
POLITECNICO DI MILANO

FACOLTÀ DI INGEGNERIA

CORSO DI LAUREA SPECIALISTICA IN INGEGNERIA INFORMATICA

A POWER-EFFICIENT FRAMEWORK AND
METHODOLOGY TO CONFIGURE

RESOURCE-CONSTRAINED WIRELESS SENSOR
NETWORKS

Relatore: Prof. Carlo BRANDOLESE

Tesi di Laurea di:
Luigi RUCCO

Matricola n. 707988

ANNO ACCADEMICO 2009-2010

...surely from this period of ten months this is the lesson: never give in, never

give in, never, never, never, never-in nothing, great or small, large or petty.

Never give in except to convictions of honor and good sense.

Never yield to force.

Never yield to the apparently overwhelming might of the enemy.

W.S.Churchill

Dear Mom,

by the time this Thesis will be presented at the Final Dissertation exactly ten

months are going to elapse since our hardest challenge has raised.

The words in Winston Churchill’s speech seem to be the most appropriate synop-

sis for what has happened to You, to me, to our family in this period and for the

resistance we have offered against it.

Cancer is certainly a dreadful beast. Eleven years have still to fly away from the

day it stole from this event the presence of Dad and, having not placate its appetite

of sorrows, ten months ago it retried in the dark purpose of depriving our family

of its remaining pillar.

In another famous speech Winston Churchill was addressing ”‘... whatever the

cost may be, we shall fight on the beaches, we shall fight on the landing grounds,

we shall fight in the fields and in the streets, we shall fight in the hills; we shall

never surrender”’ and this is what we have done. Never the misfortune has had a

chance to take a foothold and we have fought in the hospitals, we have fought on

the streets that lead to these hospitals, we have never surrendered. Yes, it’s true,

we have fought! And the battle you have asked me to fight has been consumed on

the academic books, on the IEEE publications, among the lines of source code,

between the forces which led us down and the desire to not give in, not this time!

Standing on brink of the disaster, we have had just two choices: to get it over with

our dreams or to resist. And today, we can surely say, we resisted, having bent

over backwards to accomplish with renewed commitment our academic duties and

our everyday life.

I know that the Victory over Cancer is still a far-reaching target for medicine and

it may will take years or decades before to call it a day, but it is already sure that

we have indeed obtained a great victory as well.

Because Cancer destroys a balance rather than a body and this balance is a melting

pot of physical conditions, soul aptitudes, human relationships and family bounds:

in blocking this vicious effect, we have perhaps deprived our enemy of its worst

relapses and this is what mainly matters.

So, getting back to the origin, from this period of ten months this is the lesson:

never give in, never give in, never, never, never!

Thank You Mom, Yours sincerely,

Luigi

Acknowledgments
My first and foremost thanks are deserved to Professor Carlo Brandolese for

his great and kind commitment in addressing me and my work during this re-

search. I would especially demonstrate my gratitude for the personal growth that

has tagged along the professional enrichment brought about by this outstanding

experience. The exceptional support by Professor Brandolese has strongly en-

hanced my passion for scientific and technological research and has also helped

me in better tackling not only the academic topics, but also some personal troubles

I have experienced during the last year.

I would like to thank Simone Corbetta for the kind and professional helpful-

ness he offered me in the first phase of the present work.

Contents

Abstract . 1

1 Introduction 9
1.1 History, evolution and perspectives of Sensor Networks 9

1.2 An overview on Wireless Sensor Networks 12

1.3 An outlook on Sensors’ hardware 14

1.4 The dynamic reprogramming Issue 16

1.5 Motivations . 16

2 The state of art in WSN dynamic reprogramming 21
2.1 Image replacement . 22

2.1.1 XNP,MOAP and MNP for TinyOS 22

2.1.2 Deluge . 25

2.1.3 Others . 26

2.2 Differential updates . 26

2.2.1 Model by Koshy- Pandey 27

2.2.2 The proposal of Reijers and Langendoen 28

2.2.3 Others . 28

2.3 Run-time Interpreters and Script-based Approaches 28

2.3.1 Python interpreters . 29

2.3.2 SensorWare (TCL machines) 30

2.3.3 Others . 30

2.4 Virtual Machines . 31

2.4.1 SwissQM . 31

v

2.4.2 Maté . 32

2.4.3 Others . 33

2.5 Distributed Databases for WSN 34

2.5.1 TinyDB: an analysis through the filter of DB Theory . . . 35

2.5.2 Others . 43

2.6 Reprogramming Support Network 43

2.7 Agent based approaches . 44

2.7.1 Agilla . 44

2.7.2 A proposal from the University of California Davis 45

2.8 Others . 46

2.9 Pre-linked loadable modules . 46

2.9.1 SOS loadable modules 48

2.9.2 Impala modules . 49

2.9.3 Others . 49

2.10 Dynamic Linking . 50

2.10.1 The Contiki’s dynamic linker 51

2.10.2 FlexCup . 52

2.10.3 Others . 54

2.11 Comparison . 54

3 Dynamic Linker 57
3.1 Something about WASP Project 58

3.2 WASP hardware platform . 60

3.3 MantisOS . 64

3.3.1 A brief introduction . 64

3.3.2 General architecture . 64

3.3.3 How MantisOS supports dynamic reprogramming 67

3.4 ELF: Executable and Linking Format 68

3.5 Project and Implementation . 72

3.5.1 Retrieving global symbol table from node 73

3.5.2 ELF stripping . 75

3.5.3 Full and simplified linking processes 76

3.5.4 Load WLF on the node 78

3.5.5 Design choices . 78

3.5.6 Architecture diagrams 81

3.6 Graphical User Interface . 82

3.6.1 Linking Functionalities (Figure3.13) 82

3.6.2 WLF loader (Figure3.14) 84

3.6.3 Mantis’ Toolchain (Figure3.15) 85

3.7 Evaluation of the Linker/Loader 86

3.7.1 Size reduction . 86

3.7.2 Performance . 87

3.8 Some considerations . 92

4 A Genetic Model for functional allocation and lifetime maximization 93

4.1 Related Work . 95

4.2 Model . 97

4.2.1 Premises . 97

4.2.2 Domain definition . 99

4.2.3 Constraints . 103

4.2.4 Optimization goal . 107

4.3 Implementation . 110

4.3.1 Mapping to the Genetic Domain 110

4.3.2 Application design . 111

4.4 Experimental results . 114

4.4.1 Fitness stability on memory variations 115

4.4.2 Redundancy . 117

4.4.3 Heterogeneous clusters 122

4.4.4 Functions’ frequency . 123

4.4.5 Allocation coherence . 126

4.4.6 Comparative experiments 130

4.5 Sensitivity Analysis on Population Size 137

4.6 Concluding remarks . 140

5 Conclusions 141
5.1 Directions . 141

5.2 Future Works . 143

5.2.1 Dynamic Linker/Loader 143

5.2.2 Genetic Model . 144

List of Figures

1.1 A typical WSN structure . 13

1.2 A typical mote architecture . 14

3.1 Detailed description of a TelosB mote 60

3.2 Comparison between TeloB’s and other motes’ parameters. 62

3.3 MSP430 microcontroller architecture 63

3.4 Mantis architecture . 65

3.5 Retrieving the symbol table from a node 74

3.6 ELF parsing and sections extraction 75

3.7 Linking and relocation . 76

3.8 From ELF to WLF file format 78

3.9 Schema of the light linking process 79

3.10 WLF transmission and loading process. 80

3.11 Class diagram of the WASP dynamic linker - host side 81

3.12 Architecture of the server process on a node - node side 82

3.13 Panel of the G.U.I. application for the linking functionalities . . . 83

3.14 The WLF loader panel . 84

3.15 The Mantis Toolchain panel . 85

3.16 Energy consumption as a function of WLF size. 91

4.1 An example of clustering . 101

4.2 Fitness evolution for five memory sizes 117

4.3 Static/dynamic allocation fractions 117

4.4 Redundancy obtained by experiment Red1 119

ix

4.5 Redundancy obtained by experiment Red2 120

4.6 Redundancy obtained by experiment Red3 121

4.7 Fitness for the three experiments on redundancy 121

4.8 Configuration of an heterogeneous cluster 122

4.9 Result of perturbation on F2 frequency. 124

4.10 Result of perturbation on F27 frequency. 125

4.11 Configuration output for the cluster C1 126

4.12 Configuration output for the cluster C2 127

4.13 Configuration output for the cluster C3 127

4.14 Configuration output for the cluster C4 127

4.15 Configuration output for the cluster C5 129

4.16 Hand-made configuration of benchmark1. 132

4.17 Improved configuration of benchmark1. 132

4.18 Free configuration of benchmark1. 133

4.19 Hand-made configuration of benchmark2. 134

4.20 Improved configuration of benchmark2. 134

4.21 Free configuration of benchmark2. 135

4.22 Hand-made configuration of benchmark3. 136

4.23 Improved configuration of benchmark3. 136

4.24 Free configuration of benchmark3. 136

4.25 Comparison between empirical practices and algorithm’s optimiza-

tions. 137

4.26 Fitness trend for different sizes of the population. 139

List of Tables

1.1 Specs of principal sensor nodes 15

1.2 Critical success factors for an efficient and effective dynamic re-

programming mechanism . 17

2.1 Synopsis of the various approaches 55

3.1 Specs of most diffused sensor nodes 61

3.2 Structure of the ELF header . 69

3.3 Structure of section header . 70

3.4 Structure of relas entries . 71

3.5 Structure of symbol table entries 72

3.6 Structure of Nodes’ symbol table entries 74

3.7 WLF header . 77

3.8 Size reduction from ELF to WLF. 88

3.9 TelosB energy characterization [1] 89

3.10 WLF link & load protocol energy characterization. 90

3.11 Energy consumption for dynamic linking. 91

4.1 Algebraic characterization of the output from coverage analysis . . 98

4.2 Algebraic characterization of the output from task-definition anal-

ysis . 99

4.3 Nodes and function parameters 100

4.4 Summary of task’s functions characteristics 115

4.5 Compact representation of routing tables 116

4.6 Level of redundancy . 118

xi

4.7 Values of redundancy for the three simulations 119

4.8 Memory usage . 123

4.9 Clusters with an increasing number of identical nodes 126

4.10 Fitness improvement in dependence of nodes’ augment. 129

4.11 Routing tree for the cluster in benchmark 1. 131

4.12 Routing tree for the cluster in benchmark 2. 133

Abstract

Abstract - Italiano

La nostra ricerca è stata orientata alla definizione di una metodologia e di un

modello, sia teorico che applicativo, per la riprogrammazione e la configurazione

di wireless sensor networks, caratterizzate da quantità molto piccole di memoria

disponibile da un lato e dalla necessità di una consistente autonomia energetica

dall’altro. Per via dei requisiti di lunga durata temporale, l’intera impalcatura

metodologica è stata basata sulla minimizzazione del consumo di potenza, preser-

vando al contempo la completezza e l’efficacia funzionale.

Studiando una soluzione sperimentale per la riprogrammazione dinamica di

WSN, all’interno del progetto europeo WASP [2], abbiamo definito un approc-

cio molto efficiente dal punto di vista energetico, concepito come un ibrido tra

il paradigma del ”‘dynamic linker”’ e quello dei moduli ”‘pre-linkati”’, immedi-

atamente caricabili sul nodo. Questa soluzione sfrutta i vantaggi di basso con-

sumo di potenza e di contenimento della memoria caratteristici del paradigma

basato su moduli ”‘pre-linkati”’, arginandone al contempo gli svantaggi in ter-

mini di scalabilità e disallineamento per mezzo di alcune soluzioni teoriche mu-

tuate dall’approccio basato su ”‘dynamic linker”’. Pur non essendo un lavoro

pienamente maturo, i risultati sperimentali hanno dimostrato una prospettiva de-

cisamente interessante per la futura adozione di questa tecnica nel progetto di reti

di sensori wireless ad alta efficienza energetica ed efficacia funzionale.

Il secondo grande passo della nostra ricerca ha riguardato la creazione di

un’astrazione matematica del dominio funzionale e non-funzionale di una wire-

1

less sensor network. Questo studio teorico ha portato alla creazione di un modello

genetico evoluzionistico per configurare l’allocazione delle funzioni software sui

vari nodi della rete. Al centro di questo modello vi è la possibilità di allocare

le funzioni sia in maniera statica che dinamica, quest’ultima resa possibile dal

meccanismo di riprogrammazione precedentemente illustrato.

Gli esperimenti sull’algoritmo genetico hanno dimostrato un’efficacia supe-

riore a quella delle tecniche empiriche attualmente in uso per l’allocazione fun-

zionale su reti di sensori wireless.

Abstract - English

Our research has been focused on defining a power-efficient framework, both at

applicative and theoretical layer, to dynamically reprogramming and configuring

wireless sensor networks, which provide very small amounts of available memory

and require long-lasting lifetimes.

In studying an experimental solution for a dynamic reprogramming mecha-

nism (within the WASP European Project [2]), we have defined a very power-

efficient approach which has been conceived as an hybrid between a dynamic

linker and pre-linked modules based paradigm. This solution takes the advantages

in terms of low-power and memory requirements of the latter, while overcoming

its lack of scalability and not-synchronized behavior by means of some theoretical

features characterizing the dynamic linker approach. Though not being a mature

work, the experiments have shown a promising perspective for future applications

of this technique.

The second great step of the work has then concerned the creation of an accu-

rate mathematical abstraction of both the functional and non-functional domains

of a wireless sensor network. This theoretical inquiry has brought to the creation

of an evolutionary genetic model for configuring WSNs’ functional allocations. In

doing that, we have considered the opportunity of allocating functions on a node

both in a static and a dynamic way, the latter enabled by the dynamic reprogram-

ming mechanism.

2

Experiments on the genetic model we have defined on this mathematical ab-

straction have demonstrated very good results and have pointed out a superior ef-

fectiveness of the algorithm with respect to configuration capabilities, compared

to that provided by actual empirical techniques.

The Thesis is structured as follows: Chapter 1 provides an introduction to

WSN and the motivations underneath our work. Chapter 2 reports a review on

the state of art in WSN reprogramming. In Chapter 3 we present our dynamic

linker/loader approach. Chapter 4 presents the Genetic Model we have defined.

Chapter 5 summarizes the achievements and the considerations raised from the

work.

Struttura ed Organizzazione della Tesi

La struttura della tesi segue il naturale flusso della ricerca, che partendo da uno

studio generale sulla composizione e le caratteristiche delle reti di sensori wireless

si è poi concentrato su un’attenta analisi della letteratura riguardante la riprogram-

mazione dinamica delle WSN come punto di partenza per la definizione di un

meccanismo che potesse superare alcune delle limitazioni presenti negli approcci

ad oggi disponibili. Successivamente, viene presentato il meccanismo di ripro-

grammazione dinamica da noi definito come una variante dell’approccio basato

sul ”‘dynamic linker”’ e di quello basato su moduli ”‘pre-linkati”’. In seguito

viene presentato il modello genetico per l’ottimizzazione dell’allocazione fun-

zionale in funzione della ”‘lifetime”’ della rete, sia nei suoi aspetti teorici che

implementativi. Infine vengono formulate le dovute conclusioni sulla ricerca e

vengono discusse le linee di evoluzione e i futuri sviluppi del presente lavoro.

L’organizzazione dei capitoli segue pertanto questa struttura ed è articolata

come segue: il Capitolo 1 fornisce un’introduzione al mondo delle wireless sen-

sor networks e le motivazioni sottostanti al nostro lavoro di ricerca. Il Capi-

tolo 2 riporta un’analisi dettagliata della letteratura e dello stato dell’arte rigu-

radante la riprogrammazione dinamica delle reti di sensori wireless. Nel Capitolo

3 presentiamo il nostro approccio basato sul ”‘dynamic lynker/loader”’ nelle sue

3

caratteristiche teoriche ed implementative, unitamente ad una valutazione sper-

imentale della sua efficienza energetica. Il Capitolo 4 è interamente dedicato

all’introduzione ed alla discussione del Modello Genetico da noi definito, pro-

ponendo una approfondita valutazione sperimentale delle sue prestazioni e delle

sue funzionalità. Il Capitolo 5, infine, riassume le considerazioni e i risulati venuti

alla luce a seguito del lavoro, unitamente ad una digressione sulle linee di ricerca

future e i possibili sviluppi.

Estratto dei Capitoli

Di seguito proponiamo l’estratto di ogni singolo capitolo, riportandone i concetti

principali e presentandone la struttura. Questa breve introduzione dei capitoli mira

a fornire una panoramica esaustiva in lingua italiana sui contenuti generali della

trattazione, rimandando ai capitoli corrispondenti per il dettaglio degli specifici

argomenti.

Estratto del Capitolo 1

Nel primo capitolo della tesi viene inzialmente introdotta la storia delle prime Sen-

sor Networks nate a ridosso della seconda guerra mondiale e sviluppatesi durante

la guerra fredda, illustrando poi le varie evoluzioni che hanno portato alla nascita

delle moderne Wireless Sensor Networks. Dopo questa digressione iniziale, viene

discussa la generica struttura di una rete, individuandone i componenti costitutivi,

i meccanismi di funzionamento ed i campi di applicazione.

Viene poi introdotta la struttura hardware di un tipico nodo sensore, inquad-

rando dunque il problema dei vincoli sulle risorse di sistema come fattore centrale

per lo studio e la ricerca in questo ambito. Vengono inoltre schematizzati i princi-

pali nodi-sensori attualmente in commercio.

Successivamente, viene analizzato il problema della riprogrammazione di-

namica dei sensori a livello software, come requisito fondamentale per l’efficienza

e la completezza applicativa della rete. Vengono dunque individuati i fattori critici

di successo proposti in letteratura per la progettazione e lo sviluppo di applicazioni

4

finalizzate all’aggiornamento ed al caricamento di software nei nodi.

Infine, vengono proposte le motivazioni alla base del nostro lavoro di ricerca,

analizzandole in maniera critica rispetto al percorso che ci ha portati a studiare

prima una soluzione sperimentale per la riprogrammazione dei nodi e successiva-

mente un modello genetico per l’ottimizzazione funzionale e la massimizzazione

della ”‘lifetime”’.

Estratto del Capitolo 2

Il secondo capitolo è dedicato allo studio della letteratura sullo stato dell’arte nella

definizione di meccanismi di riprogrammazione dinamica della rete. Con ripro-

grammazione dinamica si vuole indicare ogni meccanismo in grado di modificare,

aggiornare o semplicemente cambiare le funzionalità software dei nodi.

Inizialmente vengono presentati gli approcci basati sulla sostituzione della im-

magine dell’intero sistema operativo. In questo ambito vengono discusse le carat-

teristiche dei protocoli di ”‘image replacement”’ più usati come XNP, MNP e

MOAP per la sostituzione integrale e Deluge che è invece un meccanismo per

l’aggiornamento incrementale delle immagini sui nodi. Vengono infine accennati

altri meccanismi di sostituzione dell’immagine nativamente supportati da molti

dei sistemi operativi per WSN.

La seconda famiglia di meccanismi di riprogrammazione riportata è quella rel-

ativa all’aggiornamento differenziale dell’immagine di un nodo, principalmante

per mezzo di patch binarie. Questo tipo di approcci sono di fatto rimasti confinati

ad una dimensione puramente accademica e in questa sezione vengono presentate

le proposte di Koshy-Pandey e Reijers-Langendoen.

Il passo successivo consiste nella descrizione di tecniche basate su linguaggi

interpretati e pertanto vengono discusse le caratteristiche di un Interprete Python

per WSN cosı̀ come SensorWare, che è un modello basato sul linguaggio TCL.

Sempre a proposito di linguaggi interpretati, ma con riferimento specifico alle

”‘virtual machines”’, vengono successivamente presentati due maeccanismi molto

efficienti, ovvero SwissQM e Maté, entrambi basati su macchine virtuali opportu-

namente ottimizzate per WSN.

5

I database distribuiti per WSN sono stati a loro volta oggetto di studio per via

della grande flessibilitá che permettono nel riconfigurare le funzionalità della rete,

per mezzo di semplici query. Viene approfondita in questa sezione la struttura del

TinyDB, uno dei meccanismi in assoluto più usati e per meglio capirne la logica,

che risulta di fatto essere molto articolata e complessa, l’intero paradigma è stato

analizzato e comparato rispetto alla teoria dei Database canonica.

Una breve descrizione è riservata alle reti di supporto per la riprogrammazione,

dopodiché vengono subito introdotti i meccanismi basati su agenti software come

Agilla o una famosa proposta sviluppata dal alcuni ricercatori dell’Università della

California Davis.

Le ultime due sezioni trattano infine le caratteristiche dei meccanismi basati

rispettivamente su moduli pre-linkati e su dynamic linker, i cui punti di forza e di

debolezza sono stati attentamente studiati per definire la logica ala base del nostro

approccio, che verrà presentato nel successivo capitolo.

Infine viene proposta una comparazione critica dei vari modelli.

Estratto del Capitolo 3

L’intero capitolo è dedicato alla descrizione del progetto sperimentale di un mec-

canismo per la riprogrammazione dinamica di WSN, da noi intrapreso nell’ambito

del progetto europeo WASP.

Inizialmente viene introdotto lo scope del progetto, fornendo una descrizione

esaustiva della natura di WASP, della piattaforma hardware utilizzata –ovvero il

TelosB di Crossbow – e sul sistema operativo Mantis. Queste premesse sono di

fatto necessarie per comprendere le caratteristiche del sistema e le scelte proget-

tuali adottate.

Viene poi introdotto il formato ELF (Executable and Linking Format), con

riferimento alle specifiche sezioni considerate nella definzione del linker dinamico

da noi ideato.

La maggior parte del capitolo è poi dedicata alla descrizione del nostro ap-

proccio, proponendone nel dettaglio il modello teorico e le scelte implementative.

Viene poi proposta una valutazione sperimentale delle performance del dy-

6

namic linker/loader e vengono infine formulate le opportune coclusioni e consid-

erazioni.

Estratto del Capitolo 4

Questo capitolo tratta l’altra grande fase della presente ricerca, che ha riguardato

la definizione di un modello matematico, poi mappato su un algoritmo genetico,

per l’ottimizzazione funzionale e la massimizzazione della ”‘lifetime”’ della rete.

Con ottimizzazione funzionale intendiamo la possibilità di scegliere la migliore

allocazione possibile delle funzioni sui nodi, tale che garantisca la completezza

del task applicativo e riduca al contempo il consumo complessivo di potenza mas-

simizzando la durata della rete.

Grazie all’introduzionde del dynamic linker/loader, descritto nel capitolo prece-

dente, ogni funzione è stata considerata come dinamicamente o staticamente al-

locabile su un nodo e lo scopo dell’ottimizzazione è proprio quello di trovare la

combinazione di funzioni staticamente e dinamicamente allocate più efficiente dal

punto di vista energetico.

Il modello viene prima presentato nella sua astrazione e formalizzazione matem-

atica, discutendone il dominio di definizione, i vincoli e la funzione obiettivo nel

dettaglio. Vengono poi riportate le scelte implementative adottate ed in particolare

la trasposizione del modello matematico sull’aloritmo genetico e la sua implemen-

tazione per mezzo delle librerie GAUL, disponibili su ambiente Linux.

Viene poi proposta un’ampia e dettagliata valutazione sperimentale del mod-

ello, formulandone infine le opportune conclusioni e considerazioni.

Estratto del Capitolo 5

L’ultimo capitolo è dedicato ad alcune considerazioni conclusive sul lavoro di

ricerca e sui risultati ottenuti. Vengono infine presentate le direzioni di ricerca

future e i possibili sviluppi previsti per il presente lavoro.

7

8

Chapter 1

Introduction

The omnium-gatherum of electronic computing devices, in their more disparate

sizes and applications, are day after day invading our ordinary life, putting into

concrete form the theoretical paradigm of pervasive computing. The interconnec-

tion of all these devices through Internet interfaces could become hypothetically

world-covering, if the ipv6 protocol will actually creep in.

In proceeding on the above-quoted process, we are slowly laying the foun-

dation for a gigantic Worldwide Brain, whose memory is composed by large

databases and web repositories, whose neurons are intelligent and independent

human-computer interactions and whose synapses are nothing else but the net-

work connections themselves. In this perspective, Wireless Sensor Networks are

equivalent to nerve-endings, used by the Brain to retrieve information from Real

World. Following we propose a brief introduction to the WSNs architectures and

platforms, along with the relative issues.

1.1 History, evolution and perspectives of Sensor Net-

works

At the beginning of Wireless Sensor Networks’ civil diffusion, in 1999, a world-

class journal as Business Week, classified this family of systems as one of the 21

technologies which would change the course of 21th century [3] [4].

9

CHAPTER 1. INTRODUCTION

WSNs are descendants of more general Sensor Networks, the Research on

which has begun during Cold War for military purposes. By the time, comput-

ing machines were far to reach the current technological evolution and Internet

(ARPANET, to be precise) had not already been developed. Notwithstanding

the primitive nature of earlier sensor nodes, a lot of funds were alloted from

U.S. Department Of Defense to enforce investigations on this kind of features,

since many advantages were foreseen for controlling battlefields, monitoring air-

marine-ground traffic, spying enemies’ environments and improving accurate bal-

listic targeting.

The development of Sensor Networks’ technology drew on three main areas:

sensing, communication and computing research [3]. The very first example of

Sensor Networks were the Sound Surveillance System (SOSUS), used during

Cold War for detecting soviet submarines, and the U.S.A.-Canada air defense

system, then AWACS (Airborne Warning And Control System). Clearly, these

systems were quite incomparable in size, technology and application with mod-

ern Wireless Sensor Networks, but have surely represented the starting-point for

all their theoretical and technical principles.

The actual research on sensor networks started at the end of ’70s, prompted by

U.S. Defense Advanced Research Project Agency (DARPA) and put in concrete

by the Distributed Sensor Networks (DSN) program. In 1980 Arpanet had been

operational for some years and R.Kahn (the co-inventor of TCP/IP) wanted to in-

vestigate the possibility of extending Arpanet’s communication approach to sen-

sor networks [3]. In 1978, during a workshop at Carnegie Mellon University [5],

were defined the requirements for advancement in sensor networks research, hold-

ing true still today:

• the need for low-cost, small, spreadable nodes;

• the need for dynamic modifications;

• the need for heterogeneous node support;

• the need to integrate new software versions into a running system;

10

CHAPTER 1. INTRODUCTION

• the need for reliable, secure and power-efficient communication protocols;

• the need for eventual integration of Artificial Intelligence on networks’ re-

configurations (considering the current DARPA’s effort in enhancing AI).

As the previous points show, the problem of updating or loading new software

on nodes at run-time has been pointed out as central one since the first sensor

networks’ symposium and this is exactly the target of our work and our dynamic

linker in particular.

During the decade 1980-1990, the research was mainly concerned in devel-

oping military solutions (network-centric warfare) and, though the idea of small

sensors was ever in mind of scientists and engineers,the technology was quite not

ready. In that phase a key role was played by the great American universities, par-

ticularly Massachusetts Institute of Technology, University of California Berkeley

and Carnegie-Mellon University, whose works had flowed into some important

architectures: the U.S. Navy’s Cooperative Engagement Capability (CEC), the

Fixed Distributed System (FDS) and the Advanced Deployable Systems (ADS)

for overseas warfare; the Remote Butterfield Sensor System (REMBASS) and the

Tactical Remote Sensor System (TRSS) for ground warfare as Unattended Ground

Sensors(UGS).

Finally, the 21st Century has revealed microelectromechanical systems (MEMS)

[6], wireless networking and inexpensive low power processors getting a foothold.

The conclusion of DARPA’s Sensor Information Technology (SensIT) program

have brought to a close important breakthroughs in networking techniques and

data processing. Wireless technology has dramatically grown and new standards

as the IEEE 802.11 and the sensor-oriented IEEE 802.15 protocols have been de-

fined. Many advancements have also touched the research on microelectronics

and sensing technologies, leading to the creation of WSN-development compa-

nies such as Ember, Crossbow, Sensoria and Dust Inc., many of them born as

spin-offs from the University of California Berkeley, all along linked to U.S. ad-

vanced Military Research.

As scientists had still predicted in late ’60s and more thoroughly in early ’80s,

nowadays is officially begun the era of Wireless Sensor Networks as the natural

11

CHAPTER 1. INTRODUCTION

evolution of Sensor Networks in general. In next section we present an overview

on Wireless Sensor Networks, exploiting the various facets related to their char-

acteristics, potentialities and challenges.

1.2 An overview on Wireless Sensor Networks

In the space-age vision of a self-winding condition for pervasive computing, some-

thing of very real are now happening for what concerns the Research on widely-

spreadable and easily-reprogrammable Wireless Sensor Networks.

These networks are composed by a certain number of small computing de-

vices, called nodes, whose production is becoming more and more cheaper and

whose battery-powered lifespan increases hand in hand with memory capacity

and computing power. Those devices are commonly utilized in monitoring envi-

ronmental phenomena [7] [8] [9] [10], patients’ vital parameters [11], traffic con-

ditions [12], production processes [13], plant and equipment [14], saying nothing

of espionage purposes [15] and many others. All the retrieved information could

be either locally processed or delivered to an Host base-station, through a wireless

connection.

