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Abstract

The design of a prosthetic device, able to reproduce the functions of a real

human hand, is characterized by many challenges. The ideal prosthesis

would be easy to control, comfortable to wear and aesthetically pleasing.

This thesis is concerned with finding solutions to the first of the three ob-

jectives mentioned above.

The EMG control is the most used approach in todays prosthetic devices,

because it is noninvasive compared with other methods. Its goal is to create

an association between a predefined set of hand motion patterns and the

corresponding EMG signals generated by the forearm muscles. In this way

the classifier mounted on the prosthetic hand is able to recognize a muscle

contraction and sends to the controller the command to reproduce the cor-

respondent hand movement.

The system designed in the current work is composed by many modules,

which process the signals detected by a 3-channel EMG acquisition board.

The first one is the segmentation module, which is able to understand when

a muscle contraction, also referred to as signal burst, starts and ends. The

second module is the features extractor, which, applied to each individual

burst, extracts from it some representative parameters in the time-frequency

domain, by the application of the Continuous Wavelet Transform (CWT).

This generates a large matrix, which must be reduced by applying the Sin-

gular Value Decomposition (SVD). The feature extractor also computes two

temporal parameters which are then concatenated to the result of the SVD,

to form the feature vector representing to the burst.

An Artificial Neural Network is then trained to associate each feature vec-

tor with the corresponding hand movement. In particular the system learns

how to classify 7 different movements, with a performance of 98-100%.

Eventually, the influence of some factors on the performance of the system is

discussed, namely the displacement of the electrodes from the original train-

ing position, the patient’s fatigue, body structure, concentration, motivation

and training level.
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Sommario

La mano è la parte terminale dell’avambraccio e le sue funzioni la rendono

un organo molto importante del corpo umano. Può essere utilizzata per

adempiere ad una vasta quantità di compiti come afferrare oggetti, toccare,

percepire stimoli, manipolare, comunicare e tanti altri.

E’ facile comprendere come la perdita dell’arto superiore possa avere con-

seguenze significative nella vita di una persona, sia da un punto di vista

funzionale che da quello psicologico: dopo l’evento traumatico essa non sarà

più in grado di eseguire gesti e movimenti che prima erano un tramite na-

turale verso l’ambiente esterno.

Per aiutare una persona amputata a recuperare, in qualche modo, alcune

delle funzionalità ormai perse, l’approccio più comune è quello di sostitui-

re l’arto amputato con una protesi artificiale. Purtroppo al giorno d’oggi,

gli impianti protesici, sia robotizzati che no, sono affetti da molti problemi,

come bassa controllabilità, poche funzionalità e estetica scadente, il che li

rende ben lontani dall’essere quegli oggetti biomimetici a cui tutti noi aspi-

riamo.

Questa tesi si prefissa una serie di obiettivi: il primo è quello di eseguire

uno studio interdisciplinare dello stato dell’arte del mondo delle protesi di

arto superiore, non solo da un punto di vista tecnologico, ma anche medi-

co, psicologico e biologico in generale; tale studio è funzionale al secondo

obiettivo, quello di progettare un sistema in grado di percepire la volontà

dell’amputato e controllare una protesi robotica di conseguenza; terzo ed ul-

timo obiettivo è quello di capire come diversi fattori, fisiologici e no, possano

influenzare le prestazioni del sistema progettato.

Il Sistema Biologico della Mano Come detto in precedenza, uno degli

obiettivi di questo lavoro è quello di creare un sistema che sia in grado di

percepire contrazioni muscolari a livello dell’avambraccio e di controllare

una protesi robotica di conseguenza. Al fine di realizzare tale progetto è,

prima, necessario comprendere il sistema mano, la sua anatomia, i muscoli
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che lo movimentano e i relativi processi che ne regolano le contrazioni.

In secondo luogo si mostrano le principali qualità della mano reale, che la

rendono un modello da imitare nella costruzione di una sua replica artificiale:

• la maggior parte dei muscoli che movimentano le dita e il polso sono

posizionati fuori dalla mano stessa, il che la rende leggera e non

ingombrante;

• è dotata di un gran numero di sensori estero e propriocettivi, più

sensibili rispetto a quelli nel resto del corpo, in tal modo il cervello è

in grado di mappare costantemente lo stato della mano e

dell’ambiente che la circonda;

• il suo controllo viene eseguito in maniera gerarchica dal cervello, nel

senso che la pianificazione dei gesti rimane ad un livello di gerarchia

più alto ed è generalmente sotto il controllo della persona, mentre il

coordinamento di tutte le contrazioni muscolari al fine di eseguire

quei determinati movimenti avviene a livello più basso (inconscio).

Protesi di Mano: lo Stato dell’Arte I ricercatori che lavorano nel

campo delle protesi pongono le necessità degli amputati al primo posto. È

importante capire quali sono le priorità di una persona durante la sua gior-

nata, in quanto non tutti gli schemi motori possono essere riprodotti dalle

tecnologie allo stato dell’arte.

Innanzitutto, l’impatto psicologico è uno degli aspetti più importanti da

considerare quando si tratta di protesi. Gli amputati di arto superiore ten-

dono a rifiutare qualsiasi tipo di impianto protesico, soprattutto se questo

non viene applicato nei primi trenta giorni dall’amputazione. Questo ren-

de necessario l’affiancamento di uno psicologo che permetta di tenere sotto

controllo il recupero del paziente. Inoltre, per far si che i tempi di applica-

zione della protesi siano i più brevi possibile è necessario che i medici che

eseguono le operazioni chirurgiche post traumatiche, procedano secondo un

protocollo ben definito.

La mano artificiale ideale dovrebbe essere facile da controllare, comoda da

indossare ed esteticamente piacevole, tutte caratteristiche che le protesi com-

merciali allo stato dell’arte non posseggono o posseggono solo in parte. Pren-

dendo a modello la mano reale, la ricerca scientifica si sta concentrando su

interfacce uomo-protesi più intuitive, che permettano anche di fornire un

certo feedback all’utente. Altri campi d’interesse riguardano l’affidabilità

nel controllo, la destrezza, l’antropomorfismo e la cosmetica della mano.

La tesi si concentra sulla prima delle aree di ricerca menzionate in preceden-



za, l’interfaccia uomo-protesi. Il controllo delle protesi robotiche moderne è

comunemente basato sull’analisi del segnale elettromiografico, in quanto si

tratta di un approccio poco invasivo rispetto ad altri metodi. Quello che vie-

ne fatto è progettare dei classificatori in grado di imparare associazioni tra

un insieme predefinito di schemi motori della mano e i corrispondenti segnali

elettrici generati dalla contrazione dei muscoli dell’avambraccio. In questo

modo il classificatore montato sulla protesi è in grado di riconoscere una con-

trazione muscolare e di mandare al controllore il movimento corrispondente

da eseguire. Questo obiettivo viene normalmente raggiunto con l’applicazio-

ne di metodi statistici e di analisi nel dominio tempo-frequenza, accoppiati

con potenti classificatori come le Reti Neurali Artificiali o le Support Vector

Machines. Allo stato dell’arte i migliori approcci di classificazione hanno

ottenuto performance del 99.5% sul riconoscimento di 4 schemi motori, del

98% su 6 schemi motori, e del 93.54% su 8, utilizzando più di tre canali di

acquisizione.

Il Segnale Elettromiografico La comprensione del segnale elettromio-

grafico, delle sue caratteristiche principali e dei metodi di analisi comune-

mente applicati ad esso, è molto importante, in quanto gran parte di tali

aspetti sono funzionali alla fase di progetto.

L’unità funzionale elementare del muscolo è chiamata Unità Motoria ed è

composta da un α-motoneurone e le fibre muscolari corrispondenti che esso

innerva. Nel momento in cui il cervello comanda una contrazione muscolare,

gli α-motoneuroni inviano degli impulsi nervosi alle fibre muscolari sotto il

loro diretto controllo.

Degli elettrodi posizionati sulla cute dell’avambraccio sono in grado di rile-

vare il potenziale di questi impulsi, che sommandosi danno vita al segnale

elettromiografico (EMG). Essendo la somma di impulsi che avvengono in

istanti di tempo leggermente diversi l’uno dall’altro, il segnale EMG è da

considerarsi come un processo stocastico.

L’acquisizione di questo segnale biologico, le cui componenti in frequenza

primarie variano tra i 10 e 200 Hz , può essere contaminata principalmente

in tre modi: gli elettrodi si muovono generando dei disturbi in bassa frequen-

za; l’attivazione di altri muscoli interferisce con quella che vogliamo rilevare

(cross-talk); fonti esterne come la frequenza di rete si sommano al segnale.

Per superare il primo dei problemi elencati è sufficiente applicare un filtro

passa alto (10 Hz), il secondo problema invece viene affrontato basando-

si sulla reiezione al modo comune fornita dagli elettrodi in configurazione

bipolare, mentre il terzo problema non è risolvibile in quanto la frequenza



di rete (50 Hz) è anche una importante componente spettrale del segnale

stesso.

Un altro fattore notevole è l’affaticamento muscolare, infatti quando un mu-

scolo viene sforzato nel tempo lo spettro si sposta verso le basse frequenze e

aumenta la sua ampiezza. Questo rende il segnale non-stazionario, il che ha

delle ripercussioni importanti nella scelta dei metodi di analisi da applicare

in fase di elaborazione.

Possibili metodi per comprendere quando una contrazione muscolare inizia e

finisce ed analizzarne la forza corrispondente, consistono nella rettificazione

e l’inviluppo lineare del segnale EMG.

Il Progetto Il sistema progettato nel presente lavoro, acquisisce il segnale

EMG per mezzo di tre canali (6 elettrodi), posizionati in modo distribuito

attorno all’avambraccio. Una volta che queste coppie di elettrodi (configu-

razione bipolare) hanno rilevato i segnali dai rispettivi muscoli, una scheda

di acquisizione EMG si occupa della loro amplificazione e filtraggio.

Il prossimo passo è quello di capire quando ogni contrazione (burst) inizia e

finisce, per fare questo viene applicato un particolare metodo di segmenta-

zione. Infatti, dal momento che i segnali provengono da tre fonti diverse, la

segmentazione della contrazione è caratterizzata da problemi di parallelismo.

L’approccio seguito è quello di rettificare e inviluppare il segnale originale,

per estrarne il contorno. In seguito si applica un sistema di sogliatura dina-

mica che permette di suddividere ogni burst secondo le direttive del canale

che, per quella determinata contrazione, ha rilevato la forza più elevata.

Dopo la segmentazione, ogni singolo burst viene analizzato utilizzando la

Continuous Wavelet Transform (CWT) che ne estrae una grande matrice

rappresentativa, composta da valori nel dominio tempo-frequenza. Questa

matrice viene poi elaborata con il metodo della Singular Value Decompo-

sition, al fine di estrarne le informazioni principali e quindi di ridurne le

dimensioni. Il vettore ottenuto viene poi concatenato a due parametri tem-

porali, che sono l’integrale e la media del segnale EMG rettificato, ottenendo

cos̀ı il vettore definitivo rappresentante il burst.

Tenendo presente che ogni movimento viene rilevato da tre canali, il vetto-

re di feature che lo rappresenterà sarà costituito dalla concatenazione dei

vettori rappresentativi dei tre burst provenienti dai tre canali. Quindi per

ogni schema motorio della mano, si acquisiscono i segnali EMG, che vengono

segmentati ed elaborati con i metodi descritti in precedenza per ottenere il

vettore di feature corrispondente. L’obiettivo è insegnare ad una Rete Neu-

rale Artificiale a riconoscere 7 diversi movimenti della mano e questo viene



fatto allenandola ad associare ad ognuno di essi il corrispondente vettore di

feature.

Risultati Per poter analizzare la capacità di adattamento del sistema, es-

so è stato testato su più di una persona: 4 soggetti sani sono stati sottoposti

a delle sedute di acquisizione e i dati di ognuno sono stati utilizzati per per-

sonalizzare differenti Reti Neurali Artificiali. Per due di loro, si sono rilevate

percentuali di riconoscimento che variano dal 98% al 100% (69 movimenti

riconosciuti su 70), mentre per i restanti due si sono riscontrate alcune dif-

ficoltà determinate della loro struttura corporea.

Anche i test “fallimentari” sono stati molto utili perchè ci hanno permesso

di comprendere come certi fattori influenzino l’analisi del segnale. Abbia-

mo notato, per esempio, che un maggiore volume tra il muscolo e la pelle

dell’avambraccio produce una forte attenuazione dell’ampiezza del segnale.

Inoltre è stato possibile identificare una forte influenza sulle prestazioni da

parte di altri fattori come l’affaticamento muscolare, la concentrazione, la

motivazione e il livello di allenamento del paziente.

Conclusioni Perchè il sistema funzioni con alti livelli di prestazione, il

paziente deve essere ben addestrato e motivato, oltre ad avere un buon tono

muscolare. Un possibile modo per estendere questo lavoro di tesi potrebbe

essere lo sviluppo di software grafici (videogiochi), che rendano meno noioso

l’addestramento del paziente, motivandolo nel percorso di riabilitazione.

Inoltre, si tenga presente che durante le prime fasi di acquisizione, un am-

putato non può vedere se ha compiuto in modo corretto una contrazione che

gli è stato chiesto di eseguire. Quindi sarebbe utile un software che permet-

ta di farsi una idea iniziale riguardo alla bontà dei movimenti eseguiti dal

paziente.

Altri possibili lavori futuri potrebbero potrebbero ruotare attorno al proget-

to di una protesi di mano e del rispettivo controllore di basso livello.
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Introduction

The hand is the terminal part of the forearm and its functions make it an

important organ of the human body: people can use it to grasp objects,

touch, sense, manipulate and communicate. Therefore it has a primary role

also in social activities, which makes its cosmetics even more important.

It is easy to understand how the loss of the hand has significant consequences

both from a psychological and functional point of view, in a person’s life.

After the traumatic event he will not be able to perform gestures that before

were a natural way towards the external environment.

Prosthetic implants are the most common solution for the upper limb re-

placement, but since todays commercial devices suffer of low controllabil-

ity, low functionality and low cosmetics, they are far away from being the

biomimetic artificial hand we are looking for.

This thesis has many goals: the first is to make a detailed interdisciplinary

study of the state of the art prosthetic solutions, not only from a techno-

logical point of view but also from a medical, psychological and, more in

general, biological angle; this study is functional to the second goal, the de-

sign of a system able to perceive the amputee’s will and to control a robotic

prosthesis accordingly; the third, and last, goal is to understand how differ-

ent factors can influence the performances of the designed system.

The EMG control is the most used approach in todays prosthetic devices,

because it is noninvasive compared with other methods. During a mus-

cle contraction, nerve impulses are sent by the motoneurons to the muscle

fibers, these impulses are detected and collected by electrodes placed on the

skin of the forearm. The resulting signal is of stochastic nature and is called

electromyographic (EMG) signal.

The goal of the EMG control is, therefore, to create an association between a

predefined set of hand motion patterns and the corresponding EMG signals

generated by the forearm muscles. In this way the classifier mounted on the

prosthetic hand is able to recognize a muscle contraction and sends to the

controller the command to reproduce the correspondent hand movement.
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This goal is normally achieved by statistical and time-frequency domain

methods coupled with a powerful classifier.

Many works have been carried out on this subject before this thesis, but

the inspiring ones were few. Therefore, since the the majority of the papers

faces this topic just from the engineering point of view, the decision was to

carry out a more detailed interdisciplinary discussion.

The most inspiring work, in the scope of the design of a new control system,

was of course the thesis written by Matteo Arvetti [1], who designed a clas-

sifier able to detect five different hand motion patterns with a performance

of 90%, using just two electrodes (one channel) in opposite configuration.

After a careful study of the pros and cons of the methods applied in the the-

sis mentioned above, its main concepts were used as a landmark to create a

new system from scratch.

In the current work the recording of the EMG signal is carried out by means

of three different channels (6 electrodes) positioned in a distributed fashion

around the forearm, sending the detected signals to a brand new acquisition

board. In this way, the whole muscle activity is recorded, therefore we need

to extract just the part of the signal (burst) related to the muscle contrac-

tion. Since the signals come from three different sources, the segmentation of

the contraction is characterized by parallelism issues. Our system addresses

this problem by dynamically selecting the leading channel for the detection

of each contraction.

After the segmentation, each single burst is analyzed using the Continu-

ous Wavelet Transform which extracts from it a large representative matrix

composed by values in the time-frequency domain. This big matrix is then

processed using the Singular Value Decomposition to reduce its dimension-

ality and obtain a little vector. This is then concatenated with other two

temporal parameters, the integral EMG and the Mean Absolute Value, to

form the feature vector representing the burst.

After the design of the feature extractor, four sound subjects were asked to

attend some acquisition sessions, in which they had to perform 7 different

movement types. The recorded data were used to train more than one Arti-

ficial Neural Network for each subject. Once the ANN has been trained, it

was used to recognize different movements, leading to performances ranging

between 98% and 100%.

Since the subjects used to test the system performances had different body

structures it was also possible to analyze the influence of many varying

factors. For example we could notice that a large volume between the mus-

cle and the forearm skin, can attenuate the signal and modify its spectral

composition. The system is able to easily overcome the second issue, but
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since some bursts are very attenuated in amplitude, many weak muscle con-

traction are not even detected. The influence of other factors, like muscle

fatigue, patient’s concentration, motivation and training level was also ana-

lyzed. Leading to the conclusion that a patient needs to be well trained and

prepared before the customization of his own prosthetic controller, as well

as motivated and assisted.

The thesis is divided into six chapters: Chapter 1 discusses the biologic sys-

tem of the hand, in order to give to the reader the basic terminology; it shows

the structure of the muscles, their contraction process and their functions,

all aspects that are functional to the project phase; eventually, it proposes a

sort of parallelism between the real and the artificial hand. Chapter 2 gives

an overview about the psychological and medical issues concerning the hand

amputation and, then, presents in detail the technological state of the art

related to modern prosthetics. Chapter 3 presents the electromyographic

signal in all its aspects. Chapter 4 is one of the most important parts of this

thesis and discusses in detail the logic design of the implemented system.

Chapter 5 presents the results obtained and, eventually, Chapter 6 draws

some conclusions and gives some hits for future expansion of the current

work.
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Chapter 1

The Biological System of

The Hand

This chapter presents an overview of the complex biologic system of the hu-

man forearm and hand. The first section introduces the possible movements

of the hand, the second its anatomy, then, the third section, focuses on the

control system and the fourth on the muscular contraction. This chapter

aims at providing the reader with the basic terminology related to the hand

system and at showing the structure of the muscles, their contraction pro-

cess and their functions, all aspects that are functional to the project phase.

Moreover we want to show how well implemented is the “natural project” of

the hand and to start a parallelism with the artificial limb to be concluded

in the next chapter.

1.1 The Hand Movements

The upper limb is anatomically divided into three subparts, the arm, the

forearm and the hand. The first ranges from the shoulder to the elbow,

the second is the portion from the elbow to the wrist and the third and

terminal part is located below the forearm [2]. The hand is used for grasping

and holding and consists of the wrist, palm, four fingers, and an opposable

thumb.

Before treating the complex subject of the hand’s anatomy, an overview of

the functions of the hand’s joints is presented. This is done in order for the

reader to master the terms that will often be used during the thesis. All

the functions have to be considered with respect to a starting landmark,

namely the neutral position. This varies from function to function, thus it

is presented in each subsection.
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1.1.1 Hand Pronation and Supination

The neutral configuration is the one in which the elbow is fixed at side in 90

degrees of flexion, and the axis of the hand’s palm is perpendicular to the

floor.

From this position, the pronation consists of a rotation of the forearm that

moves the palm of the hand face down. On the other hand, starting from

the neutral position, the pronation consists of a rotation of the forearm that

moves the palm of the hand face up.(Figure 1.1).

Figure 1.1: Hand pronation and supination [3].

1.1.2 Wrist Extension and Flexion

The neutral configuration is the one in which the elbow is fixed at side in 90

degrees of flexion, and the palm of the hand is face down (Figure 1.2) . The

Figure 1.2: The neutral position of the wrist extension and flexion [3].

extension is also called dorsiflexion and consists of an upward rotation of

the wrist, with respect to the neutral position. Vice versa, the wrist flexion

or palmar flexion, consists of a downward rotation of the wrist (Figure 1.3).
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Figure 1.3: Wrist extension and flexion [3].

1.1.3 Wrist Adduction and Abduction

In this case the neutral position is the same as the one of the wrist extension

and flexion (Figure 1.2). The abduction of the wrist is also called radial

deviation and consists of a wrist rotation towards the thumb side. The

adduction is the rotation of the wrist towards the opposite side and is called

ulnar deviation (Figure 1.4).

Figure 1.4: Wrist radial deviation (abduction) and ulnar deviation (adduction) [3].

1.1.4 Finger Hyperextension and Flexion

The neutral position is the one in which the finger are all extended. The

hyperextension of the fingers consists of a larger extension than the normal

extended posture, while the flexion consists of a bending of the fingertips

towards the palm (Figure 1.5). The hyperextension should be easily noted

if present, because it is an unnatural movement.
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Figure 1.5: Fingers’ neutral position, hyperextension and flexion [3].

1.1.5 Thumb Abduction and Opposition

The neutral position is with the thumb alongside the forefinger and ex-

tended. The abduction is the motion that pulls the thumb part away from

the midline of the hand. It is measured by the angle that the thumb makes

with the forefinger, which can reach 90 degrees of aperture. The opposition

consists of the flexion of the tip of the thumb on the palm of the hand.

(Figure 1.6) [3].

Figure 1.6: Thumb abduction and opposition [3].
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1.2 The Anatomy of the Hand

1.2.1 The Bones

1.2.1.1 The Bones of the Forearm

The ulna is a long bone, prismatic in shape, placed at the medial side of

the forearm, parallel with the radius. It is divisible into a body and two

extremities. Its upper extremity, of great thickness and strength, forms

a large part of the elbow-joint. The bone diminishes in size from above

downward, becoming very small at its lower extremity, which is excluded

from the wrist-joint by the interposition of an articular disk.

The radius is situated on the lateral side of the ulna, which exceeds it in

length and size. Its upper end is small, and forms only a small part of the

elbow-joint; but its lower end is large, and forms the chief part of the wrist-

joint. It is a long bone, prismatic in form and slightly curved longitudinally.

It has a body and two extremities (Figure 1.7).

Figure 1.7: Radius and ulna.

1.2.1.2 The Bones of the Hand

The skeleton of the hand has 27 bones and is subdivided into three segments:

the carpus or wrist bones; the metacarpus or bones of the palm; and the

phalanges or bones of the digits. The front and the back of the hand are

respectively called palm and dorsum, while their relative adjectives are volar

and dorsal

The carpal bones, eight in number, are arranged in two rows. Those of the

proximal row, from the radial to the ulnar side, are named the navicular

(scaphoid), lunate, triangular, and pisiform; those of the distal row, in the
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same order, are named the greater multangular (also called trapezium and

attached to the thumb), lesser multangular (trapezoid), capitate, and ha-

mate.

The metacarpus consists of five cylindrical bones which are numbered from

the lateral side (ossa metacarpalia I-V); each consists of a body and two

extremities and is coupled with a finger.

The phalanges are fourteen in number, three for each finger, and two for

the thumb. Each consists of a body and two extremities. The body ta-

pers from above downward; its sides are marked by rough edges, which give

attachment to the fibrous sheaths of the Flexor tendons (Figure 1.8).

Figure 1.8: Bones of the left hand [4].
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1.2.2 The Articulations

1.2.2.1 The Articulations of the Forearm

The articulation of the radius with the ulna is effected by ligaments which

connect together the extremities as well as the bodies of these bones. The

ligaments can be subdivided into three sets:

1. those of the proximal radioulnar articulation;

2. the middle radioulnar ligaments;

3. those of the distal radioulnar articulation.

The movements in the distal radioulnar articulation consist of rotation

of the lower end of the radius around an axis which passes through the

center of the head of the ulna. To obtain the pronation of the forearm and

hand, the radius has to rotate forward, while the supination is achieved by

its backward rotation.

1.2.2.2 The Articulations of the Hand

The wrist joint is a condyloid articulation: which means that an ovoid

articular surface, or condyle, is received into an elliptical cavity. The lower

end of the radius and the under surface of the articular disk compose the

half of the articulation which stands above, while the navicular, lunate, and

triangular bones form the complementary part which stays below. The ar-

ticular surface of the radius and the under surface of the articular disk form

together a concave surface, the receiving cavity. The superior articular sur-

faces of the navicular, lunate, and triangular form a smooth convex surface,

the condyle, which is received into the concavity.

The joint is surrounded by a capsule, strengthened by the following liga-

ments:

• the Volar Radiocarpal;

• the Ulnar Collateral;

• the Dorsal Radiocarpal;

• the Radial Collateral.

The movements permitted in this joint are flexion, extension, abduction,

adduction, and circumduction.
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The Mid-carpal joint is the joint between the two rows of carpal joints.

The chief movements which it permits are flexion and extension and a slight

amount of rotation.

The Trapezometacarpal articulation of the thumb (articulatio carpo

metacarpea pollicis) is the joint between the first metacarpal and the greater

multangular (trapezium). It has great freedom of movement thanks to the

configuration of its articular surfaces, which are saddle-shaped. In this artic-

ulation the movements permitted are flexion and extension, abduction and

adduction, circumduction and opposition.

The Carpometacarpal is the articulation of the other four metacarpal

bones with the carpus (articulationes carpometacarpeae). The bones are

united by dorsal, volar, and interosseous ligaments. The movements al-

lowed in the carpometacarpal articulations are limited to slight gliding of

the articular surfaces upon each other. The extent of this movements varies

from finger to finger: the metacarpal bone of the little finger is the most

movable and that of the ring finger is the latter, while the metacarpal bones

of the index and middle fingers are almost immovable.

Figure 1.9: Metacarpophalangeal articulation and articulations of digit [4].
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The Metacarpophalangeal joints are of the condyloid kind, formed

by the reception of the rounded heads of the metacarpal bones into shallow

cavities on the proximal ends of the first phalanges. The only exception is the

thumb, which presents more of the characters of a ginglymoid joint: a freely

moving joint that allows extensive movement in one plane. Each joint has a

volar and two collateral ligaments. The movements achieved by these joints

are adduction, abduction, flexion, extension and circumduction; though the

first two of them are very limited because they cannot be performed when

the fingers are flexed (Figure 1.9).

The interphalangeal articulations are hinge-joints; each has a volar

and two collateral ligaments. The only movements allowed are flexion and

extension and they are more extensive between the first and second pha-

langes than between the second and third. The amount of flexion is very

considerable, but extension is limited by the volar and collateral ligaments

(Figure 1.9) [4].

Figure 1.10: Joints of the hand and relative degrees of freedom [5].

The Degrees Of Freedom of the Hand: in total we can count 22 de-

grees of freedom in the hand and two more in the wrist (adduction/abduction

and flexion/extension) (Figure 1.10) [5].
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1.2.3 The Muscles

The muscle is a contractile organ, which function is to generate force. This

force results in motion thanks to the leverage exerted on the bones by ten-

dons attached to muscles.

The muscles moving the human hand can be divided in two groups: the

extrinsic and intrinsic muscles. The former are the long flexor and extensors

located in the forearm, while the latter are located in the palm.

1.2.3.1 The Muscles in the Forearm (Extrinsic)

The forearm muscular structure is organized into anterior and posterior

compartments, separated by the interosseous membrane that connects the

radius and ulna. The anterior compartment is the one that a person can see

when the arm is supine. It contains the flexor muscles, together with the

median nerve (and branches), the ulnar nerve, and accompanying vessels.

The posterior compartment contains the extensor muscles (with the excep-

tion of the brachioradialis, which is an elbow flexor), the radial nerve, and

its branches.

The forearm contains nineteen muscles. Within both the posterior and an-

terior compartments there are two and three layers of muscle groups, re-

spectively. It is possible to sort the muscles by function, remembering that

for each one there exist a tendon that actuates a particular part of the hand

(Figure 1.11) [6]:

Flexor division:

• muscles which rotate the radius on the ulna:

– pronator teres (superficial group, anterior compartment -

pronates)

– pronator quadratus (deep group, anterior compartment -

pronates)

– supinator (deep group, posterior compartment - supinates)

• muscles which flex the hand at the wrist:

– flexor carpi radialis (superficial group, anterior compartment)

– flexor carpi ulnaris (superficial group, anterior compartment)

– palmaris longus (superficial group, anterior compartment)
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(a) Front of the left forearm. Superficial muscles. (b) Front of the left forearm. Deep muscles.

Figure 1.11: Figures taken from [4]

• muscles which flex the digits:

– flexor digitorum superficialis (intermediate group, anterior

compartment)

– flexor digitorum profundus (deep group, anterior compartment)

– flexor pollicis longus (deep group, anterior compartment)

Extensor division:

• muscles which extend the hand at the wrist:

– extensor carpi radialis longus (superficial group, posterior

compartment)

– extensor carpi radialis brevis (superficial group, posterior

compartment)

– extensor carpi ulnaris (superficial group, posterior

compartment)
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• muscles which extend the digits, except the thumb:

– extensor digitorum (superficial group, posterior compartment)

– extensor indicis (deep group, posterior compartment)

– extensor digiti minimi (superficial group, posterior

compartment)

• muscles which operate in extension or abduction of the thumb:

– abductor pollicis longus (deep group, posterior compartment -

abducts thumb)

– extensor pollicis brevis (deep group, posterior compartment)

– extensor pollicis longus (deep group, posterior compartment)

1.2.3.2 The Muscles in the Hand (Intrinsic)

The intrinsics muscles are situated totally within the hand. They are divided

into 4 groups (Figure 1.12):

1. thenar group: moves the thumb and occupies the radial side. It is

composed by the abductor pollicis brevis, flexor pollicis brevis,

opponens pollicis, and adductor pollicis muscles. All are innervated

by the median nerve except for the adductor pollicis and the deep

head of the flexor pollicis brevis, which are innervated by the ulnar

nerve. They originate from the flexor retinaculum and carpal bones

and insert at the proximal phalanx of the thumb.

2. hypothenar group: moves the little finger and occupies the ulnar

side. It consists of the palmaris brevis, abductor digiti minimi, flexor

digiti minimi, and opponens digiti minimi. They are all innervated

by the ulnar nerve. This group of muscles originates at the flexor

retinaculum and carpal bones and inserts at the base of the proximal

phalanx of the small finger.

3. lumbrical group: contributes to the flexion of the

metacarpophalangeal joints and to the extension of the

interphalangeal joints. They originate from the flexor digitorum

profundus tendons at the palm and insert on the radial aspect of the

extensor tendons at the digits. The index and long finger lumbricals

are innervated by the median nerve, and the small and ring finger

lumbricals are innervated by the ulnar nerve.
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Figure 1.12: The muscles of the left hand. Palmar surface. [4].

4. interossei group: the interossei group consists of 3 volar and 4 dorsal

muscles, which are all innervated by the ulnar nerve. They originate

at the metacarpals and form the lateral bands with the lumbricals.

The dorsal interossei abduct the fingers, whereas the volar interossei

adduct the fingers to the hand axis.

1.2.3.3 The Tendons

Normal finger flexion is a complex fine motor action that requires the in-

tegrity and orchestration of a number of delicate structures that are centered

around the flexor tendon system [7].

