3. MULTIRATE ALGORITHMS

Extrapolation algorithm

The matrices φf and φi define the extrapolation algorithm. Changing the ex-
trapolation technique will carry to different methods: fully implicit, Slowest
First, Fastest First, and so on.

Once the algorithm is chosen, building such matrices is straightforward. The
example leading to the new method presented in this work is given here below.

φf = (0, 0, I, 0, . . . , 0) (3.5.13a)

φi = (0, 0,i v0I,
i d0I, . . . ,

i vq−1I,
i dq−1I) (3.5.13b)

where the coefficients ivk
idk define the extrapolation method for the slow vari-

able.

In the same way, it is easy to show how the traditional algorithm can be
defined in this context. For the Slowest First method:

φf = (0, 0, I, 0, . . . , 0) (3.5.14a)

φi = (im0I,
i n0I,

i m−1I,
i n−1I, 0, . . . , 0) (3.5.14b)

where the coefficients imk
ink define the interpolation method for the slow vari-

able.

For the Fastest First method:

φf = (I, 0, . . . , 0) (3.5.15a)

φi = (0, 0,i v0I,
i d0I, . . . ,

i vq−1I,
i dq−1I) (3.5.15b)

By such an approach, changing the coefficients in (3.5.2), (3.5.4) and (3.5.13),
(3.5.14) or (3.5.15), the stability properties of many linear Multistep Multirate
schemes, applied to a general linear ODE system, can be determined.

3.5.2 Test Equation and Results

Results in terms of stability performances are given comparing the stability
region of the traditional BDF scheme with some multirate methods. In particu-
lar, results are presented for the Double Extrapolation Method, for a comparison
with the most similar traditional multirate algorithm, the Slowest First and the
Fastest First.

3.5. STABILITY ANALYSIS 33

To this aim, the linearized two-dimensional ODE system (3.5.16) is used.

(

y′

z′

)

=

(

λ µ

ε αλ

)(

y

z

)

(3.5.16)

where λ = p+ jω is a complex number, j is the imaginary unit and α < 1 is the
frequency ratio.

Now, consider the systems in which p = 0. If the stability of the algorithm
haves to be determined, it is necessary to select linear systems with simple
stability (without positive nor negative damping). This means that the diagonal
terms in (3.5.16) must be imaginary, and the real part of the eigenvalues must
be set to zero. For the system (3.5.16) with λ pure imaginary, it is easy to
demonstrate that this condition leads to

µε

(ω1−ω2

2
)2

< 1 (3.5.17)

The ratio in (3.5.17) will be used also in the general case in which p 6= 0, to
give the measure of the coupling of the subsystems, defined in (3.5.18):

β =
µε

(ω1−ω2

2
)2

(3.5.18)

β is thus the measure of the coupling, and imposing β < 1 gives simply stable
systems for λ pure imaginary.

The stability of the Multirate Methods has been analyzed since the beginning
of the 1980s, exploiting different ways.

A stability analysis can be found in [10], where, however, damped systems
are selected to define stability regions of the methods. Thus, the regions defined
in that work are wider than actual regions.

Also in [7] a stability analysis is presented. In that case, for a general case
of a Multirate Linear Multistep Method, the spectral radius of the compound
matrix is studied indirectly using a 2x2 matrix M̂ for which the spectral radius
ρ(M̂) is demonstrated to be higher than the actual compound matrix spectral
radius ρ(M), thus having ρ(M̂) < 1 necessarily leads to ρ(M) < 1. Thus, in
this case the region determined is narrower than the actual one.

In this work, the stability region bounds are not given in closed form. For
each case considered, only the graphical representation of the region is presented.
As traditionally done for the numerical integration methods, the stability regions

34 CHAPTER 3. MULTIRATE ALGORITHMS

are determined on the complex plane. For a single equation such as y′ = λy,
the points of the complex plane correspond to hλ, with h being the dimension
of the time step and λ a complex number. For the system in (3.5.16), the same
convention is adopted, and the points of the complex plane in the figures shown
in this work always correspond to hλ, with h being the time step size. In all the
figures, the green area represents the stability region.

The results for the test case with α = 0.1 and β = 0.1 are shown in figures
from 3.4 to 3.7. In figure 3.4 the stability region of the traditional BDF method is
drawn (it is given only for comparison), while figures 3.5 and 3.6 show the Slowest
First and the Fastest First case respectively, and figures 3.7 finally represent the
stability results for the Double Extrapolation Method.

 Re

 Im

Traditional BDF method
α = 0.1 β = 0.1

−5 0 5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

Figure 3.4: Stability region of the BDF Method

The Fastest First and the Double Extrapolation methods loose the A-stability
faster than the Slowest First (figures 3.7(c) and 3.6(c)).

The Double Extrapolation Method has worse stability properties compared
to the other two methods, for higher multirate ratios. This is obviously due
to the fact that the traditional SF and FF methods use only extrapolated val-
ues for one subsystem, while for the other the actual solution is used. In the
Double Extrapolation Method, instead, two extrapolations are used, leading to
a stronger explicit character of the method, which make the formula loose the
stability properties a little faster. This kind of layout was the one chosen in
defining the new method to avoid dead times (as already mentioned in section
3.2), and this behavior of stability properties was expected.

3.5. STABILITY ANALYSIS 35

 Re

 Im

Multirate Ratio = 1
α = 0.1 β = 0.1

−5 0 5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

(a) r = 1

 Re

 Im

Multirate Ratio = 5
α = 0.1 β = 0.1

−2 0 2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(b) r = 5

 Re

 Im

Multirate Ratio = 10
α = 0.1 β = 0.1

−1 0 1 2 3 4 5

0.5

1

1.5

2

2.5

3

(c) r = 10

Figure 3.5: Stability region of the Slowest First Method, for multirate ratio r

equal to 1 3.5(a), to 5 3.5(b) and 10 3.5(c)

It must be noted that the Double Extrapolation Method does not loose the
stability on the imaginary axis, for multirate ratio equal to 1 (3.7(a)) and to
5 (3.7(b)). For r = 10, the stability condition is slightly lost, and the method
gives acceptable results only for systems that are at least weakly damped.