Each node is provided with a microprocessor, a radio-transmission unit, a

small RAM, a primary FLASH, an external EPROM and some sensors relieving

temperature, pressure, volume, images and everything else users are interested

in. In dealing with WSNs’ design, many criticalities must be taken into account,

from the resource- constrained programming environment to the need for a robust

routing protocol and an efficient reprogramming mechanism, all in the continu-

ous commitment of reducing power-consumption to increase nodes’ lifetime. A

typical WSN structure is shown in Figure 1.1.

The nodes in a network are generally of two different types: sensors, which

are used to sense for some external parameters, are typically smaller than routing

nodes, which act as ties between the Host base-station (a PC in the figure) and

the peripheral nodes. Routing nodes are commonly placed on top of networks’

sub-trees and convey radio-traffic between theirs and others’ sub-trees, as well

12

CHAPTER 1. INTRODUCTION

Figure 1.1: A typical WSN structure

as the information flux coming from the Host; they could alternatively be larger

nodes with higher computing power and battery-life, out-and-out PCs placed in

proximity of a certain set of nodes or small devices wired to a continuous energy

source.

Sensor nodes, on the other hand, are small devices, whose battery-life must

be maximized while ensuring the accomplishment of their tasks. They could be

either of homogeneous or heterogeneous families, and either provided with homo-

geneous or heterogeneous operating systems and applications. These nodes are of-

ten limited in their ability of gathering and storing power, they’re commonly scat-

tered in tough environmental conditions and exposed to frequent position changes

and critical degradations in network signal.

On this account, the whole network needs to be accurately managed, both for

maximizing nodes’ lifetime and to master possible changes in network topology

or nodes’ breakdowns or communication faults.

13

CHAPTER 1. INTRODUCTION

1.3 An outlook on Sensors’ hardware

As mentioned in the previous section, in most cases sensors have an extreme

resource-constrained hardware and this small asset of resource must be carefully

handled in order to minimize power consumption. In despite of Moore’s law,

from their first appearance in 1998 to nowadays, sensor nodes (or motes, as they

often are referred to) have not been increased in computing power and memory,

because of the need for low-power microcontrollers to maximize autonomy. This

stagnation in hardware advancement seems not to be inverting even today, and if

some modifications are improved, they never change substantially the overall per-

formance of these devices, with the exception of useful memory enhancements.

A typical architecture of a sensor (Figure 1.2) is composed by a Power source,

a Microcontroller, an external memory and some sensors.

Figure 1.2: A typical mote architecture

The power source is generally a battery, which could be supported by some

renewable sources like solar, temperature or vibration rechargers.

The transceiver could be based on Radio frequency, Laser communication or

Infrared wireless transmissions: the first is preferred thanks to its suitability for

different atmospheric conditions and relative positions; frequencies vary between

the 433 MHz and 2,4 GHz and the functioning switches among four possible states

(Transmit, Receive, Idle and Sleep) by means of an internal finite-state controller.

The band belongs to the ISM (industrial, scientific and medical) family, allow-

14

CHAPTER 1. INTRODUCTION

TelosB: The TelosB is a 2.4 GHz, IEEE/ZigBee 802.15.4, board used for low-

power,wireless, sensor networks. It has USB programming capability, Chipcons

CC2420 IEEE 802.15.4 standard-compliant radio transceiver for communication

with integrated antenna, a low-power microcontroller TI-MSP430 from Texas

Instruments with 8KB RAM, 32KB Flash (now expanded to 1 MB) and several

onboard sensors.
MICAz: The MICAz is a 2.4 GHz, IEEE/ZigBee 802.15.4, board used for low-

power, wireless, sensor networks. It uses an Atmel ATmega1281 8-bit micro-

controller with 8KB of RAM and 128KB of ROM along with Chipcons CC2420

IEEE 802.15.4 standard-compliant radio transceiver for communication. The

maximum packet size supported by 802.15.4 is 128 bytes and the maximum raw

data rate is 250Kbps. It also has several sensor boards providing light, tempera-

ture, audio, among other sensors.
FireFly: The FireFly Sensor Networking Platform is a low-cost low-power

hardware platform. In order to better support real-time applications, the sys-

tem is built around maintaining global time synchronization. The main Firefly

board uses an Atmel ATmega1281 8-bit micro-controller with 8KB of RAM

and 128KB of ROM along with Chipcons CC2420 IEEE 802.15.4 standard-

compliant radio transceiver for communication.

IrisMote: AtMega1281 Processor,RAM 8K, Program Flash Mem 128K, Serial

Flash 512K, Config EEPROM 4K,Radio RF230 2.4 GHz IEEE 802.15.4 output

3dBm with MMCX ant connector for higher gain antenna connection. UART,

10 bit built-in ADC, 51 pin connector

Sun SPOT: 180 MHz 32 bit ARM920T core, 512K RAM, 4M Flash, 2.4 GHz

IEEE 802.15.4 radio with integrated antenna, AT91 timer chip,USB interface

Table 1.1: Specs of principal sensor nodes

ing free radio, huge spectrum allocation and global availability.

External memory consists of a small FLAH device, usually of just few KB

and hardly ever greater than 1 MB , whose reads and writes turns out very energy-

expensive for the motes.

There are many types of microcontrollers (the most diffused are: ATmega128,

for larger nodes, and TI MSP430, for the smaller ones), showing 8-bit or at last

16-bit architectures and capable of self-idling to optimize work-cycles and power

absorption.

Sensors could be of many different types, but classifiable in three macro-

15

CHAPTER 1. INTRODUCTION

categories, the first of which is the most commonly used:

1. Passive, Omni Directional Sensors: self-powered (requiring energy only to

amplify their analog signal) sensors used to retrieve data from the environ-

ment without modifying it.

2. Passive, narrow-beam sensors: differing from the previous since there is a

precise direction in the measurement (e.g. camera).

3. Active Sensors: they probe environment in an active way, e.g. using a sonar

or radar, which generate shock waves by small explosions.

Following we present a brief summary of the most common nodes being used

today (Table 1.1).

1.4 The dynamic reprogramming Issue

The problem of reprogramming Wireless Sensors Networks is a very tough one,

insofar as it is essential to enhance the network efficiency and scalability. The

low-level features provided by the sensors’ operating systems, justified by the ne-

cessity of minimizing power consumption during all node lifecycle, makes really

hard the development of an effective mechanism to change or add functionalities

in a dynamic way, i.e. without withdrawing the nodes from their position to re-

program them locally as well as without refreshing the entire status of a node.

Many mechanisms have been proposed to overcome these limitation but the way

to converge in a well standardized paradigm is far to be delineated.

In the following we analyze the critical success factor that a dynamic repro-

gramming mechanism should match, to be considered a good solution (Table 1.2).

1.5 Motivations

The introduction of a dynamic reprogramming mechanism provides many advan-

tages in managing the complexities related to wireless sensor networks’ tight con-

16

CHAPTER 1. INTRODUCTION

Critical Success Factor References
the need for dynamic modifications, the need for heterogeneous node support,

and the need to integrate new software versions into a running system
[5]

the need for the update to reach all the nodes, and to support fragmentation [16]

the ability to update all the code on a node, and cope with packet loss [17]

the need for distributed version control, bootloaders, and update builders and

injectors
[18]

the ability to update the update mechanism itself, to reconfigure non-functional

parameters (such as performance or dependability) without needing to update all

the affected applications, and the need for utilities to provide users with stan-

dardized ways to manage online changes

[19]

the need for overall management of the software update process [20]

unintrusiveness, low overhead, and resource awareness, and especially to mini-

mize flash rewriting
[18]

minimize impact on sensornet lifetime, and limit the use of memory resources [16]

minimize processing, limit communication to save energy and only interrupt the

application for a short period while updating the code
[17]

possibly meeting real-time constraints [21]

fit within the hardware constraints of different platforms [22]

cope with asymmetric links and intermittent disconnections, have a low metadata

overhead during stable periods, provide rapid propagation, and be scalable to

very large, high density networks

[23]

security: integrity, authentication, privacy, and secure delegation, and intrusion

detection
[24] and [25]

robustness: identifying and handling failure (or corruption) of the updated appli-

cation, other applications, the operating system, and of the network , to tolerate

hardware and software failures, to monitor system status, and to meet other de-

pendability criteria (availability and reliability)

[26], [19] and

[27]

ease of use and mantainance [20]

Table 1.2: Critical success factors for an efficient and effective dynamic reprogramming

mechanism

straints. As Table 1.2 shows, the need for dynamic reprogramming has been unan-

imously considered as a foremost priority in the evolution of WSN’s technology

and the literature has ever put a great emphasis on this topic since the very first

workshop on wireless sensor networks [5].

Also the European Community, well understanding the potentialities of this

new facilities, has endorsed a number of projects for defining and clarifying the

guidelines for future research on WSNs. Among these, the WASP project [2],

involving the most important European Universities and Research Centers, among

17

CHAPTER 1. INTRODUCTION

which the Politecnico di Milano has played an important role. The first part of this

work has placed under the aegis of WASP project and has targeted the definition

of an experimental approach to dynamically reprogram wireless sensor networks,

capable of running also in extremely resource-constrained nodes.

The good results obtained in this direction have pointed out that an energy-

efficient dynamic linker/loader makes it possible to broaden the capabilities of

a memory-constrained network in supporting a larger number of allocable func-

tions, hence empowering the applicative usefulness of such networks.

Moreover, the superior degree of flexibility introduced by a dynamic man-

agement of a WSN, has opened the door for a better exploitation of the available

energy, by searching for optimal configurations of statically and dynamically allo-

cated functions, that maximize the lifetime of the whole network, while enforcing

its capability to accomplish a given task.

It is cleat that if the overall available memory in the network would be suffi-

cient, all the possible functions defining a given task could be statically allocated.

However, this is not the case we are coping with, since the greatest part of actual

wireless sensor networks present an overall available memory undersized respect

to the need of functional allocations.

To guarantee the fulfillment of all the operations related to these functions, in

presence of memory constraints, there is just one possible solution: to define an

hybrid configuration of both statically and dynamically allocated functions, the

latter executing in turn-over. A dynamically allocated function, in fact, can be

downloaded from a central host and executed on node for a certain period of time,

to be then unloaded and replaced by another dynamic function and so on. From

this comes the need for a formal and rigorous approach to optimize the network

configuration, in terms of statically and dynamically allocated functions, in order

to reduce as much as possible the energy consumption and maximize the lifetime.

The life span of a WSN, in fact, has often been required to last for months or

years, so the need for functional completeness must be shaped on the respect for

lifetime requirements.

Considering these aspects and getting back to our work, the first step has con-

18

CHAPTER 1. INTRODUCTION

sisted of creating a mechanism for dynamic reprogramming that would be en-

ergy efficient enough to justify its introduction in extremely resource-constrained

WSNs. Many proposals, in fact, have been advanced in this direction, but most

of them are too expensive in terms of radio transmissions and/or processor effort.

Many others suffer from harsh functional limitations, tough presenting a good

level of energy-efficiency. Conjugating these two aspects has been a very hard

challenge, but through a deep analysis of the literature and a long theoretical in-

vestigation, we have found a way to exploit the advantages of a power-efficient

mechanism based on pre-linked modules, with the dynamic capabilities offered

by another technique, the dynamic linker, which has always been considered too

expensive under the energy-consumption profile.

The very low energy-costs required by our lynker/loader, have smoothed the

way for the successive step, concerning the definition of a model to optimize the

allocation of static and dynamic functions, targeting the lifetime maximization

and guaranteeing the execution for all the functions of a certain task.

From the work on the dynamic linker/loader we have inherited the possibility

of precisely estimating the costs, in terms of energy consumption, to dynamically

load a given function, as well as the costs for forwarding it through the rout-

ing path. Using these information, after a rigorous domain definition, we have

formalized a mathematical model that, under both resource and functional con-

straints, targets the optimal configuration of the network in terms of statically and

dynamically allocated functions. This model has then been mapped on a genetic

algorithm, a choice that has been proven as an outstanding solution for modeling

evolutionary behaviors in many fields including WSN and other dynamic interde-

pendent systems, such as neural networks.

The choice of a genetic algorithm has also been motivated by the future per-

spective of integrating the algorithm’s logic directly into the network, to enable

eventual context-sensitive reconfiguration in next-generations WSNs, which will

be object of future works.

The genetic algorithm has been implemented in C-Languages, by means of

the GAUL [28] libraries and some experiments have been performed to test its

19

CHAPTER 1. INTRODUCTION

effectiveness and reliability, obtaining very promising results.

A future ambition is then to integrate the dynamic reprogramming mecha-

nism, the genetic model and the non-functional manager [29] to enable a fully

distributed management of a wireless sensor network, in distributing as much ”‘in-

telligence”’ as possible among the nodes in order to reduce the need for human

control.

20

Chapter 2

The state of art in WSN dynamic
reprogramming

In a widely distributed Wireless Sensor Network (WSN), the opportunity of dy-

namically reprogramming sensor nodes holds a primary role in assuring efficiency,

scalability and effectiveness to whole system management. Many solutions to this

topic have been proposed both by academic and industrial community, each one

adapting better or worse to the specific context, depending on network dimension

and resource capability of a specific sensor node.

The strong performance requirements of a WSN environment have triggered

many inquiries about possible implementations. At the moment, the main so-

lutions proposed by the International Research are: Full Image Replacement,

Differential Updates, Run-time Interpreters and Script-based Approaches, Vir-

tual Machines, Distributed Databases for WSN, Service networks, Agent-based

approaches, Pre-linked loadable modules and Dynamic Linking.

Following we analyze each technique, concentrating on the leading references

and releases in current literature. We expect that studying the strengths and weak-

ness of each technique could help us to distil some useful information about the

correct way of facing up many dynamics underneath the behavior of a distributed

set of nodes.

21

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

2.1 Image replacement

It consists in compiling (at host-level) a new image of the operating system to-

gether with the new functionalities and then replacing it entirely into node. The

only advantage of this approach lays on the non-necessity of node-level compu-

tation: a full image of the system can be loaded at the same, known, physical

address. The disadvantages, on the other hand, are many and heavy: this tech-

nique is not scalable and hardly applicable to network with a large number of

nodes as well as to networks with heterogeneous types of sensors. Moreover, it’s

very expensive in terms of power consumption, since a massive bulk of code (re-

ferring to the mean dimension of a node memory) must be loaded into the sensor,

wasting a lot of power in radio transmissions.

2.1.1 XNP,MOAP and MNP for TinyOS

TinyOS is one of the earlier and certainly the most famous and diffused among the

various operating system for WSN. The first mechanism proposed for reprogram-

ming a TinyOS-based nodes is a direct full image replacement. This mechanism

is called XNP [30], and it consists of an unicast protocol involving the host com-

puter, from which the network is managed and the various nodes.

The protocol is implemented by means of a boot-loader, embedded in the oper-

ating system, and some XNP’s protocol information that are provided along with

the modules to be loaded.

In receiving the new image, a node suspends all its running tasks and stores

the image into the external flash. Once download is completed, the host remotely

invokes the boot-loader, which installs the new program in the main memory, re-

boots the node and sets the program counter with the first instruction of the new

application.

When a new application needs to be updated, the host sends the new image,

opportunely divided into chucks of the same dimension of a network packet, to

a specific node or to a set of nodes. In spreading this information, the host uses

a root node, connected through a serial port to the PC, provided with the TOS-

22

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

Base execution environment. This root-node node is charged with forwarding the

packets to the target nodes via directed radio transmissions in two different ways:

• if the packets are broadcasted, the protocol articulates in two phases: in

the first phase, the image is sent (in chunks of a network packet’s byte di-

mension) to all nodes, carelessly as regards the correct receiving of each

message. In the second phase, a query is sent by the root to all nodes, re-

questing a list of the missing packets: each node completes its list and sends

it back to the host, which will provide for sending these packets again.

• If the packets are directly sent to a specific node, the root requests an ac-

knowledgment message for each packet, re-sending the message if a lost

occurs.

In trying to overcome the XNP’s lacks of scalability and efficiency, a TinyOS

multi-hop protocol has been developed and successfully ported to Mica2 architec-

tures: its name is MOAP [16], acronym of Multi-hop Over the Air Protocol.

This protocol is very articulated and resource-expensive, the reason that why

it only applies to large nodes, such the Mica2 ones. The logic surrounding this

paradigm is to spread a new image through the network without the cost of a

unicast transmission or the constraining broadcast alternative. Each node in this

architecture acts as bridge for its siblings and takes an actual part in disseminating

the new image, storing it in the local EPROM and forwarding to remaining nodes.

In that way a complete reprogramming hierarchy could be established in the net-

work and the code distribution becomes more efficient. To create this hierarchy, an

election protocol has been defined by means of a subscribing-message exchanging

between child-nodes and the nearest sub-parent, that has already received a new

image. When a node doesn’t receive any more subscribing message, it assumes

to be located at a leaf-level and starts loading the new image in the main mem-

ory and re-boot the system. So, the reprogramming process floods from leaves

to root, little by little no more subscribing message are received. The host oper-

ates as a publisher, sending a new image and marking it with a version number

used to identify the reprogramming status of the network: only newer versions

23

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

are downloaded by nodes, preventing eventual duplicates. To avoid dangerous

losses in message transmission, each node maintains a sliding window of the re-

ceived packets and continuously check for the sequence number of each one. If a

packet misses, then a re-sending request is transmitted to the parent and a timeout

is set, after which the request is newly sent. To make more power-efficient this

mechanisms, acknowledgment messages are buffered in a stack and a threshold

is defined to specify the message loosing tolerance. Another tiresome problem,

that often afflicts distributed systems is the network partition: MOAP manage this

factor by dint of frequent samplings over the radio transmission quality. All the

samplings are then organized in opportune statistics, used to control the transfer

rate and to enforce a linear routing tree and avoiding two or more nodes to become

senders for the same set of nodes.

Another mechanism falling back in this category is the MNP protocol [24],

which could be considered a super-structure of TinyOS’s XNP, enhancing a routing-

tree mechanism for distributed code diffusion. For this, it may be considered

a low-level variant of MOAP reprogramming system and, as MOAP does, also

MNP takes the advantage of a publisher-subscriber mechanism. Once a new im-

age is created by the host, it is published so that interested node can subscribe and

download it. The routing tree evolves in an efficient way, since each node sense

for subscribing requests of the other participants and univocally forward the new

image to nodes that have already subscribed to it and have not registered to other

sources. This entails the presence of a single forwarding node for each sub-tree in

the network.

Once the set of recipient-nodes has been defined, the parent sends a message

of prepare and starts forwarding the image in chunks of byte, according to the

network-packet dimension. In addition to the MOAP approach, MNP allows a

transmission rate control, based on the FLAH write-speed of the children. The

recipient, on the other side, creates a sliding window of the received messages,

store them into the external flash and checks their sequence numbers to finds out

eventual losses. All the missing sequence-numbers are collected in a list, stored

in turn into the flash, and sent back to the parent in response to a recover message,

24

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

that it spreads to the children to control download status. This recovery process is

reiterated until all the packets have been correctly received from each child-node.

After the download completion, a child-node has in its flash the entire new

image and can start forwarding it to its children in turn. At the end, when the

image reaches a leaf node (which doesn’t have any subscribing request, since it

hasn’t children) the image is copied from EPROM to main memory, and the usual

reboot is performed.

2.1.2 Deluge

From the previous approaches a critical drawback emerges: there is no support

for differential image updating in case of small changes. A tough replacement

of the system image, in fact, turns out useful when a substantial modification is

performed on the current configuration, but is very expensive for relatively small

changes.

Deluge [31] [32] is a protocol expressly studied to propagate incremental sys-

tem upgrading, especially effective in managing the transition between an old and

a new version of the same image. It can be classified, however, as an image re-

placement mechanism, since no effort is provided for heterogeneous platforms as

well as for single-function disseminations: the same image is spread throughout

the network. No mechanisms are provided to avoid message loosing and does not

exist an algorithm (but just an heuristic) to choose senders, so multiple senders

are possible, causing useless and expensive radio-transmissions.

The most evolved versions of Deluge (often experimental prototypes) imple-

ment some advanced features for what concerns multiple version support, on-

line updating (without tasks suspension), power-consumption control and efficient

message exchanging.

As the name Deluge suggests, the updates are performed through a rain of

short packets, each containing part of the system image, which is opportunely

partitioned in pages of the same dimension of a RAM block. This allows a di-

rect RAM buffering and avoids expensive EPROM storages. Moreover, incre-

mental updates are propagated through special advertisement messages (protocol-

25

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

messages), specifying which pages differ from the previous version.

A bit-map representation of the whole image is maintained by each node, so

that a bit is activated only if the packet relative to the corresponding part of a

page has already been received. According to a specific updating rate, every node

spreads some protocol-messages, containing the bit-map representation of each

page and the relative version number. Listening to these protocol-messages, a

recipient node controls its last page and checks if the current versions are older

than the received ones, eventually requiring the packets with newer versions. Once

these packets have been received, the node broadcasts in turn a protocol-message,

containing the bit vector and the version numbers. At the same time, it repeats the

first phase for its next-to-last page, requiring eventual upgrades, and so on, until

all the pages have been updated.

In that way, the protocol evolves in a pipelined flux, that enables a powerful

spatial multiplexing, made more efficient by keeping constant the dimension of

the system data.

2.1.3 Others

All the monolithic environments , such MantisOS [33], NutOS [34], etc. sup-

port mechanisms for full-image replacement. These variants are based on uni-

cast/broadcast transmissions and a boot-loader utility; their functioning is very

similar to that of XNP.

2.2 Differential updates

When an update on the applicative configuration of a node causes small changes

between the old and the new version, just the binary differences between the two

versions needs to be installed. Updating just the delta-part of binary code, the

power consumption of data transmission is drastically reduced, especially thanks

to the small amount of code exchanged between a node and the host computer.

This mechanism however suffers from many problems of scalability and effective-

ness: no broadcast updates are possible and the modifications must be propagated

26

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

separately for each node. In that way, the host computer has to know the exact con-

figuration of each one and has to maintain this information aligned. Furthermore,

the host by which the network is managed must cope with the micro-heterogeneity

surrounding even nodes of the same family whit same applications. This hetero-

geneity is due to the small differences in C compiler (also the same compiler in

its different releases), libraries and linkers used by the different programmers who

concurred to the network instantiation.

The differential updates method has not been successfully implemented in

any real system since it bad performs in networks whit a non-minimal number of

nodes: only academic proposals have been issued by Koshy-Pandey and Reijers-

Langendoen.

2.2.1 Model by Koshy- Pandey

This is a function-based approach, underlining the central role played by the mod-

ular structure of programs obtained composing a certain set of functions [18]. It

is expressly designed for designed for Mica2 platforms.

The reprogramming mechanism is enabled both for static and dynamic updates

and a linker is placed on the host station in order to relieve the sensors of the

overhead related to linking, relocating and compressing operations. the remote

linking process, however, must maintain a map of the address space, per each

node. The process, as it has been proposed, comes out quite inefficient since

to replace a function with its newer version (without changes the references to

this function in the program), the latter must keep the same byte-dimension of its

previous version, otherwise it, or its adjacent one, must be moved.

Using a special algorithm, called Xdelta, some scripts, each of the dimension

of a memory page, are produced to propagate the new version in an incremental

manner. In that way, each page could be singularly updated and, exploiting the

ATMega128’s NVRAM capabilities, a new script can be downloaded at the same

time. The updates are installed by means of a boot-loader, which interprets the

script and transfers in memory the relative modifications. This mechanism shows

good performances for what pertains memory usage, but suffers the bottleneck of

27

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

being suitable just for small updates.

2.2.2 The proposal of Reijers and Langendoen

This is another diff script technique, but differs from the previous because here

the scripts are used to progressively propagate a reduced version of the system

image [17]. There is not pipelining in packet distribution, so the protocol collapses

in a store-and-forward disseminating paradigm.

The script is incrementally collected into the external flash, little by little the

packets arrive and until their aggregation matches the just mentioned reduced im-

age. Unfortunately, this script language is designed to only run on the MSP430F149

architecture of EYES nodes.

The main advantage of this proposal is its compatibility with run time opera-

tions, since the node does not need to suspend the current task while downloading

the script. Another advantage lies on the packet structure, which contains, along

with the script, also the final address range that it will occupy on the node mem-

ory, making possible an immediate fetch from the EPROM to main memory by

means of a boot-loader. This also enables out of order deliveries and an immediate

control on eventual lost packets, since it only suffices to control the address range

of two packets to check their continuity.

2.2.3 Others

Many other diff based proposal have been advanced, often in the context of aca-

demic researchers. The Jeong and Culler’s model [35] is an interesting one and

substantially consists of running a resynchronization algorithm to extrapolate the

difference between the old and the new version.

2.3 Run-time Interpreters and Script-based Approaches

This reprogramming paradigm falls within the broader family of script languages

dissemination. Since a generic interpreter is quite heavy, in terms of execution

28

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

costs and memory usage, compared to the strict requirements of a small architec-

ture, this method doesn’t fit for the greatest part of wireless sensor networks.

The logic beneath a script reprogramming consists in spreading a short mes-

sage, containing the script to be executed, toward a specific set of nodes (to the

limit: toward a single node or the entire network). The main advantage resides in

the minimization of radio-transmission costs, considering the lightweight dimen-

sion of a script message. On the other hand, the drawback concerning the high

execution cost of an interpreter makes this way of reprogramming prohibitive for

small sensors.

2.3.1 Python interpreters

The idea of using an interpreted language as Python is quite a black swan for

projects orbiting the WSN reprogramming topic. Starting from an analysis upon

the advantages correlated to the open-source and re-sold nature of this language,

two researchers from the Turku Center of Computer Science, J.Lilius and P.Paltor

[36], have proposed a stripped version of Python fitted to run over resource con-

strained embedded systems.

The main advantage of this approach is the relatively small footprint of the

resulting programs, which whit an average weight off-peaking the 200 KB could

be adaptable to nodes of higher sizes (e.g. the HitachiSH1 with 256KB RAM and

64KB ROM). Another strong point, this time relative to the dynamic reprogram-

ming perspective, refers to the well-known possibility to replace Python’s object

and method on-the-fly, thanks to the interpreted nature and the dynamic binding

surrounding this language.

Unfortunately there are also a lot of disadvantages, mainly related to the heavy

processing-overhead and resource requirements that a Python interpreter needs for

its execution. This makes the use of a Python interpreter for WSN just an interest-

ing academic case of study, but a prohibitive choice for actual implementations,

considering the current sensors’ technologies.

DePython is expressed developed for systems in which the interaction with

user is critical, so it is not oriented to autonomous WSNs, which are often used

29

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

to monitor some environmental conditions of impervious places. The DePython

interpreter has been stripped from all the direct dependencies whit the operating

system and uses special wrappers to interface with hardware: this approach, as

said, is a very expensive one and seems to be promising just for powerful WSNs

remotely manageable through an internet interface.

2.3.2 SensorWare (TCL machines)

SensorWare [37] is based on TCL, i.e. Tool Command Language, an interpreted

language used to test and run prototypal applications. Also in this case the node

must be equipped with a run-time interpreter which, as discussed in the previous

section, requires a lot of resources. The protocol underneath this approach is

event-driven, that involves a massive message exchanging among nodes during

all the network evolution. The main advantage of SensorWare, besides the fast

dynamical reprogramming, is the simple and powerful nature of TCL language.

To the contrary, because of its heavy power-consumption and memory usage, it

only applies to large nodes. The code diffusion is obtained through an in-node

script replication: once received the script, if it contains the special command

replicate, the node duplicates and sends it to any set of requiring nodes.

2.3.3 Others

Two other interesting approaches using scriping languages are COMiS [38] and

Spatial Programming (SP) [39]. COMiS is a special middleware conceived to

be modular with respect to script-based components, written in DCL (Distributed

Compositional Language). It shows the same pros and cons of the previously

discussed processes. SP takes advantage of active script dissemination through

network messages, it however doesn’t provide a flexible way to manage the ad-

dress binding and turns out useful only for application updating rather than an

out-and-out reprogramming.

30

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

2.4 Virtual Machines

Before introducing the use of virtual machines in WSN, we ought to briefly dis-

cuss some properties of the bytecode, in relation to the need of low-power con-

sumption for radio transmissions. The program code of a VM can be generally

made more compact than the classical binary of a native machine, so the burden of

messages in data transmissions can be drastically reduced enabling a great power-

saving as opposed to classical binary dissemination. Many virtual machines have

been proposed for WSN specific environments, attempting to preserve the priv-

ileges of running an intermediate code (identical for all platforms), and, at the

same time, to make the dimension of virtual engines suitable for the resources of

a node. Virtual machines have not significantly penetrated the spectrum of WSN

implementations because of their run-time overhead: in spite of the various opti-

mizations, in fact, the execution costs of these mechanisms comes out expensive

for almost the totality of sensor platforms. In such a contest, VMs have always

been developed as a support for the node’s OS, obtaining an hybrid configuration

in which native applications interact with programs running on virtual machines.

The double-bond that links VM and OS in sensor networks substantially differ-

entiates these variants from the classical Java Virtual Machines: a JVM performs

well on all possible kinds of applications, while a WSN-oriented VM is often de-

veloped to run on a specific operating system and to accomplish just a fistful of

tasks.