The tendon is the tissue by which a muscle attaches to bone. Tendons are

somewhat flexible, but fibrous and tough. They are like ligaments in being

tough, flexible cords. But tendons differ from ligaments in that tendons

extend from muscle to bone, whereas ligaments go from bone to bone as at
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a joint. Despite their tough fibrous nature, tendons and ligaments are both

considered ”soft tissue,” that is soft as compared to cartilage or bone. The

tendons of wrist and hand pass through bony and ligamentous guide sys-

tems. Flexor tendons pass through a ”tunnel” bounded dorsally by carpal

bones, laterally by the greater multangular and the projection of the ha-

mate, and volarly by the tough transverse carpal ligament. Similarly, the

dorsal carpal ligament guides the extensor tendons, and a system of sheaths

serves as a guide for flexor and extensor tendons through the metacarpal

and phalangeal regions [8].

1.2.3.4 The Pulley System

The pulley system is composed of focal thickened areas of the flexor tendon

sheaths, and is one of the most important biomechanical structures used in

flexion. Not only for accurate tracking of the tendon but also to maintain

its apposition. Thanks to the pulley system the bone is maintained across

the joint and a fulcrum to elicit flexion and extension is provided.

At anatomic inspection, these retinacular structures result in focal, well-

defined areas of thickening of the tendon sheath that are referred to as the

annular pulley system. Additional crisscrossing fibers between the compo-

nents of the annular pulley system are referred to as the cruciate pulley

system. The retinacular system in the thumb is composed of 2 annular and

1 oblique pulleys, while, each of the other fingers contains 5 annular and 4

cruciate pulleys. [9].

In general, the length of each pulley varies in direct proportion to the length

of the digit, and the thickness, in turn, is directly proportional to the length

of the pulley. The first annular pulley (A1) begins in the region of the pal-

mar plate of the metacarpophalangeal joint and extends to the level of the

base of the proximal phalanx. The second annular pulley (A2) arises from

the volar aspect of the proximal part of the proximal phalanx and extends to

the two thirds of the proximal phalanx. The third pulley (A3) is small and

extends over the region of the proximal interphalangeal joint. The fourth

pulley (A4) is in the midportion of the middle phalanx, and the fifth pulley

(A5) is in the region of the distal interphalangeal joint. To complete the

structure, the three cruciate pulleys C1, C2, and C3, which are respectively

behind A3, A4 and A5 (Figure 1.13b).

The primary function of the flexor pulley system in the fingers is to convert

the available linear translation and force in the muscle-tendon unit into ro-

tation and torque at the finger joints (Figure 1.13a) [7].

Moreover the annular pulleys are of biomechanical importance in preventing
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tendon excursion during digital flexion, whereas the cruciate pulleys provide

the necessary flexibility for approximation of the annular pulleys at flexion,

while maintaining the integrity of the flexor sheath.

(a) The pulley mechanism in action

[3].

(b) Sagittal (left) and coronal (right)

representations of the pulley system

of a typical flexor tendon (black ar-

eas) of the finger. Dotted lines rep-

resent the division of the flexor dig-

itorum superficialis tendon into two

bands at this level [7].

Figure 1.13

1.2.4 The Nervous and Sensory Systems

1.2.4.1 The Nervous System

The peripheral nervous system conveys electrical commands from the central

nervous system to the organs of the body. The neuron is the elementary

nerve cell and it is responsible of the nervous conduction. It consists of

several dendrites, forming the input of the neuron, a nucleus and a cell

body, called soma, from which originates the axon. The latter has a more

or less pronounced tree structure, and forms the output of the neuron.

1.2.4.2 The Nerves of the Hand

The hand is innervated by 3 nerves: the median, ulnar, and radial nerves.

Each has both sensory and motor components. An overview about the nerve
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Figure 1.14: The neuron

supply is presented, except for minor variations and exceptions [9] [8]:

• The median nerve is responsible for innervating the muscles involved

in the fine precision and pinch function of the hand. In particular the

flexor muscles of the wrist and fingers, the abductors, opponens and

flexor of the thumb and the lumbricals I and II.

• The ulnar nerve is responsible for innervating the muscles involved in

the power grasping function of the hand. All the intrinsic muscles of

the hand are innervated by the ulnar nerve, including all the

interossei, lumbricals III and IV.

• The radial nerve is responsible for innervating the wrist extensors,

which control the position of the hand and stabilizes the fixed unit.

The thumb and finger extensors are innervated as well.

1.2.4.3 The Somatosensory System

Each of the major nerve trunks mentioned above, diverges into countless

smaller branches ending in the papillae of the palmar pads and dorsal skin.

The whole neuromuscular system is so coordinated in the brain, whose mo-

tor response to stimuli is ordinarily subconscious and reflex. Thus an object

slipping from the grasp is automatically gripped more firmly, but not so
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firmly as to damage the hand itself. Noxious stimuli are rejected automati-

cally, as when the fingers are withdrawn from an object uncomfortably hot

[8].

The somatic sensory system has two major components: a subsystem for

the detection of mechanical stimuli (e.g., light touch, vibration, pressure,

and cutaneous tension), and a subsystem for the detection of painful stimuli

and temperature. Together, these two subsystems give humans and other

animals the ability to identify the shapes and textures of objects, to moni-

tor the internal and external forces acting on the body at any moment, and

to detect potentially harmful circumstances [10].

The specialized sensory receptors in the cutaneous and subcutaneous tissues

are of various nature. They include free nerve endings in the skin, nerve

endings associated with specializations that act as amplifiers or filters, and

sensory terminals associated with specialized transducing cells that influ-

ence the ending by virtue of synapse-like contacts. Based on function, this

variety of receptors can be divided into three groups: mechanoreceptors, no-

ciceptors, and thermoceptors.

On the basis of their morphology, the receptors near the body surface can

also be divided into free and encapsulated types. Nociceptor and thermo-

ceptor specializations are referred to as free nerve endings because the un-

myelinated terminal branches of these neurons ramify widely in the upper

regions of the dermis and epidermis; their function is to transmit pain and

temperature sensations. Most other cutaneous receptors show some degree

of encapsulation, which helps determine the nature of the stimuli to which

they respond.

Despite their variety, all somatic sensory receptors work mainly in the same

way: stimuli applied to the skin (receptive field of a neuron) deform or oth-

erwise change the nerve endings, which in turn affects the ionic permeability

of the receptor membrane. Changes in permeability generate a depolarizing

current in the nerve ending, thus producing a receptor potential that triggers

action potentials. This overall process, in which the energy of a stimulus is

converted into an electrical signal in the sensory neuron, is called sensory

transduction and is the critical first step in all sensory processing.

Tactile Information - Mechanosensory processing of external stimuli is

initiated by the activation of a diverse population of cutaneous and subcu-

taneous mechanoreceptors at the body surface that relays information to

the central nervous system for interpretation. Mechanosensory information

is carried to the brain by several ascending pathways that run in parallel

through the spinal cord, brainstem, and thalamus to reach the primary so-
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matic sensory cortex. The latter projects in turn to higher-order association

cortices in the parietal lobe, and back to the subcortical structures involved

in mechanosensory information processing.

Figure 1.15: The skin harbors a variety of morphologically distinct mechanoreceptors.

This diagram represents the smooth, hairless (also called glabrous) skin of the fingertip.

[10].

Four major types of encapsulated mechanoreceptors are specialized to pro-

vide information to the central nervous system about touch, pressure, vibra-

tion, and cutaneous tension: respectively the Meissner’s corpuscles, Pacinian

corpuscles, Merkel’s disks, and Ruffini’s corpuscles. These receptors are re-

ferred to collectively as low-threshold (or high-sensitivity) mechanoreceptors

because even weak mechanical stimulation of the skin induces them to pro-

duce action potentials. All low-threshold mechanoreceptors are innervated

by relatively large myelinated axons, ensuring the rapid central transmission

of tactile information.

An overview of the major characteristics of the receptors mentioned above

is now presented:

• Meissner’s corpuscles, which lie between the dermal papillae just

beneath the epidermis of the fingers, palms, and soles, are elongated

receptors formed by a connective tissue capsule. The center of the

capsule contains one or more afferent nerve fibers that generate

rapidly adapting action potentials following minimal skin depression.
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Meissner’s corpuscles are the most common mechanoreceptors of

glabrous (hairless) skin (the fingertips, for instance), and their

afferent fibers account for about 40% of the sensory innervation of

the human hand. These corpuscles are particularly efficient in

transducing information about the relatively low-frequency

vibrations (30-50 Hz) that occur when textured objects are moved

across the skin. In summary they provide information primarily

about the dynamic qualities of mechanical stimuli.

• Pacinian corpuscles are large encapsulated endings located in the

subcutaneous tissue. One or more rapidly adapting afferent axons lie

at the center of an onion-like capsule, which acts as a filter, allowing

only transient disturbances at high frequencies (250-350 Hz) to

activate the nerve endings. Pacinian corpuscles adapt more rapidly

than Meissner’s corpuscles and have a lower response threshold.

These attributes suggest that Pacinian corpuscles are involved in the

discrimination of fine surface textures or other moving stimuli that

produce high-frequency vibration of the skin. They make up 10-15%

of the cutaneous receptors in the hand. Pacinian corpuscles are also

located in interosseous membranes and they probably detect

vibrations transmitted to the skeleton. Together with the Meissner’s

corpuscles, they provide information primarily about the dynamic

qualities of mechanical stimuli.

• Merkel’s disks are located in the epidermis. They account for about

25% of the mechanoreceptors of the hand and are particularly dense

in the fingertips, lips, and external genitalia. Selective stimulation of

these receptors in humans produces a sensation of light pressure.

These several properties have led to the supposition that Merkel’s

disks play a major role in the static discrimination of shapes, edges,

and rough textures.

• Ruffini’s corpuscles are located deep in the skin, as well as in

ligaments and tendons. The long axis of the corpuscle is usually

oriented parallel to the stretch lines in skin; thus, Ruffini’s corpuscles

are particularly sensitive to the cutaneous stretching produced by

digit or limb movements. They account for about 20% of the

receptors in the human hand contributing to the kinesthetic sense

and control of finger position and movement. They are believed to be

useful for monitoring slippage of objects along the surface of the skin,

allowing modulation of grip on an object.
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The receptive fields of the neurons innervating the surface layers are smaller

than that of the neurons in depth. The density of the surface receptors varies

with the body map: they are more dense on the fingertip and on the lips.

The dimensions of the receptive fields varies with position of the receptor

as well. For example, on the fingertip the receptive field of the Meissner’s

corpuscles have a diameter of 2mm, while on the palm of the hand they are

of 10mm.

A high receptor density is reflected by a high density of innervation. The skin

areas with the highest density of innervation are the the fingertips, which

hold up to 300 tactile afferent fibers per cm2. The spatial discrimination

ability that we have thanks to the fingertips, based on the smallness of the

local receptive fields, allows us to discriminate the surface roughness and to

read Braille.

Based on the above, it is not surprising that the tactile acuity greatly varies

in different skin districts. For each area of the skin, the minimum distance

between two raised points, which are still perceived as separate, is about 2

mm at the tip of the fingers (maximum resolution), about 4 mm on the lips,

10 mm in the palm of hand and more than 40 mm on the skin of the thigh

and calf [11].

Pain and Temperature sensations - The relatively unspecialized nerve

cell endings that initiate the sensation of pain are called nociceptors (noci- is

derived from the Latin for “hurt”). Like other cutaneous and subcutaneous

receptors, they transduce a variety of stimuli into receptor potentials, which

in turn trigger afferent action potentials.

Because peripheral nociceptive axons terminate in unspecialized “free end-

ings,” it is conventional to categorize nociceptors according to the properties

of the axons associated with them. There are three major classes of nocicep-

tors in the skin: mechanosensitive nociceptors, mechanothermal nociceptors,

and polymodal nociceptors.

In general, the faster-conducting nociceptors respond either to dangerously

intense mechanical or to mechanothermal stimuli, and have receptive fields

that consist of clusters of sensitive spots. Other unmyelinated nociceptors

tend to respond to thermal, mechanical, and chemical stimuli, and are there-

fore said to be polymodal.

The thermoreceptors are of four different kinds. Two of these, known as

cool and warmth receptors, are regarded as sensory receptors that respond

to innocuous stimulation. The two others, known as heat and cold receptors,

are nociceptors [12].

The receptive fields of all pain-sensitive neurons are relatively large, par-
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ticularly at the level of the thalamus and cortex, presumably because the

detection of pain is more important than its precise localization.

Proprioception - Whereas cutaneous mechanoreceptors provide informa-

tion derived from external stimuli, another major class of receptors provides

information about mechanical forces arising from the body itself, the mus-

culoskeletal system in particular. These are called proprioceptors, roughly

meaning “receptors for self”. The purpose of proprioceptors is primarily

to give detailed and continuous information about the position of the limbs

and other body parts in space. Low-threshold mechanoreceptors, including

muscle spindles, Golgi tendon organs, and joint receptors, provide this kind

of sensory information, which is essential to the accurate performance of

complex movements.

The most detailed knowledge about proprioception derives from studies of

muscle spindles, which are found in all but a few striated (skeletal) mus-

cles. The major function of muscle spindles is to provide information about

muscle length (that is, the degree to which they are being stretched). The

density of spindles in human muscles varies. Large muscles that generate

coarse movements have relatively few spindles; in contrast, extraocular mus-

cles and the intrinsic muscles of the hand and neck are richly supplied with

spindles, reflecting the importance of accurate eye movements, the need to

manipulate objects with great precision, and the continuous demand for

precise positioning of the head. This relationship between receptor density

and muscle size is consistent with the generalization that the sensory motor

apparatus at all levels of the nervous system is much richer for the hands,

head, speech organs, and other parts of the body that are used to perform

especially important and demanding tasks.

Whereas muscle spindles are specialized to signal changes in muscle length,

low-threshold mechanoreceptors in tendons inform the central nervous sys-

tem about changes in muscle tension. These mechanoreceptors, called Golgi

tendon organs, are distributed among the collagen fibers that form the ten-

dons.

Finally, rapidly adapting mechanoreceptors, called joint receptors, in and

around joints, gather dynamic information about limb position and joint

movement [10].
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1.3 The Control System

1.3.1 The Anatomy of the Brain

1.3.1.1 The Motor Cortex

The motor cortex is a region of the cerebral cortex involved in the planning,

control, and execution of voluntary motor functions. It is situated in the

frontal lobe (Figure 1.16), and contains the representation of the somatotopic

mapping.

The surface area devoted to controlling the movements of each body part

varies in direct proportion to the precision of the movements that can be

Figure 1.16: The motor cortex [13].

made by that part (Figure 1.17).

This regions of the motor cortex can be anatomically organized in:

• primary motor cortex : focal stimulations in this region elicit highly

localized muscle contractions at various locations in the body; it is

located in the Area 4;

• premotor area: is believed to help regulate posture by dictating an

optimal position to the motor cortex for any given movement; it is

located in the Area 6;

• supplementary motor area: influence the planning and initiation of

movements on the basis of past experience; it is located in the Area 6;
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• posterior parietal cortex : assesses the context in which a movement is

being made. The parietal cortex receives somatosensory,

proprioreceptive, and visual inputs, then uses them to determine

such things as the positions of the body and the target in space. It

thereby produces internal models of the movement to be made, prior

to the involvement of the premotor and motor cortices. It is situated

in the parietal lobe;

Figure 1.17: Topographic map of the body musculature in the primary motor cortex.

(A) Location of primary motor cortex. (B) Section of the brain, illustrating the so-

matotopic organization of the motor cortex. (C) Representation of various portions of

the body musculature in the motor cortex. Fine motor control capabilities (such as the

hands and face) occupy a greater amount of space than those that exhibit less precise

motor control (such as the trunk). [10].
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1.3.1.2 The Basal Ganglia

The basal ganglia plays an indirect role in the motor system. By projecting

to the motor cortex, the premotor cortex, and the supplementary motor area

simultaneously, they form part of the cortobasal ganglia motor loop, which

determines and controls what movements will be performed.

1.3.1.3 The Cerebellum

For the body to make any given gesture, the sequence and duration of each

of the basic movements of each body segment involved must be controlled

in a very precise manner. One of the cerebellum’s jobs is to provide this

control over the timing of the body’s movements. It does so by means of

a loop circuit that connects it to the motor cortex, modulating the signals

that the motor cortex sends to the motor neurons.

In humans, the cerebellum also analyzes the visual signals associated with

movement. These signals may come either from the movement of objects

within the field of vision or from the sight of the moving body segments

themselves. The cerebellum appears to calculate the speed of these move-

ments and adjust the motor commands accordingly.

1.3.2 Movement planning

Any voluntary movement can be accurately described as an intentional effort

undertaken jointly by the motor cortex and numerous other neural systems

acting cooperatively. This effort is organized hierarchically.

1. The top level of the hierarchy takes care of defining the motor

strategies: the objectives of the movement and the behaviours to be

applied to achieve these objectives. The prefrontal cortex prepares

the plans for the movement. Meanwhile, the frontal cortex receives

information from a large number of axons projecting from the

parietal cortex, which is involved in spatial perception.

2. The secondary motor areas work with the cerebellum to specify the

precise time sequence of contractions of the various muscles that will

be required to carry out the selected motor action. The brain also

needs to convert the coordinates of the external environment into a

set of intrinsic coordinates. This conversion allows a person to adjust

the angles of the various joints that are involved in the movement.

3. The primary motor cortex, the brainstem, and the spinal cord come

into play to produce the contractions of all the muscles needed for the
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chosen movement. The primary motor cortex determines how much

force each muscle group must exert, and then sends this information

to the spinal motor neurons and interneurons that generate the

movement itself, as well as the postural adjustments that accompany

it.

The operation of each hierarchical level in the motor control system is ex-

tremely dependent on the sensory information that it receives. In the deter-

mining of motor strategies, sensory information helps to generate a mental

image of the body and its position in its environment. The decisions on

how to apply motor controls (for example, the duration and amplitude of

each contraction) are based on memories of sensory information about past

movements. And in the actual execution of a movement, sensory feedback

enables the brain to maintain the body’s posture and helps it to determine

the length and tension of the muscles before and after every voluntary move-

ment [13].

1.4 The Muscle Contraction

1.4.1 The Muscle Structure

The muscle is a tissue able to generate and transmit force. In particular,

a striated muscle is a hierarchical material made up of a large amount of

parallel fibers, whose diameters are about 1 micrometer and yet with a length

of several centimeters. The adjective “striated” depends on the fact that

the fibers, composing this type of muscle, are actually bundles of thinner

structures known as fibrils. These little structures have repeating cross

striations throughout their length known as Z-bands. The area between

these striations is called sarcomere and contains thick and thin filaments

bound together by a system of molecular cross-linkages. During contraction

cycle, conformational changes in the cross-linkages lead to only very slight

changes in the length of the filaments but cause substantial changes in the

distance between Z-bands as the thick filaments slide in between the thin

filaments (Figure 1.18).

1.4.2 The Muscle Innervation

Each striated muscle is innervated by a single motor nerve. In particular the

traveling of the nerve to the muscle consists of axons of numerous individual

α-motoneurons, which as a collective are referred to as a motoneuron pool.

Each α-motoneuron axons divides into a number of small branches, termed
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Figure 1.18: The contraction cycle [14]. Thick filaments are the ones in the center,

while the thin ones start from the lateral positions.

axon fibrils, which form neuromuscular junctions. Each α-motoneuron in-

nervates a number of interspersed muscle fibers within a muscle, and each

muscle fiber is usually innervated by only one α-motoneuron. The spatial

distribution of the neuromuscular junctions on the muscle surface is not ran-

dom, but forms at most a few clusters (typically only one) called innervation

zones. An important functional consequence of this structure is that muscle

fibers do not contract individually but rather the entire set of muscle fibers

innervated by a single α-motoneuron contracts in consonance. Therefore,

the most elementary functional unit is composed by the α-motoneuron cell

body, its axon, its axon fibrils and the individual muscle fibers innervated

by these axon fibrils. This entity is called motor unit (Figure 1.19).
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Figure 1.19: Motor units schematic representation [15].

1.4.3 The Size Principle

The axons of the motoneurons within a motoneuron pool vary in diameter.

Therefore the smaller the diameter of a motoneuronal axon, the smaller the

amount of axon fibrils, the smaller the number of muscle fibers it innervates

and the smaller the size of its cell body.

Hence, the activation of a muscle by small motoneurons produces smaller

and more precise actions than the activation of the same muscle by larger

motoneurons. Moreover if the diameter of the motoneuron is small, the crit-

ical firing threshold of its cell body is consequently low, thus the muscle it

innervates is more fatigue resistant.

These relationships constitute the “size principle” and contribute to our

ability to control force in a smooth and graded fashion. More specifically,

the initial force contraction produced by a muscle is attributable to small

α-motoneurons discharging intermittently and then discharging more fre-

quently [16] . Stronger muscle contractions are due to the depolarization

of increasingly large α-motoneurons within the motoneuron pool, concur-

rent with increases in the firing rates of the smaller α-motoneurons already

active. The maximal levels contraction and force are reached thanks to a

further increase in the rapidity of the motoneuron pool firings.

Another consequence of the size principle is that muscles with a low innerva-
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tion ratio, which is the number of muscle fibers innervated per motoneuron,

are capable of producing more rapid and precise actions than muscles with

a higher ratio.

1.4.4 The Contraction

The contraction of a motor unit is initiated by an action potential travel-

ing from the cell body of the α-motoneuron, along its axon fibrils to the

muscle motor unit fibers. Subsequently, depolarization of the muscle fiber

membrane occurs, triggering the muscle contraction. The physiochemical

mechanism responsible for the contraction involves a complex yet well char-

acterized self-regulating calcium-dependent interaction between actin and

myosin molecules. The membrane depolarization thus causes a time-varying

transmembrane electric current field that evokes potential changes in the ex-

tracellular tissue, which can be measured invasively or intramuscularly by

means of needle or wire electrodes, as well as non-invasively from the surface

of the skin above the muscle [17][18][14].

1.4.5 Muscle fatigue

Muscles that are used intensively show a progressive decline of performance

which largely recovers after a period of rest. This reversible phenomenon is

called muscle fatigue. This is particularly clear when maximum isometric

Figure 1.20: Force records during fatigue produced by repeated short tetani in an

isolated mouse flexor digitorum brevis fiber; each tetanus appears as a vertical line.

Stimulation protocol: 350-ms, 70-Hz tetani repeated every 4 s for 2 min, and the

interval was decreased by approximately 20% every 2 min (interval changes indicated

by open triangles). [19].

force is measured in repeated tetanic contractions, which occur when a mo-

tor unit has been maximally stimulated by its motor neuron. This happens
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due to multiple impulses stimulating the motor unit and not giving it time

to relax between contractions. Therefore the strength of impulse is increased

as it is added to the previous impulse, creating a maximal contraction. Dur-

ing the repetitions of the contractions, a progressive force decline is visible

even on the second tetanus of the series (Figure 1.20).

Other aspects of muscle performance also change during fatigue, in partic-

ular shortening velocity is reduced and the time course of relaxation slows

down. Most practical activities are dependent on the power output of the

muscles involved and, since power output is the product of both force and

shortening velocity, the decline in performance can be larger than the de-

crease in isometric force. Of course, the decline in performance is not imme-

diately apparent if a submaximal activity is performed, and in this situation

fatigue manifests itself eventually as a failure to be able to continue the

activity at the original intensity, often called exhaustion. In such an activ-

ity, the progress of fatigue can be estimated by occasionally interpolating a

maximal contraction [20][19].
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Chapter 2

Hand prosthesis: the state of

the art

This chapter presents the state of the art technologies applied to the pros-

thetics of the upper-limb: the most important projects all around the world

are shown in detail. The goal is to understand how the commercial devices

can be improved in order to satisfy the needs of the amputees and to increase

the know how for a future design of our own prosthetic hand. In particular,

this study focuses on the trend followed by the scientific research in the field

of the EMG control, and on the results obtained. Eventually, it is concluded

the parallelism between the artificial and the real limbs.

2.1 Introduction

The loss of a limb is a traumatic event in a person’s life and even more

when it comes to the hand: its functionalities are necessary not only in

prehensile tasks, but also when one wants to sense the surface conformation,

the temperature of an object or receive a proprioceptive feedback. Moreover,

the hand is one of the body parts most used in communication: humans are

used to perform a lot of gestures to express feelings and concepts. Not least

comes the aesthetic function: the hand is used to interact with other people

and usually their opinion about its appearance is very important for the

amputee.

Thus the study of a prosthetic hand is a complex problem, from a functional

to a psychological point of view, indeed it has being studied along the years

by medics, engineers and psychologists. The focus of the modern research

on this field has been put on the priorities of the amputees. It is important

to understand what are the needs of a person during his lifetime, because

35
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not every movement or prehensile pattern can be reproduced with the state

of the art technology [21].

2.2 Upper-limb amputation: statistics

In order to understand the extent of the upper-limb amputation phenomenon,

a deep analysis on the statistical data from the two National Health In-

terview Survey made in United States in 1988 and 1996 is presented. At

that time, there was an average of 133,735 hospital discharges for amputa-

tion per year: in contrast with lower extremities amputations, which were

mainly due to dysvascular causes, upper-limb amputations had been mostly

trauma-related (68% out of all the trauma-related). The second reason for

an upper-limb amputation is cancer (23.9% out of all the cancer cases), then

the dysvascular one (3% out of all the dysvascular cases). More than half

of the trauma-related upper-limb amputations occurred at the lowest level

(the finger), then at the thumb (12%), at the transradial level (2% - be-

tween elbow and wrist) and finally at the transhumeral one (1.5% - between

shoulder and elbow). Moreover, considering the congenital losses, in 1996

the incidence is of 1,500 over 10,000 live births: the 58% out of all the dis-

charges is related to the upper-limb, of which the 27% is at the longitudinal

hand level [22].

Currently it has been estimated that in the U.S.A., there are approximately

1.7 million people living without a limb: one out of every 200 people has

had an amputation [23] [24].

The main idea to keep in mind from the previous set of percentages and

numbers is that the most part of the upper-limb amputations are caused by

a traumatic event. This fact has an important impact on the psychology of

the amputee, which will be further explored in the next section.

The latest important data on which to reflect is that there are approximately

1,908 upper-limb amputations a year versus 56,912 lower-limb amputations:

the upper-limb amputees population is much smaller. Therefore, it is often

noted that upper-limb amputees feel isolated from their peers[25].

2.3 Upper-limb amputation: psychological impact

The psychological repercussions of a traumatic event, like losing a hand, are

many and of various nature. Each one has to be addressed in order to help

the patient to overcome the worst moment of his life.

The previous section highlighted two problems that mainly upper-limb am-
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putees have to cope with: the traumatic event that upsets their life and

the fact of being a smaller amount of people with respect to the lower-limb

amputees.

The upper-limb amputation causes are proved to be more related to a trau-

matic event in comparison to the lower-limb ones, which mainly are the

effect of tumors or disease. Therefore, as with any other progressive disease,

the patient often has some time to psychologically prepare himself for the

possibility of amputation. The traumatic injury presents one more issue:

the unpredictability. Overnight, a person loses his hand and, with it, his

self-esteem, starting to encounter body-image concerns and to feel isolated.

The upper-limb amputees population is long way less numerous than the

lower-limb one, which makes the upper-limb amputee feel isolated even from

people dealing with other type of amputations. Moreover, for the reason

mentioned above, the literature and resources available are unintentionally

focused on lower-limb concerns, with the possibility to bring more discour-

agement to the already difficult situation.

The upper-limb amputee must cohabit with his own disability all day long

for his entire life: the hand is constantly exposed to the patient sight. Other

psychological concerns may arise because of the loss of the dominant hand

functionality: some habits that identified the patient must be changed, as

handwriting, playing an instrument, drawing, painting or cooking. This

causes a slower rehabilitation.

Furthermore, an amputee shares with other patients, affected by other kind

of amputations, problems like post-traumatic stress disorders and other psy-

chological concerns:

• nightmares or flashbacks of the accident;

• avoidance of the topic;

• emotional numbing;

• hyperarousal;

• phantom limb pain that could inhibit the rehabilitation;

• feeling of a decreased ability to defend themselves;

• depression caused by the loss of the job [26].

The upper-limb amputees are famous for rejecting prosthetic devices at a

high rate, therefore researchers are questioning about the resources needed

to enable the patients to cope with their limb loss and eventually with their
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prosthesis. It has been found that individuals with upper-limb loss who

are fitted within 30 days of amputation are more likely to accept prostheses

than those fitted after 30 days. Moreover, differences between unilateral and

bilateral amputees have an important consequence on acceptance. Unilat-

eral amputees tend to master tasks with one hand, rejecting prostheses, as

opposed to bilateral amputees, who require prostheses for some prehensile

activities [27]. The findings of several studies led to the conclusion that

mental health professionals need to be involved in the care of this popu-

lation in addition to a screening tool being available to routinely address

psychological adjustment [25].

2.4 From the surgeon point of view

The surgical amputation has evolved significantly since the days in which

the limb was severed from the unanesthetized patient and the stump dipped

in boiling oil to achieve hemostasis: the modern procedures of amputation

have greatly developed after the two World Wars. In particular, within the

last three decades, prosthetic research and rehabilitation engineering cen-

ters, supported by federal funding, have spread the results of their studies,

promoting the enhancement of the know how.

Surgeons have the patient’s life in their hands: when they have to face an

injury caused by a traumatic event, they have to think and act in a very

small time. This is the case of the amputation surgery, therefore the doctor

must be aware of all the possible procedures to apply in each particular

situation, in order not to lose time.

Each site throughout the upper or lower limbs has individualized character-

istics of bone shape, nerves, musculature and blood vessels, as well as partic-

ular muscle, skin and soft tissue envelope structures available for padding,

protecting, and reconstruction. A deep understanding of the anatomy of

each site mentioned above would help the healing and the prosthetic reha-

bilitation, when deciding where and how to amputate.

A particular consideration can be made about the upper-limb case, deciding

wether to salvage or amputate. The upper extremity doesn’t have to sup-

port the whole body, in contrast with the lower extremity, therefore, even if

the salvage will keep minimal assistive functions, it is often better than the

prosthetic substitutes available on the market.

The surgeon has to go through important decisions before acting. He has

to chose between amputation versus salvage and determine the most dis-

tal level of amputation still compatible with wound healing and subsequent

satisfactory prosthetic fitting: in upper-limb amputations the transradial
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Figure 2.1: Amputation levels: the percentages represent the standard length of am-

putation at a given zone [28].

(elbow-wrist) one is preferred. The goal in modern amputation surgery is

to conserve the length of the stump and obtain a well-healed, non-tender

physiologic residual limb: in this way the prosthetic suspension and force

transmission from the residual limb to the socket is improved [5]. Of course

this surgical operation has important risks like joint contractures, phantom

limb pain, neuroma formation, stump breakdown and, in children, bony

overgrowth: all aspects that have to be prevented [29].

Doctors assert that immediately applying a prosthesis, brings astonishing

physical and psychological rehabilitative advantages: the patient avoids a

limbless period so that he can straight start to cope with the functional
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restoration and accept the new extraneous device. Support and encourage-

ment offered by the hospital environment are essential in order to return to

a regular activity level.

We have to think not of artificial limbs, but instead of replacement limbs.

The surgeon capable of making an amputation successful, can indeed help

make the patient whole[30].

2.5 Hand prosthesis: functional classification

At present the choice in the prosthetic upper-limb market can be divided in

two main groups, the passive and the active ones:

Figure 2.2: upper-limb prostheses classification.