It is important to understand how the stability performances change by
varying the parameters α and β. Figures 3.8 show the behavior of the stability
region for the Double Extrapolation method when the parameter α changes from
0.001 (figure 3.8(d)) to 0.01 (figure 3.8(a)), and β = 0.05 Again, it is of interest
to observe the stability properties on the imaginary axis: for α = 0.1 and 0.05
(figures 3.8(a) 3.8(b)), the stability is unconditioned, and there is no restriction
in selecting the time step for undamped systems. Figures 3.8(c) 3.8(d), instead,

36 CHAPTER 3. MULTIRATE ALGORITHMS

 Re

 Im
Multirate Ratio = 1
α = 0.1 β = 0.1

−10 0 10 20 30 40 50

5

10

15

20

25

30

(a) r = 1

 Re

 Im

Multirate Ratio = 5
α = 0.1 β = 0.1

−2 0 2 4 6 8 10

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

(b) r = 5

 Re

 Im

Multirate Ratio = 10
α = 0.1 β = 0.1

−2 0 2 4 6 8 10

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

(c) r = 10

Figure 3.6: Stability region of the Fastest First Method, for multirate ratio r

equal to 1 3.6(a), to 5 3.6(b) and 10 3.6(c)

show two conditionally stable methods, where stability is reached only for a
finite interval of time step values.

In figures 3.8 the change in the stability region is shown for β varying from
0 (meaning no coupling between the susbsystems, figure 3.9(a)) to 0.8 (figure
3.9(d)).

3.5.3 Validity of Stability Results

To analyze the stability performances of the methods, a linear ODE system has
been selected.
The systems the multibody simulators deal with, however, are nonlinear Differ-

3.6. ACCURACY 37

 Re

 Im

Multirate Ratio = 1
α = 0.1 β = 0.1

−5 0 5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

(a) r = 1

 Re

 Im

Multirate Ratio = 5
α = 0.1 β = 0.1

−5 0 5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

(b) r = 5

 Re

 Im

Multirate Ratio = 10
α = 0.1 β = 0.1

−3 −2 −1 0 1 2 3 4 5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(c) r = 10

Figure 3.7: Stability region of the Double Extrapolation Method, for multirate
ratio r equal to 1 3.7(a), to 5 3.7(b) and 10 3.7(c)

ential Algebraic Equation (DAE) systems.
This means that the stability results presented in this section do not guarantee
that the methods analyzed will show the same stability properties, once imple-
mented in the co-simulation environment and used for real mechatronic systems
modeling.

3.6 Accuracy

In order to determine the accuracy of the method, a comparison with analitical
results is carried for the test equation (3.5.16).

Figure 3.10 shows the convergence order of the multirate methods that this

38 CHAPTER 3. MULTIRATE ALGORITHMS

 Re

 Im
Multirate Ratio = 10
α = 0.1 β = 0.05

−15 −10 −5 0 5 10 15 20 25 30

5

10

15

20

(a) α = 0.1

 Re

 Im

Multirate Ratio = 10
α = 0.05 β = 0.05

−15 −10 −5 0 5 10 15 20 25 30

5

10

15

20

(b) α = 0.05

 Re

 Im

Multirate Ratio = 10
α = 0.01 β = 0.05

−15 −10 −5 0 5 10 15 20 25 30

5

10

15

20

(c) α = 0.01

 Re

 Im

Multirate Ratio = 10
α = 0.001 β = 0.05

−15 −10 −5 0 5 10 15 20 25 30

5

10

15

20

(d) α = 0.001

Figure 3.8: Stability region of the Double Extrapolation Method, for multirate
ratio r = 10, β = 0.05, and α varying from 0.001 to 0.01

thesis deals with. Error is expressed in Linf norm. It is easy to note that for
larger values of the coupling coefficient β the order of convergence lowers from
2 to about 1.

3.7 Overcoming the Synchronization Restric-

tion

An additional improvement regards the synchronization between the distinct
processes. In what it has been discussed so far, it is implied that the processes
exchange data at every macro step, at the time instants of the coarse time mesh

3.7. OVERCOMING THE SYNCHRONIZATION RESTRICTION 39

 Re

 Im

Multirate Ratio = 10
α = 0.1 β = 0

−15 −10 −5 0 5 10 15 20 25 30

5

10

15

20

(a) β = 0

 Re

 Im

Multirate Ratio = 10
α = 0.1 β = 0.05

−15 −10 −5 0 5 10 15 20 25 30

5

10

15

20

(b) β = 0.05

 Re

 Im

Multirate Ratio = 10
α = 0.1 β = 0.2

−15 −10 −5 0 5 10 15 20 25 30

5

10

15

20

(c) β = 0.2

 Re

 Im

Multirate Ratio = 10
α = 0.1 β = 0.8

−15 −10 −5 0 5 10 15 20 25 30

5

10

15

20

(d) β = 0.8

Figure 3.9: Stability region of the Double Extrapolation Method, for multirate
ratio r = 10, α = 0.1, and β varying from 0 to 0.8

(the grid of the slow simulator), as shown in figure 3.11. Such a constraint leads
to a restriction in the simulation that might be left apart.

It is natural that if the simulators follow their own internal numerical method,
they advance at every step of a time length defined internally by the method,
and it is not guaranteed that every node of the slow time grid has a correspon-
dence with a node of the fast simulator grid, i.e. it is not guaranteed that the
slow time step is an integer multiple of fast time step.
Therefore, if the synchronization is required, it has to be imposed. Otherwise,
a workaround needs to be made up such that no synchronism is required. This
is simply achieved by means of interpolation [9]. In fact, when the value, for
instance, of the fast variable, is required outside the fast time grid, an interpo-

40 CHAPTER 3. MULTIRATE ALGORITHMS

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.001 0.01 0.1

e
rr

o
r

Timestep

Double Extrap
Slowest First
Fastest First

O(h)
O(h

2
)

(a) β = 0

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.001 0.01 0.1

e
rr

o
r

Timestep

Double Extrap
Slowest First
Fastest First

O(h)
O(h

2
)

(b) β = 0.01

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.001 0.01 0.1

e
rr

o
r

Timestep

Double Extrap
Slowest First
Fastest First

O(h)
O(h

2
)

(c) β = 0.05

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.001 0.01 0.1

e
rr

o
r

Timestep

Double Extrap
Slowest First
Fastest First

O(h)
O(h

2
)

(d) β = 0.1

Figure 3.10: Convergence plot for the Double Extrapolation, Slowest First and
Fastest First methods, for α = 0.1 and different values of β.

lation is executed using the two or more nearest grid nodes, as shown in figure
3.12.

