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Abstract 

Spider silk is one of the strongest, most extensible and toughest biological materials 

known, exceeding the properties of many engineered materials including steel. Silks 

feature a hierarchical architecture where highly organized, densely H-bonded beta-

sheet nanocrystals are arranged within a semi-amorphous protein matrix consisting of 

31-helices and beta-turn protein structures. By using a bottom-up molecular-based 

approach, here a first spider silk mesoscale model is developed, bridging the scales 

from Angstroms to hundreds of nanometers. Thanks to a one-dimensional model of 

the silk unit cell, it is first demonstrated that the specific nanoscale combination of a 

crystalline phase and a semi-amorphous matrix is crucial to achieve the unique 

properties of silks. These results reveal that the superior mechanical properties of 

spider silk can be explained solely by structural effects, where the geometric 

confinement of beta-sheet nanocrystals combined with highly extensible semi-

amorphous domains is the key to reach great strength and great toughness, despite the 

dominance of mechanically inferior chemical interactions such as H-bonding. The 

one-dimensional model described in this thesis work directly shows that semi-

amorphous regions govern the silk behavior at small deformation, unraveling first 

when silk is being stretched and leading to the large extensibility of the material. 

Conversely, beta-sheet nanocrystals play a significant role in defining the mechanical 

behavior of silk at large-deformation levels. In particular, the ultimate tensile strength 

of silk is controlled by the strength of beta-sheet nanocrystals, which is directly 
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related to their size: small beta-sheet nanocrystals are crucial to reach outstanding 

levels of strength and toughness. A molecular dynamics parametric two-dimensional 

study is also performed, with the aim to understand and foresee how parameters such 

as crystal density, level of pre-stretch, structural homogeneity and degree of 

hydration affect the overall silk mechanical behavior. Results from both models, 

coupled with a mechanistic insight, directly explain recent experiments, where it was 

shown that a significant change in the strength and toughness can be achieved solely 

by tuning the size of beta-sheet nanocrystals and the structural parameters of the silk 

network. These findings help to unveil the material design strategy that enables silks 

to achieve superior material performance despite simple and inferior material 

constituents.  

Spider silk is a strong and tough fibrous biological protein material with a 

hierarchical structure that has evolved to fulfill multiple functions of efficiently 

storing and dissipating mechanical energy, making it one of the toughest and most 

versatile materials known. Silks belong to the broader class of biological structures 

that have evolved as critical material components in biological systems, in order to 

provide structural support and energy conversion. From a biological point of view, 

spiders take advantage of the unique mechanical features when using silk threads to 

support their own weight and to absorb kinetic energy to capture prey. From an 

engineering perspective, silk has been utilized in various technological fields 

including parachutes, medical sutures, and more recently, tissue regeneration and 

many other biomedical applications. Experimental and computational investigations 
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of the structure of silks at the nanoscale revealed that there exist two fundamental 

structural constituents in silks: highly organized anti-parallel beta-sheet nanocrystals 

and a semi-amorphous phase that consists of less orderly protein structures. Thereby, 

the anti-parallel beta-sheet nanocrystals play a key role in defining the mechanical 

properties as they provide stiff orderly cross-linking domains embedded in a semi-

amorphous matrix that consists of less orderly beta-structures, 31 helices and beta-

turns. Similar to their role in other mechanical proteins, it has been hypothesized that 

H-bond arrays in beta-sheet nanocrystals reinforce the polymeric network under 

mechanical stretch, by forming interlocking regions that transfer the load between 

chains. In particular, Termonia‘s pioneering empirical two-phase model based on 

experimental data has been instrumental in explaining the importance of the ratio and 

size of crystalline and semi-amorphous domains, at a time when large-scale atomistic 

simulations of spider silk constituents were impossible due to the lack of suitable 

force fields and computational resources. More recently, macroscale experiments 

demonstrated that when the size of beta-sheet nanocrystals is reduced by moderating 

the reeling speed or by infiltrating, silk displays enhanced toughness and greater 

ultimate strength, exceeding that of steel and other engineered materials. However, 

despite progress in experimental, theoretical and computational studies, thus far no 

model exists to that enables a rigorous understanding of the role of the two 

fundamental constituents of silks at the intermediate ―composite‖ level. This progress 

has partly been hindered due to a lack of appropriate atomistic models of silks, and a 

lack of a thorough understanding of the mechanical behavior of silk‘s constituents at 

the nanoscale. Both issues have recently been addressed through protein structure 
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identification methods and large-scale molecular simulation studies, where the 

molecular structure and mechanical signature of the two key constituents of silks has 

been identified. As a result, we are now in a position to understand the fundamentals 

of the origin of silk‘s unique material properties at the mesoscale by deriving 

parameters directly from an atomistic level without the need to introduce 

experimental parameters, an issue that will be addressed in this thesis work.  

General method of this work is to utilize key material and structural parameters from 

atomistic calculations on spider silk constituents and to develop a fundamental 

understanding of silk‘s exceptional performance by linking the molecular structure 

and mechanisms to its larger-scale mechanical behavior at scales of hundreds of 

nanometers. To provide a fundamental description of spider silk mechanics from a 

bottom-up perspective, and to elucidate the design strategy behind the making of 

silks, a simple coarse-grained model is used, whose parameters are directly informed 

from atomistic simulation results. A simple combination of beta-sheet nanocrystals as 

well as semi-amorphous regions is modeled by beads connected via nonlinear springs 

in serial arrangement, in order to represent a unit cell of the silk two-phase 

nanostructure. We consider both a one-dimensional and two-dimensional 

implementation of the model. We first focus on the one-dimensional setup, and apply 

the model to simulate the mechanical deformation of silk according to uniaxial tensile 

loading conditions. The following two-dimensional geometry that is developed is 

based on a random network, with the aim to describe the entangled arrangement of 

silk polypeptide chains. Nodes represent the stiff poly-alanine beta-sheet 
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nanocrystals, while the bonds between nodes represent the inter-crystalline semi-

amorphous regions. While a MATLAB in-house made code is used for the 1D model, 

LAMMPS molecular dynamics simulations are performed at 300 K for the two-

dimensional system, applying tensile stretching at constant deformation rate, with a 

timestep of 1 fs and for varying system and boundary conditions. Results are then 

post-processed to extract relevant information regarding silk‘s mechanical behavior 

and regarding the effect of multiple parameters on the protein assembly. 

The analysis in both 1D and 2D model starts by considering a system with a beta-

sheet nanocrystal size of 3 nm that reflects the size of naturally-spun silks. It is found 

that the resulting stress-strain curve displays the characteristic shape experimentally 

observed in silks, that is characterized by an early yield point that leads to a 

significant softening and is followed by a severe stiffening effect. A detailed analysis 

of the results reveals that the initial regime is characterized by a relatively high 

tangent modulus, owing to the homogeneous stretching of semi-amorphous regions 

that are rich in hydrogen bonding in the form of 31-helices and beta-turns. The onset 

of rupture of the hydrogen bonds in the semi-amorphous domains leads to yielding at 

strain values of around 15% in both models, and evident from a sudden drop in the 

tangent stiffness. During the plateau regime, protein chains in the semi-amorphous 

region gradually align along the pulling direction, a mechanism that is mediated by 

the significant hidden length of polypeptide stored in this geometry. At a strain value 

of around 50%, the stress-strain curve enters a final covalent high-stiffness regime. At 

this point, the semi-amorphous region has been completely stretched out and the beta-
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sheet nanocrystals begin to sustain larger strains. When the applied force reaches the 

maximum tensile strength, varying for different systems and different parameters in 

the study, individual beta-strands are completely pulled out, and failure occurs at a 

stress of the order of GPa, in quantitative agreement with results from experimental 

studies. A systematic variation of the beta-sheet nanocrystal size of up to 10 nm is 

then considered in the two models, and its impact on the mechanical properties is 

studied to quantify the dependence of the crystal size on the overall mechanical 

behavior. The motivation for this analysis is to validate earlier hypotheses, showing 

that small changes in the crystal size translate to altogether different overall 

mechanical response in spider silk. The most important finding is the observation that 

the size of beta-sheet nanocrystals—at otherwise completely identical conditions—

severely affects the mechanical response. The analysis clearly shows that larger-

crystal systems (i.e. 6.5 nm and 10 nm beta-sheet nanocrystals) have a behavior that 

deviates significantly from the reference small-crystal case, especially at high levels 

of deformation. Silk fibrils with larger beta-sheet nanocrystals break at significantly 

lower stress values, and also show a shorter and much softer third regime. These 

findings hold both for a one-dimensional and a two-dimensional system, where the 

entanglement of polypeptide chains is represented by a coarse-grained random 

network. Both systems provide evidence that the size of the beta-sheet nanocrystals 

drastically affects the overall mechanical response, with smaller-crystal systems 

showing enhanced properties in terms of maximum tensile strength and dissipated 

energy. The extension from the one-dimensional unit cell to a two-dimensional 

network model gives coherent results and confirms that the mechanical properties and 
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deformation mechanisms of silk—in particular the sensitivity of the properties with 

respect to the size of beta-sheet nanocrystals—are well preserved when increasing the 

complexity of the system. Most importantly, the similarity of the results throughout 

different scales confirms that our approach of coarse-graining the spider-silk unit cell 

into a one-dimensional model is suitable to capture the key physics of material 

deformation. To deepen our understanding of the silk unit-cell mechanics, an accurate 

analysis of the deformation mechanisms at different strain levels has been performed, 

showing how each regime of deformation is associated with specific molecular-level 

mechanics. The overall analysis of these data shows that beta-sheet nanocrystals play 

a significant role in defining the mechanical behavior of silk only at high-deformation 

levels, while the initial behavior is mainly governed by deformation of the semi-

amorphous phase.  This concept has been hypothesized in earlier experimental 

studies, but is here for the first time shown from a molecular perspective and with a 

direct link to underlying molecular mechanisms. The analysis put forth here reveals 

that the contribution of the beta-sheet nanocrystals to deformation tends to decrease 

significantly as the size of beta-sheet nanocrystals is increased. In the small-crystal 

system, beta-sheet nanocrystals start to play a significant role once the semi-

amorphous region begins to stiffen at around 50% strain, and dominates deformation 

when the stick-slip mechanisms of beta-sheet nanocrystal deformation is triggered. In 

the larger-crystal case, the beta-sheet nanocrystal contribution increases more 

gradually, and reaches a maximum just before the system breaks, that is, shortly after 

the semi-amorphous region enters the covalent hard-stretching regime. If we compare 

the semi-amorphous region deformation in the two cases of crystal size, we observe 
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that the breaking point is reached earlier in large-crystal systems, when semi-

amorphous regions are less stretched. This is an important observation, which 

suggests that the change of the beta-sheet nanocrystal size prevents the material to 

take full advantage of the entire potential (hidden length) of the semi-amorphous 

regions in terms of extensibility and energy dissipation capacity. In addition to the 

study of the silk unit cell, the development of a two-dimensional mesoscale model 

has been crucial to identify and explain key features of spider silk behavior that 

cannot be justified by a simple one-dimensional model, such as crystal concentration 

and structural homogeneity. Molecular dynamics tools have been used to simulate the 

variation of a variety of system conditions, and to perform a parametric study of their 

effect on the overall silk‘s mechanical behavior. A complete understanding of the 

mechanical signature of silk requires indeed the development of a model that can also 

take into account key physical phenomena such as the effect system hydration, the 

effect of crystal density and homogeneity, as well as the level of pre-stretch of the 

protein chains. The robustness and flexibility of the current model, together with its 

results, have been checked by validating computational evidences with experiments, 

showing great agreement but opening at the same time interesting directions for 

future research, in the pursuit of an even better understanding of the phenomena 

underlying silk‘s behavior. 

The importance of this computational study of silk‘s behavior at the nanoscale comes 

from the fact that experimental techniques can only provide limited insight into the 

nanostructure of silk, making computing techniques the only suitable tool for such 
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investigation. One of the outcomes of this study is that its computational results are 

overall in excellent agreement with experimental data, where a similar variation of 

the beta-sheet nanocrystal size, as well as system and boundary conditions, was 

recently studied. In conclusion, one the most important finding of this thesis work is 

that it has revealed the mechanistic interplay of the two constitutive phases in silks, 

semi-amorphous regions and highly organized beta-sheet nanocrystals, and the effect 

of structural and boundary-condition changes on the overall mechanical behavior of 

silks. It is discovered that semi-amorphous regions unravel first when silk is being 

stretched, leading to the large extensibility of silk. Conversely, the large-deformation 

mechanical properties and ultimate tensile strength of silk are controlled by the 

strength of beta-sheet nanocrystals, which is directly related to their size. An 

important discovery is that small beta-sheet nanocrystals are crucial to reach 

outstanding levels of strength and toughness. These results have shown how the 

confinement of beta-sheet nanocrystals to the nanoscale is essential for the superior 

mechanical properties of silks, as it is crucial to reach high extensibility and high 

levels of stress. These findings also relate the characteristic yielding point in the 

stress-strain curve, observed universally for many silks, to the onset of failure of 

semi-amorphous regions when H-bonded 31-helices and beta-turns begin to rupture. 

Small-crystal systems guarantee the required cross-linking strength that is necessary 

for the semi-amorphous domains to fully extend and to enter a high-stiffness covalent 

regime when beta-sheet nanocrystals are being stretched and eventually fail. The 

resulting capacity to sustain large tensile force as well as extension enhances the 

strength and energy dissipation ability of the material. The two dimensional model 
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provided insight into the effect of different system parameters, and its development 

has opened new interesting research paths. These findings have impact beyond our 

understanding of silk mechanics, as they show that by solely controlling the structure 

at the nanoscale, a tailoring of material properties at the microscale is possible 

without the need to introduce new material constituents. This could provide us with a 

powerful alternative to the traditional engineering top-down approach of shaping 

materials to obtain specific properties, and enable the bottom-up design of complex 

structural materials. Thereby, the application of our findings to the design of synthetic 

materials could provide us with new material concepts based on inexpensive and 

abundant constituents. Technologically, we are not limited by ―simple‖ natural 

building blocks such as amino acids. Therefore, the incorporation and transfer of the 

materials design strategies identified here into synthetic products could result in 

materials with significantly better performance, much higher levels of strength and 

toughness while reaching similar levels of extensibility. 
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Sommario 

La seta aracnide è un materiale biologico dalle proprietà meccaniche sensazionali, 

tanto da eccedere le caratteristiche di molti materiali industriali, incluso l‘acciaio, per 

quanto riguarda durezza e sforzo massimo a trazione per unità di volume. La seta 

aracnide è caratterizzata da una architettura gerarchica, dove nanocristalli formati da 

foglietti beta ad alto contenuto di legami idrogeno sono assemblati all‘interno di una 

struttura proteica semi-amorfa che consiste di eliche 31 e ripiegamenti beta. 

Utilizzando un approccio dimensionale bottom-up e basato sulla conoscenza della 

struttura molecolare, in questo lavoro di tesi viene sviluppato il primo modello 

mesocala della seta aracnide, che crea un ponte tra la scala degli Angstroms e quella 

di centinaia di nanometri. Grazie ad un modello monodimensionale dell‘unità base 

della seta aracnide, viene dimostrato che la specifica combinazione alla nanoscala di 

una fase cristallina e di una matrice semi-amorfa è cruciale per ottenere le proprietà 

uniche che caratterizzano la seta. Questi risultati rivelano che le superiori proprietà 

meccaniche possono essere spiegate tramite soli effetti strutturali, dove il 

confinamento geometrico di nanocristalli di foglietti beta, in combinazione con 

domini semi-amorfi altamente estensibili, è la chiave per raggiungere elevati livelli di 

sforzo e di durezza, nonostante la prevalenza di interazioni chimiche meccanicamente 

inferiori quali i legami a idrogeno. Il modello descritto in questa tesi mostra 

direttamente come le regioni semi-amorfe governino il comportamento meccanico 

della seta aracnide a bassi livelli di deformazione, svolgendosi e garantendo l‘elevata 

estensibilità del materiale sottoposto a trazione. Al contrario, i nanocristalli giocano 
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un ruolo significativo nel definire il comportamento meccanico della seta aracnide ad 

elevati livelli di deformazione. In particolare, la resistenza a trazione è controllata 

dallo sforzo a rottura dei nanocristalli di foglietti beta, il quale a sua volta è 

inversamente correlato alla dimensione dei cristalli stessi: piccoli nanocristalli di 

foglietti beta sono cruciali per raggiungere livelli eccezionali di forza e durezza. Uno 

studio parametrico di dinamica molecolare su un sistema bidimensionale è stato 

inoltre effettuato, con lo scopo di comprendere e prevedere come parametri quali la 

densità di cristalli, il livello di pre-stretch, l‘omogeneità strutturale e il grado di 

idratazione condizionano il comportamento meccanico complessivo della seta. 

Risultati da entrambi i modelli, accoppiati con la loro interpretazione meccanica, 

sono in grado di spiegare direttamente esperimenti recenti: è stato dimostrato che un 

cambiamento significativo nei valori di massimo sforzo e durezza può essere 

raggiunto modificando unicamente le dimensioni dei nanocristalli ed i parametri 

strutturali che definiscono la rete della seta aracnide. Questi risultati aiutano a svelare 

la strategia che permette alla seta aracnide di raggiungere prestazioni superiori, 

nonostante i semplici e meccanicamente inferiori costituenti elementari. 