• The upper-limb passive proshtesis (Figure 2.3) cannot be actively

controlled, but it can be considered as a realistic reproduction of the

amputee hand. Laboratories specialized in this field can customize

the device depending on the patient’s skin color and on the

conformation of the healthy hand, achieving astonishing results. The

drawback of this kind of prostheses is that it only provides an

aesthetic functionality and doesn’t restore any kind of dexterity to

the amputated limb, even if the amputee can use it to push objects

or help the healthy hand for simple manipulations.
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Figure 2.3: Passive aesthetic prosthesis

• The active devices can be further divided into two groups, the

body-powered and extracorporeal powered prostheses:

– The body-powered (Figure 2.4), upper-limb prosthesis is

sustained by a harness and actuated through relative body

motion: a control cable is routed through a housing so that the

tension is transmitted to the prosthesis. In this way the

prehensors can be operated in either a voluntary opening or

voluntary closing mode. The low cost, high reliability, light

weight and simplicity of body-powered systems make them a

reasonable choice, even if we have to consider as a drawback the

presence of the cable that make them uncomfortable [31][32][33].

– The extracorporeal power prostheses are classified in myoelectric

control and electronic control prostheses:

∗ The electric signal associated to the muscular contraction

and more precisely to the ionic currents, flowing along the

muscular fibers causing the muscle shortening, is called

electromyographic signal (EMG). The myoelectric

prostheses (Figure 2.5) use this signal, recorded form the

amputees stump using a surface electrode and an

electromyograph, to interpret the will of the amputee and

reproduce the movement that he would do if he had his own

limb [34]. Due to the difficulties in the electromyographic

signal interpretation, the most of the commercial hands just

recognize two kinds of movements: the opening and closing
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Figure 2.4: Harness of a body-powered prosthesis [28]

ones. This is achieved by recording the signal from two

antagonist muscles, inasmuch the signal is stronger when

recorded from a nearby muscular area, allowing the system

to manage two very distinct signals.

Current commercially available prosthetic hands don’t

provide any kind of feedback except the visual one [35][36].

Myoelectric prostheses can be further divided in two

subgroups: the undercatuated and actuated ones. The

difference between the two is that the underactuated
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prosthetic hands provide less actuators than the number of

the hand’s degrees of freedom(DoF). This means that not

every joint has a motor, but there are some mechanical

devices, like artificial tendons, attached to a smaller amount

of motors that allow to flex and extend the fingers, like in a

real hand [36].

Figure 2.5: Myoelectric prosthesis functional schema

∗ Another noteworthy type of extracorporeal power

prosthesis, is the electronic control one. This is less

common than the myoelectric device but still in use. In this

group are included servo controls, electronic switch controls,

electronic touch controls and sometimes these features are

merged together to constitute an hybrid system [37]. The

electronic control prostheses are more useful than the

myoelectric ones in particular situations. For example in

case of congenital pathologies to the shoulder, where the

muscular situation is anomalous and moreover there are

protuberances, or even small fingers, that the patient can

move. The amputee can use them to control the electronic

switches in order to actuate the prosthesis [38].
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2.6 Amputee’s needs

In September 1992, The Institute for Rehabilitation and Research (TIRR)

in Houston was awarded a two-year grant from the National Institutes of

Health/ National Center for Medical Rehabilitation Research (NIH/NCMRR).

More than 6,600 one-page surveys were sent to individuals with upper-limb

loss or absence, throughout the United States.

The results of the surveys indicated necessary improvements in the design

of a better upper-limb prosthesis. These qualities include additional wrist

movement, better control mechanisms that require less visual attention,

greater finger movement, the ability to make coordinated motions of two

joints, better gloving material, better batteries and charging units, and im-

proved reliability for the hand and its electrodes [39].

In the scope of another survey (2002), seventy Australian upper limb am-

putees responded to a detailed postal questionnaire asking how often they

wore their prostheses and their level of satisfaction with both their prosthe-

ses and their functional abilities.

Only 44% of amputees reported wearing their prosthetic limbs half the time

or more. These low levels of use might be partly due to dissatisfaction with

the prostheses regarding the sweating, cosmesis, discomfort of the harness

and strong pain.

The individual activities with which respondents recorded the greatest dis-

satisfaction were “using a knife and fork”, “peeling vegetables”, “tying shoe-

laces”, “tying necktie”, “buttoning shirt sleeves”, “cutting nails”, “carrying

tray”, “using a hammer and nail”, “rewiring a plug” and “carrying multiple

packages at once”. Prostheses were rarely used for dressing tasks, while they

were used more frequently in domestic activities such as food preparation,

handy work, gardening, and work activities.

Many survey respondents were able to be independent and return to work

without using prostheses, and many were quite satisfied with their functional

abilities, regardless their level of prosthesis use.

Amputees need not only prosthesis rehabilitation, but also a program to as-

sist them in their return to vocational, psychological, functional, and social

wellness [40].

2.7 Commercial prostheses

The most common commercial electromyographic prostheses aim more at

the reliability of the movement than at the complexity of the grasping

patterns. Furthermore, the effort required to simultaneously control many
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EMG inputs, leads to commercial prostheses that support only simple sin-

gle DoF[41]. The ideal prosthetic hand is a cheap, visually appealing,

lightweight, long running, highly dexterous and easily controlled devices.

Moreover the sensorial feedback would be the feature that makes it the sen-

sible replacement of the lost hand.

Unfortunately the state-of-the-art commercially available prosthetic hands

are far from this ideal target: the current best devices are the SensorHand

Otto Bock (2008b) by Otto Bock, and iLimb by Touch Bionics. At the time

of writing two more advanced prosthesis are entering the market, but the

there are very little informations about them: the MichelAngelo by Otto

Bock and the BeBionic by RSL Steeper[42].

2.7.1 SensorHand by Otto Bock

The SensorHand (Figure 2.6) is a classical prosthetic “claw”, endowed with

one degree of freedom, which is typically proportionally controlled by one

or two electromyography electrodes.

Figure 2.6: The SensorHand by Otto Bock

While the external glove is composed by five non-articulated fingers, the

actual support has three extremities. The thumb in the support is matched

with the thumb in the glove, the second finger in the support is matched with

the index and middle finger in the glove and eventually the third support’s

extremity is matched with the glove’s ring and little fingers. The single

degree of freedom of the hand just allows the opening and closing movements
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around the metacarpal joint: the thumb is in opposition to the index/middle

finger, reproducing a claw.

The proportional speed range is 15-300 millimeters per second, which is

twice the speed of other myoelectric hands. Furthermore a proportional

grip force of 100N can be reached, despite the weight of 460 grams. In

addition, the system can recognize when an object starts to slip from the

hand and automatically increase the grip force, thanks to the AutoGrasp

feature: this is one of the most important characteristics of the device and

is achieved with the SUVA sensory system.

During the gripping phase, the SUVA sensors measure the vector force at

the extremities of the hand, therefore when the object starts to slip the

control system increase the grip force. This algorithm works in background

without the intervention of the amputee, who is relieved by the fact that he

doesn’t have to schedule the whole prehension process. A clarifier example

is the situation in which the hand is holding an empty glass: while water is

poured, the hand automatically tunes the force to apply, without the help

of the patient [5].

According to the analysis of the state-of-the-art of the Otto Bock hand, the

main problems to be solved are [43]:

1. lack of sensory information given to the amputee;

2. lack of a “natural command” interface;

3. limited grasping capabilities;

4. unnatural movements of fingers during grasping;

5. low cosmetics.

2.7.2 iLimb by Touch Bionics

The iLimb hand is the first prosthesis in the market with five individually

powered fingers. Each one is composed by two articulated phalanx, driven

by a tendon which is connected to a DC motor. All the motors are activated

together by the EMG signal, but different configurations can be achieved by

individually stopping the fingers, by means of mechanical friction.

Actually there isn’t any official technical paper available, but Touch Bionic

asserts that the hand has a built-in stall detection feature, which tells each

individual finger when it has sufficient grip on an object, thus when to stop

powering. Individual fingers lock into position until the patient triggers an

open signal through the muscle.
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The thumb is fixed to a passive joint, which can be manually operated in

order to achieve different prehensile patterns (Figure 2.7) [44]:

• key grip: the thumb closes down onto the side of the index finger.

This grip is used to hold items such as a plate or a business card.

The addition of wrist rotation enables the patient to turn a key in a

lock in a totally “human” way;

• power grip: all fingers and the thumb close down together to create a

full-wrap grip. This grip would be used to hold a can of drink whilst

opening the ring-pull, for example, and for carrying large objects

such as a briefcase or shopping bag;

• precision grip: the index finger and thumb meet (or index finger,

middle finger and thumb meet) in order to pick-up small objects and

to hold objects when performing finer control tasks;

• index point: the thumb and fingers close, but the index finger

remains extended. Patients have found this grip very useful for

operating computer keyboards, telephone dial pads, ATM cash

machines and a host of other everyday requirements.

Figure 2.7: The prehensile patterns allowed by the mobility of the thumb.

The iLimb prosthesis is better than the other commercial devices from dif-

ferent points of view:

• five independent fingers available: the hand is capable of different

grasping patterns;

• multiple contact points with the grasped object: more secure grip;

• opposable thumb;

• the hand is much more realistic;

The drawbacks are the cost and the lack of any kind of feedback to the user,

except the visual one, of course.
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2.7.3 The hands of the near future

In the time of writing, Otto Bock and RSL Steeper are refining their last

creations: the informations about these new products are very few for ob-

vious reasons, however a little presentation of their features is going to be

shown

2.7.3.1 MichelAngelo by Otto Bock

Figure 2.8: MichelAngelo by Otto Bock

The MichelAngelo prosthetic hand (Figure 2.8) is clearly inspired by the

Touch Bionic’s iLimb, it is endowed with two electrodes and five indepen-

dent fingers: therefore it is guessable that only the opening and the closing

movements are available. This means that it doesn’t bring any new grasping

abilities, compared with iLimb, even if Otto Bock asserts that it has six DoF

which is new in the prosthetic hand market.

The engineers working on the project assert that the MichelAngelo hand

provides proportional control for multi-axial movements, but a complexity

reduction had to be achieved by controlling movement synergies rather than

the individual DoF[45]. This means that we can expect that the hand is

underactuated in order to simplify the movement patterns and reduce its

weight.

Moreover they say that even if high-bandwidth signal transduction from

the subject to the device is in sight, the information flow in the reverse

direction will retain severe limitations. In order to exploit recent advances

in robotics in prosthetic devices, appropriate feedback signals must be re-

constructed from an optimal combination of local sensors and efficient data
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analysis [45]. It looks like the engineers at Bnft-Goettingen are working to

achieve some sort of feedback, which is still not available in any commercial

prosthetic device.

The drawback of this new prototype is the cost, even if the hope is that the

increasing competition in this field will make these objects more affordable.

2.7.3.2 BeBionic by RSL Steeper

Figure 2.9: BeBionic by RSL Steeper

Looking at the previews of the BeBionic (Figure 2.9), the expectations

are very high. RSL Steeper presents it this way: “Bebionic hands feature

naturally compliant grip patterns combining innovative technology with life-

like appearance. Functions of the hand such as speed, grip force and grip

patterns may be custom programmed to suit individual user requirements

through smart software and wireless technology. Lighter than existing prod-

ucts, it will be available to the market at an affordable price.

The bebionic range will also include the world’s first powered wrist with

rotation as well as flexion/extension. Completing the range is an advanced

silicone skin available in 19 skin shades.”[46]

From this little presentation we can understand that the most important

feature will be a higher mobility of the wrist, which is very important for

the patient: unnatural movements will be avoided thanks to the two DoF

of the wrist. Another noteworthy characteristic is the reprogrammability of

the device in order to accomplish customized task depending on the patient.
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2.8 Scientific research

In the last decades, classical robotic knowledge has been introduced in the

myographic prosthetic hand field, in order to investigate new and more com-

plex systems, aimed at matching users’ desires and expectation.

The scientific research is focusing on new intuitive human-prosthesis inter-

faces, in order to allow the control of more DoF. Moreover the bidirectional

data exchange with the device has gained much importance: the aim is to

give some kind of feedback from the prosthesis to the user.

Other fields of interest are the improvement of the performances, the dex-

terity, the anthropomorphism and the cosmetics of the prosthetic hand [47].

2.8.1 Mechanical design

Due to the need of aesthetic and light solutions, in the last two decades the

common choice has been to use less actuators than the actual number of

DoF of the hand. This approach allows to install less motors, thus reducing

the bulk and inertia of the manipulator system. Underactuation is achieved

by linking together the motion of the joints of a finger, or even of two whole

fingers. The problem of this approach is that the hand’s DoF would actually

be the same number as the actuators in the device, which leads to a poor

adaptation to the object geometry. This problem can be overtaken using

tendons transmission between consecutive joints in order to use few actua-

tors, while maintaining the joints mobility.

2.8.1.1 Tendon driven hands

The MARCUS, Hokkaido, RTR II and CyberHand hands[5] are examples

of devices endowed with tendon driven fingers (Figure 2.10). Each distal

phalanx is connected to its respective actuator by a lever based on a cable.

In this way the fingers can wrap the objects around and spread the force

over multiple contact points. Being the grip well distributed, it is much

more stable [48].

2.8.1.2 Bar mechanism

The Southampton REMEDI hand is based on a different kind of phalanx

linking. It has six DoF, consisting of six small electrical motors: two are

used in the extension/flexion and rotation movements of the thumb, while
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Figure 2.10: MARCUS finger’s leverage system [48].

the four remaining motors are assigned to the remaining individual fingers

[49]. Each finger is driven by its own worm wheel, which is linked to a system

of six independently moving bars, composing the finger. This particular

design is mechanical efficient and avoids backlash, which is characteristic of

the tendon driven links (Figure 2.11)[50].

Figure 2.11: Bar mechanism design schematic [50].

2.8.1.3 Wrist and thumb actuation

What makes the MANUS-HAND special, compared to the previous hands,

is of course the wrist and thumb mechanisms. This hand is provided with

ten joints, of which three are independently driven (Figure 2.12):

1. the finger mechanism: a crossed-tendon mechanism is used in the

fingers instead of the more traditional bar mechanism in the field of
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robotics;

2. the thumb mechanism: the thumb movements are coupled by means

of a Geneva-wheel based mechanism, which makes it possible to use

one actuator for thumb movements in two planes(cylindrical and

lateral grasps). To the MANUS’ designers knowledge, this is an

innovative aspect of this hand;

3. the wrist mechanism: commercial Ultrasonic motors have been used

to drive the wrist pronation-suppination;

The fourth and fifth fingers of the MANUS-HAND are provided with a

martensitic structure. These fingers can be manually shaped for long-term

grasps [51].

Figure 2.12: The MANUS-HAND [51]

2.8.1.4 Fluid actuation

In 2007 the Ultralight Hand has been presented: it is a very lightweight

artificial hand endowed with five fingers and 13 DoF driven by a new type

of powerful small size flexible fluidic actuator. The actuators are completely

integrated in the fingers which allowed the design of a very compact hand.

Because of the elastic properties of the actuators the contact force is spread
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Figure 2.13: Pneumatic arm by the Vanderbilt University [52].

over a greater contact area. Additionally the surface of the fingers is soft

and the friction coefficient is increased by the silicone-rubber glove, that

covers the artificial hand. The result is that a reduced grip force is needed

to hold an object.

Because of the self adapting properties of the fingers many different objects

can be grasped without sensory information from the hand. This enables the

developement of a low-mass prosthetic hand with high functionality. The

wrist is also flexible and a rotation of 30 degrees in each direction can be

achieved [53].

In the same year an anthropomorphic 21 DoF, 9 degrees of actuations arm

prosthesis for use by transhumeral amputees was presented by the Vanderbilt

University (Figure 2.13). The energy demand of the system is satisfied by

the catalytic decomposition of the monopropellant hydrogen peroxide, which

has recently been shown to provide better performances than state-of-the-art

batteries and electromagnetic motors. The catalytic reaction upon which the

approach is based is strongly exothermic, and the resultant thermal energy

is transduced to mechanical works via the expansion of the gaseous reaction

products. This system allows the presence of five pneumatic actuators in

the hand which can drive 17 DoF: the actuators forces are applied through a

series of cables and cable sheaths, which are equivalent to the tendons. The

qualities of this hand are that no power consumption is required for isometric
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contractions, liquid propellant is nonflammable and insensitive to shock and

the low temperature benign exhaust is projected to be both visually and

audibly insignificant [52].

2.8.2 Sensory systems

2.8.2.1 Proprioceptive systems

The proprioceptive sensors are used to detect the state relative to an inter-

nal reference system. In the next paragraphs the most common ones are

presented.

Figure 2.14: MANUS-Hand Hall effect: (a) Position sensor, (b) Force sensor [51]

Position sensors: the Hall effect is the principle behind position and

force sensors mounted on the MARCUS, RTR II, CyberHand and MANUS-

Hand hands prototypes [5][48].

Position sensors were developed by placing a permanent magnet opposite

to the Hall effect sensor. In between, a cam made of ferromagnetic steel

modifies the reluctance of the magnetic circuit resulting in a linear relation

between cam rotation and output voltage. In the MARCUS hand, for ex-

ample, the magnetic plate is fixed to the first phalanx structure and rotates

with respect to the joint rotation axis, while the Hall effect sensor is fixed

to the metacarpus phalangeal joint [48]. Therefore it is possible to sense
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the rotation of the joint of each disarticulation of the hand and compute

the actual configuration of the finger. The force sensors are embedded in

the fingertips and based on Hall effect pick-ups as well. In this case, the

permanent magnet is spring mounted and the resulting magnetic field at

the Hall effect sensor location results in a linear relationship between force

exerted and output voltage (Figure 2.14)[51].

Magnetic encoders: the Southampton REMEDI and CyberHand hands

motors are endowed with digital magnetic encoders and motor-current sen-

sors, which respectively provide finger position and the force applied to the

manipulated objects. The advantage of this system is that the sensors are an

integral part of the electronic hardware interface. This is crucial to the min-

imization of lead length between the analogue sensor and signal processing

components (thereby limiting noise interference from the motors), as well as

eliminating the need for externally mounted devices which are susceptible

to reliability problems.

The cable tension sensor is based on a micromechanical structure which

can continuously monitor the cable tension applied by the motors of the

fingers. It is mounted in some tendon driven underactuated hands like the

RTR II and CyberHand hands [5]. This sensor is obtained from a cantilever

which is elastically strained by the cable and is fundamental for the low-level

control algorithms of the grasping force.

2.8.2.2 Exteroceptive systems

The exteroceptive sensors are used to detect the state of the environment

in which the agent is operating. In the next paragraphs the most common

ones are presented.

Piezoresistive and piezoelectric materials: an array of thick-film sen-

sors is located on each fingertip cantilever of the Southampton REMEDI

hand: it is endowed with a static force sensor and a dynamic force sensor.

The static force sensor exploits the piezoresistive effect exhibited by thick-

film resistors. In this effect, the resistance of a thick-film resistor changes in

a linear manner with the strain experienced by the resistor.

The dynamic force sensors are essentially vibration sensors which are made

of piezoelectric material: it generates an electric charge on its surface when

mechanically deformed. They are used to detect any rapid variations in the
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force over the fingertip surface, or vibration, which could be indicative of an

object slipping from grasp.

Temperature sensor: is a part of the thick-film array mounted on the

Southampton REMEDI hand. The temperature of an object held within the

prosthetic hand is determined by monitoring the change in the resistance

of a thick-film thermistor paste printed in the space between the two force

sensors in the fingertip cantilever. This paste demonstrates a highly linear

relationship between resistance and temperature [54].

Figure 2.15: Dimensions of the fingertip cantilever (mm) and the location of sensors

[54].

Contact sensors: a flexible layer, made of contact sensor arrays, which

covers the CyberHand is designed to emulate the sensitivity of the mechanore-

ceptors of the human hand with pressure thresholds of < 15mN/mm2, that

is sensitive enough to be compared with the human receptors.

The triaxial force sensor is integrated in the fingertips of the Cyber-

Hand. It is based on an aluminum alloy 3D flexible structure: six semi-

conductor strain gauges are mounted, three for the sensor itself and the

remaining three for temperature compensation. The force sensor can be
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used to detect slippage at digit-object interfaces. Moreover it is able to de-

tect object contact as well as object lift-off and replacement, events known

to be crucial for the sequential coordination of the grasp-and-lift task in

humans.

Force microsensors: the Soft and Compliant Tactile Microsensor (SCTM)

system, shows a high sensitivity and robustness and can detect the onset of

slippage with an average latency of about 7 ms. These results are very im-

portant if compared with the human reactivity, which has a time delay an

order of magnitude higher than the SCTM system [5].

Slip sensor: An acoustic slip sensor used in the MARCUS hand provides

feedback if an object starts to slide from the hand during the holding phase.

The sensor consists of a microphone sealed within a rubber tube, and is

capable of detecting air movement which is highly coupled to fluctuations at

the finger surface. Hence the signal resulting from an object sliding across

the surface of the tube is much greater than any extraneous noise. This

device has been improved and integrated into the tips of the thumb, index

and middle digits of the Southampton REMEDI hand, as only three slip

sensors are required to determine if an object is slipping in any prehensile

configuration [55].

2.8.3 Control

The control system is one of the most important aspects of a prosthetic hand

because patients have to rely on it, and on its performances. The most com-

mon choice among researchers is the use of a two level architecture. The

first and higher level is the one under the patient’s will. Given that today’s

devices are endowed with just two electrodes, the control patterns available

to the user are few. The second and more sophisticated level is the one that

works in background: the prosthetic hand built-in sensory system provides

the microprocessor with a lot of useful information during the grasp plan-

ning phase.

2.8.3.1 Southampton Adaptive Manipulation Scheme

The Southampton REMEDI (2000) and MARCUS (1995) hands control

system, following the idea presented above, are based on the Southampton

Adaptive Manipulation Scheme (SAMS), which coordinates all the different

DoF to achieve a stable grip. When the user wants to execute a task, like
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Figure 2.16: State diagram of the SAMS hands. Control is mediated by electromyo-

graphic input or contact with sensors on the palmar surface of the hand [56].

moving an object, he just has to produce the EMG signal corresponding to

the hand opening and then to bring the device near to the object to grab

(POSITION - Figure 2.16). At this point the SAMS system detects the

object’s shape thanks to the sensors on the palmar surface of the hand and

a computer controller selects from a small repertoire the most similar shape.

Corrections are made in order to maximize the contact area and minimize

the applied force, while the touch is maintained light so that the operator

can obtain the best attitude (TOUCH - Figure 2.16). Then the user takes

the control back and produce a closing EMG signal (HOLD - Figure 2.16).

While the object is held, the system detects the slippage of the objects and

adjust the force applied. When the final position is reached the user can

produce another opening EMG signal and release the object in the desired

spot (RELEASE - Figure 2.16). It is important to set higher threshold when

the hand’s opening occurs while an object is held, so that it wouldn’t be

that easy to drop an object (Figure 2.17) [56][57].

2.8.3.2 Spring modeling

The MANUS hand (1998) is endowed with another kind of hierarchical con-

trol strategy. Given that the hand has just two active fingers, namely the
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Figure 2.17: EMG control of the SAMS. The flexor and extensor signals are arranged as

a continuous range from full flexion to full extension, the vertical axis is hand position

or grip for demand, depending on controller state [56].

index and middle fingers, both of them implement the underactuated prin-

ciple and just one actuator is used. Each finger has a its own low level

micro-controller, so that for every grasping mode the finger’s performance

is determined by a set o desired positions and fingers’ stiffness. For instance

if cylindrical grasps are considered, the set point would be the full flexion

for index and middle fingers and full flexion in opposition for the thumb.

The force exerted by each finger during the grasp obeys to Hooke’s law, thus

behaving as the spring’s one (impedance control). When a finger touches

the object to grasp and starts applying force on it, if this too high, the finger

will move the object against the opposite thumb, but the exerted force will

decrease because the finger is closer to the desired position. The procedure

presented above recalls a sort of adaption to the object stiffness. Eventually

equilibrium is reached when the finger and thumb forces match each other

[51].
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2.8.3.3 CyberHand Hierarchical Control

The CyberHand control architecture takes inspiration from natural grasp-

ing. Grasps are triggered by a higher level unit that is able to recognize

the user’s intentions and invoke appropriate grasping primitives. In the

first implementation of the high level controller a reduced set of primitive

grasps has been chosen (cylindrical, spherical,tri-digital and lateral grasp).

The grasping task is composed of two subsequent and different phases: the

pre-shaping and the grasping (closure) phase. The pre-shaping phase is per-

formed by a PID controller to control the position and select the tendons

force, by means of cable tension sensors. During the second phase the pros-

thetic hand closes the fingers until the desired grasp force is reached. The

final grip consists of a bio-inspired balanced distribution of the forces within

the hand: each finger has to grip the object with the same force. This is

done to increase the grasp stability and to reduce the slippage risk [5].

2.8.4 Bidirectional interfaces

The commercial prosthetic hands don’t provide any sensory feedback to the

user, so that he has to drive the device relying only on his vision. No tactile

or proprioceptive feedback is delivered to the amputee. The most recent

scientific researches have tried to overcome this limit mainly focusing on vi-

brotactile or electrotactile interfaces: the Ultralight [58], the MANUS [51],

the Southampton [59], the CyberHand[60][47] and the Yokoi[61] projects

have been developing such feedback systems during the last decade.

Vibrotactile stimulation is defined as a tactile sensation evoked by mechan-

ical vibration of the skin, typically at frequencies of 10 to 500 Hz, whereas

with electrotactile stimulation a local electric current is passed trough the

skin [60]. Eventually, the approaches of the future are presented, namely

the surgical implanted peripheral neural interfaces and reinnervation proce-

dures.

The vibrotactile approach is based on the simple intuition that a vibra-

tory response, varying contiguously with a sensory stimulus such as grasping

pressure, can be a useful feedback to the patient in the moment in which

he has to control his grip force. Typically, vibrations are applied in discrete

frequencies to the ventral skin of the forearm. The patient’s frequency dis-

crimination ability is determined by the correct recognition of unambiguous

frequency steps.

The vibrotactile feedback system implemented by the Johns Hopkins Uni-

versity [62], employed a C2 tactor (Engineering Acoustics, Inc.) that was
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mounted to the upper arm with an elastic band. The stimulation protocol

was a square wave amplitude modulated signal that produced a train of

discrete vibratory pulses. The waveform was modulated in two ways: varia-

tions of the envelope frequency as well as variations of the vibratory carrier

frequency (Figure 2.18). The envelope frequency conveyed grasping force

information. Slower pulsations represented a weaker force and rapid pul-

sations represented a stronger force. This stimulation protocol was chosen

because the intensity of a vibrotactile sensation does not grade well with

the vibration amplitude or frequency. Rather, the repeated stimulation of

rapidly adapting receptors at different envelope frequencies can provide a

suitable impression of varying intensities. In the scope of the Johns Hopkins

University project, a subject was asked to reach preset force levels with the

vibrotactile feedback. The force information measured by the strain gauge

was related to the envelope frequency delivered to the subject. Higher enve-

lope frequency correlated with higher grasping force. The carrier frequency

Figure 2.18: Envelope frequency shown in red, carrier frequency in blue [62].

was varied from 100 Hz to 230 Hz to correspond to the position of the hand

as reported by the position sensor. This modulation conveyed some propri-

oceptive information which could be useful for determining object stiffness

in situations where the user loses vision of the prosthetic hand. Of the dif-

ferent principles of force feedback, a vibrotactile system was chosen, because

acceptance among patients is high.
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A group of german researchers tested thirty persons without amputation,

two female and two male persons with an upper limb amputation [58], in

order to understand their degree of acceptance and of satisfaction regarding

the vibrotactile system. The exercise consisted in grasping a soft ball, first

with and then without visual control. During the phase in which they could

see, all the patients were surprised at the beginning of the grasp, because,

even though they had thought that they had not yet touched the ball, the

vibrotactile feedback was active. After few minutes, the tested persons al-

ready reduced the visual control of their prosthesis. The users have shown

considerable interest in a force feedback system and they supposed that its

application will clearly raise the acceptance of the prosthesis. This feedback

system looks particularly helpful when grasping soft or fragile objects and

can also be used for learning to control the hand via myoelectrodes [58].

Figure 2.19: Summary score graph on the vibrotactile feedback system and on the

duration of the training time [47].

Subjective opinions have also been collected during the testing phase of the

CyberHand project. The question referred to the system benefits during

the selection of the force closure and about the discomfort caused by its

wearing. The opinion on the vibrotactile feedback system is summarized in

Figure 2.19. According to all the subjects, the vibrotactile system does not

disturb at all and is helpful during the grasp tasks. The analysis of training

duration is also shown in Figure 2.19: subjects feel that a very short training
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time is required in order to correctly use the prosthesis [47].

The electrotactile approach is used in the Yokoi hand [61], in order

to provide the human body with more feedback channels. Two different

types of stimulation have been tested, surface stimulation and interferen-

tial current stimulation. Interest was also posed on their influence over the

EMG acquisition process, in order to determine the best approach to pro-

vide tactile feedback in the prosthetic application. Even though the EMG

signal obtained from the user body is contaminated by the electrical stim-

ulation, the error in the pattern recognition process is considerable low.

The researchers working on the Yokoi hand state that the surface stimula-

tion method gives promises to be a suitable method, while the interferential

based method, whether easier to discriminate, produces a SNR of 90%, ren-

dering the pattern recognition process unusable.

Neural Signal Control and Direct Neural Sensory Feedback: the

nervous system has plasticity, which makes it capable of adaption and func-

tional recovery. Nerve signals accurately reflect the motor nerve command

from the brain, moreover they are highly stable, reproducible, and ex-

portable. Interfacing peripheral nerve electrical signal from the nerve stump

is becoming the focus of the research into the control of prosthesis. The

voluntary motor control of nerve activity has not been completely defined

yet. Interfacing intrafascicular electrodes with severed fascicule of proximal

nerve stumps in radial, ulnar and median nerves is an important way to

explore residual motor signaling and intrinsic relationships. This approach

could be preferred to the classic EMG one, because it provides higher open

and closed-loop stability, muscle fatigue detection, and multiple movement

patterns. On the other hand, potential impediments could come from long-

term limb amputation issues, like neural pathways degeneration, differential

atrophy, decreased conduction velocity and the loss of effective neuromuscu-

lar contact or central connections. Current experiments [63] show that the

subject was able to generate motor neuron activity related to phantom limb

movements, and intrafascicular electrodes were able to export the real-time

electrical signal of nerves 29 months after amputation, without any nerve

rehabilitation training before the clinical trial. This confirms that either

the neural pathways for control of missing limb motions remain intact or

dynamic and adaptive motor cortical plasticity quickly comes into play.

From the amputee point of view, the neural interface with the prosthesis

is not only useful for a more natural control of the device but also for re-

ceiving important informations directly to the brain. Appropriate, graded,
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distally referred sensations can be provided through stimulation of amputee

nerve stumps with intrafascicular electrodes and these sensations can be

used to provide feedback information about grip strength and limb posi-

tion [64]. Another important project has been carried on by the researchers

of the Biomedical Campus University of Rome, jointly with the University

Scuola Superiore Sant’Anna of Pisa. They have been able to connect the

CyberHand to the patient’s brain, with neural electrodes interfaced to the

median and ulnar nerves of the amputee. After one month of experimen-

tation, the patient was able to move the hand only thanks to his cerebral

impulse, achieving the movements prefixed in the research program: the

thumb opposition, the fist closing and the movement of the little finger.