It must be noted that with the Double Extrapolation scheme coupled with
a 2 steps BDF , (which is the method proposed in this work, this workaround is
automatically implemented in the method itself, because each subsystem only
sees an extrapolated value of the external variable, as can be easily understood
by looking at (3.5.2), and considering that, for the BDF methods, fb0, . . . ,

fbp−1

and sb0, . . . ,
sbq−1 are all zeros.

Thus, for both the subsystems (both use BDF), when the extrapolation algo-
rithm is called, this is automatically set to calculate the values of the external
variable at the nodes of the internal time grid.

3.7. OVERCOMING THE SYNCHRONIZATION RESTRICTION 41

Figure 3.11: Synchronized time grids setup

42 CHAPTER 3. MULTIRATE ALGORITHMS

Figure 3.12: Non-synchronized time grids

Chapter 4

Software Environment Design

The software environment is constructed by basically choosing a Multibody and
a block scheme simulators, and the way the two tools will communicate. As
the general intent of this work is to begin a longer term developing, directly
involving as many users as possible, free softwares will be selected. It is likely
that, during the developing of a layout such as the one proposed in this work,
some extensions will have to be added to the software tools initially selected.
This is another causal factor addressing the choice on free softwares, as this
category is intrinsically proposed to the users as a base to construct new tools,
rather than just out of the box instruments.

4.1 Software Tools Selection

4.1.1 Multibody Simulator

The multibody simulator selected is MBDyn [20], a free software developed
at Dipartimento di Ingegneria Aerospaziale of Politecnico di Milano (DIAPM),
Italy.

MBDyn is already predisposed for external communication, both in local
and network layout. The functions implemented use Internet sockets and Unix
domain sockets, which basically drive endpoints of bidirectional communication
on the kernel ports. The Stream drive is the function making the communication
available (see MBDyn input manual for details [17]).

The analyses this software performs are based on an original formulation for
the direct time integration of Initial Value Problems (IVP), which is written as

43

44 CHAPTER 4. SOFTWARE ENVIRONMENT DESIGN

a system of first-order Differential-Algebraic Equations (DAE), using implicit
(nearly) L-stable integration algorithms [12].

Unconstrained Dynamics

The equations of motion (EOMs) of a general mechanical system are usually
derived by the Newton-Euler approach. For a system of unconstrained bodies,
EOMs are described by

M(q)q̈ = l(q, q̇, t) (4.1.1)

If nb is the number of nodes forming the system, n = 6nb is the dimension of
the system (the number of equations and degrees of freedom).
q ∈ R

n contains the kinematic variables of the nodes (or the generalized coor-
dinates), and M(q) is the mass matrix, which may depend on q.
l(q, q̇, t) is the function describing the external forces acting on nodes, and may
include structural deformability contributions.
Written in the form of a first order system, equation (4.1.1) becomes

M(q)q̇ = p (4.1.2a)

ṗ = l(q, q̇,p, t) (4.1.2b)

where p ∈ R
n is the momenta and momentum moments vector.

Constrained Dynamics

There exist two types of constraints, holonomic and non-holonomic. Both are
modeled by adding explicit algebraic relations

0 = Φ(q, t) (4.1.3)

in the case of holonomic constraints, while for non-holonomic constraints

0 = Ψ(q, q̇, t) (4.1.4)

4.1. SOFTWARE TOOLS SELECTION 45

By using Lagrange’s multipliers formalism, system (4.1.2b) becomes

M(q)q̇ = p (4.1.5a)

ṗ+ΦT
/qλ+ΨT

/q̇µ = l(q, q̇,p, t) (4.1.5b)

Φ(q, t) = 0 (4.1.5c)

Ψ(q, q̇, t) = 0 (4.1.5d)

where λ and µ are the Lagrange’s multipliers.

Numerical Integration

The Differential Algebraic Equation system (4.1.5d) has the general form

h(ẋ,x, t) = 0 (4.1.6)

where x = (q,p, λ, µ)T.

The numerical solution at time tk+1 by means of the general multistep
method (3.1.2) is obtained by solving (4.1.6) for ẋk+1 with

xk+1 =

p−1
∑

j=0

(ajxk−j + hbjẋk−j) + hbpẋk+1 (4.1.7)

Using a Newton-Raphson scheme, the solution is given by

h/ẋδẋk+1 + h/xδxk+1 = −h (4.1.8)

Inserting (4.1.7) in (4.1.8) yields

(h/ẋ + hbph/x)δẋk+1 = −h (4.1.9)

because

δxk+1 = hbpδẋk+1 (4.1.10)

For each time step (that is, for each instant tk of the time grid), iterations
are performed to solve (4.1.9), until convergence is reached.

46 CHAPTER 4. SOFTWARE ENVIRONMENT DESIGN

Multirate Numerical Integration

If the system is divided into two subsystems, equation (4.1.6) becomes

f(ẏ,y, z, t) = 0 (4.1.11)

g(ż, z,y, t) = 0 (4.1.12)

and if a generic multirate multistep scheme is used, as the one in (3.3.1), time
derivatives for the new time step are computed based on interpolations or ex-
trapolations of old values. Equation (4.1.7) is transformed into

yk+1 =

p−1
∑

j=0

(ajyk−j + hbjẏk−j) + hbp ˙̂yk+1 (4.1.13a)

z(k+1)r =

p−1
∑

j=0

(ajz(k−j)r +Hbj ż(k−j)r) +Hbp ˙̂z(k+1)r (4.1.13b)

As described in section 3.3, ˙̂y and ˙̂z are approximations of ẏ and ż, respectively,
h is the small time step and H is the large time step.
If extrapolation from old values is used to compute approximations

˙̂yk+1 = α(yk+1, zk, . . . , z(k−q)r) (4.1.14a)

˙̂z(k+1)r = β(z(k+1)r,ykr, . . . ,ykr−o) (4.1.14b)

where q and o are the order of slow variable and fast variable extrapolations,
respectively.

Equations (4.1.8) and (4.1.9) formally do not change, except for the fact that
approximated values are used for time derivatives.

If both equations in (4.1.14) are followed, the Double Extrapolation Method
presented in section 3.2 is obtained.

Depending on the approximation technique, several multirate methods can
be carried out following this procedure:

• If the fast variable derivative is computed by (4.1.14a) and the slow vari-
able derivative is the actual solution (thus ˙̂z(k+1)r = ż(k+1)r), the Fastest
First Method is derived.

• If the slow variable derivative is computed by (4.1.14b) and the fast vari-
able derivative is computed by interpolation, the Slowest First Method is

4.2. INTER-PROCESS COMMUNICATION 47

derived.

