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Sommario

La bicuspidia dell’aorta (BAV) è l’anomalia congenita più frequente del

sistema cardiocircolatorio. La valvola aortica bicuspide può portare allo

sviluppo prematuro di rilevanti malattie della valvola, come stenosi o in-

sufficienza e endocarditi. Anomalie dell’aorta, come dilatazione aortica,

aneurisma e dissezione, sono state rilevate in presenza di BAV in molti

pazienti. L’influenza di questa patologia sullo sviluppo di aneurisma

dell’aorta ascendente può essere spiegata attraverso la teoria cosiddetta

“genetica” o con la teoria “emodinamica”. Allo scopo di investigare il

ruolo della distribuzione dello sforzo di taglio in aorta ascendente e degli

sforzi meccanici sulla parete aortica, sono stati utilizzati in questo la-

voro di tesi strumenti computazionali di fluido dinamica e di meccanica

delle strutture. Sono stati sviluppati e implementati un modello fisio-

logico e un modello BAV dell’arco aortico implementando l’interazione

fluido struttura (FSI) (sangue - parete aortica), e prendendo in consider-

azione l’alterata distribuzione di velocità a valle della valvola bicuspide.

Comparando i risultati durante il ciclo cardiaco, gli sforzi meccanici della

parete aortica dei due modelli non hanno mostrato significative differenze,

mentre gli sforzi di taglio alla parete aortica (WSS) per il modello BAV

presentano valori sensibilmente superiori. In particolare, durante il picco

sistolico la differenza puo raggiungere il 70% proprio dove l’aorta ascen-

dente è clinicamente più soggetta allo sviluppo di aneurisma. Questo

studio computazionale sembra quindi confermare l’ipotesi che il WSS

possa giocare un ruolo fondamentale nell’attivazione dei meccanismi di

meccano-trasduzione che portano all’insorgenza di aneurisma in presenza

di BAV.
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Abstract

Bicuspid aortic valve (BAV) disease is the most frequent congenital anomaly

of the heart or great vessels. Congenital BAV may lead to premature de-

velopment of significant aortic valve diseases, such as aortic valve steno-

sis or regurgitation and endocarditis. Abnormalities of the aorta, such

as aortic dilatation, aneurysm and dissection, have also been described

in association with BAV. The influence of the BAV’s presence on the

aneurysm development can be explained by means of either the “ge-

netic” or the “hemodynamic” theory. In order to investigate the role of

the shear stress distribution on the ascending aorta and the mechanical

stresses on the aortic arch wall, fluid dynamics and structural compu-

tational tools are used. A physiological model and a BAV model of the

aortic arch have been developed using a fluid-structure coupling and tak-

ing into account the velocity distribution conditions downstream of the

different valve morphology. Comparing the results in a cardiac cycle,

mechanical stresses on the ascending aortic wall don’t show significant

differences, while the wall shear stresses (WSS) computed for the BAV’s

model appears to be increased. Particularly during the systolic peak

the difference is more than 70% where the ascending aorta is more sub-

jected to the development of aneurysm. This computational study seems

to confirm the hypothesis that the WSS may play the main role in the

mechanotransduction pathways leading to aneurysm in presence of BAV.
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Chapter 1

Introduction

Congenital bicuspid aortic valve, the most frequent cardiac malformation

(1-2% of all live birth) is known to be a predisposing factor for devel-

opment of ascending aortic dilative disease. An ascending dilatation or

aneurysm has been found in as much as 50-70% of adult patients with

a bicuspid aortic valve (BAV) [6]. Despite this relevant epidemiology,

the pathogenesis of aortic dilatation associated to BAV has still to be

elucidated.

Two opposite theories have been proposed: a “genetic” theory, attribut-

ing both valve malformation and aortic intrinsic weakness to a common

inherited developmental defect, and a “hemodynamic” theory, attribut-

ing a central role to flow derangements caused by valve dysfunction (post-

stenotic mechanism). A precise mechanisms of inheritability has not been

discovered, nor an underlying genetic defect has been detected, and the

genetic theory seems to be limited by the evidence of BAV subjects not

developing aortic dilation. On the other side, the hemodynamic theory is

contrasted by the evidence of aortic dilatations in BAV subjects without

stenosis or with a mild degree stenosis. To clarify pathogenetic aspects

of this matter could prelude to the development of preventive or thera-

peutic strategies.

In the chapter 2 the clinical aspect of the BAV disease and the possible

correlation with the aneurysm of the ascending aorta is discussed.

During the last decade the use of numerical techniques, aimed at

analysing and understanding the biomechanics of the aortic root, has

been increasing. These techniques, in their various versions, allow to

1



Chapter 1 Introduction

simulate the structural behaviour of the aortic wall and of the valvular

leaflets (computational structural dynamics - CSD), or the hemodynam-

ics within the studied domain (computational fluid-dynamics-CFD).

A single study, by Robicsek and colleagues [45], has been so far published

aiming to reconstruct in mathematical models the rheological and biome-

chanical anomalies occurring with BAV. Robicsek showed that, due to

the eccentricity of valve opening, with excessive folding and wrinkling of

the cusp margins, flow is highly irregular, even without clinically ev-

ident valve stenosis. In particular, the vortices (eddy currents) that

normally form in the aortic root and maintain the leaflets suspended

in the systolic flow minimizing their stresses, were observed beyond the

sino-tubular junction in BAV (ascending aorta proper), instead of being

confined within the sinuses of Valsalva like in the trileaflet valve. Turbu-

lences were directed toward the right and anteriorly, and wall stress was

also found to be abnormally increased in the right anterior-lateral aspect

of the ascending aortic wall. Whether this pattern could be applied also

in the real setting of BAV patients and could be related to the develop-

ment of aortic dilative disease is an appealing hypothesis to test.

The aim of this work is to compare the physiological and the patho-

logical condition in terms of flow patterns and stresses of the aortic wall

using computational tools, in order to investigate the “hemodynamic”

theory grounding.

Two models have been developed and analyzed including a fluid do-

main (representing the blood) and a solid domain (representing the aor-

tic wall). Particularly, the wall shear stress distributions in the aortic

arch during the cardiac cycle and the stresses of the arterial wall are

investigate and compared.

In chapter 3, after a brief discussion of the main equations of the

continuum mechanics, several constitutive models for the aortic wall are

presented; among these the hyperelastic model of Demiray is selected

and implemented in order to simulate the aortic behavior.

In chapter 4 the assumption for the blood’s rheology and the main

fluid dynamic equations are declared and discussed. The blood will be

2



Chapter 1 Introduction

modeled as an incompressible and newtonian fluid and the flow inside

the aortic region as laminar.

An important issue of this work is the coupling between the fluid and

the solid domain. In the chapter 5 the mathematical and computational

aspects of the FSI (fluid-structure interaction) are discussed. The fluid-

structure coupling using ABAQUS 6.8 and Star CD 4.1 has been done

in order to achieve the proposed goals.

The methods used (including boundary conditions, initial conditions

etc.) and the results of the simulations are showed in chapter 6 compar-

ing the models developed.

In last chapter some conclusions are described and the critical aspects

of the models and the possible improvements are discussed.

3



Chapter 2

Clinical background

In industrialized countries the most common cardiovascular disease af-

ter hypertension and atherosclerosis is degenerative aortic valve disease,

and aortic valve procedures are at the second place among the most fre-

quent cardiac surgery operations, following coronary bypass grafting. In

a recent series, over half of the patients referred for surgery for isolated

aortic valve stenosis were noted to have a congenital bicuspid aortic valve

(BAV). It is well-known that BAV, the most frequent cardiac malforma-

tion (1-2% of live-births), is a predisposing factor to dilative disease of

the ascending aorta [36] . An ascending dilatation or aneurysm has been

encountered in as much as 50-70% of adult subject with a BAV. The risk

of aortic dissection is 5 to 9-fold increased with BAV when compared

to the general population. Therefore, in the clinical practice it is not

uncommon to encounter, often in young patients, the association of a

BAV, with or without severe valve dysfunction, with a varying degree

of ascending aorta enlargement. This situation constitutes still today a

surgical dilemma, with regard both to surgical timing and to the surgical

technique to employ. Surgical concerns are strictly related to the lack of

a pathogenetic explanation for this association.

2.1 The BAV and the aneurysm

Two are the main pathogenetic theories. The ”genetic” theory is sug-

gested by the similarity of the histological lesions (i.e. medial degenera-

tion features) of BAV- and Marfan-associated aortic dilatations and by
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Chapter 2 Clinical background

their development in young age: it alleges that a genetically determined

defect of embryonic development may affect those neural crest cells that

concur in the formation of both the venrtriculo-arterial valves and the

aorta and pulmonary artery. Errors in this embryogenetic mechanism

could lead to both valve malformation and the tendency of the aortic

wall to degenerate. A familial clustering of BAV has been demonstrated,

although the inheritance mechanism has never been elucidated and the

genetic defect implied has never been disclosed.