Reinnervation procedures: the reinnervation technique consist in nerve

transfers to muscle, to develop new electromyogram control signals and nerve

transfers to skin, to provide a pathway for cutaneous sensory feedback to

the missing hand. Professor Kuikek [65] did targeted reinnervation surgery

Figure 2.20: Map of areas that the patient perceived as distinctly different fingers in

response to touch [65]

on a woman with a left arm amputation at the humeral neck. The ulnar,

median, musculocutaneous, and distal radial nerves were transferred to sep-

arate segments of her pectoral and serratus muscles. Two sensory nerves

were cut and the distal ends were anastomosed to the ulnar and median
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nerves. After full recovery the patient was fit with a new prosthesis using

the additional targeted muscle reinnervation sites. Functional testing was

done and sensation in the reinnervated skin was quantified. The patient

described the control as intuitive and the reactivity of the prosthesis as ap-

propriately. Functional testing showed substantial improvement and both

motor and process skills increased. The denervated anterior chest skin was

reinnervated by both the ulnar and median nerves. The patient felt that

her hand was being touched when the chest skin was touched.

Targeted reinnervation improved prosthetic function and ease of use in the

patient, moreover targeted sensory reinnervation provides a potential path-

way for meaningful sensory feedback.

2.8.5 EMG signal analysis

The common approach for the control of a powered hand prosthesis is based

on the surface myoelectric signal, which is used as the input of the system.

The myoelectric control is achieved by extracting particular parameters from

the signals issued by the stump’s muscles, which are then classified with the

respective hand movement. Surface EMG electrodes are used to detect the

muscular activity: the modern sensors are intrinsically differential, therefore

each one represents a channel. Each channel applied to the amputee’s skin

provides a time series representing the activity of the muscle on which it is

posed.

The myoelectric signal has several advantages over other control inputs:

• no harnesses are needed to control the prosthesis unlike the

body-powered ones;

• the signal is detected by means of non invasive sEMG electrodes,

which are applied to the surface of the skin;

• the muscle activity required to provide control signals is relatively

small, almost like the one needed for the real hand;

• electronics behind the control system is continuously improved and

miniaturized.

Electronics and control algorithms have been complementary in their devel-

opment, particularly in this field. This is due to the fact that in a prosthetic

hand all the components have to be miniaturized and, at the same time,

they have to provide lot of computational power to satisfy the algorithm’s

needs. Therefore the hardware improvements of the last years have allowed
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researchers to focus on better algorithms, in order to provide more function-

alities to the prosthetic devices.

2.8.5.1 Single-function systems

During the 1960s and 1970s the development of semiconductor device tech-

nology and the associated decrease in device size and power requirements,

allowed researchers to improve the prosthesis state of the art. The single-

function (one DoF) classification consisted of the ability of the prosthesis

to recognize the opening and the closing movement from the muscular ac-

tivity. In particular, the approach was to use two double-state channels to

control the activity of two different muscles, the flexor and extensor digi-

torum: in this way when the electrode applied on the extensor digitorum

detected activity over a certain threshold, the fingers started to open and,

viceversa, when the flexor electrode sensed its muscle’s signal overcoming a

threshold, the fingers started to close. This system was the first to appear

in commercial devices like the ones by Otto Bock and Hugh Steeper [66].

The goodness of such approach was that the signals needed for the control

of the prosthesis were the ones that the amputee would have used with his

real hand. Unfortunately, if the level of amputation is too high the muscles

in the stumps are no more available, thus a different method was developed

in the late 1960s. A three-state channel was used, it was able to detect the

signal level with respect of two thresholds:

• if signal was under the first threshold, there was no activity;

• if the signal was above the first and under the second threshold, the

prosthesis opened;

• if the signal was above the second threshold, the prosthesis closed.

This method overcame the previous problems, because with just one channel

the signal could be detected even from high level amputation stumps. The

problem in this case was that the control was no more natural nor physio-

logic, because two movements were controlled by one muscle. These systems

are well developed, reasonably reliable, and for the most part provide the

performance that clients require from the commercially available prostheses.

2.8.5.2 Multifunction systems

With the recent developments in multifunction prostheses hardware there

has been considerable effort towards providing improved multifunction con-

trol. Since 1975 to the present there were large improvements in the perfor-
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mance of multifunction prostheses : more than 90% of recognized movements

for hands able to perform more than the opening and the closing functions.

This is due to a new kind of classification approach: the pattern recognition.

To classify each type of signal, a set of features has to be extracted from

it, for example time-domain statistics, short-time Fourier transform (STFT)

values, wavelet transform, model parameters and others more. In general,

this feature vector can be highly dimensional, therefore dimension reduction

techniques have to be applied in order to reduce the classification complex-

ity. After reducing the feature vector dimensions, the next step is to train

a classifier in order for it to be able to match each signal’s feature vector

with a particular hand movement. Possible classifiers include Bayes, linear

discriminant analyzer, multilayer perceptron neural network, and Support

Vector Machines.

Multifunction single-channel systems are able to recognize more than

one function by means of just one channel. The first approach to this issue,

dating 1977, was to extract the feature vector of the bipolar myoelectric sig-

nal by means of a model which provided information about relevant signal

parameters and statistics [67]. Then the feature vector was used to derive a

Bayes minimum probability of error receiver (classifier). Other studies car-

ried on in 1980 used a combination of state-space methods and statistical

decision theory which are applicable to a broad class of nonlinear estimation

problems [68]. In 1975 a new feature extraction process was proposed, which

consisted in the application of the ARMA model and the Kalman filter to

the EMG time series [69]. This method was able to recognize four different

movements with a performance of 95% [70].

The year 1993 saw for the first time the application of Artificial Neural Net-

works in this field. This approach relied on the fact that the structure of the

EMG signal is distinct for contractions which produce different limb func-

tions. So that the actual structure of the myoelectric signal over time could

be used to discriminate limb functions. To represent the above mentioned

structure, five statistic features were used: the mean absolute value, the

mean absolute value slope, the zero crossing, the slope sign changes and the

waveform length. These feature vector was used to train an Artificial Neural

Network which had performances ranging between 80% and 98% depending

on the subject performing the movement [71].

Multifunction multi-channel systems: the previous paragraph pre-

sented the single-channel approach, in which the possible improvements can

be achieved thanks to novel feature vector extraction methods. Another
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way of enhancing the EMG control systems can be the addition of more

channels: other electrodes have to be positioned on the forearm.

A two-channel system able to recognize six different functions with 85% of

performance was presented in 1982: this approach required the extraction

of just two features, namely the zero-crossing and variances which were in-

putted in a linear-discriminant classifier [72]. In 1983 a performance of 95%

was obtained thanks to a four channels system, extracting four ARMA coef-

ficients per channel, which was able to classify four functions using a nearest

neighbor classifier [73].

In 1995 two channels were used to extract five time-domain features per

channel, in order to train an Artificial Neural Network to classify four func-

tions: this method obtained a performance of 90% movements recognized

[74]. Performances of 98% on six functions and 99.5% on four functions

were reached using wavelet coefficient features extracted from four chan-

nels. They were reduced in dimension by principal components analysis and

classified by an Artificial Neural Network [75].

In 2004 an investigation was carried on about the extent of increase in classi-

fication performance with number of channels. The performance in classify-

ing 10 functions with a linear discriminant classifier increased with number

of channels, reaching 94% at 16 channels. However, the performances at

eight and four channels drop to only 93% and 87% respectively [70].

An interesting comparison study was issued in the same year to understand

which was the best approach between the temporal and the spectral ones.

The results of this investigation are interesting: the inexpensive and simple

multiple trapezoidal windowing, which is a temporal method, has offered

much better time efficiency and lower dimension of the feature vector than

the expensive method based on the short time Thompson transform, with

just a slightly smaller classification hit rate [76].

In 2005 a motion pattern classifier which combines Levenberg-Marquardt

based neural network, with parametric Autoregressive model as feature vec-

tor, was presented. This motion pattern classifier can successfully (perfor-

mances higher than 90%) identify three types of motion of thumb, index

finger and middle finger, by measuring the surface EMG through two chan-

nels [36]. Another system was proposed in the same year: singular value

decomposition features (SVD) extracted from wavelet coefficients were used

as inputs for a neural network classifier to predict amputee’s movement in-

tentions [77]. Similar works presented in 2007 and 2009 use similar concepts

on different biosignals [78][79].

In 2006 a method based on Support Vector Machines was introduced: the

system is endowed with ten electrodes and is able to recognize the open-
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ing and closing actions of the index finger, thumb and other fingers. This

approach is shown to be robust across sessions and can be used indepen-

dently of the position of the arm. With these stability criteria, the method

is ideally suited for the control of active prosthesis with a high number of

active DoF [80]. In the same year an interesting method was proposed: a

motion pattern classifier which combines Variable Learning Rate based neu-

ral network with wavelet transform and nonlinearity analysis method. This

classifier can successfully identify the flexion and extension of the thumb,

the index finger and the middle finger (6 functions overall), by measuring

the surface EMG signals through only three channels. In this case the per-

formance varies between 90% and 95% [81].

The year 2007 saw an intense research activity, which led to very interest-

ing results. The cascaded kernel learning machine (CKLM) was introduced

as a novel classifier in this field, in order to achieve high-accuracy EMG

recognition. The CKLM is trained with a 13-dimensional feature vector,

composed by autoregressive model parameters and EMG histogram, which

are extracted from each of the three channels of the system. This approach

led to a recognition rate of 93.54% on eight different postures [82].

Another system composed of a Wavelet Packet Transform (WPT), a Lin-

ear Discriminant Analysis (LDA), and a Multilayer Perceptron (MLP) is

able to recognize nine kinds of hand motion from four-channel EMG sig-

nals. The features are first extracted by using a WPT, thereafter, an LDA

is used for linear supervised feature projection to reduce the dimensional-

ity of the WPT features and improve the class separability. Finally, the

LDA-projected features are applied to an MLP. The experimental results

confirmed that the proposed method achieved a high recognition accuracy,

and the subject could control the myoelectric hand without any perceived

operation time delay [83].

Not less important have been the results obtained by the application of the

TDSEP. This approach is based on the decomposition of the signal into com-

ponents originating from different muscles. The processing requires the de-

composition of the surface EMG by temporal decorrelation source separation

(TDSEP) based blind source separation technique. Pattern classification of

the separated signal is performed in a second step with a back propagation

neural network. The experimental results, show that the system was able

to reliably recognize different subtle hand gesture (4 hand actions) with an

overall accuracy of 97% [84].

In 2008 a new learning method was proposed, which can detect opening

(extension) and closing (flexion) actions of all human fingers, as well as

sideways movements (abduction/adduction) using lower arm surface EMG
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(10 channels). The classifier proposed is a Support Vector Machine, which

is shown to be able to classify independently of the position of the arm. The

authors of this research say that with ten electrodes, successful classification

of ten or more classes depends on several, mostly human factors which have

to be eliminated in future works [85].

In 2009 a system based on fuzzy inference was adducted: this study designs

the membership function and the fuzzy rules from the average value and

the standard deviation of the root mean square of the myoelectric potential

for every channel of each motion. Four channels were able to classify six

different functions with a performance near to 98% [86]. In the same year

an Artificial Neural Network with a recurrent structure and a time-delay

factor for input has been trained on continuous finger joint angles. The

target hand motions were four, and the relative angles were detected by a

data glove. Then the moving average of the signals coming from each of the

eight channels were used to train the above mentioned network, leading to

a good classification reliability [87].

Another approach has been used to classify not only the functions but the

also the forces applied in the movement as well: ten channels detect the

muscle activity, which is matched to the force/torque sensors output, to

train the classifier. Thus four different functions and their relative force can

be recognized by both an Artificial Neural Networks and a Support Vector

Machine with performances higher than 90% [88][89].

There are a number of research directions towards meeting the goal of si-

multaneous, independent, and proportional control of multiple DoF with

acceptable performance (classification rate and active daily living) and near

“normal” control complexity and response time.

To reach simultaneous, independent, and proportional control, there are two

possible approaches: direct control and motion pattern classification. The

first is based on a one-to-one mapping between a given channel activity

and a given function. This requires a signal detection method that is im-

mune to crosstalk between muscles. Most promising in this regard is the

targeted reinnervation to which are applied signal telemetry implants. An

implantable system can be placed in the reinnervated muscle providing a

control source that is both physiologic and immune to crosstalk [65]. This

allows a direct proportional control of each function [70].

On the other hand, the future on the pattern recognition approach would be

characterized by the electrode array. A vector of electrodes posed all around

the forearm, detecting signals from a group of muscles. This means that the

feature patterns depend on the group co-activity. The feature set will, then,

be used to train classifiers ranging from Artificial Neural Networks to Sup-
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port Vector Machines.

An interesting and potentially effective approach to independent simultane-

ous control is independent component analysis (ICA - TDSEP) and blind

source separation. Applied to the signals generated by a group of muscles

and detected by an array of electrodes, it is theoretically possible, under cer-

tain conditions, to recover the individual muscle signals for control purposes

[84].

2.8.6 Defense Advanced Research Projects Agency

The Revolutionizing Prosthetics program of the Defense Advanced Research

Projects Agency (DARPA) will create, within this decade, a fully functional

(motor and sensory) upper limb that responds to direct neural control. The

DARPA researchers has recently decoded the brain’s motor signals with such

fidelity that motor movements of a robotic arm can be achieved entirely by

direct brain control.

In two years, they have delivered a prosthetic for pre-clinical trials (Proto-

type 1: two-year project) that is far more advanced than any device currently

available. This prosthetic enables many DoF for grasping and other hand

functions, and will be rugged and resilient to environmental factors. By

2010, is going to be delivered a prosthetic for clinical trials (Prototype 2:

four-year project) that has function almost identical to a natural limb in

terms of motor control and dexterity, sensory feedback (including proprio-

ception), weight, and environmental resilience. The four-year device will be

directly controlled by neural signals [90].

Prototype 1 consists of a 7 independent DoFs upper limb prosthetic arm,

to be used for targeted reinnervation patients. It serves as a test bed for

evaluation of haptic feedback, indirect sensory perception approaches and

to demonstrate advanced prosthetic function with non-invasive and low in-

vasive classification algorithm.

Prototype 2 consists in a fully actuated 27 DoFs prosthetic arm to be used as

platform for testing neural control and sensory feedback, since it integrates

pressure, temperature, and vibration sensors. The objective of the second

phase is to produce a fully neurally integrated upper extremity prosthetic.

Two arms, inspired by the Prototype 2, but with different architectures will

be produced. One with an extrinsic actuated hand (as in the natural model),

and one with an intrinsic actuated hand. The first will be tendon driven,

whereas the second will use custom brushless DC motors [5]. The intrinsic

actuated hand (Figure 2.21) will be endowed with 18 DoF, which, as in Pro-

totype 2, will be driven by intrinsic actuators, 3 of which are housed in the
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Figure 2.21: Rendered images of the 50% Female and 50% male 18 DOF Intrinsic

hands and 3 DOF Intrinsic Wrists [91].

wrist. The idea is to use custom brushless DC electric motors capable of

providing high torque at physiological hand speed. These motors are small

enough to be fitted into the volume of a female hand, yet capable of provid-

ing the sufficient torque and speed of a male hand. These motors, coupled

with high torque capacity Wolfrom transmissions, form the drivetrains for

each of the DoF’s in the hand.

Each finger has 3 articulations with 2 motors. The distal and medial pha-

langes are driven by 1 motor and coupled by a differential drive mechanism,

while the proximal phalange has its own actuator. Index, ring and little

fingers have abduction/adduction motors in the palm. The thumb has 4

DoFs, each with its own motor. The wrist does flexion-extension, radial-

ulnar deviation and wrist rotation.

The designers of the hand think that inherently compliant DC electric motor

drivetrain architectures, such as series elastic actuators, are a good choice

to withstand shock loads . Such drives will enable the hand system to have

better impact resistance and possibly more biomimetic operation.

Force or position sensors are being integrated into each finger tip and joint

axis. All these sensors and motor controller are coupled to a single large

hand control module mounted in the back of the hand [91].

The results of this program will allow upper limb amputees to have as nor-

mal life as possible, despite their severe injuries. Currently, prototypes from

the two-year and four-year efforts are undergoing human testing. [90]
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2.9 Imitation of the Biologic System

Since both the artificial and biologic systems have been discussed, this the

right time to conclude the parallelism previously started. Looking at the

state of the art prosthetic devices it is impressive how the design of these

systems has been positively influenced by the biologic model:

• the biologic system of pulleys, tendons and extrinsic muscles

suggested that, in order to reduce the weight and the size of the

hand, it is important to adopt an underactuated approach. Therefore

all the DC motors are out of the hand and the torque is transmitted

by artificial tendons;

• the human body is provided with different types of sensor, each one

specialized for a particular task. This allows the somatosensory

system to have a comprehensive knowledge of the state of the hand.

For the same reason, the artificial hands are endowed with many

proprioceptive and exteroceptive sensors, bringing each one a

particular information.

• as stated in Chapter 1, the control of the hand is performed in a

hierarchical fashion by the brain. The same approach is chosen in the

state of the art prosthetic, in which the control system is divided into

a high and a low levels. The first is under the the person’s will, while

the second basing on the informations coming from the sensors,

determines the forces and the adjustments to perform in order to

achieve the task requested by the high level controller.

2.10 Amputee’s training

The importance of the prosthetic training was analized in a Canadian study

involving 26 upper-limb amputees. It was found that in a group of individu-

als who received training, 90% used their prosthesis in a functional way. On

the other hand, in an untrained group of patients only 50% used the pros-

thesis functionally. Therefore prosthetic training, as well as duration after

amputation and counseling, influence the overall acceptance of the prosthe-

sis. The literature advises the immediate management of the amputee in

order to obtain high acceptance. In the first days after the amputation the

amputee might be more willing to try a prosthesis. A proper rehabilitation

program is as important as a properly fitting prosthesis. The quality of

training will determine how the amputee uses the prosthesis for the rest of
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his or her life. For these reasons, training should be prescribed nearly to

every new upper-extremity amputee [27].

In the scope of patients rehabilitation, there are mainly three different steps

to follow to obtain good results in controlling the prosthesis: the pre-

prosthetic training, the basic prosthetic training and advanced prosthetic

training.

2.10.1 Pre-prosthetic training

The training, executed for the application of commercial devices, is always

aided with a computer-based software. Ottobock for example provides its

patients with MyoBoy (Figure 2.22). On the computer screen the patient

can visualize each signal detected by each electrode applied to the patient

forearm. Initially, the focus of the training is on the independent activa-

tion of each muscle. Once the amputee demonstrates the ability to separate

each muscle signal the concept of proportional control is introduced. The

proportional control is the relationship between the force developed by the

selected muscle contraction and the speed and grip force of the prosthesis.

Each electrode is endowed with a dial that can be manually adjusted to

increase or decrease the sensor’s gain. This allows the therapist to dampen

the amplitude of the signal once the patient develops mastery of control

and increases the muscle strength. The MyoBoy software is very motivating

Figure 2.22: Snapshot of the MyoBoy system by Ottobock.

for patients: a virtual hand responds to the muscle signal as a myoelectric

prothesis would. Moreover this tool provides a car game that is very useful

to train and test the accuracy of the patient’s control.

Thereafter, the electrodes can be attached to the patient’s actual termi-

nal device, before the fabrication of the preparatory prosthesis. This step

provides three-dimensional perception of the prosthesis. Which means that

new concepts can be introduced for a more advanced training. For instance,
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the prepositioning for the most efficient grasp patterns and the appropriate

force control with different densities of objects.

The skills and knowledge that the patient gains with pre-prosthetic training

are critical to motivation and success with his prosthesis. Patients that re-

ceive pre-prosthetic training demonstrate some amount of immediate success

at first fitting [92].

2.10.2 Basic training

Learning to use a prosthesis is similar to learning the operation to control

other complex mechanical devices: a daily life example is the task of learn-

ing to drive a car. In the same way, when an amputee starts his prosthetic

training, the first step is to learn how to control the individual components

to operate the prosthesis. The individual motion patterns are then com-

bined together to accomplish complex tasks. The goal is to achieve smooth

movement of the prosthesis with the minimal amount of delays and awkward

situations in daily activities.

The creativity of the therapist is very important in order to achieve the mas-

tery of the movement control. Media appropriate for training include objects

of various shape, texture, density, and weight, such as one-inch wood square

blocks, round blocks, cotton balls, Styrofoam cups, or a cup filled with wa-

ter. Moreover if verbal, tactile and visual feedback is given to the patient,

a faster training is more likely.

The amputee is trained to apply the skills learned during the control train-

ing phase, to start actual functional use of the prosthesis. This may cause

increased user frustration due to the awkward and the artificial nature of a

prothesis. The level of difficulty in training and the amount of training time

needed may vary from one prosthetic user to the other.

2.10.3 Advanced training

The advanced training is aimed to achieve a natural motor pattern. The

patient, after this phase, has to be able to save body energy, decrease biome-

chanical stress to the intact limb, and learn the most efficient approach to

tasks without extraneous body movements.

There are five characteristics of advanced prosthetic rehabilitation that can

guide therapists during this phase:

1. the advanced rehabilitation is individualized: the knowledge of the

patient’s vocational and avocational activities is important in the

progress of the training;
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2. the usage and operation of a tool, or interaction with an object, such

as a carpenter’s tool, a musical instrument, a cooking utensil, or a

machine;

3. the achievement of complex tasks, requiring bimanual movements:

treatment activities in this phase are less static and generally

challenge the therapist to take the patient out of the clinic setting;

4. the use of the chosen and bought prosthesis;

5. the patient has to complete a final exam: several patients have

completed carpentry projects, leather belt or wallet projects [92].



Chapter 3

The Electromyographic

Signal

Since one of the goals of this thesis is the design of a system able to as-

sociate a predefined set of hand motion patterns to particular features of

the correspondent EMG signals, a detailed study about this biologic signal

is performed in this chapter. Moreover, the most commonly used methods

for the analysis of the EMG signal are presented, since some of them are

implemented in the current work.

3.1 Electromyographic Signal Genesis

The most elementary functional unit of the muscle is the motor unit, which

is composed by an α-motoneuron and by the correspondent muscle fibers

innervated by the axon fibrils of the motoneuron.

As discussed in Chapter 1, the movement is planned by the brain after the

integration of all the sensory information. Hereafter the motor command

is generated and transmitted to the muscles by means of the spinal motor

neurons (α-motoneuron). Once the muscle fibers receive this command they

execute the mechanic contraction.

During the contraction phase, under normal circumstances, an action po-

tential propagates along the α-motoneuron and activates all its branches,

which, in turn, activate all the muscle fibers of the motor unit (MU). When

the post-synaptic membrane of the muscle fiber is depolarized, the depo-

larization spreads in both directions. The membrane depolarization, which

is accompanied by a movement of ions, generates a magnetic field in the

neighborhood of the muscle fibers.
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An electrode located in this area will detect the potential, whose temporal

excursion is known as action potential. In human muscles, the amplitude of

the action potential is directly proportional to the diameter of the muscle

fiber, inversely proportional to the distance between the muscle fiber and the

electrode position and depends on the filtering properties of the electrode

as well.

The temporal interval between the generation and the detection of the ac-

tion potential is directly proportional to the length of the nervous branches

and to the distance between the motor unit and the sampling area. Actually

its duration depends on the speed of conduction of the fiber which is 3-6

m/s.

3.1.1 Motor Unit Action Potential

At the electrode surface it is presented the spatio-temporal sum of different

signals generated by the depolarization of different fibers belonging to the

single motor unit. This signal is called motor unit action potential (MUAP).

The activation times of fibers belonging to the same motor unit are different

each other, mainly for two reasons:

• variable delay dependent on the length and section of the axon

innervating a single muscle fiber; which, actually, is fixed for each

fiber;

• delay introduced by the discharge of acetylcholine in the

neuromuscular junctions. In fact, since this type of discharge process

is random, also the excitement of each fiber of a motor unit is a

random function of time.

In Figure 3.1 a trifasic MUAP is represented. It is the result of a sampling

carried out by placing surface electrodes parallel to the muscle fibers, in or-

der for each action potential to be biphasic. The sign of the phases depends

on the state of the membrane during the depolarization, in relation with the

electrode.

Inside the detection area of the electrodes, there are contributions from other

motor units, thus many MUAPs are sampled. These can have similar ampli-

tude and shape, if every muscle fiber belonging to the respective motor unit

has the same distance from the detection zone. Depending on the electrode

used, there are variations on the shape, phase and duration of MUAPs. The

amplitude and shape of a MUAP are, therefore, function of the geometrical

arrangement of the motor unit, of the muscular tissue and of the properties

of the electrodes applied. In a normal muscle, for example, the peak to peak
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Figure 3.1: Generation of the MUAP [14].

amplitude of a MUAP, detected with a needle electrode, varies from 5 mV

to 500 microvolts.

Since muscles can be quite heterogeneous, with respect to the fiber dispo-

sition. The location of the electrodes relative to the muscle will affect the

EMG amplitude. An EMG signal collected from part of the muscle is thus

not necessarily representative for the muscle as a whole.

3.1.2 Motor Unit Action Potential Train

A sequence of MUAPs, generated by the same motor unit, gives rise to the

Motor Unit Action Potential Train (MUAPT). This series of signals can be

described completely by its IPI (interpulse interval), which is regarded as a

Gaussian random variable, and by the waveform of the MUAPs composing

the train.

3.1.3 Multipath Interference: Surface EMG

The muscle tension gives rise to an electrical signal at the skin surface. This

surface signal is composed by the sum of impulses produced by irregular

discharges of the motor units (Figure 3.2).

Experimental observations revealed an inverse power relation between sig-

nal amplitude and the motor unit’s depth, especially because the contribu-

tion of the traveling wave of the motor unit potential falls off rapidly with

electrode-source distance. Accordingly, active MUs close to the electrodes
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Figure 3.2: Generation of the sEMG signal

will dominate the EMG signal [17].

Given the definitions made in the previous sections, is now possible to de-

fine the surface EMG (“multipath interference”) as the spatial and temporal

interaction of the MUAPTs generated by all the active motor units in the

area nearby the electrode.

Detected by surface electrodes, the electromyographic signal has to be con-

sidered as a stochastic precess. Therefore the analysis approach that are

commonly applied are mean, variance, root mean square, autocorrelation,

power spectral density, mean frequency, median frequency, Skewness, Cur-

tosi and many others [34].

3.1.4 Signal Contamination

The pure EMG signal, given by the spatial and temporal interaction of the

MUAPT of all the motor unit of the muscle, is impossible to obtain. Mainly

three types of contamination can affect the surface EMG signal:
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1. movement of electrodes, cables and connectors, arising from the

motion of the subject. In principle, movements will cause signal

contributions at relatively low frequencies (lower than 10 Hz);

2. cross-talk, which refers to a signal contribution originating from

other muscles, can interfere with the EMG signal of the muscle under

investigation;

3. external sources may cause deterministic contaminations of varying

frequency content (best known is the 50 or 60 Hz interference from

the electric mains).

At low contraction levels, the noise contribution in the signal can be rela-

tively large and limit the precision of EMG amplitude estimates. Contami-

nation of the EMG signal can be reduced by filtering techniques.

3.2 Electrodes

3.2.1 Configurations

The electromyographic signal can be detected with different types of elec-

trodes, and amplified in various ways. The electrodes can be divided into

two main classes, the depth and surface electrodes. Normally the second

type is chosen because it is a noninvasive and painless approach.

From the point of view of the signal amplification, there are two possible

configurations:

• monopolar configuration: the muscle potential is detected by one

electrode, which has another electrode as a reference. The problem in

this case is the low spatial resolution, in fact every electric potential

between the detecting and the reference electrodes are sampled and

amplified. This means that unwanted signals, like the ones coming

from other muscles or the ones from the capacitive coupling with the

line voltage, are also gathered;

• bipolar configuration: the spatial resolution is increased and the noise

reduction is improved. This configuration is normally connected to

an operational amplifier, having as inputs the two signals. Therefore

the difference between two monopolar signals is amplified, and the

information common to both electrodes is removed. Thereby, a large

part of the unwanted noise and of the cross-talk, which are normally

common to both electrodes, is eliminated [17][34].



82 Chapter 3. The Electromyographic Signal

Figure 3.3: Bipolar electrodes by Ottobock

Such factors as electrode size, electrode positioning and interelectrode dis-

tance over a particular site can affect the detected EMG signal and hence

should be held constant across experimental conditions. For example, a

smaller interelectrode spacing shifts the bandwidth to higher frequencies

and lowers the amplitude of the signal.

Regardless of the optimal detection surface geometry, however, only closely

spaced electrodes and differential amplification can yield spatially selective

surface EMG recordings.

3.2.2 Electrodes size

Surface electrodes are available in a variety of sizes. Electrodes with small

detection surfaces and housings allow closer interelectrode spacing and con-

sequently higher selectivity.

On the other hand, the larger the size of the detection surfaces, the larger the

amplitude of the signal that will be detected and the smaller the electrical

noise that will be generated at the skin detection-surface interface.

3.2.3 Electrodes placement

Specification of surface electrode placements over target muscle groups is im-

portant to ensure that findings are comparable across individuals, sessions

or laboratories. Electrodes should be placed proximal and orientated paral-

lel to voltage gradients of interest and, simultaneously, be placed distal and
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Figure 3.4: The extensor digitorum muscle: a pennate muscle [15].

orientated perpendicular to voltage gradients of extraneous signal sources.

Particular attention has to be paid to the muscles of the forearm. An impor-

tant example is the extensor digitorum: this muscle is unipennate, which

means that all muscle cells are on the same side of the tendon. Pennate

muscles have one or more tendons that run through the body, and fascicles

form an oblique angle to the tendon. This kind of muscle has more fibers

than a parallel one, thus generates more tension than a parallel muscle of

the same size.

According to these considerations it is reasonable to position the two elec-

trodes (bipolar) along the forearm, in a slightly oblique fashion. In this way

the bipolar electrodes are parallel to the fibers and to the voltage gradients

of interest.

Successful implementation of this principle is limited by the underlying

anatomy, the magnitude of interfering signals and the availability of reliable

anatomical landmarks. Moreover, it was shown that muscle fiber orientation

changes during isometric contractions with increasing force [18][17].

3.3 Bandwidth, Filtering and Nonstationarity

The primary energy in the bipolar recorded surface EMG signal lies between

approximately 10 and 200 Hz:

• between 10 and 30 Hz: primarily due to the firing rates of motor

units;
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Figure 3.5: Qualitative evolution of the sEMG spectrum, depending on the force and

duration of the contraction. The arrows show the direction of the modification of

portion of the spectrum depending on the force or time increment [14].

• beyond 30 Hz: due to the shapes of the aggregated motor unit action

potentials. This part of the spectrum depends on shape and

disposition of the electrodes, distance between fibers and muscle

fatigue [18].

The spectral characteristics of the EMG signal make it impossible to elimi-

nate the 50/60 Hz noise: this would reduce a significant portion of the target

signal. On the other hand, given that the frequency domain of the sEMG

signal ranges between 10 and 500 Hz, it is possible to eliminate artifacts and

low-frequency components using a high-pass filter with a cutoff frequency of

10 Hz.

Mainly three physiological parameters can influence the spectrum of the

sEMG signal:

1. the muscle tension level (fatigue): in particular it has been noted

that while contractions are performed along the time, the spectrum

shifts towards the low-frequencies and increments its amplitude

(Figure 3.5);

2. the muscle fibre length: at a lengthening of the muscle fibers

corresponds a decrease of the mean frequency of the spectrum;
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3. the speed of propagation along the fibers and the action potential

duration: at longer MUAPs corresponds a shift towards the low

frequencies [14].

As stated in the first point of the list above, muscle fatigue has a dominant

role in altering the EMG signal, in particular its spectrum varies in time. A

signal with this characteristic is referred to as non-stationary.