La seta aracnide è un materiale proteico fibroso, caratterizzato da livelli elevati di 

sforzo a rottura e di durezza. La sua struttura gerarchica si è evoluta in modo da 

adempiere a funzioni multiple di immagazzinamento e dissipazione di energia 

meccanica, rendendola uno dei materiali conosciuti più duri e versatili allo stesso 

tempo. La seta aracnide appartiene ad una classe più ampia di materiali biologici che 

si sono evoluti per adempiere a funzioni chiave in sistemi biologici, fornendo 
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supporto strutturale e conversione energetica. Dal punto di vista biologico, i ragni 

sfruttano le caratteristiche meccaniche uniche della seta per supportare il proprio peso 

e per assorbire energia cinetica nel catturare le prede. Da una prospettiva 

ingegneristica, la seta viene utilizzata in svariati campi tecnologici, che includono 

paracaduti, suture mediche e, più recentemente, rigenerazione di tessuti ed altre 

applicazioni biomediche. Come accennato, studi sperimentali e computazionali della 

struttura della seta alla nanoscala hanno rivelato l‘esistenza di due costituenti 

strutturali fondamentali: nanocristalli di foglietti beta antiparalleli, altamente 

organizzati, e una fase semi-amorfa che consiste di strutture proteiche strutturalmente 

meno ordinate. I nanocristalli giocano un ruolo chiave nel definire le proprietà 

meccaniche, dal momento che forniscono domini rigidi e ordinatamente 

interconnessi, integrati alla matrice semiamorfa che consiste di strutture beta a minore 

livello di ordine ed eliche 31. E‘ stato ipotizzato che l‘assemblaggio altamente 

ordinato di legami idrogeno all‘interno dei nanocristalli agisca da rinforzo per la rete 

polimerica complessiva sotto stiramento meccanico, formando regioni a incastro che 

trasferiscono il carico tra le catene polipeptidiche. In particolare, il modello 

pionieristico ed empirico sviluppato da Termonia, unicamente basato su dati 

sperimentali, assume un ruolo fondamentale nel chiarire l‘importanza del rapporto tra 

fasi e delle dimensioni dei domini cristallini. Questi studi sono stati sviluppati in 

un‘epoca in cui simulazioni atomistiche a larga scala non erano possibili a causa della 

mancanza di force-field adeguati e risorse computazionali sufficientemente 

performanti. Più di recente, modulando la velocità di tessitura della seta aracnide o 

tramite infiltrazione metallica, esperimenti alla macroscala hanno dimostrato che una 
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diminuzione delle dimensioni dei nanocristalli determina una accresciuta durezza e 

un maggiore sforzo a rottura della seta. Tuttavia, nonostante i progressi nella 

conoscenza teoretica, computazionale e sperimentale della seta aracnide, non esiste 

tuttora un modello che permetta una comprensione rigorosa del ruolo dei due 

costituenti fondamentali della seta aracnide a livello composito intermedio. Questo 

progresso è in parte stato ostacolato dalla mancanza di modelli atomistici appropriati, 

oltre che dalla carenza di una comprensione dettagliata del comportamento 

meccanico dei costituenti della seta alla nanoscala. Entrambi i punti in questione sono 

stati recentemente affrontati attraverso metodi di identificazione della struttura 

proteica, nonchè da studi molecolari e simulazioni a larga scala. E‘ stato in questo 

modo possibile caratterizzare meccanicamente i due costituenti molecolari chiave nel 

determinare la risposta a trazione della seta aracnide. Come risultato, si è ora nella 

posizione di poter comprendere l‘origine delle proprietà uniche della seta, 

direttamente partendo da un livello atomistico e senza la necessità di introdurre 

parametri sperimentali. È questo il punto chiave che verrà affrontato in questo lavoro 

di tesi.  

Metodo generale di questo lavoro è quello di utilizzare parametri strutturali da calcoli 

atomistici, ed ottenere tramite un modello mesoscala una comprensione dell‘origine 

delle prestazioni eccezionali della seta aracnide. Il fine è quello di connettere la 

struttura e i meccanismi molecolari della seta aracnide al suo comportamento 

meccanico complessivo, alla scala ampia di centinaia di nanometri. Per fornire una 

descrizione comprensiva della meccanica della seta aracnide seguendo un approccio 
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bottom-up, e per delucidare la strategia progettuale alla base della formazione della 

seta, i parametri del modello mesoscala sviluppato in questo progetto sono dedotti 

unicamente da risultati di simulazioni atomistiche. La combinazione di nanocristalli e 

di regioni semiamorfe è modellizzata da molle non lineari in disposizione seriale, 

rappresentando in questo modo la cella elementare bifase della seta aracnide e 

riflettendo la geometria fondamentale della sua nanostruttura. Viene considerata sia 

un‘ implementazione monodimensionale che un modello bidimensionale della seta. 

Ci si sofferma dapprima sul setup 1D, applicando il modello con l‘obiettivo di 

simulare la deformazione meccanica della seta secondo condizioni di carico a 

trazione monoassiale. La geometria che viene in seguito sviluppata e descritta per il 

modello 2D è basata su una rete di nodi a generazione casuale, con l‘obiettivo di 

descrivere la disposizione spaziale delle catene polipeptidiche. I nodi rappresentano i 

nanocristalli rigidi di foglietti beta, metre i legami tra i nodi rappresentano le regioni 

inter-cristalline semi-amorfe. Mentre uno script MATLAB è utilizzato per calcolare 

la risposta meccanica del modello monodimensionale, simulazioni di dinamica 

molecolare in LAMMPS vengono effettuate a 300 K per il modello 2D, applicando 

un carico a trazione con deformazione costante, con un timestep di 1 fs e per 

parametri variabili di sistema e di condizioni al contorno. I risultati sono 

successivamente sottoposti a post-processing, in modo da estrarre informazioni utili 

riguardanti il comportamento meccanico della seta aracnide e l‘effetto di diversi 

parametri sulla rete proteica.  
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L‘analisi meccanica sia nel sistema 1D che in quello 2D inizia considerando un 

sistema con dimensioni dei nanocristalli di 3 nm, tale da riflettere le dimensioni 

riscontrate nella seta in condizioni naturali. Viene mostrato che la curva sforzo-

deformazione assume una forma sigmoidale, caratterizzata da un punto di 

snervamento, un plateau a bassa rigidezza e uno spiccato irrigidimento finale. Il 

regime iniziale, caratterizzato da un modulo tangente relativamente alto, è dovuto allo 

stiramento omogeneo delle regioni semiamorfe, ricche in legami idrogeno nella 

forma di eliche 31 e ripiegamenti beta. La rottura dei legami idrogeno nei domini 

semiamorfi porta allo snervamento della struttura per valori di deformazione di circa 

il 15% e determina un calo improvviso della rigidezza tangente. Durante il regime di 

plateau, le catene proteiche si allineano gradualmente lungo la direzione di trazione. 

Questo meccanismo è mediato dalla significativa ridondanza delle catene polimeriche 

nella configurazione descritta. Quando la curva sforzo-deformazione entra in un 

regime finale di elevata rigidezza, la regione semiamorfa è completamente estesa e i 

nanocristalli di foglietti beta iniziano a sostenere deformazioni più elevate. Quando 

infine la forza applicata raggiunge il valore massimo di sforzo a rottura, singole 

catene beta vengono completamente sfilate dal cristallo e il fallimento meccanico 

complessivo avviene ad uno sforzo massimo dell‘ordine dei GPa, in accordo 

quantitativo con risultati di studi sperimentali. Viene considerato un incremento 

sistematico delle dimensioni del nanocristallo fino al valore di 10 nm in entrambi i 

modelli, studiandone l‘impatto sulle proprietà meccaniche complessive. Lo studio ha 

come obiettivo la validazione di ipotesi precedenti, che mostrano come piccoli 

cambiamenti nelle dimensioni del cristallo si traducano in differenti risposte 
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meccaniche complessive. Importante risultato sta nell‘osservazione che le dimensioni 

dei cristalli – a parità di altre condizioni – influenzano significativamente la risposta 

meccanica della seta. L‘analisi mostra chiaramente che sistemi di cristalli più grandi 

(nanocristalli di 6.5 nm e 10 nm) hanno un comportamento che devia 

significativamente dal caso di riferimento (cristallo di 3 nm), specialmente ad elevati 

livelli di deformazione. Le fibrille di seta con nanocristalli più larghi vanno incontro a 

rottura a valori di sforzo significativamente più bassi, mostrando inoltre un regime 

finale molto meno rigido. Le osservazioni presentate nel modello 1D valgono anche 

per una rete polipeptidica bidimensionale. Entrambi i sistemi mostrano una 

significativa dipendenza dalle dimensioni dei nanocristalli, fornendo evidenza 

aggiuntiva che le dimensioni dei nanocristalli di foglietti beta influiscono 

drasticamente sulla risposta meccanica complessiva. L‘estensione del modello ad un 

arrangiamento bidimensionale conferma che le proprietà meccaniche e i meccanismi 

di deformazione della seta aracnide vengono ben conservati quando la complessità 

del sistema viene aumentata. Altro risultato importante è il fatto che la similarità di 

risultati tra il modello monodimensionale e bidimensionale conferma che questo 

approccio mesoscala di modellizzazione della cella elementare della seta aracnide è in 

grado di rappresentare i fenomeni fisici chiave di deformazione del materiale. In 

entrambi i modelli, i risultati esposti in questa tesi dimostrano che anche un piccolo 

incremento nelle dimensioni del nanocristallo determina un decremento significativo 

del valore di sforzo a rottura del sistema e di conseguenza valori di durezza 

consistentemente più bassi sia per il sistema monodimensionale che per quello 

bidimensionale. Un‘analisi dei meccanismi di deformazione, per livelli di 
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elongazione differenti e, per dimensioni dei nanocristalli variabili, mostra come 

ciascun regime di deformazione sia associato a specifici fenomeni meccanici a livello 

molecolare. L‘analisi complessiva dei dati mostra che i nanocristalli di foglietti beta 

giocano un ruolo significativo nel definire il comportamento meccanico della seta 

aracnide solo ad elevati livelli di deformazione, mentre il comportamento meccanico 

iniziale è principalmente governata dalla deformazione della fase semiamorfa. Questo 

concetto è stato ipotizzato in studi sperimentali precedenti, ma viene qui per la prima 

volta mostrato secondo una prospettiva molecolare e con riferimento diretto ai 

meccanismi costitutivi sottostanti. Nel sistema di riferimento, i nanocristalli iniziano 

a giocare un ruolo significativo una volta che la ragione semiamorfa inizia a 

irrigidirsi, a valori di deformazione di circa 50%. Nel caso di cristalli più grandi, il 

contributo dei nanocristalli cresce più gradualmente e raggiunge un massimo appena 

prima della rottura del sistema, che avviene poco dopo che la regione semi-amorfa 

entra nel regime covalente finale. Il punto di rottura viene raggiunto prima nei sistemi 

con nanocristalli grandi, mentre le regioni semiamorfe non sono ancora 

completamente stirate. Questa osservazione suggerisce che il cambiamento delle 

dimensioni del nanocristallo impedisce al materiale di trarre pieno vantaggio delle 

potenzialità delle regioni semiamorfe in termini di estensibilità e capacità di 

dissipazione energetica, capitalizzando su legami sacrificali e sulla rottura di legami 

idrogeno. I risultati di questo studio sono complessivamente in eccellente accordo con 

i dati sperimentali, dove una variazione simile delle dimensioni dei nanocristalli e il 

suo impatto sulle proprietà meccaniche ad una scala superiore è stato recentemente 

riportato, mostrando un drastico calo in durezza conseguente all‘aumento delle 
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dimensioni dei nanocristalli (negli esperimenti il cambiamento dimensionale dei 

nanocristalli viene ottenuto per mezzo del cambiamento della velocità di tessitura da 

parte del ragno). 

Il contributo più importante dello studio esposto in questa tesi è il fatto di aver 

rivelato l‘interscambio meccanicistico delle due fasi costitutive della seta aracnide, 

ovvero delle regioni semi-amorfe e dei nanocristalli di foglietti beta. E‘ stato 

computazionalmente dimostrato che le regioni semi-amorfe della seta si estendono 

per prime quando la seta viene stirata, portando alla elevata estensibilità del 

materiale. Al contrario, le proprietà meccaniche ad elevati livelli di deformazione e lo 

sforzo a rottura della seta aracnide sono controllati dal massimo sforzo dei 

nanocristalli, che è inversamente proporzionale alle loro dimensioni. Una scoperta 

importante è che nanocristalli di piccole dimensioni sono cruciali nel raggiungere 

eccezionali livelli di massimo sforzo e di durezza. Questi risultati mostrano che il 

confinamento dei nanocristalli alla nanoscala è essenziale per le superiori proprietà 

meccaniche della seta, dal momento che risulta cruciale nel raggiungere elevata 

estensibilità e alti livelli di sforzo. Questi risultati inoltre mettono in relazione il 

caratteristico punto di snervamento nella curva sforzo-deformazione con l‘insorgere 

del cedimento di eliche 31 e ripiegamenti beta nelle regioni semi-amorfe. Sistemi con 

cristalli di piccole dimensioni garantiscono la forza di legame necessaria alle regioni 

semiamorfe per estendersi completamente e per entrare in un regime covalente ad alta 

rigidezza in cui i nanocristalli vengono stirati fino a rottura. La risultante capacità di 

sostenere una elevata forza a trazione ed elevati livelli di deformazione incrementa il 
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massimo sforzo a rottura e la capacità di dissipazione energetica del materiale. Questi 

risultati hanno un impatto che va oltre la conoscenza della meccanica della seta 

aracnide, dal momento che mostrano che solamente controllando la struttura alla 

nanoscala è possibile definire le proprietà del materiale alla micro e macroscala senza 

l‘introduzione di alcuna nuova specie molecolare. Questo strumento può fornire una 

potente alternativa al tradizionale approccio top-down usato in ingegneria, che 

consiste nel dare forma a materiali per ottenere specifiche proprietà: l‘approccio usato 

in questo studio permette invece di progettare materiali complessi seguendo una 

logica bottom-up. L‘incorporazione e il trasferimento di strategie di progetto tipiche 

dei biomateriali nel progetto di prodotti sintetici potrà risultare in nuovi materiali con 

prestazioni meccaniche superiori, ovvero con livelli di sforzo a rottura e di durezza 

molto maggiori, mantenendo nel contempo simili livelli di estensibiltà. 
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Chapter 1  

Background 

 

Aim of this Chapter is to foster the curiosity of the reader, by introducing silk not 

only as the fascinating fiber that has driven a rich trade for centuries, but also as a 

natural biological material with exceptional mechanical properties. 

Spider silk is first described and categorized among fibrous biological materials. The 

State of the Art in scientific knowledge is then presented, together with its possible 

applications as biomedical material. 

The objectives of the work are then stated, underlying the progress from current 

knowledge and the challenges of this study in the short and in the long term. 
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1.1 Spider silk: an evolutionary marvel 

Silk has carried with itself a stunning secret for ages: while traded from East to West 

as a luxury fabric, this intriguing biological fiber was hiding another astonishing 

feature, the one of being among the most mechanically outstanding fibers ever. Silk is 

perhaps the strongest, most extensible and toughest material on Earth, by far 

exceeding the properties of many engineered industrial materials [1-3].  

Figure 1-1 shows the complexity and at the same time the beauty of a spider web, 

deadly trap for flies and insects, feeble and fragile at first glance but incredibly strong 

and tough when carefully studied. 

Figure 1-2 shows the complex hierarchical organization of silk, where the secrets of 

this evolutionary marvel of nature have long been stored. 
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Figure 1-1: A spider web, carefully weaved across young tree offshoots. Remarkable is the 

perfect geometry of the whole structure, together with the fact that all load is carried by a 

single upper silk thread following a catenary curve [Figure reprinted by  

http://naturescrusaders.files.wordpress.com]. 

 

 

Figure 1-2: Hierarchical organization of silk. A multiscale representation of the structural 

organization of spider silk, from a level explored by quantum mechanics up to the macro-

scale of the spider web. [Figure reprinted from Ref. [4]] 
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Commercial silk defines primarily the fiber spun by the silk moth Bombyx Mori; it is 

collected by unraveling the pupal cocoon of the insect and then it is weaved, 

machined and dyed in an infinite combination of shapes and colors. Nevertheless, 

spider dragline silk, although perceived as very different when looking at a spider 

web, is indeed very similar, at least in its general structure and mechanical properties, 

to the commercial Bombyx silk produced in vast quantities worldwide.  

Spider silk is considerably stronger and significantly more extensible than any other 

silkworm silk. Both of them, however, show an initial high-stiffness that, at a yield 

point, gives way to a plateau and to a final-stiff covalent regime [5]. Figure 1-3 

represents a series of experimental curves on spider silk threads, showing the typical 

three-regime behavior just described. 

 

Figure 1-3: Experimental values for the silk characteristic curve at different reeling speed. 

An initial high stiffness regime is followed by a yield point, a plateau of varying length and a 

final stiff regime. The higher the reeling speed, the more pronounced this characteristic 

behavior [figure reprinted from Ref. [6]]. 
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Spider silk is a powerful tool for spiders to achieve an effective energy management: 

according to evolutionary concepts and theories [7], in biology energy is the primary 

currency used by natural selection, where efficient energy management allows 

animals to accumulate reserves, ultimately converted into the following generation of 

individuals [7].  

Silk‘s complex hierarchical structure has evolved to fulfill the vital function of 

efficiently storing and dissipating mechanical energy [3, 8, 9], making it an 

exceptionally tough and versatile material [2, 3]. Figure 1-4 schematically illustrates 

the interplay of scales that is crucial in silk, where mechanical properties at the 

nanoscale reflect on the overall macroscale behavior.  
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Figure 1-4: Macroscale and nanoscale interplay in spider silk. The enchanting geometric 

structure of the silk web is made possible by a complex and hierarchical nanoscale 

organization. Hydrogen bonds are key to interconnect residues of different protein molecules. 

[Figure reprinted from Ref. [10], image created by Steven Cranford]. 

 

For the spider, energy efficiency consists in a combination of optimal web 

engineering in terms of architecture and silk materials. For example, flies captured in 

the web arrive with kinetic energy that needs to be distributed both effectively and 

efficiently, that is with a minimum amount of material [11].  

1.2 Hierarchical study of silk as a protein material 

Proteins can be considered the constitutive bricks of life as we know it on Earth [12]. 

The primary structure of a protein, as a linear sequence of amino acids, is synthesized 
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by cells based on segments of DNA code, and this is made possible by covalent 

peptide bonds that link amino acids[13].  

Through charge interactions and weak interactions such as hydrophobic effects, Van 

der Waals interactions and hydrogen bonding, proteins create folds and filamentous 

structures that are able to carry out physiological functions. Fibrous proteins are large 

assemblies of polypeptide chains that play mostly structural and mechanical functions 

[14]. The structure and mechanics of these materials, of which silk is an example, are 

largely controlled by a complex and intriguing arrangement of weak interactions at 

the nano-scale and in particular by hydrogen bonds [4]. 

The atomic microstructure of materials is the defining factor of their mechanical 

properties [15]. Mechanical behavior of biological materials features molecular 

unfolding or sliding under tensile loading, where particularly relevant is the rupture 

of hydrogen bonds, covalent cross-links and intermolecular entanglement [12, 16]. 

Different mechanisms operate at larger length scales: the overall mechanical behavior 

emerges as a result of geometrical parameters, chemical nature of the molecular 

interactions, as well as the structural arrangement of the protein elementary building 

blocks, across many hierarchical scales, from nano to macro. 

As discussed in Ref. [12, 16], a trait of most biological materials is the occurrence of 

hierarchies and, at the molecular scale, the abundance of weak interactions. The 

presence of hierarchies in biological materials may be vital to take advantage of 

molecular and sub-molecular features, with the aim to enhance the material‘s 

mechanical properties [12, 16]. The nanoscale arrangement of molecules is often 

characterized by weak interactions, and a hierarchical arrangement allows to multiply 

their properties so that they become visible at larger scales, thus providing a link 

between structural organization and function [17]. In spider silk, weak interactions 

are used to produce a strong materials at moderate temperatures, using just a very 

limited quantity of energy [4, 18]. 
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Promising strategies for probing biological materials at the nano-scale can now be 

developed by combining experiment and simulation concurrently, and at the same 

scales. These methods could eventually lead to the development of superior 

biomaterials through an improved understanding of the influence of nano-scale on the 

macro-scale. It is therefore reasonable to conclude that modeling and simulations 

have evolved from explaining experimental observations into predictive tools that 

complement experimental analyses [12] (see Figure 1-5). 
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Figure 1-5: Different molecular hierarchies and computational tools used for multiscale 

analysis. From the Angstrom level up to the macroscale levels, the experimental and 

computational tools used at different scales are graphically represented (Figure reprinted 

from Ref. [12]). 