The “hemodynamic” theory attributes the tendency toward aortic

enlargement to the increased mechanical stimulation on the aortic wall

related to the abnormal flow downstream from the malformed valve. It

is known that both in physiological conditions, such as during vascular

system fetal maturation, and in diseases, flow conditions can influence

the vascular wall function and microstructure. The hemodynamic theory

would also explain the differences between Marfan’s Syndrome and BAV

in terms of age of aortic complication onset (relatively older in BAV) and

in terms of systemic involvement (lacking in BAV). However, the contro-

versy remains, above all for the evidence of aortic dilatations occurring

also in patients with a normally functioning or only mildly stenotic BAV:

in those cases the “post-stenotic” mechanism would seem less tenable. In

particular Keane and colleagues [26] matching BAV and tricuspid aortic

valve patients for degree of aortic valve dysfunction, found that aortic

diameters were greater in BAV, beyond that predicted by the degree of

hemodynamic disturbance. The Authors therefore supported the genetic

theory. However, another recent echocardiography study showed that the

phenomenon of post-stenotic dilation is frequent (about 1/4 of all aortic

valve stenosis patients), but, since a direct correlation between degree of

stenosis and aortic diameter could be found, it appeared to be an early

adaptive reaction to stroke volume reduction, not progressing parallel to

stenosis worsening.

Another unresolved question related to the pathogenetic debate is

why not all BAV subjects experience aortic complications and therefore

what could distinguish BAV patients with ascending dilation to those

without it. Some factors are known to condition the progression towards

5



Chapter 2 Clinical background

Figure 2.1: BAV anatomy

valve dysfunction: for example dislipidaemia, smoke and interestingly

valve gross morphology can influence the rapidity of stenosis develop-

ment. Stenosis progresses more rapidly if the cusps are asymmetrical

in surface area and in antero-posterior position (raphe between non-

coronary and right coronary cusps). However, the most common cusp

fusion pattern is the left-right coronary one (figure 2.1). It is not possi-

ble today to predict the risk of aortic dilatation/aneurysm in the individ-

ual patient with BAV. This makes a strict echocardiography follow-up

mandatory in BAV patients even without aortic stenosis.

New imaging techniques, such as three-dimensional phase-contrast

cine-magnetic resonance, have been already demonstrated to have the

potential for providing precise and quantifiable data on flow patterns in

the ascending aorta of the individual patient. Nevertheless, they have

not been applied to the study of BAV yet. Such techniques also allow

for a brilliant alternative to mathematical simulations of flow (through

CFD) in providing, by means of the lagrangian analysis of the trajec-

tory of virtual particles, hemodynamic data to be used for quantification

of biomechanical forces acting on the vascular wall in computer models,

with remarkable cost and artifact reduction. Histology picture of ascend-

ing aorta dilation in BAV disease is represented by medial degeneration

(formerly known as cystic medial necrosis). This is not a specific fea-

6



Chapter 2 Clinical background

ture of this condition, since it underlies also senile dilation of ascending

aorta (and it is in fact considered as the physiological substrate of medial

ageing) and non-inflammatory aortic root disease, a term encompassing

syndromic forms (Marfan’s Syndrome, with fibrillin-1 congenital defect,

Ehler-Danlos’ Syndrome, with tenasscin-X defect and so on), idiopathic

sporadic forms or those associated with aortic valve disease (post-stenotic

dilation). In spite of the common histological picture, it is believed that

the different forms could be characterized by different microstructural

and molecular changes.

In particular extracellular matrix (ECM) proteins and proteases have

a lead role in the processes of vessel wall remodeling that continuously

occur also in the physiological setting, modulating the biomechanical

properties of the wall and thereby allowing for its correct functioning.

Alterations in those processes may cause the early “wearing out” of the

arterial wall and consequent dilatation. The data raised by several Au-

thors that have recently focused their attention on the morphological and

microstructural facets of this disease have been often inconsistent and not

comparable with one other. Bondermann and colleagues observed an in-

crease in smooth muscle cells apoptotic index in fragments of aortic wall

from patients with BAV without aortic dilatation, compared to the aortic

wall from trileaflet aortic valve patients [35].

Among patients with aortic dilation there were no differences in apop-

tosis between BAV and non-BAV instead. This seemed to suggest that

apoptosis could be an early event in the development of BAV associated

dilation but non in the setting of a tricuspid valve. In a concurrent mor-

phometry study from the Toronto research group, however, no differences

were observed in terms of number of cells between BAV and non-BAV

patients, but they differed only in terms of elastic fibres fragmentation

[39].

An attempt to go deeper in this investigations have come from Fedak

and colleagues, who evaluated through immunohistochemistry the con-

tent of fibrillin the aortic media of BAV and non-BAV patients and

through zymography the amount and activity of matrix metalloprotease-

2 (MMP-2, degrading elastin and other medial matrix proteins). Briefly,
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Chapter 2 Clinical background

their results suggested a reduction in fibrillin amount with BAV and

a significant increase in MMP-2 active form, when compared to aortas

with tricuspid aortic valve. Unfortunately, in that study the two groups

in comparison were heterogeneous, being half of the aortas in the BAV

groups dilated versus only 1 out of 11 aortas in the tricuspid group, and

this could have heavily affected the observed results. Each published

morphostructural study have so far left unresolved the question of the

mechanisms of development of cell and ECM changes.

The phenomena of vascular tissue remodeling are currently considered

to be involved in clinically important processes, such as atherogenesis,

restenosis after balloon angioplasty and aneurysm development.

A key role seems to be played in all those situations by medial smooth

muscle cell (SMC) change from the basal contractile phenotype to a syn-

thetic one. Bunton et al., in a mouse model of Marfan’s syndrome,

found that the loss of SMC attachment to the elastic laminae, normally

mediated by fibrillin-rich microfibrils, induces SMC conversion to syn-

thetic phenotype and over-production of ECM components and of pro-

teolytic enzymes, including matrix metallo-proteinases, responsible for

subsequent massive elastolysis and collagenolysis.

However, vascular SMC activation and matrix degradation have been

found to be triggered not only by congenital defects in cell-matrix at-

tachment, but also by acquired conditions, and especially by mechanical

stimuli, such as increased transmural pressure and cyclical strain (peri-

odic deformation due to the pulsatile nature of flow) alterations. Some

ECM proteins like fibronectin, tenascin, laminin and collagen IV, being

constituents of the basal lamina, thin layer of matrix surrounding cells

and connecting them to the elastic lamellae, play an important role in

the continuous signal exchange between SMCs and ECM, affecting cell

functional state.

Cell adhesion to the physiologic substrate maintains the differentiated

state in the adult, preserves cell integrity and represses pro-apoptotic sig-

nals, while cell detachment from the matrix has opposed effects, among

whom the anoikis, i.e. cell death mediated by cell-matrix interaction

changes.
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Chapter 3

Computational models of the

arterial wall

The constitutive models presented in this chapter have been developed

in order to describe the macroscopic behavior of different kind of bio-

logical materials. These models are extensively discuss in the theory of

the Continuum mechanics [53]. One assumption of this thesis is the def-

inition of deformation fields in the referential or material configuration,

known with the name of Lagrangian description. When the mild tissues

are loaded, they show large strains and a highly non linear behavior.

If the material behaviour is considered as hyperelastic, when the acting

loads disappear, it returns to its initial position. Nevertheless, when the

biological tissues are subjected to cyclic loads, they show a considerable

energy dissipation. The realistic constitutive models able to simulate the

behavior of these kind of tissue have to take into account both aspects.

The energy functions more common in the literature [51] [37] [20] will

be discuss in the next sections; starting from these functions the corre-

sponding constitutive models will be obtained. The focus of this work

will be on the hyperelastic models that are the commonly used in the

biomechanic fields.