3.4 Rectification

The rectification (Figure 3.6b) of the sEMG signal represents its absolute

value, therefore it is never negative and is characterized by a mean different

from zero. Rectification can be done electronically in real-time and is mainly

used as an intermediate step before other processes like averaging, linear

envelope, root mean square and integration.

3.5 Linear envelope and Muscle Force

The relationship between EMG amplitude and muscle force is not necessarily

linear, though linear models are often inevitably used and provide, in many

cases, a reasonable description of the relationship.

The application of a low-pass filter (cutoff 2-3 Hz) to the rectification of the

signal, produces the linear envelope, which can be considered as a moving

average, inasmuch it follows the trend of the rectified EMG signal. The

filtering can be done electronically but adds a delay.

This “smooth” signal provides a quite close proceeding of the force developed

by the considered muscle (Figure 3.6c) [34].

3.6 Normalization

The EMG amplitude is often normalized to a 0-100% range through dividing

the instantaneous amplitude by the value obtained when performing a max-

imum voluntary contraction (MVC). The corresponding EMG amplitude is

then expressed as a percentage of maximum voluntary excitation (%MVE),

or, more often used but less accurate, as a percentage of maximum volun-

tary contraction (%MVC). This normalization procedure is used to reduce

between subject variability in the EMG amplitude associated with for ex-

ample differences in thickness of subcutaneous tissue, but is also necessary

to convert EMG amplitude to an estimate of muscle activation. Unfortu-

nately, a true maximal voluntary activation is difficult to obtain even after
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training. Consequently the reliability of the MVE is relatively low. Under-

estimation of the true MVE is a potential and significant source of error.

This is even more likely to be the case in special populations like patients

in view of pain-related inhibition and in the elderly where maximum acti-
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vation has also been found to be more difficult to achieve. Normalization in

such cases may even cause true differences in muscle activation to disappear.

Therefore, it is often advised to use well-defined, sub-maximal contractions

for the purpose of EMG normalization [17].
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Chapter 4

The Project

At this point a basic knowledge about the EMG signal and its analysis

methods has been provided. This is very useful since some of the methods

presented in the previous chapter are applied in the project implementation.

As already mentioned, the system that we implemented aims at associat-

ing particular hand motion patterns to some features of the correspondent

EMG signal. In this way it is able to understand, from the forearm muscle

contractions, the movement that the robotic prosthesis has to perform ac-

cording to the amputee’s will.

This chapter presents the movements that the system is able to recognize, a

simple abstract model of the prosthesis to control, the possible application

of the classifier on a high level controller, the analysis methods applied to

the EMG signal and, eventually, the actual implementation of the entire

project.

4.1 Hand Movements To Classify

The first step in order to design an useful classification algorithm is the study

of the target movements that a prosthetic hand has to accomplish, based

on the needing of the amputees. To do that it is important to understand

how the motions of the real hand can be classified from a functional and

engineering point of view.

4.1.1 Grasp Taxonomies

There are different ways to interpret the concept of taxonomy when related

to the prehensile abilities of the human hand. In this scope, many researchers

presented different kinds of classifications, each of which has its own logic:
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• the appearance of the grasp: cylindrical, fingertip, hook, palmar,

spherical and lateral. Even during the course of a single task with a

single object, the hand adopts different grips to adjust to changing

force and torque conditions. This suggests that grasps should be first

categorized according to function instead of appearance;

• the contact areas involved: a scheme in which grasps are divided into

power grasps and precision grasps. Power grasps are distinguished by

large areas of contact between the grasped object and the surfaces of

the fingers and palm and by little or no ability to impart motions

with the fingers. Where considerations of sensitivity and dexterity

predominate a precision grasp is chosen. In precision grasps, the

object is held with the tips of the fingers and thumb.

• task requirements and object shape: starting from the

macro-categories of power and precision grasps, a hierarchical tree

was developed.

Of these different approaches the one that best fit our needs is of course the

one which considers the function of the grasps. The first researcher who suc-

cesfully theorized a taxonomy based on the function approach was Cutkosky

[93]. He found 16 different types of grasps organized in the following way:

moving from left to right the grasp becomes less powerful and the grasped

object becomes smaller (Figure 4.1). The heavy wrap grips are the most

powerful and least dexterous, while the tripod and the thumb-index finger

grips are the most precise. However, the trend is not strictly followed.

An effective way to extend the grasp taxonomy is to consider grasps in terms

of “virtual fingers” that do not necessarily have a one-to-one correspondence

with fingers of the human hand. Iberall argues that in most grasps the object

is held between two virtual fingers and that the type of opposition (for ex-

ample, trapping an object between the fingers and the palm, or between the

pads of the thumb and the index finger) is of central importance. Therefore

three basic type of grasps are recognized:

1. encompassing grasps: grasps with palm opposition (grasps 1-4 and 11

in the Cutkosky’s taxonomy);

2. lateral grasps: grasps with side opposition (the lateral pinch, grasp

16, is a grasp with side opposition in the Cutkosky’s taxonomy);

3. precision grasps: grasps with pad opposition (the precision grasps on

the right-hand side of the Cutkosky’s taxonomy display pad

opposition) [93].



4.1. Hand Movements To Classify 91

Figure 4.1: The Cutkosky’s Taxonomy [93].

A more recent study tried to improve the previous works [94]. A total of

33 different grasps were identified and arranged in a taxonomy which differs

from the previously presented ones. The position of the thumb was intro-

duced as additional attribute, which can be either abducted or adducted.

Depending on the need for precision, the taxonomy offers a second level

of classification which includes only 17 grasp types. The taxonomy should

cover the whole range of static grasping patterns, which will serve as a basis

for further studies on human grasping.

Being the Cutkosky’s taxonomy the most accepted and settled, it will be

adopted in order to make comparisons between the characteristics of the

real human hand and the artificial device, in the next phases of the thesis.
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4.1.2 Target Movements

Since a prosthetic hand is not able to reproduce all the possible functions

of a real hand, it is important to chose the motion patterns that seem to be

the most useful in a person’s life (Figure 4.2):

Power Grip

Lateral Pinch

16

Small

Diameter

2

Disk

10 Sphere

11

Thumb-Index

Finger

9

Tripod

14

Hook, Platform, 

Push

15
Index Point

Key Grip

Figure 4.2: Grip patterns of the prosthesis.

• Key Grip: the thumb closes down onto the side of the index finger. It

is the Lateral Pinch (Number 16) in the Cutkosky’s taxonomy. This

grip is useful to hold objects with the shape of a compact disc;

• Power Grip: all fingers and the thumb close down together to create

a full-wrap grip. It can be associated to different grasps in the

Cutkosky’s taxonomy: Small Diameter (Number 2), Disk (Number

10) and Sphere (Number 11). This grip is useful to hold a can of

drink whilst opening the ring-pull and, for example, for carrying

shopping bags.

• Precision Grip: where the index finger and thumb meet, in order to
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pick-up small objects and to hold objects when performing finer

control tasks. It can be associated to the grasp Thumb-Index Finger

(Number 9) in the Cutkosky’s taxonomy.

• Tripod Grip: where the thumb meets the index and the middle

fingers. It is associated to the Tripod Grasp (Number 14) in the

Cutkosky’s taxonomy.

• Platform: where the hand is completely open and holds an object

without clamping. It is associated to the Hook, Platform, Push

Grasp (Number 15) in the Cutkosky’s taxonomy. It is useful to hold

a plate.

• Index Point: the thumb and fingers close, but the index finger

remains extended. It is useful for operating computer keyboards,

telephone dial pads, ATM cash machines and a host of other

everyday requirements.

In order to obtain the complex patterns aforementioned, it is necessary to

put together more than one basic hand movement. These simpler motion

patterns are the ones that are recognized by the classifier designed in the

present work and are in order:

1. hand closing;

2. hand opening;

3. wrist extension;

4. wrist flexion;

5. thumb abduction;

6. thumb opposition;

7. index extension.

By the concatenation of the basic movements presented in the previous list,

a high level controller is able to create a more complex motion pattern.

Before abstractly showing the job of the high level controller, it is necessary

to think about a possible model of prosthesis on which the classifier will run.

Indeed the physical structure of the device, the number of DoF, the number

of actuators and the type of sensors endowed are key factors for the design

of the mapping between the motion recognized by the system and the actual

movement performed by the prosthesis.



94 Chapter 4. The Project

4.2 The Prosthesis Model

A possible model of a prosthesis able to perform the complex motion patterns

described in the previous section, could be an underactuated device which

has to be endowed with:

• 3 degrees of freedom per finger (total of 12), thumb excluded, of

which just the metacarpophalangeal joint is actuated;

• thumb abduction/opposition and thumb flexion/extension (total of 2

DoF), both actuated. This way the thumb can’t flex the phalanges;

• 1 actuated degree of freedom for the wrist flexion/extension;

Torque is transmitted from the DC motor in the metacarpophalangeal joint

to the fingertips, by means of a system of tendons and pulleys. The current

system is not able to detect the velocity of the movement from the EMG

signal, therefore the fingers of the prosthesis move at a constant speed.

Another important feature of the device would be the presence of sensors on

the fingertips and encoders in the motors. In this way it would be possible

to detect contacts with objects and to compute the position of each joint of

the fingers. In Chapter 2 are presented all kinds of sensors applicable to the

real prosthetic hand.

The control of the prosthetic hand is done by means of a hierarchical method.

The first and higher level is the one under the patient’s will, while the low

level is managed by the prosthesis controller.

The low level control relies on proprioceptive and exteroceptive sensors,

which provide the prosthesis microprocessor with a lot of useful information

during the grasp planning phase. This means that the user is not required

to pay attention on every detail of the grasp phase, like fingertips pressure

and force, while he just has to provide high level commands. In this thesis

the low level control is not detailed, but in Chapter 2 are discussed useful

examples of valid applications, like the SAMS and the MANUS system.

The sensory system could also be used to provide the patient with a sort of

feedback. In particular the vibrotactile one, which conveys information to

the user about the force extent of his grasp. This topic is discussed in the

section “Bidirectional Interfaces” in Chapter 2.
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4.3 The High Level Controller

Once the model of the prosthesis has been introduced, it is time to create

the abstract mapping between the seven basic movements recognized by the

classifier and the complex patterns taken from the Cutkosky’s taxonomy.

This mapping has to be performed by a high level controller, which, in this

thesis is presented from a logical and abstract point of view, since our goal

is to motivate the choice of the seven movements, rather than implementing

a controller.

The high level controller does not have to bother with grasping details like

force and pressure at the fingertips, which are delegated to the low level

controller. Rather it has to manage the single basic movements from an

abstract point of view and, strarting from a given sequence of these move-

ments, to generate one of the complex motion patterns described above.

Therefore the first task that the high level control has to achieve is to create

the following commands:

1. hand closing detected: all the DC motors in the

metacarpophalangeal joint, plus the flexion/extension DC motor of

the thumb start to flex the fingers;

2. hand opening detected: all the DC motors in the

metacarpophalangeal joint, plus the flexion/extension DC motor of

the thumb start to extend the fingers;

3. wrist extension detected: the single motor in the wrist performs the

extension;

4. wrist flexion detected: the single motor in the wrist performs the

flexion;

5. thumb abduction detected: if the hand is in the “opened”

configuration, then the thumb can be abducted by its

abduction/opposition DC motor ;

6. thumb opposition detected: if the hand is in the “opened”

configuration, then the thumb can be opposed by its

abduction/opposition DC motor;

7. index extension detected: flexion/extension DC motor of the index

finger starts to extend, while all the other flexion/extension DC

motors in the fingers, thumb included, start to flex.
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Hereafter, from different concatenations of these basic movements the high

level controller has to produce different complex motion patterns. The whole

process is described in Figure 4.3 for the wrist control, which is independent

from the control of the fingers described in Figure 4.4. It is important to

notice that none of the commands in the previous list consider the actual

details about the gripping phase, which is delegated to the low level control

system.

Wrist Extended

Wrist Normal

Wrist Flexed

Wrist Extending

Wrist Flexing

Wrist Stop

Wrist Flexion

No Action

Wrist Extension

Wrist Extension

No Action

Wrist Flexion

Wrist Extension

Wrist Flexion

No Action

No Action

Wrist Extension

Wrist Flexion

start

Figure 4.3: Wrist state diagram. Two of the motion patterns detected by the classifier

are the state transitions of the diagram: wrist extend and flex.
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Figure 4.4: Hand state diagram. Five of the motion patterns detected by the classifier

are the state transitions of the diagram: hand open and close, thumb opposition and

abduction and index extension.
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Some noteworthy considerations have to be made:

1. all the states under the dotted line of Figure 4.4 can go to the state

“Index extension”;

2. the motion patterns detected by the classifier are the state

transitions of the diagrams.

3. the transition “Object contact” is related to the information coming

from the sensory system;

4. the wrist control is independent from the hand control;

5. the “Platform grip” corresponds to the “Hand opened - Thumb

abducted” state.

The next step is to understand how to recognize the seven basic movements

from the contraction of the forearm muscles.

4.4 Classification of the EMG signal

4.4.1 Instrumentation

The instrumentation used during the work development is composed by

the electromyography board, 7 electrodes by Tesmed, a MacBook 2.2 GHz

Intel Core 2 Duo with 4 GB of memory. Being this thesis a preliminary

study about the EMG signal and its analysis, the decision was to focus our

attention on the principles underlying this subject, delegating every imple-

mentation detail of the prosthesis control system to future works. Therefore

the classifying system has been entirely implemented on the Matlab 2008a

platform.

The main hardware device involved in the project is, of course, the elec-

tromyography board. This is the module which receives the signals coming

from the electrodes applied to the human skin, and after a series of oper-

ations, returns to the microcontroller (in our case a computer) the EMG

signal to work with.

The main components of the board, designed at Politecnico di Milano, are

going to be described (Figure 4.5 and Figure 4.6). The device is endowed

with 3 bipolar channels, plus a reference electrode. This means that the

total amount of electrodes in input is 7.

The INA modules can acquire and amplify differential signals covered by

high noise, thanks to the series of two buffers and an operational amplifier.

The amplification is adjustable in the range 200 - 2000.
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Figure 4.5: EMG board abstract diagram.

CH1

CH2

CH3

Electrode 1

Electrode 2

Electrode 3

Electrode 4

Electrode 5

Electrode 6

CH1

CH2

CH3

Electrode 7

Reference

USB to PC

Figure 4.6: The actual EMG board. Electrode inputs and channels are represented.

The anti-aliasing filer is a Sullen-Key, double pole, low-pass filter with a

cutoff frequency of 150 Hz, and with a further amplification of 2. This is
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done because, as stated in Chapter 3, the dominant bandwidth of the EMG

signal is in the range 20-150 Hz: the goal of the board is not to acquire the

whole harmonics of the signal, rather just the single events of contraction

and relaxation.

The analog data are then fed into a microcontroller PIC16F688, endowed

with a 10 bit ADC, which converts the signals in digital and send them

to the computer through a serial protocol USART. To allow the conversion

from the standard RS232 to the standard USB, more adaptable to a PC,

it was used a FT232RL module. The sampling rate of the board is of 270

Samples/Second.

A driver, able to understand the EMG board output, is the first product of

this thesis: it is a C script, based on the Standard POSIX, which receives

the string outputted by the EMG board and parses it, in order to divide the

three channels, which are saved into different files.

4.4.2 Electrodes Configuration

In Chapter 3 the EMG genesis has been discussed in detail, as well as the

best electrode configuration to use in the acquisition phase. The consid-

erations made at that point, led to the decision of applying the couple of

electrodes along the muscle fibers.

For future compatibility with other works on this subject, the actual configu-

ration of the electrodes is presented, so that future results can be comparable

with ours:

• Channel 1: is applied along the Extensor Carpi Ulnaris muscle, in

particular, Electrode 1 is proximal, while Electrode 2 is distal;

• Channel 2: is applied along the Extensor Digitorum Communis

muscle, in particular, Electrode 3 is distal and Electrode 4 is

proximal;

• Channel 3: is applied to along the Front Forearm muscles, in

particular, Electrode 5 is proximal and Electrode 6 is distal

• Electrode 7: is the reference electrode and has to be placed in a

position without any muscular contraction. The choice made in this

work is to apply it to the elbow skin.

For all the channels described above, the two electrodes have to be placed

the nearest possible. But they mustn’t be in contact, otherwise the signal

acquisition turns out to be totally meaningless.
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Figure 4.7: Electrode configuration

The choice of the target muscles is not specific, rather the most visible

and powerful muscles of the forearm are chosen. Therefore the terminology

used previously is just to help visualize the configuration of the electrodes.

Indeed, these have such a big surface, that they are able to detect also

the contractions of other muscles than the one mentioned in the list above.

Even if single muscle contractions can’t be detected, extensor and flexor

muscles are all respectively in the posterior and anterior side of the forearm.

Therefore we expect Channel 1 and Channel 2 to detect stronger signals

when extension movements are performed and Channel 3 to detect more

accurately the flexion movements.

4.4.3 The System Structure

The first module of the software system (Figure 4.8) is the segmentation

module, which receives the digital signal from the EMG board. Its job is to

understand when a contraction starts and ends in order to divide the signal

in many bursts, each related to a specific contraction. The divided bursts are

then analyzed by the feature extractor. As stated in the previous chapter

the EMG signal is quite difficult to analyze because of its non-stationary

and stochastic nature. This issue and the one of the feature extraction

are solved by the application of the Wavelet Analysis (WA), whose result
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Figure 4.8: A simple view of the system structure

is, then, reduced in dimensionality using the Singular Value Decomposition

(SVD). To the aforementioned features are added the integral EMG (iEMG)

and the mean absolute value (MAV) of each burst. Eventually, an Artificial

Neural Network is trained to associate the incoming feature vectors to the

relative hand movements.

4.4.3.1 Segmentation Module

The raw signal received by the segmentation module, has to be split into

different bursts, each one corresponding to the muscles contraction produced

by a single hand movement.

Before starting the detailed discussion about the segmentation module, it is

important to notice that in this subsection, the term training signal is used

to address a kind of signal composed by the repetition of many bursts of

the same type of movement. As the name itself suggests, it is used in the

training phase of the classifier. The segmentation module is quite complex

because of different reasons:

1. the digital signal is highly variable and can also be negative (Figure

4.9);

2. the signal varies at a high frequency (Figure 4.9);
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Figure 4.9: The first three problems related to the signal segmentation. The signal in

figure is a training signal for the thumb abduction. In particular 10 contractions are

performed.
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Figure 4.10: The last burst seems to be composed by two different bursts.

3. sometimes the signal is very low, or covered by high noise (Figure

4.9);

4. if the burst is too long, sometimes, it seems to be composed by two

different bursts (Figure 4.10).

For all the reasons mentioned above, at this stage it is impossible to use

a single threshold value to discriminate the start and the end of a burst.

These issues are solved applying two methods in succession: rectification
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Figure 4.11: The rectification of the original signal in Figure 4.9

and linear enveloping.

Rectification: the absolute value of the incoming signal is computed in

order to obtain the rectified version. This is never negative, therefore the

first problem is solved. Moreover the mean of the rectified signal is no more

negative (mean absolute value), which is very useful to extract information

(Figure 4.11).
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Figure 4.12: Linear envelope of the rectified signal in Figure 4.11
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Linear envelope: the rectified raw signal is then filtered with a low-pass

filter, characterized by a cutoff frequency of 2Hz. This means that just the

slower harmonics are returned, which represent the contour of the rectified

signal. This contour is called linear envelope (Figure 4.12) and, by construc-

tion, its frequency is very low, which solves the second and third problems.

The fourth is addressed by another method discussed later in this section.

At this stage the signal is ready for the segmentation.

Segmentation: this method is based on the moving average of the sig-

nal. The main idea of the algorithm is that whenever the signal (blue line

in Figure 4.13) overcomes its own moving average (yellow line in in Figure

4.13), the contraction is detected. Then the algorithm waits for a certain

amount of time (1 second), before closing the burst. If at this time the level

of the envelope is high enough, the closing is delayed of a little amount of

time (0.2 second).

When the end of the burst is reached, the segmentation module is ready to

receive another burst. It is important to notice that the delay feature of

0 500 1000 1500 2000 2500 3000
0

50

100

150

Figure 4.13: The moving average is the yellow line. The green line is the one relative

to the start of the burst while the red one is relative to the end. In this example it is

represented the second channel signal, relative to thumb abductions. The red and green

lines are obtained using the algorithm designed by Brandon Kuczenski for Kensington

Labs.

the segmentation algorithm is able to solve the fourth problem mentioned

previously.

Actually, the threshold is not the real moving average: as it is possible to

see from the yellow line in Figure 4.13, the starting value of the threshold is
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Figure 4.14: First and third channels (second channel is in Figure 4.13) relative to the

thumb abduction: they are characterized by a very small amplitude, thus it is difficult

to detect the bursts from these signals. The segmentation of both the envelopes is

done using the information contained in Channel 2.

very high, in order to avoid unwanted burst detection at the very beginning

of the train. Then, after few fractions of a second, it meets the real moving

average of the signal.

The system is endowed with three channels, therefore the algorithm has to

deal with three linear envelopes at a time. The characteristics of the signals

coming from the three distinct channels are heterogeneous: for example a

contraction that is well sensed by a couple of electrodes, could be invisible

to another couple applied in the opposed position (Figure 4.14). It is not

possible to independently segment signals relative to different channels, be-

cause in this way, bursts happening at the same time would be divided in

different ways.
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Figure 4.15: Segmentation of the training signals coming from the three channels

(thumb abduction).

The solution to this problem is that, at a given burst, the channel with the

highest envelope value is the one which dominates the others, deciding the

burst segmentation. When the current burst is closed, the highest value is

reset, in the way that another channel can take the lead for the next burst

detection.



108 Chapter 4. The Project

In the example in Figure 4.14, Channel 2 dominates the other two channels

for all the bursts, because this particular signal train is a training signal

made just of thumb abductions. During a normal acquisition, channels ex-

change their roles.

The last step in the segmentation module is the high-pass filtering of the

original signal. The cutoff frequency of 10 Hz allows the system to reduce

the contribution of the low-frequency noise, generated by the movement of

electrodes, cables and connectors, arising from the motion of the user. The

final result of the segmentation module is shown in Figure 4.15. From now

on, the term burst will be used to describe each segmented part of the signal

relative to a muscle contraction, while the terms signal or train will be used

to describe the whole train of bursts.

4.4.3.2 Feature Extraction

The feature extraction module has the role of identifying particular numeric

parameters from the single signal burst. Such parameters are called fea-

tures, and the whole set of features is called feature vector. This vector is

much smaller in dimension compared to the original signal burst vector, and

contains its significant and representing data. Reducing the signal burst to

its feature vector is a necessary preprocessing in order to diminish the com-

plexity of the classification.

In Chapter 2, the state of the art approach to this problem has been dis-

cussed in detail: many methods, both temporal and spectral, are available

to achieve the feature extraction.

The temporal approach is mainly based on such parameters like mean

absolute value, mean absolute value slope, number of zero crossings, slope

sign changes, and waveform length.

The above temporal characterizations doesn’t help much for the hand mo-

tion recognition, particularly in the discrimination of six synergetic grasp

[76]. An exception is the first parameter, the mean absolute value, which

can be loosely related to the signal’s energy. As will be shown in the next

chapter, this attribute helps the training for a successful classification of

prehensile motions.

After these considerations and empiric evaluations, the decision for our

project was to take as temporal features the mean absolute value (MAV)

and the integral EMG (iEMG), which are, respectively, the mean value and

the integral of the rectified burst.
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The spectral approach: as stated above, the EMG signal is non-

stationary, this means that its frequencies vary along the time. In Figure

Figure 4.16: Example of a non-stationary signal. In particular the interval 0 to 300 ms

has a 100 Hz sinusoid, the interval 300 to 600 ms has a 50 Hz sinusoid, the interval

600 to 800 ms has a 25 Hz sinusoid, and finally the interval 800 to 1000 ms has a 10

Hz sinusoid.

4.16 it is represented a non-stationary signal: four different frequency com-

ponents at four different time intervals are distinguishable. In particular the

interval 0 to 300 ms has a 100 Hz sinusoid, the interval 300 to 600 ms has a

50 Hz sinusoid, the interval 600 to 800 ms has a 25 Hz sinusoid, and finally

the interval 800 to 1000 ms has a 10 Hz sinusoid.

The spectral approach aims at extracting parameters related to the spectral

power of the signal, therefore such methods make massive use of the Fourier

transform. This type of transform is not able to catch the distinction be-

tween the time intervals at which the frequency components are located,

but returns all the spectral components of the signal, like they would occur

at the same time. Hence, in this field of application, the Fourier analysis

turned out to be poor of information.

When the time localization of the spectral components is needed, a trans-

form giving the time-frequency representation has to be used.

The introduction of the short time Fourier Transform (STFT) solves the

time-frequency issues. In STFT, the signal is divided into small enough

portions, which can be assumed to be stationary. For this purpose, a win-
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dow function is chosen. The width of this window must be equal to the

portion of the signal where its stationarity is valid.

The STFT is unfortunately affected by resolution issues, mainly this means

that at a narrow windowing corresponds a good time resolution and a poor

frequency resolution, while at a wide windowing corresponds a good fre-

quency resolution and a poor time resolution (Figure 4.17). Poor frequency
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Figure 4.17: If the time resolution is high, consequently the frequency resolution is poor

4.17a. On the other hand, if the frequency resolution is high, consequently the time

resolution is poor 4.17b.

resolution means that the frequency peaks cover a range of frequencies, in-

stead of a single frequency value.

The resolution issue is finally solved by the design of a new mathematical

method, the Wavelet Transform. Literature considers the Wavelet Trans-

form as one of the best methods to accomplish the time-frequency analysis,

since it was designed on purpose to solve, to a certain extent (Heisenberg

uncertainty principle), the resolution dilemma. [95].

The Wavelet Transform: the term wavelet means little wave. The ad-

jective little refers to the fact that the entire transformation process is based

on single wave, finite in length, the mother wavelet.

The basic idea underlying wavelet analysis consists of expressing a signal as

a linear combination of a particular set of functions, obtained by shifting

and scaling the mother wavelet. The decomposition of the signal into the

basis of wavelet functions implies the computation of the inner products

between the signal and the basis functions, leading to a set of coefficients

called wavelet coefficients.

The wavelet analysis can be divided in two major categories: the Continu-

ous Wavelet Transform (CWT) and the Discrete Wavelet Transform (DWT).

Since DWT is used for data compression while CWT for signal analysis, this
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subsection focuses on the latter. From now on, wavelet analysis and CWT

will be used as synonyms.

A detailed analysis of the continuous wavelet transform has to be done, in

order to understand its advantages with respect to the STFT. The actual

role of the mother wavelet is to act as a prototype of windowing functions in

the entire transformation process of the signal (x ). That means that all the

other window functions (wavelet) are computed starting from the mother

wavelet (ψ), which is modified by changing two parameters:

• scale (σ): represents the dilatation of the wavelet. This parameter is

not just a factor of enlargement of the wavelet, instead it also brings

information about its frequency. To a high scale (σ > 1) corresponds

a low frequency: just imagine to stretch the wavelet along time,

obtaining a slowly varying wave. On the other hand, to a low scale

(σ = 1) corresponds a high frequency: just imagine to compress the

wavelet obtaining a wave varying faster in time;

• translation (τ): represents the time at which the wavelet starts.

After the definition of the main concepts, it is now possible to describe the

transformation algorithm (Figure 4.18), based on the Formula 4.1.

CWTψx (τ, σ) =
1

√

|σ|

∫

x(t)ψ

(

t− τ

σ

)

dt (4.1)

The main goal is to fill in a translation-scale table, with the coefficient

of “similarity” between the signal and the wavelet at a given translation

time(τ) and scale(σ), computed with the Formula 4.1:

1. the wavelet is placed at (τ = 0) and (σ = 1);

2. the signal and the wavelet are multiplied and then integrated over

time. Obviously, the product is nonzero only where the signal falls in

the region of support of the wavelet, and it is zero elsewhere;

3. the result of the integration is then multiplied by the constant

number 1/
√
σ . This multiplication is for energy normalization

purposes so that the transformed signal will have the same energy at

every scale;

4. the final result is the value of the transformation for (τ = 0) and

(σ = 1). This is the wavelet coefficient in position (τ = 0 , σ = 1) in

the translation-scale table;
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Figure 4.18: Wavelet shifting (τ) and scaling (σ) procedure [96]

5. the wavelet, keeping σ = 1, is then shifted of a sufficiently small step

size (τ = τ + ǫ);

6. the previous steps are repeated until the end of the signal;

7. the first row of the translation-scale plane is complete;

8. the scale is increased of a a sufficiently small step size (σ = σ + ǫ).

Coefficients are computed for all the values of τ and σ (inside a

predefined range) as described in the previous points.
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Figure 4.19: Resolution given by the Wavelet Transform.

Unlike the STFT which has a constant resolution at all times and frequen-

cies, the wavelet transform has a good time and poor frequency resolution

at high frequencies, and good frequency and poor time resolution at low

frequencies (compare figures 4.17 with Figure 4.19a). Recalling the rela-

tion between scale and frequency, lower scales (higher frequencies) have low

scale resolution which corresponds to poorer frequency resolution. Vice

versa, higher scales correspond to high scale and frequency resolutions (Fig-

ure 4.19).

The meaning of Figure 4.19a is that high frequency components can be

located better in time than low frequency ones. On the contrary, low fre-

quency components can be located better in frequency compared with high

frequency components.

This approach makes sense especially when the signal has high frequency

components for short durations and low frequency components for long du-

rations, which is the case of the most signals of physical nature, especially

the transient ones [96][95][97].

According to empiric observations and results obtained in other works, the

mother wavelet we chose for our analysis was the Morlet (Figure 4.20) [78].

The problem of the Wavelet Transform is that the amount of data returned

from the algorithm is too large to be inputted into an Artificial Neural Net-

work. In our case, computing the CWT of a single burst composed by 270

samples, produces a matrix of size 5X270. This is composed of five rows be-

cause of the empirical choice to make the scale vary between 1 and 5, which

produces the best tradeoff between performance and computation speed.

At this stage, our feature vector is composed by 2 temporal parameters,

namely the MAV and the iEMG plus an entire matrix of size 5X270. There-

fore before using a classifier, like an Artificial Neural Network, a dimension-
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Figure 4.20: Morlet mother wavelet.

ality reduction of the feature vector is needed.

4.4.3.3 Dimensionality Reduction of Feature Vectors

The dimensionality reduction of the matrix obtained applying the Wavelet

Transform, is achieved by a powerful method called Singular Value De-

composition (SVD). This method is used to factorize a whatsoever m-by-n

matrix M into three different matrices:

M = UΣV T (4.2)

Let’s consider a 2X2 geometric example in which an orthogonal grid is trans-

formed into another orthogonal grid. Normally there are no reasons for

which the orthonormality would hold. We are looking for a special set up

for which the M matrix brings from an orthonormal to another orthonormal

space [98]. The basis of the grid on the left in Figure 4.21 are orthogonal

unit vectors v1 and v2 (orthonormal) and if they are correctly chosen, then,

after the transformation, the vectors Mv1 and Mv2 become orthogonal.

The next step, is to describe the vectorsMv1 andMv2 as a stretched version

of particular unit vectors u1 and u2, in order to achieve the orthonormality

also in the transformed space:

Mv1 = σ1u1 Mv2 = σ2u2 (4.3)

The extent of the grid stretching in those particular directions is given by

σ1 and σ2, which are called the singular values of M.