 

The nanostructure of biological materials is crucial to understand the source of their 

mechanical properties such as fracture strength, failure mechanisms and elasticity, as 

discussed in Ref. [19, 20].  



41 

 

In protein materials, the molecular structure is directly linked to the chemistry of the 

molecules, in particular the primary structure consisting of individual amino acids 

[12, 21]. The source of silk‘s unique properties has been attributed to the specific 

secondary structures of proteins found in the repeating units of spider silk proteins 

[22].  

Experimental and computational investigations of the structure of silks at the 

nanoscale revealed that there exist two fundamental structural constituents in silks, 

highly organized anti-parallel beta-sheet nanocrystals and a semi-amorphous phase 

that consists of less orderly protein structures [23-25]. Two distinct proteins are 

typically found in dragline silks with similar sequence across species [26]. One of the 

most studied silk from spiders, N. Clavipes dragline silk, contains MaSp1 and MaSp2 

proteins, with significantly different chemical makeup [22, 27-29]. MaSp1 contains 

glycine (Gly) rich Gly-Gly-X (GGX) repeats with poly-alanine (poly-Ala) domains. 

Conversely, MaSp2 contains poly-Ala domains but it also contains a large number of 

proline residues in the glycine-rich regions.  

Recent investigations revealed that anti-parallel beta-sheet crystals at the nanoscale 

[4, 30-32], consisting of highly conserved poly-(Gly[G]-Ala[A]) and poly-Ala repeats 

[22], play a key role in defining the mechanical properties of silk by providing stiff 

orderly cross-linking domains, in the form of beta-sheet nanocrystals embedded in a 

semi-amorphous matrix that consists predominantly of less orderly beta-structures, 31 

helices and beta-turns [23, 24, 33, 34]. 

Figure 1-6 is a graphical representation of a group of silk unit cells, where the 

combination of poly(Ala) crystalline regions and semi-amorphous domains gives us 

an idea of the complexity of the overall entanglement of silk protein structures. 
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Figure 1-6: Graphical representation of spider silk unit cells. Silk constitutive unit cells are 

represented in a three-dimensional space. In the middle, the beta-sheet secondary structure of 

the poly(Ala) crystalline regions [courtesy Steven Cranford]. 

 

The existence of 31 helices, beta-turns and beta-spiral conformations has been 

suggested for the less-ordered structures of silk [23, 24, 33, 35], and has recently been 

directly identified by means of an atomistic-level structural model [36]. The use of 

atomistic simulations techniques turned out to be a necessary tool due to the fact that 

despite significant advances in experimental techniques, approaches such as solid 
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state NMR and x-ray diffraction can only provide limited insight into the atomic 

resolution structure for complex materials such as spider silk.  

What is especially missing in the field of spider silk mechanics is a thorough 

understanding of the link between the atomistic and the macroscale-level mechanical 

description. A mesoscale model is the necessary tool to bridge this gap and correlate 

spider silk‘s properties at different scales. 

1.3 State of the art  

1.3.1 Silk as a biomaterial 

Since its early development in China thousands of years ago, the use of silk 

throughout history has not been limited only to luxury fabric, and its usage in the 

form of medical sutures has been documented for centuries. What has been exploited 

are the remarkable mechanical properties of silk fibers produced both by silkworms 

and spiders. 

More recent applications include not only parachutes but also a whole range of 

products where silk has been used to form a variety of biomaterials, such as gels, 

sponges and films for medical applications [5, 37, 38]. Figure 1-7 shows a 

microscope image of porous gradient silk sponges. 
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Figure 1-7: Silk sponges with different porosity. Porous gradient sponges are prepared by 

stacking a water-soluble porogen from smallest to largest: when the porogen is dissolved in 

water it leaves the sponge with a porous gradient. [Figure reprinted from Ref. [37]]. 

 

Through amino acid side-chain chemical modifications, silk‘s surface properties can 

be modified with the aim to immobilize cellular growth factors. Molecular 

engineering of silk sequences has been used to modify silks with specific features, 

such as cell recognition and mineralization [37]. 

Key point in the use of silk as biomaterial is that the degradability of silk biomaterials 

can be controlled by the mode of processing when obtained from spiders and is 

related to the content of beta-sheet nanocrystals. Multiple primary cells and cell lines 

have been successfully grown on different silk biomaterials to demonstrate a range of 

different biological outcomes [37, 38]. 

The advantage that silk biomaterials are highly biocompatible when studied in vitro 

and in vivo has been successfully employed in wound healing and in tissue 

engineering of bone, cartilage, tendon and ligament tissues [37]. 
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1.3.2 Atomistic mechanical characterization of silk 

1.3.2.1 Size dependence of spider silk strength and toughness 

It is of major importance for the present study to investigate silk‘s structure and 

mechanics at its atomic and molecular scale, and in detail to analyze the contribution 

of each constitutive element in reaching silk‘s outstanding mechanical performances.  

What makes silk one of the toughest materials known is the combination of 

exceptional mechanical properties, such as high tensile strength and great 

extensibility. The exceptional strength of silks, exceeding that of steel in terms of 

strength over density, arises from beta-sheet nanocrystals that consist of highly 

conserved poly-(Gly-Ala) and poly-Ala domains [4].  

Recent findings from a series of large-scale molecular dynamics simulations [4] 

revealed that, when beta-sheet nanocrystals are confined to a few nanometers, they 

can achieve higher stiffness, strength and mechanical toughness than larger 

nanocrystals. Figure 1-8 shows the simulation setup of this recent work on the role of 

beta-sheet nanocrystals in spider silk [4]. These findings were used as input for the 

development of the mesoscale spider silk model described in this thesis work. 
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Figure 1-8: Bending and pull-out setup for silk beta-sheet nanocrystals of different size. a 

depicts a graphical representation of the geometry of crystals of different size in a bending 

setup, showing the deformation of the nanocrystal under applied force. b and c show 

snapshots of the geometry of crystals of different size when undergoing a pull-out simulation 

test [Figure reprinted from Ref. [4]]. 

 

What has been done thus far to explain silk‘s mechanical behavior at the atomic scale 

is to understand what are the defining characteristics of beta-sheet nanocrystals and to 

obtain mechanical parameters for their constitutive behavior [4]. Goal was to explore 

how size-effects can be exploited to create bioinspired materials with superior 

mechanical properties, in spite of relying on mechanically inferior, weak H-bonds. 
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Figure 1-9 summarizes the finding of this atomistic-level work [4] and the parameters 

represented here have been used as inputs for the current mesoscale model. 

 

Figure 1-9: Mechanical behavior of spider silk nanocrystals undergoing pull-out simulations. 

a. Force-displacement behavior of a single silk beta-sheet-nanocrystal strand under the pull-

out conditions represented in Figure 1-8. Different crystal sizes have been investigated, 

showing a drastic change in the mechanical response. b. Toughness and resilience values 

plotted as a function of crystal size. We notice how smaller beta-sheet nanocrystals can reach 

greater values of toughness and how an increase in crystal dimensions leads to a swift drop in 

toughness values. [Figure reprinted from Ref. [4]]. 

 

1.3.2.2 Physical reason for the relevance of hydrogen bonding in spider silk 

When silk fibers are exposed to stretch, beta-sheet nanocrystals reinforce the partially 

extended and oriented macromolecular chains by forming interlocking regions that 

transfer the load between chains, similar to their function in other mechanical 

proteins [12, 24, 39-44]. Thereby, beta-sheet nanocrystals provide cohesion between 

the long polypeptide strands, enabling the amorphous domains to stretch 

significantly.  
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Fracture of beta-sheet nanocrystals occurs at large deformation and large loads [22]. 

Recent experiments demonstrated that when the size of beta-sheet nanocrystals is 

reduced by moderating the reeling speed or by metal infiltration, silk displays 

enhanced toughness and greater ultimate strength [6, 45, 46]. This is particularly 

intriguing, since H-bonds comprise the chemical bonds that underlie the beta-sheet 

nanocrystals structures, and are enlisted among weak chemical interactions [4].  

It has recently been discovered that through crystal nanoconfinement, through a 

combination of uniform shear deformation and the emergence of dissipative 

molecular stick-slip deformation it is possible to significantly enhance silk‘s 

mechanical properties, by making the most efficient use of H-bonds and increasing 

the maximum values of strength and toughness [4]. 

What is still missing is a model able to unify all the gained knowledge and bring the 

understanding of the role of H bonding, beta sheet nanocrystals and semi-amorphous 

regions at an upper dimensional level. 

1.4 Objectives of the work 

Termonia‘s pioneering empirical two-phase model, based on experimental data, has 

been instrumental in explaining the importance of the ratio and size of beta-sheet 

nanocrystals embedded in semi-amorphous domains, at a time when large-scale 

atomistic simulations of spider silk constituents were impossible due to the lack of 

suitable force fields and computational resources [45].  

Despite recent progress in experimental, theoretical and computational studies, thus 

far no model exists that enables a rigorous understanding of the role of the two 

fundamental constituents of silks at the intermediate ―composite‖ level (i.e., the silk 

fibril nanostructure as shown in Figure 1-2).  
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This progress has partly been hindered due to a lack of appropriate atomistic models 

of silks, and a lack of a thorough understanding of the mechanical behavior of silk‘s 

constituents at the nanoscale. Both issues have recently been addressed through 

protein structure identification methods and large-scale molecular simulation studies, 

where the molecular structure and mechanical signature of the two key constituents of 

silks has been identified [4, 10, 47].  

As a result, conditions make now possible to understand the fundamentals of the 

origin of silk‘s unique material properties directly from an atomistic level without the 

need to introduce experimental parameters, an issue that will be addressed in this 

thesis work.  

A specific goal of this work is to create the link between the understanding of silk 

mechanical behavior at the nanoscale and its macroscopic mechanical features. This 

is made possible by the development of two mesoscale models, first describing the 

silk unit cell mechanical behavior in a one-dimensional system and then developing a 

two-dimensional network for the description of the entangled network of proteins. 

By utilizing a computational materials science approach, goal of this project is to 

understand the mechanical properties of spider silk from a fundamental level at the 

scale of tens, and potentially hundreds of nanometers. A multi-scale simulation 

approach is applied, explicitly considering the architecture of spider silk from the 

atomistic level up to the overall structure, supporting the structure-process-property 

paradigm of materials science.  

Key material and structural parameters from atomistic calculations on dragline silk 

constituents are used to develop a mesoscale model and gain a fundamental 

understanding of the secrets of silk‘s exceptional performance, by linking the 

molecular structure and mechanisms to its larger-scale mechanical behavior.  
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In addition to understanding the structure and function of spider silk, the long-term 

goal of this work is to help develop a new engineering paradigm that encompasses the 

design of structures and materials, starting from the molecular level and creating new 

materials that mimic and exceed the properties of biological analogs. 

The underlying belief is the fact that nature gives us an exceptionally rich source of 

inspiration for the design of new materials. Once the secrets of spider silk‘s makeup 

are unravel, science and technology can further enhance specific mechanical 

properties by applying the same building principles to different atomic and molecular 

species.   
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Chapter 2  

One-dimensional mesoscale 

model of spider silk 

Despite decades of research in silk’s mechanical properties and its possible 

industrial applications, the mass-production of silk and other biomimetic materials 

remains a challenge, particularly due to silk's unique features that can only be 

achieved by the controlled self-assembly of the macromolecular constructs with 

molecular precision at the nanoscale.  

A lack of full understanding of silk’s complex hierarchical organization has created a 

gap of knowledge between what is known about silk’s molecular organization at the 

atomistic level and silk’s mechanical properties at the macroscopic scale.  

The work described in this chapter aims to create a bridge between current 

knowledge of silk’s molecular structure and silk’s macroscopic mechanical behavior 

by mean of a mesoscale coarse-grained model. By using a bottom-up molecular-

based approach, the first spider silk mesoscale model is described, bridging the 

scales from Angstroms to tens of nanometers, and thereby enabling the development 

of large-scale computational models of silk mechanics. It is here demonstrated that 

the specific nanoscale combination of a crystalline phase and a semi-amorphous 

matrix is crucial to achieve the unique properties of silks. Specific deformation 

mechanisms are analyzed and explained, and the results are found to agree well with 

experimental findings.  
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2.1 Materials and Methods 

To provide a fundamental description of spider silk mechanics from a bottom-up 

perspective, and to elucidate the design strategy behind the making of silks, this 

chapter focuses on the description of the mechanical behavior of a simple one-

dimensional coarse-grained model, whose parameters are directly informed from 

atomistic simulation results. The unit cell of silk is composed by a two-phase 

nanostructure, reflecting the geometry of silk as shown in Figure 2-1a. A schematic 

of the model setup is depicted in Figure 2-1b, showing how a simple combination of 

beta-sheet nanocrystals as well as semi-amorphous regions is modeled by beads 

connected via nonlinear springs in serial arrangement.  
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Figure 2-1: Hierarchical structure of spider silk and model formulation. a, Hierarchical 

structure of spider silk. The nanostructure of silk fibrils consists of two major constituents, a 

semi-amorphous region and beta-sheet nanocrystals. The focus of this study is the 

representation of the structure of spider silk through a mesoscale level model, where beta-

sheet nanocrystals embedded in a soft matrix are described based on a coarse-grained 

approach. b, Representation of a spider silk mesoscale structure based on the coarse-grained 

model.  The model is defined by a combination of a crystalline and a semi-amorphous region 

and mimics silk‘s nanostructure as shown in panel a. The mechanical characteristic of each 

constituting phase is informed from atomistic level molecular dynamics simulations.    

 

A multiscale computational bottom-up investigation of spider silk, the approach 

employed in this work, is a powerful tool to understand its mechanical properties 

from a fundamental perspective. At length-scales on the order of tens of nanometers, 

spider silk appears as an entanglement of polypeptide chains, with two distinct 

domains that consist of (A) a semi-amorphous region [25, 48] and (B) a highly-

ordered crystalline domain consisting of beta-sheet nanocrystals [45]. The silk 

constitutive unit is modeled as a combination of these two domains, namely a 
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crystalline beta-sheet region and a semi-amorphous domain, as shown in Figure 2-1b. 

The structure and mechanical behavior of these domains have been previously 

explored by atomistic simulations [10, 47] (see Figure 2-2) , making it possible now 

to feed a complete set of constitutive parameters directly from lower molecular 

scales.  

 

 

Figure 2-2: Force-displacement curves of the silk unit cell, for protein MaSp1 (a) and 

MaSp2 (b). The force represents the response of the structure to shear load, and its values are 

normalized per polypeptide strand. The behavior is characterized by an initial stiff regime 

(magnified in (c)), followed by a plateau and a final covalent regime that precedes structural 

failure. (d) shows the failure force values for MaSp1 and MaSp2, together with their 

variation around the average value. [Figure reprinted from Ref. [47]] 
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A model made up of a series of springs is a simple, yet powerful way to link 

nanostructural features and their associated mechanical signatures to the aggregate 

mechanical behavior at the silk-fibril scale. The serial spring assumption is 

reasonable at the nanoscale since in the sequence of spider silk the crystalline 

domains are followed by the glycine-rich repeats that form the semi-amorphous 

regions, resulting in a serial constitutive unit that is the fundamental building block of 

more complex hierarchies at larger scales [49].  

2.1.1 Model formulation and parameter identification  

Full-atomistic simulations of the mechanical properties of the semi-amorphous 

regions of spider silk have been performed in earlier studies [10, 47]. A 

representative volume element containing 15 polypeptide chains is used to derive the 

constitutive behavior (see Figure 2-3). 
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Figure 2-3: Representation of the molecular structure of the spider silk unit cell under 

increasing levels of deformation. Silk‘s unit cell is represented by a beta-sheet nanocrystal 

surrounded by semi-amorphous regions rich in beta-turns and 31-helices. Increasing levels of 

deformation are applied to the structure with the aim to determine its mechanical response 

until failure. [Figure reprinted from Ref. [47]]. 

 

This approach of considering more than one chain in the atomistic mechanical 

characterization allows to obtain a distribution of mechanical responses, and compute 

their averaged value. When compared to a single-chain mechanical characterization, 

this approach also accounts for the various interactions between chains within the 
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semi-amorphous domain. This is critical for example to accurately describe the 

constitutive properties of 31-helices that involve multiple polypeptide chains.  

The effective force-extension behavior derived from the large molecular assembly is 

then normalized by the force, area and length per single polypeptide chain, to develop 

an appropriate constitutive law. The results from these analyses are used directly to 

determine the parameters of the present coarse-grained model representing a single 

amorphous domain and a single beta-sheet nanocrystal.  

We approximate the force-displacement behavior of the two constituting phases of 

silk under tensile loading with a multi-linear model.  Numerical values of all 

parameters developed here are given in Tables 1 and 2, and details on the 

mathematical formulation and parameter identification are given below.  

 

Table 1: Model parameters for the semi-amorphous region in the mesoscale model. 

Model parameter Value 

kA ,1
 (pN/Å) – Initial regime 9.9 

kA,2
 (pN/Å) – Intermediate regime 3.96 

kA,3
 (pN/Å) – Final regime 103.84 

LA,1
 (Å) –  First transition point  12.0 

LA,2 (Å) –  Second transition point 43.8 

0,AL ,(Å) – Initial length  90.0 
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Table 2: Model parameters for the beta-sheet nanocrystal in the mesoscale model. 

Model parameter 

Beta-sheet nanocrystal size 

3 nm crystal 
6.5 nm 

crystal 

10 nm 

crystal 

kB ,1
 (pN/Å) – Beta-sheet 

nanocrystal initial stiffness 
576 205.5 67.53 

kB,2
 (pN/Å) – Second-regime 

stiffness 
5.76 N/A N/A 

LB,1
(Å) – Softening point  2.36 N/A N/A 

LB,2
 (Å) – Breaking point  5.8 4.5 6.63 

Fmax  (pN) – Maximum tensile 

strength  
1,380 925 447 

0,BL  (Å) – Initial length 0 

 

2.1.1.1 Semi-amorphous region 

Atomistic simulations revealed a characteristic three-stage deformation pattern, where 

an initial stiff regime is followed by a yielding point and a long plateau, and eventual 

significant stiffening as the polypeptide‘s backbone is being stretched [10, 47]. This 

behavior is associated to the presence and the breaking of secondary structures such 

as 31-helices and beta-turns, which are rich in intra-chain and inter-chain hydrogen 

bonding [23, 45]. At larger strains, the structure enters a final high-stiffness regime, 

characterized by the stretching of covalent bonds along the protein backbone.  