2.4.1 SwissQM

Among the various virtual machines proposed for WSN, we now present one of

the most recent (publication year: 2007) and surely the most interesting under

the power-efficiency and instruction-set completeness profile: SwissQM by ETH

Zurich [40] [41]. Thanks to its small footprint, 33KB of Flash and 3KB of SRAM,

and its wide but small-sized instruction set, 59 bytecode instructions needing just

ten of the 33KB of Flash footprint, SwissQM places at the top of the existing

VM-based mechanisms. It offers a platform-independent programming abstrac-

31

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

tion by means of a stack-based, integer virtual machine. The structure comprises

a bytecode interpreter, an operand stack and a transmission buffer. Applications

running on SwissQM can reserve space through a data structure called synopsis.

It supports up to six task running concurrently, because of resource limitation, but

the theoretical number of parallel running tasks is unbounded. Over 59 instruc-

tions, 22 are reserved to control the physical sensors, while the remaining 37 are

identical to JVM implementation. QM programs are split into fragment messages,

identified by an ID and a sequence number. In downloading a new application, a

service message, containing the application’s metadata, is exchanged first. This

message contains a 10bytes header (metadata), whereas the remaining 16bytes are

dedicated to bytecode; the following messages deliver the remainder bytecode, re-

serving just two byte as header (ID and sequence number), while the remaining

24 bytes are used as payload.

A typical reprogramming sequence starts with a node that requests a frag-

ment sending the first message to another node. If the receiver holds the specific

program, then it generates the requested fragment and begins to send it. An ack

message is sent every time a fragment delivery succeeds; an epoch-based recovery

mechanism is provided to overcome eventual message losses.

The main advantage of this solution is its small footprint , the most compact

and efficient bytecode ever proposed and a Touring-complete programming en-

vironment. It could be considered one of the most attractive mechanisms today

available for dynamic reprogramming, so no particular flaws emerges with the ex-

ception of a quite expensive processing cost due to the programs interpretation,

probably surmountable as sensors’ hardware evolves. It must be noticed that this

approach doesn’t fit well for small nodes, e.g. TelosB, since the 33KB footprint

alone would saturate the entire memory space.

2.4.2 Maté

Maté is a virtual machine developed to run on TinyOS [42]. It provides an high-

level programming interface, which makes programming very easily and, at the

same time, reduces the applications’ sizes in a range of 100B. The code distribu-

32

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

tion is performed through a viral diffusion of small packets, each containing 24

instructions and capable of self-replicating: only bytecode programming is sup-

ported in the proposed version. Moreover, it is possible to spread a maximum of

4 subroutine capsules to speed up the diffusion of high-sized applications.

Version numbers are used to keep tracks of the various updates and nodes com-

municate each other these version numbers to decide if forwarding or not: if the

neighbors’ versions are older than the local ones, then the packets are forwarded,

nothing otherwise. The communication among nodes is performed through a thick

message exchanging and the transmissions are interleaved by means of a random

timer. The strong point of this approach is the great reprogramming power that

a viral approach enables, also for wide and scattered sensor networks. The main

drawbacks concern the heavyweight processing time needed to execute the virtual

machine, the frequent, often useless, radio-communications and the absence of an

effective mechanism to check if a reprogramming has successfully taken place in

all nodes. Mat is particularly suitable to wide sensor networks with thousands of

nodes.

2.4.3 Others

Many other WSN-oriented virtual machines actual exist, as well as specific appli-

cations mounted on top of them for the dynamic reprogramming purpose. Trickle

[23] is a famous code-propagation facility, running on Mat and enforcing the dif-

fusion of an entire application in the byte-space of just a TinyOS’ packet. A

gossiping cadence along with a traffic regulation algorithm make this mechanism

very scalable and efficient also for widely diffused systems.

CVM [43] is a virtual machine expressed developed for ContikiOS and run-

ning in symbiosis with Contiki’s dynamic linker. It is a stack based VM, with sep-

arated code and data spaces, enabling remote calls to native functions by means

of a special handler instruction.

MagnetOS [44] holds a full-blown JVM , powerful but heavy-sized, therefore

unsuitable for medium or small nodes. VM* [45] is a small platform, enforcing

Java programming while preserving low-level interactions by means of a direct

33

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

access framework for sensors and I/O devices.

2.5 Distributed Databases for WSN

In dealing with network reprogramming we often mean to change on-the-fly the

applicative configuration of a sensor node, e.g. if a node has been programmed

to sense for temperature and report results we might then need the same node to

report pressure, so a new function must be loaded and the previous discharged. A

Database approach makes the problem of reprogramming fully dynamical, since it

suffices to spread a query to report, for example, the temperature and then another

query to report the pressure. This process is very efficient and, considering the

small byte dimension of a query (that is just a string), also advantageous under the

radio and processing profile.

The application of Database’s logic to a distributed system of nodes represents

a revolutionary and remarkably example of engineering, both for the extreme frag-

mentation of data source and the weak computing power of the nodes on which

the distributed DBMS has to run. TinyDB is the main and most evolved example

of DBMS for sensor networks and under many aspects could be consider a dare

and brilliant research, for which we foresee interesting possibilities of integration

in enterprise’s production monitoring and data collection. For this reason, we pro-

pose a deep and accurate analysis of TinyDB below. In this platform, each node

is seen as a single source of information, which produces one and only one tuple

per each sample period. All the tuples produced by the various nodes flow up

the network hierarchy in a continuous streaming of results, collected by the root.

The streaming nature of the output makes even more difficult the coordination be-

tween participants, and represents a very hard problem also for the specialists in

conventional DBMS so much so no a standard has already been reached by inter-

national DB community. TinyDB copes this tricky matter in a very efficient way

and places itself among the most futuristic works in the field.

Nevertheless, this project has not reached an appropriate diffusion because

of the significant power absorption needed to maintain the semantic hierarchy

34

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

(the equivalent of an index for conventional DB) and others coordination mech-

anisms, which require a thick message exchanging. Another limitation pertains

the absence of a functionality to interact with a single node, since the only way to

execute queries is t broadcast them.

On the other hand, since the query are optimized at host level and sent in

the form of a small binary message, the single radio interaction turns out very

cheap under the costs profile. Anyway, considered the high technological profile

of these WSN-oriented databases, we expect them to come back to the fore once

the hardware profile of nodes will become more power-efficient.A more complete

tool-suite for TinyDB is provided by TASK [46], which can be considered just an

extension that doesn’t modify the logic underneath.

2.5.1 TinyDB: an analysis through the filter of DB Theory

TinyDB [47] is one-of-its-kind project, attempting to deploy a fully featured DBMS

applicative logic on a resource-constrained distributed environment, like a wire-

less sensor network. Though Database systems, because of their overshadowing

complexity, are often associated with high powerful multicore machines, this ex-

periment demonstrates that a sharp review of Database Theory enables solutions

capable of running even on small nodes (10KB of RAM and 30KB of FLAH

memory).

In this section the theoretical structure surrounding TinyDB is analyzed, ref-

erencing to the Fundamentals of Database Theory [48]. In drawing a parallel

between the general theory and the specific implementation, many characteristics

are sequentially compared: distributed database and streaming database mecha-

nisms, query language, query dissemination and execution, active rules (trigger),

query optimization.

The problem concerning transactional support will be discussed apart, since it

seems to be a lack of TinyDB’s deployment and literature.

35

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

Data distribution and streaming in TinyDB

The relational schema of TinyDB is composed of a single streaming table, called

sensors: each row represents a node in a given instant of time, whereas each

colon stands for an attribute produced by a device. In a theoretical perspective,

this could be considered as an horizontal fragmentation taken to its most extreme,

where each tuple lies on a distinct node.

Transparency is set at fragmentation level, relieving programmers of low-level

details. Since the schema is unique, each node is allowed to put a NULL value

every time an attribute is not defined for its platform.

The stream-oriented nature of TinyDB entails the records to be taken for a

short while: to manipulate or join tuples locally, passing through materialization

points is needed. Once a query is launched and disseminated throughout the rout-

ing tree, each node starts producing tuples at a sample rate specified by means of

a SAMPLE PERIOD query command. The command just introduced follows the

select-from-where clauses and has the syntax:

SAMPLE PERIOD <time>[FOR <time>]

The period of time between two successive samples is called epoch and pro-

vides a good mechanism to organize computation by minimizing power-consumption:

nodes synchronize on a global time in order to start and end each epoch at the same

time.

The output of a query consists in a stream of tuples that flows up through the

routing tree, clustered into time intervals. Each tuple is characterized by a times-

tamp relative to the moment it has been produced. Because of the continuous data

stream of tuples, blocking operations such sort or symmetric join are not allowed,

unless a bounded subset of the stream, called window, is specified. These win-

dows actually consist of small buffers of data, collected in materialization points

over the stream. The syntax to create a materialization point is:

CREATE STORAGE POINT name SIZE sz

AS (SELECT)

36

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

It is possible to execute a join between two storage points, as well as between

a storage point and the sensors table, which is used like an outer relation in a

nested-loop join: when a tuple arrives in the outer table, it is joined to those of the

storage point .

Query language

As the previous section beckoned to, TinyDB adopts a SQL-like query language.

Along with the usual select-from-where framework, system designers have broad-

ened the syntax with some interesting solutions, specifically oriented to dynamic

acquisition of environmental data. Lifetime queries, actuation commands, tem-

poral and stream-oriented aggregations constitute the nucleus of this extended

semantics.

The LIFETIME clause reports results automatically during all node life span.

The clause ”OUTPUT ACTION action” serves to take some physical actions on

external devices and, in the opinion of the author, leads to critical problems of

transactional support.

Temporal aggregates, like WINAVG, help users to deal with sliding-window

queries, often required in monitoring dynamic conditions. Stream-oriented aggre-

gates are following discussed.

Stream-oriented aggregates

These aggregates enable in-network aggregation as streaming results flow up.

This dynamic bunching process evolves according to the aggregation function and

the value-based partitioning specified in query commands.

Each aggregate record consists of a couple < group id, aggregate value >,

time-stamped with relative epoch number, such that only results belonging to the

same epoch will be aggregated. An interesting parallel with classical Database

Theory emerges in drawing streaming aggregates close to those of shared-nothing

databases: final output comes out from reiterate applications of three functions,

respectively called merging function (f), initializer (i) and evaluator (e). The ini-

tializer i is used to instantiate the primitive multi-valued partial-states on each

37

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

node. Merging function f takes two parameters, which are multi-valued partial-

states, and aggregates them. The evaluator e takes a merging function output and

calculates the final value of the aggregate. After the initializer has instantiated

all nodes, the stream climbs the hierarchy and a sequence of merging function is

applied until the evaluator calculates the final value at the root.

Active rules

In conventional commercial databases, active rules play a first class role in guar-

anteeing the correctness of integrity constraints or ”company rules”, in calculating

correlation on data and in handling exceptions. The theoretical paradigm under-

neath triggers is the so-called event-condition-action, which well underlines the

reactive and transparent nature of these queries [16]. In dealing with active rules

it is common to think about something that acts independently from users’ control:

that’s because transactions are directly invoked by the human operator, while trig-

gers automatically start on the sly to check some properties. Another important

characteristic of active rules concerns a new level of abstraction, called applica-

tive independence (or knowledge independence), which tags along physical and

logical independences, basically provided by Databases’ engines.

In TinyDB the event-condition-action paradigm increases in usefulness, since

power consumption can be drastically reduced in waking nodes only if necessary.

On the other hand, triggers become a full-blown programming style and loose

their background-control nature to surge in a new dimension of ad-hoc deigned

queries. In such a context, the three level of independence above introduced van-

ish:

• The role played in preserving applicative logic no longer makes sense, as

well as knowledge independence;

• Events are detected by physical devices: this means a programmer must

know the specific low-level functions to be invoked. The physical indepen-

dence offered by conventional databases for what concern data organization

and language fails too;

38

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

• Working in a streaming environment implies a consciousness of how data

flows, in order to manipulate them through materialization points: even log-

ical independence collapses.

Let’s have a look on how Tiny triggers work :

ON EVENT sense_for(x) :

SELECT

The function sense for(x) is a formal parameter and represents a generic low-

level function supported by the operating system. Such a query reports its result

every time the event x occurs, given a certain sample period. In addiction to reac-

tive behaviors, TinyDB offers the possibility to signal the occurrence of some con-

ditions through the ”OUTPUT ACTION SIGNAL” clause: this active framework

turns useful when programmers want to fire queries at a certain event occurrence.

TinyDB lacks of an event-propagation distributed protocol and the trigger

scope is confined to a single-node dimension. Concluding, it has to be remarked

the absence of a distributed algorithm which checks for termination conditions if

two or more events activate each other in an endless loop.

Query dissemination

Queries in TinyDB are broadcasted from the root to the whole network, without

any control on which nodes actually satisfy the requirements. Power consumption

is a critical parameter to be preserved, so all nodes in hierarchy must synchronize

their wake and sleeping cycles to minimize processing time. To orchestrate net-

work synchronism, each node is forced to transmit only when the parent is awake

and listening. The route rate leads the entire network cadence and the rhythm

is propagated from parent to children by means of a transfer rate parameter, for-

warded along with queries. If a node needs to transmit slower, it can transmit an

integral divisor of the root rate, if it must transmit faster a MIN SAMPLE RATE

clause could be specified, forcing the propagation of results without any controls

over energetic autonomy.

39

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

Since forwarding queries has a great cost in wasting power, a parent node

should decide if the query applies to its characteristics as well as to those of its

children. For what concerns constant attributes (i.e. node ids), it seems to be

an affordable problem, while in dealing with range condition, it would be useful

knowing if children overlap the boundaries.

TinyDB offers a semantic routing tree (SRT) in which internal nodes collect

their children according to an attribute-range criterion. In this way, only queries

whose predicates specify a coherent attribute value will be considered by a certain

subtree. To create the SRT, a build request is spread throughout the network,

indicating the attribute over which the network should be built. Internal nodes

and leafs then organize each other by a message-exchanging sequence, until the

whole network structure is created and each parent records the attribute range

characterizing its subtree. A run-time algorithm then arranges eventual topology

changes between parents and sons.

Query execution

The focus here concentrates on aggregate queries, since simple queries are exe-

cuted conventionally. To schedule aggregate queries, each epoch is divided into

fixed temporal slots and each slot is numbered in a decreasing order. The slot with

highest number (early in time) is assigned to the last node in hierarchy and so on

until the parent receives the lowest numbered slot (last in time). Each node acti-

vates and sends results in its timed-slot, so the stream floods sequentially ordered

toward the root. For what concerns multiple queries there is no effort.

TinyDB also offers a prioritizing system: if the transmission rate is faster than

the tuple arrivals rate no problem occurs, otherwise a policy to manage overflows

is required. Three methods are supported:

• Nave: all tuples hold the same priority and the queue is managed as a clas-

sical FIFO, where the overflows are discarded.

• Winavg: similar to nave but the first two tuples in queue are aggregated,

making an average of them and freeing space for another result.

40

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

• Delta: a timestamp-based priority is assigned to each tuple, enabling out-of-

order deliveries. Tuples with lower priority are discarded when an overflow

occurs.

For what concerns aggregate queries, two cases must be distinguished:

• Exemplary aggregates (MAX, MIN, etc): each node senses for its siblings

results and if any has produced a value greater (smaller) than the local one,

the local tuple is discarded, avoiding useless transmissions.

• Summary aggregates (AVERAGE, SUM, etc.): each node senses for its sib-

ling values and if the local result matches on average whose of the siblings,

the local tuple is discarded. The parent node, in not receiving messages from

some of its children, assumes that their values are in line to those actually

received.

Query optimization

In conventional DBMS, optimizations are mainly performed inside the Query-

Manager module. Query-Manager’s optimizer receives SQL-written queries and

computes the algebraic transformations among their selections and projections.

Then it optimizes the intermediate output depending on the access methods and

finally generates object code. All of these operations can be executed in a central-

ized way, through a master-slave paradigm, or can be delivered to the peripheral

nodes, in a distributed negotiation paradigm.

TinyDB adopts a master-slave paradigm, so optimizations are executed at root

level and the output is a simple binary executable. The root must hold information

about each node in the network to globally optimize queries. These information

are provided by some metadata maintained by each node and periodically copied

to the root. An interface file and an handler are provided for local use. As com-

mercial databases do, also TinyDB allows both compile-and-store and compile-

and-go procedures, depending on query frequencies. Optimizations dealing with

scan, sort and direct-accesses operations are part of TinyDB as well, but in a

power-saving perspective.

41

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

In conventional DBMS joins are frequent and heavy, while in TinyDB they are

rare and just allowed on small-windowed materialization points. Tiny’s optimizer

doesn’t care much about joins, except for those between a materialization point

and the whole sensors table, handled through a nested-loop approach. Neither

merge-scan nor hash-based mechanisms are applied.

Cost-based optimization in TinyDB is founded on a power-consumption logic:

cost function is dominated by sampling sensors and transmitting results, so the

main challenge is to optimize these phases.

• Samples and predicates: samplings on physical devices are scheduled at

first. In that way, just one sample is performed at the source for each at-

tribute eventually required by more than one predicate. Moreover, the phys-

ical interrogations are scheduled on the basis of the relative power consump-

tion. In doing that, if a predicate on a less expensive physical acquisition

is violated, the query is discarded together with the eventual subsequent

acquisitions needed to evaluate the remaining predicates.

• Exemplary aggregate pushdown: it is more convenient to previously check

if local values actually affect the aggregate. If they don’t, sapling for the

predicate is superfluous since the query is useless.

• Event query batching: TinyDB’s optimizer creates an array of the events

and treats results as joins between this array and the stream of samplings.

In that way, old events can be dropped by the event-array avoiding further

acquisitions.

Lack of transactional support

TinyDB de facto doesn’t support transactional behaviors, though its streaming

nature imposes all tuples to be marked with a timestamp. For all queries accom-

plishing read-only operation the problem doesn’t subsist, since each tuple could be

filtered by its timestamp. When a physical action (OUTPUT ACTON) is taken on

a device by two or more nodes, however, some conflicts may occur. A possible so-

lution could be introducing an action-timestamp-manager (ATM), working as the

42

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

WTM counter in traditional timestamp-based DBMS. In linking an ATM to each

physically-controlled device, the system can keep memory of the actions taken

on that device, preventing an eventual conflict. Anyhow, this approach should be

fitted to support distributed decisions.

TinyDB offers a good level of serialization for reading operations, which in

a sensing-oriented network represent almost the total charge. Referring to stan-

dard SQL, TinyDB could be classified at a ”repeatable read” level, associating the

effects of an OUTPUT ACTION to those of a ”phantom insert” for conventional

databases.

2.5.2 Others

TinyDB is completely developed by Berkeley University and Intel Research Lab-

oratories. Other projects have been undertaken in trying to apply Database mod-

els to sensor networks and two of them are worthy of mention: Cougar Sensor

Database Project from Cornell University [49] and SINA [50].

2.6 Reprogramming Support Network

The idea of a reprogramming support network has been brought forward by some

researchers from ETH Zurich. In their article, Beutel et al. [51] propose the imple-

mentation of a Deployment Support Network (DSN) to overcome the nuisances of

passing through the main sensor network to change the configuration of the nodes.

The DSN plays its role only for maintenance operations and works in parallel to

the controlled WSN. A DSN is conceived to be minimal, just few small nodes that

creates a bridge between the Host and the various sub-trees in WSN’s hierarchy: a

certain set of WSN’s nodes is assigned to one and only one DSN’s node, through

which the updates are propagated from the Host. The main advantage of this pro-

posal regards the conspicuous power saving of the WSN’s sensors, which could

continue accomplishing their tasks without loosing time and power in forwarding

maintenance information and updating code. On the other hand, there are many

troubles and first of all the overhead to maintain a new parallel network, since the

43

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

DSN is in turn a new, even if small, sensor network. Besides, there are also prob-

lems in preserving the hierarchy between WSN’s and DSN’s nodes, letting alone

the issue of maximizing the lifetime of DSN’s nodes as well.

2.7 Agent based approaches

It’s a refinement of the script-injection mechanisms, which allows the deployment

of dynamic, localized and intelligent mobile agents among the network. This

approach, as often happens in leafing through the literature, promises a lot of ad-

vantages for what bears on flexibility in agent dissemination, self-positioning to

perform specialized tasks, state and code maintaining in migrations and locality

principle, by which the computation is brought where data reside and not vice-

versa. Contra, we think it appropriate to underline the heavy resource require-

ments of agent-based platforms, hardly ever applicable to small sensors. More-

over, these techniques suffers of the bothersome problem to be not reliable when a

network partitioning or a message losing occurs: in presence of those anomalies,

the protocol fails. Maybe, in proceeding the development of robust coordination

mechanisms and reducing the resource usage of agent controllers, this vein of

WSN research might become a very attractive one. Following we present the Ag-

illa mobile agent middleware, an important example for this type of WSN-oriented

software updating.

2.7.1 Agilla

The most famous agent based reprogramming mechanism is Agilla [52] [53], a

middleware purpose-made for supporting the dissemination of intelligent mobile

agents. Agilla grounds on TinyOS and targets large nodes, considering the heavy

size of agents’ code. An agent is programmed in assembly and then injected into

the network to be encompassed on top of the Agilla layer. A migration is triggered

by a move or clone instruction and is performed through a store-and-forward net-

work packets exchanging; each packet is 41B sized, very small compared to a

whole agent, so many transmissions are required to deploy a module.

44

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

Every node in the network is provided with a local data space, organized in

shape of a list of tuples, and the communication among agents is obtained through

remote accesses to these space. Agilla stands a very promising paradigm, given

the assumption an increasing availability of resources in next generation nodes’

architectures. The chance of bringing the computation directly in the place where

data are collected is a very attractive one, so it is plausible a focusing of the Aca-

demic Research towards this class of techniques. Many flaws must be however

overcome, from the assembly-based programming, to the remote agent suspen-

sion/activation and a targeted distribution control.

2.7.2 A proposal from the University of California Davis

In 2005, some researchers from University of California Davis [54] have proposed

an interesting self-regulating agent-based framework. It is self-regulating since

the propagation of agents in the network is obtained through special forwarding

procedures, directly invoked on the agents, following up a unicast or broadcast

request from nodes. Moreover, the agents communicate by leaving some data in

the nodes they have passed through, to be used by other agents which will pass

through the same nodes in future. An agent can be transitional or permanent, de-

pending on the code structure and in particular on the presence of exiting functions

or endless loops. Injecting new agents is very simple, but no support is provided to

update the existing ones. The main advantage of this framework is the completely

self-regulating propagation and the drastic radio transmissions reduction, since

communications are obtained leaving data in the node behind, for future agents

to come. The problems are the usual concerned to these kind of approaches and

touch the heavy byte-dimension, the low level bytecode programming language

(since also this technique bases on Maté) and the difficult in managing versions

upgrading and nodes configuration traceability. This could be considered a good

solution for large networks, with powerful nodes and the need for autonomous

configuration, requiring the introduction of new self-regulating agents rather than

the upgrade or the modification of the existing ones.

45

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

2.8 Others

Many other experiments have been carried out in this direction and many other

are being performed from important international centers. Actually, a group from

Politecnico di Milano, leaded by Prof. Di Nitto, is involved in the research of

an agent-based protocol for WSN, targeting large nodes and capable of mod-

ules’ self-distribution, application interoperability and code portability. Also in

the past have been proposed interesting solutions, such that of Umezawa et al. in

2002 [55]. All these mechanisms show the same advantages and disadvantages

above discussed and the Research is divided in two schools of thought: one is

now focusing in overcoming the resource-requirement overhead, while the other

is involved in upgrading the applicative complexity disregarding the resource-

consumption problem, in the perspective of a breakthrough in WSNs’ nodes hard-

ware.

2.9 Pre-linked loadable modules

Loadable modules are used to upload programs or functions in a node, without

performing costly replacements of the whole system image or managing the bi-

nary differences between old and new versions. Typically, a loadable module

contains the executable binary with the physical addresses of variables and func-

tions resolved at host level. In order to assure the correct execution of binaries, all

the symbolic references to global variables and functions of the target node must

be replaced with the correspondent physical addresses. This process is called link-

ing. Once the code has passed the linking phase, one more operation is needed:

the symbolic references to local variables and functions have to be resolved. This

applicative step is known as relocation.

In a pre-linked module, the linking phase is always executed at host level,

whereas the relocation could be performed both at host and node level. Performing

relocation at host level allows smaller size in the output binaries and, at the same

time, relieves the node from the costs of local processing, since the module can

46

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

be immediately loaded. Instead, leaving to nodes the burden of relocating local

symbols leads to more onerous computations, but programmers can dispense with

the need of maintaining the information about nodes’ address-spaces. Choosing

the first or the second approach depends on the sensors’ architectures (supporting

absolute address vs. relative addresses) and the network dimension.

This type of reprogramming system is not supported by all operating systems:

TinyOS is unsuitable, while Contiki, SOS and Impala for ZebraNet are examples

of compatible systems. The main advantages of this procedure are the lightweight

nature and the fast reprogramming capabilities: the efficiency of such a kind of

technique is very high and far to be comparable with the others above and below

discussed. In reverse, some critics are moved referring to the presumed low ef-

fectiveness in managing large networks [9]. The bottleneck just introduced is due

to many troubles in maintaining aligned the information about nodes’ absolute

addresses when some changes (even small) occur. In Contiki, for example, both

linking and relocating phases are performed in-host by means of map files, one for

each node. These files are generated at compile time when the operating system is

loaded for the first time into the nodes and they’re never ever updated. A map file

contains the correspondences between all globally visible functions and variables

in the system core and their address, that explains why a minimum change in the

address-space makes the pre-linking phase unmanageable. In Contiki, a version-

based control system has been recently introduced: that helps against crashes but

not solves the problem.

Starting from these considerations and looking at the enormous benefits of

this approach, compared to its flaws, we have reviewed the entire protocol and

studied a way to retrieve the most updated information about the address to be

resolved, just in time to perform the pre-linking phase. Our approach [3] is de-

signed for msp430 architectures and is performed retrieving on-the-fly the symbol

table from a node, for which we want to produce a new module. The symbol ta-

ble is uploaded on the node at the moment of its initialization and contains the

correspondences between the names of functions (and variables) and the pointers

to the relative addresses. If a change occurs in the address space, the pointers are

47

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

automatically updated, preserving the consistence in the references. Downloading

from a node its symbol table (which is generally very small-sized) just before to

accomplish the linking phase, we have at our disposal the current addresses of

variables and functions in the target system. Thanks to its dynamical nature, this

proposal reveals very good performances and takes place in half between a pre-

linking and a dynamic linking procedure, so that we will discuss it in the section

dedicated to dynamic linking.

2.9.1 SOS loadable modules

The way through SOS [56] supports dynamic reprogramming is based on small

pre-linked modules; these modules are loaded or unloaded, depending on the con-

figuration that a programmer wants to give to the network or to a subset of it.

Just the kernel and the hardware interfaces are embedded into SOS core, all other

services are supplied by the above-quoted dynamic modules. The kernel is rigid,

once loaded into a node no dynamical updates are possible. When a new module

is created, it is timestamped with its version number, so that a node can check its

own version and determine if an update is needed or not; to ease modules manage-

ment, some standard function have been defined to initialize, finish, receive mes-

sage and interface with hardware. Module’s specific functions are registered with

their name, version and address at the global Function Control Block (FCB), in

that way other modules can invoke these functions by simply accessing the FCB.

The kernel automatically handles as exceptions eventual calls to unreachable or

unregistered function. In loading a new version of a module, the older version is

unregistered from FCB, then the new module is loaded and the FCB updated with

new module’s function references. This is a very efficient mechanism, suitable for

network of medium-small dimensions and relatively large, homogeneous nodes,

running SOS operating system. Compared to other approaches, the disadvantages

are not particularly critical, with the exception of lack for heterogeneous inter-

operability and scarce scalability for medium-high or high sized network, with a

considerable number of nodes.

48

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

2.9.2 Impala modules

ZebraNet is a famous WSN project from Princeton University and Impala [22]

is its event-based middleware underneath programs updating. Applications are

deployed by means of generic loadable modules, 2KB sized, fitted to nodes’ spe-

cific environment through special-purpose application adapters. As seen in other

proposals, also Impala uses a version numbering system to assure compatibility

among the various releases of the same application and each module is provided

with a complete index that identifies the reference application and some other

parameters.

The entire deployment process is managed by an application updater, allowing

multiple parallel updates and integrity checks, even while other tasks are running.

Older or incomplete modules are kept in flash till the memory space doesn’t be-

come critical: if so, they’re deleted.

When a new module has to be updated, a request for its index is sent to source

nodes and, if index’s parameters fit in, the download starts through a direct con-

nection between one of the sources and the requiring node. Once a module is

downloaded, the target node becomes itself a source and can eventually respond

to requests from other nodes. In order to manage eventual multiple download-

ing requests, a version-based prioritizing mechanism takes the field in scheduling

downloads among nodes. The new module is then loaded and its execution gets

started.

When an event occurs, it is caught by an event filter dispatcher which interacts

with the application adapter that chooses, in turn, the most appropriate application

to handle that event.