Considering again the formula M = UΣV T , U is a matrix whose columns

are the vectors u1 and u2, Σ is a diagonal matrix whose entries are σ1 and

σ2, and V is a matrix whose columns are v1 and v2.
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Figure 4.21: Transformation from an orthogonal grid to another one [99].

Figure 4.22: Representation of the unit vectors of Mv1 and Mv2. They are an or-

thonormal basis of the co-domain in Figure 4.21 [99].

The previous intuitive explanation of the SVD shows how to decompose the

matrix M into the product of three matrices: V describes an orthonormal

basis in the domain (left part in Figure 4.21), U describes an orthonormal

basis in the co-domain (Figure 4.22), and Σ describes how much the vectors

in V are stretched to give the vectors in U [99]. Another property is that

the rank of M equals the rank of Σ.

Singular Value Decomposition is applied in many fields because of its duc-

tility: it can be used for the compression of large amount of data, noise

reduction, matrix approximation, to execute the principal component anal-

ysis, signal processing, pattern recognition and many other tasks.



116 Chapter 4. The Project

For example let’s consider a noise reduction problem, in which the SVD ap-

plied to a matrix M returned a Σ of rank 15. The diagonal values are the fol-

lowing: σ1 = 14.15;σ2 = 4.67;σ3 = 3.00;σ4 = 0.21;σ5 = 0.19; ...;σ15 = 0.05.

It is easy to see that the first three σ are the biggest in the list. There-

fore the original matrix, that should be constructed considering the original

rank of the matrix (15), using the formula M = UΣV T , can actually be

approximated in this way:

M ≈ u1σ1v
T
1 + u2σ2v

T
2 + u3σ3v

T
3 (4.4)

The result of this approximation is shown in Figure 4.23.

Figure 4.23: Noise reduction with SVD. On the left the noisy image, on the right the

improved one [99].

For our purpose, namely the feature extraction, it is exploited a particular

property of the SVD: if the diagonal entries of Σ are disposed in descending

order, Σ itself is uniquely determined by M. Therefore by simply applying

the SVD to the Wavelet Coefficient matrix and extracting the σi, it is possi-

ble to obtain a small set of values representing, at some extent, the original

Wavelet Coefficient matrix . In order to understand the importance of the

dimensionality reduction, the Wavelet Coefficient matrix goes from a size of

5X270 to a size of 5X1.

4.4.3.4 The Feature Vector

The feature vector representing a single burst is composed by 2 temporal

parameters, the iEMG and the MAV, and by 5 time-frequency parameters
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obtained by the synergy of the Wavelet Transform and the SVD methods, for

a total of 7 features. This feature vector is, however, related to a single burst,

coming from a single channel. Therefore, considering that the channels of

the EMG board are three, the total amount of features per movement is 21.

4.4.3.5 Classification

A classifier is a black box model, trained to learn associations between a

specified set of input-output pairs. Actually, what happens is that each

training sample is labeled by a human, according to its corresponding ab-

stract class (supervised learning). Then the training phase is carried on in

the way that the classifier has to learn how to associate each training input

to its label, otherwise called target output.

After being trained, the classifier is able to predict the class of membership

of a whatsoever unlabeled input taken from a test set.

There are several techniques used in supervised learning: Linear Classifiers,

k-Nearest Neighbors, Support Vector Machines and Artificial Neural Net-

works. The choice in this thesis has been to use Artificial Neural Networks,

because of their massive application in classification and pattern recognition

problems. Moreover, after an exploratory phase, the SVM was found diffi-

cult to set up: the performances of this classifier highly rely on the SVM

kernel function, which has to be carefully selected.

An Artificial Neural Network consists of a topology graph of neurons, each of

which computes the function (called activation function) of the inputs and

sends the result in output. The inputs and outputs are weighed by weights

wij and shifted by bias factor specific to each neuron. It has been shown

that for certain neural network topologies, with the right set of weights and

biases, any continuous function can be accurately approximated.

The learning problem consists of finding the optimal combination of weights

wij so that the network output approximates a given target output as closely

as possible. To achieve this goal, the training algorithm tries to minimize

the difference between the target output (t) and the real current output

(o). More precisely, we want to minimize the error function of the network,

defined as

E =
1

2

p
∑

i=1

|oi − ti|2 (4.5)

In the equation 4.5, the value p represents the number of pairs (o,t) com-

posing the training set.

The most common way to minimize the error, is the application of the clas-

sic backpropagation algorithm. But since another method, the Levenberg-
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Marquardt(LM) algorithm, appears to be the fastest method for training

moderate-sized feedforward neural networks (up to several hundred weights),

the final decision has been to choose the latter [100]. The LM algorithm is a

member of the family of the nonlinear least squares algorithms [101][102][103].

In the scope of this thesis, a two-layer feedforward neural network has been

designed and trained with the EMG feature vectors. The single hidden layer

Figure 4.24: Tan-Sigmoid activation function.

is composed by 35 neurons, characterized by a Tan-Sigmoid activation func-

tion. Instead, the output layer is composed by just 7 output neurons, one

for each movement to classify. The network outputs are linear, thus binary

encoding is needed in order to bring compact information. For example if

the first neuron output is the nearest to 1, then all the other outputs are

manually set to 0. The resulting binary string, in this particular case, repre-

sents the event “Hand closed” ([1 0 0 0 0 0 0]). Each of the seven movement

described previously in this chapter has its own binary encoding.

4.4.4 Training Procedure

The training procedure for the current work is divided into three steps,

namely the acquisition procedure, the signal preprocessing and the network

training (Figure 4.25).

4.4.4.1 Acquisition Procedure

The acquisition procedure has been found empirically, in particular it was

chosen the minimum amount of movements to perform, still giving high

performances:
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1. acquire one train of 10 bursts for the movement “Hand close”;

2. make the muscle relax for few seconds (it is also possible to shift the

electrodes just a bit, to achieve “cross-session” robustness);

3. repeat the previous two steps other two times;

4. once 3 trains of a given movement are acquired, take one minute for

resting and change the type of movement;

5. repeat the previous steps for all the 7 movements.

The previous procedure generates a signal training set made up by 21 signals,

not yet segmented, nor processed.
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Figure 4.25: Detailed system structure. The incoming bursts train, composed by 10

“Close Hand” contractions, is segmented by the segmentation module. Then, for

each burst, the corresponding feature vector is computed and, together with the target

output ([1 0 0 0 0 0 0]), is inputted in the Artificial Neural Network. This is a schematic

representation, therefore the actual training is performed on 3 trains of 10 burst for all

the 7 movements.
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4.4.4.2 Signal Preprocessing

This step has been carefully described in all its components, in the previous

subsection. The signals composing the training set are first segmented and

then the single bursts are processed with the temporal analysis, the Wavelet

Transform and the SVD to extract the feature vectors. The real training set

is, therefore, composed by 3 (trains) X 10 (bursts) X 7 (movements) feature

vectors, for a total of 210.

4.4.4.3 Network Training

The training set previously obtained, is divided into three subsets:

• Training Set: is composed by the 3/5 of the whole set.

• Validation Set: is composed by 1/5 of the whole set. During the

training, this set is used for cross-validation, a technique for assessing

how the results of the network will generalize to an independent data

set.

• Test Set: is composed by 1/5 of the whole set. After the training, it

is used to test the performances of the network.

These data are then used to train the Artificial Neural Network, whose

performances have been recorded and will be presented in the next chapter.

4.4.5 Motion Recognition

Once the system has been trained, it is able to recognize the movements

performed by the user, and send the action to perform to the high level

prosthesis controller.

In this subsection we consider the example of 7 consecutive movements:

1. hand closing ([1 0 0 0 0 0 0]);

2. hand opening ([0 1 0 0 0 0 0]);

3. wrist extension ([0 0 1 0 0 0 0]);

4. wrist flexion ([0 0 0 1 0 0 0]);

5. thumb abduction ([0 0 0 0 1 0 0]);

6. thumb opposition ([0 0 0 0 0 1 0]);

7. index extension ([0 0 0 0 0 0 1]).
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Figure 4.26: Abstract view of the recognition phase. 7 Movements are performed and

each contraction burst is detected by all the three channels. The vectors at the output

of the ANN represent the binary encoding of each recognized movement.

In the brackets it is shown the binary encoding of the each motion.

The three channels of the system detect a signal each, generated by the

muscle contractions of the seven consecutive movements.

Each signal is composed by the bursts relative to each movement, which

are segmented using the method described above. It is noteworthy to make

a consideration about the segmentation: the level of the linear envelopes

are different in each channel, therefore if they were segmented separately

they would have had different durations for each contraction. The system,

instead, dynamically adapts to envelope level variations, in particular the

channel with the highest level of linear envelope is taken as the leading

one, during the segmentation. For example, the first burst is recognized by

Channel 1, while the last burst is recognized by Channel 2.

After the segmentation, feature vectors are extracted from each burst and

inputted into the trained Artificial Neural Network, which recognizes each
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movement performed (Figure 4.26).

4.4.6 Matlab Implementation

The complete implemented code is presented in Appendix A, while its struc-

ture is discussed in this subsection, also with the aid of Figure 4.27.

training.m

convertAll.m

convertFile2Mat.m

takeFeatures.m myNN.m

splitFilter.m

findBurstEMG.m extractFeatures.m

divideData.m

ANN Training

Data Acquisition acquireData.m

serialComm.c

Recognition
recognize.m

serialComm.c splitFilter.m

Time

test.m

Time

testWholeSet

Signal 

processing

useNN.m

divideData.m

Test

B

C

B calls C

CAPTION

A

Bold 

rectangle:

function 

previously defined

Signal

Processing

training.m

Figure 4.27: Abstract representation of the implementation of the project. The meaning

of the arrows is that the function above calls the function below. The bold rectangle is

used to represent that the function has already been defined along the graph. When a

function calls more than one subfunction the calling order is from left to right (as the

Time arrow shows).

Acquisition Implementation: the function acquireData.m calls the ap-

plication “serialComm”, written in C, to acquire data from the EMG board

and to save them into text files. These data are the ones used during the

network training. The files generated by the script are divided into fold-

ers relative to the person on which the acquisition is performed. Moreover,
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the algorithm allows to chose a whatsoever number of motion patterns to

classify (in this work this number is set to 7);

Signal Processing Implementation: this module is composed by sev-

eral functions: first of all, convertAll.m is called in order to translate all the

text files, previously generated, into Matlab files.

Then, takeFeatures.m is called to extract the feature vectors from all the

acquired signals. To accomplish this task takeFeatures.m has to iteratively

call the function splitFilter.m, which is applied to each signal.

In turn, splitFilter.m computes the linear envelope of one signal, com-

posed by many bursts of contraction, on which is applied the function find-

BurstEMG.m for the segmentation. Once the system has found the division

of all the bursts, they are processed by a high pass filter and then, on each

one it is called extractFeatures.m. This function is useful for the task of

extracting the feature vector from a burst, which is accomplished by ap-

plying the Wavelet Transform, the SVD and the Temporal Analysis. The

Wavelet Transform is computed using the method cwt() taken from the Mat-

lab Wavelet Toolbox, while the SVD is obtained calling the Matlab built-in

function svd().

Neural Network Training Implementation: the method training.m

applies the functions described above in order to compute the training set

to use for the training of an ANN. The actual implementation of the ANN

and its training are accomplished by means of the function myNN.m, which

in turn shows the performances of this process and returns the trained ANN.

In order to divide the training set into the Training, Validation and Test sets,

myNN.m calls divideData.m.

Motion Recognition Implementation: once the ANN has been trained

it is possible to use it for the recognition of the gestures of the hand. In

particular, this is done by applying the function recognize.m, which acquires

new data from the EMG board, calling the application “serialComm”. Then

splitFiler.m is used to extract, from all the bursts in the signal, the feature

vectors, which are inputted into the already trained Artificial Neural Net-

work for the motion recognition.

Test Implementation: two methods have been implemented in order to

study the performances of the system. The first is testNet.m which calls

training.m more than one time and computes the overall performances.
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The second algorithm is testWholeSet.m, which tests the performances of

the trained network on data that can be different from the one acquired for

the training. This new set could be in another folder, belonging to a person

different from the one on whom the network was trained. In this way it is

possible to execute “cross-person” and “cross-session” tests, which are very

useful for further analysis. The algorithm uses the same files as training.m,

except the one called useNN.m, which doesn’t train a new ANN but simply

uses the already trained one.
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Results

This chapter shows how the designed system is able to adapt to different

situations. In particular, it has been tested on four different persons, each

one with specific body characteristics. In this way it was possible to draw

some conclusions about the goodness of the classifier and the procedures to

follow in order to reach good performances. Moreover, factors influencing

the acquisition and the analysis of the EMG signal, like subject’s fatigue,

concentration and motivation, as well as the electrodes placement, are dis-

cussed.

5.1 Test Procedure

Each subject was asked to execute a large amount of movements, as de-

scribed in the previous chapter, in order to train his own Artificial Neural

Network. The execution of these movements requires high concentration,

because it is very likely to make unwanted contractions while performing a

specific task. For this reason the patients are asked to think about, in case

of real amputees, or actually perform, in case of sound subjects, a specific

motion pattern at their best during the acquisition phase. The following is

an empirically drawn procedure, explaining how to perform specific hand

gestures in order to obtain great performances from the classifier training.

It is included in the chapter of the results because it was obtained after a

long period of experimental tries:

• Close hand (CH): the patient has to contract the muscles related to

the “hand closing” in a way that he can see their contraction. The

latter has to be a bit more than impulsive (0.6 s) and requires a

normal/high force level. Each movement is separated from the next

one by a relax period of almost one second. Moreover, if he patient
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wants to perform a “close hand” after another “close hand”

contraction, he doesn’t have to open the hand back between the two

movements, but just relax the muscles. This prevents the system to

detect an unwanted “open hand” between the two actions. It is also

important that during the hand closing the patient doesn’t flex the

wrist.

• Open hand (OH): the patient has to execute the “hand opening” in a

way that he can clearly see the posterior forearm contracting. As in

the previous case, the contraction has to be a bit more than

impulsive (0.6 s) and requires a normal/high force level. Each

movement is separated from the next one by a relax period of almost

one second. Moreover, if he patient wants to perform a “open hand”

after another “open hand” contraction, he doesn’t have to close the

hand back between the two movements, but just relax the muscles.

This prevents the system to detect an unwanted “close hand”

between the two actions. Eventually, it is important that during the

hand opening the patient doesn’t extend the wrist.

• Wrist extension (WE): this movement is similar to the one

performed during an acceleration on a motorbike. The force exerted

has to be more natural, as well as the duration, which can be a bit

smaller (0.5 s) than before, as in a normal wrist extension. The relax

period is the same as all the other movements (1s). Moreover, if he

patient wants to perform a “wrist extension” after another “wrist

extension” contraction, he doesn’t have to flex the wrist back

between the two movements, but just relax the muscles. This

prevents the system to detect an unwanted “wrist flexion” between

the two actions. This type of movement requires a high

concentration, in particular for sound people, because it is important

that the fingers are not moved during its execution.

• Wrist flexion (WF): this movement is like the “wrist extension”, but

in the opposite direction. The force exerted has to be natural, and

the duration of the contraction is around 0.6 s. The relax period is

the same as all the other movements (1s). Moreover, if he patient

wants to perform a “wrist flexion” after another “wrist flexion”

contraction, he doesn’t have to extend the wrist back between the

two movements, but just relax the muscles. This prevents the system

to detect an unwanted “wrist extension” between the two actions.

The same considerations hold here as for the wrist extension about
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the finger movement.

• Thumb abduction (TA): this movement is like the “Thumb Up” sign.

A sound subject can check if the movement is executed correctly by

looking if the thumb tendon stiffens. The force exerted has to be

natural, and the duration of the contraction is around 0.6 s. The

relax period is the same as all the other movements (1s). Moreover,

if he patient wants to perform a “thumb abduction” after another

“thumb abduction” contraction, he doesn’t have to oppose the

thumb back between the two movements, but just relax the muscles.

This prevents the system to detect an unwanted “thumb opposition”

between the two actions.

• Thumb opposition (TO): this movement is like pushing the thumb

against the palm for half a second (0.6 s). The force exerted has to

be a bit larger than the normal one, so that the EMG board can

detect the low EMG signal generated. The relax period is the same

as all the other movements (1s). Moreover, if he patient wants to

perform a “thumb opposition” after another “thumb opposition”

contraction, he doesn’t have to abduct the thumb back between the

two movements, but just relax the muscles. This prevents the system

to detect an unwanted “thumb abduction” between the two actions.

• Index extension (IE): this movement is composed by the extension of

both the index and middle finger, which generates an higher EMG

signal than the single index extension. It requires high

concentrations, because the extension of these fingers usually extends

also other fingers in the hand. The contraction lasts a bit less (0.5 s)

than in other movements and its force has to be as normal as

possible, always reminding that the EMG signal has to be strong

enough to be detected.

5.2 Subjects

The test phase was performed on four sound subjects with different physical

structures. A deep characterization is important to understand in which

cases and for which reasons the system works well or less well. In par-

ticular, we investigate how different features of the forearm and different

lifestyles can influence the signal acquisition and analysis. In the following

list the muscle tone scale ranges from 0, corresponding to hypotonia, to 5,

corresponding to hypertonia:
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• Subject A (A)

– Gender: Male

– Age: 23

– Height: 1.73 m

– Weight: 71 Kg

Subject A does a sedentary job, he usually carries bags and weights

but doesn’t go to the gym. His muscle tone can be located in 3,

moreover the volume between the forearm muscles and the skin is

small. These features allow a good signal acquisition, in which the

EMG signal overcomes the noise and can be highly recognizable,

even in the small contractions related to the thumb movements.

• Subject B (B)

– Gender: Male

– Age: 50

– Height: 1.73 m

– Weight: 95 Kg

Subject B has a lifestyle similar to subject A.

• Subject C (C)

– Gender: Male

– Age: 15

– Height: 1.83 m

– Weight: 110 Kg

Subject C does a sedentary job and, due to the young age, his muscle

structure still has to consolidate. His muscle tone can be located in 2

and the volume between the forearm muscles and the skin is large,

given height and weight. These features make the signal acquisition

more difficult, in particular for movements generated by the

contraction of weaker muscles, like the thumb abduction and

opposition.

• Subject D (D)
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– Gender: Female

– Age: 46

– Height: 1.68 m

– Weight: 87 Kg

Subject D does a sedentary job and rarely carries weights. Her

muscle tone can be located in 1 and the volume between the forearm

muscles and the skin is large, given height and weight. These

features make the signal acquisition almost impossible for movements

generated by the contraction of weaker muscles.

5.3 System performances

The system has to be customized on each patient, therefore every person

who is subject to the analysis has to perform his own movements.

Subject A and subject B performed the procedures mentioned above and

in the previous chapter, without changing the position of the electrodes, to

produce 3 trains of 10 contractions each for all the 7 movement patterns.

These data are randomly divided into three sets: 3/5 for Training, 1/5 for

Validation and 1/5 for Test. The first two are used to train the network,

while the third to test its performances.

Subject A CH OH WE WF TA TO IE Perf.

Total Movements 6 6 6 6 6 6 6

Total Errors 0 0 0 0 0 0 0 100%

Table 5.1: “Training performances” of the network, obtained running the script train-

ing.m with folder A normal 1 as input .

Subject B CH OH WE WF TA TO IE Perf.

Total Movements 6 6 6 6 6 6 6

Total Errors 0 0 0 0 0 0 0 100%

Table 5.2: “Training performances” of the network, obtained running the script train-

ing.m with folder B as input.
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This means that for each type of movement the test set is composed by 6

bursts of contraction. The best result that can be obtained after the training

of the network is shown in Table 5.1 and Table 5.2.

The captions of each table say what scripts are run on which folders of the

documentation in order to obtain the results.

In the examples above are presented the best performances obtainable, given

a random division of the training set, but when this set is divided in another

way, it is possible to notice slight changes in performance. This highlights

the importance of an average performance value, which is obtained running

the training algorithm more than one time on different networks and with

different commutations of the training data.

All the results are memorized and used to compute an average performance.

Using the script testNet.m, different Artificial Neural Network have been

trained 20 times on different random commutations of the training data,

and tested with the respective Test Set, leading to the results in Table 5.3

and Table 5.4.

Subject A CH OH WE WF TA TO IE Perf.

Total Movements 120 120 120 120 120 120 120

Total Errors 1 5 0 1 6 3 9 97%

Table 5.3: Average “training performances” of the network, obtained running the script

testNet.m with folder A normal 1 as input.

Subject B CH OH WE WF TA TO IE Perf.

Total Movements 120 120 120 120 120 120 120

Total Errors 1 6 4 0 7 2 2 97.4%

Table 5.4: Average “training performances” of the network, obtained running the script

testNet.m with folder B as input.

An Artificial Neural Network trained following the previous procedure, with

a “training performance” of 100% is a good network but still imperfect. In-

deed, what has been shown so far, highly relies on the particular acquisition

set, leading to many errors when the system has to recognize movements

acquired in different times.

An example is proposed in Table 5.5, in which are shown the results of
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a “recognition test”. An Artificial Neural Network trained with 100% of

“training performance” on data coming from Subject A, has been applied

on a “recognition set” (never seen before by the ANN and acquired in a

different moment) composed by 10 bursts for each movement type, with a

result of 95.7%, which is bad compared to the 100% obtained in the training.

Moreover, the procedure is too dependent on the electrode placement, there-

fore, when the electrodes are placed on a slightly different position the per-

formance lowers down even more.

Subject A CH OH WE WF TA TO IE Perf.

Total Movements 10 10 10 10 10 10 10

Total Errors 0 0 0 0 0 0 3 95.7%

Table 5.5: Results of the recognition phase, obtained running the script testWholeSet

with these inputs: folder A sess ind ts1 and an Artificial Neural Network trained with

100 % performance on folder A normal 2.

5.4 Generalization and Session Independence

From session to session, it is impossible to place electrodes at the exact

same position. Therefore it is important to achieve a sort of Session Inde-

pendence, which allows the system to react well even to different electrode

configurations.

Few days after the first acquisition phase, Subject A was asked to repeat

the procedure. In this case the electrodes were put on a slightly different

position of the forearm.

Moreover the contractions exerted by the subject were quite different in

force and pattern, compared with the ones of the first acquisition session,

because he couldn’t remember the exact way he performed them the first

time.

Subject A CH OH WE WF TA TO IE Perf.

Total Movements 10 10 10 10 10 10 10

Total Errors 0 0 0 0 0 0 1 98.6%

Table 5.6: Results of the recognition phase, obtained running the script testWholeSet

with these inputs: folder A sess ind ts1 and an Artificial Neural Network trained with

100 % performance on folder A sess ind.
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Data from the first and the second sessions were, then, merged together in

a unique training set, which was used to train an Artificial Neural Network

with a “training performances” of 100%. After the training, this network

has been tested on the same “recognition set” that gave the results in Table

5.5 in the previous example, producing the results in Table 5.6.

The ANN is now more stable and can recognize 69 movements on 70, which

is a very high rate. From these results we can draw important conclusions:

the slight change in force exerted and in motion execution, helped the sys-

tem to generalize the training. Which means that now the ANN is able

recognize a hand gesture even if executed in different ways.

It is also important to mention that if the number of movement patterns

to recognize is diminished to 6, eliminating the index extension, the per-

formance of the classification ranges between the 99% and 100%. While if

we also eliminate the thumb opposition, we obtain a stable performance of

100%.

Another experiment is presented in order to show how the session indepen-

dence is improved.

Subject A CH OH WE WF TA TO IE Perf.

Total Movements 10 10 10 10 10 10 10

Total Errors 0 1 3 0 0 3 0 90%

Table 5.7: Results of the recognition phase, obtained running the script testWholeSet

with these inputs: folder A sess ind new ts and an Artificial Neural Network trained on

folder A normal 2.

Subject A CH OH WE WF TA TO IE Perf.

Total Movements 10 10 10 10 10 10 10

Total Errors 0 2 1 0 1 0 0 94.3%

Table 5.8: Results of the recognition phase, obtained running the script testWholeSet

with these inputs: folder A sess ind new ts and an Artificial Neural Network trained on

folder A sess ind.

Two networks that have been presented previously are compared. In par-

ticular, the first is the one trained not to be session independent, which
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recognized just the 95.7% of the movements (Table 5.5). The second is the

one trained to be session independent, which had a performance of 98.6%

(Table 5.6).

These two networks have been tested on a completely new “recognition set”,

acquired with a different configuration of electrodes than the one used to

acquire the training data of the two networks. Table 5.7 and Table 5.8 show

how badly the first network reacts to the new electrode configuration, com-

pared to the session independent ANN .

Even if the second network performed better than the first, its performance

still decreased if compared with the 98.6% obtained with the previous “recog-

nition set”. However this isn’t a problem, since the actual prosthesis are at-

tached to the human forearm in a way that the electrodes are always placed

in the same position.

5.5 Patient’s Fatigue and Concentration

Muscle fatigue is another important aspect of the EMG signal analysis. As

stated in the previous chapter, the signal varies its frequency components

in time and this issue can be solved thanks to the Wavelet Analysis.

Subject A CH OH WE WF TA TO IE Perf.

Total Movements 20 20 20 20 20 20 20

Total Errors 0 0 0 0 3 0 1 97.1%

Table 5.9: Results of the recognition phase, obtained running the script testWholeSet

with these inputs: folder A sess ind ts2 and an Artificial Neural Network trained with

100 % performance on folder A sess ind.

Subject A CH OH WE WF TA TO IE Perf.

Total Movements 30 30 30 30 30 30 30

Total Errors 0 2 0 0 9 0 1 94.3%

Table 5.10: Results of the recognition phase, obtained running the script testWholeSet

with these inputs: folder A sess ind ts3 and an Artificial Neural Network trained with

100 % performance on folder A sess ind.
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Unfortunately we still can see from some experiments that executing new

movements with very little relax time can lead to bad performances.

The example in Table 5.9 shows how the performances in Table 5.6 are re-

duced, by adding to the “recognition set” other ten contractions for each

movement type, and get even worse when other 10 bursts are added (Table

(5.10).

The fact of performing so many muscle contractions in such a small time

leads to a level of muscle fatigue that is difficult to face even with the Wavelet

Analysis. What is comforting is that, normally a person doesn’t perform a

total of 210 consecutive movements in a time range of 10 minutes.

It is also important to mention that Subject A realized that his concentra-

tion decreased from session to session, given the fact that he was bored and

tired. This highlights how the patient’s motivation is a key factor in the

whole training process, which can lead to great or very bad results.

5.6 Signal attenuation and filtering

Tests made on Subject C and Subject D gave different results than before,

in particular the system is able to recognize the first five movements with

the same performances, but unfortunately when it comes to the thumb op-

position and the index extension it doesn’t work anymore. This is due to

the fact that Subject C and D have more volume between the forearm mus-

cles and the skin. Moreover their muscles are less trained than the ones of

Subject A and Subject B.

The volume conductor properties largely determine the features of the de-

tected surface EMG signals, in terms of their signal amplitude and also in

terms of frequency content. Other experimental observations confirm an

inverse power relation between signal amplitude and the MU’s depth, es-

pecially because the contribution of the traveling wave of the MUAP falls

off rapidly with electrode-source distance. In general, it is assumed that

the biological tissue acts as a temporal low-pass filter. Indeed, the tissue

has a “blurring” effect on a MUAP by widening its traveling waves [17].

The Wavelet Analysis solved the issue related to the frequency component

modification, but it couldn’t overcome the problems related to the signal

amplitude. Indeed, the first five movements, are well recognized by the sys-

tem because they are produced by strong muscles, while thumb abduction

and index extension are not even segmented, since they are invisible also to

the human eye.

The results obtained by the tests performed on Subject C and D suggest
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that a patient with a similar body structure, will have to attend physio-

therapy and electrostimulation sessions to improve the muscle tone, before

training their own Artificial Neural Network.

5.7 Patient’s Motivation

From the tests performed on Subject C it was also possible to reinforce

some considerations made previously about the patient’s motivation. In-

deed, given the young age of Subject C, it was more difficult to make him

concentrate and motivate, in particular after the first failures obtained from

the thumb abduction and index extension. This suggests that, in particular

with young patient, it is important to develop a more attractive system,

which would support the patient with games based on the electromyogra-

phy analysis. An inspiring system could be the Otto Bock MyoBoy software,

which has been discussed in Chapter 2.

5.8 Patient’s Training

Other conclusion can be drawn from the test phase of this work, in par-

ticular it has been noticed how important is the training of the patient in

order to exert the right muscles contractions. In fact, when the acquisition

phase is concluded and the Artificial Neural Network is trained, the system

is able to recognize particular muscle contractions. This means that if the

network is trained to recognize the wrist extension, but then the patient,

not concentrated or badly trained, contracts also the muscles which extend

the fingers, the system will likely recognize an “open hand”. Therefore an

amputee has to continuously exercise his abilities, even after the first phase

in which he learns how to use the prosthesis. This is important in order not

to “forget” how to execute the muscle contractions in the right way.

Moreover, an amputee cannot see his own hand when performing a move-

ment, this produces new difficulties also in the acquisition phase: if the

trainer says to the patient to close his hand, there is no way that they can

see if the contraction has been performed correctly. This means that a new

software has to be designed in order to overcome this problem. The main

idea would be to train an Artificial Neural Network on data coming from

a large amount of people. This would produce a network with low perfor-

mances if we consider its application to a real prosthesis, but which would

still give an idea of the movement performed by the amputee.
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Chapter 6

Conclusions and Future

Directions

In this work we establish the basis for the design of a our own brand new

prosthesis, since the whole prosthetic control relies on the EMG signal anal-

ysis. The performances (98.6%) that the system is able to achieve are really

promising, considering that it is able to recognize seven motion patterns

with the use of just three channels. These seven basic patterns could be

fed into a high level controller, able to produce six different complex move-

ments, like key, power, precision, tripod grips, plus platform grasp and index

point. In this way the dexterity and the reliability of the hand are improved

with respect to previous works on the subject. Moreover we were able to

investigate the influence that factors like electrode displacement, fatigue,

body structure, concentration, motivation and the training of the patient

can influence the whole system.

Of course, for the patient’s sake the reliability and the recognition rate of

such a product should be of 100%. This goal is reachable just if the patient

is well trained, motivated and concentrated. This means that he needs a

trainer who helps him to overcome both the psychological and technical is-

sues related to the acquisition phase and to the training phase. Moreover,

people are different from each other, therefore, it is important to draw cus-

tomized approaches for each patient, in order to reach great results.

Learning to use such a system is like learning to drive, at the beginning it is

quite difficult, because of the lack of sensibility of the feet when approaching

to the pedals. But after some sessions of training, a person becomes able to

master the control of his car. The trainer of an amputee is more or less like

a driving instructor, who explains to his “student” how to perform certain

tasks and corrects him in case of mistake.
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This thesis is just the top of the iceberg, since many aspects of the EMG

controlled prosthesis still has to be accounted. The future directions are

mainly of three types, the first is related to the prosthesis design, the sec-

ond concerns the patient support, while the third is about the improvement

of the current work.

• The prosthesis design:

– substitute the personal computer with a portable

microcontroller;

– translate the Matlab code into a language which can be run on

the portable device;

– design a model of the hand following the specifications

presented in this thesis;

– model a system able to provide the vibrotactile feedback to the

patient (discussed in Chapter 2).

• The support to the patient:

– design a graphical software, which can support the patient

during the acquisition and the training. This tool would be

useful to help the trainer and the amputee to understand when

a movement has been correctly performed. The abstract

specifications of such a tool are described at the end of Chapter

5.

– design of a graphical software, which could motivate the patient

during his training phase. This means that patients, in

particular young people, could play with games based on the

EMG analysis, in order to improve their muscle ability without

getting bored.