3.1 Kinematic and strain-stress relation

For a body B that take a domain Ω0 with boundary ∂Ω0 in the three

dimensional space (undeformed configuration), it can be defined the de-

9



Chapter 3 Computational models of the arterial wall

formation (fig. 3.1) through the function:

X : Ω0 → Ω (3.1)

that identify the deformed position x of the body B with the coordinate

Figure 3.1: Kinematics of the continuum solid

X related to the undeformed configuration Ω0, such that x = X (X),

where Ω is the current configuration of the body B. The deformation

gradient tensor F is defined as the derivative of this function respect to

the vector of material coordinates [29] :

F =
∂x

∂X
(3.2)

The ratio between the volumes of the deformed and undeformed con-

figuration will be indicate with J = det(F). It can be observed that

F−1 is always defined because X−1 always exists. Applying the polar

decomposition of the deformation gradient F, it can be obtained:

F = RU = VR (3.3)

where the orthogonal tensor R is the rotational tensor and the positive

symmetric tensors U and V are respectively the right and the left stretch

tensors, which are related by the following expressions:

U = RTVR and V = RURT (3.4)

From the deformation gradient tensor it can be define the right and

left Cauchy-Green tensor, respectively C and b:

C = FTF and b = FFT (3.5)

10



Chapter 3 Computational models of the arterial wall

Using the equation (3.3) and considering that R is an orthogonal tensor

(RRT = RTR = I where I is the identity tensor), these tensors can be

expressed as:

C = U2 and b = V2 (3.6)

The invariants of C are:

I1 = tr(C) I2 = 1
2
[(tr(C))2 − tr(C2)] I3 = detC (3.7)

It’s often used the Green-Lagrange deformation tensor, defined as

E =
1

2
(C− I) (3.8)

The stresses indicate the force divided by a unit surface of the material.

Relating to the fig. 3.2, df = tds, where df is a force applied on a surface

ds. If t is the stress vector related to the surface s and n the normal

Figure 3.2: Stresses of the continuum solid

vector of the surface, the Cauchy theorem establishes.

t = σ · n (3.9)

being σ the Cauchy stress tensor. From the angular momentum balance

it can be obtained that σ is a symmetric tensor.

3.2 Time-independent models

A material can be defined as hyperelastic if its free energy density1 Ψ in

the reference state Ω0 is function only of the deformation state [8], such

that is possible to write Ψ = Ψ(F) or Ψ = Ψ(C). If the temperature

1The free energy is expressed by Ψ = e− Tη where e is the intern energy density,

T is the temperature and η is the entropy density
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Chapter 3 Computational models of the arterial wall

and the entropy can be considered constants, the work density of the

internal forces must be equal to the free energy increment, dW = dΨ,

and for this reason W = W (F) = W (C). The constitutive equations

can be derived using the energy density functions W . For a general case

(compressible material) this function can be expressed via an additive

decomposition [52]:

W = Wvol +Wiso (3.10)

being (Wvol) and (Wiso) the volumetric and isochoric parts, respectively.

In this work the expression of the volumetric part will be considered

equal to Wvol = K
2

ln2 J , where K is the volumetric module [37] of the

material. Starting from F is simple to obtain the tensor E, so it is

possible to express W as a function of the six independent components

of the Green-Lagrange tensor E. Then, the stress tensor S can be write

in terms of the energy function:

S =
∂W

∂E
(3.11)

σ =
1

J
FSFT =

1

J
F
∂W

∂E
FT (3.12)

In non linear materials, the elastic tensor C can be defined that for a

hyperelastic material is:

C = 4
∂2W

∂C∂C
(3.13)

From a numerical point of view this tensor is useful because it can be

linearized.

3.2.1 Isotropic constitutive models

The first works in the development of models for the characterization of

hyperelastic materials were presented by Mooney and Rivlin [33] [44].

Later, several deformation energy functions have been proposed by dif-

ferent authors [37] in order to represent the behavior of these materials.

Here some of the most used energy functions will be discuss, although in

this work only the Demiray model will be used in order to simulate the

behaviour of the aortic wall.

12
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• Neo-Hookean

This is one of the simplest energy function and is defined as:

W =
µ

2
(I1 − 3) (3.14)

where µ is the constant of the model.

• Generalized Mooney-Rivlin

In this model the energy function is expressed as:

W =
∞∑
r=0

∞∑
s=0

∞∑
t=0

Crst(I1 − 3)r(I2 − 3)s(I3 − 1)t (3.15)

where I1, I2 and I3 are the invariants of the tensor C; r, s, t are

natural numbers that can vary between 0 and ∞, and Crst are pa-

rameters that represent the model constants. This model has the

advantage to be polynomial. Using experimental data it is possi-

ble to assign a value to these constants with the minimum square

method with a reasonable range of values for r, s and t (usually be-

tween 0 and 3). When the material is totally incompressible I3 = 0

and the function becomes:

W =
∞∑
r=0

∞∑
s=0

Crs(I1 − 3)r(I2 − 3)s (3.16)

and leads to the following formulations:

- One parameter Mooney-Rivlin

Is the simplest shape of the Mooney-Rivlin model and it con-

siders only the first term of the equation (3.16); it coincides

with the NeoHookean model and is expressed as:

W = C10(I1 − 3) (3.17)

Its capacity to simulate the soft tissue is very limited.

- Two parameters Mooney-Rivlin

W = C10(I1 − 3) + C01(I2 − 3) (3.18)

Also in this case the approximation of the experimental data

is limited; it can be obtained realistic results only until a 60%

of stretching.
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- Three parameters Mooney-Rivlin

W = C10(I1 − 3) + C01(I2 − 3) + C11(I1 − 3)(I2 − 3) (3.19)

The main feature of this model is that the elastic tangential

module is not constant, but a good experimental approxima-

tion can be obtain for a large range of stretching.

- Three parameters Yeoh

W = C10(I1 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3 (3.20)

This is a high order model and have the advantage to depend

only on I1.

• Demiray

The energy function proposed by Demiray [10] and applied by

Delfino [4] is:

W =
a

b

[
exp

(
b

2
(I1 − 3)

)
− 1

]
(3.21)

This model depending only on the I1 make easy the computational

implementation. It presents good approximation also for large de-

formation. This model needs only two parameters, being a the

sloop in the origin of the uniaxial stress-strain curve for the uniax-

ial tension test.

• Odgen

in this model the energy function is [37]:

W =
N∑
m=1

µm
αm

(λαm
1 + λαm

2 + λαm
3 − 3) (3.22)

where αm and µm(m = 1, . . . , N) are real number, and N is a

positive natural number such that:

N∑
m=1

µmαm = 2G (3.23)

where G is the transversal elastic module related to the material

configuration (undeformed). Considering N = 2, the Ogden model

is reduced to the two parameters Mooney-Rivlin model:
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W =
µ1

2
(λ2

1 + λ2
2 + λ2

3 − 3)− µ2

2
(λ−2

1 + λ−2
2 + λ−2

3 − 3) (3.24)

with α1 = −α2 = 2 and µ1 = 2C10, µ2 = −2C01, where µ1, µ2

and µ3 are the own value of C also called principal extensions. In

literature this is indicate as one of the best model for a soft tissue

with very large deformation [20] [43]. The disadvantage is that

setting the parameters of the model is difficult.

The stress tensor and the constitutive material model

For the computational implementation of the constitutive model de-

scribed above, the expression of the stress tensor is necessary. In this

work the hyperelastic model of Demiray will be extensively used; hence

the expression of the second stress tensor of Piola-Kirchoff S and the

constitutive elastic tensor C will be obtained. It can be observe in the

equation (3.21) that the energy function depend only on the invariants

of the tensor C, and they can be expressed as:

I1 = tr(C) = Cii = λ2
1 + λ2

2 + λ2
3 (3.25)

I2 =
1

2
(I2

1 − tr(C2)) = λ2
2λ

2
3 + λ2

3λ
2
1 + λ2

1λ
2
2 (3.26)

I3 = (detF)2 = λ2
1λ

2
2λ

2
3 (3.27)

If the incompressibility of the material can be assumed, the equation

(3.27) become:

λ2
1λ

2
2λ

2
3 = 1 or λ1λ2λ3 = det F = 1 (3.28)

From equation (3.8) and (3.11) the second stress tensor of Piola-Kirchoff

can be expressed as :

S = 2
∂W

∂C
(3.29)

where ∂W
∂C

have the following form:

∂W

∂C
=
∂W

∂I1

· ∂I1

∂C
+
∂W

∂I2

· ∂I2

∂C
+
∂W

∂I3

· ∂I3

∂C
(3.30)

The derivatives of the invariants respect to the tensor C can be expressed

as:
∂I1

∂C
=
∂Cii

∂Ckl

= δikδil = δkl (3.31)
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∂I2

∂C
=

1

2

∂(CiiCjj −CijCji)

∂Ckl

=
1

2
(δikδilCjj + Ciiδjkδjl + Cjiδikδjl)−Cijδjkδil

=
1

2
(δklI1 + I1δkl − 2Ckl)

= I1δkl −Ckl

(3.32)

∂I3

∂C
= I3C

−1 = cofactor(Cij) =


A11 A12 A13

A22 A23

sim A33

 (3.33)

where the coefficients of this matrix are:

A11 = C22C23 −C2
23

A22 = C11C33 −C2
13

A12 = C13C23 −C12C33

A33 = C11C22 −C2
12

A13 = C12C23 −C13C22

A33 = C12C13 −C23C11

(3.34)

Here the material is assumed as incompressible, so I3 = J2 = 1 and
∂W
∂I3

= 0. With this hypothesis and using the equations (3.29), (3.30),

(3.31) and (3.32), the second tensor of Piola-Kirchoff can be expressed

as:

Sij = 2

(
∂W

∂I1

δij +
∂W

∂I2

(I1δij −Cij)

)
(3.35)

where ∂W
∂Ii

depends on the energy function of the material model.