The advantages and disadvantage of Impala trace the ones already discussed

for SOS and the general approach.

2.9.3 Others

Similar techniques are adopted by ContikiOS, through its pre-linked loadable

modules [43] , and MIT’s Bertha operating system, which uses the Pushpin pro-

49

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

tocol [57] to upload applications. It is worth to spend some words about Bertha’s

Pushpin, since it slightly differs from standard modules-based approach. It places

across a mobile-agent and a module-based technique, since the 2KB modules are

substantially fragments of one process, just-in-time called during the execution.

The local communication among fragments is obtained using a shared memory

fragment, comparable to a bulletin board. The communication between nodes, at

the same hierarchy level, happens through their bulletin boards, since every node

stores the bulletin board of its neighbors.

One more solution, similar to that of SOS, is provided by ScatterWeb [58]:

some special-purpose, modifiable tasks are hooked-up to a common, rigid firmware,

supporting core operations. Modules containing applications can be downloaded

and installed. The non-modifiable firmware is in charge of managing the updating

process and checking its correctness.

2.10 Dynamic Linking

In dealing with dynamic linking, we can draw up a basic distinction between

what can be considered a ”pure” dynamic linking approach versus a ”functional-

equivalent” one. In a pure dynamic linking approach, the object code is exactly

the same of the classical ”.exe” windows files or linux ”.elf”. These files contain

references to variables and functions only in the form of symbolic names, then

replaced by a run time linker with the corresponding addresses. A ”pure” ap-

plication has always been considered too much expensive for a sensor platform,

both for the heavy processing time and the huge memory space required. The

dimension of an ”.elf” file, in fact, fluctuate in the vicinity of 200KB: a boul-

der, considering that the RAM and FLASH dimensions of a small node (e.g. a

TelosB) are about 10KB and 30KB, respectively. Only one, interesting experi-

ment has been registered in that way by some researchers of the Swedish Institute

of Computer Science [9], who have implemented an ELF dynamic linker for Con-

tikiOS (then ported to MontisOS). That arrangement, however, comes out com-

pletely unsuitable for small nodes (due to the discrepancy between the dimension

50

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

of an ELF-CELF file and a typical FLASH memory) and continues to represent

a bad compromise also for bigger nodes, inasmuch as pertains radio-transmission

costs. A ”functional-equivalent” approach, to the contrary, consists in simulating

the effects of a ”pure” dynamic linker using some technical expedients to reduce

power and resources consumption. Hereby we mean to produce an actual change

in the software configuration of a node, working in-host at a low level (i.e. relo-

cating symbols with physical addresses, etc.) and discharging the target system

from bearing the brunt of a tough computation and an heavy memory allocation.

Furthermore, in order to be considered a functional variant of dynamic linking,

a process must work on executable binaries and not on intermediate languages,

otherwise it would fall back in one of the previous categories. In the latest family

of dynamic linkers may be collocated some implementations fulfilling their work

with some arrangements that render such processes less autonomous but more effi-

cient than the ”pure” dynamic-linking ones: FlexCup for TinyOS, which requires

a system reboot after a modification, SOS reprogramming system (with Position

Independent Code) and Impala are the main examples of this way of operating.

2.10.1 The Contiki’s dynamic linker

In 2006, Dunkels et al. [43] from Swedish Institute of Computer Science have

proposed the first implementation of a dynamic linker for wireless sensor network,

running on top of ContikiOS.

This linker has been projected to link, relocate and load both ELF files and

CELF files, which are a compact version of ELFs, obtained by compressing the

data types from the original 32-bit to a 8-bit or 16-bit dimension, reducing the

file size by an half. The reprogramming process is based on the deployment of a

full ELF/CELF file towards the target nodes, which process it through their local

dynamic linker. ContikiOS is provided with a virtual filesystem, that substantially

ease file processing, since the dynamic linker can work on ELF/CELF without

taking care of the actual physical location.

The linking process is performed in four steps:

1. The ELF/CELF is parsed and information about code, data, symbol table

51

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

and relocation tables are extracted;

2. ROM and RAM are allocated respectively for code (plus read only data)

and data segments;

3. Code and data segments are linked and relocated on the basis of the in-

formation collected in the first step and the memory space allocated in the

second step;

4. Code and data segments are finally written in ROM and RAM, respectively.

It could be noticed that such a process is identical to a standard dynamic linking

for common PCs and workstations. The disadvantage of an ELF/CELF-based re-

programming is due to the huge size of that files (200KB in average for an ELF

and about 100KB for a CELF), that sometimes overwhelms the available memory

of a small node, e.g. TelosB. Another problem is related to the tough processing-

effort required to relocate these files, that for a small node comes out very expen-

sive in a power-consumption perspective. On the other hand, the advantages are

alluring, considering the possibility of working with a standard ELF format, also

used by common PCs as well as by powerful elaborators. To rise above the above-

quoted drawbacks, the authors have proposed an hybrid implementation, based on

dynamic linker and virtual machine cooperation to balance the overall workload.

This approach is quite an expensive one and results practically unsuitable in deal-

ing with small nodes. Maybe, in the proceeding of hardware’s development, it

could become a very attractive one.

2.10.2 FlexCup

FlexCup [59], i.e. FLExible Code UPdates, performs a local dynamic linking

on pre-compiled modules sent by an host station. It uses some meta-data, that

each node stores in external flash to enable the linking phase. These meta-data

consist of a symbol table, containing names and address of all global functions and

variables, some relocation tables, one per each component reporting the symbol

table entries called by that component, and generic program information, listing

52

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

the number and relative offsets of all binary components, as well as the addresses

of the symbol and relocation tables.

FlexCup has been proposed in two version, the first is called FlexCup Basic

and transfers the whole binary component and its meta-data without considering

the data already stored on the sensor node . The second, more efficient, is called

FlexCup Diff and only transfers the incremental changes between the new binary

component and the one already stored on the sensor node; this version needs the

host to know the current status of the target node.

The linking process could be conceptually divided in 5 phases:

1. Storage of code and metadata: this phase involves receiving the update data,

including code and the meta-data of the component, and storing it into ex-

ternal flash memory.

2. Symbol table merge: the global symbol table is combined with that of the

module just received through a merge-sort algorithm, thanks to the ascen-

dant sorting of the entries. This operation is accomplished in a 3KB buffer

area of the main memory, allowing fast and energy-efficient processing.

3. Relocation table replacement: since each component contains an individ-

ual relocation table, sent as part of the component update, this step only

involves copying the new relocation table to the appropriate location and,

if necessary, shifting the following tables backward by the right amount of

bytes.

4. Reference patching: it consists in going through the entries of the relocation

tables of all components, and checking whether any of the references needs

to be updated. An update is required for all references coming from the

new component code and for all references to symbols that changed their

destination address during the second step.

5. Installation and reboot: it consists in copying the program code from exter-

nal flash to program memory and reboots the sensor node afterwards.

53

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

The main advantages of FlexCup deal with the intrinsic scalability and flexi-

bility that a dynamic linker bestows on reprogramming issue. The FlexCup Diff,

moreover, substantially reduces radio transmissions but needs, as said, to main-

tain the host aligned with nodes’ statuses. On the other hand, the disadvantages

are not negligible, especially the energy consumption caused by a massive usage

of external memory, during linking and relocating operations. More, it doesn’t

face the problem of wear levelling in flash memory remains.

2.10.3 Others

Actually, no more dynamic linking approaches have been proposed for Wireless

Sensor Networks.

2.11 Comparison

Following (Table 2.1) we propose a comparison of the various reprogramming

approaches, based on their pros, cons and possible applications.

For what concerns the goal of minimizing the power consumption, the ap-

proach based on pre-linked modules is certainly the most advantageous: it presents

very interesting requirements in terms of memory usage and processor time and, at

the same time, delivers good performance for what bears on the reprogramming

effectiveness. There are, however,some disadvantages related to this approach

because of the need, on Host side, to store all the images of the nodes at compile-

time. That makes impossible, in consequence of even small changes in the config-

uration of a node at run-time, to link and relocate further modules for that node. A

possible way to preserve the benefits of pre-linked modules, while avoiding their

flaws, could be obtained by retrieving on-the-fly all the significant information rel-

ative to the actual addresses of the symbols to be relocated. This enables further

linking processes also for those nodes whose images have incurred in modifica-

tions at run time. In the following chapter we describe the solution that we have

conceived as an hybrid configuration combining the strong points by two of the

previous techniques: pre-linked loadable modules and dynamic linking. The idea

54

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

Approach Pros Cons Application e.g.

Image Replace-

ment
Low processing costs

Not scalable, not flexi-

ble, not incremental, high

transmission costs

Small networks

with few,

homogeneous

nodes

XNP, MNP,

MOAP, Deluge,

MantisOS,

NutOS, etc.

Diff-based
Low processing costs, Low trans-

mission costs

No multicast nor broadcast

updates, not scalable, no

heterogeneity support

Only academic

proposals

for small

homogeneous

networks

Koshy and

Pandey, Reijers

and Langendoen,

Jeong and Culler

Script-based

Fast programming, small scripts’

dimension, low transmission costs,

scalability, heterogeneity

Excessive memory

usage, excessive run-

ning overhead, high

power-consumption

Short-living net-

works with large,

powerful nodes

SensorWare,

COMiS, Spatial

Programming,

DeePython

Virtual Machines

Fast programming, small-sized

bytecode, low transmission costs,

scalability, heterogeneity

Excessive running over-

head

Short-living net-

works with large,

powerful nodes

Maté, SwissQM,

VM*, CVM,

Magnet OS JVM

Distributed

Databases

Query programming, small packets,

scalability, heterogeneity, process

integration, low processing costs

Frequent radio transmis-

sions, maintenance over-

heads

Large networks
TinyDB, Cougar,

SINA

Reprogramming

support network

WSN’s power saving, efficient re-

programming accesses
Maintenance overheads

Any kind of net-

works

Deployment Sup-

port Network

Agent based

Loacal data processing, easy to

maintain, intelligent interactions,

scalability, heterogeneity

Excessive memory usage,

excessive running over-

heads, high transmission

costs

Large networks

with large

powerful nodes

Agilla, Szumel et

al., etc.

Pre-linked mod-

ules

Small sized packets, low processing

costs, low transmission costs
Not scalable

Small-medium

networks

SOS,Impala,

Contiki,Bertha,

ScatterWeb

Dynamic linkers Scalability, easy to maintain
High processing costs,

high transmission costs

Large short-

living networks

Contiki DL, Flex-

Cup

Table 2.1: Synopsis of the various approaches

is to provide each node with a global symbol table, which can be downloaded

along with some additional information required for the linking and relocation

phases. Once such information have been acquired by the Host, it is possible to

process a standard executable format (ELF) and to create a ready-to-load module

for that node, which encompasses all the eventual changes previously occurred

on its image. A module so obtained is very small compared to the dimensions

of an ELF and it is also immediately loadable: the huge gain in byte-dimensions,

entailed by these modules, allows smaller radio transmissions as well as minimal

processing time, relieving the nodes of expensive accesses to the external Flash

memory. The Host, in fact, takes in charge both the linking and the relocation

55

CHAPTER 2. THE STATE OF ART IN WSN DYNAMIC
REPROGRAMMING

process, which are the most expensive operations in terms of processing time and

also require the heavy ELF files, which have to be transformed, to be stored in

local memory.

56

Chapter 3

Dynamic Linker

This method has been developed in the sphere of WASP European Project [2] and

targets the creation of a lightweight mechanism for dynamic linking, capable of

running on the TelosB motes, equipped with Mantis Operating System. In devel-

oping this system, many low-level aspects have been taken into account, from the

linux ELF functioning to the MantisOS specific structure and TelosB’s msp430

architecture features. Moreover, in order to build the effective implementation,

some open-source code of the not-suitable dynamic linker ported from Contiki to

MantisOS has been structurally modified.

Getting back to our proposal, it consists in a two macro-phases processes,

the first of which lays at Host-side and regards the linking and compacting of

an original ELF file into a WLF (Wasp Loadable Format) module. This module

contains only the strict information needed to execute the code on the node (WLF

reduce the byte dimension of the original ELF of about the 95%). The second

macro-phase deals with the loading of a WLF file into the node: it’s performed

thanks to a message-exchanging protocol between host and node. These macro-

phases could be subdivided in a set of four finer-grained phases, three of which

take place at host-side and lead to the creation of a WLF module from a standard

ELF, while the last phase enterily overlaps the second macro-phase.

On the node side, a server program has been developed with two main func-

tionalities:

57

CHAPTER 3. DYNAMIC LINKER

• transmit the Global Symbol Table from node to Host, if required;

• load a WLF from Host to Node.

This solution eliminates the need of loading an application at bootstrap time and

thanks to the server running on the node many application could be loaded and

unloaded, even at distance, during node lifetime without reprogramming its core.

3.1 Something about WASP Project

WASP project has been undertaken under the aegis of European Community by

some of the most important Enterprises and Universities, in order to neaten the

current status of WSNs’ Research.

This project aims to set a standardized paradigm for all the facets composing

”‘WSN landscape”’, from hardware to software design and implementation, with

the ultimate purpose to make effectively available these kinds of technologies for

commercial uses. WASP will be tested on the field, considering three principal

areas: managing traffic conditions, monitoring elder people health parameters and

controlling movements of livestock herds.

At the end of the job, three main objectives are expected to be reached: pro-

vide a global HW/SW framework to make WSN installations effective and eco-

nomically affordable, maximizing motes’ lifetime and defininig an high-level in-

frastructure to enable easy programming approaches for developers. The imple-

mentation of a specific mote and a dedicated operating system is foreseen in the

sphere of this project. Since in developing our dynamic linker, these feature had

not already been issued, we have based our work on two systems, supposed to be

similar: TelosB motes, for what concerns HW platform and Mantis OS for what

is related to the operating system layer. In sections 3.2 and 3.3 we propose a brief

introduction to these features.

In a broad quantitative analysis, the objectives of WASP could be synthesized

as:

58

CHAPTER 3. DYNAMIC LINKER

1. increase of one magnitude order the number of supported applications’

types, against the actual average value in WSN state of art;

2. raise to more than ten times the adaptability to different,concurrent applica-

tions;

3. reduce by a 30% factor the energy consumption of a running task in WASP

environment, under standard communication and routing parameters. More-

over, bound to a top of a 10% exceeding rate the eventual power-absorption

of large applications, once more compared to the actual available environ-

ments;

4. reduce by an 80% factor the code dimension for standard application exch-

nge;

5. reduce by a 70% share the time needed to dynamically optimize execution

at application level.

Many other problems have been faced in designing WASP infrastructure: the

communication protocol is one of those and a first draft has been taken out by

means of two different protocol stacks, working at different layers. Each proto-

col, for each layer, has demonstrated good performances in touching optimization

tasks and the choose of one rather than another has been delayed to additional tests

based on intra-protocol compatibility, application-purpose suitability and matu-

rity degree of the enterprise/university partner, which has proposed the specific

implementation. Another issue is related to the Hardware abstraction, in trying

to create a common interface, eventually sharable by different operating systems:

that’s consists in defining a general description of the functionalities provided by

a generic node, easily adaptable to specif platforms; by now, this work has been

done for what regards the use and management of low-level timers, inspecting the

graphs of Hardwares and reciprocal dependencies; other components are already

to be investigated.

The last, great challenge regards the creation of an Operating System abstrac-

tion: this work is actually in progress and is focusing on patterns-discovering

59

CHAPTER 3. DYNAMIC LINKER

among similar functionalities of different operating systems, such as blocking/non-

blocking function calls, but a suitable solution is far from being proposed. In addi-

tion to this research on patterns, three important capabilities have been identified

to become part of that operating system abstraction or an eventual WASP oper-

ating system: the need for a multi-threading architecture, a real-time support for

special-purpose applications and a non-functional manager, capable of switching

the operative mode of a node in dependence of power-consumption and residual

autonomy.

3.2 WASP hardware platform

TelosB [1] was developed by UC Berkely researchers attempting to create an ultra

low-power node, enforcing three main purposes: minimal power consumption,

ease of usage and software/hardware robustness. The mass production of this kind

of motes has been devolved upon Crossbow Corporation, which has also improved

some features and has focused on market targets related to experimentations and

projects by research community.

Figure 3.1: Detailed description of a TelosB mote

60

CHAPTER 3. DYNAMIC LINKER

The architecture itself has been developed looking at lab-studies’ critical fac-

tors, providing some useful features as USB programming capability, IEEE 802.15.4

radio with integrated antenna, low-power MCU with extended memory and an op-

tional sensor suite (TPR2420). The main characteristic of a TelosB are:

• IEEE 802.15.4/ZigBee compliant RF transceiver

• 2.4 to 2.4835 GHz, a globally compatible ISM band

• 250 kbps data rate

• Integrated onboard antenna

• 8 MHz TI MSP430 microcontroller with 10kB RAM

• Low current consumption

• 1MB external flash for data logging

• Programming and data collection via USB

• Optional sensor suite including integrated light, tem-

perature and humidity sensor (TPR2420)

Table 3.1: Specs of most diffused sensor nodes

As mentioned, this platform delivers low power consumption allowing for

long battery life as well as fast wakeup from sleep state. Some useful techni-

cal data concerning power consumption and compared to those of other devices

could be found in Figure 3.2; we have used some of these parameters to estimate

power consumption during our experiments:

This mote is powered by two AA batteries, but if it is plugged into the USB

port for programming or communication, power is provided from the host com-

puter, avoiding the need of batteries. Some additional devices are available, for

example, two expansion connectors and on-board jumpers may be configured to

control analog sensors, digital peripherals and LCD displays.Anyhow, none of

61

CHAPTER 3. DYNAMIC LINKER

Figure 3.2: Comparison between TeloB’s and other motes’ parameters.

these features has been used by us during our experiment.

Each Telos node could be customized with a wide range of special-purpose

sensors: typical applications include utility metering, portable instrumentation,

intelligent sensing, and consumer electronics. A detailed description of a Telos

mote could be find in Figure 3.1.

One more analysis is opportune for MSP430 microcontroller, since this is

the device whose specs have most conditioned our choices, regarding the low-

level features that our dynamic linker has had to take into account. MSP430 is

a microcontroller family by Texas Instrument, providing ultra-low-power, 16-bit

RISC mixed-signal processors and a specific layer for battery-powered measure-

ment applications. Getting to the core of the architecture (Figure 3.3), the 16-bit

RISC CPU, peripherals and flexible clock system are combined by using a von-

Neumann common memory address bus (MAB) and memory data bus (MDB).

Partnering a modern CPU with modular memory-mapped analog and digital pe-

ripherals, the MSP430 offers solutions for mixed-signal applications.

The key features of MSP430 microcontroller could be summarized in:

62

CHAPTER 3. DYNAMIC LINKER

Figure 3.3: MSP430 microcontroller architecture

1. Ultra-low-power architecture extends battery life:

• 0.1-A RAM retention

• 0.8-A real-time clock mode

• 250-A/MIPS active

2. Wide range of integrated intelligent peripherals offloads the CPU

3. Modern 16-bit RISC CPU enables new applications at a fraction of the code

size

4. Complete development tools starting at only $20

5. Devices starting at $0.49

One consideration must be outlined for what concerns MSP430 architectures in a

dynamic linking perspective: this CPU only supports 1 type of relocation, against

the 19 different types of an AVR architecture [43]. More, this platform does not

support Position Independent Code, which could eliminate the relocation step by

using symbolic references, but no a compiler is known to make MSP430 be fitted

to this purpose. The 16-bit nature of CPU ought to be treated with same care,

since common WSN applications are first written and compiled at Host level,

often by means of powerful 32-bit or 64-bit architectures. This means that all the

63

CHAPTER 3. DYNAMIC LINKER

address should be compacted to a 16-bit dimension before porting an application

from host to node, allowing code reduction, radio efficiency and memory saving

at node level.

3.3 MantisOS

Since a dynamic linking process needs support by the Operating System, we have

had to study in detail the structure and the main characteristics of MantisOS,

which is the target platform, in order to properly design our DL.

3.3.1 A brief introduction

MantisOS is a multi-threading embedded Operating System. It is designed to

provide energy efficiency and advanced sensor specific features: at present, MOS

kernel is able to achieve multi-threaded preemptive scheduler execution with stan-

dard I/O synchronization and a network protocol stack, all for less then 500 Bytes

of RAM, threads’ stacks excluded. The scheduler adopts a round-robin priority-

based policy, with a time slice of 10ms and 5 priority-levels (from high-to low:

kernel, sleep, high, normal, idle). MantisOS Kernel is written in C language,

hence kernel development can leverage the same skills used for an application

development. The choice of C-language’s APIs simplifies cross platform support

and the development of a multi-modal prototyping environment.

The multi-threaded nature of MantisOS provides a valid solution to the classic

bounded buffer (i.e. producer-consumer) problem, interleaving packets-processing

with executions of multiple long-living complex tasks [33]. Mantis also offers a

command shell, called MCS, which permits accesses from serial and radio inter-

faces.

3.3.2 General architecture

MantisOS consists of a kernel with an integrated scheduler, a command server

and a device driver system (Figure 3.4). The scheduler supports mutual exclusion

64

CHAPTER 3. DYNAMIC LINKER

Figure 3.4: Mantis architecture

(binary) and reference-counting semaphores. Further important components of

the Operating System are: a low-level communications stack for serial or radio

communication interface (which services the lower layers up to and including

the MAC layer) and a device abstraction layer, that provides uniform accesses to

devices of all sorts. We remind to [33] and Mantis website for further descriptions.

Mantis’ kernel is designed on the Unix model, with a round-robin priority

scheduler and a POSIX-like threads management. Since RAM is a critical re-

source, MantisOS logically divides the main memory into two sections: one for

the global variables (allocated at compile-time) and the other used as an heap.

The core aspect characterizing MOS system is its multi-threaded nature; when

a thread is created, the kernel opportunely allocates stack-space out of the heap.

Since memory is very limited, the heap allocation should be performed statically,

at compile-time, even though newer MOS versions implement a best-feet policy

in managing memory.

The main data structures are:

65

CHAPTER 3. DYNAMIC LINKER

• Threads table. This table is statically allocated, with a maximum number

of 12 concurrent threads and a fixed level of memory overhead. There is

a 10 bytes entry point for each thread, composed by the stack pointer (and

stack-size information),the pointer to thread’s function, the priority level

and a next-thread pointer. All pointers are 2 bytes sized. The overall size

of threads’ table is 120 bytes: 12 threads * 10 bytes (10 bytes is the entry

value of a single thread).

• Threads’ execution contexts. A thread execution context (along with cur-

rent register-values) must be stored when a thread is suspended. These in-

formation are used by the scheduler while alternating the execution among

threads.

• Priority queues. The kernel maintains two pointers for each of the five

priority levels: one pointer references the head, while the other points to

the tail of the list. These pointers permit fast and frequent manipulations

of priority lists (at input-disabled). The total size for this information is 20

bytes.

• Semaphores structures. Semaphores are represented by 5-bytes structures,

composed by a lock (or count byte) and two pointers referencing, respec-

tively, the head and the tail of the list. At any given time, a thread is member

of exactly one of the two possible lists: ready-list or semaphore-list. The

operations provided by Mantis’ semaphores essentially consist in moving

thread-pointers between these two lists, so that the scheduler can choose a

thread from ready-list [33].

• Other fields. The kernel also manages a current thread pointer of 2 bytes, an

interrupt status byte and 1 byte of flags. (* Adding all the bytes needed by

the previous data structures, results a TOTAL STATIC OVERHEAD of 144

bytes for the scheduler)

Interrupts are handled by Mantis scheduler and could be categorized in:

66

CHAPTER 3. DYNAMIC LINKER

1. Timer interrupts. These interrupts are directly managed by the kernel. They

are used to switch between threads, according to the round-robin policy. An

alternative method to trigger a thread-switch makes use of system calls or

semaphore operations.

2. Device-driver interrupts.A device interrupt posts one semaphore in order to

activate a waiting thread. This thread is responsible of handling the event

that caused the interrupt.

There are four types of threads:

• System level threads. There are two system level threads in Mantis: the

command-server thread and the network-stack thread. Both of them are

loaded at system boot.

• User level threads. These threads are managed according to the round-robin

priority policy. For each priority level is defined a list, so that lists with

higher priority dominate the ones with a lower level. Also sleeping jobs are

managed in a specific queue, called sleep queue.

• Driver threads. A driver-thread is activated when an interrupt is received

from the relative device. The task of a driver-thread consists of handling the

event which caused the interrupt.

• Idle thread. This is a low-priority thread, running when all other threads are

blocked and enforcing power-aware scheduling (by optimizing CPU uti-

lization and kernel parameters).It should be noticed, however, that moving

these functionalities directly into the kernel could lead to better energetic

performances.

3.3.3 How MantisOS supports dynamic reprogramming

By now, the dynamic reprogramming capability is implemented as a built-in sys-

tem call library [33]. A combination of system calls to this library, a commit

function and a boot loader enables the application to write a new system image.

67

CHAPTER 3. DYNAMIC LINKER

After Mantis’ boot-loader have installed a new image, a specific reset application

makes the changes to become effective.

This process has been designed to enable remote differential updates by means

of binary patches or alternatively an in loco full reprogramming by connecting

through serial port and shell functions; this in-loco reprogramming does not sat-

isfy the requirements for scalability in widespread networks. Regarding to remote

differential updates, the system status must be known at compile-time, for each

node, introducing heavy scalability constraints.

3.4 ELF: Executable and Linking Format

To better understand the linking process, it is necessary to briefly introduce the

structure of an ELF1, which is the file-format used by the dynamic linker to pro-

duce a smaller and ready-to-load module for a TelosB node, provided with Mantis

operating system.

As the name suggest, ELFs are modular files that contain, along with the ex-

ecutable, all the information needed by a Linker to resolve the symbolic names

of functions and variables with the actual addresses for a target platform. Tough

very flexible and powerful, an ELF is not adequate to be sent and linked directly

on a small node, because of its huge size (in average, from 20 KB to 200 KB).

From this comes the idea of relocating and linking the executable on the Host in

order to create a small loadable module for a specific target node, by means of

some meta-data (the Symbol Table) previously retrieved by the node itself. This

process is the core idea of our dynamic linker and will be presented in Section 3.5:

here we will just present the overall structure of an ELF file, with a special focus

on the ELF generated by the MSP-430 compiler for Mantis operating system.

An ELF is composed by an ELF header (Table3.2) and a certain number

of sections, each playing a different role in the linking process. The information

about these sections are contained in a specific section header (Table 3.3),

whose function is to provide information about the various sections composing

1A detailed description could be found in [60].

68

CHAPTER 3. DYNAMIC LINKER

#define EI_NIDENT 16

typedef struct {

unsigned char e_ident[EI_NIDENT]; identification bytes.

Elf32_Half e_type; file type.

Elf32_Half e_machine; target machine.

Elf32_Word e_version; file version.

Elf32_Addr e_entry; start address.

Elf32_Off e_phoff; offset of program header.

Elf32_Off e_shoff; offset of section header.

Elf32_Word e_flags; file flags.

Elf32_Half e_ehsize; size of this header.

Elf32_Half e_phentsize; size of program header.

Elf32_Half e_phnum; number of entries in program header.

Elf32_Half e_shentsize; size of section header.

Elf32_Half e_shnum; number of entries in section header.

Elf32_Half e_shstrndx; section header strings index.

} Elf32_Ehdr;

Table 3.2: Structure of the ELF header

the file2.

Some of these sections contain the executable to be linked. In particular, our

platform’s ELF presents four of such sections:

.text This section contains the executable and all the compiled functions: it is the

most important section of an ELF. The overall logic underneath the ELF

paradigm, in fact, had been studied to enable the relocation and the exe-

cution of this section, by resolving the symbolic names of variables and

functions with the actual addresses these variables or functions hold on a
2Linux ELF could be interpreted in two different ways: by means of sections or by means

of segments. Segments are groups of sections, which share the same attributes as regards their

memory destination. The information about segments are contained in a program header. Both

segments and program header are commonly used in Linux ELF, but are not present in those ded-

icated to MSP-430/MantisOS platforms, which require a section-based linking process, because

of the need for absolute address resolution.

69

CHAPTER 3. DYNAMIC LINKER

typedef struct {

Elf32_Word sh_name; index of the .shstrtab storing the name of this section.

Elf32_Word sh_type; section’s contents and semantics.

Elf32_Word sh_flags; flags that describe miscellaneous attributes.

ELf32_Addr sh_addr; address at which the section’s first byte should reside.

Elf32_Off sh_offset; offset from the beginning of the ELF to this section.

Elf32_Word sh_size; section’s size in bytes.

Elf32_Word sh_link; section header table index link.

Elf32_Word sh_info; extra information.

Elf32_Word sh_addralign; address alignment constraint, if needed.

Elf32_Word sh_entsize; size in bytes of each entry, for fixed-size sections.

}Elf32_Shdr;

Table 3.3: Structure of section header

specific machine. Once linked and relocated, this section has to be loaded

in the FLASH memory of a mote.

.rodata In this section are stored the read-only constants, such as strings or con-

stant variables. Sometimes, the ELFs generated by some MSP-430 com-

pilers don’t include this section, because of constant strings and variables

are stored directly into .text. As the previous, also this section has to be

loaded in FLASH memory.