• The improvement of the current work:

– acquire data from as many people as possible, in order to

improve the knowledge about the EMG signal and its analysis

and make more precise statistic evaluations.

The dream of designing a biomimetic prosthesis, as similar as possible to

the real hand is close to being considered utopia. But what engineers and
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biologists can do, is to try their best to design a prosthetic hand which can

help amputees to come back, at some extent, to their normal life.

This thesis tried to give some hints to achieve this important goal, from the

control of the prosthesis to the support of the patient.
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search and preliminary results. IEEE/Asme Transaction on Mecha-

tronics, 7(2), 2002.

[44] TouchBionics. iLimb. http://www.touchbionics.com/i-LIMB/.

[45] J.M. Herrmann, A. Biess, F. Worgotter, and Otto Bock HealthCare

GmbH. Control of multi-joint multi-sensor hand prostheses. Bfnt-

Goettingen.

[46] RSLSteeper. Bebionic pre-launch world premier.

[47] C. Cipriani, F. Zaccone, S. Micera, and M.C. Carrozza. On the

shared control of an emg-controlled prosthetic hand: Analysis of user-

prosthesis interaction. IEEE Transactions on Robotics, 24(1), 2008.

[48] M. Bergamasco and S. Scattareggia Marchese. The machanical design

of the marcus prosthetic hand. Proceedings of IEEE International

Workshop on Robot and Human Communication, pages 95–100, 1995.

[49] D.P.J. Cotton, A. Cranny, P.H. Chappell, and N.M. Whiteand S.P.

Beeby. Control strategies for a multiple degree of freedom prosthetic



BIBLIOGRAPHY 145

hand. The Journal of the Institute of Measurement and Control, 40:24–

27, 2007.

[50] C.M. Light and P.H. Chappell. Development of a lightweight and

adaptable multiple-axis hand prosthesis. Medical Engineering &

Physics, 22:679–684, 2001.

[51] J.L. Pons, E. Rocon, R. Ceres, D. Reynaerts, B. Saro, S. Levin,

and W. Van Moorleghem. The manus-hand dextrous robotics upper

limb prosthesis: Mechanical and manipulation aspects. Autonomous

Robots, 16:143–163, 2004.

[52] K.B. Fite, T.J. Withrow, K.W.Wait, and M. Goldfarb. A gas-actuated

anthropomorphic transhumeral prosthesis. IEEE International Con-

ference on Robotics and Automation, 2007.

[53] S. Schulz, C. Pylatiuk, and G. Bretthauer. A new ultralight anthropo-

morphic hand. Proceedings of the 2001 IEEE International Conference

on Robotics & Automation, 2001.

[54] A. Cranny, D.P.J. Cotton, P.H. Chappell, S.P. Beeby, and N.M White.

Thick-film force, slip and temperature sensors for a prosthetic hand.

Measurement science and technology, 16:931–941, 2005.

[55] C.M. Light, P.H. Chappell, B. Hudgins, and K. Engelhart. Intelli-

gent multifunction myoelectric control of hand prostheses. Journal of

Medical Engineering & Technology, 2002.

[56] P.J. Kyberd and P.H. Chappell. The southampton hand: An intel-

ligent myoelectric prosthesis. Journal of Rehabilitation Research and

Development, 31(4):326–334, 1994.

[57] P.J. Kyberd, O.E. Holland, P.H. Chappell, S. Smith, R. Tregidgo,

P.J Bagwell, and M. Snaith. Marcus: a two degree of freedom hand

prosthesis with hierarchical grip control. IEEE Transactions on Re-

habilitation Engineering, 3(1), 1995.

[58] C. Pylatiuk, S. Mounier, A. Kargov, S. Schulz, and G. Bretthauer.

Progress in the development of a multifunctional hand prosthesis.

Proc. IEEE EMBS Int. Conf., San Francisco, CA,, 2004.

[59] P. J. Kyberd, N. Mustapha, F. Carnegie, and P. H. Chappell. Clinical

experience with a hierarchically controlled myoelectric hand prosthesis

with vibro-tactile feedback. Prosthetics and Orthotics International,

1993.



146 BIBLIOGRAPHY

[60] M. C. Carrozza, G. Cappiello, S. Micera, B. B. Edin, L. Beccai, and

C. Cipriani. Design of a cybernetic hand for perception and action.

Biol. Cybern., 2006.

[61] A.H. Arieta, H. Yokoi, T. Arai, and W. Yu. Study on the effects of

electrical stimulation on the pattern recognition for an emg prosthetic

application. Proceedings of the 27th IEEE annual conference of the

Engineering in Medicine and Biology Society, pages 6919–6912, 2005.

[62] A. Chatterjee, P. Chaubey, J. Martin, and N.V. Thakor. Quantifying

prosthesis control improvements using a vibrotactile representation of

grip force. Region 5 Conference, 2008 IEEE, pages 1–5, 2008.

[63] X. Jia, M. A. Koenig, X. Zhang, J. Zhang, T. Chen, and Z. Chen.

Residual motor signal in long-term human severed peripheral nerves

and feasibility of neural signal controlled artificial limb. The Journal

of Hand Surgery, 2007.

[64] G. S. Dhillon and K. W. Horch. Direct neural sensory feedback and

control of a prosthetic arm. IEEE Trans. Neural Syst. Rehabil. Eng.,

2005.

[65] T.A. Kuiken, L.A. Miller, R.D. Lipschutz, B.A. Lock, K. Stubblefield,

P.D. Marasco, P. Zhou, and G.A. Dumanian. Targeted reinnervation

for enhanced prosthetic arm function in a woman with a proximal

amputation: a case study. Lancet, 2007.

[66] Childress D.S. Historical aspects of powered-limb prostheses. Clin

Pros and Orth, 9(1):2–13, 1985.

[67] P. Parker, J.A. Stuller, and R.N. Scott. Signal processing for the

multistate myoelectric channel. Proceedings of the IEEE, 1977.

[68] N. Hogan and R.W. Mann. Myoelectric signal processing: Optimal

estimation applied to electromyography-part i: Derivation of the op-

timal myoprocessor. IEEE Transactions on Biomedical Engineering,

1980.

[69] D. Graupe and W.K. Cline. Functional separation of emg signals via

arma identification methods for prosthesis control purposes. IEEE

Transactions on Systems, Man, and Cybernetics, 1975.

[70] P. Parker, K. Englehart, and B. Hudgins. Myoelectric signal processing

for control of powered limb prostheses. Journal of Electromyography

and Kinesiology, 2006.



BIBLIOGRAPHY 147

[71] B. Hudgins, P. Parker, and R.N. Scott. A new strategy for. multifunc-

tion myoelectric control. IEEE Transactions on Biomedical Engineer-

ing, 1993.

[72] G.N Saridis and T. Gootee. Emg pattern analysis and classification

for a prosthetic arm. IEEE Transactions on Biomedical Engineering,

1982.

[73] P.C. Doershuk, D.E. Gustafson, and A.S. Willsky. Upper extremity

limb function discrimination using emg signal analysis. IEEE Trans-

actions on Biomedical Engineering, 1983.

[74] P.C. Doershuk, D.E. Gustafson, and A.S. Willsky. Upper extremity

limb function discrimination using emg signal analysis. IEEE Trans-

actions on Biomedical Engineering, 1983.

[75] P.C. Doershuk, D.E. Gustafson, and A.S. Willsky. Upper extremity

limb function discrimination using emg signal analysis. IEEE Trans-

actions on Biomedical Engineering, 1983.

[76] S. Du and M. Vuskovic. Temporal vs. spectral approach to feature

extraction from prehensile emg signals. Information Reuse and Inte-

gration, 2004.

[77] Xiao wen Zhang, Yu pu Yang, Xiao ming Xu, Tian pei Hu, Zhong

hua Gao, Jian Zhang, Tong yi Chen, , and Zhong wei Chen. Clinical

detection and movement recognition of neuro signals. J Zhejiang Univ

Sci B., 2005.

[78] J. Rafiee, M.A. Rafiee, N. Prause, and M.P. Schoen. Biorobotics: Opti-

mized biosignal classification using mother wavelet matrix. IEEE 35th

Annual Northeast Bioengineering Conference, Harvard-MIT Division

of Health Sciences and Technology, Cambridge, MA, USA, 2009.

[79] Xiaodong Zhang, Weifeng Diao, and Zhiqiang Cheng. Digital Human

Modeling - Wavelet Transform and Singular Value Decomposition of

EEG Signal for Pattern Recognition of Complicated Hand Activities.

2007.

[80] S. Bitzer and Patrick van der Smagt. Learning emg control of a robotic

hand: Towards active prostheses. Proceedings of the 2006 IEEE In-

ternational Conference on Robotics and Automation, pages 2819–2823,

2006.



148 BIBLIOGRAPHY

[81] C. Castellini, Patrick van der Smagt, G. Sandini, and G. Hirzinger. A

novel emg motion pattern classifier based on wavelet transform and

nonlinearity analysis method. Proceedings of the 2006 IEEE Inter-

national Conference on Robotics and Biomimetics, pages 1494–1499,

2006.

[82] Yi-Hung Liu, Han-Pang Huang, and Chang-Hsin Weng. Recognition

of electromyographic signals using cascaded kernel learning machine.

IEEE/ASME Transactions on Mechatronics, 12(3):253–264, 2007.

[83] Jun-Uk Chu, Inhyuk Moon, Yun-Jung Lee, Shin-Ki Kim, and

Mu-Seong Mun. A supervised feature-projection-based real-time

emg pattern recognition for multifunction myoelectric hand control.

IEEE/ASME Transactions on Mechatronics, 12(3):282–290, 2007.

[84] G.R. Naik, D.K. Kumar, H. Weghorn, and M. Palaniswami. Sub-

tle hand gesture identification for hci using temporal decorrelation

source separation bss of surface emg. 9th Biennial Conference of the

Australian Pattern Recognition Society on Digital Image Computing

Techniques and Applications, 2007.

[85] S. Maier and Patrick van der Smagt. Surface emg suffices to classify

the motion of each finger independently. Proceedings of MOVIC 2008,

9th International Conference on Motion and Vibration Control, 2008.

[86] A. Kiso and H. Seki. Human forearm motion discrimination based

on myoelectric signal by fuzzy inference. IEEE 11th International

Conference on Rehabilitation Robotics, pages 295–299, 2009.

[87] M. Hioki and H. Kawasaki. Estimation of finger joint angles from

semg using a recurrent neural network with time-delayed input vectors.

IEEE 11th International Conference on Rehabilitation Robotics, pages

289–294, 2009.

[88] C. Castellini and Patrick van der Smagt. Surface emg in advanced

hand prosthetics. Biol Cybern, 2009.

[89] C. Castellini, Patrick van der Smagt, G. Sandini, and G. Hirzinger.

Surface emg for force control of mechanical hands. IEEE International

Conference on Robotics and Automation, pages 725–730, 2008.

[90] COL Geoffrey Ling M.D. Ph.D.: Program Manager. Revolu-

tionizing prosthetics. Technical report, Defense Science Office -

http://www.darpa.mil.



BIBLIOGRAPHY 149

[91] R. Weir, M. Mitchell, S. Clark, G. Puchhammer, K. Kelley,

M. Haslinger, N. Kumar2, R. Hofbauer, Kuschnigg P., V. Cornelius,

M. Eder, and R. Grausenburger. New multifunctional prosthetic arm

and hand systems. Proceedings of the 29th Annual International Con-

ference of the IEEE EMBS, 2007.

[92] L. M. Smurr, K. Gulick, K. Yancosek, and Oren Ganz. Managing the

upper extremity amputee: A protocol for success. Journal of Hand

Therapy, 21:160–176, 2008.

[93] Mark R. Cutkosky. On grasp choice, grasp models, and the design of

hands for manufacturing tasks. IEEE Transactions On Robotics and

Automation, 5(3):269–279, 1989.

[94] T. Feix, R. Pawlik, H.B. Schmiedmayer, J. Romero, and

D. Kragic. The generation of a comprehensive grasp taxonomy.

http://web.student.tuwien.ac.at, 2008.

[95] http://users.rowan.edu/ polikar/wavelets/wttutorial.html.

[96] http://www.wavelet.org/tutorial/wbasic.htm.

[97] D. Moshou, I. Hostens, G. Papaioannou, and H. Ramon. Wavelets

and self-organizing maps in electromyogram (emg) analysis. 2000.

[98] MIT lecture by professor Strang Gilbert: http://ocw.mit.edu/

OcwWeb/Mathematics/18-06Spring-2005/VideoLectures/detail/lecture29.htm.

[99] David Austin. We recommend a singular value decomposition. Amer-

ican Mathematical Socitey, 2010.

[100] MathWorks. Neural Network Toolbox Documentation.

[101] K. Madsen, H.B. Nielsen, and O. Tingleff. Methods for non-linear least

squares problems. 2004.

[102] R. Rojas. Neural Networks. Springer-Verlag, 1996.

[103] Symon Hayjin. Neural Networks. Pearson Education, 2005.

[104] D. Dumitru and D.L. Jewett. Far-field potentials. Muscle and Nerve,

16(3):237–254, 2004.



Appendix A

The Implementation of the

Project

The following Matlab scripts were included with the use of Florian Knorn’s

M-code LaTeX Package.

A.1 Data Acquisition

acquireData.m :

1 %% AcquireData

2 % This function is used to acquire the data from the EMG board.

3 % It calls an external application written in C, which starts

4 % the communication with the board and saves the signals into

5 % different folders.

6 % This script actually load the data stored into the folders

7 % created by the C application.

8 %

9 % By Giuseppe Lisi for Politecnico di Milano

10 % beppelisi@gmail.com

11 % 8 June 2010

12

13 %% Inputs

14 %

15 % np: is the new folder in which we want to save the acquired

16 % data. Usually it is the name of the person.

17 %

18 % mov: is the name of the movement.

19 %

20 % id: is the movement id (for example the ID of the Close Hand
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21 % is 1)

22 %

23 % prog: is the progressive number of a given movement (at the

24 % first acquisition of a Close Hand the prog is 1, at the

25 % second acquisition of the Close Hand is 2 and so on )

26

27 %% Outputs

28 %%

29 function acquireData(np,mov,id,prog)

30 close all ;

31

32 %calls the external application serialComm, which creates a new

33 %folder and store the acquired data inside (txt files).

34 comm=['./serialComm ' np ' ' mov ' ' sprintf ( '%d' ,id) ' ' prog]

35 [status,result] = unix (comm, '-echo' );

36 c = cell(1, 4);

37

38 %the txt files saved by the external application are loaded b y

39 %the script.

40

41 file=[ '/Users/giuseppelisi/University/Thesis/Matlab/' ...

42 'FilesNewEmg/serial/' np '/ch1/' sprintf ( '%d' ,id)...

43 '-' prog '-' mov '.txt' ];

44

45 fid = fopen (file);

46 c{1,1 } = fscanf (fid, '%d' , [1 inf])';

47

48 fclose (fid);

49

50

51 file=[ '/Users/giuseppelisi/University/Thesis/Matlab/' ...

52 'FilesNewEmg/serial/' np '/ch2/' sprintf ( '%d' ,id)...

53 '-' prog '-' mov '.txt' ];

54

55 fid = fopen (file);

56 c{1,2 } = fscanf (fid, '%d' , [1 inf])';

57

58 fclose (fid);

59

60

61 file=[ '/Users/giuseppelisi/University/Thesis/Matlab/' ...

62 'FilesNewEmg/serial/' np '/ch3/' sprintf ( '%d' ,id)...

63 '-' prog '-' mov '.txt' ];

64

65 fid = fopen (file);

66 c{1,3 } = fscanf (fid, '%d' , [1 inf])';

67

68 fclose (fid);

69
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70 c{1,4 }=id;

71

72 % useful to see if the signal has been segmented well.

73 f=splitFilter(c,1,1,0,1,np,1,1);

74

75

76 end

A.2 Artificial Neural Network Training

training.m :

1 %% Training

2 % This function is used to train a network on data contained

3 % inside a folder. This data are the EMG signals acquired

4 % from a single person using three different channels.

5 %

6 % By Giuseppe Lisi for Politecnico di Milano

7 % beppelisi@gmail.com

8 % 8 June 2010

9

10 %% Inputs

11 % debug=1: to pause the segmentation phase and plot the

12 % figures of each segemented signal. Debug mode

13 %

14 % np: (name of the person) is the name of the folder in

15 % which are contained the training data.

16 %

17 % plotting=1: to save the figures of the segmented

18 % signals inside the 'img' folder contained inside the np

19 % folder. 'img' is automatically created.

20 %

21 % ch2=1: if the second channel is used.

22 %

23 % ch3=1: if the third channel is used.

24 %% Outputs

25 %

26 % net: is the trained artificial neural network

27 %

28 % mov: is the vector containing the number of movement

29 % performed during the test phase

30 %

31 % err: is the vector containing the errors during the test

32 % phase

33 %
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34 % perf: is the training performance achived

35 %%

36 function [net,mov,err,perf]=training(debug,np,plotting,ch2,c h3)

37 close all ;

38 clc ;

39

40 % converts data: txt - > matlab

41 disp ( 'Converting in matlab format' )

42 [c movNum]=convertAll(debug,np,plotting);

43

44 % extracts the feature vectors from all the signals containe d

45 % in the np folder.

46 f=takeFeatures(c,debug,plotting,np,ch2,ch3);

47

48 if ¬isempty (f {1,1 })

49 %trains an artificial neural network

50 [net,mov,err,perf]=myNN(f,movNum);

51 else

52 net=1;

53 mov=1;

54 err=1;

55 perf=1;

56 end

57

58

59 end

convertAll.m :

1 %% Convert All

2 % This function converts all the txt files into the matlab

3 % format.

4 % Future users have to replace

5 % /Users/giuseppelisi/University/...

6 % Thesis/Matlab/FilesNewEmg/serial/

7 % with their own favourite folder

8 % Remember that this code is run on a uinix based machine,

9 % therefore it is

10 % important to modify some OS oriented commands.

11 %

12 % By Giuseppe Lisi for Politecnico di Milano

13 % beppelisi@gmail.com

14 % 8 June 2010

15

16 %% Inputs

17 % debug=1: to pause the segmentation phase and plot the figur es
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18 % of each segemented signal. Debug mode

19 %

20 % np: is the name of the folder in which are contained the

21 % training data.

22 %

23 % plotting=1: to save the figures of the segmented signals

24 % inside the 'img' folder contained inside the np folder. 'im g'

25 % is automatically created.

26 %

27 %% Outputs

28 % c: is the cell array containing the converted data.

29 %%

30 function [c movNumber]=convertAll(debug,np,plotting)

31

32 file=[ '/Users/giuseppelisi/University/Thesis/' ...

33 'Matlab/FilesNewEmg/serial/' np '/ch1/ * .txt' ];

34 d = dir (file);

35

36 fileIndex = find ( ¬[d.isdir]);

37 len= length (fileIndex);

38 c = cell(len, 4);

39 movNumber=1;

40 movId=[];

41 movKey=[];

42

43

44

45 for i = 1: length (fileIndex)

46

47 fileName = d(fileIndex(i)).name;

48 movement= sscanf (fileName, '%d%* s' );

49 f=[ '/Users/giuseppelisi/University/Thesis/Matlab/' ...

50 'FilesNewEmg/serial/' np '/ch1/' fileName];

51 data=convertFile2MAT(f);

52 c{i,1 }=data;

53 f=[ '/Users/giuseppelisi/University/Thesis/Matlab/' ...

54 'FilesNewEmg/serial/' np '/ch2/' fileName];

55 data=convertFile2MAT(f);

56 c{i,2 }=data;

57 f=[ '/Users/giuseppelisi/University/Thesis/Matlab/' ...

58 'FilesNewEmg/serial/' np '/ch3/' fileName];

59 data=convertFile2MAT(f);

60 c{i,3 }=data;

61

62 pos= find (movId==movement);

63 if ( isempty (pos))

64 % here the movement IDs are mapped into a key ID in order to

65 % make it possible to use data ordered whith different IDs

66 % inside the folder
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67 movId=[movId movement];

68 movKey=[movKey movNumber];

69 c{i,4 }=movNumber;

70 movNumber=movNumber+1;

71 else

72 c{i,4 }=movKey(pos);

73 end

74 end

75 movId

76 movKey

77 movNumber=movNumber-1;

78

79 end

convertFile2MAT.m :

1 %% ConvertFile2Mat

2 % This function converts each single txt file in matlab forma t

3 %

4 % By Giuseppe Lisi for Politecnico di Milano

5 % beppelisi@gmail.com

6 % 8 June 2010

7 %% Inputs

8 % file: is the file to convert

9 %% Outputs

10 % a: is the converted matlab file

11 %%

12 function a=convertFile2MAT(file)

13

14 fid = fopen (file);

15 a = fscanf (fid, '%d' , [1 inf])';

16 fclose (fid);

17

18

19 end

takeFeatures.m :

1 %% TakeFeatures

2 % This function extracts the feature vectors from all the

3 % signals contained in the np folder.

4 %
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5 % By Giuseppe Lisi for Politecnico di Milano

6 % beppelisi@gmail.com

7 % 8 June 2010

8

9 %% Inputs

10 % c: is the cell array containing all the singals converted in

11 % matlab format.

12 %

13 % debug=1: to pause the segmentation phase and plot the figur es

14 % of each segemented signal. Debug mode

15 %

16 % np: (name of the person) is the name of the folder in which

17 % are contained the training data.

18 %

19 % plotting=1: to save the figures of the segmented signals

20 % inside the 'img' folder contained inside the np folder.

21 % 'img' is automatically created.

22 %

23 % ch2=1: if the second channel is used.

24 %

25 % ch3=1: if the third channel is used.

26 %% Outputs

27 % feat: is the cell array containing the feature vectors and

28 % the corresponding target vecors of the signals.

29 %%

30 function feat=takeFeatures(c,debug,plotting,np,ch2,ch3)

31 nsamp=size (c);

32 nsamp=nsamp(1);

33 feat = cell(nsamp, 2);

34

35 for i=1:nsamp

36 % each signal in the cell array is segmented and filtered

37 f=splitFilter(c,debug,0,plotting,i,np,ch2,ch3);

38 feat {i,1 }=f;

39 feat {i,2 }=c {i,4 };

40 end

41

42 end

splitFilter.m :

1 %% Split Filter

2 % This script is used to split the incoming signal and to

3 % filter it.

4 %

5 % By Giuseppe Lisi for Politecnico di Milano
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6 % beppelisi@gmail.com

7 % 8 June 2010

8 %% Inputs

9 % c: is the cell array containing all the signals in matlab

10 % format.

11 %

12 % debug=1: to pause the segmentation phase and plot the figur es

13 % of each segemented signal. Debug mode

14 %

15 % acq=1: if the script is used during the acquisition phase

16 %

17 % np: (name of the person) is the name of the folder in which

18 % are contained the training data.

19 %

20 % i: is the index representing the current single signal to

21 % process.

22 %

23 % plotting=1: to save the figures of the segmented signals

24 % inside the 'img'folder contained inside the np folder.

25 % 'img' is automatically created.

26 %

27 % ch2=1: if the second channel is used.

28 %

29 % ch3=1: if the third channel is used.

30 %% Outputs

31 % f: is the cell array containing all the feature vector

32 % related to the signal contained in c at the position i.

33 %%

34 function f=splitFilter(c,debug,acq,plotting,i,np,ch2,ch3)

35

36 c1=c {i,1 };

37 c2=c {i,2 };

38 c3=c {i,3 };

39 nsamp=c {i,4 };

40

41 % Rectification

42 y1= abs (c1-512);

43 y2= abs (c2-512);

44 y3= abs (c3-512);

45

46 f=[];

47 f1=[];

48 f2=[];

49 f3=[];

50

51 %Linear envelope

52 if ( length (y1) 6=1)

53

54 freqCamp=270; %sampling frequency



A.2. Artificial Neural Network Training ix

55 cutOffFreq=2; %cutoff frequency of the low-pass filter

56 nyquistFreq=cutOffFreq/(freqCamp/2);

57 [b,a]=butter(2,nyquistFreq);

58 %filt is the envelope of the rectified signal

59 filt1= filter (b,a,y1);

60 filt1=filt1(50: length (filt1));

61

62

63 filt2= filter (b,a,y2);

64 filt2=filt2(50: length (filt2));

65

66

67 filt3= filter (b,a,y3);

68 filt3=filt3(50: length (filt3));

69

70

71

72 % find the edges of each burst

73 [firstDiv,secondDiv]...

74 =findBurstEMG(filt1,filt2,filt3,debug,ch2,ch3);

75

76

77 %Filtering above 10 Hz

78 cutoffF1=10;

79 nyquistF=cutoffF1/(freqCamp/2);

80 [num,den] = butter(2,nyquistF, 'high' );

81 filtS= filter (num,den,c1);

82 filtSign=filtS(50: length (filtS));

83

84 filtS2= filter (num,den,c2);

85 filtSign2=filtS2(50: length (filtS2));

86

87 filtS3= filter (num,den,c3);

88 filtSign3=filtS3(50: length (filtS3));

89

90 % the feature extraction is not performed during the

91 % acquisition phase.

92 if ( ¬acq)

93

94 for j=1: length (firstDiv)

95 f1(j,:)=...

96 extractFeatures(filtSign(firstDiv(j):secondDiv(j))) ;

97 end

98

99

100 if ch2

101 for j=1: length (firstDiv)

102 f2(j,:)=...

103 extractFeatures(filtSign2(firstDiv(j):secondDiv(j)) );
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104 end

105 end

106

107 if ch3

108 for j=1: length (firstDiv)

109 f3(j,:)=...

110 extractFeatures(filtSign3(firstDiv(j):secondDiv(j)) );

111 end

112 end

113

114 if ( ¬isempty (firstDiv))

115

116 f=[f1 f2 f3];

117 end

118

119 end

120

121 sum1=filt1(1) * 100;

122 sum2=filt2(1) * 100;

123 sum3=filt3(1) * 100;

124 thr1(1)=sum1;

125 thr2(1)=sum2;

126 thr3(1)=sum3;

127 % computing the 'splitting threshold' in order to plot it

128 for i=2: length (filt1)

129 sum1=sum1+filt1(i);

130 thr1(i)=sum1/i;

131 sum2=sum2+filt2(i);

132 thr2(i)=sum2/i;

133 sum3=sum3+filt3(i);

134 thr3(i)=sum3/i;

135 end

136

137

138

139 if debug

140 % Plots the segmentation of the envelope of the first

141 % channel.

142 figure ;

143 plot (1: length (filt1),filt1)

144 hold on;

145 plot (1: length (thr1),thr1, 'y' );

146 axis ([1 length (filt1) 0 150]);

147 if ( ¬isempty (firstDiv))

148 vline(firstDiv, 'g' , '' );

149 vline(secondDiv, 'r' , '' );

150

151 end

152 % Plots the segmentation of the envelope of the second



A.2. Artificial Neural Network Training xi

153 % channel.

154 figure ;

155 plot (1: length (filt2),filt2)

156 hold on;

157 plot (1: length (thr2),thr2, 'y' );

158 axis ([0 length (filt2) 0 150]);

159 if ( ¬isempty (firstDiv))

160 vline(firstDiv, 'g' , '' );

161 vline(secondDiv, 'r' , '' );

162

163 end

164

165 % Plots the segmentation of the envelope of the third

166 % channel.

167 figure ;

168 plot (1: length (filt3),filt3)

169 hold on;

170 plot (1: length (thr3),thr3, 'y' );

171 axis ([0 length (filt3) 0 150]);

172 if ( ¬isempty (firstDiv))

173 vline(firstDiv, 'g' , '' );

174 vline(secondDiv, 'r' , '' );

175 end

176

177 % Plots the segmented and high-pass filtered signal of

178 % Channel 1.

179 figure ;

180 plot (1: length (filtSign),filtSign);

181 axis ([1 length (filtSign) -400 400]);

182 if ( ¬isempty (firstDiv))

183 vline(firstDiv, 'g' , '' );

184 vline(secondDiv, 'r' , '' );

185 end

186

187 % Plots the segmented and high-pass filtered signal of

188 % Channel 2.

189 if ch2

190 figure ;

191 plot (1: length (filtSign2),filtSign2);

192 axis ([0 length (filtSign2) -400 400]);

193 if ( ¬isempty (firstDiv))

194 vline(firstDiv, 'g' , '' );

195 vline(secondDiv, 'r' , '' );

196 end

197 end

198

199 % Plots the segmented and high-pass filtered signal of

200 % Channel 3.

201 if ch3
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202 figure ;

203 plot (1: length (filtSign3),filtSign3);

204 axis ([0 length (filtSign3) -400 400]);

205 if ( ¬isempty (firstDiv))

206 vline(firstDiv, 'g' , '' );

207 vline(secondDiv, 'r' , '' );

208 end

209 end

210 numberOFMovements= length (firstDiv)

211 if ( ¬acq)

212 ginput (1);

213 close all ;

214 end

215

216

217 end

218

219 % saving the figures of the fitered and segmented signal

220 % into the 'img' folder

221 if plotting

222 file2save=[ '/Users/giuseppelisi/University/Thesis/' ...

223 'Matlab/FilesNewEmg/serial/' np '/ch1/img/image' ...

224 sprintf ( '%d' ,nsamp) ' ' sprintf ( '%d' ,i) '.eps' ];

225 fig = figure ( 'visible' , 'off' );

226 plot (1: length (filtSign),filtSign, 'b' );

227 axis ([0 length (filtSign) -400 400]);

228 if ( ¬isempty (firstDiv))

229 vline(firstDiv, 'g' , '' );

230 vline(secondDiv, 'r' , '' );

231 end

232 saveas(fig,file2save, 'eps' );

233

234 if ch2

235 file2save=[ '/Users/giuseppelisi/University/Thesis/' ...

236 'Matlab/FilesNewEmg/serial/' np '/ch2/img/image' ...

237 sprintf ( '%d' ,nsamp) ' ' sprintf ( '%d' ,i) '.eps' ];

238 fig = figure ( 'visible' , 'off' );

239 plot (1: length (filtSign2),filtSign2, 'b' );

240 axis ([0 length (filtSign2) -400 400]);

241 if ( ¬isempty (firstDiv))

242 vline(firstDiv, 'g' , '' );

243 vline(secondDiv, 'r' , '' );

244 end

245 saveas(fig,file2save, 'eps' );

246 end

247

248

249 if ch3

250 file2save=[ '/Users/giuseppelisi/University/Thesis/' ...
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251 'Matlab/FilesNewEmg/serial/' np '/ch3/img/image' ...

252 sprintf ( '%d' ,nsamp) ' ' sprintf ( '%d' ,i) '.eps' ];

253 fig = figure ( 'visible' , 'off' );

254 plot (1: length (filtSign3),filtSign3);

255 axis ([0 length (filtSign3) -400 400]);

256 if ( ¬isempty (firstDiv))

257 vline(firstDiv, 'g' , '' );

258 vline(secondDiv, 'r' , '' );

259 end

260 saveas(fig,file2save, 'eps' );

261 end

262 end

263

264

265

266 end

267 end

findBurstEMG.m :

1 %% FindBurstEMG

2 % Function to find the edges of each burst

3 %

4 % By Giuseppe Lisi for Politecnico di Milano

5 % beppelisi@gmail.com

6 % 8 June 2010

7 %% Inputs

8 % signal1: is the liear envelope of the signal coming from

9 % Channel 1.

10 %

11 % signal2: is the liear envelope of the signal coming from

12 % Channel 2.