Values for the stiffness of the three different regimes of the semi-amorphous domain 

are extracted from atomistic simulation data [10, 47]. By fitting the atomistic 

simulation results with a tri-linear function, it‘s possible to obtain the tangent 

stiffnesses as a function of the displacement, where LA LA LA,0  describes the 
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deformation of the semi-amorphous region (relative to the initial length). The 

stiffness as a function of deformation is then given by: 
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where the values for  as well as the transition deformations  and  are 

summarized in Table 1. The force versus deformation of the amorphous domain is 

given by the following law: 

2,2,3,1,2,2,1,1,

2,1,1,2,1,1,

1,1,

)()(

)()(

AAAAAAAAAA

AAAAAAAA

AAAA

AA

L>LLLkLLkLk

LLLLLkLk

L<LLk

LF

     

                                       

                                                                        

(2) 

The resulting force-deformation curve of the semi-amorphous region is shown in 

Figure 2-4. 

 

iAk , 1,AL 2,AL
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Figure 2-4: Constitutive behavior of the two elements represented in the coarse-grained 

model of silk (obtained from full atomistic molecular dynamics simulation results as reported 

in [4, 10, 47]). a, Mechanical behavior of the glycine rich semi-amorphous domain as 

reported in [47], consisting of three regimes (A: homogeneous stretching of the protein 

structure, B: onset of yielding and unraveling of the semi-amorphous domains via the 

breaking of H-bonds, C: stretching of protein backbone). b, Mechanical behavior of beta-

sheet nanocrystals under lateral loading. The smallest beta-sheet nanocrystal size (3 nm) 

shows the characteristic stick-slip phenomenon due to repeated breaking and reformation of 

H-bonds (modeled here as an elastic-plastic yielding behavior), a phenomenon that is lost in 

larger beta-sheet nanocrystals. Larger beta-sheet nanocrystals (>3 nm) show a more brittle 

and at the same time weaker and softer mechanical behavior as shown in [4]), reflected in the 

constitutive behavior shown in panel b. 
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2.1.1.2 Beta-sheet nanocrystals 

The beta-sheet nanocrystal is modeled as a nonlinear spring, where the force-

displacement characteristic is informed from atomistic simulation results [4, 10, 47, 

50, 51]. The beta-sheet nanocrystal is modeled as two beads superimposed on one 

another, and the bond between these beads characterizes the mechanical response of 

the crystal.  

From atomistic simulations [4] it was found that the properties of the beta-sheet 

nanocrystals vary as a function of crystal size, where small crystals are stiffer, 

dissipate more energy through a stick-slip mechanism and fail at higher force values. 

The effect of the variation in size of beta-sheet nanocrystals on silk‘s mechanical 

behavior is considered by scaling the stiffness, strength and energy dissipation 

capacity of the beta-sheet nanocrystals according to size-effects observed in atomistic 

simulations. To account for these effects, beta-sheet nanocrystals of different size 

feature distinct mechanical properties [35, 52, 53] in this model.  

The beta-sheet crystal stiffness is modeled as a function of the crystal deformation 

computed as LB LB LB,0
. The expression for the stiffness Bk  as a function of 

deformation BL is then given by  

1,2,
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where  is the beta-sheet nanocrystal transition point as defined in Table 2 and 

shown in Figure 2-4b.   

The force as a function of deformation is given by the following expression 
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where the Heaviside function H is defined asH( LB ) 1 for LB LB,2
 and 

H( LB ) 0 for LB LB,2
. 

The failure point, LB,2
 depends on the crystal size as summarized in Table 2. The 

transition point LB,1
representing the onset of stick-slip motion only exists in the 

smallest 3 nm beta-sheet nanocrystal case. For the larger beta-sheet nanocrystals (6.5 

nm and 10 nm cases), the force on the linear spring is simply given as 

BBBBB LkLHLF 1,)()( .          (5) 

The spring constants are calculated by dividing the maximum tensile strength by the 

softening deformation for the 3 nm case, and by the breaking point for the larger-

crystal cases. The second, softer regime for the small-crystal case is assumed to 

feature a constant stiffness equal to 1% of the initial one, approximating the stick-slip 

behavior observed in atomistic simulations through an elastic-plastic model [4].  

The calculation of the breaking point is done by maintaining the dissipated-energy 

proportion between beta-sheet nanocrystals of different size. Explicit atomistic 

simulations suggest that a 3 nm crystal is approximately three times tougher than a 

6.5 nm-crystal, and in the context of the bilinear spring model [4] this results in a 

breaking point value of 5.8 Å. It has to be noted that atomistic calculations on 

strength and effective stiffness of beta-sheet nanocrystals are based on the pull-out 

force required to separate a single strand from the crystal, to be consistent with the 

normalization for a single polypeptide strand. 

The maximum tensile strength of beta-sheet nanocrystals of different size [4] is  

derived directly from atomistic simulation for the 3 nm and 6.5 nm beta-sheet 

nanocrystals [4], while it is linearly extrapolated for the 10 nm case. To be consistent 

with the force values of the semi-amorphous domain, the maximum strength is 

directly calculated from simulations in implicit solvent for a 3 nm-crystal system; and 
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the large beta-sheet nanocrystal strengths are then determined using the strength ratio 

from explicit simulations.  

The softening point for the 3 nm beta-sheet nanocrystal is extracted from explicit 

simulation results, as well as the breaking point for the 6.5 nm beta-sheet nanocrystal. 

In the 10 nm case, the breaking point is linearly extrapolated, keeping the same ratio 

of increase in breaking deformation as in the other two cases 6.5 nm and 10 nm). 

Both extrapolations for the 10 nm beta-sheet nanocrystal are performed in order to 

study a limiting case in the analysis of the effects of crystal size.   

2.1.2 Parameter sensitivity  

Since all constitutive elements feature a multi-linear elastic behavior, it is possible to 

predict a linear behavior in the response of the system to a parameter variation, either 

resulting from a different mechanical signature or from an error in the parameter 

estimate. Of particular interest is the dependence of the overall strength on the 

strength of the beta-sheet nanocrystal. Given the fact that the large-deformation 

behavior (including the fracture behavior) is controlled solely by the beta-sheet 

nanocrystal phase, a percentage variation in the maximum tensile strength of the beta-

sheet nanocrystal correlates directly with the maximum tensile strength of the overall 

structure. 

2.1.3 Model setup and computing techniques  

The MATLAB script provided in the Appendix A1 is used for calculating the stress-

strain behavior of the one-dimensional serial spring model discussed in this chapter. 

The effective stiffness of the system under tensile stretch is given by a serial 

arrangement of two springs and corresponds to 
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Force-displacement calculations are carried out by applying displacement increments 

to the system, and computing the relative deformations of the serial springs as a 

function of their instantaneous stiffness.  

2.1.3.1 Calculation of stress and toughness    

The displacement of each element can be computed based on eq. (6) such that total 

deformation equals LT LA LB  at any point, and forces can be evaluated from 

equations (2) and (4), (5). Stress values are derived from force calculations by 

considering a A = 10 Å x 10 Å square cross-sectional area (this estimate for the 

effective area of a single polypeptide chain is based on a geometric analysis of the 

spider dragline silk nanostructures obtained in earlier atomistic simulation studies 

[10, 47]) along the whole system length such that , where    is the 

computed stress,  is force per chain and  denotes the cross-sectional area 

associated with a single polypeptide chain.  

Mechanical toughness is calculated measuring the area under the force-extension 

curve (until structural failure) by means of a trapezoidal numerical integration. 

2.2 Results and Experimental Validation 

In the spider silk mesoscale model illustrated in this chapter, each constituent has a 

mechanical signature informed from full atomistic simulation [4, 10, 47] as illustrated 

in Figure 2-4. This model, albeit extremely simple, is capable of describing the key 

features of the nanomechanics of spider silk, without the introduction of any 

experimental parameters.  

The model is applied to simulate the mechanical deformation of silk according to a 

tensile loading condition shown in Figure 2-5a. The analysis begins by considering a 

system with a beta-sheet nanocrystal size of 3 nm that reflects the size found in 

AF /

F A
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natural silks. The resulting stress-strain curve shown in Figure 2-5b displays the 

characteristic shape observed in silks, that is, it displays an early yield point, leading 

to a significant softening followed by a severe stiffening effect.  

 

 

Figure 2-5: Stress-strain response of a silk fibril under tensile loading, for varying beta-sheet 

nanocrystal size. a, Schematic of model setup and loading geometry of tensile testing. b, 

Stress-strain response of spider silk based on different beta-sheet nanocrystal sizes, ranging 

from 3 to 10 nm. The behavior after rupture has occurred is displayed with dotted lines. The 

results reveal a remarkable dependence of the stress-strain response on the beta-sheet 

nanocrystal size. Overall, the stress-strain behavior observed here is in good agreement with 

experimental results. 
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A detailed analysis reveals that the initial regime is characterized by a relatively high 

tangent modulus (830 MPa) owing to the homogeneous stretching of semi-amorphous 

regions that are rich in hydrogen bonding in the form of 31-helices and beta-turns [8, 

23, 45]. The onset of rupture of the hydrogen bonds in the semi-amorphous domains 

leads to yielding at strain values of around 13%, evident from a sudden drop in the 

tangent stiffness. The tangent modulus of this softer regime is much lower, around 

310 MPa. During this plateau regime, protein chains in the semi-amorphous region 

gradually align along the pulling direction [6, 54], a mechanism that is mediated by 

the significant hidden length of polypeptide stored in this geometry.  

At a strain value of around 50%, the stress-strain curve enters a high-stiffness regime 

(with a much higher tangent stiffness of around 8 GPa). At this point, the semi-

amorphous region has been completely stretched out and the beta-sheet nanocrystals 

begin to sustain larger strains. An interesting event observed in the stress-strain plot is 

a small softening regime starting at around 63% strain, immediately prior to failure. 

A detailed analysis of this phenomenon shows that this is due to the stick-slip failure 

mechanism of the beta-sheet nanocrystals, a mechanism first described in [4]. This 

final high-stress regime contributes significantly to the overall toughness as it 

accounts for approximately 20% of the total energy dissipated before failure. When 

the applied force reaches the maximum tensile strength at strain values of 67%, 

individual beta-strands are completely pulled out, and failure occurs at a stress of 

1,379 MPa. This maximum stress level—on the order of GPa—is in quantitative 

agreement with results from experimental studies [6].   

It‘s now considered a systematic variation of the beta-sheet nanocrystal size of up to 

10 nm, and its impact on the mechanical properties is studied to quantify the 

dependence of the crystal size on the overall mechanical behavior. The motivation for 

this analysis is to validate earlier hypotheses, showing that small changes in the 

crystal size translates to altogether different overall mechanical response in spider 
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silk [4, 6]. The results of the mechanical analysis are shown in Figure 2-5b, where we 

plot the stress-strain curves for varying beta-sheet nanocrystal sizes.  

The most important finding is the observation that the size of beta-sheet 

nanocrystals—at otherwise completely identical conditions—severely affects the 

mechanical response. The analysis shown in Figure 2-5b clearly shows that larger-

crystal systems (i.e. 6.5 nm and 10 nm beta-sheet nanocrystals) have a behavior that 

deviates significantly from the reference small-crystal case, especially at high levels 

of deformation. Silk fibrils with larger beta-sheet nanocrystals break at significantly 

lower stress values, and also show a shorter (61% and 58% strain, respectively) and 

much softer third regime, with a tangent modulus of 6 GPa and 3.6 GPa, respectively. 

The initial and intermediate regimes, however, are comparable to the case with the 

smallest beta-sheet nanocrystal, where the transition points and stiffness values do not 

vary substantially between the two systems. 

These results demonstrate that even a slight increase in beta-sheet nanocrystal size 

leads to a significant loss of strength and toughness of the system (Figure 2-6). As 

shown in Figure 2-6a, with a value of 925 MPa, the 6.5 nm-crystal case shows a 

decrease of approximately 33% with respect to the reference system with the smallest 

beta-sheet nanocrystal. The drop is even larger for the 10 nm-crystal case, which fails 

at 447 MPa, at 67% less than the reference case with the smallest (3 nm) beta-sheet 

nanocrystal.  
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Figure 2-6: Variation of strength and toughness with beta-sheet nanocrystal size. a, Variation 

of strength with beta-sheet nanocrystal size. The plot illustrates that silk fibers employing 

larger beta-sheet nanocrystals have a diminished strength of 925 and 447 MPa for the 6.5 and 

10 nm crystal cases, compared with the small-crystal (3 nm) system, which breaks at 1,379 

MPa. b, Variation in the toughness (toughness modulus) of the silk constitutive unit as a 

function of beta-sheet nanocrystal size. Enhanced mechanical properties of small beta-sheet 

nanocrystals play a governing role in the overall behavior. An increase in the toughness 

(modulus) from 96 MPa to 138 MPa and 241 MPa is observed when beta-sheet nanocrystal 

size is reduced from 10 nm to 6.5 nm and 3 nm. 
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The drop of the maximum stress further lead to considerably lower toughness values 

than those found in the reference small-crystal case (Figure 2-6b). A decrease of 43% 

and 60% is measured for the 6.5 nm and the 10 nm case, in comparison to the 

toughness value for the reference small beta-sheet nanocrystal case (241 MPa). 

Silk deformation mechanisms at different strain levels and for varying beta-sheet 

nanocrystal sizes are now studied. Figure 2-7 shows the relative contribution of the 

semi-amorphous domain and the beta-sheet nanocrystal to overall deformation for the 

three beta-sheet nanocrystal sizes considered here.  
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Figure 2-7: Deformation mechanisms of silk 

constitutive elements, as a function of beta-

sheet nanocrystal size (3 nm in panel a, 6.5 nm 

case in panel b, and 10 nm in c). The plot 

shows the relative contribution of beta-sheet 

nanocrystal deformation and deformation of the 

semi-amorphous region as a function of strain. 

a, Since the beta-sheet nanocrystal is much 

stiffer than the semi-amorphous phase, its 

contribution to the total deformation is initially 

small. The softening of the semi-amorphous 

phase results in an even smaller contribution 

for the beta-sheet nanocrystal as deformation is 

increased. However, when the semi-amorphous 

region enters the stiff covalent regime, the beta-

sheet nanocrystals deform more significantly. 

The final regime, with a drastic drop in beta-

sheet nanocrystal properties due to stick-slip 

phenomena, determines a noticeable increase of 

beta-sheet nanocrystal deformation, finally 

leading to failure of the system. This panel 

illustrates that beta-sheet nanocrystals 

contribute to deformation primarily in the final 

stages of deformation. b and c, Since the larger 

beta-sheet nanocrystals are less stiff, their 

contribution to deformation is larger than in the 

small beta-sheet nanocrystal case (panel a). 

Note that the data shown is zoomed into 20% 

on the y-axis to focus on the range of 

contributions of the beta-sheet nanocrystals 

more clearly. 
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In the smallest crystal system (3 nm), deformation of the beta-sheet nanocrystals start 

to play a significant role once the semi-amorphous region begins to stiffen at around 

50% strain, and clearly dominate deformation when the stick-slip mechanisms of 

beta-sheet nanocrystal deformation is triggered (Figure 2-7a). The dominance of beta-

sheet nanocrystal deformation at large strains has been hypothesized in earlier 

experimental studies, but is here for the first time shown from a molecular 

perspective and with a direct link to underlying molecular mechanisms.  

In the larger crystal cases of 6.5 nm and 10 nm, however, the beta-sheet nanocrystal 

contribution to deformation reaches much larger levels even for small deformation 

(Figure 2-7b-c). The reason for this is the much softer behavior of the beta-sheet 

nanocrystals (as illustrated in Figure 2-4b), which results in greater displacements in 

the nanocrystal region. This observation demonstrates the importance of the great 

stiffness of beta-sheet nanocrystals to enable the specific deformation mechanisms 

that are crucial to silk‘s mechanical properties.  

Next comes a comparison of the maximum deformation of the semi-amorphous 

region at failure, for different beta-sheet nanocrystal sizes. As shown in Figure 2-8, 

semi-amorphous regions are less stretched in the systems with larger beta-sheet 

nanocrystals. The maximum strains reached in the semi-amorphous region is 61% in 

the 3 nm beta-sheet nanocrystal case, 56% in the 6.5 nm case, and around 51% in the 

10 nm beta-sheet nanocrystal. This is an important observation, which suggests that 

the increase of the beta-sheet nanocrystal size prevents the material to take full 

advantage of the entire potential—the hidden length—of the semi-amorphous 

regions, which severely affects silk‘s extensibility and energy dissipation capacity 

[55, 56].  
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Figure 2-8: Deformation of semi-amorphous region in silk, as a function of beta-sheet 

nanocrystal size. The analysis reveals that larger beta-sheet nanocrystals prohibit the semi-

amorphous region from fully extending, reducing the energy dissipation capacity of the 

material. In the 10 nm-case, the semi-amorphous region deforms only up to around 51% its 

initial length, while it can reach values of 56% and 61% in the 6.5 and 3 nm cases. 

 

Overall, the results of our study are in excellent agreement with experimental data, 

where a similar variation of the beta-sheet nanocrystal size and its impact on larger-

scale mechanical properties was reported recently [6], showing a drastic drop in 

toughness when beta-sheet nanocrystal size increases (in experiments [6], the change 

in the beta-sheet nanocrystal size was achieved via a change of the reeling speed. A 

drop of the strength from approximately 1,500 MPa to 300 MPa was observed as the 

beta-sheet nanocrystal size was increased, in reasonable agreement with the results 

shown in Figure 2-6a).  

It has to be noticed that the strain values in the three systems investigated here are 

larger than those found in experimental studies (between 10% and 50% more). This 

phenomenon can be explained based on two points. First, in this one-dimensional 
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model we consider an ideal and rather simplified structure that completely lacks the 

statistical variability and structural defects. This fact generally leads to enhanced 

strength and extensibility in comparison to experimental results.  Second, we 

underline that physiologically spun silks (i.e., the small-crystal case) undergo a 

substantial pre-stretching at the orifice [6, 57]. However, the one-dimensional model 

described in this chapter does not include this effect and we consequently expect an 

overestimation of the stretching capacity of the material.  

The more complex two-dimensional model described in Chapter 3 will directly 

include variability of silk structure, spacing and other parameter including the effect 

of pre-stretching, with the aim to allow for an even better comparison with 

experimental data. 

2.3 Discussion 

The most important finding of the study described in this chapter is that it has 

revealed the mechanistic interplay of the two constitutive phases in silks, semi-

amorphous regions and highly organized beta-sheet nanocrystals, as well as the effect 

of structural changes on the overall mechanical behavior of silks.  

It is found that semi-amorphous regions unravel first when silk is being stretched, 

leading to the large extensibility of silk. Conversely, the large-deformation 

mechanical properties and ultimate tensile strength of silk are controlled by the 

strength of beta-sheet nanocrystals, which is directly related to their size.  