The constitutive elastic tensor is then:

C = 2
∂S

∂C
(3.36)

and it can be set for every specific material model. For the particular

case of Demiray model, the results of interest are:

∂W

∂I1

=
a

2
exp

(
b

2
(I1 − 3)

)
(3.37)

The tensor S is expressed as:

Sij = a · exp

(
b

2
(I1 − 3)

)
δij (3.38)

16



Chapter 3 Computational models of the arterial wall

Using the equations (3.36) and (3.38), it is possible to write the elastic

constitutive tensor for a Demiray material as:

Cijkl = a · b · exp

(
b

2
(I1 − 3)

)
δklδij (3.39)

3.2.2 Anisotropic constitutive models

According to the literature [38] [50] [25] the mechanical behaviour of the

arterial tissue is anisotropic; this behaviour is related to the distribution

of the collagen fiber. There are many energy function able to simulate

this behavior. Among this, two of the most used in biomechanic field are

discussed.

• Holzapfel model

This model tries to characterize the anisotropy consistently with

the arterial structure; it is based on the hypothesis that the fibers

of collagen are oriented like a helix with a constant angle along the

axial direction of the arteria (fig. 3.3). The general method used

is based on the pseudo-invariants of Spencer [48]. This model con-

sideres the orientation of two symmetric families of fibers defined

in their reference state through the unit vectors a and a′, which

form symmetric angles equal to ±ϕ with the axis of the vessel.

From this, it is possible to define the invariants I4 = a ·C · a and

I6 = a′ ·C · a′.

The incompressible model proposed by Holzapfel and Gasser [21]

is defined by the energy function:

W =
c

2
(I1 − 3) +

k1

2k2

∑
α=4,6

[
exp

(
k2(Iα − 1)2

)
− 1
]

(3.40)

where c, k1, k2, ϕ are four positive parameter of the material. It can

be seen that the expression (3.40) is additively decomposed in two

parts: W = Wiso+Waniso. The first one is the isotropic contribution

as a Neo-hookean material, related to the elastin response; the

second one is anisotropic contribution and orientate the stress along

the fiber direction that define the invariants I4 and I6.
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Figure 3.3: Distribution of the fibers of collagen supposed in the

arterial wall for the Holzapfel model

• Holzapfel/Demiray mixed model

A model based on a generalization of the previous one has been

proposed by Gasser [50] , doing a combination with the Demiray

model. This model set out the existence of two family of fiber

but in this case they are oriented in sparse way according with the

statistic distribution of Von Mises around an average angle ϕ. The

energy function for this model is:

W =
c

2
(I1 − 3) +

k1

2k2

∑
α=4,6

[
exp

(
k2 [κI1 + (1− 3κ)Iα − 1]2

)
− 1
]

(3.41)

The variables have the same meaning that in equations (3.40) and

(3.21) but here the constant κ represents the dispersion of the fibers

and it has a value that can vary between 0 and 1/3. For κ = 0 the

equation (3.41) is reduced to the model of Holzapfel (3.40), while if

κ = 1/3 the model is reduced to an isotropic model similar to the

Demiray’s one (3.21).

3.3 Time-dependent model

Although in this thesis the dissipative feature of the arterial wall has been

neglected, it is a better approximation of the behaviour of arteries and
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Figure 3.4: Scheme of the Maxwell model

a lot of authors proposed viscoelasticity models applied to the arterial

vessels or the aorta. In the work of Rodriguez [46], Taylor [42] and of

Holzapfel [20] is possible to find an elaboration of the subject starting

from the generalized viscoelastic model of Maxwell (fig. 3.5).

3.4 Computational validation of the con-

stitutive model

In the model of the arterial wall that will be shown in the chapter 6, the

Demiray material model has been chosen and used; this because it allow

to simulate the mechanical behaviour of the aorta wall in a very realistic

way as shown in other experimental works [19].The parameters that can

be used in order to fit the experimental data are easily found; besides, it

is simple to implement in the commercial code as ABAQUS [1].

The implementation is done on ABAQUS through a subroutine written

in Fortran programming language which name is UHYPER (appendix

A). In the programmed code the user have to specify the number of the

parameters used (in this case a and b), the density energy function (W )

and the first and second derivative of this function respect to the invari-

ants of the right tensor of Cauchy-Green C; in this way is possible to

define the second tensor of Piola-Kirchoff S and the tangent constitutive

tensor C.

In the next subsection a brief validation of the Demiray constitutive

model implementation will be presented, comparing the obtained FEM

results with the analytical solution. The tests that have been used in
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order to validate the FEM implementation are the simple uniaxial tension

test and a cylinder under internal pressure.

3.4.1 Uniaxial traction

A piece of dimensions 1 mm width, 1 mm thickness and 5 mm length

has been analyzed. It has been modeled using an hexaedral element with

eight nodes. It has been imposed a displacement in the X direction and

with free movements in the Y and Z directions, as shown in figure 3.5.

The final displacement has been imposed increasing them with steps of

0.1 mm until the final displacements, equal to 2.3 time the original length

(λ = 2.3), have been reached.

Figure 3.5: Scheme of the element used in the simulation of the

simple tension test

The constitutive parameters used in this simulation are: a = 30 kPa

and b = 1.1. Figure 3.6 shows three different steps of the simulation

corresponding to λ = 1 (original configuration), λ = 1.7, and λ = 2.3

(being λ = lf/l0).

In this particular case, only the X component of the Cauchy stress is

computed because the other components are zero. This aspect, combined

with the incompressibility condition leads to a relation that allows to

write the stress only in terms of the parameters a and b and in terms

of the elongation in the X direction (λ). From the incompressibility

condition we have :

20



Chapter 3 Computational models of the arterial wall

Figure 3.6: Model with λ = 1 , λ = 1.7, and λ = 2.3
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λ2 = λ3 =
1√
λ

(3.42)

Solving (3.35), and (3.36) we obtain the Cauchy stress in the direction

of elongation:

σ1 = 2

(
λ2 − 1

λ

)(
∂W

∂I1

+
1

λ

∂W

∂I2

)
(3.43)

From equation (3.43), and taking into account the equation (3.21),

the Cauchy stress can be written as

σ1 = 2

(
λ2 − 1

λ

)
exp

[
b

2

(
λ2 +

2

λ
− 3

)]
(3.44)

The numerical results of the ABAQUS analysis have been extracted in

a Excel sheet and compared with the analytical solution for the Demiray

model (equation (3.44)). In figure 3.7 can be seen the perfect correlation

between the numerical and analytical values of the stress.

Figure 3.7: Analytical and FEM stress solution for the Demiray

model in a simple uniaxial traction test

3.4.2 Cylinder under internal pressure

This test analyzes the mechanical behavior of a cylindrical vessel sub-

jected to internal pressure and with the double end fixed in the axial
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direction (figure 3.8).

Figure 3.8: Scheme of the cylindrical model with axial symmetry

The radius of the cylinder is R = 9mm and the thickness of the wall

is H = 0.04mm. The properties of the material are: a = 10 kPa and

b = 1.1.

In order to obtain the analytical solution the thin wall theory (H << R)

will be considered, then the circumferential stress is constant along the

wall thickness.

The analytical results are obtained considering a isotropic and incom-

pressible material such that:

W (λ1, λ2, λ3) = W (λ,
1

λ
, 1) = W (λ) (3.45)

where λ1 is the elongation in the circumferential direction, λ2 in the

radial direction and λ3 in the longitudinal direction. In this conditions

the cylinder have zero radial stress and :

σ = λ
∂W

∂λ
(3.46)

From the equilibrium of the forces, the internal pressure p and the

circumferential stress are related through the equation:

p =
σh

r
(3.47)

with h = H/λ and r = λR.

In this way the analytic solution for the implemented material is obtained

for this case:
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p =
aH

R

(
1− 1

λ4

)
· exp

(
b

2

[
λ2 +

1

λ2
− 2

])
(3.48)

In this test, computed in ABAQUS, the pressure increase linearly

from zero to 180 Pa with step of 15 Pa and the computed displacements

are extracted. This methodology allows to plot the results in the λ

- p plane of figure 3.9 where can be seen the correlation between the

numerical and analytical values of pressure.