• If the slow variable derivative is given in terms of actual value and the fast
variable derivative is computed by interpolation, a fully implicit method
is constructed, such as the Compound-Fast, the General Compound-Fast
and the Mixed Compound-Fast methods.

4.1.2 Block Scheme Simulator

This kind of simulators have been developed for many years by different groups:
examples are Simulink [21] by Mathworks, SystemBuild [22] by National Instru-
ments and the Scicos [23] based ScicosLab [24] by INRIA and Xcos [25] by the
Scilab Consortium.

Considering the efficiency and the versatility, Simulink is probably the best
simulator available. On the other side, if the user freedom (see section 1.2) re-
lated to the software is the argument driving the comparison, ScicosLab becomes
the best candidate. All the indicated simulators, though, are widely recognized
by the industry and the academic world to be valid instruments.

The choice has been directed to ScicosLab. Since the Scicos based simu-
lators have very similar properties and function calls, the developed MBDyn
interface has been tested both with Scilab (Scicos until the 5.1.x versions and
Xcos since 5.2.x) and ScicosLab, and both will be proposed to the MBDyn and
Scicos/ScicosLab users. Minor differences distinguish the two versions.

Even though no particular communication functions are implemented in Sci-
cos (other that text and audio file interactions) to talk to external processes, it
is possible to define new blocks by compiling and linking user defined functions
written in C, Fortran or Scilab language. This possibility has been exploited to
construct socket based communications (both in local and network setup).

4.2 Inter-process Communication

The inter-process communication is constructed based on TCP/IP Internet sock-
ets (with the local communication being a special subcase of the network-based
data exchange). This kind of data transmission is very efficient (way more
than, for example, employing text file read/write functions), and it is natu-
rally directed to multiple machines layout, which, in many cases, can sensitively
decrease the time-to-solution.

48 CHAPTER 4. SOFTWARE ENVIRONMENT DESIGN

In the layout used for the cases presented here, the multibody software MB-
Dyn and the block diagram simulator Scicos communicate through blocking

sockets (the process reading informations waits until all the expected data are
available). In this way, the communication process acts also as synchronizer.

4.3 A Simple Test

An inverse pendulum has been used as a test bench of the software tool designed.
The problem consists in controlling the angular position of the pendulum by
means of a PD controller. This case is used to show the way the simulator
operates. A single-rate layout is used.

Figure 4.1: Inverse pendulum multibody model: the force F is used to control
the angular position of the pendulum

In this case, MBDyn creates a server socket on a kernel port, and waits until
Scicos creates the client socket on the same port. After the connection succeeds,
the simulation starts: at each time step, MBDyn solves the nonlinear dynamics
of the pendulum, and is asked to output the angular position and the angular
velocity of the pendulum, which are written as doubles on the kernel port. Scicos
reads the data on the port, computes the control force, and write it on the same
port as before. At the next step, MBDyn computes the motion of the pendulum
reading the input force from the socket, and so on until the simulation ends.

Angular position and input force resulting form the co-simulation are shown
in figures 4.3

4.4. FUTURE ENHANCEMENT 49

Pendulum

Input force

0.1

Position

200

10

−

+

READ
MBDyn

WRITE
MBDyn

Figure 4.2: PD controller: position and angular velocity are used to compute
the control force

0 50 100 150 200
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Angular position

t

T
he

ta
 [r

ad
]

(a) Angular position vs time

0 50 100 150 200
−30

−25

−20

−15

−10

−5

0

5

10

15

20

Input force

t

F
or

ce
 [N

]

(b) Input force vs time

Figure 4.3: Inverse pendulum results

4.4 Future Enhancement

A possible advantage might be introduced with a Predictor-Corrector setup.
For such a layout, the method exposed here (Double Extrapolation) could be
used for both the prediction and the correction (with the difference that in the
correction iteration, the predicted values are used instead of the extrapolations).
Improvement either in terms of accuracy and stability should be expected for
this extension.

Another possibility is to integrate the system (3.1.1) by an implicit step,
implementing different methods, such as those described in sections 3.2.3, 3.2.4
and 3.2.5. This kind of implementation, as already stated in section 3.2, could
result in an inefficient setup. However, enhanced stability and accuracy proper-

50 CHAPTER 4. SOFTWARE ENVIRONMENT DESIGN

ties should be expected. It is possible that such a layout would be useful only
for batch simulation, while real-time simulations would be carried out in other
ways.

Chapter 5

Wind Energy Application

The aim of this chapter is to illustrate the feasibility of the working environment
developed.

In order to test the performances of the working environment, a model of a
real plant has been built, in which the coupling between active control, dynamics,
and structural dynamics has a great relevance.

The plant considered between all the possible applications to test the co-
simulation setup is a controlled wind turbine. Specifically, the CART (Controls
Advanced Research Turbine) has been selected.

Wind turbines are usually operated in different working regions (start-up,
maximum power, constant power, shutdown, ...), and active controls are used
to maximize power production, maintain safe operation and limiting structural
(static and fatigue) loads in all the working conditions [14].

The multidisciplinary environment is used to analyze the coupling between
the wind turbine dynamics and a simple baseline controller, managing the blade
pitch and the electrical generator power production.

The CART being the object of this chapter, it will be briefly described in
the next section.

5.1 CART Description

The CART is a two-bladed, upwind, variable speed wind turbine, rated at 600
KW. It is located at the National Wind Technology Center (NWTC) and was
installed as a test-bench to design new control schemes in wind power generation.
The rotor has a diameter of 43.3 m and hub height is 36.6 m. The electrical

51

52 CHAPTER 5. WIND ENERGY APPLICATION

Figure 5.1: The Control Advanced Research Turbine at NWTC, Colorado

generator is rated at 1800 rpm, and connected to the Low Speed Shaft through
a two-state gearbox with a ratio of 43.165. The turbine rotor is thus rated at
41.7 rpm.

5.2 Multibody Model

The computational model of the turbine is the same used in [15], freely available
for download at [16] (under the name cart0) thank to the author, Luca Cavagna.

Deformable beam elements are used to model the tower and the blades struc-
tural behavior. Rigid elements model the nacelle, the low-speed shaft and the
teetering hub, while the generator is idealized as a torque acting between the
nacelle and the low-speed shaft. Aerodynamic elements are used to model the
aerodynamical properties of the blades. Table 5.1 quickly describes the multi-
body model properties.