An important discovery is that small beta-sheet nanocrystals are crucial to reach 

outstanding levels of strength and toughness, as shown clearly in Figure 2-6. A key 

observation from the current study is that the unraveling of semi-amorphous regions 

is severely influenced by the size of the beta-sheet nanocrystals, and that only ultra-

small crystals provide the basis for silks to take full advantage of extensibility and 
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energy dissipation capacity, and enable the material to reach very high levels of 

failure stresses (Figure 2-6 and Figure 2-8). Small-crystal systems guarantee the 

required cross-linking strength that is necessary for the semi-amorphous domains to 

fully extend and to enter a high-stiffness covalent regime when beta-sheet 

nanocrystals are being stretched and eventually fail.  

The resulting capacity to sustain large tensile force as well as extension enhances the 

strength and energy dissipation ability of the material. Overall, the confinement of 

beta-sheet nanocrystals to the nanoscale is essential for the superior mechanical 

properties of silks, as this is crucial to reach high extensibility and high levels of 

stress.  

These results further show that the severe change of the mechanical properties of 

spider silk under relatively small variations of the size of beta-sheet nanocrystals can 

be explained solely based on structural effects (Figure 2-4 and Figure 2-5). These 

findings also relate the characteristic yielding point in the stress-strain curve (see 

Figure 2-5b), observed universally for many types of silks, to the onset of failure of 

semi-amorphous regions when H-bonded 31-helices and beta-turns begin to rupture. 
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Chapter 3  

Parametric study of a  

two-dimensional mesoscale model 

The one-dimensional model described in Chapter 2 is a powerful tool to model silk’s 

characteristic behavior and to describe key characteristic phenomena related to the 

silk unit cell. However, there are intrinsic limitations of a one-dimension model to 

describe geometric features found in silks at larger scales, such as a specific 

distribution of the nanostructure, density variations, and others.  

The goal of this chapter is to shed light on the mechanical behavior of the silk threads 

at dimensions of hundred of nanometers, by directly including the distribution of 

beta-sheet nanocrystals and semi-amorphous domains in a two-dimensional network 

model. The importance of a computational study of silk’s behavior at the mesoscale 

comes from the fact that despite significant advances in experimental techniques, 

approaches such as SEM or x-ray diffraction could thus far only provide limited 

insight into the atomic resolution structure of spider silk, given its great complexity 

and its semi-amorphous nature. 

Another aim of this Chapter is to further gain insight in silk’s nanostructure by means 

of computational simulations, thus obtaining an understanding of sub-micron scales 

not yet possible by experimental techniques. It is explored how basic unit cells further 

assemble at a higher dimensional hierarchy to form the overall silk thread. A bottom 

up approach is consistently employed, taking advantage of atomistic results and 

preliminary mesoscale evidence (as described in Chapter 2) in order to climb the 

dimensional hierarchy of silk.  
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3.1 Strengths and limitations of a two-dimensional 

model 

A complete understanding of the mechanical signature of silk, at different 

dimensional scales, requires the development of models that are able to take into 

account key physical phenomena defining silk‘s mechanical behavior. Models have 

to explain relevant features at a defined scale, avoiding at the same time the 

introduction of unnecessary complexities that make the model heavy and non-

efficient. 

A two-dimensional model of spider silk structure has the possibility, compared to a 

1D model, to describe key physical phenomena taking place at a scale of hundreds of 

nanometers such as crystal concentration and structural homogeneity. The 1D model 

described in the previous chapter has intrinsic limitations in describing geometric 

features found in silks at larger scales, such as the specific distribution of the 

nanostructure, density variations, presence of defects and others.  

A possible future implementation of a three-dimensional model could further improve 

our capacity to model spider silk mechanical properties. Whereas the advantages of a 

three-dimensional model are still to be evaluated, the challenges of a more complex 

modeling of the silk structure are evident, for example the necessary assumptions on 

three-dimensional branching of crystalline structures, necessary to realistically 

represent the complex and entangled three-dimensional arrangement of the 

polypeptide chains.  

A coarse-grain representation of a physical system intrinsically carries some 

assumptions and limitations with it, and consequently an increase in complexity of 

the model is always a trade-off between a possible gain in understanding and an 

excessive approximation of the physics of the system. Advantages and drawbacks of 

a more complex three-dimensional model will have to be carefully weighed, 
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considering that the present 2D model is by itself able to represent key physical 

phenomena occurring in the three-dimensional space, such as the effect of crystal 

size. The agreement of outcomes between 1D and 2D model also suggests that the 

current models are able by themselves to correctly represent the right physics of 

spider silk nanostructure and to predict the effect and the outcome of parameter 

variations. 

Although the current two-dimensional model cannot justify all phenomena that 

characterize silk behavior, it can correctly model, reproduce and predict key 

phenomena and interesting features of spider silk up to the scale of hundreds of 

nanometers. 

3.2 Materials and Methods 

3.2.1 Geometry setup and silk network generation  

An appropriate modeling of spider silk structure at the mesoscale of hundreds of 

nanometers requires knowledge of the geometry of the system under investigation. 

Previous work has shown that the coarse-grained basic unit cell of spider silk consists 

of a serial arrangement of one semi-amorphous and one crystalline domain, and that 

this structure is by itself able to represent some of the characteristic mechanical 

behavior of silk, as shown in Chapter 2. 

For the present two-dimensional analysis, a random network is generated (see Figure 

3-1) in a square space and has the goal to model the geometry by which silk unit cells 

assemble at a larger scale. Nodes represent the beta-sheet nanocrystals, while bonds 

model the semi-amorphous inter-crystalline regions.  
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The introduction of structural randomness in the model allows statistical variability of 

the initial length of the constitutive unit cells, thereby facilitating random crack-

propagation processes leading to material failure (see Figure 3-2).  

 

 

Figure 3-1: Schematic of the mesoscale two-dimensional model. Schematic illustration of 

the model and the loading conditions. The system consists of a random yet homogeneous 

network of polypeptide chains where the beads represent beta-sheet nanocrystals and the 

lines represent amorphous domains. Tensile strain is applied by moving the edges at a 

constant deformation rate, and stress is computed using the virial stress formulation. 
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Figure 3-2: Spider silk network under increasing levels of loading. Deformation is applied at 

constant rate to the system. Cracks generate and propagate through the network, leading to 

failure of the overall structure. 

 

A MATLAB script (in Appendix A2) is used to generate the initial geometry, where 

nodes are positioned along the boundaries of a square representative area following a 

regular distribution. This is done in order to ensure an even spacing between the 

crystals that are located along the boundaries and has the aim to minimize non-

homogeneity that could lead to the nucleation of early cracks at the boundaries. 

Coordinates of the interior nodes of the matrix are generated using a uniform random 

distribution, while a recursive cycle checks that all points satisfy a lower threshold 

limit (cutoff) on the inter-nodal distance, ensuring that all distances between 

neighboring beta-sheet nanocrystals fall above this value. 
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This check ensures a homogeneous distribution of nodal points within the boundaries. 

Bonds between nodes are then generated through a Delaunay-triangulation algorithm, 

which ensures that no node falls into the triangle‘s circumcircle, which is the unique 

circle that passes through each of the triangles three vertices [58]. A schematic of the 

matrix generation process is shown in Figure 3-3. 

 

Figure 3-3: Matrix generation process. Schematic showing how the silk random matrix is 

generated. a. Equally-spaced points are distributed along the edges of a square shape. b. 

Random points are positioned within the borders of the square shape. c. Inter-crystalline 

bonds, connecting the nodes of the network, are created through a Delaunay-triangulation 

algorithm. 

 

The total size of the reference system is Lx = 600 nm by Ly =600 nm with periodic 

boundary conditions, and the average inter-crystalline distance is imposed to be 90 Å  

in the reference system, consistently with the parameters used in the one-dimensional 

unit-cell system described in [19] and in the previous Chapter. A study of the effect 

of the system size has been performed by varying the system dimensions in a range 

from 500 Å to 9000 Å, with results not showing any significant difference in the silk 

stress-strain behavior.  
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Given an average size of the whole silk fibril of a few microns [6, 59], our 

simulations are performed in a dimensional scale about one order of magnitude 

smaller than experiments in literature [60-62].  

3.2.2 Model formulation and parameter identification  

Full-atomistic simulations of the mechanical properties of the semi-amorphous 

regions of spider silk have been performed in earlier studies [10, 47]. The results 

from these analyses are used directly to determine the parameters of the reference 

coarse-grained unit cell, formed by an amorphous domain in series with a beta-sheet 

nanocrystal [19] as described in Chapter 2.  

The two-dimensional model described in this Chapter consistently use the same 

parameters employed for the one-dimensional model, described in Figure 2-4 and 

summarized in Table 1-2. Two distinct types of bonds are introduced: semi-

amorphous bonds between distinct crystals in the network and crystal bonds between 

the crystalline domain itself. These last bonds model the properties of silk 

polypeptides and their assembly into beta-sheet secondary structures. Analogously to 

what has been done for the one-dimensional model, we approximate the force-

displacement behavior of the two constituting phases of silk under tensile loading 

with a multi-linear model (see Figure 2-4).  

Given the random-matrix generation process previously described, statistical 

variability exists for the length of the semi-amorphous regions AL , that is, the length 

of the bonds between two crystals of the network. Each amorphous-region length AL  

is defined as || jiijA rrrL , where ir  and jr are the Cartesian coordinates of the 

two beads involved in the semi-amorphous bond at a given deformation state. In the 

reference unit-cell, the initial semi-amorphous length 0,AL = 90 Å, while the crystal-

bond length 00,BL  for every crystal bond, where || jiijB rrrL  and ir  , jr are 

the coordinates of the beads involved in the crystal bond.  
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Numerical values of all model parameters are consistent with values used for the silk 

unit cell and given in Tables 1 and 2, while details on the mathematical formulation 

and parameter identification are described below.  

3.2.2.1 Semi-amorphous region 

Values for the stiffness of the three different regimes of the semi-amorphous domain 

are extracted from atomistic simulation data [10, 47]. The behavior shows an initial 

stiff regime, followed by a yielding point, a long plateau and a final high-stiffness 

regime as described in detail in Chapter 2. By fitting the atomistic simulation results 

with a tri-linear function, the tangent stiffness is obtained as a function of the 

displacement, where LA LA LA ,0 describes the deformation of the semi-

amorphous region (relative to the initial state) and AL  represents the semi-amorphous 

length as previously defined. 

In order to be consistent with the assumptions of the one-dimensional mesoscale 

model [19], an equal chain-density has to be ensured across the cross-section area. 

The number of chains across the cross-section area is calculated along the length of 

the whole network and an average value is then computed and used to calculate the 

density of the 2D system. Given a density of 0.01 chains/Å
2
 for the 1D model, it is 

possible to ensure equal chain density in the 2D model by means of a parameter 1  

that scales the forces of the whole system so that the mechanical analogous is 

obtained of systems with equal chain density.  

The parameter 1  is defined as the ratio between one-dimensional and two-

dimensional chain density, as follows: 

D

D

d

d

2

1

1 ,           (7) 
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where Dd1 and Dd 2 are defined as the chain density in the 1D system and 2D system, 

and chain density is defined as the number of chains per total cross-section area. 

A second parameter 2  accounts for changes in the semi-amorphous initial length, 

with respect to the reference 90 Å case on which parameters are derived from 

atomistic simulations. Variations in length can be either systematic or random. A 

systematic variation of the average inter-crystal spacing is performed in this work 

with the aim to study the effect of different spacing on the overall mechanical 

response. Random variations are instead due to the distribution around an average 

value of initial lengths, whose spread around the mean value depends on the 

homogeneity of the structure.  

Each semi-amorphous polypeptide chain is characterized by an equal elastic modulus 

E  and chain cross-section area 0A , and its stiffness is then related to the amorphous-

region initial length 0,AL  by  

0,

0

A

A
L

EA
K ,           (8) 

showing inverse proportionality between semi-amorphous stiffness and initial length. 

The scaling parameter 2  is defined as 0,02 / ALL , where 900L
 
Å is the 

average equilibrium distance (and the initial length of the semi-amorphous region in 

the reference system). The formulation expressed in equation (2) is able to effectively 

capture the fact that longer chains behave in a softer fashion. 

The semi-amorphous stiffness as a function of deformation is given, for every bond, 

by the equation: 
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where the values for  as well as the transition deformations  and  are 

summarized in Table 1. The force versus deformation for each amorphous domain is 

given by the following law: 
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where 1 , 2 are scaling parameters accounting for crystal density and variations in 

inter-crystal spacing as previously described. Analogously to what stated in Chapter 

2, shows the resulting force-deformation curve of the semi-amorphous region for the 

reference case, where 121 . 

3.2.2.2 Beta-sheet nanocrystals 

Each beta-sheet nanocrystal in the two-dimensional system is modeled as a stack of 

four bonded beads with zero initial equilibrium distance. Each bond models the cross-

linking effect of cooperative H bonds within the beta-sheet nanocrystal [4, 50, 51] 

and characterizes its mechanical response. Bonds are modeled as multi-linear springs 

and the force-displacement characteristic is informed from pull-out atomistic 

simulations [4, 10, 47, 50, 51], where both explicit and implicit-solvent simulations 

have shown agreement in the description of the beta-sheet nanocrystal constitutive 

behavior. We consider the effect of the variation in size of beta-sheet nanocrystals on 

the mechanical behavior by scaling the stiffness, strength and energy dissipation 

capacity of the beta-sheet nanocrystals according to size-effects observed in atomistic 

simulations and analogously to what has been done for the one-dimensional basic 

iAk , 1,AL 2,AL
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unit-cell [19]. To account for these size effects, beta-sheet nanocrystals of different 

size feature distinct mechanical properties [35, 52, 53].  

Beta-sheet nanocrystal stiffness is modeled as a function of beta-sheet nanocrystal 

deformation, expressed as LB LB LB ,0, where BL  represents the crystal-bond 

length as previously described and where 00,BL  for every crystal bond. The 

formulation for the stiffness Bk  as a function of deformation BL is then given by  

1,2,

1,1,

                 

                 
)(

BBB

BBB

BB
LLk

L<Lk
Lk                    (11) 

where  is the beta-sheet nanocrystal transition point as defined in Table 2 and 

shown in Figure 2-4b. The effect of crystal size is modeled by changing the values of 

parameter 1,Bk  and 2,Bk , as well as 1,BL  and 
2,BL  as summarized in Table 2.  

The force as a function of deformation for the 3 nm-crystal is given by the following 

expression 

1,1,2,1,1,

1,1,

1
  if        )(

 if                                         
)()(

BBBBBBB

BBBB

BBB
LLLLkLk

LLLk
LHLF  ,            (12) 

where the Heaviside function H is defined asH( LB ) 1 for LB LB ,2  and 

H( LB ) 0 for LB LB ,2  and the parameter 1  accounts for the system-density 

scaling as previously described. 

The failure point, LB ,2 depends on the crystal size as summarized in Table 2. For the 

larger beta-sheet nanocrystals (6.5 nm and 10 nm cases), the force on the linear spring 

is given as 

BBBBB LkLHLF 1,1 )()( .                (13) 

1,BL
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The added value of the model described in this Chapter is the possibility to vary a 

wider number of system parameters and study how this affects the overall mechanical 

behavior. 

3.2.3 Parametric study formulation 

Parameters relative to the geometry of the system and the mechanical behavior of the 

constitutive elements will be varied in this study. The goal is to check the robustness 

of the model, its capacity to represent different mechanical conditions and validate 

the results with experimental evidence. 

In detail, the effect on silk mechanical response of the following parameters is 

studied: 

 different inter-crystalline spacing; 

 different crystal homogeneity; 

 prestretch; 

 combined effect of crystal size, inter-crystalline spacing and prestretch; 

 water content. 

3.2.3.1 Effect of different beta-sheet nanocrystal spacing on the silk mechanical 

properties 

Silk polypeptide chains are present in a semi-liquid phase in the spider‘s silk glands. 

The silk solidification process taking place at the spider‘s orifice during the spinning 

drastically affects the mechanical properties of the silk thread [6].  

Formation of the crystals is a complex process, requiring the chains to have, at the 

same time, a suitable relative position and enough time to nucleate. When the silk is 

extruded, it passes through a long duct, where the shearing of the fluid drives the 

protein to align in the direction of the flow and to come close to each other: faster 
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spinning increases this phenomenon and thus the probability of having the 

geometrical suitable conditions for crystal formation [6].  

More crystals in the same amount of silk correspond to a higher crystal concentration 

and a smaller intercrystalline distance. The nucleation time plays a role in defining 

the size of the crystals, where large crystals are only possible at low spinning rate 

(long nucleation time).  

An increase in crystal density is accompanied by a decrease in inter-crystalline 

spacing and in the length of the silk unit cell, with value ranging from 6 nm to 24 nm.  

3.2.3.2 Effect of crystal homogeneity 

Silk structures can show different levels of crystal homogeneity. Different levels of 

homogeneity can be obtained by changing the degree of order in the Delaunay-

triangulation network.  

A larger cutoff value ensures great homogeneity of crystal distribution and thus a 

change in its value determines different homogeneity levels. The range for the 

threshold limit varies between 0.2 and 1.0 times the optimal value for the cutoff 

distance. The optimal value is intended as the maximum value for the cutoff that 

allows the random-matrix generation algorithm to be solved. 

Homogeneity of the system is changed by varying the lower-threshold value for the 

inter-nodal distance during the random-network formation.  

The cutoff coefficient for a random matrix generated as above is expressed by the 

following equation: 

cutoffCoef*

400
25

1
cutoff

intN
,                 (14) 
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where 
intN  is the number of internal points to the network and cutoffCoef is a 

coefficient that varies between 0.2 and 1.0 as described above.  

A diminished value for the threshold results in a clustering of crystals in certain 

regions, where the result is a local crystal distribution which is less homogeneous and 

a system with altered mechanical properties. A quantitative estimate of the level of 

homogeneity could be obtained analyzing the distribution of bond lengths around the 

average value: if amorphous-region bond lengths tend to be closer to the average 

value the level of homogeneity of the structure is higher. 

3.2.3.3 Effect of prestretch 

As mentioned above, semi-liquid spider silk passes through a long and tiny duct when 

silk is being spun; the resulting shear forces have the double effect to partially align 

the polypeptide chains along the longitudinal direction and to pre-stretch the 

molecules of a quantity that is proportional to the spinning speed [6]. Faster-spun silk 

is characterized by better oriented and more pre-stretched polypeptide chains. This 

means that the equilibrium structure (no load applied) of the silk unit cell is not 

completely folded and consequently it has less hidden length that can be unraveled 

when pulling the silk thread [6].  

A higher spinning speed determines increased levels of pre-stretch in the semi-

amorphous regions of silk [6]. In the pre-stretched case, the equilibrium structure of 

silk is partially unfolded even when no load is applied, determining yielding and 

stiffening to occur at lower displacement values than the reference case.  