13 %

14 % signal3: is the liear envelope of the signal coming from

15 % Channel 3.

16 %

17 % debug=1: to pause the segmentation phase and plot the figur es

18 % of each segemented signal. Debug mode

19 %

20 % ch2=1: if the second channel is used.

21 %

22 % ch3=1: if the third channel is used.

23 %% Outputs

24 % secondDivision: vector containing all the ending edges of the

25 % bursts

26 %
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27 % firstDivision: vector conaining all the starting edges of the

28 % bursts

29 %%

30 function [firstDivision,secondDivision]=...

31 findBurstEMG(signal1,signal2,signal3,debug,ch2,ch3)

32

33 ls =length (signal1); %length of the signal

34 firstDivision=[];

35 secondDivision=[];

36

37 %54 samples correspond to 0.2 seconds of signal(sampling ra te

38 % 270Samp/Sec) normal burst duration corresponding to 1sec ond

39 sampleDur=54 * 5;

40

41 %normal movement

42 delay=40;

43

44 %short movement

45 %delay=20;

46

47 %the lower level under which it is impossible to start a burst

48 cost=10;

49

50 %factor for which the initial part of the moving average is

51 %computed in order to avoid fake initial bursts

52 mult=30;

53

54

55 %once the burst has been detected its edges have to be shifted

56 %back of this value

57 back=100;

58

59 % contain the value of the next ending edge. Equal to 1 if the

60 % start still have to be found

61 next1=1;

62 next2=1;

63 next3=1;

64

65 %sum for the threshold computation.

66 sum1=signal1(1) * mult;

67 sum2=signal2(1) * mult;

68 sum3=signal3(1) * mult;

69

70 %threshold for the three channels

71 thr1(1)=sum1;

72 thr2(1)=sum2;

73 thr3(1)=sum3;

74

75 % records the highest value found so far in all the three
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76 % channels

77 max=0;

78

79 %1 if first channel, 2 if second 3 if third

80 choice=0;

81

82 %restart=1 if the system is ready to detect a new burst

83 restart=0;

84

85 % empiric values for the decision to take about the burst

86 % start.

87 perc=22/100;

88 clos=1/20;

89

90 % burst edges detection

91 for i=2: ls

92

93 sum1=sum1+signal1(i);

94 thr1(i)=sum1/i;

95 sum2=sum2+signal2(i);

96 thr2(i)=sum2/i;

97 sum3=sum3+signal3(i);

98 thr3(i)=sum3/i;

99

100 if (signal1(i) ≥thr1(i)+perc * thr1(i) &&...

101 next1==1 && i >restart && signal1(i) >cost)

102 % prev contains the starting point of the edge.

103 prev1=i;

104 if (prev1-back >1)

105 prev1=prev1-back;

106 if (prev1+sampleDur <ls )

107 next1=prev1+sampleDur;

108 else

109 next1=1;

110 end

111 else

112 prev1=1;

113 next1=1+sampleDur;

114 end

115 end

116

117 if (i==next1)

118 %if the signal is still high - > delay the closing

119 %of the burst

120 if (signal1(i) >thr1(i)-clos * thr1(i))

121 if (next1+delay <ls )

122 next1=next1+delay;

123 else

124 next1= ls ;
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125 end

126 else

127 if (choice==1)

128

129 firstDivision=[firstDivision prev1];

130 secondDivision=[secondDivision next1];

131 max=0;

132 choice1=0;

133 restart=next1+back;

134 next1=1;

135 next2=1;

136 next3=1;

137 end

138 end

139 end

140

141 if (ch2)

142 if (signal2(i) ≥thr2(i)+perc * thr2(i) && next2==1 &&...

143 i >restart && signal2(i) >cost)

144

145 prev2=i;

146 if (prev2-back >1)

147 prev2=prev2-back;

148

149 if (prev2+sampleDur <ls )

150 next2=prev2+sampleDur;

151 else

152 next2=1;

153 end

154 else

155 prev2=1;

156 next2=1+sampleDur;

157 end

158 end

159 if (i==next2)

160 %if the signal is still high delay - > the closing

161 %of the burst

162 if (signal2(i) >thr2(i)-clos * thr2(i))

163 if (next2+delay <ls )

164 next2=next2+delay;

165 else

166 next2= ls ;

167 end

168 else

169

170 if (choice==2)

171 firstDivision=[firstDivision prev2];

172 secondDivision=[secondDivision next2];

173 max=0;
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174 choice2=0;

175 restart=next2+back;

176 next1=1;

177 next2=1;

178 next3=1;

179 end

180 end

181 end

182 end

183

184 if (ch3)

185 if (signal3(i) ≥thr3(i)+perc * thr3(i) && next3==1 &&...

186 i >restart && signal3(i) >cost)

187

188 prev3=i;

189

190 if (prev3-back >1)

191 prev3=prev3-back;

192 if (prev3+sampleDur <ls )

193 next3=prev3+sampleDur;

194 else

195 next3=1;

196 end

197 else

198 prev3=1;

199 next3=1+sampleDur;

200 end

201 end

202

203 if (i==next3)

204 %if the signal is still high - > delay the

205 %closing of the burst

206 if (signal3(i) >thr3(i)-clos * thr3(i))

207 if (next3+delay <ls )

208 next3=next3+delay;

209 else

210 next3= ls ;

211 end

212 else

213

214 if (choice==3)

215 firstDivision=[firstDivision prev3];

216 secondDivision=[secondDivision next3];

217 max=0;

218 choice3=0;

219 restart=next3+back;

220 next1=1;

221 next2=1;

222 next3=1;
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223 end

224 end

225 end

226 end

227

228 if signal1(i) >max && signal1(i) ≥thr1(i)+perc * thr1(i)

229 max=signal1(i);

230 choice=1;

231 end

232 if signal2(i) >max && ch2 && signal2(i) ≥thr2(i)+...

233 perc * thr2(i)

234 max=signal2(i);

235 choice=2;

236 end

237 if signal3(i) >max && ch3 && signal3(i) ≥thr3(i)+...

238 perc * thr3(i)

239 max=signal3(i);

240 choice=3;

241 end

242 end

243

244

245 % if there a burst start has been detected, but not the end,

246 % eliminate the

247 % burst

248 if ( ¬isempty (firstDivision) && ...

249 length (firstDivision) >length (secondDivision))

250 firstDivision=firstDivision(1: length (secondDivision));

251 end

extractFeatures.m :

1 %% ExtractFeatures

2 % this function extract the features from a given burst

3 %

4 % Features:

5 % - IEMG (Integral EMG)

6 % - MAV (Absolute Mean Value)

7 % - WAVELET COEFFICIENTS + SVD

8 %

9 % By Giuseppe Lisi for Politecnico di Milano

10 % beppelisi@gmail.com

11 % 8 June 2010

12

13 %% Inputs

14 % data: is the vector representing a burst.
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15 %% Outputs

16 % f: is the feature vector.

17 %%

18 function f=extractFeatures(data)

19 iemg=calculateIEMG(data);

20 mav=calculateMAV(data);

21 w=myWavelet(data);

22 f=[iemg mav];

23 f=cat(2,f,w');

24

25 % integral EMG

26 function iemg=calculateIEMG(data)

27 iemg= sum( abs (data));

28

29 % mean absolute value

30 function mav=calculateMAV(data)

31 mav=sum( abs (data))/ length (data);

32

33 % Wavelet Coefficient + SVD

34 function w=myWavelet(data)

35

36 % computing the wavelet

37 c = cwt(data,1:5, 'morl' );

38

39 % reducing the dimensionality of the wavelet coefficient ma trix

40 vector= svd (c);

41

42 w=vector;

myNN.m :

1 %% MyNN

2 % This function trains and simulates an artificial neural

3 % network

4 %

5 % By Giuseppe Lisi for Politecnico di Milano

6 % beppelisi@gmail.com

7 % 8 June 2010

8

9 %% Inputs

10 % feat: is the cell array containing the feature vectors

11 % and the

12 % corresponding target vecors of the signals.

13 %

14 % movNum: is the number of movement types (7 in this thesis)

15
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16 %% Outputs

17 %

18 % net: is the trained artificial neural network

19 %

20 % movementDone: is the vector containing the number of movem ent

21 % performed during the

22 % test phase

23 %

24 % errorOnTheMovementDone: is the vector containing the err ors

25 % during the test phase

26 %

27 % performance: is the training performance achived

28 %%

29 function ...

30 [net,movementsDone,errorOnTheMovementsDone,performa nce]...

31 =myNN(feat,movNum)

32

33 % divide the incoming data into Training, Validation and Tes t

34 % sets.

35 [p t vp vt tp tt]=divideData(feat,movNum,3/5,1/5,1/5);

36

37 % create the ANN

38 net=newff(p,t,35);

39

40 % modify some network parameters (values found empirically )

41 v.P=vp;

42 v.T=vt;

43 net.trainParam.mu=0.9;

44 net.trainParam.mu dec=0.8;

45 net.trainParam.mu inc=1.5;

46 net.trainParam.goal=0.001;

47

48 % train the ANN

49 net = train(net,p,t, {}, {},v);

50

51 % simulate the network

52 out = sim(net,tp);

53

54

55 % computing the performances

56 lout= length (out(1,:));

57 for i=1:lout

58 y(:,i)= ismember(out(:,i), max(out(:,i)));

59 end

60

61 error =zeros (1,movNum);

62 elements= zeros (1,movNum);

63 good=0;

64
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65

66 ltp= length (tp(1,:));

67 for i=1:ltp

68 if (eq(tt(:,i),y(:,i)))

69 good=good+1;

70 else

71 error (logical(tt(:,i)))= error (logical(tt(:,i)))+1;

72 end

73 elements(logical(tt(:,i)))=elements(logical(tt(:,i) ))+1;

74 end

75 movementsDone=elements

76 errorOnTheMovementsDone= error

77

78 performance=good/ltp * 100

79 end

divideData.m :

1 %% DivideData

2 % Divides the data in 3 training sets: training, validation

3 % and testing

4 %

5 % By Giuseppe Lisi for Politecnico di Milano

6 % beppelisi@gmail.com

7 % 8 June 2010

8 %% Inputs

9 %

10 % data: data to divide

11 %

12 % movNum: numer of the movement types

13 %

14 % pperf: percentage for the training set

15 %

16 % vperc: percentage for the validation set

17 %

18 % tperc: percentage for the test set

19

20 %% Outputs

21 % p training set

22 % t target of the training set

23 % vp validation set

24 % vt target for the validation set

25 % tp test set

26 % tt target of the test set

27

28 %%



xxii Appendix A. The Implementation of the Project

29 function [p t vp vt tp tt]=...

30 divideData(data,movNum,pperc,vperc,tperc)

31

32 f=cell(movNum,1);

33 targ=cell(movNum,1);

34 nsamp=size (data);

35 nsamp=nsamp(1);

36 base= zeros (1,movNum);

37

38 p=[];

39 t=[];

40 vp=[];

41 vt=[];

42 tp=[];

43 tt=[];

44

45

46 for i=1:nsamp

47

48 f {data {i,2 }}=[f {data {i,2 }} data {i,1 }'];

49 nmov=size (data {i,1 });

50 nmov=nmov(1);

51 for j=1:nmov

52 base(data {i,2 })=1;

53 targ {data {i,2 }}=[targ {data {i,2 }} base'];

54 base(data {i,2 })=0;

55 end

56

57 end

58

59 for i=1:movNum

60 train=f {i };

61 target=targ {i };

62 sz= size (train);

63 len=sz(2);

64 per= randperm (len);

65 traintemp=train(:,per);

66 targettemp=target(:,per);

67 trlen= floor (len * pperc);

68 vallen= floor (len * vperc);

69 testlen= floor (len * tperc);

70 trlen=trlen+len-(trlen+vallen+testlen);

71

72 trainingrange=1:trlen;

73 validationrange=trlen+1:trlen+vallen;

74 testrange=trlen+vallen+1:trlen+vallen+testlen;

75

76 p=[p traintemp(:,trainingrange)];

77 t=[t targettemp(:,trainingrange)];
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78 vp=[vp traintemp(:,validationrange)];

79 vt=[vt targettemp(:,validationrange)];

80 tp=[tp traintemp(:,testrange)];

81 tt=[tt targettemp(:,testrange)];

82 end

83

84 end

A.3 Motion Recognition

recognize.m :

1 %% Recognize

2 % this script recognizes new movements, acquired at the mome nt.

3 % It uses a trained ANN

4 %

5 % By Giuseppe Lisi for Politecnico di Milano

6 % beppelisi@gmail.com

7 % 8 June 2010

8

9 %% Inputs

10 % net: is the trained ANN used for the recognition

11 %

12 % mov: is the number of movement types on which the ANN has

13 % been trained.

14

15 %% Outputs

16 %%

17 function recognize(net,ch2,ch3,mov)

18

19 close all ;

20 comm=['./serialComm recognize 1 1 1' ]

21 [status,result] = unix (comm, '-echo' );

22 c = cell(1, 4);

23

24 file=[ '/Users/giuseppelisi/University/Thesis/Matlab/' ...

25 'FilesNewEmg/serial/recognize/ch1/1-1-1.txt' ];

26

27 fid = fopen (file);

28 c{1,1 } = fscanf (fid, '%d' , [1 inf])';

29

30 fclose (fid);

31

32

33 file=[ '/Users/giuseppelisi/University/Thesis/Matlab/' ...
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34 'FilesNewEmg/serial/recognize/ch2/1-1-1.txt' ];

35

36 fid = fopen (file);

37 c{1,2 } = fscanf (fid, '%d' , [1 inf])';

38

39 fclose (fid);

40

41

42 file=[ '/Users/giuseppelisi/University/Thesis/Matlab/' ...

43 'FilesNewEmg/serial/recognize/ch3/1-1-1.txt' ];

44

45 fid = fopen (file);

46 c{1,3 } = fscanf (fid, '%d' , [1 inf])';

47

48 fclose (fid);

49

50 c{1,4 }=0;

51

52 % extract the feature vectors from the burst contained in the

53 % single signal

54 f=splitFilter(c,1,0,0,1, 'recognize' ,ch2,ch3)'

55

56 % uses the ANN to reognize the movement performed.

57 if ( ¬isempty (f))

58 out = sim(net,f);

59

60

61 % performance evaluation, depending on the number of moveme nts

62 % on which the ANN is trained

63 lout= length (out(1,:));

64 if mov==7

65 for i=1:lout

66 y= ismember(out(:,i), max(out(:,i)))'

67 if (eq(y,[1 0 0 0 0 0 0]))

68 [status,result] = unix ( 'say close hand' , '-echo' );

69 elseif (eq(y,[0 1 0 0 0 0 0]))

70 [status,result] = unix ( 'say open hand' , '-echo' );

71 elseif (eq(y,[0 0 1 0 0 0 0]))

72 [status,result] = unix ( 'say wrist extension' , '-echo' );

73 elseif (eq(y,[0 0 0 1 0 0 0]))

74 [status,result] = unix ( 'say wrist flexion' , '-echo' );

75 elseif (eq(y,[0 0 0 0 1 0 0]))

76 [status,result] = unix ( 'say thumb abduction' , '-echo' );

77 elseif (eq(y,[0 0 0 0 0 1 0]))

78 [status,result] = unix ( 'say thumb opposition' , '-echo' );

79 elseif (eq(y,[0 0 0 0 0 0 1]))

80 [status,result] = unix ( 'say index extension' , '-echo' );

81 end

82 end
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83 end

84

85

86 if mov==6

87 for i=1:lout

88 y= ismember(out(:,i), max(out(:,i)))'

89 if (eq(y,[1 0 0 0 0 0]))

90 [status,result] = unix ( 'say close hand' , '-echo' );

91 elseif (eq(y,[0 1 0 0 0 0]))

92 [status,result] = unix ( 'say open hand' , '-echo' );

93 elseif (eq(y,[0 0 1 0 0 0]))

94 [status,result] = unix ( 'say wrist extension' , '-echo' );

95 elseif (eq(y,[0 0 0 1 0 0]))

96 [status,result] = unix ( 'say wrist flexion' , '-echo' );

97 elseif (eq(y,[0 0 0 0 1 0]))

98 [status,result] = unix ( 'say thumb abduction' , '-echo' );

99 elseif (eq(y,[0 0 0 0 0 1]))

100 [status,result] = unix ( 'say thumb opposition' , '-echo' );

101 end

102 end

103 end

104

105 if mov==5

106 for i=1:lout

107 y= ismember(out(:,i), max(out(:,i)))'

108 if (eq(y,[1 0 0 0 0]))

109 [status,result] = unix ( 'say close hand' , '-echo' );

110 elseif (eq(y,[0 1 0 0 0]))

111 [status,result] = unix ( 'say open hand' , '-echo' );

112 elseif (eq(y,[0 0 1 0 0]))

113 [status,result] = unix ( 'say wrist extension' , '-echo' );

114 elseif (eq(y,[0 0 0 1 0]))

115 [status,result] = unix ( 'say wrist flexion' , '-echo' );

116 elseif (eq(y,[0 0 0 0 1]))

117 [status,result] = unix ( 'say thumb abduction' , '-echo' );

118 end

119 end

120 end

121

122 if mov==4

123 for i=1:lout

124 y= ismember(out(:,i), max(out(:,i)))'

125 if (eq(y,[1 0 0 0]))

126 [status,result] = unix ( 'say close hand' , '-echo' );

127 elseif (eq(y,[0 1 0 0]))

128 [status,result] = unix ( 'say open hand' , '-echo' );

129 elseif (eq(y,[0 0 1 0]))

130 [status,result] = unix ( 'say wrist extension' , '-echo' );

131 elseif (eq(y,[0 0 0 1]))
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132 [status,result] = unix ( 'say wrist flexion' , '-echo' );

133 end

134 end

135 end

136

137 if mov==3

138 for i=1:lout

139 y= ismember(out(:,i), max(out(:,i)))'

140 if (eq(y,[1 0 0]))

141 [status,result] = unix ( 'say close hand' , '-echo' );

142 elseif (eq(y,[0 1 0]))

143 [status,result] = unix ( 'say open hand' , '-echo' );

144 elseif (eq(y,[0 0 1]))

145 [status,result] = unix ( 'say wrist extension' , '-echo' );

146

147 end

148 end

149 end

150

151 if mov==2

152 for i=1:lout

153 y= ismember(out(:,i), max(out(:,i)))'

154 if (eq(y,[1 0]))

155 [status,result] = unix ( 'say close hand' , '-echo' );

156 elseif (eq(y,[0 1]))

157 [status,result] = unix ( 'say open hand' , '-echo' );

158 end

159 end

160 end

161

162 end

163 end

A.4 Test

testNet.m :

1 %% TestNet

2 % this function runs many times the training of different ANN ,

3 % on different commutations of the training data. This is don e

4 % in order to understand the average performances of the

5 % network.

6 %

7 % By Giuseppe Lisi for Politecnico di Milano

8 % beppelisi@gmail.com
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9 % 8 June 2010

10

11 %% Inputs

12 %

13 % debug=1: to pause the segmentation phase and plot the figur es

14 % of each segemented signal. Debug mode

15 %

16 % np: (name of the person) is the name of the folder in which

17 % are contained the training data.

18 %

19 % movNum: is the number of movement types on which the ANN is

20 % going to betrained

21 %

22 % ch2=1: if the second channel is used.

23 %

24 % ch3=1: if the third channel is used.

25 %

26 % rep: number of training repetitions.

27

28 %% Outputs

29 %%

30 function testNet(debug,np,movNum,ch2,ch3,rep)

31 %rep number of repetition

32 movSum=zeros (1,movNum);

33 errSum= zeros (1,movNum);

34 perform=0;

35

36

37 for i=1:rep

38

39 [net,mov,err,perf]=training(debug,np,0,ch2,ch3);

40 movSum=movSum+mov;

41 errSum=errSum+err;

42 perform=perform+perf;

43

44 end

45

46 movSum

47 errSum

48 stat=perform/rep

49 end

testWholeSet.m :

1 %% TestWholeSet

2 % This function is used to test a trained ANN on a whole data
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3 %set, contained in the folder np.

4 %

5 % By Giuseppe Lisi for Politecnico di Milano

6 % beppelisi@gmail.com

7 % 8 June 2010

8 %% Inputs

9 %

10 % debug=1: to pause the segmentation phase and plot the figur es

11 % of each segemented signal. Debug mode

12 %

13 % np: (name of the person) is the name of the folder in which

14 % are contained the training data.

15 %

16 % plotting=1: to save the figures of the segmented signals

17 % inside the 'img' folder contained inside the np folder. 'im g'

18 % is automatically created.

19 %

20 % ch2=1: if the second channel is used.

21 %

22 % ch3=1: if the third channel is used.

23 %

24 % net: is the trained ANN tested with the data contained in np.

25 %% Outputs

26 %

27 % mov: is the vector containing the number of movement

28 % performed during the test phase

29 %

30 % err: is the vector containing the errors during the test

31 % phase

32 %

33 % perf: is the training performance achived

34 %%

35 function [mov,err,perf]=...

36 testWholeSet(debug,np,plotting,ch2,ch3,net)

37 close all ;

38 clc ;

39

40 % Converts data: txt - > matlab

41 disp ( 'Converting in matlab format' )

42 [c mov]=convertAll(debug,np,plotting);

43

44 % finds the size of the output vector

45 movNum=net.outputs {2}.processedSize;

46

47 % extract feature vectors from data contained in the np folde r

48 f=takeFeatures(c,debug,plotting,np,ch2,ch3);

49

50 % uses the trained ANN

51 if ¬isempty (f {1,1 })
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52 [mov,err,perf]=useNN(f,movNum,net);

53 else

54 net=1;

55 mov=1;

56 err=1;

57 perf=1;

58 end

59

60 end

useNN.m :

1 %% UseNN

2 % this fucntion only uses an already trained ANN, and compute s

3 % the performances.

4 % The difference with myNN is that useNN doens't train the ANN .

5 %

6 % By Giuseppe Lisi for Politecnico di Milano

7 % beppelisi@gmail.com

8 % 8 June 2010

9

10 %% Inputs

11 %

12 % feat: is the cell array containing the feature vectors and

13 % the corresponding target vecors of the signals.

14 %

15 % movNum: is the number of movement types on which the ANN is

16 % going to be trained.

17 %

18 % net: is the trained ANN tested with the data contained in

19 % feat.

20 %% Outputs

21 %

22 % movementDone: is the vector containing the number of movem ent

23 % performed during the test phase

24 %

25 % errorOnTheMovementDone: is the vector containing the err ors

26 % during the test phase

27 %

28 % performance: is the training performance achived

29 %%

30 function [movementsDone,errorOnTheMovementsDone,performance] ...

31 =useNN(feat,movNum,net)

32

33 [p t vp vt tp tt]=divideData(feat,movNum,0,0,1);

34
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35 out = sim(net,tp);

36

37 lout= length (out(1,:));

38

39 for i=1:lout

40 y(:,i)= ismember(out(:,i), max(out(:,i)));

41 end

42

43 error =zeros (1,movNum);

44 elements= zeros (1,movNum);

45 good=0;

46

47

48 ltp= length (tp(1,:));

49 for i=1:ltp

50 if (eq(tt(:,i),y(:,i)))

51 good=good+1;

52 else

53 error (logical(tt(:,i)))= error (logical(tt(:,i)))+1;

54 end

55 elements(logical(tt(:,i)))=elements(logical(tt(:,i) ))+1;

56 end

57 movementsDone=elements

58 errorOnTheMovementsDone= error

59

60 performance=good/ltp * 100

61 end

A.5 Serial Communication with the EMG Board

1 / *
2 % By Giuseppe Lisi for Politecnico di Milano

3 % beppelisi@gmail.com

4 % 8 June 2010

5 * /

6

7 #include <sys/time.h >

8 #include <sys/types.h >

9 #include <stdio.h > / * Standard input/output definitions * /

10 #include <string.h > / * String function definitions * /

11 #include <unistd.h > / * UNIX standard function definitions * /

12 #include <fcntl.h > / * File control definitions * /

13 #include <errno.h > / * Error number definitions * /

14 #include <termios.h > / * POSIX terminal control definitions * /

15 #include <stdlib.h >
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16 #include <string.h >

17 #include <sys/types.h >

18 #include <sys/dir.h >

19

20 int open input source( char * );

21

22 void handle input from source( int ,FILE * ,FILE * ,FILE * ,

23 FILE * , int * , int * , int * , char * );

24

25 void handle input from source2( int , int ,FILE * ,FILE * ,FILE * ,

26 FILE * );

27

28 int MAX(int , int );

29

30 main( int argc, char * argv[]) {

31

32 if (argc == 5) {

33

34 / *
35 fd1: input source 1 is for the standard input

36 fd2: input source 2 is for the EMG channel input

37 * /

38 int fd1, fd2;

39

40 / * destination files * /

41 FILE * df, * df1, * df2, * df3;

42

43 / * file descriptor set * /

44 fd set readfs;

45

46 / * maximum file desciptor used * /

47 int maxfd;

48

49 / * loop while TRUE * /

50 int loop=1;

51

52 int res;

53 struct timeval Timeout;

54

55 / * line started * /

56 int ls=0;

57

58 int current=0;

59 char line[800];

60 int flagStart=0;

61 char * file;

62 int result code;

63

64
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65 chdir( "serial" );

66

67 mode t process mask = umask(0);

68

69 result code = mkdir(argv[1], S IRWXU | S IRWXG |

70 S IRWXO);

71

72 chdir(argv[1]);

73 umask(process mask);

74

75 file = malloc( sizeof ( char ) *
76 ((strlen(argv[2])+strlen(argv[4])) + 6));

77

78 strcpy(file,argv[3]);

79 strcat(file, "-" );

80 strcat(file,argv[4]);

81 strcat(file, "-" );

82 strcat(file,argv[2]);

83 strcat(file, ".txt" );

84

85 / *
86 Creates the directories ch1, ch2 and ch3 with the

87 relative img folders

88 * /

89

90 result code =

91 mkdir( "ch1" , S IRWXU | S IRWXG | S IRWXO);

92

93 chdir( "ch1" );

94

95 result code =

96 mkdir( "img" , S IRWXU | S IRWXG | S IRWXO);

97

98 umask(process mask);

99 df1 = fopen(file, "w" );

100

101 if (df1==NULL) {

102 printf

103 ( "Error: can't create file for writing first channel. \n" );

104 exit(0);

105 }

106

107 chdir( ".." );

108

109 result code =

110 mkdir( "ch2" , S IRWXU | S IRWXG | S IRWXO);

111

112 chdir( "ch2" );

113
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114 result code =

115 mkdir( "img" , S IRWXU | S IRWXG | S IRWXO);

116

117 umask(process mask);

118 df2 = fopen(file, "w" );

119

120 if (df2==NULL) {

121 printf

122 ( "Error: can't create file for writing second channel. \n" );

123 exit(0);

124 }

125

126 chdir( ".." );

127

128 result code =

129 mkdir( "ch3" , S IRWXU | S IRWXG | S IRWXO);

130

131 chdir( "ch3" );

132

133 result code =

134 mkdir( "img" , S IRWXU | S IRWXG | S IRWXO);

135

136 umask(process mask);

137 df3 = fopen(file, "w" );

138

139 if (df3==NULL) {

140 printf

141 ( "Error: can't create file for writing third channe. \n" );

142 exit(0);

143 }

144

145 / * SERIAL * /

146 fd1 = open input source( "/dev/tty.usbserial-A2003H2n" );

147 if (fd1 <0) exit(0);

148 fcntl(fd1, F SETFL, 0);

149 struct termios options;

150

151 / *
152 * Get the current options for the port

153 * /

154

155 tcgetattr(fd1, &options);

156

157 / *
158 * Set the baud rates

159 * /

160

161 cfsetispeed(&options, B57600);

162 cfsetospeed(&options, B57600);
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163

164 / *
165 * Enable the receiver and set local mode

166 * /

167

168 options.c cflag |= (CLOCAL | CREAD);

169

170 / *
171 * Set the new options for the port

172 * /

173

174 tcsetattr(fd1, TCSANOW, &options);

175

176 / * STANDARD INPUT* /

177 fd2 =0;

178 if (fd2 <0) exit(0);

179

180 / * maximum bit entry (fd) to test * /

181 maxfd = max (fd1, fd2)+1;

182

183

184 / * loop for input * /

185 while (loop) {

186

187 // set timeout value within input loop

188 Timeout.tv usec = 0; // milliseconds

189 Timeout.tv sec = 3; // seconds

190

191 / * set testing for source 1 * /

192 FD SET(fd1, &readfs);

193

194 / * set testing for source 2 * /

195 FD SET(fd2, &readfs);

196

197 / * block until input becomes available * /

198 res = select(maxfd, &readfs, NULL, NULL, &Timeout);

199

200 //number of file descriptors with input = 0,

201 //timeout occurred.

202 if (res == 0) {

203 printf( "Timeout occured \n" );

204 exit(1);

205 }

206 / * input from source 1 available * /

207 if (FD ISSET(fd1, &readfs))

208 handle input from source

209 (fd1,df,df1,df2,df3,&flagStart,&ls,&current,line);

210

211 / * input from source 2 available * /
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212 if (FD ISSET(fd2, &readfs))

213 handle input from source2(fd1,fd2,df,df1,df2,df3);

214 }

215 }

216

217 else {

218 printf( "Provide in order: \n" );

219 printf( "1) the name of the person \n" );

220 printf( "2) the movement done \n" );

221 printf( "3) the wanted movement identificator(int) \n" );

222 printf( "4) the progressive number of the movement \n" );

223

224 }

225 }

226

227 / *
228 * /

229 int open input source( char * port)

230 {

231 int fd = 0;

232

233 / * open the device to be non-blocking (read will

234 return immediatly) * /

235 fd = open(port, O RDWR| O NOCTTY | O NONBLOCK);

236 if (fd <0) {

237 perror(port);

238 return -1;

239 }

240 else

241 return fd;

242 }

243

244 void handle input from source( int fd,FILE * df,FILE * df1,

245 FILE * df2,FILE * df3, int * flagStart, int * ls, int * current,

246 char * line)

247 {

248 int res = 0, i;

249 char buf[255];

250 char ret= ' \r' ;

251 int d1,d2,d3;

252 res = read(fd,buf,255);

253 buf[res]=0;

254

255 / * Parsing of the data coming from the EMG board * /

256

257 for (i = 0; i < res; i++) {

258

259 if ( * flagStart==0 && buf[i]== 'I' ) {

260 * flagStart=1;
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261 }

262

263 if ( * flagStart==1) {

264 if (buf[i]== 'D' && * ls==0) {

265 * ls=1;

266 * current=0;

267

268 }

269 else if ( * ls==1) {

270 line[ * current]=buf[i];

271 * current= * current+1;

272 }

273 if (buf[i]== ' \r' && * ls==1) {

274 * ls=0;

275 * current=0;

276

277 sscanf(line, ":%d %d %d",&d1,&d2,&d3);

278 printf( "%d %d %d\n" ,d1,d2,d3);

279

280

281 fprintf(df1, "%d\r" ,d1);

282 fprintf(df2, "%d\r" ,d2);

283 fprintf(df3, "%d\r" ,d3);

284 }

285 }

286 }

287 }

288

289 void handle input from source2

290 ( int fd1, int fd2, FILE * df,FILE * df1,FILE * df2,FILE * df3)

291 {

292 fclose(df1);

293 fclose(df2);

294 fclose(df3);

295 close(fd1);

296 close(fd2);

297 exit(0);

298 }

299

300 int max( int i1, int i2)

301 {

302 if (i1 > i2)

303 return i1;

304 else

305 return i2;

306 }