A graphical representation of the model is given in figure 5.2

5.3. CONTROLLER 53

Components Nodes Joints Bodies Beams Aero Forces DoFs

Tower 11 1 10 5 138
Nacelle 1 2 1 17
Shaft 1 1 1 17
Generator 1
Teeter 1 1 1 17
Blade 2x 11 1 11 5 5 138
Total 36 7 35 15 10 1 465

Table 5.1: Summary of CART multibody model

(a) General view (b) Rotor to tower connection detail

Figure 5.2: Graphical representation of the CART multibody model

5.3 Controller

A simple example for a variable-speed wind turbine controller is given in [14].
Three working regions are defined:

Startup The rotor is starting, and no torque from the generator is applied

Region 2 The rotor is below rated speed. The generator torque is controlled
to get the optimal Tip Speed Ratio (TSR), thus the maximum power
generation

Transition Transition region to connect Region 2 and Region 3, to let the
turbine reach the rated torque at rated speed

54 CHAPTER 5. WIND ENERGY APPLICATION

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

ω [rpm]

T
or

qu
e

[K
N

m
]

Startup

Region 2

Region 3

Figure 5.3: Electrical generator working function: the electrical generator torque
is plotted as a function of turbine rotor speed

Region 3 The rotor is above rated speed. The blade pitch is automatically
controlled to maintain constant rotor speed, while the generator torque is
held constant at rated torque

The turbine shutdown will not be considered. Even if the CART can handle
a different pitch command for each blade, only the collective pitch control will
be considered in this work.

During the startup, the blade pitch is regulated to maintain the maximum-
lift angle of attack, thus giving the maximum acceleration to the rotor. Until a
speed rotor of about 10 rpm, no electrical power is extracted, thus no torque is
applied by the generator to the turbine rotor.
The Region 2 control model is quite simple to describe. To maintain the maxi-
mum power coefficient, the generator torque must be proportional to the square
of the rotor speed: this condition is practically achieved controlling the genera-
tor internal resistance, and keeping the blade pitch at zero.
In Region 3, a PID controller, acting on the blade collective pitch, is activated to
maintain the rotor at constant speed (the rated speed). The electrical generator
piecewise working function is represented in figure 5.3

The complete layout of the controller is given in figures 5.4, 5.5 and 5.6. In
the block scheme it is possible to recognize the blade pitch controller, the electric

5.3. CONTROLLER 55

CART

R..
MB..

WR..
MB..

den(s)
num(s)

PITCH ENGINE

4..

RATED SPEED

SAT

57.3

PID

GENERATOR

output ..
write to

 Cat
Vert

+
−

den(s)
num(s)

SPEED FILTER

60/(..

12

WIND SPEED

swi..

Expres..
Mathe..

STARTUP

(2*..

Figure 5.4: Block Scheme of the controller implemented in Scicos

PID
0.1

0.01

0.1

1/s

 du/..

s

11

11

swi..

0

swi..

MA..

swi..

11

output ..
write to

 Cat
Vert

2*%..

Figure 5.5: PID controller superblock

generator torque and the wind magnitude definitions.

The PITCH ENGINE block in figure 5.4 represents the blade pitch actu-
ator transfer function, a second order Butterworth filter.

The STARTUP block acts in the first part of the simulation, to startup the
turbine rotor. In this condition, the PID controller has to be bypassed because
the blades need to point the airfoil nose into the wind. The PID controller, in
normal conditions, basically increases the angle of attack (by incrementing the
blade pitch) to increase the rotational speed. When the angle of attack is over
the stall limit (this occurs during the startup) this condition has to be inverted.
The STARTUP block takes care of this inversion.

56 CHAPTER 5. WIND ENERGY APPLICATION

GENERATOR

1111

Expres..
Mathe..

REGION 2

0
STARTUP

3..

REGION 3

swi..

swi..

Figure 5.6: Electrical generator superblock

5.4 Wind Turbine General Behavior

It is important, before beginning with the design of the blade pitch controller, to
analyze the general turbine behavior. For example, it must be determined how
the available output power change versus the wind speed and the blade pitch
angle. Figure 5.7 shows this result. It is possible to note that, until about a wind
magnitude equal to 12m

s
, it is correct to work at maximum efficiency, in order

to extract the maximum electrical power: in this region, the blade pitch must
be kept constant at a value of 1deg. As the wind velocity increases, extracting
the maximum available power would mean exceeding the rated power, and this
must be avoided. To this aim, it is obvious from figure 5.7 that the blade pitch
must be controlled

5.5 Results and Costs

The results in terms of rotor speed and pitch command, for the given wind
magnitude, are shown in figure 5.8. The action of the PID controller, in terms
of proportional, derivative and integral components, is given in figure 5.9

From figure 5.8 it is possible to note how the STARTUP block works: until
the speed rotor does not reach a significant value, the blade pitch is saturated
at the lower limit (for the first 20 seconds). Afterward, the maximum angle of
attack is kept to accelerate the rotor (until about 35 seconds). Finally, the PID
output is used to control the blade pitch and set the rotor speed at the rated
value.

Results in terms of internal forces are shown in figures 5.10 and 5.11.
All the simulation ran on a single AMD Athlon 64 Processor 3000, whose

5.5. RESULTS AND COSTS 57

 0

 200

 400

 600

 800

 1000

 1200

 4 6 8 10 12 14 16 18 20 22
 0

 200

 400

 600

 800

 1000

 1200

A
va

il
ab

le
 p

ow
er

 [
K

W
]

Wind speed [m/s]

θ = 1
θ = -5

θ = -10
Rated Power

Figure 5.7: CART available power diagram: points represent data from simula-
tions, continuous functions are the theoretical curves

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 50 100 150 200

θ
[d

eg
],

 V
in

f [
m

/s
],

 Ω
 [

rp
m

]

Time [s]

θ
Vinf

Ω

Figure 5.8: Blade pitch, wind magnitude and rotor speed as functions of time

58 CHAPTER 5. WIND ENERGY APPLICATION

-20

-10

 0

 10

 20

 0 50 100 150 200

P
 [

de
g]

, I
 [

de
g]

, D
 [

de
g]

Time [s]

PID controller output components

P
I

D

Figure 5.9: PID controller action in terms of components

performances are given in table 5.2

CPU MHz 2002.5
Cache Size 512 KB

Table 5.2: Processor performances

It is important to monitor the computational costs for the different simula-
tion layouts. The working environment is made up of two different softwares:
MBDyn and Scicos. The two components have big differences in terms of com-
putational efficiency, with a great superiority for MBDyn. However, also the
model described in the softwares are definitely different: MBDyn analyzes the
nonlinear dynamics of a complex mechanical system, while Scicos have to model
a quite simple controller, with few nonlinearity.
In conclusion, for the case presented here, the CPU time needed by MBDyn is
much higher (20 times higher than the time needed by Scicos).