.data This section contains both global and static variables which are initialized

and modifiable. It has to be loaded in the RAM of a mote.

.bss This is an empty-section, whose only significant parameter is its size. It rep-

resents the amount of blank memory-space needed for storing non-initialized

variables and data. The par of the RAM destined to store the .bss is zero-

initialized when the program is loaded.

Some other sections contain auxiliary information used by the linker to perform its

relocations. A standard Linux ELF holds a lot of support sections, but in dealing

with our platform only a small set of them are actually used:

70

CHAPTER 3. DYNAMIC LINKER

.rela.text, .rela.rodata, .rela.data These are the relocation sections for the three

core sections above described (Table 3.4). The name ”‘rela”’ stands for

”‘relocation absolute”’, because of our platform uses absolute addresses and

does not hold a memory management unit supporting a virtual address space

(standard Linux ELF has ”‘rel”’ sections, i.e. relocation sections for virtual

address spaces).

typedef struct {

Elf32_Addr r_offset; offset in the relative section of the entry to be relocated.

Elf32_Word r_info; symbol table’s reference and type for the relocation.

ELf32_Sword r_addend; constant addend to be added to the relocated field.

}Elf32_Rela;

Table 3.4: Structure of relas entries

.strtab This section stores the names (strings) of the symbols contained in the

symbol table.

.shstrtab This section contains the names (strings) of the other sections and is

used to resolve the entries of the section header.

.symtab This section contains the names and relative addresses of all static func-

tions and static variables (Table 3.5). It is the internal symbol table, so the

references points to objects contained in the ELF itself. To resolve refer-

ences to non-static functions and variables another symbol table is used:

the global symbol table. The global symbol table resides in the operating

system and collects all the couple <name, address> of global variables

and functions belonging to OS libraries, shared libraries etc.

This brief synopsis of the ELF’s general structure provides the basic informa-

tion for understanding the linking process following described. It is worth noting

that an ELF has indeed a very complex structure, if studied in its whole paradigm;

we remind to [60] and [61] for further insights.

71

CHAPTER 3. DYNAMIC LINKER

typedef struct {

Elf32_Word st_name; offset in the .strtab of the relative symbol name.

Elf32_Addr st_value; actual address of the symbol

ELf32_Word st_size; symbol size.

unsigned char st_info; symbol type and binding.

unsigned char st_other; symbol visibility.

ELf32_Section st_shndx; section index.

}Elf32_Sym;

Table 3.5: Structure of symbol table entries

3.5 Project and Implementation

The creation of a small loadable module from an original ELF is the idea underlay-

ing the development of a dynamic linking and loading mechanism for a resource-

constrained environment. An ELF file, in fact, is much larger –on average– than

the available memory on a TelosB. To this purpose we have conceived a compact

format, called WLF (WASP Loadable Format), which just contains the relocated

executable to be loaded on a node, along with the essential information to parse

and extract the various executable sections.

The way through which the linking and relocation process has been made

dynamic, consists in downloading the Global Symbol Table from a node and to

perform an in-Host relocation of a source ELF according to the actual addresses

reported in this symbol table, which contains the symbol names and the pointer to

the actual addresses of these symbols in the node’s image. This fact, along with

the use of absolute address in Mantis TelosB environment, gave us the chance to

link the executable directly on the Host, in a first phase, and load it on nodes at

an arbitrary later moment, by means of small, ready-to-load WLF modules. The

above mentioned issues, along with other considerations that have driven to the

definition of our model, are following summarized:

1. An ELF is composed by a lot of tables and sections. Most of these sections

are not useful in terms of execution code , but they have sense only in the

relocation process. Several tables, furthermore, are completely unused, also

72

CHAPTER 3. DYNAMIC LINKER

while relocating the code; stripping the ELF file from all the useless sections

in order to obtain a compact loadable format has been the first target of the

project;

2. To relocate the code of an ELF file, the nodes’ Global Symbol Tables are

necessary. This tables contain all symbols (names of variables and functions

) of the system, associated to their addresses. In the case of MantisOS,

mounted on TelosB platform, the addresses are absolute and don’t change

during the node lifetime; once proved the invariance of absolute addresses in

time, we have developed the idea of downloading the Global symbol table

from node to PC and to use it’s addresses to resolve symbols an relocate

code in Host. The possibility of performing the linking phase on the Host-

side has represented the main breakthrough of generating a small ready-to-

load format, called WLF;

3. There are some cases in which is not necessary to relocate the code us-

ing local and global symbols. These cases are related mainly with pro-

grams that don’t use any global variables or any system functions. For these

simple programs, it suffices to extrapolate from an ELF only the .text,

.rodata, .data and .bss sections, without relocating them;

4. At a node level, the prospective changes from linking to loading phase.

The pre-linked binary contained in WLF is sent from host to node. The

server program, running on node, receives the code and store .text and

.rodata segments in FLASH ROM, while .data and .bss are allo-

cated in RAM.

3.5.1 Retrieving global symbol table from node

The fundamental premise as well as the core feature making the linking process

”‘dynamic”’ bears on the idea of providing the operating system on the node with

a global symbol table. Each entry of the symbol table contains the names of

the various symbols –functions and variables– along with the absolute address of

73

CHAPTER 3. DYNAMIC LINKER

these objects in the node’s image (Table 3.6). The whole symbol table is config-

ured as an array of these entries, containing all the functions and global variables

of the system, and is initialized when the OS’ image is firstly loaded on a node.

typedef struct {

const char* name;

const char* value;

}symbol;

Table 3.6: Structure of Nodes’ symbol table entries

The symbol table resides on the node and is downloaded by the Host when a

new program must be linked and relocated in a small module, to be loaded on that

node. To assure this functionalities the nodes have been provided with a loading

server, a branch of which implements the protocol to send the symbol table to the

requiring host. The host, on the other side, has been developed with a method

symTabGetter, that communicates to the node the intention of retrieving sym-

bol table and initializes the connection to download it. To do this job, a specific

application-level protocol has been configured (Figure 3.5).

Figure 3.5: Retrieving the symbol table from a node

74

CHAPTER 3. DYNAMIC LINKER

3.5.2 ELF stripping

The implementation choice has been to strip the ELF file from all the sections that

don’t contribute to the executable. Only the relevant sections have been consid-

ered, and in particular the .text, .rodata, .data and .bss sections. Along

with these four core sections, also the .rela.* sections, the local symbol table

.symtab and the string table .strtab are extracted. This process is reported

in Figure3.6.

Figure 3.6: ELF parsing and sections extraction

For the first three sections, the relocation of addresses has been projected to be

performed on host-side, once the global symbol table has been downloaded from

node. The .bss segment is empty and represents the space that must be allocated

on target system in order to contain the non-static, zero-inizialized variables.

75

CHAPTER 3. DYNAMIC LINKER

3.5.3 Full and simplified linking processes

The complete linking process takes as input the sections retrieved through the

previous stripping process, along with the global symbol table downloaded from

the node as described in Section3.5.1.

With all this information, the linking and relocation phases are executed and

all the undefined references are resolved and updated. This process is described

in Figure 3.7.

The relocated sections are then stored in a small ready-to-load WLF module.

Figure 3.7: Linking and relocation

76

CHAPTER 3. DYNAMIC LINKER

The WLF header (Table 3.7) accomplishes two important functions:

• Store the section-size information, that will be used to correctly parse these

sections from the WLF module. Once known the sections starting points,

i.e. the end of WLF header (which has a fixed 11 bytes size), and their sizes,

the executable sections can be easily loaded in FLASH and RAM;

• while loading, the size information are transmitted to the node, which will

provide to allocate the correct amount of memory space for each segment.

The strong size reduction characterizing a WLF as regards the original ELF

offers the possibility to load at run-time any WLF module with a very small

amount of required energy both for radio transmissions and processing time.

The overall process is summarized in Figure 3.8.

For simple programs, that don’t call any system function or global variable, the

relocation of symbols is not necessary. So a ”light linking ” mechanism has been

implemented on a simplified variant of the schema described above. The main

difference lies on the fact that ”light linking” procedure doesn’t perform any relo-

cation action, but simply extract the four relevant segments (.text, .rodata,

.data and .bss) from original ELF and put them ”brute force” into the WLF

file (Figure 3.9).

typedef unsigned int wlf_off;

typedef unsigned int wlf_size;

typedef struct {

char wlf_id[3];

wlf_size text_size;

wlf_size rodata_size;

wlf_size data_size;

wlf_size bss_size;

}wlf_header;

Table 3.7: WLF header

77

CHAPTER 3. DYNAMIC LINKER

3.5.4 Load WLF on the node

To load the WLF binary on the node, we have provided the node’s server with a

function that retrieve the information about segments from the host, then allocate

the correspondent space on RAM and ROM and finally receive the segments and

store them. In enabling this mechanism, we have developed a dedicated applica-

tion level protocol whose flow is shown in Figure 3.10.

3.5.5 Design choices

During the project, many problems raised, most of them related to the scarce

support offered by the operating system and to the lack of documentation.

• Programming language choice: in developing the host-side application, we

faced a trade off between the will of building a graphical user interface and

working in a comfortable programming environment. The first idea has

been to use Java and its graphical libraries. This path has been abandoned

because Java doesn’t support unsigned types. After a deep analysis, the

choose is fallen on C++ language and its QT4 libraries, which though a

more complex framework, offers the possibility of using unsigned types,

Figure 3.8: From ELF to WLF file format

78

CHAPTER 3. DYNAMIC LINKER

Figure 3.9: Schema of the light linking process

that well perform in dealing with absolute addresses.

• Software integration: the way that have brought us to the implementation

of a common GUI for both the linking/loading mechanism and the Mantis

toolchain has presented a problem related to software fragmentation. The

Mantis toolchain, in fact, is constituted by code written in different pro-

gramming languages. The bootstrap loader is a Python application, while

all the others functionalities are C programs. To integrate the C++ GUI

with the Python bootstrap loader, we have conceived a solution based on a

smart use of linux system call, QT4 interfaces and linux pipe mechanism,

to redirect output from the ”standard output” to the GUI’spanel:

1. the bsl.py (bootstrap loader) application is called through the system

call, activated when a specific button is pushed in GUI panel;

2. the bsl.py does its jobs and print the results on standard output, oppor-

tunely redirected to a ”bridge file” placed in the dynamic linker Binary

folder;

3. through QT4 interfaces the content of bridge file is read and printed

into the GUI’s panel, in a totally transparent way.

79

CHAPTER 3. DYNAMIC LINKER

Host Tx/Rx Node

Begin

Send message wlf → Receive

Receive ← Send ack wlf

Send textsize → Receive

Receive ← Send .text base address

Send rodatasize → Receive

Receive ← Send .rodata base address

Send datasize → Receive

Allocate RAM

Receive ← Send .data base address

Send bsssize → Receive

Allocate RAM

Clear RAM

Receive ← Send .bss base address

Send .text → Receive

Copy to Flash

Receive ← Send ack

Send .rodata → Receive

Copy to Flash

Receive ← Send ack

Send .data → Receive

Copy to RAM

Receive ← Send ack

End

Figure 3.10: WLF transmission and loading process.

80

CHAPTER 3. DYNAMIC LINKER

• Software version management: Mantis presents a very fragmented folder

tree and both sources and binary are now hard to manage. To simplify and

clarify the project process on Mantis environment an SVN version for the

project has been created as well as a group under GOOGLE CODE domain.

3.5.6 Architecture diagrams

Figure 3.11 and Figure 3.12 show, respectively, the class diagram of the in-host

linker and the structure of the in-node server-process.

It is worth noting that the host application is devoted to retrieve the global

symbol table from the node, perform the relocation and linking actions and create

WLF modules. Along with these functionalities, the host maintains a repository

of the symbol tables downloaded from the nodes. It has been observed, in fact,

that the entries of the global symbol table don’t encounter significant variations

for application neighboring in time. So there is no need for a new symbol table

download if further applications must be linked for a node, whose symbol table

has been recently downloaded. Moreover, in storing the various symbol tables, it

Figure 3.11: Class diagram of the WASP dynamic linker - host side

81

CHAPTER 3. DYNAMIC LINKER

Figure 3.12: Architecture of the server process on a node - node side

is possible to implement a diff-based uploading which only register the variations

without requiring the retrieval of the whole table. These optimization are actually

being investigated and further details are reported in Section 5.2.1.

3.6 Graphical User Interface

The application is composed of three panels and a common display for reading

the output of each operation. The three screens regards respectively: the linker

functionality, the WLF loader and the Mantis toolchain.

3.6.1 Linking Functionalities (Figure3.13)

• Feature 1: shared screen on which is shown the output of each operation.

• Feature 2: here are offered the functionalities to choose an ELF file and the

destination name of the WLF, that will be created after the linker starts.

82

CHAPTER 3. DYNAMIC LINKER

Figure 3.13: Panel of the G.U.I. application for the linking functionalities

• Feature 3: if a full linking is going to be performed, the user must select a

symbol table using the relative file browser. The default start folder of this

file browser is symbol table database. If the symbol table for the node is not

already been downloaded, the user must download it from the node specify-

ing a name for the destination ”.sytab” file and then pushing the button with

the down oriented arrow.

• Feature 4: button that perform a full linking (a symbol table must be se-

lected). The resulting WLF is stored in WLF database.

• Feature 5: button that perform a light linking (no symbol table is needed).The

resulting WLF is stored in WLF database.

REMARK: all the actions are guided by messages in global screen, if wrong.

83

CHAPTER 3. DYNAMIC LINKER

3.6.2 WLF loader (Figure3.14)

Figure 3.14: The WLF loader panel

• File browser: using the file browser, the user can select a WLF to load into

node. The default starting folder is WLF database.

• Load WLF button: if pushed, initializes the dialog with node and load a

WLF. This functionality is still in developing (because of Mantis flash prob-

lems) and is object of work by Luigi Rucco and Simone Corbetta.

• Load WLF and unload the previous one button: this functionality is for

future use, it’s predisposed but not yet implemented because of the lack of

a Flash manager.

REMARK: all the actions are guided by messages in global screen, if wrong.

84

CHAPTER 3. DYNAMIC LINKER

3.6.3 Mantis’ Toolchain (Figure3.15)

Figure 3.15: The Mantis Toolchain panel

• Erase flash: this button, if pushed, invokes the ”Mantis’ bootstrap-loader”

function that completely erase the Telosb flash. The output of the opera-

tion, such as all the other operations’ output is reported in the global screen

window on the top of the GUI.

• Reset telosb: this button executes the ”Mantis’ bootstrap-loader” reset of

the node. This operation does not change the memory state of the node, so

the Global symbol table remains the same.

• Clear and load: before launching this function is necessary to select an

ELF file, by means of the file browser placed above. Once selected an

ELF, this command launches the ”Mantis’ bootstrap-loader” erase-and-load

85

CHAPTER 3. DYNAMIC LINKER

functionality. This operation in a first moment erases the telosb flash and

then loads the executable contained into the ELF. Because of a new program

will be loaded in a completely erased memory, this operation will change

the global symbol table, also if the same ELF is loaded again.

• Load: it performs as the previous command, with the exception that the

memory is assumed to be cleared by a previous ”Erase flash” invocation. A

previous ELF selection is needed.

REMARK: all the actions are guided by messages in global screen, if
wrong.

3.7 Evaluation of the Linker/Loader

Following we report the results obtained during the experiments, logically divided

according to the two macro-phases: the first performed at host level that targets

the creation of a WLF loadable format starting from a source ELF file. The fore-

most gain obtained downstream this macro-phase is the strong reduction in the

size of the module to be transmitted and the related benefits in terms of radio

transmissions and memory requirements (Section 3.7.1).

The second macro-phase is processed at node level and embodies the oper-

ations needed for loading the WLF module appositely created by the host. The

achievements in this subsequent step consist of a strong optimization of the en-

ergy required to accomplish the loading phase, thanks to the small byte-size of the

modules and their just-relocated code, which doesn’t need any further relocation

(Section 3.7.2).

3.7.1 Size reduction

The first macro-phase (composed by three sub-phases described in Sections 3.5.1,

3.5.2 and 3.5.3) of the proposed technique leads to the creation of the WLF format.

The benchmark for assessing the effectiveness of the implemented toolchain is the

reduction obtained on the size of the loadable format from the original ELF. In

86

CHAPTER 3. DYNAMIC LINKER

performing this analysis we assume all the necessary information (symbol table,

base addresses, etc.) already being retrieved.

The remote linker, operating on the host, takes in input the ELF file, the node’s

global symbol table, the base address in the RAM memory (for the relocation of

the .data section) and the base address in the Flash memory (for the relocation

of the .rodata and .text sections), performs both linking and relocation ac-

tions and finally generates a WLF module, ready to be loaded on the destination

node.

We have tested this process on eight different ELF files, in order to produce

the relative WLF modules. Those ELFs are characterized by different parame-

ters for what concerns lines of code, which range floats from 15 CL to 400 CL,

and number of libraries.Results by these instances have been reported in Table 3.8

and, as could be noticed, the size reduction oscillates from a minimum of 86%

to a maximum of 99%, with an average value of 96.06%. These differences are

caused by differences in the magnitude of .data and .rodata sections of dif-

ferent ELFs, but the overall ratio of compression remains extremely promising

and shows a value of about 1:25.

The fluctuation entailed by the dimension of the .rodata section comes out

remarkably in the second of the functions used for the benchmark in Table 3.8: the

printf() refers to a particular variant of the common C-Language printf(),

suited for the MantisOS environment in order to transmit by radio a certain amount

of data toward the host in the form of strings. In the considered example the

85% of the overall byte-size, i.e. 2300 bytes, are expressly dedicated to store the

constant strings in section .rodata, whereas only 400 bytes are dedicated for

storing machine code.

3.7.2 Performance

The second macro-phase (composed by a unique great phase described in Sec-

tion 3.5.4)of the procedure consists of transmitting the WLF module to the node

and loading sectiorn .text and .rodata in flash and .data in main mem-

ory, where it is also allocated blank space for the correspondent dimension of the

87

CHAPTER 3. DYNAMIC LINKER

Size ELF WLF
Benchmark (LoC) (bytes) (bytes) Compression

blink 49 17216 132 99.23%

printf 76 20408 2742 86.56%

flash 122 20484 646 96.85%

leds 50 17063 322 98.11%

usb 68 19432 284 98.54%

crc 59 3436 140 95.93%

queue 109 17204 330 98.08%

tree 425 24900 1206 95.16%

Average 96.06%

Table 3.8: Size reduction from ELF to WLF.

.bss section. As advanced in the introduction to Section 3.7 this macro-phase

determines the core performances of the network’s nodes in terms of energy con-

sumption, so the analysis will be deepened to estimate with the highest degree of

accuracy the relative results.

To make the energy consumption assessment as precise as possible we have

based on the most complete energy-characterization already available for TelosB

nodes, which have been used during the experiments. This characterization has

been formulated in a research from Berkeley University [1] and is reported in

Table 3.9.

These measures have been acquired through high-precision oscilloscopes, pro-

vided by the Intel Lab (Berkeley) and present the values of current absorption cal-

culated at 1.8V power supply: starting form these values, the energy consumption

has been obtained by measuring the time intervals of the different stages through

which a node passes while loading the various WLF modules used as benchmark.

Let’s call E the total energy consumption for this phase, then it could be log-

ically regarded as a composition of two contributions: Ec as the energy required

for radio communications and Ep as the energy absorbed by the microcontroller

for supporting radio operations, allocating memory and storing the various sec-

88

CHAPTER 3. DYNAMIC LINKER

Node state Current Symbol

Standby (RTC on) 5.1 µA

MCU Idle (DCO on) 54.5 µA

MCU Active 1.8 mA IµC

Radio RX 20.0 mA Irx

Radio TX (0dBm) 17.7 mA Itx

Flash Read 2.3 mA

Flash Write 13.3 mA

Table 3.9: TelosB energy characterization [1]

tions of a WLF in the relative allotted spaces.The following equations state the

way in which these two energy contributions have been determined:

Ec =

[
Prx · Sp
B

· Irx +
Ptx · Sp
B

· Itx
]
· Vdd (3.1)

Ep = Np · Tck · IµC · Vdd (3.2)

where Prx and Ptx are the number of packets to be transmitted and received, Sp
represents the byte-size of a single packet, B is the bandwidth associated to the

radio transceiver, Vdd is the power supply (1.8V),Np is the number of clock cycles

associated to both copying and cleaning memory actions, Tck (precisely 125ns) is

the period for a complete clock cycle of the microcontroller and Irx, Itx and IµC
the three average values of current absorption as follows from Table 3.9.

As it has been formulated, this model constitutes the core bearing for estimat-

ing the energy actually absorbed by a node for loading a benchmarked set of WLF

modules, expressly selected according to their meaningfulness among a broader

repository used for the experiments. The detailed results for a representative mod-

ule in the sample-set can be found in Table 3.10, where each sub-phase involved

in the loading protocol (see Figure 3.10) is associated to the relative energy con-

sumption cost. Along with these energy costs, there is another fundamental contri-

bution that must be considered upstream, that is the energy required for retrieving

the symbol table from the node before generating the WLF itself. The size of the

symbol table used for the test-set amounts to 4400 bytes and approximately re-

89

CHAPTER 3. DYNAMIC LINKER

Phase M P Ec(µJ) Ep(µJ) E(µJ)

Receive WLF 3 2 220.2 21.0 241.2

Receive sizes 8 8 881.2 84.0 964.8

Allocate RAM for bss1 59 0.0 0.0 0.0

Clear RAM for bss 59 0.0 0.1 0.1

Receive .text 1503 25 2906.6 262.8 3169.4

Copy .text to Flash 1503 0.0 8.5 8.5

Receive .rodata 0 1 103.4 10.5 113.9

Copy .rodata to Flash 0 0.0 0.0 0.0

Receive .data 102 3 337.0 31.5 368.5

Copy .data to RAM 102 0.0 0.5 0.5

Total 4866.9

1 This contribution is hard to determine due to the short time taken to complete. Its energy is thus negligible.

Table 3.10: WLF link & load protocol energy characterization.

quires 8.9mJ to be retrieved, according to the present implementation of the node

server, which transmits the entire symbol table in a continuous stream of bytes,

using packets of 64 bytes. Clearly, this symbol table should be retrieved only once

for experiments brought closer in time, storing its copy locally to the Host. Pos-

sible optimizations to avoid retrieving the whole symbol table, synchronizing the

local copy with the variations occurred on the nodes at run-time, are presented in

Section 5.2.1.

The experiments have been iterated according to the schema presented in Ta-

ble 3.10 for each module belonging to the sample-set, whose aggregate values are

reported in Table 3.11. In this table are listed the values Ec and Ep referencing

the respective contributions for radio transmissions and microprocessor effort. It’s

worthy to notice the presence of a constant factor affecting the Ec terms, because

of protocol overheads mainly related to the exchange of acknowledgment packets

between node and host.This constant factor amounts to 640.6 µJ and is equal for

all the benchmarked modules.

In deeply analyzing the results obtained on the overall sample, it could be

90

CHAPTER 3. DYNAMIC LINKER

Benchmark Ec(µJ) Ep(µJ) E(µJ)

blink 1267.2 0.544 1267.7

printf 4937.4 13.229 4950.6

flash 1983.3 3.159 1986.5

leds 1535.7 1.468 1537.2

usb 1535.7 1.286 1537.0

crc 1267.2 0.583 1267.8

queue 1535.7 1.507 1537.2

tree 2789.0 5.764 2794.7

Table 3.11: Energy consumption for dynamic linking.

Figure 3.16: Energy consumption as a function of WLF size.

91

CHAPTER 3. DYNAMIC LINKER

noticed a certain regularity among results, entailed by the very limited amount of

energy consumed in microcontroller operations and the structure of Equation (3.1)

and (3.2): let’s now apply a linear regression to the results in Table 3.11, such that:

E = 1.411 · Swlf + 1081.5 (3.3)

where Swlf , expressed in bytes, is the size of the WLF and both the total energy

and its two components are expressed in µJ. This equation provides a simplified

view of the model, which demonstrates a great adherence to the results obtained

through the detailed analysis above reported.

The trend pointed out after the analysis of results by Equation (3.3) is shown

in Figure 3.16: it could be observed the high level of accuracy provided by this

coarse-grained abstraction by comparing its results with those shown in Table 3.11

and the relative sizes reported in Table 3.8.

3.8 Some considerations

The work we have done has required a great effort in studying the dynamic repro-

gramming issue and conceiving a suitable solution.Many topics have been consid-

ered, starting from the linking processes to the ELF structure and optimizations.

In this period many solutions have been tested, such as system call and basic

loading mechanisms, but at the end the more complete and potentially improvable

system has been chosen. The dynamic linking in a resource-constrained environ-

ment has always been considered as an heavy solution, because of the large byte

dimension of ELF files. Our propose represent the very first light approach to the

dynamic reprogramming by means of small pre-linked loadable modules. This is

an innovative approach that promises scalability and flexibility in sensor network

dynamic reprogramming, along with a broad variety of loadable applications and

common Linux developing environment.

Following we present some possible improvements and optimizations that are

foreseen to be applied at the present version.

92

Chapter 4

A Genetic Model for functional
allocation and lifetime maximization

Leafing through the literature regarding Wireless Sensor Networks’ performances,

most of the effort could be found on the assessment and improvement of network-

ing capabilities, which have been ever considered preeminent both for the overall

efficiency and the power-consumption retaining of the network. This was rightly

considered as the main priority during an early stage of this Technology, since

the architectural design was far to be settled in adequate paradigms, capable of

providing good coverage as well as safe transmissions.

Nowadays WSNs have reached a quite good degree of maturity and many

studies for defining actual applications of this technology both for civil and mili-

tary purposes have recently been undertaken by the foremost academic institutions

all around the world. That has caused not only the networking and hardware but

also the applicative domain to arise as a fundamental field with which researchers

have to confront their work and their investigations. The reference system, that

delineates both goals and methods, orbits the Power-consumption issue and all

the possible solutions allowing its reduction, while preserving functional effec-

tiveness.

In this new phase, it seems perfectly clear that a WSN turns out to be useful

for a certain task not only if it is energy-efficient enough, but also if it is able

93

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

to preserve its energy efficiency while accomplishing a well-defined applicative

workload, for which that network has actually been deployed. Thus, the focus is

now broadening to encompass also applicative aspects and particularly the pos-

sibility of providing the nodes with all the functions needed for monitoring the

target phenomena, preserving, at the same time, as much power as possible to

enforce a longer lifetime. This topic leads to a trade-off between the need for

functional completeness and effectiveness on one hand and memory, energy and

lifetime constraints on the other.

The importance of providing a Wireless Sensor Network with a mechanism for

dynamic reprogramming its nodes is obvious as regards the possibility of propa-

gating updates, fixing bugs and adding new functionalities without withdrawing

the nodes from their displacements. That turns out particularly evident when the

network is composed by a huge number of nodes. Moreover, among the vari-

ous reprogramming mechanisms, the advantages offered by approaches like a dy-

namic linker or a pre-linked based technique overtake all the others because they

don’t require to refresh the entire image of the nodes, with consequent gain in

terms of radio transmissions (it is not necessary to forward an heavy new image)

and status maintenance.

These characteristics have ever been outlined as essential in literature (see Ta-

ble 1.2) and the conceptual framework here presented has been expressly designed

to give to this assumption a concrete verification, working on resource-constrained

environments. Moreover, this model aims to provide the designers with a powerful

tool for configuring and optimizing the Functional Domain of a network, organiz-

ing and balancing the workload on nodes in terms of allocated functions, in order

to maximize the lifetime and overcome memory boundaries, while preserving the

completeness and an opportune redundancy of the function-set.

Though the model has been conceived general enough to cover the topic of

the Dynamic Reprogramming in its whole nature, i.e. regardless of the spe-

cific dynamic reprogramming approach, the experiments has been focused on the

dynamic-linker we have created, whose costs, in terms of power requirement, have

been utilized for the model test-set described in Section 4.4.

94

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

The level of abstraction has been set such that both the topological and func-

tional facets of a WSN are actually encompassed in the analysis. The functional

view has been designed on the notion of task, i.e. a set of functions that must be

executed to control a given phenomenon. These functions could be either stati-

cally or dynamically assigned to the nodes and the aim is to pursue an optimal

allocation of these functions for maximizing the overall lifetime of the network.

The topological view, on the other hand, draws on the concept of network-

clustering, at the base of the well known coverage problem. The constraints, as

well as the fitness function, have been designed as continue functions, in order to

take advantage of the peculiarities of the Genetic Algorithm (GA).

Results obtained running the GA on the model demonstrate great accuracy

and point out a promising perspective for a systemic adoption of this technique in

configuring efficient WSNs’applicative domains.

4.1 Related Work

Models to define and eventually optimize the functional configuration of a net-

work come as a natural consequence of the advancement in WSNs studies. Ac-

tually, models such the one here proposed are a cutting-edge novelty in a context

sill oriented toward networking concerns, but, in all likelihood, they are destined

to get a great foothold as far as WSN applications will creep in to real business.