Figure 3.9: Cylinder under pressure: analytical and FEM solution

for the demiray constitutive model
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Chapter 4

Computational model of

blood flow

In this chapter the assumptions on the behavior of blood flow in large

arteries are discussed and the Navier-Stokes formulation for the Newto-

nian and incompressible fluid is described. Furthermore a validation of

the finite volume methods (FVM) for some simple flow case is done using

the commercial code Star CD.

4.1 Description of blood properties

The blood is a liquid tissue composed of one part of cells, like red cells,

white cells and platelets (45% of total volume), and a liquid part called

plasma which consists primarily of water (45% of the total volume). Its

physiological temperature is about 36.5◦C and its viscosity is five times

greater than the water [5]. Two things derive from these considerations

[13]:

• Cellular solid particles suspended in the blood offer a certain re-

sistance to the flow, with energy dissipation. This phenomenon is

associated with the blood viscosity properties.

• The large amount of water present in the blood gives the property

of incompressibility.

Therefore, any constitutive model that aims at the macroscopic level

must at least consider these two characteristics of blood: viscosity and
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incompressibility. The red blood cells are able to deform and accumulate

elastic energy although, when they are not aggregated, the elastic forces

are much lower than the viscose. When the shear rate is low, there is

a phenomenon that affects red blood cells: the formation of aggregates

which are called rouleaux. It consists in the union of several red blood

cells to form a single body (figure 4.1), increasing the viscosity of blood.

In this situation, even for low values of hematocrit1, the viscosity in-

creases with decreasing gradient (shear rate) by a certain value as can be

seen in figure 4.2. On the other hand, the forces that are created to break

down these aggregates also produce an important elastic deformation in

red blood cell, as well as a change of orientation, resulting in a storage

of elastic energy in the microstructure of blood [41].

Figure 4.1: Erythrocytes united in aggregates called rouleaux

Consider now, for greater clarity and simplicity, a one-dimensional

flow and that the variables are scalars rather than vectors as they are.

The deformation gradient will be denoted by γ and its time derivative,

which is the rate of the deformation gradient or shear rate with γ̇. When

this value is high enough (γ̇ > 100s−1), red blood cells are aligned with

the flow and do not have the formation of rouleaux and in this case the

viscosity does not depend on γ̇, it is constant and therefore the blood can

be considered as Newtonian fluid (Figure 4.3).This is the situation for

the large arteries and therefore also for the aorta. This is an important

consideration useful to justify the constitutive model adopted in this work

for modeling the fluid dynamics in the aorta and described later in this

chapter.

There are several models in the state of the art that reflect this non-

Newtonian properties of blood. This is done imposing an asymptotic

1Volume ratio between erythrocytes and blood (Ht)
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Figure 4.2: Evolution of blood viscosity as a function of shear

strain rate and hematocrit.

Figure 4.3: Experimental data and value of the Carreau-Yasuda

model
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model with the following conditions:

lim
γ̇→0

µ(γ̇) = µ0 (4.1)

lim
γ̇→∞

µ(γ̇) = µ∞ (4.2)

On this line, one of the most used models is that of Carreau-Yasuda [47]

that has the following expression:

µ(γ̇) = µ∞ + (µ0 − µ∞)(1 + (λγ̇)a)
n−1
a (4.3)

with λ, n and a constants of the fluid.Then, using experimental data on

the viscosity of blood, it is possible to calibrate the model obtaining

the value of the three constants; in the example of figure 4.3, the three

constants have the following values λ = 8.2 s, a = 0.64 and n = 0.213.

4.2 Formulation of the flow model

4.2.1 Constitutive law

The expression of the stress tensor of a fluid is written as

σ = −pI + σµ (4.4)

where p is a scalar field, I is the identity tensor and σµ is the stress tensor

due to the viscous properties of the fluid. To determine σµ the first point

to assess in hemodynamics to characterize the behavior of the blood is

whether the characteristics of memory, the viscoelastic behavior, have

to be considered or not. The memory of a fluid determines the number

of tensors necessary to approximate the tension. Anyway the memory

comes from the elastic properties of the particles when they are deformed.

Following this criterion we can distinguish [40]:

• Fluids of first order.

Fluids that contain small particles and have no memory (elastic but

not viscoelastic behavior). The local stresses are determined only

by local deformations, excluding strains that incorporate effects due

to time derivatives of the deformation, contradicting the principle

28



Chapter 4 Computational model of blood flow

of strain rate localization [16]. In these type of fluids the tensor σµ

is only related with the velocity gradient tensor:

σµ = µ(∇u +∇Tu) = 2µ
1

2
(∇u +∇Tu) = 2µD (4.5)

where D = 1
2
(∇u + ∇Tu) is the symmetric part of the velocity

gradient tensor.

If the fluid must be modeled as a first-order fluid, the second point

of the discussion is whether it can be considered Newtonian or not,

that is, if the viscosity can be held constant or dependent on shear

rate.

- Newtonian fluids

Fluids that have a linear relation between σ and D. Physi-

cally it means that the viscosity does not depend on the shear

rate.

- Non Newtonian fluids

Fluids that have a non linear relation between σ and D. In

this case the viscosity depends on the deformation rate: µ =

µ(γ̇). The significance of γ̇ is intuitive in a one-dimensional

case; for a general case is defined as γ̇ =
√

2D : D.

• Second order fluids2

They are viscoelastic fluids that include higher order derivative

tensor. σµ can be expressed as:

σµ = α1D + α2A2 + α3D
2 (4.6)

where αi are constitutive parameters (constants or functions of the

tensor D) and A2 is the second strain tensor of Rivlin-Ericksen [9].

2This classification does not include all fluid types but is valid for the most suitable

models of the blood

29



Chapter 4 Computational model of blood flow

As pointed out above, when the strain rate γ̇ is low, the formation

of rouleaux can be presumable; this fact changes the viscosity, and a

storage of elastic energy is observed. As a first hypothesis we ignore the

effects of elasticity and we consider the blood as a first order fluid. The

justification for this hypothesis is that the rouleaux appear only in special

cases [17]. On the other hand, the variation in blood viscosity suggests

that the blood can not be taken as a Newtonian fluid a priori . In order

to decide the model to be used, table 4.1 shows the values of γ̇ and the

Reynolds number in several vessels of the circulation system [27].

Vessel γ̇ Reynolds

Aorta 155 3400

Arteries 900 500

Arterioles 8000 0.7

Capillaries 1000 0.002

Venules 800 0.01

Veins 160 140

Vena cava 100 3300

Table 4.1: Estimation of γ̇ assuming parabolic flow

Entering in the curve of figure 4.2 in the case of the aorta we get a

constant value of viscosity (µ∞) therefore the model presented in this

work considers the blood as a Newtonian fluid.

Another characteristic of fluids and continuum medium in general,

are the ability to change volume when subjected to a certain stress state,

that are the compressibility properties. The physical quantity capable of

expressing this property is the variation of density with pressure. If this

does not change significantly the fluid is considered incompressible. The

main component within the blood, present in the plasma directly and

indirectly in the red and white blood cells and platelets, is water. The

modulus of compression or volumetric modulus of the water is:

Ev =
∆P
∆ρf
ρf

= 2.15 · 109Pa (4.7)

where P is the pressure and ρf is the density.
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Then the water can be considered incompressible and this feature

can be translate directly to the macroscopic features of the blood. This

translates into the equation of mass conservation as

∇ · u = 0 (4.8)

being ∇· the divergence operator and u the velocity vector.

In every line of the circulatory tree, phenomena also exist for the

exchange of gases and substances with the cells, but they are not con-

sidered, for the purpose of this work. Also the contribution of the grav-

itational forces to the equation of momentum conservation will not be

considered because these forces are negligible when compared with other

acting forces.

4.2.2 Navier-Stokes equations. Strong formulation

The equation of momentum balance

∇ · σ = ρf u̇ (4.9)

where u̇ is the material derivative of velocity, and it can be expressed in

eulerian coordinates as

∇ · σ = ρf

(
∂u

∂t
+ u · ∇u

)
(4.10)

On the other hand, we assume the Newtonian fluid constitutive be-

haviour:

σ = −pI + 2µD (4.11)

Substituting (4.11) in the dynamic equation (4.10), it is obtained:

ρf

(
∂u

∂t
+ u · ∇u

)
+∇p− 2µ∇ ·D = 0 (4.12)

This equation together with the incompressibility condition (4.8) give the

Navier-Stokes equation.