The overall CPU time required for the simulation in this case is 224330ms

(3min, 44s, 330ms). For MBdyn alone to simulate the same model, without
external interaction to add the control loop, 185990ms (3min, 05s, 990ms) are
needed to complete the simulation.

5.5. RESULTS AND COSTS 59

0

50

100

150

200

0

5

10

15

20
−1

0

1

2

3

4

5

6

x 10
5

time [s]blade radius [m]

fo
rc

e
[N

]

(a) Axial force

0

50

100

150

200

0

2

4

6

8

10
−4

−3

−2

−1

0

1

2

x 10
4

time [s]blade radius [m]

fo
rc

e
[N

]

(b) Out of plane shear force

0

50

100

150

200

0

2

4

6

8

10
−6

−5

−4

−3

−2

−1

0

1

2

3

x 10
4

time [s]blade radius [m]

fo
rc

e
[N

]

(c) In plane shear force

Figure 5.10: Time history of CART blades internal forces over blade radius

60 CHAPTER 5. WIND ENERGY APPLICATION

0

50

100

150

200

0

2

4

6

8

10
−1

−0.5

0

0.5

1

1.5

x 10
4

time [s]blade radius [m]

m
om

en
t [

N
m

]

(a) Torsional moment

0

50

100

150

200

0

2

4

6

8

10
−6

−4

−2

0

2

4

x 10
5

time [s]blade radius [m]

m
om

en
t [

N
m

]

(b) In plane bending moment

0

50

100

150

200

0

2

4

6

8

10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
5

time [s]blade radius [m]

m
om

en
t [

N
m

]

(c) Out of plane bending moment

Figure 5.11: Time history of CART blades internal moments over blade radius

5.6. MULTIRATE CPU TIME SAVING 61

5.6 Multirate CPU Time Saving

An interesting situation is represented by the multirate layout, in which MB-
Dyn and Scicos simulate their own models integrating the equations at different
frequencies.

It is common to have situations in which subsystems have different frequen-
cies. In these cases, it happens that if the integration frequency is determined
based on the fast subsystem characteristics, a high computational cost is reached,
otherwise, if the slow subsystem is considered, the accuracy for the fast subsys-
tem is lowered. To save CPU time and accuracy, the multirate layout may be
employed.

Considering the CART example, for instance, a detailed behavior of the
electrical generator, to analyze the oscillations in the output current, requires
a much smaller timestep, say 0.002s, while the previous simulation, to analyze
the turbine dynamics coupled with the pitch and torque controllers, has been
carried with a timestep of 0.01s.

The aim here is not to give a detailed analysis of the generator nor the
turbine behavior, but rather to give an idea of what is the time saving due to
using the multirate layout to simulate the machine behavior.
Therefore, the CPU time is determined relative to the simulation of the already
presented system, both in multirate layout and in singlerate (now with a refined
timestep).
The processor performances do not change, and the reference is again table 5.2.

The overall CPU time required for the singlerate simulation with a timestep
of 0.002s is 934960ms (15min, 34s, 960ms).

It is obvious, by looking at the computational costs, that carrying such a
simulation in a singlerate layout is not convenient at all, but one would prefer to
extract the results from a simulation with a simpler model of the electrical gen-
erator, and then build another model, in which the detailed generator behavior
is described, giving the previous results as inputs.

An integrated way is, instead, to describe the detailed generator directly
in the general model, but then exploit the multirate layout. The simulation
carried with a timestep of 0.01s in MBDyn and 0.002s in Scicos, in this multirate
cosimulation environment, costs 227810ms (3min, 47s, 810ms) of CPU.

62 CHAPTER 5. WIND ENERGY APPLICATION

5.7 Wind Turbine Modeling Objective

Wind turbines are usually driven by automatic controllers for two reasons: en-
sure a smooth time evolution of loads and electrical power and reduce the power
output (as well as rotor velocity) at high wind speed.

The second aim is directed in both reducing the costs of the plant and in-
creasing the safety of operations. This corresponds to the reason why a blade
pitch controller has been applied to the CART.

The electrical generator torque control is achieved by simply defining a func-
tional relation between the rotational speed and the generator internal variable
resistance. When this control is active, the blade pitch is kept constant at zero,
and the rotor is operated at maximum efficiency. Due to its simplicity, this
control scheme will not be analyzed further.

The blade pitch control, instead, is interesting in different situations, and
the overall plant performances might heavily depend on this component.

It is of interest to investigate whether the layout proposed in this work is
feasible or not. To this aim, the speed rotor is monitored during wind changes.
A good blade pitch controller is capable to keep the rotor velocity as close as
possible to the rated speed, possibly with minimal oscillations.

To check the performances of the controller, a variable wind speed situation
is simulated. Specifically, steps are applied in wind magnitude, during the sim-
ulation. A wind magnitude of 12m

s
is initially input in the model. After 120s

a step of 1.5m
s
is added to the wind speed, and after other 80s, another step is

added, equal to the first one. Results are shown in figure 5.12
The rotor rated speed is followed with little oscillations, and the transition

time to damp out the speed error is less than 40 seconds, in a wind magnitude
interval form 12m

s
to 15m

s
, which is representative of the working conditions of

the CART. It is thus demonstrated that the layout proposed in this chapter is
a feasible application for a controlled wind turbine.

5.7. WIND TURBINE MODELING OBJECTIVE 63

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300

θ
[d

eg
],

 V
in

f [
m

/s
],

 Ω
 [

rp
m

]

Time [s]

θ
Vinf

Ω

Figure 5.12: Results for steps in wind magnitude

64 CHAPTER 5. WIND ENERGY APPLICATION

Chapter 6

Helicopter Dynamics Application

It is common that complex mechanical systems show different time scales, as
described in chapter 2. Helicopters represent one of the best examples. In these
machines, different time scales are related to different dynamical subsystems, as
summarized in table 6.1.

Subsystem Characteristic Frequency
Flight Dynamics 1 Hz
Main Rotor Dynamics 7 Hz
Tail rotor dynamics 37 Hz

Table 6.1: Typical helicopter subsystems frequencies

In this chapter, the model of a light twin-engine utility helicopter, namely
the MBB Bo105 by Bölkow (figure 6.1), is presented.