A slightly comparable, though very different in substance, effort has been

spent in building simulation tools, most of them designed to provide support in

estimating:

a) specific Operating System performances (e.g. [62, 63]);

b) protocol-level behaviors (e.g. [64–66]);

c) instruction-level/clock-dependent interactions (e.g. [67, 68]);

d) fault-sensitive software testing (e.g. [69]);

e) power-consumption (e.g. [70, 71];

95

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

f) mixed applicative and physical layers evolution (e.g. [72, 73]).

In addition to those reported, many other simulation tools actually exist for

WSN specific environments, even though no multi-domain models have already

been proposed [74];some experiments in this direction have been undertaken in

trying to combine different simulators in a common platform to concur at a final

multi-layered comparison [75].

As countered, simulators differ from our model both in scope and purposes: a

simulation tool, in fact, is designed to provide a coherent representation of the evo-

lution of a system, given some parameters to be monitored. On opposite, our goal

is to create an abstraction of the network applicative domain, in order to perform a

global optimization of the SW configuration. This configuration should maximize

the lifetime and preserve both functional and non-functional requirements.

The only point of contact between these two approaches is the need for a

model that describes not only the HW and networking features, but also the func-

tional aspects of a WSN. In that perspective, simulation tools come about to be

used in a consequent verification step, to be accomplished after our model-based

optimization to validate its results.

A similar consideration could be stated about the Genetic Approach: in lit-

erature could be found some examples of genetic algorithms fitted for tackling

the problem of area-coverage and clustering (e.g. [76–79]), but, as the definition

suggests, these problems only target the network layer of a WSN. In these works

only the topology and the radio efficiency are taken into account, while none of

the applicative facets is covered. Once again, these variants of the genetic algo-

rithm are not comparable with our model, but they are complementary indeed. In

fact, the coverage analysis of the network places up-stream as regards our model,

which takes as an input-parameter the clusters identified in this phase.

After this outlook on the neighboring work, it is possible to draw some conclu-

sions about the relations between a model like the one of ours and those other two

families of abstraction. The simulation tools, which are similar to our approach

for the need of a complete characterization of both functional and non-functional

aspects, differ in the objectives and place in a down-streaming phase. The above-

96

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

quoted clustering algorithms are similar for what bears on the methodology, i.e.

the genetic approach, but substantially diverge in the nature of the problem and

place in an up-streaming phase. Our work lays amid these two areas, in a class

of problems quite new for the WSN topics and typical of a maturing field, which

focus is now broadening to include, along with classical low-level issues, also the

need for an high-level optimization.

4.2 Model

As countered in previous section, the model aims at accurately reproducing the

structural characteristics of a Wireless Sensor Network both at hardware and soft-

ware levels. The target is to find the software configuration, as a mix of statically

and dynamically allocated functions, that maximize the lifetime of the network

while satisfying memory constraints and functional completeness.

4.2.1 Premises

The model takes in input the results of some activities of basic analysis that

are already part of the best practices for developing efficient WSN infrastruc-

tures. These operations places in a previous phase as regards our model and their

methodologies have been broadly studied and defined in the correspondent fields:

P.1 Coverage and routing analysis. This phase is always performed before im-

plementing a WSN and consists in determining the partition of the network

in clusters of nodes which best overgrows the area of interest, along with

the corresponding routing trees.

P.2 Task definition. The identified clusters are a total partition on the set of

nodes. The subsequent step is aimed at defining the tasks that each cluster

should perform. Such tasks represent a set of activities (i.e. the measure-

ments and processing that nodes accomplish in monitoring their proximal

area) and are expressed as a collection of functions to be allocated to the

nodes in a cluster. Different clusters are often associated with different

97

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

Let N be the set of all the nodes ni composing the network, with cardinality |N| = ν,

such that:

N = {n1, n2, · · · , nν}

From the coverage analysis we inherit the optimal clustering for the network topology.

Let call C the overall set of the clusters ci, with cardinality |C| = κ, such that:

C = {c1, c2, · · · , cκ}
where:

(ci 6= ∅) ∧ ci = {n| for some n ∈ N}, ∀ci : i ∈ (1, · · · , κ)

These clusters determine, by definition, a total partition on the overall set of nodes N.

Let ∼c be an equivalence relation among the set of nodes, such that:

∀ni, ∀nj : (i 6= j)⇒ (ni ∼c nj)⇔ (ni ∈ c) ∧ (nj ∈ c)

where ni, nj ∈ N and c ∈ C. From the properties of the Equivalence Relation,

immediately follows:

ci ∩ cj = ∅ ∀ci, cj ∈ C, such that (i 6= j)

and:⋃
i=1,··· ,κ ci = N

Table 4.1: Algebraic characterization of the output from coverage analysis

tasks, due to spatial variations in the environmental conditions (and hence

in the parameters that must be monitored and/or controlled) among different

parts of a macro-area. Could however happen that the same task must be ex-

ecuted by the totality of the clusters, that does not influence the model, but at

most simplifies it. Considering most of the real applications, it is reasonable

to assume that a single task is assigned to each cluster. Moreover, all nodes

in a cluster may be considered homogeneous in the sense that all functions

composing the task can be indifferently allocated to all nodes. Special cases

that require a function to be redundant on several nodes may be expressed

98

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

by means of a redundancy factor, suitably considered in the model.

Let F be the set of all the functions fi have been implemented, with cardinality |F| = ξ,

such that:

F = {f1, f2, · · · , fξ}

From the task-definition analysis we inherit a classification of the various functions in

sets which represent macro-activities that should be performed by the relative clusters.

Let call T the overall set of the clusters ti, with cardinality |T | = τ , such that:

T = {t1, t2, · · · , tτ}
where:

(ti 6= ∅) ∧ ti = {f | for some f ∈ F}, ∀ti : i ∈ (1, · · · , τ)

Despite what happens between clusters and nodes, the set T does not define a total

partition on the overall set of the functions F, so the intersection between two tasks

ti and tj in T , such that (i 6= j), does not necessary result in the Empty Set.

Table 4.2: Algebraic characterization of the output from task-definition analysis

P.3 Energy estimation. Each function is characterized with a set o f parameters

indicating its frequency, average energy absorption per execution, average

energy absorption for dynamic loading/unloading and average energy ab-

sorption for forwarding that function code through the routing tree.

The output of these three activities is the starting point for the definition of the

model as described in the following. All relevant information for characterizing

nodes and functions are expressed by a small set of parameters summarized in

Table 4.3.

4.2.2 Domain definition

The purpose of the model is to create an adequate level of abstraction for coping

with both the physical and functional (applicative) layers of a WSN, i.e. defining

the costs and benefits of certain SW configuration, given a certain structure of

99

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

Parameters of node ni

Mi (bytes) available memory

Ei (mAh) energy capacity

Eos,i (mJ) energy capacity

Hi set of the successor nodes

in the routing tree

Parameters of function fi

Si (bytes) memory footprint

Φi executions per hour

Eex,i (mJ) execution energy

Eld,i (mJ) loading energy

Efw,i (mJ) forwarding energy

RL,i minimum redundancy

Table 4.3: Nodes and function parameters

the network in terms of sensor hardware, networking structure and routing trees.

Moreover, since we are working in a genetic environment through the use of a

dedicated instance of the Genetic Algorithm, the formalization choices have been

taken to fit, at the same time, the abstraction purposes and the GA’s requirements.

The elementary entities constituting the network are nodes and functions. From

the analyses described in the premises we can partition the nodes in a set of clus-

ters and the functions in a set of tasks, as shown in Tables 4.1 and 4.2. As these

tables point out, clusters are intrinsically defined as disjoint sets of nodes (exam-

ple in Figure 4.1), while tasks are set of functions whose intersection is often not

empty. From this consideration raises that clusters and tasks theoretically present

a one-to-many relation. Nevertheless, for what is stated in premise (p.2) comes

that it is always possible to arbitrary define each task such that it maps to one and

only one cluster, by merging tasks allotted to the same cluster in a new macro-task

or split a task in sub-tasks such that every cluster maps exactly to one, and only

one, cluster. This statement essentially introduces the possibility to define tasks

100

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

Host

cluster4

cluster2

cluster1

cluster3

Figure 4.1: An example of clustering

and to map them on clusters in a way that always leads to a one-to-one relation. It

can be formalized through the following:

Assumption 1 A task collects all and only the functions that must be executed by

a given cluster. Conversely, each cluster is assigned to a single task.

Since clusters define a total partition on the network, on condition to oppor-

tunely take in account the routing paths (as we do), it is always possible to obtain

a global optimization for the whole network, by optimizing the configuration of

each cluster separately. For that reason, in drawing up our formalization, from

now on the focus will be set on a single cluster c to which a single task t is as-

signed. Let N = {ni} be the set of the nodes that constitute the cluster c and

N = |N | the number of such nodes. Let also F = {fi} be the set of functions

composing the task t assigned to the cluster c and let F = |F| be the number of

such functions1. As introduced, functions can be either statically or dynamically

1As regards the characterizations introduced in Tables 4.1 and 4.2, the set N of all the nodes

composing the cluster c is a subset of the set N of all the nodes composing the network. The setN
is also an equivalence class entailed by the equivalence relation ∼c on the cluster c (as shown in

101

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

allocated to nodes; to keep track of these two types of function allocation, we

introduce the following definitions:

sta(fi, ni) =

{
1 fi statically allocated on ni
0 otherwise

(4.1)

dyn(fi, ni) =

{
1 fi dynamically allocated on ni
0 otherwise

(4.2)

Another important assumption comes from a practical evidence, which suggests

that in the greatest part of real applications, all the nodes in a cluster can be con-

sidered functionally equivalent, i.e. every function in task t could be mapped in-

differently on every node in cluster c. This happens because the nodes composing

a cluster are ‘topologically neighboring’ and usually cover a small area in which

the phenomenon to be monitored does not significantly change. The following

assumption clarifies this concept.

Assumption 2 All nodes of a cluster are functionally equivalent, that is, they are

suited for executing any of the functions of the corresponding task.

The third and last assumption for the model is expressly stated to consider an

important design choice, characterizing all the actual implementations of Wireless

Sensor Networks: the availability of timestamp-based mechanisms to maintain all

the nodes aligned to a global shared time. This is a pillar of the Distributed System

Theory (e.g. [80]) and of WSNs consequently [81]; the practical incarnation of

this theoretical paradigm is obtained by means of special modules, included in

most of WSN’s operating systems, in charge of ‘scheduling’ events and operations

according to a global policy. This turns out particularly useful to determine the

functions execution policy, when a certain frequency of execution is specified2.

Table 4.1) and it also disjointed by all the other sets of nodes characterizing other clusters. The set

F of the functions characterizing the task t is a subset of the set F of all the functions defined for

that network, but, as said, it is not necessarily disjointed from the sets of functions characterizing

other tasks.
2The execution frequency is an input of the model and it is specified for each function as shown

in Tale 4.3. The execution frequency is useful when a function must monitor a certain parameter

102

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

Since all the nodes composing a cluster are functionally equivalent, according to

the Assumption 2, each execution of a function could be run on each node of

the cluster indifferently, so the frequency characterizing that function could be

divided among the number of nodes of the cluster on which that function has been

allocated.

When a function is allocated to a certain set of nodes in a cluster, these nodes

arrange the operating system modules in charge of scheduling shared events to

synchronize each other in order to schedule the execution of this function in a way

that guarantees the global accomplishment of its frequency. The architecture we

are working on [29] holds a special module of the operating system dedicated to

the above-quoted purpose, such that the frequencies of execution of the functions

are scheduled among the nodes according to the relative allocation.

Assumption 3 There exist a component of the operating system capable of exe-

cuting a given function according to the configuration resulting from the optimiza-

tion and synchronized on a common time basis.

It is worth noting that this module needs not to be explicitly isolated from the

application, i.e. it is not just a peculiarity of the operating system but could also

be implemented as a built-in utility of a specific application. Since such a module

could be implemented as part of the overall logic of the application itself, there

could be found specific environments autonomously providing these capabilities

and this is exactly the case of the framework used for our experiments: as said,

WASP holds an ad-hoc module, referred to as non-functional manager, conceived

to schedule and organize events on a shared time-line [29].

4.2.3 Constraints

The target of the model’s optimization is to maximize the cluster lifetime L.

There are, however, some constraints that must be satisfied, concerning both

the functional and non-functional requirements/limits of a wireless sensor net-

for a certain number of times per hour, per day, etc. For example: the temperature must be sampled

5 times per hour by the nodes belonging to a cluster positioned along a lake reef...

103

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

work. The first constraint is a non-function one and refers to the amount of free

allocable memory for each node in the cluster. There are then two functional

requirements, the first of which states that every function in the task must be allo-

cated on at least one node in the cluster, while the second asserts that each function

must be allocated according to a certain redundancy factor3.

These constraints can be formalized as:

C1 The amount of memory required to store all static and dynamic functions of

each node must not exceed the amount of memory available.

C2 The functionality of the task must be guaranteed, that is, each function must

be statically or dynamically allocated to one node at least.

C3 The functionality of the task must be robust to node loss, according to pre-

defined criteria. This means that certain functions may be required to be

statically allocated to nodes with a certain redundancy.

Let L be the lifetime to be maximized and letC1, C2 andC3 be condition variables

evaluating to 1 if the corresponding constraint is met and 0 otherwise. The three

condition variables have thus the following form:

C1 =

1 mem(ni) < Mi, ∀ni ∈ c

0 otherwise
(4.3)

C2 =

1 inst(fi) > 0, ∀fi ∈ t

0 otherwise
(4.4)

C3 =

1 RL,i ≤ red(fi), ∀fi ∈ t

0 otherwise
(4.5)

3The redundancy factor is an input of the model (see Table 4.3) that indicates the minimum

percentage on the cardinality of nodes, on which a function must be statically allocated. This

parameter is particularly useful when a certain function is critical and must statically reside on

a certain percentage of nodes, because it is event-triggered or monitors important parameters.

In these cases, in fact, the nodes should perform in real-time and the overtime for dynamically

retrieving and loading that function must be avoided: from this, the choice of statically allocate

such functions.

104

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

The function to be maximized is thus:

Q = L · C1 · C2 · C3 (4.6)

It should be noted that this function shows a stepwise behavior on all boundaries

where the three conditions of the constraints change from true to false or vice

versa. This kind of function may degrade the performance of the genetic algorithm

when using certain math-tools, especially for very large problems. A solution to

this potential drawback might consist in re-defining C1, C2 and C3 by means of

sigmoid functions such as the error function or the logistic function, as shown at

the end of this section. In the experiments considered in this work, the stepwise

behavior of the condition variables did not influence the evolution of the genetic

algorithm4.

Let us now consider the three conditions and express their mathematical form

in full detail.

The memory required for a set of functions allocated on node ni can be ex-

pressed as the sum of a static and a dynamic contribution:

mem(ni) = memsta(ni) + memdyn(ni) (4.7)

where the static contribution equals the sum of the size of all statically allocated

functions, that is:

memsta(ni) =
F∑
j=1

sta(fj, ni) · Sj (4.8)

while the dynamic contribution equals the maximum size of all the dynamically

allocated function, that is:

memdyn(ni) = max
j=1..F

dyn(fj, ni) · Sj (4.9)

This last equation is motivated by the assumption that dynamic functions can al-

ways replace each other when loaded, if there is not sufficient memory space to

allocate them at the same time.
4The Linux GAUL libraries we have used to implement the genetic algorithm, in fact, are

not affected by the stepwise behavior of the constraints. Moreover, since GAUL is an utility for

defining genetic algorithms as C-Programs, the stepwise way in which C1,C2 and C3 are stated

well fit the functional programming style of C-Language.

105

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

As regards the second constraint, the instances of a function are counted re-

gardless of the nature (statical or dynamical) of their allocation, that is:

inst(fi) =
N∑
j=1

dyn(fi, nj) + sta(fi, nj) (4.10)

Finally, in dealing with the third constraint, the redundancy of a function considers

all the statically allocated instances of each function and is expressed as a fraction

of the potentially allocable instances5, such that:

red(fi) =
1

N
·
N∑
j=1

sta(fi, nj) (4.11)

*A continuous variant based on sigmoid function

It is possible to remove from the model the discontinuities introduced by the step-

wise functions by means of a sigmoid function such as the error function or the

logistic curve:

sigmoid(t) =
1

1 + e−αt
(4.12)

where α > 0 is an arbitrary parameter which forces the sigmoid to be mashed up

toward a step function, insofar as the designer thinks it appropriate for the specific

tool on which the GA has been built. In that way, the three constraints become

respectively:

C1 =
N∏
i=1

sigmoid(Mi −mem(ni)) (4.13)

C2 =
F∏
i=1

sigmoid(inst(fi)− ε) (4.14)

5The maximum number of potentially allocable instances for a function is equal to the cardi-

nality N of the cluster: that means the function is allocated to every node in the cluster.

106

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

Where ε in (4.14) is a small differential (ε ≈ 0.1), which forces6 the argument of

the sigmoid to be negative, in the case of inst(fi) = 0.

C3 =
F∏
i=1

(
up lower(fi)

)
(4.15)

where up lower(fi) is defined as:

up lower(fi) = sigmoid(red(fi)−RL,i) (4.16)

The meaning of Equations (4.13),(4.14), (4.15) and (4.16) should be clear in the

light of what stated previously about the three constraints and the properties of the

sigmoid. For a brief explanation, let’s consider that the Equation (4.13) forces C1

to zero if, for one or more nodes, the value of the required memory overcomes that

of the available memory: since the argument of the sigmoid in this case becomes

negative and the sigmoid returns zero if its argument is negative, the product forces

C1 to zero. The meaning of the other two equations should be clear for what has

just been shown.

The extension of the model by means of the sigmoid function could be useful

for some tools based on the GA which show better performances in manipulating

derivable functions (this is not the case of GAUL libraries for unix/linux systems,

that only require a function to be continue, not necessarily derivative).

4.2.4 Optimization goal

Provided that all constraints are satisfied, the goal of the model’s optimization is

to maximize the lifetime L of the entire cluster, so let’s now analyze the nature of

this variable.
6If the argument of the sigmoid is exactly zero, the function would return the value 0.5, that

is meaningless if we want to define a binary condition of the type true-or-false (in this case, satis-

fied/unsatisfied constraint). With a negative argument, on the other hand, the sigmoid returns zero,

hence becoming appropriate to the purpose.

107

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

We assume that a cluster could be considered alive if and only if all of its

nodes are operating. This definition is clearly pessimistic since after the first node

finishes its energy and thus dies, the remaining nodes can take its workload in

charge thanks to either static redundancy or dynamic reconfiguration. On the

other hand, however, the condition in which all nodes are alive is the best among

all the possible states through which a cluster can pass: if a node dies, in fact, the

extra-workload that other nodes must bear strongly compromises the remaining

lifetime. In addition, the presumably small amount of energy to the nodes’ dis-

posal7 along with the super-linear discharging trend of the batteries under a certain

autonomy threshold, makes the remaining nodes to exponentially converge toward

their death. We can thus define the lifetimeL of the cluster as:

L = min
i=1..N

Li (4.17)

where

Li = Ei /P i (4.18)

is the lifetime of node ni and can be calculated as the ratio between the available

energy Ei of node ni and its average power consumption P i which depends on

the specific functional configuration of the node.

The power consumed by a node comes from two different sources. The first

source is related to the continuous activity of a portion of the application and the

operating system that is always executing and is out of the scope of this analysis.

This first contribution can thus be modeled as the energy Eos,i consumed per unit

time (hours in our formalization). The second contribution is related to the specific

configuration of the cluster and it is in turn composed by three terms.

The first term is the static energy Esta,i, that is the energy consumed by the

functions statically allocated to node ni, and can be expressed as:

Esta,i =
F∑
j=1

sta(fj, ni) · Eex,j ·
Φj

inst(fj)
(4.19)

7Because if a node dies it is plausible stating that a certain time is elapsed since the network

has been deployed.

108

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

where Φj is the number of required executions of the function fj per unit time

(hours, again). According to Assumption 3 the overall number of executions of

a function is distributed over all nodes where the function is allocated, that is

inst(fj). In conclusion, the number of executions of function fj on the node ni is

Φj/inst(fj).

The second term is the dynamic energy Edyn,i, that is the energy consumed by

a node to load and execute all the functions dynamically allocated on it. Similarly

to Equation (4.19), the dynamic energy can be expressed as:

Edyn,i =
F∑
j=1

dyn(fj, ni) · (Eex,j + Eld,j) ·
Φj

inst(fj)
(4.20)

The last term is the routing energyEroute,i, that is the energy due to forwarding

of the code from the base station to a destination node (different from ni) through

a routing path including the node ni. This contribution is the summation of for-

warding energies associated to those functions that are dynamically allocated on

successors of the current node in the routing tree8:

Eroute,i =
F∑
j=1

∑
nk∈Hi

dyn(fj, nk) · Efw,j ·
Φj

inst(fj)
(4.21)

where the inner summation extends over all nodes nk, with k 6= i, in the set Hi of

the successors of node ni in the routing tree.

The average power P i consumed by node ni per unit time is thus:

P i =
Eos,i + Esta,i + Edyn,i + Eroute,i

τ
(4.22)

In the present paper we assume that the unit time τ equals one hour and thus the

lifetimes Li and L are expressed in hours.

8Because a dynamically allocated function could be loaded and then unloaded to make space

for a new dynamic function. If this happens, when the previous function has to be loaded again,

the node must re-download it from the host or the gateway node that stores the repository of the

functions for that cluster.

109

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

4.3 Implementation

The model has been implemented in C-Language for Unix-Linux architectures,

taking advantage of the features provided by the Genetic Algorithm Utility Li-

braries (GAUL) [28], expressly developed for these architectures.

The design of the optimizer has flooded through two conceptually separated

steps: the first has been related to the logical mapping of the model on the Genetic

Domain, while, in the second, coding and testing activities have been accom-

plished.

4.3.1 Mapping to the Genetic Domain

Due to the formalization of the model, intentionally conceived to meet the partic-

ularities of the Genetic Domain, the mapping has been quite a natural operation.

Morphism 1 Each cluster is an individual, whose genetic patrimony is com-

posed by as many chromosomes as many are the nodes composing the cluster

(c 7→ ι), ∀c ∈ C, ∀ι ∈ P (m.1)

where C is the overall set of clusters and ι is an individual belonging to the popu-

lation P .

Morphism 2 Each node of a cluster corresponds to one of the chromosomes of

the individual on which this cluster has been mapped. For each individual, the

number of chromosomes is thus equal to the cardinality of the relative cluster.

(n 7→ χ), ∀n ∈ c, ∀χ ∈ ι (m.2)

where n is a node belonging to the cluster c, while χ is a chromosome in the

genetic patrimony of the individual ι, such that (m.1) is verified and |ι| = |c|.

110

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

Morphism 3 Each chromosome has a number of alleles equal to the cardinality

of the task assigned to the cluster. Since we can consider a chromosome as and ar-

ray of alleles, each of them is associated to the function with relative index9 in the

task. Each function is then mapped to an allele and this allele can only assumes

the values {0,1,2} indicating respectively the three possible states of a function
on a node, i.e. {not allocated, statically allocated,dynamically allocated}.

(f 7→ γ), ∀f ∈ t,∀γ ∈ χ (m.3)

where γ is an allele and χ a chromosome, such that γ ∈ χ and |χ| = |t|. As

usual f represent a function and t the task to which this function belongs.

Morphism 4 We state that an individual is well fitted if it satisfies the Constraints

C1, C2 and C3 described in Section 4.2.3, thus, whose fitness function (4.6) is not

0. The best fitted individual in a population is the well fitted individual who holds

the global maximum for the fitness function.

4.3.2 Application design

This step comes immediately from what has been presented in Section 4.3.1 and

the structure of GAUL libraries. Each GAUL entity represents a cluster, the chro-

mosomes of an entity are the nodes composing the cluster, initialized as arrays of

integers alleles.The number of these alleles is equal to the cardinality of the task

assigned to the cluster. Each allele represents a function of the task and can only

assume values {0,1,2}, indicating that the relative function is respectively {not

allocated, statically allocated, dynamically allocated} on this node.

The fitness function has been implemented through a specific hook function,

checking the constraints and calculating the optimization goal as defined in Sec-

tions 4.2.3 and 4.2.4.
9We here assume that an arbitrary order has been defined on the functions in the task, such that

each function can be identified by means of its index.

111

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

In the experiments described in the following the genetic optimization is per-

formed for a single cluster, iterating for some generations (generally from 150

to 300), each composed of a population of 1000 individuals with the same struc-

ture but different configurations as regards functions’ allocation. The population’s

individuals are instances of the same cluster, bearing different configurations as

regards the functions allocation of its nodes(i.e. the configuration of the allele

in the chromosomes).It has been observed that a number of 150 generations is a

good compromise to converge toward the fitness asymptote in a reasonable time.

The evolution scheme is Darwinian. The two best fitted parents are re-scored

and brought to the next generation. The mutation is random and the crossing-over

is based on a single-point scheme.

Further remarks are needed for what concerns the insemination function, i.e.

the function that generates the initial configurations of the individuals on the basis

of a random-driven logic.

Initial insemination

The initial insemination is a critical issue concerning the evolution of the genetic

algorithm. The constraints introduced in Section 4.2.3, in fact, strongly reduce

the probability of generating an admissible configuration of a cluster, working

in a totally random logic and running the algorithm for a reasonable number of

generations on a reasonable population size. It could be noticed that also prob-

lems with a medium complexity offer a probability space unmanageable through

a completely casual insemination, considering the tight requirements entailed by

the three families of constraints. Let’s observe that also a relatively small cluster

of 10 nodes, in charge of executing a relatively small task of 20 functions, each

presenting three different types of allocation, leads to an enormous number of

possibible configurations:

Possible configurations = (320) · 10 ≈ 35 · 109

Running the algorithm on a population of 1000 individuals over 150 generations,

through mutation and crossing over, it is possible to obtain just a negligible num-

112

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

ber of configurations as regards the overall possibilities:

Generable configurations = 1000 · 150 = 15 · 104

in other words, five orders of magnitude under the overall design space.

It is clear that such a discrepancy mashes the probability of finding an admissi-

ble solution10 up to zero. Since the algorithm needs to find an admissible solution

from which starting, to be improved by means of matings, mutations and crossing-

over among the generations, the insemination function must be optimized in order

to increase the probability of generating admissible solutions as soon as possible.

This optimization, however, should be as much random as possible, in order to

preserve the intrinsic casual nature of genetic evolutions.

At this purpose we have studied a solution which preserves an high-degree

of variability, while providing a good statistical confidence of generating an ad-

missible solution in a reasonable time. The logic is based on a partial stochastic

coverage of two of the three constraints, i.e. the completeness and redundancy

constraints, by seeding the nodes in a random way, such that:

• For each function, the seeding-algorithm guarantees that at least one casu-

ally chosen node presents an allocated instance of this function. The alloca-

tion is in turn casually elected between the two possible choices, i.e. static

or dynamic {1 or 2};

• In presence of thigh redundancy requirements for a given function, the

seeding-algorithm guarantees that a randomly chosen set of nodes presents

a statical allocation for that function in a casual percentage, neighboring the

one required by the redundancy parameter.

This arrangement preserves an high rate of variability and, at the same time,

enable a consistent insemination as regards the effectiveness of the algorithm. It is

worth noting that such an optimization does not affect the memory constraints and

10An admissible solution is a configuration that does not violate the constraints, hence not forc-

ing the fitness function to be zero.

113

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

also act regardless the energy requirements of the various configuration. That im-

plies a lot of individual to be completely unfitted, once inseminated, and also those

constituting admissible solutions practically never represent the optimal ones. It

is just a coherent implementation that enables the algorithm to find a randomly-

generated admissible configuration to gradually optimize by means of matings,

mutations and crossing-over in proceeding through the generations.

4.4 Experimental results

To validate the model as well as its implementation through the genetic algo-

rithm, we have performed several sets of experiments, testing the most relevant

properties and behaviors. It must be noted that, according to the assumption in

Section 4.2.3, dynamic functions are allocated one at a time, which is clearly a

pessimistic situation.

All the experiments refer to the same task, made of 32 functions with signifi-

cantly different complexity, ranging from simple calculations to more demanding

sensing and communication. The task size has been chosen according to the prob-

ability space it entails in terms of possible configurations. Since each function in

the task represents an allele, which can assume three different values {0,1,2}, and

since each chromosome holds 32 alleles, the possible configurations for a single

node are aboutP = 1.8·1015 and so the possible configurations for the entire clus-

ter turn out to be Ptot = P · N , where N is the cardinality of the cluster (i.e. the

number of nodes in that cluster). With such a number of possibilities, the assess-

ments on model’s robustness as regards the optimization power are particularly

reliable.

The four most relevant parameters of the functions, namely the memory foot-

print, the energy required for one execution, the energy required for loading and

the energy required to forwarding a function are summarized in Table 4.4.