Boundary conditions can be assessed as velocities imposed, tension

imposed, or a combination of these:
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Figure 4.4: Schematic representation of the strong formulation of

the fluid dynamic problem.

u = ud inΓd (Dirichlet boundary conditions)

σ · n = tn inΓn (Neumann bounday conditions)

(4.13)

where Γd∪Γn = Γ,Γd∩Γn = � and n is the normal vector to the surface

Γn. The strong formulation of the problem is set in the following way:

If Ω ∈ R3 is the fluid domain; ud(t)andtn(t) given boundary conditions

and u0(x) given initial conditions; the problem is to find a vectorial field

u(x, t) : Ω× [0, T ]→ R3 and a scalar field p(x, t) : Ω× [0, T ]→ R3 such

that:

ρf

(
∂u

∂t
+ u · ∇u

)
+∇p− 2µ∇ ·D = 0 Ω× (0, T )

∇ · u = 0 Ω× (0, T )

u = ud(t) Γd × (0, T )

σ · n = tn(t) Γn × (0, T )

u(x, 0) = u0(x) Ω, t = 0

(4.14)

4.3 Validation: flow inside a cylinder

In the previous section the features of the blood properties has been

already discussed. Particularly in the case of the aorta, the blood can
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be assumed as an incompressible fluid ; then the density of the fluid (ρf )

can be considered as a constant. Also the viscosity of the fluid can be

considered as a constant value in our case (µf ) . Besides the blood has

been considered as a newtonian fluid.

This values (see table 4.2) and this features will be used for this validation

and also for the computational model aorta showed in the next chapter.

Property Value

ρf 1064 Kg/m3

µf 0.0035 Pa·s

Table 4.2: Properties of the blood used in the simulations

All the simulations showed in this work that concern to the blood

flow have been performed using the commercial code Star CD [3].

This is a code that use the FVM ( Finite Volume Method ) technology

and gives the opportunity to uptake a novel mesh technology based on

the use of polyhedral elements. The methodology used for the generation

of the meshes of the models will be explained in chapter 6.

In next sections the geometry and the mesh (figure 4.5) used will be the

same for all the simulations. It is a cylinder of radius R = 10.195 mm

and length L = 20 cm.

Figure 4.5: Mesh of the cylinder

The boundary conditions used are the following (see also figure 4.6):
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• velocity boundary condition at the inlet

• constant zero pressure condition at the outlet

• no slip condition at the wall of the cylinder

Figure 4.6: Schematic representation of the boundary regions

4.3.1 Steady state analysis: Pouiseille flow

This first simulation is a steady state analysis of the laminar flow inside

the cylinder described with a low Reynolds number, in order to analyze

the development of the Pouiseille flow.

The velocity have a uniform distribution at the inlet region, with the

axial velocity (Wi=0.005 m/s) and the other components equal to zero.

The Reybolds number in this case will be:

Re =
ρv̄D

µs
w 30.1 (4.15)

where v̄ is the average velocity in the section and in this case equal to

the inlet velocity Wi. From the theory [12] the developing length of the

Pouiseille flow is equal to:

x = 0.056 ·D ·Re w 0.035m (4.16)

In the figure 4.7 is possible to appreciate the developing length of the

flow, while in the figure 4.8 is possible to see the velocity distribution
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along the diameter of the cylinder at different distances from the inlet.

The values showed in the graph are obtained smoothing the values at

the cells, that is converting the cells data to vertex data. The boundary

conditions are not conserved in this process, particularly the non slip

wall condition; for this reason the values showed on the extreme of the

diameter are not exactly zero.

Figure 4.7: Colored scalar map of the velocity component along

the axial direction. A longitudinal section

Figure 4.8: Magnitude of the W component of velocity (m/s)

along the diameter (the unit is the meter) of the cylinder at

different distance from the inlet

It is possible to see the parabolic distribution of velocity only at 3.5

centimeter from the inlet, where the flow is completely developed. The
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velocity distribution from the Poiseuille law and the mass conservation

law is:

W (r) =
∆P ·R2

4µL

[
1−

( r
R

)2
]

= 2Wi

[
1−

( r
R

)2
]

(4.17)

4.3.2 Transient analysis: constant and uniform inlet

velocity

Figure 4.9: W component of velocity (m/s) at the central cell of

the outlet section during the simulation

In this simulation a transient analysis has been done; also in this case

the velocity have a constant distribution at the inlet but the flow needs

time before to be completely developed.

The time step used for the simulation was of 0.01 seconds and the simu-

lation run for 4 seconds, starting from an initial condition of zero velocity

and pressure everywhere in the domain.

In the figure 4.10 is reported the magnitude of the W velocity com-

ponent at different step of the simulation at the longitudinal section of

the cylinder.

In the figure 4.9 is shown the velocity component W at the central cell

at the outlet section in every time step.

Through these charts it is possible to appreciate the dynamic of the fluid

motion.
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Figure 4.10: W velocity component at the time=0.4 s, 0.8 s, 1.2 s,

1.6 s, 2 s and 2.4 s

37



Chapter 5

Overview on the

Fluid-Structure Interaction

In previous chapters it has been described the mathematical models for

the arterial wall and the blood flow. The main objectives of these chap-

ters were to show adjusted constitutive equations considering the physio-

logical features of the cardiovascular system, and to provide some simple

validation test through the finite element method FEM (for the structural

part) and the finite volume method FVM (for the fluid part), taking into

account of the incompressibility condition. The subject of this chapter

is to give a general overview on the different ways to coupling these two

systems. The fluid and the structural part have common boundaries in

ours models and it is necessary to couple the two systems imposing the

suitable compatibility conditions in the common boundaries.

The general equation governing the coupling and the difference between

different computational methods for the fluid structure interaction (FSI)

will be presented. Some of these methods will be applied in our models

and the description of other methods will be useful in order to under-

stand the limitations of the proposed models and to improve the study

for further works.

In the next sections the mathematical models for the so called Two

way coupling will be presented. The main feature of these algorithms for

FSI analysis is based on the fact that the fluid domain is not fixed and

it adapts itself to the solid movement. For this reason the lagrangian

formulation of the solid can be keep, but the eulerian formulation for
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the fluid must be modified for a changing domain. In the first section it

will be show the most general formulation for a fluid domain adapting to

moving boundaries. It will be pointed out the mathematical formulation

of the problem of interaction introducing some mathematical operators

that allow to write the formulation of the equations in a concise form in

order to classify the various methods.

5.1 ALE formulation of the fluid

The ALE formulation (Arbitrary Lagrangian-Eulerian) is the right method

to set out the fluid equations with no-fixed boundaries. Essentially this

method makes flexible the mesh allowing to take up a arbitrary domain.

In this way it is not necessary that the mesh follow the material move-

ment (like in the lagrangian formulation of the solid) or that the mesh is

fixed in the space (like in the eulerian formulation of the fluid), but this

mesh is allowed to take up any arbitrary spatial domain (from this the

word arbitrary).

Ones of the firsts articles in which this method appear in the context of

the finite elements methods is theta of Donea [23] and Hughes [24]. Later

this method has been used both for fluids with a mobile boundaries and

for solid with large displacements.

5.1.1 Theoretical basis of ALE formulation

The basic idea of this method is showed in figure 5.1. A water drop enters

in the reference domain but any node of the mesh is joined with a par-

ticular material of the drop and the nodes of the mesh move regardless

of the movement of the drop.

The ALE formulation is based on three functions [11] that link the ma-

terial and spatial domains, as showed in figure 5.2. The function Φ1 is

the characteristic application of the ALE formulation, and it relate the

referential domain points X with the spatial point x :

Φ : ΩX × [t0, tfinal]→ Ωx × [t0, tfinal] (5.1)

1In the contest of the finite element method the Φ function define the mesh movi-

ment (see fig. 5.1)

39



Chapter 5 Overview on the Fluid-Structure Interaction

(X , t)→ Φ(X , t) = (x, t) (5.2)

The mesh velocity û is the derivative of the function Φ with respect

to the time2:

û =
∂Φ(X , t)

∂t
=
∂x

∂t

∣∣∣
X

(5.3)

Figure 5.1: Key idea of ALE formulation for a fluid with a

non-fixed boundaries

In this coordinate system any magnitude f can be expressed as:

f = f(X , t) X ∈ ΩX (5.4)

where the difference respect to the eulerian or lagrangian formulation is

that ΩX is not referred neither to the spatial coordinate or the material

coordinate. The temporal material derivative of f is calculated as3:

2Setting out the ALE formulation, the domain will be considered always fixed when

deriving with respect to the time. For example, in the equation (5.3) the derivative

is made considering the domain ΩX fixed
3The material derivative is calculated because it have a physical meaning and it is

useful in the dynamic equations
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ḟ ≡ ∂f

∂t

∣∣∣
X

=
∂f

∂t

∣∣∣
X

+
∂f

∂X
∂X
∂t

∣∣∣
X

(5.5)

If w is defined as the velocity of a material particle with respect to the

reference domain ΩX :

w =
∂X
∂t

∣∣∣
X

(5.6)

then substituting the equation (5.6) in the equation (5.5) :

∂f

∂t

∣∣∣
X

=
∂f

∂t
+

∂f

∂X
w (5.7)

However is useful to write the material derivative as a function of the spa-

tial gradient, that have a physical meaning in the Navier-Stokes equation.