A whole model of the helicopter has been built, in which the main and tail
rotors are modeled together with part of the flight dynamics in two distinct
multibody models, and a block scheme connects them together and implements
a tail collective pitch controller.

The aim is to show the computational efficiency of the multirate layout in
the simulation of the whole model, describing both slow and fast components
together.

65

66 CHAPTER 6. HELICOPTER DYNAMICS APPLICATION

Figure 6.1: The MBB Bo 105

6.1 Bo 105 Description

The Bo105, shown in figure 6.1, is a small twin-engine multipurpose helicopter
built by MBB. It is a highly maneuverable and relatively small helicopter, with
an empty weight of about 1200kg and a maximum gross weight of 2300kg.

This machine has a four-bladed hingeless main rotor, with a large equivalent
hinge offset, thus showing high bandwidth and maneuverability. For such a
machine, dynamic coupling between different components is a very important
issue, since the preliminary studies related to the design. Also, the coupling with
automatic controls (stability augmentation and autopilot) needs to be evaluated
by means of accurate models.

The tail is controlled by a two-bladed teetering rotor, which works as a
pusher, on the left side of the helicopter.

The main rotor has a nominal speed of 44.4 rad/s (7 Hz), and the tail rotor
is rated at 233 rad/s (37 Hz). The three-views shown in figure 6.2 gives the
impression of the helicopter main characteristics.

6.2. THE MULTIBODY MODEL 67

Figure 6.2: The MBB Bo 105 three-view sketch

6.2 The Multibody Model

The whole mechanical system is divided into two different models. The first
one describes the elements related to the main rotor and the fuselage, while the
other contains the definition of the tail rotor.

The two models can be used independently. The main rotor model can be
used to simulate the relatively slow components of the dynamic of the machine,
approximating the tail rotor effect as a slow varying force concentrated at tail
tip, to stabilize and control the trajectory of the helicopter. The tail rotor model,
instead, is used to catch the relatively high frequencies effects (for example load
oscillations on the tail tip). If accurate modeling needs to be done, it is desirable
to couple the two models together.

If traditional methods are used to build the coupling in a monolithic setup,
high computational costs are reached, due to the complexity of the main rotor
model and high frequency of the tail rotor. With the architecture presented in
this work, not only automatic controller behavior is easily implemented, but also
computational efficiency is enhanced by the multirate methods. The coupling
of this two submodels is an example to show these benefits.

68 CHAPTER 6. HELICOPTER DYNAMICS APPLICATION

6.2.1 Main Rotor and Fuselage

The first multibody model contains the description of the fuselage and the main
rotor components.

The fuselage is described by a modal element, which is a single element
containing the modes (in this case the first four) of the body. This element is
connected to different nodes, in order to give the relative displacements between
them during the simulation. In this model, the main modal node is at the center
of gravity of the fuselage, and links are defined to the main rotor attachment
node, to tail rotor attachment node, pilot node and copilot node. For each blade,
four beam elements are used to model the structural deformability and four
aerodynamic elements linked to the structural nodes generate the aerodynamic
forces. Rigid elements are used to model the main rotor hub and other secondary
components.

Aerodynamic forces are applied to the fuselage, the vertical stabilizer and
the horizontal stabilizer.

The main airframe node (the node located at the center of gravity) has only
two degrees of freedom, which allow only the vertical translation and the yaw
rotation of the fuselage. The other four degrees of freedom are excluded by
infinitely rigid constraints. Vertical translation is maintained constant by the
action of an autopilot, which controls the main rotor blades pitch.

The model is described by a total of 689 equations.

6.2.2 Tail Rotor

The tail rotor submodel is composed by two rigid element representing the
blades, each of those is linked to an aerodynamic element generating lift, drag,
and defining the tail rotor induced velocity. Different joints define the fuselage
tail tip connection, the rotor hub and the teetering hub. A distance constraint
between a blade-connected point and a tail-connected point is used to define the
collective pitch.

The model is defined by a total of 77 equations.

6.3 Submodels Connection and Control

The software architecture presented in this thesis is used for both building the
communication between the main rotor and tail rotor submodels and defining

6.4. RESULTS AND COSTS 69

the automatic control of the tail collective pitch, used to set the yaw rate of the
machine.

The figure 6.3 shows the Scicos block scheme used to build the main simu-
lation model.

bo105.multiratePID_06

1
dummy

1
dummy

MAIN MBDyn time step

R..
MB..

FROM MAIN MBDyn

WR..
MB..

TO MAIN MBDyn

R..
MB..

FROM TAIL MBDyn

WR..
MB..

TO TAIL MBDyn

TAIL MBDyn time step

PID
TAIL PITCH CONTROLLER

den(s)
num(s)

YAW FILTER
den(s)
num(s)

PITCH FILTER

Figure 6.3: Scicos scheme for the submodels integration

The red clocks in the scheme of figure 6.3 control the time steps at which
each submodel is integrated. Defining different values for the two clocks will tell
the software to build the multirate setup.

The main rotor MBDyn model outputs the tail tip displacements and rota-
tions and the yaw angle, and asks the tail reaction force as input. The tail rotor
model needs the tail tip displacements as input as well as the pitch command,
and outputs the reaction force to be applied on the fuselage.

6.4 Results and Costs

The tail collective pitch control is tested in a hovering condition. The aim here
is not to design a sophisticated and robust control for all the possible operating
conditions and configurations of the machine, but to show that the software
architecture used is a feasible solution to simulate the dynamical behavior of
the system considered, and it may be used to design or check the performances
in similar contexts.

It is important to show the benefits of using multirate co-simulations in the
case the two subsystems are simulated together to predict the motion of the

70 CHAPTER 6. HELICOPTER DYNAMICS APPLICATION

whole system by means of a single simulation.
Three different layouts are presented:

Case 1 MBDyn is working alone without Scicos, and the two submodels inter-
act in a single-rate manner. The time step to integrate both subsystems
is equal to 2.2 10−4s.

Case 2 Scicos is responsible of submodels interaction, as explained in section
6.3. A single rate technique is used, with the same time step of case one.

Case 3 in this case Scicos is used to define the interaction, but a multirate
scheme is exploited: for the tail rotor model the same time step of case
one and two is used, but the main rotor dynamic is computed with a time
step of 1.1 10−3s.

Case one is only used as a reference for computational costs, while results
computed in cases two and three are compared.

Results in terms of altitude, yaw angle and tail rotor pitch command are
shown in figure 6.4, 6.5 and 6.6, respectively. It is possible to note that the
output considered do not differ: the relative error between the single-rate and
the multirate output is always less than 0.3%.