Modeling of pre-stretch can be done according to different hypotheses as shown in 

Figure 3-4. Constant feature is the fact that pre-stretch is modeled by a variation of 

the displacement at the transition points (from 0% to 80% variation). This drop in 

strain can be imposed keeping the initial stiffness constant or alternatively keeping 

the forces at the transition points to be constant. 
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Figure 3-4: Different hypotheses for the modeling of pre-stretch. a. Pre-stretch is modeled by 

a variation of the displacement at the transition points (from 0% to 80% variation), keeping 

the initial stiffness constant. The initial and the plateau regimes are shorter at increasing 

levels of pre-stretch, with yielding and stiffening occurring at lower force levels. b. Different 

hypothesis for the modeling of pre-stretch: force at yielding and stiffening points is kept 

constant, while the displacement is changed and decreased up to 80%. As a consequence, 

initial and plateau stiffness increases as the level of pre-stretch grows.  

 

The initial and the plateau regimes are shorter at increasing levels of pre-stretch: 

yielding and stiffening occur at lower force levels if constant stiffness is imposed, 

while initial and plateau stiffness increases as the level of pre-stretch grows under the 

hypothesis of constant forces.  

In the present work both hypotheses for the modeling of pre-stretch in silk are 

investigated. 1,AL  and 
2,AL  are the amorphous transition points for the reference 



90 

 

case and the pre-stretched transition points 
'

1,AL  and 
'

2,AL  are defined as 

iAiA LpsL ,

'

, )1( , where ps is defined as a prestretch factor varying between 0 (no 

prestretch) and 0.8 (max level of prestretch investigated in this study). 

Stiffness of the semi-amorphous region )( AA Lk  is divided by a factor )1( ps  in the 

hypothesis of constant force, while it is not modified with respect to the reference 

case under the hypothesis of constant stiffness. 

3.2.3.4 Combined effect of crystal size, inter-crystalline spacing and pre-stretch 

The speed by which silk is spun at the spider‘s orifice affects simultaneously the size 

of the beta-sheet nanocrystals, their average spacing and the level of pre-stretch of the 

semi-amorphous regions. All these factors lead to different stress-strain constitutive 

behaviors and are introduced into the model as described above. The overall effect of 

silk spinning speed is studied by a simultaneous combined variation of these three 

parameters and all their possible combinations. For each crystal dimension the whole 

range of possible pre-stretches is studied, and for each level of pre-stretch different 

inter-crystalline distances are taken into exam. 

3.2.3.5 Effect of water 

An increase in hydration promotes the entry of water molecules into the spider silk 

network, leading to a softer, more extensible structure [59, 63].  A schematic 

representation of this effect is shown in Figure 3-5 (note that this figure is not the 

result of an actual simulation, but rather based on a rendering of the effect of water on 

the hydrogen bonding of two generic protein molecules). Water molecules interfere 

with the formation of H bonds within silk polypeptide chains: higher levels of 

hydration determine a decrease in inter- and intra-chain hydrogen bonding and lead to 

a softer and more extensible behavior for the semi-amorphous region.  
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Figure 3-5: Effect of system hydration. Schematic representation of the effect of water on the 

spider silk structure. Water molecules enter the silk network and interfere with the formation 

of H bonds within polypeptide chains: higher levels of hydration determine a decrease in 

inter- and intra-chain hydrogen bonding and lead to a softer and more extensible behavior for 

the semi-amorphous region. 
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The effect of water is modeled by modifying the initial stiffness and extensibility of 

the semi-amorphous region, with the assumption to keep equal values of yielding and 

stiffening force. The level of hydration is accounted by means of a water factor, 

where higher values represent a more hydrated structure and a softer initial behavior.  

The model aims to study the effect of water on the initial regime and on the entity of 

the drop in stiffness at the yielding point. Water contribution is modeled by a 

progressive softening of the initial regime: the transition point occurs at same force 

levels, but higher deformations lead to smaller initial-stiffness values. The transition 

deformation AL  is rescaled to be AA LwfL *'
, where wf is a water-factor 

varying between 0.01 and 1.6. The reference value 1wf  refers to a partially 

hydrated structure, whose behavior has been derived from atomistic simulations. 

Analogously, the initial amorphous stiffness Ak  is scaled to be wfkk AA /'
, to 

ensure equal transition forces in all systems. 

3.2.4 Computing technique 

LAMMPS Molecular Dynamics code is used for the simulations [64]. The force field 

is modified introducing multi-linear harmonic bond potentials as previously 

described, with the aim to model the bonding interactions within the crystalline and 

the semi-amorphous domains (for the code, see Appendix A3). We notice that since 

the basis of the model is atomistic simulation, the (multi-linear) spring constants 

directly take into account the effects of solvent and molecular friction, while 

additional parameters for viscosity and other effects are not considered in this work.  

Pulling simulations are performed at constant volume and constant energy (NVE 

ensemble) at room temperature (300 K - with Berendsen control of Temperature 

every 60 fs). The time step is 1 fs and the total simulation time 1.5 ns. Pulling 

velocity is 6*10
-16

 m/s and the strain rate is 10
-9

 s
-1

. The initial structure is initially at 
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equilibrium and homogeneous deformation is applied to the entire system every 500 

time steps (for details, see input file in Appendix A4).  

In order to deform the network, fixed boundary conditions constrain the system 

vertical edges while tensile strain is applied to the simulation box, which is deformed 

cyclically and transfers the deformation to the silk structure. Using this technique, 

deformation is applied instantaneously and homogeneously to every point of the 

network. Simulations using Steered Molecular Dynamics (SMD) have been 

previously performed, but did not allow a homogeneous distribution of deformation 

and led to high stress values in localized points of the network, with the arise of 

cracks leading to early material failure.  

The network structure is further constrained in its transversal direction via periodic 

boundary conditions, in order to exclude the effect of Poisson ratio (shrinking) and its 

effect on cross-section area. Additional simulations have been preformed relaxing 

this constraint: no significant difference in the mechanical behavior has been noticed, 

confirming the validity of this simplifying assumption. 

The output of the pulling simulations, which is the component of the virial stress 

tensor along the x (pulling) direction, is calculated and averaged over the entire 

system. The stress is defined according to the virial approach [15, 65], where the 

volume is calculated assuming a thickness of T=10 Å, consistently with the one-

dimensional analysis performed in Ref. [19] and in Chapter 2 of this thesis work.  

The output is further time-averaged every 500 time steps and data post-processing is 

performed using python and MATLAB scripts, with Visual Molecular Dynamics 

(VMD) as a graphical interface [66]. Mechanical toughness is calculated measuring 

the area under the force-extension curve (until structure breaking) by means of a 

trapezoidal numerical integration. 
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3.3 Results and discussion 

3.3.1 Variation of crystal size 

The findings presented in Chapter 2 for a one-dimensional silk unit cell show how a 

variation in size of the beta-sheet nanocrystals affects the overall system mechanical 

behavior, with small crystals leading to enhanced values of maximum strength and 

toughness. Aim of this section is to show whether such a variation in crystal size 

affects the behavior of silk also at a larger scale, with silk polypeptide entanglements 

represented by the two-dimensional coarse-grained random network previously 

described. Molecular dynamics simulations are used to characterize the mechanical 

behavior of the system under stretching and for varying system conditions as 

described in the Materials and Methods section of this Chapter.  

Figure 3-6a represents a cluster of poly(Ala) residues, creating a highly-order stacked 

structure and the basic unit of beta-sheet nanocrystals. Figure 3-6b is a graphical 

representation of beta-sheet nanocrystals of different size, with values from 3 nm up 

to 10 nm. 

The resulting stress-strain curves shown in Figure 3-6c provide evidence that the size 

of beta-sheet nanocrystals drastically affects silk‘s overall mechanical response also 

in a silk two-dimensional model, with smaller-crystal systems showing enhanced 

properties in terms of maximum tensile strength and dissipated energy.  
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Figure 3-6: Influence of the beta-sheet nanocrystal size on the tensile stress-strain behavior.  

a, three dimensional representation of a cluster of poly(Ala) residues that represent the basic 

unit of silk nanocrystals. Anti-parallel beta-sheets are formed by protein strands linked by 

hydrogen bonding. b, Different dimensions of beta-sheet nanocrystals (3 nm, 6.5 nm, 10 nm). 

The number of strands clustered to form beta-sheet structures affects the load distribution 

within the crystal and its overall mechanical response, as described in [4]. c, Predicted stress-

strain curves of spider dragline silk illustrating the influence of beta-sheet nanocrystal size. 

The behavior after rupture is displayed with dotted lines. The results show that failure stress 

and strain depends strongly on the beta-sheet nanocrystal size: for the systems studied 

(ranging from 3nm to 10nm), a slight yielding behavior is observed at around 15% strain, and 

failure occurs between 45% and 65% strain. Failure stresses lie in a range from around 400 

MPa to 1500 MPa, where smaller crystals lead to higher strength as well as higher tensile 

strain. 
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The analogy of results in a one-dimensional and two-dimensional arrangement 

confirms that the mechanical properties and deformation mechanisms of silk—in 

particular the sensitivity of the properties with respect to the size of beta-sheet 

nanocrystals—are well preserved when increasing the complexity of the system. 

Most importantly, the similarity of results from the one- and two-dimensional models 

confirm that the approach employed to coarse grain the spider-silk unit cell into a 

one-dimensional model is suitable to capture the key physics of material deformation 

also at larger scales. 

Results show that an increase in beta-sheet nanocrystal size leads to a significant loss 

of strength and toughness of the overall system. The maximum value of tensile 

strength for the small crystal case is 1447 MPa in the 2D system. As shown in Figure 

3-6c, with a value of  around 745 MPa, the 6.5 nm-crystal case shows a decrease of 

approximately 50% with respect to the reference system with the smallest beta-sheet 

nanocrystal. The drop is even larger for the 10 nm-crystal case, which fails at 345 

MPa, at 76% less stress than the reference case with the smallest (3 nm) beta-sheet 

nanocrystal.  

The drop in maximum stress also leads to toughness values that are considerably 

lower than the reference small-crystal case (see Figure 3-6c). A decrease of 26% and 

64% is measured for the 6.5 nm and the 10 nm case respectively, in comparison to the 

toughness value of 260 MPa for the 3 nm reference case.  

3.3.2 Variation of intercrystalline distance 

 The probability of beta-sheet nanocrystal formation is increased at higher reeling 

speed, thanks to better orientation of the poly(Ala) regions [6]. Crystal size and 

crystal concentration are two highly-correlated phenomena, showing nevertheless 

different effects on silk‘s mechanical behavior. In the present analysis the effect of 

crystal spacing is first studied separately, while it will be later combined with the 

concurrent effect of crystal size and pre-stretch level.  
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Results from mesoscale simulations on the random matrix described above show that 

a shorter average intercrystalline distance in the denser case increases the failure 

stress and the toughness of the system and is accompanied by a significant decrease 

of the strain levels (see Figure 3-7).  
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Figure 3-7: Influence of beta-sheet nanocrystal spacing on the silk mechanical properties. a, 

Silk networks with different beta-sheet nanocrystal spacing. In experiments, reeling speed 

and the associated crystal nucleation time affect the properties of beta-sheet nanocrystals in 

the network: higher reeling speeds better orient the poly(Ala) regions and increase the 

probability of beta-sheet nanocrystal formation, thus increasing their density and decreasing 

the inter-crystalline space. b, Schematic representation of the silk unit cell, formed by a series 

of an amorphous domain and a beta-sheet nanocrystal. A change in crystal density 

corresponds to a change in length of the silk unit cell, with values ranging from 6 nm to 24 

nm. Stiffness values for the amorphous domain depend on the length of the unit cell as 

discussed in Materials and methods section. c, Stress-strain curves, showing the mechanical 

behavior of silk networks characterized by different inter-crystalline spacing. A decrease in 

spacing determines increased values of maximum tensile strength, together with an upward 

shift of the characteristic curve at all levels of strain.  
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Crystal spacing drastically affects the maximum tensile strength, with values ranging 

between 600 MPa and 1900 MPa. Concurrent with increasing maximum stress is a 

decrease in failure strain from around 80% to 50%. This characteristic behavior is 

confirmed by experimental evidence, where the mechanics of silks spun at different 

velocities has been studied [2]. These results demonstrate that in a 2D model an 

increase in maximum tensile strength does not depend only on beta-sheet nanocrystal 

strength but also on crystal concentration and stiffness of the amorphous domains. 

A stiffer amorphous region resulting from decreased inter-crystalline spacing (for 

details see Materials and Methods section) affects the mechanical behavior at all 

levels of deformations, leading to an upward shift of the overall curve. A higher 

crystal concentration plays a role particularly at high deformation levels, drastically 

increasing the maximum tensile stress.  

Considering a variation of inter-crystalline length between the reference case (inter-

crystalline spacing of 9 nm) and the value of 24 nm, it is possible to see a drop of 

maximum tensile strength from 1447 MPa to 592 MPa (-60%) and a decrease in 

toughness from 260 to 151 MPa (-42%). Strain at failure concurrently increase from 

63% to 85% (+35%). 

The study of the effect of crystalline superconcentration, modeled by an average 

inter-crystalline distance of 6 nm, also yields interesting results. The curve (Figure 

3-7c) shows an increase of maximum tensile stress of 30% with respect to the 

reference (9 nm) case and tops a value of 1883 MPa. Toughness is also increased 

from 260 to 279 MPa. 

Intermediate values of inter-crystalline distance result in a mechanical behavior 

whose curve lies in-between the two extreme cases of 6 nm and 24 nm.  
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Figure 3-8 shows a series of snapshots of spider silk networks with different 

intercrystalline distance at different deformation levels. 

 

Figure 3-8: Spider silk networks of different density (different inter-crystal spacing – a,b) 

under increasing levels of loading. Deformation is applied at constant rate to the systems. 
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Besides showing the effect of inter-crystalline spacing on the maximum stress, strain 

and toughness, another outcome of this study is the discovery that in a two-

dimensional model, the maximum stress value does not depend uniquely on the value 

of crystal strength (as in the one-dimensional model) but it rather depends on a 

combination of multiple factors such as amorphous stiffness and crystal 

concentration.  

3.3.3 Variation of crystal homogeneity 

Crucial in the analysis of the mechanical properties of a material is the study of 

defects and their repercussion on the overall mechanical response. A study of 

structural homogeneity variation shows how a divergence from an ideal structure 

leads to different mechanical properties.  

 

The curves represented in Figure 3-9 show an increase of up to 20% in maximum 

tensile strength for homogeneous structures when compared to, while they do not 

show a significant variation in maximum strain values. Highly homogeneous 

structures are characterized by a more pronounced sigmoidal behavior, with a marked 

yielding and final stiff regime.  
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Figure 3-9: Effect of structural homogeneity. a. Silk structures with different crystal 

homogeneity, obtained by changing the degree of order in the Delaunay triangulation 

scheme. The coordinates of the nodes in the matrix are generated using a uniform random 

distribution, while a recursive cycle checks that all points satisfy a lower threshold limit on 

the inter-nodal distance. The order parameter is defined by a lower threshold limit (cutoff), 

ensuring that all distances between neighboring beta-sheet nanocrystals fall above this value. 

A larger cutoff value ensures great homogeneity of crystal distribution. The range for the 

threshold limit varies between 0.2 and 1.0 times the optimal value for the cutoff distance. b. 

Study of the effect of crystal homogeneity on the mechanical behavior of the silk network. 

Homogeneous structures show an increase of up to 20% in maximum tensile strength while 

they do not show a significant variation in maximum strain values. Highly homogeneous 

structures are characterized by a more pronounced sigmoidal behavior, with a marked 

yielding and final stiff regime. 
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The main finding of this section is that a lack of crystal homogeneity in the silk 

structure modifies the overall mechanical response, with particular reference to the 

failure mechanisms: with increased crystal homogeneity, the stress-strain curve 

shows an increase in maximum tensile strength, without any significant variation in 

the maximum strain level. 

3.3.4 Effect of pre-stretch 

The resulting stress-strain curves in Figure 3-10 show the effect of silk pre-stretch on 

the mechanical behavior of the overall structure. Different results are obtained when 

assuming different hypotheses as described in Materials and Methods section.  

Faster spinning determines increased levels of pre-stretch in the semi-amorphous 

regions of silk. In the pre-stretched case, the equilibrium structure of silk is partially 

unfolded even when no load is applied.  
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Figure 3-10: Effect of semi-amorphous region pre-stretch. Faster spinning determines 

increased levels of pre-stretch in the semi-amorphous regions of silk. In the pre-stretched 

case, the equilibrium structure of silk is partially unfolded even when no load is applied, 

determining yielding and stiffening to occur at lower displacement values than the reference 

case. Modeling of pre-stretch can be done according to different hypotheses. a. Pre-stretch is 

modeled by a variation of the displacement at the transition points (from 0% to 80% 

variation), keeping the initial stiffness constant. b. Predicted spider silk stress-strain curves at 

different levels of pre-stretch. Highly pre-stretched structures show a significant drop in 

maximum strain (from 65% to 25%) and a concurrent decrease in toughness and failure 

stress. c. Different hypothesis for the modeling of pre-stretch: force at yielding and stiffening 

points is kept constant, while the displacement is changed and decreased up to 80%. d. 

predicted stress-strain curves at different pre-stretch values, hypothesis of constant force at 

transition points. Increased values of pre-stretch lead to lower values of maximum stress, 

strain and toughness, together with an upward shift of the whole curve at all levels of strain. 
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Figure 3-10b,d show that, either assuming the hypothesis of constant stiffness or 

constant force, the initial and the plateau regimes of the resulting stress-strain curves 

are shorter at increasing levels of pre-stretch, with yielding and stiffening occurring at 

lower force levels. Highly pre-stretched structures show a significant drop in 

maximum strain (failure strain shifts from 65% strain to 25% strain) and a concurrent 

decrease in toughness and in failure stress.  

With the hypothesis of constant stiffness (for details, see Materials and Methods 

section of this chapter), maximum stress decreases from 1447 to 1217 MPa and 

toughness from 260 to 85 MPa (see Figure 3-10b) when going from a structure 

characterized by 0 pre-stretch (reference case) to a structure characterized by a pre-

stretch factor of 0.8. Assuming the hypothesis of constant force, maximum stress 

decreases to 1252 MPa and toughness to 102 MPa in the case of prestretch factor 

equal to 0.8. 

As shown above, different hypotheses on the modeling of pre-stretch give 

approximately the same drop in maximum stress for a pre-stretched system, while the 

hypothesis of constant stiffness leads to a sharper drop in toughness than the 

hypothesis of constant force. The two different hypotheses change the shape of the 

silk stress-strain curve especially at low levels of deformation, with a gradual upward 

shift evident in the hypothesis of constant force and for increasing levels of pre-

stretch, but lacking in the hypothesis of constant stiffness. 

It‘s important to underline that this pre-stretch effect will have to be properly 

combined with a crystal-size effect, since both phenomena happen simultaneously 

when silk is being spun. 