The equation (5.7) can be written as:

∂f

∂t

∣∣∣
X

=
∂f

∂t

∣∣∣
X

+
∂f

∂x

∂x

∂X
w (5.8)

being necessary to calculate ∂x
∂Xw. For this reason the material velocity

of the fluid particles must be calculated :

u ≡ ∂x

∂t

∣∣∣
X

=
∂x

∂t

∣∣∣
X

+
∂x

∂X
∂X
∂t

∣∣∣
X

(5.9)

Substituting equations (5.3) and (5.6) in the equation (5.9) :

u = û +
∂x

∂X
w (5.10)

It is possible to define the convective velocity as the difference between

the material velocity and the mesh velocity û :

c = u− û (5.11)

and taking into account equation (5.10):

c =
∂x

∂X
w (5.12)

Using this result the material derivative (5.8) can be expressed as:

∂f

∂t

∣∣∣
X

=
∂f

∂t

∣∣∣
X

+ c · ∇f (5.13)

where ∇ is the spatial gradient4.

4The lagrangian and eurelian formulation are particular cases of the ALE formu-

lation. With c = 0 the lagrangian formulation is recovered; with c = u the eulerian

one is recovered
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Figure 5.2: The lagrangian, eulerian and ALE domains

5.1.2 Equations of a fluid with non-fixed boundaries

Using the equations above it is possible to rewrite the eulerian formu-

lation of fluid dynamics. Applying the equation (5.13), the material

acceleration is:

u̇ ≡ ∂u

∂t

∣∣∣
X

=
∂u

∂t

∣∣∣
X

+ c · ∇u (5.14)

Using the ALE formulation it is also possible to rewrite the strong for-

mulation of the fluid movement ( (4.14) ) in the following way: A fluid

domain Ω(t) ∈ R3 is given. Find a vectorial field of velocity u(x, t)→ R3

and a scalar field of pressure p(x, t)→ R such that :

ρf (
∂u

∂t
+ c · ∇u) +∇p− 2µ∇ ·D = 0 in Ω(t)

∇ · u = 0 in Ω(t)

u = ud(t) in Γd(t)

σ · n = tn(t) in Γd(t)

(5.15)

where c must satisfy:

c(t) = ud(t)− Γ̇d(t) in Γd(t) (5.16)
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where Γ̇d(t) is the velocity of the boundary when a Dirichlet boundary

condition is used.

5.1.3 Computational implementation

The implementation of the ALE formulation it’s done on the equations

already discussed in the chapter 4. The convective term changes and it

becomes:

ρfc · ∇u = ρf (u− û) · ∇u (5.17)

If we define ûA as the velocity of the mesh nodes, the following step

is to calculate these velocities. Usually, if the displacements of the fluid

boundary dΓ are known:

• The displacements of the internal nodes are computed as the dis-

placements of the nodes of a fictitious stationary solid with imposed

displacements in its boundaries. The goal is to have an internal dis-

placement as smooth as possible without a high computational cost.

For this reason the constitutive equation of a linear elastic isotropic

solid is used, which is similar to the Stokes flow, and the same fluid

element can be used with zero density. If d̂ is the mesh displace-

ment, starting from the boundary displacement dΓ is possible to

define a operator M such that

d̂ =M(dΓ) (5.18)

In Souli et al. [28] other definitions of this operator are established

always in order to smooth displacements of the internal mesh nodes.

• The velocity of the mesh is computed as:

ûn+1 =
d̂n+1 − d̂n

∆t
(5.19)

5.2 Formulation of the FSI problem

In a FSI problem boundary movement are a priori unknowns. Starting

from the assessment of the movement of this boundary at time t, the

next steps of the calculations are the following:
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• With the operator M the new mesh is obtained, and using the

equation (5.19) the velocity of the mesh is calculated

• Solve the fluid equation with the ALE formulation.

• From the fluid velocities calculated in the previous point, the stress

and the nodal forces at the interface are obtained.

• Solve the solid equations using as boundary condition the calcu-

lated forces at the interface.

• Solving the solid equation, the displacement at the interface5 can

be evaluated.

Some operator can help to write the formulation of the problem in

a more compact way. These operator can be used to make simpler the

numerical solution of the required steps [14].

If the time is discretized, the solution at the time tn is supposed to

be known; the operatorM will be used in order to calculate the solution

at the time tn+1. It is necessary to define formally the operator M:

(dn+1
Γ )→M(dn+1

Γ ) = d̂n+1 (5.20)

where dn+1
Γ is the current displacement of the interface Γn+1 ∈ R2 and

d̂n+1 is the current displacement of the complete mesh of the domain

Ωn+1
f ∈ R3. Now, calling ûn+1 the current velocity of the mesh Ωn+1

f ∈ R
and un the velocity of the fluid in Ωn

f at the previous instant, F can be

defined as the operator that, starting from d̂n+1, ûn+1 and un, calculate

the current velocity un+1 of the fluid domain Ωn+1
f ∈ R3 and the current

forces fn+1
Γ on the interface Γn+1 ∈ R2:

(d̂n+1, ûn+1,un)→ F(d̂n+1, ûn+1,un) = (un+1, fn+1
Γ ) (5.21)

where F solve the fluid dynamics equations (5.15). In order to write all

in a shorter form, using the equation (5.19) it is possible to write :

5The interface will be indicated with Γ, although it can change with time as Γ(t);

this dependence will be omitted. Ωf and Ωs will be indicate the fluid and the solid

domain respectively
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fn+1
Γ = F(d̂n+1) (5.22)

so that the operator F can be considered like an application that couple

the vector of the displacement d̂n+1 defined in the fluid domain and the

vector of the forces fn+1
Γ defined at the interface.

In order to define the operator S, vectors dn and ḋn are the dis-

placement and the velocity in the solid domain Ωn
s ∈ R3, S is defined

as an operator that give the current displacement dn+1 and the current

displacement velocity ḋn+1 in Ωn+1
s ∈ R3 starting from fn+1

Γ , dn and ḋn,

and solving the solid equations described in the chapter 3 :

(fn+1
Γ ,dn, ḋn)→ S(fn+1

Γ ,dn, ḋn) = (dn+1, ḋn+1) (5.23)

As it has done previously it can be written:

(dn+1
Γ ) = S(fn+1

Γ ) (5.24)

so that the operator S can be considered like an application that couple

the vector of the forces fn+1
Γ and the vector of the displacement dn+1

Γ ,

both defined at the interface.

The three operator described above are used sequentially6 in order to

solve the FSI problem, and the output of one of them is the input of the

next one (see figure 5.3).

If the solution at tn is known, then the displacement dn+1
Γ of the

interface Γn+1 ∈ R2 at the instant tn+1 is the solution of the function:

S ◦ F ◦M(dn+1
Γ ) = dn+1

Γ (5.25)

The equation (5.25) is the so called fundamental equation of the interac-

tion problem. This is an implicit equation and it is not possible to have

a closed form of the solution dn+1
Γ especially because of the non-linearity

of F . For this reason is necessary to apply numerical methods like that

of the fixed point.

6It is important to underline that the operator M is linear (look the definition),

the operator F is clearly non-linear because it include the convective term of the fluid

equations, and the operator S can be linear or non-linear because depend on which

kind of material and kinematics are used in the model; for example, if the material is

an hyperelastic material the operator S is non-linear
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Figure 5.3: Operator used to solve the interation problem

5.3 Classification of the FSI methods

For clarity we can write the equation (5.25) as:

S ◦ F ◦M(dn+1
Γ )− dn+1

Γ = 0 (5.26)

Using the idendity operator I it is possible to write:

R(dn+1
Γ ) = 0 where R = S ◦ F ◦M− I (5.27)

R is the so called residual operator. We said that this is a non-linear equa-

tion that can be solved with different methods: middle point method,

Newton-Raphson method and the fixed point method.

In order to solve this equation is possible to use a specific program for

the fluid and another for the solid, or it is possible the use of specialized

programs that solve together the equations of the solid and the fluid.