-0.1

-0.05

 0

 0.05

 0.1

1 2 3 4 5

al
ti

tu
de

 [
m

]

Time [s]

Single-rate
Multirate

Figure 6.4: Helicopter relative altitude during the simulation

6.4. RESULTS AND COSTS 71

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 1 2 3 4 5 6

Y
aw

 [
de

g]

Time [s]

Single-rate
Multirate

Figure 6.5: Helicopter yaw angle as function of time

The signal suffering the most for time step reduction is the tail rotor reac-
tion force, shown in figure 6.7. It is easy to note that this value has a quite
high frequency component, due to the rotational speed of the tail rotor. These
oscillations have a frequency of about 75 Hz, two times larger than the tail rotor
angular velocity, (being the tail rotor two-bladed). This issue does not lead to
inaccurate results because the high frequencies applied on tail tip do not pass
through the helicopter structure.

The computational costs, always based on simulations with the processor of
table 5.2, are summarized in table 6.2, for a simulated time interval of 6 seconds.

Case Main rotor simulation cost Tail rotor simulation cost
[s] [s]

1 299 57
2 340 55
3 62 42

Table 6.2: Computational costs for the different layouts

Table 6.2 demonstrate that the multirate layout leads to a huge computa-
tional saving. Not only the slow subsystem costs are reduced, but also the fast

72 CHAPTER 6. HELICOPTER DYNAMICS APPLICATION

-25

-20

-15

-10

-5

 0

 5

 0 1 2 3 4 5 6

P
it

ch
 [

de
g]

Time [s]

Single-rate
Multirate

Figure 6.6: Controller action: tail rotor collective pitch as function of time

subsystem need a lower amount of CPU time, due to the fact that communica-
tion are less frequent in the case of the multirate technique.

The advantages shown in this section would further increase if many configu-
rations and design conditions have to be analyzed, as it is the case, for example,
of a helicopter or airplane design procedure.

6.4. RESULTS AND COSTS 73

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 1 2 3 4 5 6

T
ai

l R
ot

or
 R

ea
ct

io
n

[N
]

Time [s]

Single-rate
Multirate

Figure 6.7: Reaction force at the interface of tail rotor and fuselage

74 CHAPTER 6. HELICOPTER DYNAMICS APPLICATION

Chapter 7

Conclusions

In this thesis multirate co-simulations have been studied. Performances, in terms
of stability and accuracy, have been shown for different numerical methods which
can be exploited in co-simulation setups.

A new numerical method has been defined, that should improve the com-
putational efficiency, especially in parallel simulations. For this method also,
stability and accuracy results have been shown, and it possible to conclude that
it exhibits properties similar to the traditional methods.

Only based on free software tools, the co-simulation environment has been
implemented and tested on a real application.

In conclusion, it has been shown that the multirate co-simulation setup pre-
sented in this work show excellent results. Benefits are obtained in both the
model definition procedure and in computational efficiency, two important is-
sues related to the simulation of mechanical systems dynamic.

75

76 CHAPTER 7. CONCLUSIONS

Bibliography

[1] W. Schiehlen: Research Trend in Multibody System Dynamics, Multibody
System Dynamics, 18, 3-13, (2007)

[2] F. Gonzales: Efficient Implementations and Co-simulation Techniques in
Multibody System Dynamics, PhD thesis, (Ferrol, March 2010)

[3] M. Busch, M. Arnold, A. Heckmann, and S. Dronka: Interfac-
ing SIMPACK to Modelica/Dymola for multidomain vehicle system simu-
lations, SIMPACK News, 11, 2, 1-3, (2007)

[4] R. Kubler and W. Schiehlen: Modular simulation in multibody system
dynamics, Multibody System Dynamics, 4, 107127, (2000)

[5] C. W. Gear and D. R. Wells: Multirate Linear Multistep Method, BIT,
24, (1984), 484-502.

[6] S. Skelboe: Stability Properties of Backward Differentiation Multirate
Formulas, Applied Numerical Math., 5, 151-160, (1989)

[7] A. Verhoeven and E.J.W. Maten: Stability Analysis of the BDF Slow-
est first Multirate Methods, International Journal of Computer Mathemat-
ics, 84(6), 895-923, (2007)

[8] A. Verhoeven, A. El Guennouni, E.J.W. Maten and R.M.M.

Mattheij: A General Compound Multirate Method for Circuit Simulation
problems, Scientific Computing in Electrical Engineering, ECMI, Vol. 9,
143-150, (2006)

[9] F. Gonzales, M. Gonzales and J. Cuadrado: Weak Coupling of
Multibody Dynamics and Block Diagram Simulation Tools, Proceedings of
the ASME IDETC/CIE 2009, (September 2009, San Diego, California,
USA), DETC2009-86653

77

78 BIBLIOGRAPHY

[10] G. Rodriguez: Absolute Stability Analysis of Semi-Implicit Multirate Lin-
ear Multistep Methods, (June 2002, Tonanzintla, Puebla)

[11] Quarteroni, Sacco, Saleri: Matematica Numerica, Springer Italia,
(2008)

[12] Masarati P, Lanz M, Mantegazza P: Multistep integration of ordi-
nary, stiff and differential-algebraic problems for multibody dynamics ap-
plications, In XVI Congresso Nazionale AIDAA, pages 71.110, Palermo,
September 2428 (2001)

[13] K.A. Stol: Geometry and Structural Properties for the Controls Advanced
Research Turbine (CART) from Model Tuning, National Renewable Energy
Laboratory, NREL/SR-500-32087, August 25, 2003 November 30, 2003

[14] A. D. Wright and L. J. Fingersh: Advanced Control Design for Wind
Turbines, NREL/TP-500-42437, (March 2008).

[15] L. Cavagna, A. Fumagalli, P. Masarati, M. Morandini and P.

Mantegazza Real-Time Aeroservoelastic Analysis of Wind-Turbines by
Free Multibody Software

[16] www.aero.polimi.it/mbdyn/documentation/examples/

[17] MBDyn Input File Format.

[18] www.gnu.org/licenses/gpl.html

[19] www.fsf.org/about/

[20] www.aero.polimi.it/ mbdyn

[21] www.mathworks.com/products/simulink/

[22] www.ni.com/matrixx/systembuild.htm

[23] www.scicos.org/

[24] www.scicoslab.org/

[25] www.scilab.org/products/xcos