Simulation results on a two-dimensional model of spider silk that include the effect of 

pre-stretch give results where strain levels that are much closer to experimental 

evidences [6]. This fact confirms that a study of pre-stretch can help to explain the 
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reason for the gap, in terms of maximum strain, between simulations and experiments 

as it has been noticed at the end of Chapter 2. 

3.3.5 Combined effect of crystal size, inter-crystalline spacing and 

pre-stretch variation 

Figure 3-11 and Figure 3-12 show how different spinning conditions affect the 

overall spider silk mechanical behavior. This is done by simultaneously varying the 

parameters defining crystal size, inter-crystalline spacing and level of pre-stretch, all 

factors concurrently affected by the silk spinning conditions and speed. 

Figure 3-11 shows the curves obtained by all possible combinations of these three 

parameters when they vary in the ranges described above. The result is an area of the 

stress-strain plot that can be explored by different spider silk systems. As clearly 

shown in Figure 3-12, the stress value at failure can go from about 100 MPa to almost 

2000 MPa, while system toughness can range from 10 to almost 300 MPa. 
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Figure 3-11: Combined effect of crystal size, spacing and pre-stretch. Combined effect of 

crystal size, crystal density and level of pre-stretch on the mechanical behavior of silk. The 

speed by which silk is spun affects simultaneously the size of the crystallites, their average 

spacing and the level of pre-stretch of the semi-amorphous regions. All these factors lead to 

different stress-strain constitutive behaviors. All the curves define an area of the stress-strain 

plane that can be explored by the present two-dimensional mesoscale model by varying 

characteristic parameters of silk. 

 

When plotting toughness versus maximum stress, as it has been done in Figure 3-12, 

it is possible to see how the level of pre-stretch and the inter-crystal spacing play a 

role in changing these two fundamental parameters for the description of silk 

mechanical properties. Both an increase in inter-crystalline spacing and in pre-stretch 

level determine a significant drop in toughness. At the same time, a change in inter-

crystalline spacing leads to a sharper decrease in maximum stress than what a 

decrease of pre-stretch leads to.  
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Figure 3-12: Silk toughness plotted as a function of maximum stress. Toughness is plotted 

over maximum stress for varying levels of pre-stretch, inter-crystalline spacing and crystal 

size. Points referred to crystals of different size are plotted in different colors, showing 

increased values of maximum stress and toughness for smaller (3 nm) crystals. An increase in 

inter-crystalline spacing leads to a drastic drop in both maximum stress and toughness, while 

an increase in pre-stretch mainly affects the toughness levels. By appropriately varying the 

controlling parameters, it is possible to obtain a curve with downward concavity, and thus a 

mechanical behavior able to couple high values of both material properties. 

 

The presence of arches in Figure 3-12 is aimed to underline that by appropriately 

varying the controlling parameters it‘s possible to obtain a concave downwards curve, 

and thus a mechanical behavior able to couple high values of both toughness and 

maximum stress. 
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3.3.6 Effect of hydration  

The level of hydration highly influences the mechanical properties of a silk system, 

since water molecules can penetrate within the polypeptide network, interfere with 

the level of hydrogen bonding and change the stiffness and extensibility features of 

the semi-amorphous domains. Here we analyze the effect of different hydration levels 

and how the presence of water affects the characteristic mechanical features of spider 

silk. The reference case has a water factor equal to 1 and represents a semi-

amorphous structure which is partially hydrated, as it has been studied in atomistic 

implicit-solvent simulations [47]. A variation in the level of hydration is studied by 

varying the value of the water factor and leads to the different stress-strain 

characteristic curves shown in Figure 3-13b, c. 
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Figure 3-13: Effect of system hydration. b-c. The effect of water is modeled by modifying 

the initial stiffness and extensibility of the semi-amorphous region, with the hypothesis to 

keep equal values of yielding and stiffening force. The level of hydration is accounted by 

means of a water factor, varying between 0.4 and 1.6: higher values represent a more 

hydrated structure and a softer initial behavior. c. shows a magnified image of the region 

around the yielding point: the current model aims indeed to study the effect of water on the 

initial regime and on the entity of the yielding. d and e (magnified). stress-strain behavior of 

spider silk at different hydration values. Higher values of hydration lead to a yielding which 

is less pronounced and which occur at higher strain values. The reference case (with a water 

factor equal to 1) refers to a partially-hydrated original structure, whose characteristic 

parameters are obtained from atomistic simulations in implicit solvent [10, 47]. These 

predicted results are in agreement with recent experimental evidences about supercontraction 

and the effect of water on silk threads. 
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Figure 3-5 shows a schematic representation of the effect of water on the spider silk 

structure: higher levels of hydration determine a decrease in inter- and intra-chain 

hydrogen bonding and lead to a softer and more extensible behavior for the semi-

amorphous region (see Figure 3-13b,c). The effect of water is modeled by modifying 

the initial stiffness and extensibility of the semi-amorphous region, with the 

hypothesis to keep equal values of yielding and stiffening force. The level of 

hydration is accounted by means of a water factor, varying between 0.4 and 1.6: 

higher values represent a more hydrated structure and a softer initial behavior of the 

semi-amorphous regions.  

The current model aims to study the effect of water to the limited extent of the initial 

regime and the yielding point. Figure 3-13d,e shows how an increase in hydration 

leads to a softer and more extensible initial regime and how a higher values of 

hydration leads to a yielding which is less pronounced and which occur at higher 

strain values.  

These results are overall in agreement with experimental data [59], where an increase 

in hydration has shown to lead to a significant softening of the whole structure, to the 

gradual disappearance of the yielding point and to the supercontraction phenomenon 

characteristic of silk [57, 67]. 
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Chapter 4  

Conclusions and outlook to future 

research 

 

This Chapter is aimed to summarize the key findings of this thesis work, 

distinguishing the results and scientific accomplishments gained by the development 

of the one-dimensional model described in Chapter 2 and the two-dimensional model 

described in Chapter 3. 

The work has helped to fill the gap in the understanding of the linkage between the 

atomistic and macroscopic description of spider silk and has provided critical insight 

into the molecular and supra-molecular arrangement making up the structure of silk.  

At the same time, the work developed for this thesis has opened new opportunities for 

future research and provided new scientific questions on the modeling and 

understanding of spider silk mechanical behavior. 
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4.1 Summary of key findings and significance 

The key contribution of this thesis work is in the development and application of a 

framework of structural and mechanical understanding of the behavior of silk protein 

materials, with the use of a purely computational bottom up approach and validated 

by a direct comparison with experimental evidence. Figure 4-1 is referred to recent 

experimental results [6] on the mechanical properties of spider dragline silk. The 

plots show two systems characterized by different beta-sheet nanocrystal size, 

showing how nanoconfinement to smaller crystals leads to higher values of toughness 

and maximum tensile stress. These values are quantitatively comparable, in terms of 

maximum tensile strength, with simulation results obtained in the study described in 

this thesis work. Overall, goal of this work is to create a link between the 

understanding of silk‘s mechanical behavior at the nanoscale and its mechanical 

behavior at the macroscale.  
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Figure 4-1: Schematic representation of the experimental stress-strain behavior of 

silks, characterized by different size of beta-sheet nanocrystals. It‘s evident a 

sigmoidal behavior in the small-crystal case, characterized by a yielding point and a 

final covalent stiff regime. Larger crystals show instead a slightly enhanced capacity 

to strain but much smaller values of maximum stress and toughness [6]. [courtesy of 

Sinan Keten] 

 

These finding shed light on the structure and interplay of different constitutive 

elements that make up the behavior and peculiar features of spider silk. A model has 

been developed to allow an understanding of the role of the two fundamental 

constituents of silks at the intermediate, mesoscale level.  
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The aim has been to understand the fundamentals of silk‘s unique material properties, 

by deriving evidence directly from an atomistic level, without the need to introduce 

any experimental parameter. The atomistic-informed computational model described 

in this work has demonstrated to be able to correctly represent key features of spider 

silk mechanical behavior, and has provided insight into the underlying mechanicistc 

reason of experimental evidences. 

4.1.1 Contribution of the one-dimensional model of silk unit cell 

The most important finding of the study described in Chapter 2 and relative to the 

one-dimensional silk unit cell has been revealing the mechanistic interplay of the two 

constitutive phases of silk at the scale of tens and potentially hundred of nanometers. 

Structural changes on silk‘s semi-amorphous regions and on its highly-organized 

beta-sheet nanocrystals have shown to drastically affect silk‘s overall mechanical 

behavior (see Figure 2-5 and Figure 3-6). 

When silk is being stretched, semi-amorphous regions have shown to unravel first 

leading to the large extensibility of silk, which is concurrently made possible by the 

high ultimate tensile strength of beta-sheet nanocrystals (See Figure 2-7). The large-

deformation mechanical properties of silk have shown to be controlled by the strength 

of beta-sheet nanocrystals, which are directly related to their size. An important 

discovery is that beta-sheet nanocrystals of small dimension are crucial to reach high 

levels of strength and toughness, since they guarantee the required cross-linking 

strength that is necessary for the semi-amorphous domain to fully extend and enter a 

high-stiffness covalent regime, when beta-sheet nanocrystals are being stretched and 

eventually fail. 

Only ultra-small crystals enable the material to reach very high levels of failure stress 

and provide the possibility to take full advantage of all silk‘s extensibility and energy 

dissipation capacity.  
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Unraveling of semi-amorphous regions is severely influenced by the size of beta-

sheet nanocrystals and part of the secret of silk‘s outstanding mechanical properties 

relies in a correct balance of these interplaying factors: capacity to sustain large 

tensile force as well as capacity to unravel and extend. 

Overall, the confinement of beta-sheet nanocrystals has shown to be essential for the 

superior mechanical properties of silk, as it is crucial to reach high extensibility and 

high levels of stress and toughness. The study has also demonstrated that silk‘s 

peculiar behavior can be modeled using evidences derived solely by computational 

atomistic simulations, without any introduction of experimental parameter. In 

particular these findings have related the characteristic yielding point in the stress-

strain curve, universally observed for many types of silk, with the rupture of H bonds 

in 31 helices and beta turns of semi-amorphous regions. 

4.1.2 Contribution of the two-dimensional model 

The development of a two-dimensional mesoscale model of spider silk has been 

crucial to identify and explain key features of spider silk behavior that cannot be 

justified by a simple one-dimensional model, such as crystal concentration and 

structural homogeneity. Molecular dynamics techniques have been used to simulate 

the variation of a variety of system conditions and perform a parametric study of their 

effect on the overall silk‘s mechanical behavior. 

A complete understanding of the mechanical signature of silk requires indeed the 

development of a model that can take into account key physical phenomena such as 

the effect of water and system hydration, the effect of crystal density and 

homogeneity as well as the level of pre-stretch of the protein chains. The robustness 

and flexibility of the current model has been checked by validating computational 

evidences with experimental results, showing great agreement but opening at the 

same time interesting directions for future research, in the pursuit of an always better 

understanding of the phenomena underlying experimental evidences. 



117 

 

The importance of this computational study of silk‘s behavior at the nanoscale comes 

from the fact that experimental techniques can only provide limited insight into the 

nanostructure of silk, making computing techniques the only suitable tool for such 

investigation. A bottom-up approach is consistently employed to climb the 

dimensional hierarchy of silk and to study the effect of different system conditions: 

for every parameter variation, the physical underlying reason has been taken in 

consideration, has been modeled and its consequence on the overall system has been 

analyzed. 

Key findings of the two-dimensional model can be summarized as follows: 

 a variation in size of beta-sheet nanocrystals affect the mechanical behavior of 

spider silk also at larger scales, with smaller crystal systems showing 

enhanced properties in terms of maximum tensile strength and dissipated 

energy (see Figure 3-6). The analogy of results in a one-dimensional and two-

dimensional system confirms that the deformation mechanisms of silk are 

well preserved when increasing the complexity of the system; 

 a shorter average inter-crystalline distance, corresponding to denser silk 

structures, increases the failure stress and toughness of the system and is 

accompanied by a significant decrease of the strain levels (see Figure 3-7). A 

main outcome of this study is the discovery that in a two-dimensional model 

the maximum stress value does not depend solely on the value of crystal 

strength (as in a one-dimensional model) but it rather depends on a 

combination of multiple factors such as amorphous stiffness and crystal 

concentration; 

 a variation in crystal homogeneity leads to a significant variation of silk‘s 

mechanical properties (see Figure 3-9), with highly homogeneous structures 

showing an increase of up to 20% in maximum stress and a more pronounced 

sigmoidal behavior, with a marked yielding and final stiff regime. No 

significant variations of the strain levels have been shown as a consequence of 

a change in homogeneity; 
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 different hypotheses on the modeling of pre-stretch (constant stiffness and 

constant force) give approximately the same variation in maximum stress, 

with highly-prestretched structures leading to a drop in maximum strength and 

toughness (see Figure 3-10). The hypothesis of constant force for the 

transition points of the semi-amorphous domain changes the shape of the silk 

stress-strain curve especially at low levels of deformation, with a gradual 

upward shift concurrent with higher levels of pre-stretch; 

 a study of the combined effect of crystal size, inter-crystalline spacing and 

pre-stretch (Figure 3-11 and Figure 3-12) determines an area in the stress-

strain plot where the silk characteristic curves lie given the present model. 

Plotting toughness versus maximum stress it is possible to see how an 

increase in inter-crystalline spacing or an increase in the pre-stretch level 

determines a decrease in toughness and maximum stress values; 

 a change in the level of hydration (see Figure 3-13) influences the mechanical 

properties of a silk system, determining a decrease in inter and intra-molecular 

bonding, to a more extensible initial regime and to a yielding point which is 

less pronounced and occurring at higher strain values. These results are 

overall in agreement with experimental data, where an increase in hydration 

has shown to lead to a significant softening of the whole structure, 

accompanied by the gradual disappearance of a clear yielding point. 

4.2 Open questions and future developments 

While answering some of the questions on spider silk‘s structural conformation and 

mechanical properties, the current study has at the same time opened new lines of 

research, that use the models described in this thesis work to further improve the 

understanding of silk‘s mechanical secrets. 

Exciting future research perspectives that have been opened and on which research is 

currently undergoing can be summarized as follows: 
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 the effect of imperfections has just been explored in the present work, in terms 

of variations in homogeneity. A more systematic study of defects, crack 

formation and propagation patterns as well as system flaws and void in the 

network will shed further light in the mechanics of silk, especially at failure; 

 

 a single type of geometry and matrix generation process has been studied in 

this project. Work is undergoing to understand how different conformation 

and generation processes can affect the system mechanical behavior, 

increasing the number of parameters that could be used to tune silk‘s 

mechanical properties with the aim to even better describe experimental 

evidences;  

 

 the current model is able to describe the silk‘s behavior until rupture. An 

interesting perspective opened by the current study is the possibility to 

improve and adapt the model so that it can describe the silk behavior after 

breaking, analyzing how local stress distribution change when cracks generate 

and propagate, leading the structure to complete failure.  

 

 the current model is based on multi-linear elements, that do not include the 

effect of visco-elastic phenomena and energy-dissipation events. Exploratory 

research is undergoing to identify the viability of a model which can include 

also these effects and consequently allow a study of the effect of cyclical 

loading on silk structure. Booster to curiosity in this field is the fact that 

experimental evidences show that silk has a strongly visco-elastic dissipative 

behavior that cannot be modeled by any model currently existing. When 

capturing preys, spider silk threads are cyclically loaded, making the 

exploration of this mechanical effect particularly exciting; 

 

 new force-fields, new simulation techniques and new simulation parameters 

for the current model could be investigated, with the goal to bring the 
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potentialities of this model to its full extent and to validate its robustness with 

regards to different computational tools; 

 

 the current modeled has been based on a restrict number of pioneering 

atomistic simulations, limited especially by the complexity of the system, the 

high simulation times and the difficulty of directly validate results with 

experimental evidences. The perspectives opened by the work described in 

this thesis and the possibility to now compare and validate computational 

results with experiments have leaded to a renovated interest for atomistic 

simulations on spider silk, with specific regards to the understanding of how 

different system parameters affect the silk structure and behavior at the 

nanoscale level. Of particular interest is the study of the effect of water on the 

silk unit cell and the analysis of its consequences on the stress-strain curve at 

all levels of deformation. The results from these new atomistic simulations 

will be used in the future to back up what now are just hypotheses on the 

effect of parameters on silk‘s constitutive-elements behavior. Scope of the 

parametric study described in this work has been to anticipate how a specific 

parameter variation affects the overall silk behavior and arise the curiosity to 

fully understand the phenomena from a fundamental atomistic perspective; 

 

 thrilling research is undergoing to develop the first molecularly informed 

macroscale study of a whole spider web [61, 68-71]. The results obtained in 

this work have made possible to link the atomistic scale with the macroscale 

of spider silk, passing through the mesoscale of tens and hundreds of 

nanometers. It is consequently now possible to use the acquired knowledge to 

bring the bottom-up multiscale analysis of spider silk to its final stage, 

developing a macroscale model of the silk web completely backed up by 

computational studies at lower scales. It is possible to envision the early 

development of a three-dimensional macroscale model that could simulate the 

behavior of the whole spider web in different loading conditions: when preys 
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of different kind hit the spider web, a different mechanical load is applied. It 

will soon be possible to simulate and predict the behavior of the spider web 

when undergoing a whole range of mechanical loadings. 