The nodes composing the cluster are all the same but have different amounts

of available memory. All nodes are powered with a 1150mAh battery, supplying

114

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

Id Size Freq. Eex Eld Efw Id Size Freq. Eex Eld Efw

(B) (exec) (µJ) (µJ) (µJ) (B) (exec) (µJ) (µJ) (µJ)

F01 96 0.1 131 1268 634,1 F17 123 0.3 168 1632 816,2

F02 2742 0.005 2569 4951 13632,8 F18 1933 0.001 1812 3491 9614,4

F03 280 0.05 1417 1665 1585,2 F19 315 0.005 1600 1880 1789,0

F04 284 0.1 133 1537 1585,2 F20 335 0.6 157 1816 1873,1

F05 140 5 3 1268 951,1 F21 115 6 3 1050 788,0

F06 330 3 3 1537 1902,3 F22 329 8 3 1537 1902,0

F07 1206 2 3 2795 6023,8 F23 1552 3 4 3597 7754,0

F08 164 1 65 1573 951,1 F24 163 1 64 1565 946,0

F09 940 0.09 549 2585 4755,6 F25 767 0.6 448 2111 3884,7

F10 940 0.005 4015 2585 4755,6 F26 1206 0.006 5154 3318 6105,0

F11 74 0.1 104 1390 634,1 F27 69 0.3 97 1296 591,6

F12 268 0.1 100 1665 1585,2 F28 256 0.2 95 1594 1517,0

F13 70 1 57 1481 634,1 F29 90 0.6 73 1920 822,1

F14 444 1 85 1941 2219,3 F30 385 0.4 73 1686 1928,0

F15 300 0.4 97 1757 1585,2 F31 255 0.7 82 1494 1347,8

F16 492 0.007 3545 1941 2536,3 F32 508 0.008 3665 2007 2622,7

Table 4.4: Summary of task’s functions characteristics

a voltage of 1.8V, and execute a common set of tasks (refereed to as basic tasks11

in the following) consuming an average energy of 600µJ per hour. The number of

nodes vary from experiment to experiment as described in the next Section.

Furthermore, nodes are arranged in a routing topology where they have a vari-

able number of successors distributed as summarized in Table 4.5. This means

that, in any given cluster, 15% of the nodes belong to group 1 and have 6 succes-

sors (statically and randomly chosen on initialization), 15% of the nodes belong

to group 2 and have 4 successors, and so on.

4.4.1 Fitness stability on memory variations

The first set of experiments aims at measuring the fitness evolution, while pro-

gressively relaxing the boundaries introduced on memory usage. What we expect

11Energy consumed in running Operating System and low-level functions

115

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

Group Id Fraction Number of Successors

1 15% 6

2 15% 4

3 15% 2

4 55% 0

Table 4.5: Compact representation of routing tables

to observe is a trend of the fitness that increases as the constraints become less

requiring and the algorithm has more boundary-free optimization choices. More-

over, this trend should converge toward a common asymptote for values on the

memory overlaying a certain threshold, giving to the model a sufficient degree of

free-optimization. Another expected behavior concerns the composition of the op-

timal configuration: in giving to the algorithm more independence from the con-

straints we foresee a uniform distribution of the static allocations among nodes.

That’s because statically allocated functions consume less energy compared to the

dynamically allocated ones.

This series of experiments refer to a cluster of 10 nodes, accomplishing the

above-presented task of 32 functions without redundancy. The available memory

has been set to different values, ranging from 2742 bytes (i.e. the maximum mem-

ory footprint reported in Table 4.4) to 12KB. The population is composed of 1000

individuals and the algorithm runs for 150 generations. Evolving more than 150

generations and using a larger population would still increase the fitness, but the

gains obtained are negligible in most cases.

Figure 4.2 shows the evolution of the fitness (that equals the lifetime in hours)

for the five memory sizes. It can be noticed that the lifetime reaches an asymp-

totic maximum in a number of generations between 50 and 100. As expected,

augmenting the available memory has the effect of increasing the lifetime until

a certain threshold. The model confirms the expectations and shows a good de-

gree of stability, since it converges toward a unique asymptote when the available

memory exceeds a certain threshold (4KB, in this case). As countered, this hap-

pens because the constraint on the available memory becomes looser as its size

116

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

Figure 4.2: Fitness evolution for five memory sizes

Figure 4.3: Static/dynamic allocation fractions

increases.

Moreover, increasing the memory has the natural effect of statically assign-

ing more functions to nodes, as expected. The fraction of statically and dynami-

cally allocated functions is shown in Figure 4.3. Since no redundancy is required,

functions are allocated on the minimum number of nodes with the sole goal of

maximizing the lifetime. In particular, the average fraction of allocated functions,

per each node, varies from 25%, with 2.7KB of memory, to 40%, with 12KB of

memory.

4.4.2 Redundancy

The second set of experiments has the goal of demonstrating the capability of

the model and of the tool to satisfy redundancy constraints. This means that the

117

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

resulting configuration must statically allocate each function on a percentage of

nodes greatest or at least equal to that specified in the redundancy parameter of the

function. Moreover, the algorithm must accomplish this task satisfying the other

constraints and maximizing the fitness. For this series of experiments have used a

cluster with 10 identical nodes, providing 4.5KB of available memory, to imple-

ment the task described in Table4.4. Some functions belonging to this task have

been required to be redundant on some nodes in different percentages. The test

has been executed for three different combination of redundancy requirements.

In defining the redundancy we have classified five different degree of saturation:

Each function has been characterized with the respective redundancy level, whose

Level Minimum Percentage Comment

N 0 Don’t care

E 1 static on at least one node

L 25% static on at least the 25% of nodes

M 50% static on at least the 50% of nodes

H 75% static on at least the 75% of nodes

Table 4.6: Level of redundancy

values are reported in Table 4.7.

Following we present the results obtained by the three instances of this class

of experiments, each exploring a different criticality concerning the introduction

of a redundancy constraint.

Red1: This first experiment is performed on a very variegated redundancy distri-

bution. The target is to test the algorithm on redundancy requirements for a

large number of functions in a memory-constrained environment.

The results demonstrate a very good level of configuration since, as Fig-

ure 4.4 shows, the redundancy constraints for all the functions have been sat-

isfied. The overall fitness has been optimized as well and its value amounts

to 2785 hours. The average fraction of the overall allocated function, per

each node, is 36.9%. Among these, the fraction of statically allocated func-

118

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

Id Red1 Red2 Red3 Id Red1 Red2 Red3

F01 E N N F17 L N N

F02 N H N F18 N N E

F03 E N N F19 N N N

F04 N N N F20 N N N

F05 L N N F21 E N N

F06 N N N F22 N N N

F07 N N E F23 N N E

F08 M N N F24 L N N

F09 N N E F25 N N N

F10 N N E F26 N N E

F11 H N N F27 M N N

F12 N N N F28 N N N

F13 E N N F29 M N N

F14 N N N F30 N N N

F15 E N N F31 E N N

F16 N N N F32 E N N

Table 4.7: Values of redundancy for the three simulations

Figure 4.4: Redundancy obtained by experiment Red1

tions is about the 91.1%, coherently with the redundancy requirements and

the behavior pointed out in the Section 4.4.1.

Red2: This second test presents an high redundancy for the function in the task

with the heaviest memory footprint. The aim is to prove the model robust-

ness in satisfying redundancy constraint on an high percentage of nodes for

119

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

a very large function, that considerably restricts the field of free-configuring

choices for the algorithm.

The resulting redundancy is reported in Figure 4.5, that once again confirms

a coherent behavior in respect to the constraints. The fitness has reached a

value of 1348 hours, a very low lifetime if compared to the experiment

Red1, but perfectly aligned to our forecasts, because in statically allocat-

ing the heaviest function on an high percentage of nodes, there is very few

space to allot other large functions statically. The great energy consumption

associated to the dynamic loading and forwarding of these functions makes

the fitness to be reduced considerably.

Figure 4.5: Redundancy obtained by experiment Red2

Red3: The last redundancy experiment lays on the need to control the algorithm

response when some of the heavier functions, concerning the memory foot-

print, are required to be statically allocated at least on one node in the clus-

ter. We expect this condition not to worsen the overall fitness, because a

uniform static allocation of large functions among nodes would theoreti-

cally reduce the overall power-consumption of the cluster.

The optimization output is reported in Figure 4.6. The algorithm has satis-

fied redundancy constraints, scoring an overall fitness of 2748 hours: a very

good threshold, as expected.

Finally we have performed a free optimization on the same cluster of nodes, each

preserving its energy and memory characteristics.

120

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

Figure 4.6: Redundancy obtained by experiment Red3

Figure 4.7: Fitness for the three experiments on redundancy

The fitness trend has then been compared to those of the three experiments

above in order to evaluate the capability of the model in maintaining its optimiza-

tion power, even under redundancy boundaries. Results are shown in Figure 4.7

and, as can be noticed, they demonstrate a very good behavior of the algorithm.

An exception could be found for the fitness curve of experiment Red2, but, for

what has been stated above, this evolution matches the expectations for the rela-

tive kind of redundancy requirements. It’s worth noting the optimization effort in

maximizing the lifetime while proceeding through the generations, even though

the redundancy boundaries. Constraints on task completeness have been perfectly

respected as well.

121

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

4.4.3 Heterogeneous clusters

This experiment tests the algorithm’s robustness in optimizing a cluster composed

by an heterogeneous set of nodes, some of which characterized by an available

memory smaller than that required by the largest function in Table 4.4.

The aim is to demonstrate the capability of the model to allocate the various

functions—according to their memory footprint—even to very small nodes, which

cannot accommodate larger functions. The composition of the cluster includes

seven nodes: N1 with 0.3KB of available memory, N2–N3 with 1KB, N4–N6

with 4KB and N7 with 7KB.

Figure 4.8: Configuration of an heterogeneous cluster

Figure 4.8 shows the configuration obtained by the algorithm. This result

shows two important achievements: on one hand, all nodes have been used, in-

cluding the smallest, and on the second the available memory is exploited in a

very efficient way, as Table 4.8 shows.

This configuration has been obtained running the algorithm for 150 genera-

tions over a population of 1000 individuals. The reached fitness is 2473 hours

and the final allocation satisfies the three constraints described in Section 4.2.3.

Moreover, as could be observed in Figure 4.8 all the functions composing the task

has been allocated, either statically or dynamically, hence satisfying the constraint

on task completeness.

122

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

Node Available Static Dynamic Overall

N1 300 54.3% 32.0% 86.3%

N2 1000 95.8% 0.0% 95.8%

N3 1000 44.3% 50.8% 95.1%

N4 4000 66.5% 30.2% 96.7%

N5 4000 71.3% 0.0% 71.3%

N6 4000 69.1% 23.5% 92.6%

N7 7000 71.6% 27.6% 99.3%

Table 4.8: Memory usage

4.4.4 Functions’ frequency

This test aims at monitoring the behavior of the algorithm in relation to the execu-

tion frequency of a function. Though no constraints exist on the allocation logic

concerning the frequency according to which a function must be executed, for

what has been stated by Assumption 3 in Section 4.2.2, the execution of a given

function is distributed among the various nodes by means of a non-functional

manager. This non-functional manager is a special module of the operating system

on a node, which coordinates with the other instances of non-functional manager

acting on the other nodes to accomplish the distributed execution of each function

according to its frequency and the functional configuration of each node.

What we expect is that in increasing the execution frequency of a given func-

tion, the algorithm will statically allocate this function on an high percentages of

nodes in the cluster. That’s because if a function needs to be executed with an

high rate of instances per hour, it would be very expensive to dynamically loading

and unloading its code every time. Moreover, since the frequency is distributed

among the nodes who have that function alloted, the model should assign such a

function to the greatest number of possible nodes, taking advantages of the dis-

tributed scheduling of non-functional managers.

The experiment has been conducted on a cluster of 10 nodes, each providing

4KB of available memory. The functions’ task is the one reported in Table 4.4 and

the first instance has been run according to the frequencies defined in this table.

123

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

Results from this preliminary test are following referred as base exp, to which the

perturbed solutions are compared.

Then we have perturbed the frequency parameter for the function with the

largest footprint and for that with the smaller one.

exp1 In this experiment the execution frequency of F2 has been brought from

0.005 to 50 execution per hours. The number of statical allocations in pres-

ence of such a perturbation are shown in Figure 4.9, compared to those of

the base exp.

Figure 4.9: Result of perturbation on F2 frequency.

It’s worth noting that the algorithm has shown a good sensitivity to the fre-

quency increment, since the number of statical allocation has passed from

the 0% of nodes –in the base exp– to the 70% of nodes when the frequency

has been increased.

exp2 The same operations has been done for the second test with the smallest

function F27, whose frequency has been increased from 0.3 to 50 executions

per hours. Even in this case the results demonstrate a very good degree

of sensitivity to the frequency variations even for a small function, whose

percentage of static allocations has passed from the 10% up to 90% of nodes

in the cluster.

These results acquire great importance since no constraints are specified for

the execution frequency. So the behavior of the algorithm is completely driven

124

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

Figure 4.10: Result of perturbation on F27 frequency.

by the optimization logic, which target the minimization of energy consumption

in order to maximize the lifetime of the network. So the algorithm well behaves

according to the Assumption 3. One last word should be spent in commenting the

two results in relation to the function footprint:

• For what concerns large functions, such as F2, when the execution fre-

quency grows it is good to observe a consequent increase of the static al-

locations. This is because dynamically loading those function with an high

frequency would mean to consume the network energy in few hours. More-

over, thanks to the distributed scheduling performed by non-functional man-

agers, the overall workload for executing such functions may be balanced

among a certain number of nodes in the cluster;

• Bearing on small functions, on the other hand, it ought to be noted that

they occupy just a small amount of the available memory, thanks to their

small footprint. Hence, statically distributing such functions even on a large

percentage of nodes, don’t significantly affect the degree of memory-free

optimization of the algorithm. At the same time, this choice drastically

reduce the overall energy consumption for the above-mentioned reasons.

Concluding, the algorithm has demonstrated a good behavior in managing

frequency variations.

125

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

4.4.5 Allocation coherence

The test on allocation coherence has the purpose of monitoring the algorithm’s

behavior in configuring the applicative domain on the nodes of a cluster, accord-

ing to the three constraints and in presence of an increasing exacerbation of the

memory requirements. In defining the test set, we have foreseen five different

optimizations on as many clusters composed by an increasing number of nodes.

All nodes are provided with 2742 bytes of available memory, i.e. the maximum

footprint among the 32 functions in the benchmark task.

Cluster Number of nodes Node Ids Fitness

C1 1 {1} 41.1

C2 2 {2,3} 154.2

C3 3 {4,5,6} 297.7

C4 4 {7,8,9,10} 413.1

C5 10 {11,12,13,14,15,16,17,18,19,20} 2394.6

Table 4.9: Clusters with an increasing number of identical nodes

What we expect is that the algorithm configures the bigger clusters with more

statically allocated function, because of the greater amount of memory at its dis-

posal. Nevertheless, since the constraints on cluster completeness must be satis-

fied, even the smallest cluster should be allocated with all the functions, eventually

dynamic in all their instances. Obviously, we foresee a decreasing level of fitness

little by little the total available memory decreases. The configuration of the five

Clusters, along with the resulting fitness, have been reported in Table 4.9.

Let’s now have a look at the five configurations coming out from the optimiza-

tion. The first cluster C1, has been configured as shown in Figure 4.11.

Figure 4.11: Configuration output for the cluster C1

126

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

It comes up evident the correctness in the algorithm’s behavior: all the func-

tions have been allocated, satisfying the task completeness, and the allocation type

is dynamic for all of these ones. It is, in fact, the only admissible configuration,

since the available memory equals the maximum among functions’ footprints,

needing a fully-dynamic management in order to guarantee the execution of the

task. The capability of the model in finding the only admissible configuration in

just 150 generations and 1000 individuals of population represents a remarkably

clue of robustness and effectiveness.

Results for clusters C2, C3 and C4 are reported in Figures 4.12–4.14.

Figure 4.12: Configuration output for the cluster C2

Figure 4.13: Configuration output for the cluster C3

Figure 4.14: Configuration output for the cluster C4

127

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

The configurations of these intermediate clusters point out three interesting

properties of the model:

1. Increasing the number of nodes and the overall available memory conse-

quently, the percentage of statically allocated functions becomes remark-

able, notwithstanding the tight memory characterizing a single node;

2. The heaviest function, i.e. F2, has been dynamically allocated in all of these

cases. This implies a twofold benefit: on one hand, the space has been better

exploited since many functions could run on a node, where just the heav-

iest function would reside if it was statically allotted. On the other hand,

according to the Assumption 2 in Section 4.2.2, also the dynamically allo-

cated functions concur to the distribution of the execution frequency of a

function among the nodes. Hence, the heavy energy requirement entailed

by the forwarding and loading of a dynamic function is partially counter-

balanced by the gain in frequency distribution. At this purpose, we remind

the pessimistic assumption of one-at-time execution for dynamic functions,

which well define worst cases, but clearly does not apply when two or more

medium or small-sized functions execute at the same time.

3. Cluster C4 presents less statically allocated functions than cluster C3. This

might seem a contradiction, since C4 has more nodes than C3, but it is

perfectly in-line with the nature of genetic-based optimizations. Running

the genetic algorithm for only 150 generations, in fact, may not give a

sufficient time to the algorithm for reaching the absolute optimum: that’s

because there are not enough iteration to perform an adequate number of

mutations and crossings-over, especially when the number of nodes grows

and the number of combinations along with it. Nevertheless, the overall fit-

ness increases of about 30% in passing from C3 to C4, i.e. adding just one

more memory-constrained node. This attests the general efficiency of the

algorithm.

Finally we discuss the configuration of the biggest cluster in this test-set. Tak-

128

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

ing a look to the configuration of cluster C5 (Figure 4.15) two of the three obser-

vations above reported find a stronger evidence.

Figure 4.15: Configuration output for the cluster C5

First, the number of statically-allocated functions has dramatically increased

thanks to the more availability of memory on the cluster. Secondly, F2 has been

once again dynamically alloted, this time on Node 13, offering the possibility to

dynamically allocate other functions on the same node (in this case F1,F24,F27

and F32). The overall fitness is 6 times higher than that of cluster C4, which has

6 less nodes. It could be noticed a strong discontinuity in the growing ratios of the

fitness functions among the various clusters (Table 4.10).

Prev. Cluster Succ. Cluster ∆ nodes ∆ memory (%) ∆ fitness (%)

C1 C2 +1 100.0% 275.2%

C2 C3 +1 50.0% 93.1%

C3 C4 +1 33.3% 38.8%

C4 C5 +6 150.0% 479.7%

Table 4.10: Fitness improvement in dependence of nodes’ augment.

This aspect should not be a surprise, since the two major variations happens

between C1 and C2, as well as between C4 and C5: in both this cases, in fact,

the constraint on the available memory receives two great lifts that completely

redefine the nature of the problem. Passing from C1 to C2, in fact, means to

evolve from the most constrained among the possible configuration to another

129

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

one that enables a certain degree of free-configuring. On the other hand, passing

from C4 to C5 means to jump from a constrained configuration, though not the

most constrained, to a superior degree of free optimization. InC5, in fact, the total

amount of memory is more than 10KB greater than the sum of all the footprints of

the functions composing the task. In C4, on opposite, the total amount of memory

is about 7KB smaller than the sum of all functions’ footprints. Concluding, it’s

worth raising a last remark for what concerns the task completeness requirements,

the adherence to which turns out evident from the configuration of the clusters

reported in Figures 4.11–4.15.

4.4.6 Comparative experiments

In this section we propose a critical comparison between three classical ways of

programming WSNs –based on hand-made, empirical solutions– which we called

standard configurations, and the correspondent allocations obtained by running

the algorithm on the same clusters.

Moreover, we have created another variant of the algorithm, that does not per-

form a casual insemination, but seeds, at time-zero, all the individuals with the

standard configuration given as input by the user. We have called this version of

the algorithm as improvement algorithm and the relative results as improved con-

figurations, since they are refinements of the hand-made configurations, obtained

by running the algorithm for a certain number of generations. To distinguish this

class of solutions from those obtained by running the random-inseminated version

of the algorithm, we called the ones obtained by the latter as free configurations,

where the word free means that the model randomly create the initial configura-

tions at time zero.

What has been observed, analyzing the results, is that the free configurations

obtained by running the random-inseminated version of the algorithm, always

overwhelm both the improved configurations and the standard configurations.

Moreover, the improved configurations have ever scored a better fitness, compared

to that of the corresponding standard configurations. Furthermore, a more basic

benefit tagged along the better optimization-power as regards the complexity of

130

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

the problems: hand-made solutions, in fact, are possible only for small clusters,

which also become unmanageable when a more sophisticated constraint, such as

the redundancy, is required. In more complex situations, the support of computer-

based computations is a necessary condition.

The combination of these three advantages point out an overall convenience

in using genetic algorithm’s solutions. Following we report results and configura-

tions obtained by three different comparisons.

Benchmark 1

This first experiment considers a clusters composed of six nodes provided with

3KB of available memory, in charge of executing the task of functions described

in Table 4.4. The routing tree characterizing that cluster is described in Table 4.11.

Node Successors

1 {2,3,4,5}
2 {3,4,5}
3 {5}
4 -

5 -

6 -

Table 4.11: Routing tree for the cluster in benchmark 1.

The logic used in defining the hand-made solution, that we following call ini-

tial solution is based on the classical saturation problem, widely used in actual

WSNs implementations. This consists of statically allocating to each node the

maximum number of functions, until the memory is completely saturated. The

resulting configuration is shown in Figure 4.16.

The resulting fitness for this configuration amounts to 2068.57 hours. Though

it could appear an optimal configuration, since the task completeness has been

respected and all the functions have been statically allocated, the following opti-

mizations show that it’s not so. The results obtained by running the improvement

131

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

Figure 4.16: Hand-made configuration of benchmark1.

algorithm starting from the configuration reported in Figure 4.16 have registered

a consistent gain in fitness score, which as growth up to 2282 hours. The algo-

rithm has been run for 150 generations, over a population of 1000 individuals.

The resulting configuration is shown in Figure 4.17.

Finally we have performed on that cluster an optimization through the base

version algorithm, i.e. the randomly-inseminated one. This optimization has

demonstrated to perform better than the other two variants obtaining a fitness of

2465 hours. The resulting configuration is reported in Figure 4.18.

Figure 4.17: Improved configuration of benchmark1.

As could be noticed, this configuration also considered some dynamically allo-

cated functions: that’s prove the benefits of introducing a dynamic reprogramming

mechanism to enhance the life span of the overall network, by introducing more

flexibility in its configuration.

132

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

Figure 4.18: Free configuration of benchmark1.

Benchmark 2

The second test bases on a cluster of three nodes, each providing a memory of

3KB, in charge of executing the same task of benchmark 1. The routing tree for

that cluster is reported in Table 4.11.

Node Successors

1 {2,3}
2 {3}
3 -

Table 4.12: Routing tree for the cluster in benchmark 2.

In this case the total available memory is smaller than the overall memory

required by the task, hence not allowing the static allocation of the whole set of

functions. What commonly is done in configuring the cluster by hand, in such

a situation, is to statically allocate the heaviest functions and dynamically allot

the remaining ones. That’s because the functions with a larger footprint require a

significant amount of energy to be dynamically loaded and forwarded, if compared

to the smaller ones. The hand-made solution has thus been made by statically

allocating for each of the three nodes the heaviest functions, i.e. F2, F18 and

F23. The remaining functions have been dynamically allocated. The resulting

configuration is shown in figure 4.19, which has scored a fitness of 76.47 hours.

Giving in input this configuration to the improvement algorithm, the fitness

133

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

Figure 4.19: Hand-made configuration of benchmark2.

reported after 150 generations amounts to 297.12 hours, presenting an overall

enhancement of about the 300%. Once again it raises an overall gain in improving

standard solutions by means of the genetic model here presented. The improved

configuration is shown in Figure 4.20, where could be observed a differt allocation

logic compared to that commonly adopted in hand-made configurations.

Figure 4.20: Improved configuration of benchmark2.

Finally, we have performed an optimization through the randomly-inseminated

algorithm, obtaining a fitness of 371.15 hours, i.e. an improvement of about the

400% on the hand-made configuration. This allocation is described in Figure 4.21.

As could be noticed, the way by which the algorithm has chosen statically

and dynamically allocations has changed once again, leading to straightforward

enhancement of the scored fitness.

134

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

Figure 4.21: Free configuration of benchmark2.

Benchmark 3

This last experiment further restricts the boundaries on available memory, pre-

senting a cluster of just two nodes providing 3KB of available memory. The task

is the same used in previous experiments and the routing tree is very simple, since

Node 1 has the Node 2 as its successor, while Node 2 does not have successors.

Here we want to prove another common allocation logic, used in hand-made con-

figurations. When the memory resources are particularly constrained, it is worth

trying to allocate the maximum number of functions statically. Since the maxi-

mum footprint among the set of functions amount to 2742 bytes, i.e. the 91.4%

of available memory on a single node, the only way to maximize the number of

statically allocated functios is to dynamically allot F2 on one of the two nodes.

Then, the larger functions are dynamically allocated to the same node in which F2

resides, while all the remaining functions are statically assigned until the memory

is saturate. The hand made configuration is reported in Figure 4.22, showing a

fitness of 24.5 hours.

Running the improvement algorithm on this configuration for 150 generations,

we have obtained a lifetime of 74 hours, showing on overall gain of about the

200% on the standard salution. The resulting allocation is reported in Figure 4.23.

It’s worth noting that also in this case the genetic model has opted for a more

intensive use of dynamic allocations for the smallest functions, confirming the

usefulness of a dynamic linking mechanism in maximizing the network’s lifetime.

Finally, we propose the result obtained in running the randomly-inseminated

135

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

Figure 4.22: Hand-made configuration of benchmark3.

Figure 4.23: Improved configuration of benchmark3.

Figure 4.24: Free configuration of benchmark3.

algorithm on this cluster. Figure 4.24 shows the resulting configuration, which

leads to a fitness of 149.6 hours, greater than the initial one of about the 500%.

The performed allocation outlines one more time an efficient usage of the dynamic

linker, which heads to a very siginificative improvement of the cluster’s lifetime,

if efficiently allocated.

136

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

Evidences synopsis

The analysis conducted on the comparative experiments among the most diffuse

configuring practices, shows a remarkably advantage in using the systematic ap-

proach proposed by our model over empirical allocations. The gain in terms of

fitness improvement for the three benchmarks are summarized in Figure 4.25

Figure 4.25: Comparison between empirical practices and algorithm’s optimizations.

Concluding we can draw three important considerations about the systemic

use of the genetic model for WSNs’ programming:

1. the algorithm, in its original version, always perform better than common

empirical practices in configuring WSNs’ applicative domain;

2. it’s also possible to exploit the algorithm optimization-power to improve the

fitness of a standard configuration, using it’s variant that takes in input an

hand-made configuration instead of performing random inseminations;

3. results obtained by the randomly-inseminated algorithm always overwhelm

those returned by other versions. This confirms the correctness of the algo-

rithm, since it shows superior optimizations when made free to choose it’s

own optimization path.

4.5 Sensitivity Analysis on Population Size

The sensitivity analysis on population size aims at testing the algorithm sensitivity

to the number of individuals composing the population.

137

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

Theoretically, in increasing the number of individuals the algorithm should

enhance its optimization power, especially in the very first generations. That’s

because when a larger number of randomly-inseminated individuals are gener-

ated, the probability to find an admissible solution significantly grows. Thus, if

it would be possible, the ideal population should counts thousands or more indi-

viduals. That’s, however, dramatically worsen the execution time of the algorithm

and make the problem practically unresolvable with a general-purpose dual-core

machine.

The idea is then to test the sensitivity of the model as regards the population

size, such that it is possible to determine a good compromise between the prob-

ability of finding an admissible solution in a reasonable time, while not charging

the models with an excessive processing overhead, that would make it fitted just

for supercomputers.

At this purpose we have run the algorithm on a cluster of 10 nodes, provided

with 4KB of available memory, accomplishing the benchmarking task in Table

4.4. The simulation has been set to proceed for 150 generations and the population

size has been tested on the following values12:

pop1 100 individuals;

pop2 500 individuals;

pop3 1000 individuals;

pop4 2000 individuals.

The resulting trend of the fitness function for the different population sizes is

reported in Figure 4.26.

From what emerges by the fitness curves, population sizes underlaying the

1000 individuals show worst evolution trends. That’s because the probability of
12Values exceeding the 2000 individuals have not been tested because it would exploit an ex-

cessive computation time, without leading to significant improvements. As following discussed,

in fact, the algorithm reaches the asymptote for population sizes greater or equals to 1000 individ-

uals. To have further enhancement, the size would be increased by an order of magnitude, but this

would make impossible the algorithm to run on a general-purpose computer.

138

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

Figure 4.26: Fitness trend for different sizes of the population.

finding an optimal solution in the small number number of combinations implied

by those populations is very limited. On the other hand, populations containing

1000 or more individuals reach a common asymptote after a certain number of

iterations orbiting the 100 generations. Moreover, even though the population of

2000 individuals grows faster than that of 1000 individuals, the computational

effort required by the latter is far more efficient in terms of execution time and

processor effort. Population sizes exceeding the 2000 individuals are too expen-

sive for running on general purpose machines, against a minimal gain in fitness

scores. Other tests, in fact, have been performed on population sizes greater than

those above reported and they have always shown negligible variations with re-

spect to those presented, along with an heavier execution time and an expensive

processor effort.

The best compromise between efficiency and effectiveness consists thus in us-

ing population of 1000 individuals, what we have actually done in accomplishing

all these experiments.