 

The work described in this thesis has helped to open a window in the understanding 

of silk‘s astonishing mechanical properties, has arisen enhanced curiosity in the field 

and provided the research community with a mesoscale two-dimensional model. The 

current study will eventually work as a tool and starting point for future 

developments in silk‘s mechanical understanding and has overall contributed in the 

process of unraveling the secrets of one of the most enigmatic and exciting biological 

materials. 
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Appendix 

 

A1. MATLAB code for the simulation of the 1D system 

 

%all lengths are in A 

function [y]=onedimensional(type, color);            

%type can be s (small), l (large) or xl (extralarge)                           

npoints=5000;   %how many points I have in the plot 

strain=0.7;     %how much i strain the whole structure 

crlength=0;    %initial length of the crystal 

amlength=90;    %initial length of the amorphous region 

length=crlength+amlength    %total system length; 

if type=='s'; 

k11=576; %the crystal has purely elastic behavior       

%all stiffnesses in pN/A 

k12=0.01*k11; 

r11=2.36; %value in A 

r12=5.8; 

elseif type =='l'; 

k11=205.5; 

k12=205.5; 

r11=4.5; 

r12=4.5; 

elseif type =='xl'; 

k11=67.53; 

k12=67.53; 

r11=6.63; 
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r12=6.63; 

end 

k21=9.9;        

k22=3.96; 

k23=103.84; 

r21=0.13;    %fraction of initial length of amorphous  

r22=0.49;    %fraction of initial length of amorphous 

k2=k21;  %need to specify this for the first step of the cycle 

k1=k11; 

for i=1:npoints+1; 

    dl(i,1)=(i-1)/npoints*strain*length;    % total deformation as a 

function of step 

 if i==1;    %only for first step  

    dl1(i,1)=k2/(k1+k2)*dl(i,1);    % deformation of each spring as 

a function of total length 

    dl2(i,1)=k1/(k1+k2)*dl(i,1); 

 else  

    dl1(i,1)=dl1(i-1,1)+k2/(k1+k2)*(dl(i,1)-dl(i-1,1)); 

    dl2(i,1)=dl2(i-1,1)+k1/(k1+k2)*(dl(i,1)-dl(i-1,1)); 

 end 

    if dl2(i,1)>=r21*amlength;   %semi-amorphous spring reaches 1st 

transition point 

        if dl2(i,1)>=r22*amlength;   %semi-amorphous spring reaches 

2nd transition point 

        k2=k23; %assigment of the new k 

        else         

        k2=k22; 

        end 

    end 

    if dl1(i,1)>=r11;   %crystal spring reaches transition point      

       k1=k12;        
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    end 

    k(i,1)=k1*k2/(k1+k2); %overall system stiffness in a series of 

springs 

      if dl1(i,1)<=r12;     %i make sure the crystal is not broken 

        if i==1;    %particular only for first step 

        f(i,1) = k(i,1)*dl(i,1); 

        else 

        f(i,1) = f(i-1,1)+k(i,1)*(dl(i,1)-dl(i-1,1));  

        end 

    else f(i,1)=0;  %if crystal is broken the total force goes to 

zero 

   end 

end 

 %conversion to stress; number in MPa: 

sigma = f*1;  %this value depends on the area used to calculate the 

stress 

top=max(sigma) 

maxstress=top; 

location=find(sigma(:)==top); 

initial=sigma(1:location); 

dl5=dl(1:location); 

sigma5=sigma(1:location); 

plot(dl/length, sigma, [':',color], 'HandleVisibility', 'off'); 

hold on; 

plot(dl5/length, initial, color); 

set(gca, 'XTick', [ 0.3 0.6 .9]) 

xlim ([0 1.1]) 

xlabel('Strain'); 

ylabel('Stress [MPa]'); 

toughness=trapz(dl5/length, sigma5 
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A2. MATLAB code for the generation of the random 2D 

matrix 

 

function randommatrix(averagelength, totlength, cutoffcoeff); 

 

close all 

 

averagelength 

totlength 

 

     

Ninternal=double(int32(1.1*totlength^2/(sqrt(3)/2*averagelength^2))) 

 

Nbord=double(int32(sqrt(Ninternal))); 

 

cutoff=1/(25*(sqrt(Ninternal/400)))*cutoffcoeff; 

 

xpart=(1/Nbord)*[0:1:Nbord]'; 

xin=[xpart zeros(Nbord+1,1); xpart ones(Nbord+1,1); zeros(Nbord-1,1) 

xpart(2:end-1); ones(Nbord-1,1) xpart(2:end-1)]; 

for i=1:4*Nbord 

    xf(i)=xin(i,1); 

    yf(i)=xin(i,2); 

end 

i=4*Nbord+1;       

 

cutoffsq=cutoff^2; 

%cutoff2sq=cutoff2^2; 

while i<Ninternal+Nbord+1 

    X= rand(1,2); 

    x=X(1); 

    y=X(2); 

    use=1; 

    for j=1:i-1 

        if ((x-xf(j))^2+(y-yf(j))^2<cutoffsq), use=0; end 

    end 

    if (use==1) 

       xf(i)=x; 

       yf(i)=y; 

       i=i+1; 

    end 

end 

TRI=delaunay(xf,yf); 

triplot(TRI,totlength*xf,totlength*yf); 

set(gca, 'Xtick', [0:totlength/5:totlength]); 

set(gca, 'ytick', [0:totlength/5:totlength]); 

 

TRI3=[TRI(:,1) TRI(:,2);TRI(:,2) TRI(:,3);TRI(:,3) TRI(:,1)]; 

TRI4 = sort(TRI3')'; 

saaa=unique(TRI4,'rows'); 
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numbering = [1:1:length(xf)];                              

%first layer of beads 

numbering2 = [1:1:size(saaa,1)];                                  

%amorphous bonds 

numbering3 = [length(xf)+1:1:2*length(xf)];                

%second layer of beads 

numbering4 = [size(saaa,1)+1:1:length(xf)+size(saaa,1)];                 

%crystal bonds numbering -- 1 

numbering5 = [2*length(xf)+1:1:3*length(xf)];              

%third layer of beads 

numbering6 = 

[length(xf)+size(saaa,1)+1:1:2*length(xf)+size(saaa,1)];     

%crystal bonds numbering -- 2 

numbering7 = [3*length(xf)+1:1:4*length(xf)];              

%fourth layer of beads 

numbering8 = 

[2*length(xf)+size(saaa,1)+1:1:3*length(xf)+size(saaa,1)];   

%crystal bonds numbering -- 3  

 

% Positioning of the four layers of beads: 

 

Xfin1 = [numbering' ones(length(xf),1) ones(length(xf),1) 

totlength*xf' totlength*yf' zeros(length(xf),1)]; 

Xfin2 = [numbering3' ones(length(xf),1) ones(length(xf),1) 

totlength*xf' totlength*yf' zeros(length(xf),1)]; 

Xfin3 = [numbering5' ones(length(xf),1) ones(length(xf),1) 

totlength*xf' totlength*yf' zeros(length(xf),1)]; 

Xfin4 = [numbering7' ones(length(xf),1) ones(length(xf),1) 

totlength*xf' totlength*yf' zeros(length(xf),1)]; 

Xfin = [Xfin1; Xfin2; Xfin3; Xfin4]; 

 

% Creation of the amorphous bonds: 

 

for i = 1:size(saaa,1); %loop to attach crystals such that if X1>X2 

attach to second crystal bead 

   if  Xfin(saaa(i,1),4)<Xfin(saaa(i,2),4); 

       if Xfin(saaa(i,1),5)<Xfin(saaa(i,2),5); 

            saaa(i,1)=saaa(i,1)+length(xf); 

            saaa(i,2)=saaa(i,2)+2*length(xf); 

       else 

            saaa(i,1)=saaa(i,1)+3*length(xf); 

       end 

   else 

       if Xfin(saaa(i,1),5)<Xfin(saaa(i,2),5); 

            saaa(i,2)=saaa(i,2)+3*length(xf); 

       else 

            saaa(i,1)=saaa(i,1)+2*length(xf); 

            saaa(i,2)=saaa(i,2)+length(xf); 

       end    

   end 

end 

 

bondfin1 = [numbering2' 2*ones(size(saaa,1),1) saaa];                     

%amorphous bonds  
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bondfin2 = [numbering4' 1*ones(length(xf),1) numbering' 

numbering3'];     %how crystals are bound --1 

bondfin3 = [numbering6' 1*ones(length(xf),1) numbering3' 

numbering5'];     %how crystals are bound --2 

bondfin4 = [numbering8' 1*ones(length(xf),1) numbering5' 

numbering7'];     %how crystals are bound --3 

 

bondfin = [bondfin1; bondfin2; bondfin3; bondfin4]; 

dlmwrite('nodes.txt',Xfin,'delimiter','\t','precision',6); 

dlmwrite('bonds.txt',bondfin,'delimiter','\t','precision',6); 

 

clear all; 
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A3. Modified bond-harmonic file 

 

/* ----------------------------------------------------------------- 

   LAMMPS - Large-scale Atomic/Molecular Massively Parallel 

Simulator 

  

----------------------------------------------------------------- */ 

 

#include "math.h" 

#include "stdlib.h" 

#include "bond_harmdifflengths.h" 

#include "atom.h" 

#include "neighbor.h" 

#include "domain.h" 

#include "comm.h" 

#include "update.h" 

#include "neighbor.h" 

#include "force.h" 

#include "memory.h" 

#include "error.h" 

 

using namespace LAMMPS_NS; 

 

/* -------------------------------------------------------------- */ 

 

BondHarmdifflengths::BondHarmdifflengths(LAMMPS *lmp) : Bond(lmp) {} 

 

/* -------------------------------------------------------------- */ 

 

BondHarmdifflengths::~BondHarmdifflengths() 

{ 

  if (allocated) { 

    memory->sfree(setflag); 

    memory->sfree(k); 

    memory->sfree(r0); 

  } 

} 

 

/* ---------------------------------------------------------------*/ 

 

void BondHarmdifflengths::compute(int eflag, int vflag) 

{ 

  int i1,i2,n,type,factor; 

  double 

delx,dely,delz,ebond,fbond,xFac,rfactor,softp,rcut,r00,length,chainf

actor,lengthfactor,prestretch; 

  double rsq,r,dr,rk; 

  int c1,c2,c3,c4,c5,c6,c7,c8; 

  double rsoft1, rbreak1,k11, k12, r21, r22, k_pick, k21, k22, k23 ; 

 

  ebond =0.0; 

  if (eflag || vflag) ev_setup(eflag,vflag); 

  else evflag = 0; 
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  double **x = atom->x; 

  double **f = atom->f; 

  int **bondlist = neighbor->bondlist; 

  int nbondlist = neighbor->nbondlist; 

  int nlocal = atom->nlocal; 

  int newton_bond = force->newton_bond; 

  int currentstep = update->ntimestep; 

 

  r00=3.615; 

 

  if (currentstep==0) { 

     for (n = 0; n < nbondlist; n++) { 

       i1 = bondlist[n][0]; 

       i2 = bondlist[n][1]; 

       

       delx = x[i1][0] - x[i2][0]; 

       dely = x[i1][1] - x[i2][1]; 

       delz = x[i1][2] - x[i2][2]; 

       domain->minimum_image(delx,dely,delz); 

 

       rsq = delx*delx + dely*dely + delz*delz; 

       r = sqrt(rsq); 

       rlist[n]=r; 

       } 

    } 

 

  for (n = 0; n < nbondlist; n++) { 

    i1 = bondlist[n][0]; 

    i2 = bondlist[n][1]; 

    type = bondlist[n][2]; 

 

  if (newton_bond) factor = 2; 

    else { 

      factor = 0; 

      if (i1 < nlocal) factor++; 

      if (i2 < nlocal) factor++; 

    } 

    rfactor = 0.5 * factor; 

 

    delx = x[i1][0] - x[i2][0]; 

    dely = x[i1][1] - x[i2][1]; 

    delz = x[i1][2] - x[i2][2]; 

    domain->minimum_image(delx,dely,delz); 

 

    rsq = delx*delx + dely*dely + delz*delz; 

    r = sqrt(rsq); 

     

    r00=rlist[n]; 

 

    //type1: 

 

    chainfactor=3.75;  

    if (type==1){ 
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      rsoft1 = r00+2.36;  

      rbreak1 = r00+5.8; 

      k11=8.2842*chainfactor; 

     

      if (r <= rbreak1){  

 

      if (r <= rsoft1){ 

        k_pick = k11; 

 

    dr = r - r00; 

    rk = k_pick * dr; 

 

      if (r > 0.0) 

    fbond = -2.0*rk/r; 

    else fbond = 0.0; 

 

       } 

      if (r > rsoft1){ 

  

 k12 = 0.01*k11;   //second slope is 1% of the initial 

    k_pick = k12; 

  

    dr = r - rsoft1; 

    rk = k_pick * dr; 

 

      if (r > 0.0) 

    fbond = -2.0*(((rsoft1-r00)*k11)+rk)/r; 

    else fbond = 0.0; 

      } 

      }     

      else fbond = 0.0; 

       

      } 

 

  // Type 2 amorphous region 

 

      length=r0[2]; 

       

      prestretch=k[1]; 

 

      if (type==2){ 

               

      lengthfactor=60/(length-30); 

 

      r21 = r00+0.2*(1-prestretch)*(r00-30); 

      r22 = r00+0.73*(1-prestretch)*(r00-30); 

 

      k21=0.1424*chainfactor*lengthfactor/(1-prestretch); 

      k22=0.0570*chainfactor*lengthfactor/(1-prestretch); 

      k23=1.4935*chainfactor*lengthfactor; 

              

 if (r <= r22){ 

 

 

      if (r <= r21){ 
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        k_pick = k21; 

 

    dr = r - r00; 

    rk = k_pick * dr; 

 

      if (r > 0.0) 

    fbond = -2.0*rk/r; 

    else fbond = 0.0; 

 

       } 

      if (r > r21){ 

        k_pick = k22; 

  

    dr = r - r21; 

    rk = k_pick * dr; 

 

      if (r > 0.0) 

    fbond = -2.0*(((r21-r00)*k21)+rk)/r; 

    else fbond = 0.0; 

 

        } 

   } 

 

 if (r > r22) { 

 

   k_pick = k23;                       

 

   dr = r - r22; 

   rk = k_pick * dr; 

 

   if (r > 0.0) 

     fbond = -2.0*(((r21-r00)*k21)+ ((r22-r21)*k22) + rk)/r; 

   else fbond = 0.0; 

   } 

 

    } 

  

    if (newton_bond || i1 < nlocal) { 

      f[i1][0] += delx*fbond; 

      f[i1][1] += dely*fbond; 

      f[i1][2] += delz*fbond; 

    } 

 

    if (newton_bond || i2 < nlocal) { 

      f[i2][0] -= delx*fbond; 

      f[i2][1] -= dely*fbond; 

      f[i2][2] -= delz*fbond; 

    } 

 

    if (evflag) 

ev_tally(i1,i2,nlocal,newton_bond,ebond,fbond,delx,dely,delz); 

 

     } 

} 
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/* ---------------------------------------------------------------*/ 

 

void BondHarmdifflengths::allocate() 

{ 

  allocated = 1; 

  int n = atom->nbondtypes; 

  int maxbond = atom->nbonds; 

 

  k = (double *) memory->smalloc((n+1)*sizeof(double),"bond:k"); 

  r0 = (double *) memory->smalloc((n+1)*sizeof(double),"bond:r0"); 

//  rlist = (double *) memory-

>smalloc((maxbond+1)*sizeof(double),"bond:rlist"); 

  rlist = memory->create_1d_double_array(0,maxbond,"bond:rlist"); 

 

  setflag = (int *) memory-

>smalloc((n+1)*sizeof(int),"bond:setflag"); 

  for (int i = 1; i <= n; i++) setflag[i] = 0; 

} 

 

/* ---------------------------------------------------------------- 

   set coeffs for one or more types 

----------------------------------------------------------------- */ 

 

void BondHarmdifflengths::coeff(int narg, char **arg) 

{ 

  if (narg != 3) error->all("Incorrect args for bond coefficients"); 

  if (!allocated) allocate(); 

 

  int ilo,ihi; 

  force->bounds(arg[0],atom->nbondtypes,ilo,ihi); 

 

  double k_one = atof(arg[1]); 

  double r0_one = atof(arg[2]); 

 

  int count = 0; 

  for (int i = ilo; i <= ihi; i++) { 

    k[i] = k_one; 

    r0[i] = r0_one; 

    setflag[i] = 1; 

    count++; 

  } 

 

  if (count == 0) error->all("Incorrect args for bond 

coefficients"); 

} 

 

/* ----------------------------------------------------------------- 

   return an equilbrium bond length  

------------------------------------------------------------------*/ 

 

double BondHarmdifflengths::equilibrium_distance(int i) 

{ 

  return r0[i]; 

} 
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/* ----------------------------------------------------------------- 

   proc 0 writes out coeffs to restart file  

------------------------------------------------------------------*/ 

 

void BondHarmdifflengths::write_restart(FILE *fp) 

{ 

  fwrite(&k[1],sizeof(double),atom->nbondtypes,fp); 

  fwrite(&r0[1],sizeof(double),atom->nbondtypes,fp); 

} 

 

/* ----------------------------------------------------------------- 

   proc 0 reads coeffs from restart file, bcasts them  

------------------------------------------------------------------*/ 

 

void BondHarmdifflengths::read_restart(FILE *fp) 

{ 

  allocate(); 

 

  if (comm->me == 0) { 

    fread(&k[1],sizeof(double),atom->nbondtypes,fp); 

    fread(&r0[1],sizeof(double),atom->nbondtypes,fp); 

  } 

  MPI_Bcast(&k[1],atom->nbondtypes,MPI_DOUBLE,0,world); 

  MPI_Bcast(&r0[1],atom->nbondtypes,MPI_DOUBLE,0,world); 

 

  for (int i = 1; i <= atom->nbondtypes; i++) setflag[i] = 1; 

} 

 

/* ---------------------------------------------------------------*/ 

 

double BondHarmdifflengths::single(int type, double rsq, int i, int 

j) 

{ 

  double r = sqrt(rsq); 

  double dr = r - r0[type]; 

  double rk = k[type] * dr; 

  return rk*dr; 

} 
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A4. LAMMPS input file 

 

# Initialization 

 

units  real 

atom_style angle 

timestep 1.0     #fs for units=real 

 

# Atom Definition - Indicate input geometry file 

 

read_data random.data 

 

# Neighbor Settings 

 

neighbor 20 bin 

neigh_modify every 50 delay 50  

 

# Force Fields and Interactions 

 

bond_style      harmdifflengths 

bond_coeff 1 0.0 0.0   # k1; r01 

 

bond_coeff  2 0.0 30.0    # k2; r02 

 

# Basic Output 

 

dump  first01 all xyz 10000 random.xyz  

 

dump  first02 all atom 10000 random.atom 

 

# Set Ensemble 

 

fix  1 all nve 

   

# ---------------------------------------------------------- 

 

region  1 block -5.0 5.0 INF INF INF INF units box 

region  2 block 5990.0 6010.0 INF INF INF INF units box 

 

group  fix_left region 1 

group  fix_right region 2 

group  fixx union fix_left fix_right 

 

thermo          500  

 

# Initial Conditions 

 

fix             2 fixx setforce 0.0 0.0 0.0 

 

velocity        all create 5.00 574654   #T value; random_seed 

velocity        fixx set 0.00 0.00 0.00  units box   #i give value 

in velocity         units, 

not in T 
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fix             3 all setforce NULL 0.0 0.0 

velocity        all set NULL 0.0 0.00  units box 

 

# --------------------------------------------------------- 

# END OF BASIC SET-UP 

# --------------------------------------------------------- 

 

 

run  10000 

 

fix   hold_temp all temp/berendsen 5.0 5.0 60.0 #only when 

stretching 

 

compute  max_x all reduce max x 

compute  min_x all reduce min x 

 

compute         stress all stress/atom 

compute         s all reduce sum c_stress[1] c_stress[2] c_stress[3] 

 

fix             stressout all ave/time 10 10 500 c_s[1] c_s[2] 

c_s[3] c_max_x c_min_x file stress.data 

 

fix  stretch all deform 500 x scale 2.5 units box 

  

run  1500000 

 

# --------------------------------------------------------- 

# END OF SIMULATION 

# --------------------------------------------------------- 
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