A note should also be spent for what concerns the number of generations. It’s

clear that protracting the number of iteration for more than 150 generations would

certainly increase the probability of scoring a better fitness, but the gain is very

limited. As could be noticed, in fact, the greatest part of optimizations reach the

fitness asymptote before the 150 generations. We omit a dedicated study on gen-

erations sensitivity since it would lead to an easily foreseeable conclusion, indeed.

The best mix could then be obtained in using populations of 1000 individuals and

139

CHAPTER 4. A GENETIC MODEL FOR FUNCTIONAL ALLOCATION
AND LIFETIME MAXIMIZATION

150 generations.

4.6 Concluding remarks

Some final considerations are here provided to complete the picture concerning

the model and the relative experimental results.

Few insights are worth to be furnished about the initial insemination, that does

not belong to the sphere of model’s core issues but may help in better understand-

ing the application design.

The individuals composing a population are randomly generated according

to user-defined percentages of static and dynamic allocation. The algorithm al-

ways shows better performance with initializations characterized by a small ratio

of overall allocation, mainly composed by dynamic functions. This predilection

for rarefied initializations grounds on the risk-reduction they offer in avoiding

memory boundaries overflows and redundancy constraints violations in the early

generations. That’s because at the beginning of its iterations, the model needs

just to find an admissible solution, tough not optimal, to canalize its evolution in

enhancing the configuration in next generations.

Preliminary experiments have shown that starting with a population satisfy-

ing (or almost satisfying) all the constraints leads to better optimization results.

Studying this issue will be a central topic of our future work for further optimiza-

tions.

Another remark should be raised to point out that the present model has been

based on several worst case hypotheses, in order to fortify its robustness and cover

any potential exception at the same time. There are cases, although, in which these

limitations could be relaxed and studying such circumstances will be object of our

future work, as well.

140

Chapter 5

Conclusions

5.1 Directions

In this Thesis research we have faced the problem of reprogramming and config-

uring wireless sensor networks, characterized by tight resource constraints.

The work has been driven by the twofold target of implementing a power-

efficient mechanism for dynamically updating software on remote nodes and to

define a robust and effective mathematical framework for optimizing the func-

tional configuration of the network. The main guideline has been that of optimiz-

ing the network lifetime by minimizing energy consumption, while providing all

the necessary flexibility to make WSNs’ deployment as much effective as possi-

ble.

The various experiments have demonstrated that both the dynamic linking/loading

mechanism and the genetic model offer very promising perspectives in enhancing

WSNs’ capabilities. The first because of its energy efficiency and reprogramming

effectiveness; the second thanks to its powerful support in defining compelling

configurations of the network, even in presence of an high rate of complexity,

which would otherwise make impossible human-defined solutions.

We have also demonstrated that in boosting the flexibility degree of the func-

tional domain, aiming at the same time to minimize non-functional aspects such

as the energy consumption, there comes an overall improvement of the network

141

CHAPTER 5. CONCLUSIONS

potentialities.

The dynamic reprogramming mechanism we have proposed places at the inter-

ception of two already known approaches in WSN literature: dynamic linker and

pre-linked loadable modules. Both these techniques, however, suffer from very

harsh limitations: the first, as regards energy consumption and memory require-

ments, the second for what bears on the lack of scalability and unsynchronized

alignment between host and nodes. Our proposal takes advantages of the strong

points of each of the previous and introduces an hybrid configuration, which en-

ables the creation of small ready-to-load modules by dynamic linking standard

ELF files on host. The host, on opposite to what happens for classical pre-linked

modules approaches, is always maintained aligned to the actual configurations on

remote nodes by means of some meta-data (i.e. the symbol table), that contain

information about actual references of variables and functions in motes’ images.

The genetic model has been defined on strong mathematical basis, consider-

ing the applicative facets as well as the networking issues and hardware speci-

fications of a WSN’s domain. The main goal has been that of taking the most

from the flexibility introduced by the dynamic reprogramming mechanism to find

a (sub)optimal allocation for a certain set of functions, which can be statically or

dynamically assigned to a set of memory-constrained nodes for maximizing the

network’s lifetime. This constitutes an original contribution for the WSN’s field

of study, whose focus is still entrapped on networking and low-level issues that

no longer constitute the only concerns, being now at the threshold of real-word

WSNs’ deployments which require an adequate functional support too. Results

obtained in running the algorithm on real WSNs parameters have revealed a bright

way for further researches and investigations. Moreover, it has been opened a new

front of research for what orbits the WSN functional evolution.

These works have required a great effort, both in terms of time and intellectual

commitment. The experimental nature of our proposals keeps the door widely

opened for future works and inquiries, aiming at improving both their theoretical

and applicative frameworks. Following we present an outlook on future directions

for the present works.

142

CHAPTER 5. CONCLUSIONS

5.2 Future Works

Some future works have already been planned for both the dynamic linker/loader

and the genetic model. There are many interesting veins of development in front

of the current versions and there is also an outstanding opportunity of integrating

their frameworks with those by other components of WSNs’ operating systems

and applications.

5.2.1 Dynamic Linker/Loader

Symbol table hashing: The large size of the global nodes symbol table is due

for the most part to the strings representing symbol names. By defining a

suitable hashing technique, long names can be substituted with constant-

length signatures. This has the twofold advantage of reducing the symbol

table size (and thus saving memory on the node and diminishing the energy

required for downloading) and of making the search routines faster.

Differential symbol table download: When a symbol is needed for remote link-

ing and the contents of nodes symbol table does not coincide with the local

copy stored on the node, then the entire nodes symbol table must retrieved.

It is very likely, though, that only a very small subset of the symbols might

has changed. Differential download allows retrieving only the information

related to the symbols that have changed. This can either be achieved by

adding a compact dirty bit vector to the table or by modifying the structure

of each symbol table entry.

Protocol optimization: First of all we have noticed that the protocol overhead

accounts for a fraction of the overall energy consumption that ranges from

a minimum of 13% to a maximum of 50%. A first obvious optimization

consists in simplifying the protocol currently implemented by reducing the

number of request and acknowledgment packets. The first results obtained

show that this energy overhead can be reduced to 80J.

Distributed database: at the moment, only local databases are implemented to

143

CHAPTER 5. CONCLUSIONS

store the retrieved symbol tables. This constitute a good solution if all the

nodes of wireless sensor network are managed by a single host. If the di-

mension of WSN is such that many hosts are needed to control it, a dis-

tributed database for symbol tables has to be implemented. This database

will contain all the updated symbol tables.A generic host, who needs to

modify the status of the network, can access this database to have consis-

tent and updated information about the node. A possible solution to syn-

chronize the global database with the local ones could be a differential ac-

cumulation mechanism, based on delta-plus/delta-minus tables, well known

in Database’s literature.

5.2.2 Genetic Model

Managing pessimistic hypotheses: The model has been conceived to be as much

robust as possible. To this purpose we have toughen up some hypotheses

to encompass the largest number of possible eventualities. Though these

pessimistic hypotheses make the model very reliable, in some cases they

inevitably cause the fitness value to appear underscored respect to its po-

tential maximum. The most relevant example of such a kind of hypotheses

regards the dynamically allocated functions, which, according to the model,

could be executed only in one-at-time mode. This surely happens when the

functions’ footprints cover a large percentage of the available memory but,

on the other hand, it does not apply to the case of small-sized functions, that

can be executed all together until the node’s memory is saturated. Managing

this hypothesis such that it could intelligently adhere to the specific context

will certainly be object of further investigations.

Investigating optimal inseminations: It has been noted that starting at generation-

zero with all the individuals satisfying model’s constraints make the op-

timization process to converge more rapidly toward its asymptote and, in

some cases, to reach also a better fitness. Another line of research will thus

be followed in studying further optimizations of the insemination function,

144

CHAPTER 5. CONCLUSIONS

such that it could generate a larger number of admissible configurations,

while preserving a certain degree of variability.

On-line reconfigurations: Another interesting possibility consists in binding the

applicative logic of the model to the real-time evolution of a network. In do-

ing that, it would be possible to on-line reconfigure the functional allocation

among the nodes in response to some changes of the run-time conditions.

Integration with dynamic linker and NF managers: Finally, the most ambitious

goal is that of integrating the logic of the model with the dynamic linker and

the non-functional managers. In other words, the foremost achievement

would be that of providing a network with the maximum degree of local

”‘intelligence”’, such that of reducing at the minimal terms the need for

human control. Moreover, the energy-efficiency entailed by the adoption

of an integrated framework for self-configuring, would lead WSNs toward

more useful and effective real-world deployments.

145

CHAPTER 5. CONCLUSIONS

146

Bibliography

[1] Joseph Polastre, Robert Szewczyk, and David Culler. Telos: enabling ultra-

low power wireless research. In IPSN ’05: Proceedings of the 4th interna-

tional symposium on Information processing in sensor networks, page 48,

Piscataway, NJ, USA, 2005. IEEE Press.

[2] Wasp: Wirelessly accessible sensor populations, ist project n.

034963, sixth framework programme, at: www.wasp-project.org,

cordis.europa.eu/fetch?caller=proj ict&action=d&cat=proj&rcn=79339.

[3] Chee-Yee Chong and S.P. Kumar. Sensor networks: evolution, opportunities,

and challenges. Proceedings of the IEEE, 91(8):1247 – 1256, aug. 2003.

[4] P. Coy and N. Gross. 21 ideas for the 21st century. Business Week, pages 78

– 167, aug. 1999.

[5] N. Habermann. Dynamically modifiable distributed systems. In Proceed-

ings of the Distributed Sensor Net Workshop. Carnegie-Mellon University,

Pittsburgh, Penn., December 1978.

[6] Julian W. Gardner and Vijay K. Varadan. Microsensors, Mems and Smart

Devices. John Wiley & Sons, Inc., New York, NY, USA, 2001.

[7] Vladimir Trifa, Lewis Girod, Travis Collier, Daniel T Blumstein, and

Charles E. Taylor. Automated wildlife monitoring using self-configuring

sensor networks deployed in natural habitats. In International Symposium

on Artificial Life and Robotics (AROB07), Beppu, Japan, January 2007.

147

BIBLIOGRAPHY

[8] Geoffrey Werner-Allen, Konrad Lorincz, Matt Welsh, Omar Marcillo, Jeff

Johnson, Mario Ruiz, and Jonathan Lees. Deploying a wireless sensor net-

work on an active volcano. IEEE Internet Computing, 10(2):18–25, 2006.

[9] Paritosh Padhy, Rajdeep K. Dash, Kirk Martinez, and Nicholas R. Jennings.

A utility-based sensing and communication model for a glacial sensor net-

work. In AAMAS ’06: Proceedings of the fifth international joint confer-

ence on Autonomous agents and multiagent systems, pages 1353–1360, New

York, NY, USA, 2006. ACM.

[10] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and

John Anderson. Wireless sensor networks for habitat monitoring. In WSNA

’02: Proceedings of the 1st ACM international workshop on Wireless sensor

networks and applications, pages 88–97, New York, NY, USA, 2002. ACM.

[11] Victor Shnayder, Bor-rong Chen, Konrad Lorincz, Thaddeus R. F. Fulford

Jones, and Matt Welsh. Sensor networks for medical care. In SenSys ’05:

Proceedings of the 3rd international conference on Embedded networked

sensor systems, pages 314–314, New York, NY, USA, 2005. ACM.

[12] Malik Tubaishat, Peng Zhuang, Qi Qi, and Yi Shang. Wireless sensor net-

works in intelligent transportation systems. Wirel. Commun. Mob. Comput.,

9(3):287–302, 2009.

[13] Yadong Wan, Lei Li, Jie He, Xiaotong Zhang, and Qin Wang. Anshan: Wire-

less sensor networks for equipment fault diagnosis in the process industry.

In SECON, pages 314–322, 2008.

[14] Constantin Volosencu. Identification of distributed parameter systems, based

on sensor networks and artificial intelligence. WTOS, 7(6):785–801, 2008.

[15] Tian He, Sudha Krishnamurthy, John A. Stankovic, Tarek Abdelzaher,

Liqian Luo, Radu Stoleru, Ting Yan, Lin Gu, Jonathan Hui, and Bruce

Krogh. Energy-efficient surveillance system using wireless sensor networks.

In MobiSys ’04: Proceedings of the 2nd international conference on Mobile

148

BIBLIOGRAPHY

systems, applications, and services, pages 270–283, New York, NY, USA,

2004. ACM.

[16] Deborah Estrin Thanos Stathopoulos, John Heidemann. A remote code up-

date mechanism for wireless sensor networks. Technical report, November

26 2003.

[17] Niels Reijers and Koen Langendoen. Efficient code distribution in wireless

sensor networks. In WSNA ’03: Proceedings of the 2nd ACM international

conference on Wireless sensor networks and applications, pages 60–67, New

York, NY, USA, 2003. ACM.

[18] J. Koshy and R. Pandey. Remote incremental linking for energy-efficient

reprogramming of sensor networks. pages 354 – 365, jan.-2 feb. 2005.

[19] Lui Sha, Ragunathan Rajkumar, and Michael Gagliardi. Evolving depend-

able real-time systems. In IEEE Aerospace Applications Conference, pages

335–346, 1995.

[20] Chih-Chieh Han, Ram Kumar, Roy Shea, and Mani Srivastava. Sensor

network software update management: a survey. Int. J. Netw. Manag.,

15(4):283–294, 2005.

[21] John A. Stankovic, Chenyang Lu, Lui Sha, Tarek Abdelzaher, and Jennifer

Hou. Real-time communication and coordination in embedded sensor net-

works. In Proceedings of the IEEE, pages 1002–1022, 2003.

[22] Ting Liu, Christopher M. Sadler, Pei Zhang, and Margaret Martonosi. Imple-

menting software on resource-constrained mobile sensors: experiences with

impala and zebranet. In MobiSys ’04: Proceedings of the 2nd international

conference on Mobile systems, applications, and services, pages 256–269,

New York, NY, USA, 2004. ACM.

[23] Philip Levis, Neil Patel, David Culler, and Scott Shenker. Trickle: a self-

regulating algorithm for code propagation and maintenance in wireless sen-

sor networks. In NSDI’04: Proceedings of the 1st conference on Symposium

149

BIBLIOGRAPHY

on Networked Systems Design and Implementation, pages 2–2, Berkeley,

CA, USA, 2004. USENIX Association.

[24] P. Devanbu, M. Gertz, and S. Stubblebine. Security for automated, dis-

tributed configuration management. In In Proceedings, ICSE 99 Workshop

on Software Engineering over the Internet, 1999.

[25] G. Racherla and D. Saha. Security and privacy issues in wireless and mobile

computing. pages 509 –513, 2000.

[26] L. Sha. Upgrading real-time control software in the field. Proceedings of the

IEEE, 91(7):1131 – 1140, july 2003.

[27] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and

taxonomy of dependable and secure computing. Dependable and Secure

Computing, IEEE Transactions on, 1(1):11 – 33, jan.-march 2004.

[28] Gaul libraries reference guide, at: http://gaul.sourceforge.net/gaul reference guide-

0.1847-5.htm.

[29] C. Brandolese and W. Fornaciari. A framework for compile-time and run-

time management of non-functional aspects in wsns nodes. In Proceed-

ings of the 12th EUROMICRO Conference on Digital System Design, Patras,

Greece, Sep. 2009.

[30] J. Jeong, J. Kim, and A Board. Network reprogramming. 2003.

[31] Jonathan W. Hui and David Culler. The dynamic behavior of a data dis-

semination protocol for network programming at scale. In SenSys ’04: Pro-

ceedings of the 2nd international conference on Embedded networked sensor

systems, pages 81–94, New York, NY, USA, 2004. ACM.

[32] Prabal K. Dutta, Jonathan W. Hui, David C. Chu, and David E. Culler. Se-

curing the deluge network programming system. In IPSN ’06: Proceedings

of the 5th international conference on Information processing in sensor net-

works, pages 326–333, New York, NY, USA, 2006. ACM.

150

BIBLIOGRAPHY

[33] H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shucker,

J. Deng, and R. Han. Mantis: system support for multimodal networks of

in-situ sensors. In WSNA ’03: Proceedings of the 2nd ACM international

conference on Wireless sensor networks and applications, pages 50–59, New

York, NY, USA, 2003. ACM.

[34] Jan Beutel. Fast-prototyping using the btnode platform. In DATE ’06: Pro-

ceedings of the conference on Design, automation and test in Europe, pages

977–982, 3001 Leuven, Belgium, Belgium, 2006. European Design and Au-

tomation Association.

[35] Jaein Jeong and D. Culler. Incremental network programming for wireless

sensors. pages 25 – 33, oct. 2004.

[36] J. Lilius and I. Paltor. Deeply embedded python, a virtual machine for em-

bedded system. Technical report, Turku Centre for Computer Science at:

http://tucs.fi/magazin/output.php?ID=2000.N2.LilDeEmPy.

[37] A. Boulis and M.B. Srivastava. A framework for efficient and programmable

sensor networks. pages 117 – 128, 2002.

[38] D. Janakiram, R. venkateswarlu, and J. Nitin. Comis: Component oriented

middleware for sensor networks. In LANMAN ’05: Proceedings of the 14

th International Workshop on Local and Metropolitan Area networks, Wash-

ington, DC, USA, 2005. IEEE Computer Society.

[39] Liviu Iftode, Cristian Borcea, Andrzej Kochut, Chalermek Intanagonwiwat,

and Ulrich Kremer. Programming computers embedded in the physical

world. International Standard ISO, 8327, 1987.

[40] René Müller, Gustavo Alonso, and Donald Kossmann. Swissqm: Next gen-

eration data processing in sensor networks. In CIDR, pages 1–9, 2007.

[41] René Müller, Gustavo Alonso, and Donald Kossmann. A virtual ma-

chine for sensor networks. In EuroSys ’07: Proceedings of the 2nd ACM

151

BIBLIOGRAPHY

SIGOPS/EuroSys European Conference on Computer Systems 2007, pages

145–158, New York, NY, USA, 2007. ACM.

[42] Philip Levis and David Culler. Maté: a tiny virtual machine for sensor net-

works. In ASPLOS-X: Proceedings of the 10th international conference on

Architectural support for programming languages and operating systems,

pages 85–95, New York, NY, USA, 2002. ACM.

[43] Adam Dunkels, Niclas Finne, Joakim Eriksson, and Thiemo Voigt. Run-

time dynamic linking for reprogramming wireless sensor networks. In Sen-

Sys ’06: Proceedings of the 4th international conference on Embedded net-

worked sensor systems, pages 15–28, New York, NY, USA, 2006. ACM.

[44] Hongzhou Liu, Tom Roeder, Kevin Walsh, Rimon Barr, and Emin Gün Sirer.

Design and implementation of a single system image operating system for

ad hoc networks. In MobiSys ’05: Proceedings of the 3rd international

conference on Mobile systems, applications, and services, pages 149–162,

New York, NY, USA, 2005. ACM.

[45] Joel Koshy and Raju Pandey. Vmstar: synthesizing scalable runtime envi-

ronments for sensor networks. In SenSys ’05: Proceedings of the 3rd in-

ternational conference on Embedded networked sensor systems, pages 243–

254, New York, NY, USA, 2005. ACM.

[46] P. Buonadonna, D. Gay, J.M. Hellerstein, W. Hong, and S. Madden. Task:

sensor network in a box. pages 133 – 144, jan.-2 feb. 2005.

[47] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei

Hong. Tinydb: an acquisitional query processing system for sensor net-

works. ACM Trans. Database Syst., 30(1):122–173, 2005.

[48] P. Atzeni, S. Ceri, P. Fraternali, S. Paraboschi, and R. Torlone. Basi di dati

Architetture e linee di Evoluzione. McGraw-Hill, 2007.

152

BIBLIOGRAPHY

[49] Wai Fu Fung, David Sun, and Johannes Gehrke. Cougar: the network is the

database. In SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD interna-

tional conference on Management of data, pages 621–621, New York, NY,

USA, 2002. ACM.

[50] Chavalit Srisathapornphat, Chaiporn Jaikaeo, and Chien-Chung Shen. Sen-

sor information networking architecture. In ICPP ’00: Proceedings of the

2000 International Workshop on Parallel Processing, page 23, Washington,

DC, USA, 2000. IEEE Computer Society.

[51] Jan Beutel, Matthias Dyer, Lennart Meier, Matthias Ringwald, and Lothar

Thiele. Next-generation deployment support for sensor networks. In 207.

Computer Engineering and Networks Lab, Swiss Federal Institute of Tech-

nology, 2004.

[52] Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu. Rapid develop-

ment and flexible deployment of adaptive wireless sensor network applica-

tions. In ICDCS ’05: Proceedings of the 25th IEEE International Confer-

ence on Distributed Computing Systems, pages 653–662, Washington, DC,

USA, 2005. IEEE Computer Society.

[53] Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu. Towards a flex-

ible global sensing infrastructure. SIGBED Rev., 4(3):1–6, 2007.

[54] L. Szumel, J. LeBrun, and J. D. Owens. Towards a mobile agent frame-

work for sensor networks. In EmNets ’05: Proceedings of the 2nd IEEE

workshop on Embedded Networked Sensors, pages 79–87, Washington, DC,

USA, 2005. IEEE Computer Society.

[55] Takeshi Umezawa, Ichiro Satoh, and Yuichiro Anzai. A mobile agent-based

framework for configurable sensor networks. In MATA ’02: Proceedings

of the 4th International Workshop on Mobile Agents for Telecommunication

Applications, pages 128–140, London, UK, 2002. Springer-Verlag.

153

BIBLIOGRAPHY

[56] Chih chieh Han, Ram Kumar, Roy Shea, Eddie Kohler, and Mani Srivastava.

Sos: A dynamic operating system for sensor networks. In Proceedings of

the Third International Conference on Mobile Systems, Applications, And

Services (Mobisys. ACM Press, 2005.

[57] Joshua Lifton, Deva Seetharam, Michael Broxton, and Joseph A. Paradiso.

Pushpin computing system overview: A platform for distributed, embedded,

ubiquitous sensor networks. In Pervasive ’02: Proceedings of the First In-

ternational Conference on Pervasive Computing, pages 139–151, London,

UK, 2002. Springer-Verlag.

[58] Jochen Schiller, Achim Liers, Hartmut Ritter, Rolf Winter, and Thiemo

Voigt. Scatterweb - low power sensor nodes and energy aware routing. In

HICSS ’05: Proceedings of the Proceedings of the 38th Annual Hawaii In-

ternational Conference on System Sciences, page 286.3, Washington, DC,

USA, 2005. IEEE Computer Society.

[59] Pedro Jos Marrn, Matthias Gauger, Andreas Lachenmann, Daniel Minder,

Olga Saukh, and Kurt Rothermel. Flexcup: A flexible and efficient code up-

date mechanism for sensor networks. In In Proceedings of the Third Euro-

pean Workshop on Wireless Sensor Networks (EWSN 2006, pages 212–227,

2006.

[60] TIS Committee. Tool interface standard (TIS) executable and linking format

(ELF) specification, May 1995. Version 1.2.

[61] Mark Wilding and Dan Behman. Self-service Linux: mastering the art of

problem determination. Bruce Perens’ Open Source series. 2006.

[62] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. Tossim: accurate

and scalable simulation of entire tinyos applications. In SenSys ’03: Pro-

ceedings of the 1st international conference on Embedded networked sensor

systems, pages 126–137, New York, NY, USA, 2003. ACM.

154

BIBLIOGRAPHY

[63] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-level

sensor network simulation with cooja. In Local Computer Networks, Pro-

ceedings 2006 31st IEEE Conference on, pages 641 –648, 14-16 2006.

[64] Jiming Chen, Jianhui Zhang, Weiqiang Xu, Lei Shu, and Youxian Sun. The

development of a realistic simulation framework with omnet++. In Future

Generation Communication and Networking, 2008. FGCN ’08. Second In-

ternational Conference on, volume 1, pages 497 –500, 13-15 2008.

[65] C. Hanle and M. Hofmann. Performance comparison of reliable multicast

protocols using the network simulator ns-2. In Local Computer Networks,

1998. LCN ’98. Proceedings., 23rd Annual Conference on, pages 222 –237,

11-14 1998.

[66] I.S. Hammoodi, B.G. Stewart, A. Kocian, and S.G. McMeekin. A compre-

hensive performance study of opnet modeler for zigbee wireless sensor net-

works. In Next Generation Mobile Applications, Services and Technologies,

2009. NGMAST ’09. Third International Conference on, pages 357 –362,

15-18 2009.

[67] B.L. Titzer, D.K. Lee, and J. Palsberg. Avrora: scalable sensor network sim-

ulation with precise timing. In Information Processing in Sensor Networks,

2005. IPSN 2005. Fourth International Symposium on, pages 477 – 482, 15

2005.

[68] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J.S. Baras. Atemu: a fine-

grained sensor network simulator. In Sensor and Ad Hoc Communications

and Networks, 2004. IEEE SECON 2004. 2004 First Annual IEEE Commu-

nications Society Conference on, pages 145 – 152, 4-7 2004.

[69] Lewis Girod, Nithya Ramanathan, Jeremy Elson, Thanos Stathopoulos,

Martin Lukac, and Deborah Estrin. Emstar: A software environment for

developing and deploying heterogeneous sensor-actuator networks. ACM

Trans. Sen. Netw., 3(3):13, 2007.

155

BIBLIOGRAPHY

[70] Sung Park, Andreas Savvides, and Mani B. Srivastava. Sensorsim: a simu-

lation framework for sensor networks. In MSWIM ’00: Proceedings of the

3rd ACM international workshop on Modeling, analysis and simulation of

wireless and mobile systems, pages 104–111, New York, NY, USA, 2000.

ACM.

[71] G.V. Merrett, N.M. White, N.R. Harris, and B.M. Al-Hashimi. Energy-aware

simulation for wireless sensor networks. In Sensor, Mesh and Ad Hoc Com-

munications and Networks, 2009. SECON ’09. 6th Annual IEEE Communi-

cations Society Conference on, pages 1 –8, 22-26 2009.

[72] S. Sundresh, Wooyoung Kim, and G. Agha. Sens: a sensor, environment

and network simulator. In Simulation Symposium, 2004. Proceedings. 37th

Annual, pages 221 – 228, 18-22 2004.

[73] A. Köpke, M. Swigulski, K. Wessel, D. Willkomm, P. T. Klein Haneveld,

T. E. V. Parker, O. W. Visser, H. S. Lichte, and S. Valentin. Simulating

wireless and mobile networks in omnet++ the mixim vision. In Simutools

’08: Proceedings of the 1st international conference on Simulation tools and

techniques for communications, networks and systems & workshops, pages

1–8, ICST, Brussels, Belgium, Belgium, 2008. ICST (Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering).

[74] Milos Blagojevic, Majid Nabi, Teun Hendriks, Twan Basten, and Marc

Geilen. Fast simulation methods to predict wireless sensor network per-

formance. In PE-WASUN ’09: Proceedings of the 6th ACM symposium on

Performance evaluation of wireless ad hoc, sensor, and ubiquitous networks,

pages 41–48, New York, NY, USA, 2009. ACM.

[75] Thiemo Voigt, Joakim Eriksson, Fredrik Österlind, Robert Sauter, Nils As-

chenbruck, Pedro J. Marrón, Vinny Reynolds, Lei Shu, Otto Visser, Anis

Koubaa, and Andreas Köpke. Towards comparable simulations of cooperat-

ing objects and wireless sensor networks. In VALUETOOLS ’09: Proceed-

ings of the Fourth International ICST Conference on Performance Evalua-

156

BIBLIOGRAPHY

tion Methodologies and Tools, pages 1–10, ICST, Brussels, Belgium, Bel-

gium, 2009. ICST (Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering).

[76] Jianming Zhang, Yaping Lin, Cuihong Zhou, and Jingcheng Ouyang. Op-

timal model for energy-efficient clustering in wireless sensor networks us-

ing global simulated annealing genetic algorithm. In Intelligent Information

Technology Application Workshops, 2008. IITAW ’08. International Sympo-

sium on, pages 656 –660, 21-22 2008.

[77] Sajid Hussain, Abdul W. Matin, and Obidul Islam. Genetic algorithm for en-

ergy efficient clusters in wireless sensor networks. In Information Technol-

ogy, 2007. ITNG ’07. Fourth International Conference on, pages 147 –154,

2-4 2007.

[78] Hyun-Sik Seo, Se-Jin Oh, and Chae-Woo Lee. Evolutionary genetic al-

gorithm for efficient clustering of wireless sensor networks. In Consumer

Communications and Networking Conference, 2009. CCNC 2009. 6th IEEE,

pages 1 –5, 10-13 2009.

[79] E. Heidari and A. Movaghar. Intelligent clustering in wireless sensor net-

works. In Networks and Communications, 2009. NETCOM ’09. First Inter-

national Conference on, pages 12 –17, 27-29 2009.

[80] Leslie Lamport. Time, clocks, and the ordering of events in a distributed

system. Commun. ACM, 21(7):558–565, 1978.

[81] Kay Rmer, Philipp Blum, and Lennart Meier. Time synchronization and

calibration in wireless sensor networks. In Handbook of Sensor Networks:

Algorithms and Architectures. 2005.

157