When two different programs are used the method is called partitioned

otherwise is called monolithic.

5.3.1 Monolithic methods

The idea of the monolithic methods is to solve the equation(5.27) with

a tangent method so that a superlinear order of convergence is obtained.

For this reason the tangent matrix have to be calculated; this is calculated

by deriving the equation 5.27 with respect to dn+1
Γ . If the derivative of

the operators is indicated with an apostrophe on the operator:
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R′(dn+1
Γ ) = [S ′ ◦ F ◦M(dn+1

Γ )] · [F ′ ◦M(dn+1
Γ )] · M′(dn+1

Γ )− I (5.28)

where

M′(dn+1
Γ ) =

∂d̂n+1

∂dn+1
Γ

F ′(d̂n+1) =
∂fn+1

Γ

∂d̂n+1

S ′(fn+1
Γ ) =

∂dn+1
Γ

∂fn+1
Γ

(5.29)

M′ is simple to calculate because M is a linear operator. S ′ can be

obtained from the standar form of the non-linear solid mechanics. F ′ is

more complicate to calculate because of the variation of the fluid domain

Ωf . A deeper analysis of these issues can be found in Mattehies [30] [31]

and Gerbeau [15] [14].

5.3.2 Partitionated methods

The goal of partitioned methods is to use independent codes for the fluid

and the solid, solving the corresponding models and then solving the

problem of interaction. Here we analyze the methods of weak coupling

and strong coupling. For the schematic representation of these two mod-

els, they will be referred to a three-dimensional grid in which the axis

x will be the time step and the axis y the k iterations within each time

step. In z the system of the solid is represented with a square and with

a circle that of the fluid. In this scheme the resolution of the mesh with

the operatorM is incorporated into the fluid system to improve the clar-

ity of the graph so that the resolution of the fluid system assumes the

meaning to solve the operation F ◦M.

Weak coupling

This method advances in each time step without internal interactions

between the fluid-solid system, such that the method does not totally

couple the two systems. With this technique you fast forward in time with
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the inconvenience of not doing a complete coupling, so the method can

easily be unstable. Hence the name of the method of explicit coupling,

as a method only conditionally stable.

In figures 5.4 and 5.5 the patterns of resolution can be observed, for

the parallel and serial weak coupling respectively. Both systems (fluid

and solid) exchange information at the end of each time step and this

information is used to proceed with the solution in the next time step.

For the parallel scheme we have:

fn+1
Γ = F ◦M(dnΓ)

dn+1
Γ = S(fnΓ )

(5.30)

And for the serial scheme:

fn+1
Γ = F ◦M(dnΓ)

dn+1
Γ = S(fn+1

Γ )

(5.31)

Figure 5.4: Parallel solution scheme for the weak coupling

It has been studied experimental cases in which these schemes are

unstable due to the effect of the so-called additional mass effect [34].

Developing the equations of the solid, the normal force (pressure) at the
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Figure 5.5: Serial solution scheme for the weak coupling

interface Γ fluid-solid depends on the acceleration and the density of the

fluid. Consequently in the equation of the solid a term of inertia appear:

(ρsMs + ρfMf )
∂2d

∂t2
(5.32)

where the matrix Ms is the mass matrix of the solid and Mf come from

the fluid equations.The additional mass is precisely the term ρfMf . In

the equation (5.32) is observed that if the density of the solid is much

greater than that of the fluid (ρsMs � ρfMf ) the effect of the addi-

tional mass is negligible such as in cases of aerodynamic structures sub-

ject to wind strength, where the air density is several orders of magnitude

smaller than the density of the solid. In this case, a scheme partitioned

with weak coupling can work well. If the density of the fluid is similar

to that of the solid as in hemodynamics, the effect of additional mass as-

sumes importance and is a source of numerical instability of the described

problem [34].

Strong coupling

The methods of the strong coupling are based on equation (5.33) which

has an appropriate structure to be solved by the method of the fixed

point. In the equation:

S ◦ F ◦M(dn+1
Γ ) = dn+1

Γ (5.33)
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it is supposed that the solution at the instant tn is known and we want

to get the solution at tn+1. To solve the equation (5.33) we can use pat-

terns similar to those of iterative methods of Jacobi and Gauss-Seidel in

systems of linear equations. In the context of fluid-structure interaction

these methods are called Block-Jacobi and Block-Gauss-Seidel.

The degree of coupling achieved with these methods is the same as

that obtained by the monolithic methods but usually require more in-

teractions for each time step7. These iterations require an extraordinary

increase in the computational cost, so that, for an acceptable degree of

tolerance for the coupling, tens of iterations are needed.

Block-Jacobi method

This method is based on the parallel solution of the fluid-solid system,

exchanging information of both systems after each iteration. The scheme

is shown in the figure 5.6.

Figure 5.6: Block-Jacobi method: parallel solution scheme for the

strong coupling

In this example, for the first time step three iterations to achieve the

convergence (in accordance with a predetermined tolerance) are needed.

In the second time step four iterations are needed, etc. . In each iteration

new forces and a new interface position is obtained in accordance with

the equations:

7So called subiteractions
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fn+1
Γ,k+1 = F ◦M(dn+1

Γ,k )

dn+1
Γ,k+1 = S(fn+1

Γ,k )

(5.34)

where the index k has been used to denote the iterations. In the equation

(5.34) is more clear that both systems can be solved in parallel and that

in order to obtain the solutions in the k + 1 iteration only the solutions

in the k iteration are required.

Block-Gauss-Seidel method

This method solves a system and transfers the result to the other before

to finish the step. Consequently, the systems are solved sequentially. The

figure 5.7 shows the scheme of this method.

Figure 5.7: Block-Gauss-Seidel method: series solution scheme for

the strong coupling

In this case the information of the fluid system is transfered to the

solid system in the same iteration.

The force and displacement in each iteration in this case are:

fn+1
Γ,k+1 = F ◦M(dn+1

Γ,k )

dn+1
Γ,k+1 = S(fn+1

Γ,k+1)

(5.35)
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In this method another operator A is introduced.

A ≡ S ◦ F ◦M (5.36)

so equation (5.33) become:

A(dn+1
Γ ) = dn+1

Γ (5.37)

where we express the unknown dn+1
Γ as a fixed point of the operator A

(table (5.1)).

Initial step dn+1
Γ,0

Iteration 1 dn+1
Γ,1 = A(dn+1

Γ,0 )

Iteration 2 dn+1
Γ,2 = A(dn+1

Γ,1 )

...
...

Iteration k dn+1
Γ,k = A(dn+1

Γ,k−1)

Table 5.1: Scheme of the fixed point iterative method

5.4 Validation test: the flow through an

elastic pipe

In this test a linear elastic tube with Young’s modulus E will be consid-

ered. Consequently, the radius of such a tube is variable. Imagine such

a pipe filled with fluid at rest and surrounded by fluid (see figure 5.8).

Let the wall thickness of the tube be h, the radius of the tube r, the

exterior pressure p0, and the interior pressure be p.

The change in p, namely (p− p0), is called the trasmural pressure differ-

ence. The thickness of the wall h will be considered small compared with

the resting radius of the pipe. Consequently, as a good approximation

we can treat the wall as a thin elastic membrane.

Let T denote the tension per unit length of the tube and per unit

thickness. Let us consider the equilibrium of a half of such a long cylinder

pipe together with the fluid contained in it. The net downward force per
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Figure 5.8: An elastic tube filled with fluid at rest and surrounded

by fluid

unit length on this half cylinder is 2Th and it is balanced by the net

upward force per unit length which is given by∫ π

0

(p− p0)rsinθdθ (5.38)

which equals

2r(p− p0) (5.39)

Thus we have

Th = r(p− p0) (5.40)

The tension T that develops is a property of the elastic wall as a

reaction to stretch.

The force per unit area acting on the surface of the volume element is

the stress (see figure 5.9):

F = N + H (5.41)

where N is the normal component such as a tension or a pressure,

and H is the tangential component called the shearing stress.

In response to this stress the volume element undergoes a deformation

called strain; so we have :

T = E
r − r0

r0

(5.42)

being r = r0 in the equilibrium position when the tension T is zero.

53



Chapter 5 Overview on the Fluid-Structure Interaction

Figure 5.9: Stress component in an elastic membrane

Let us now consider the steady flow through an elastic pipe. A dia-

gram of the structure is given in figure 5.10.

Figure 5.10: Flow through an elastic tube

It has been assumed that the tube has a length equal to L and the

pressure is a function only of x and that

p(x)|x=0 = p1 and p(x)|x=L = p2 (5.43)

being p1 and p2 the inlet and outlet pressures, respectively.

The external pressure of the fluid surrounding the tube is assumed to

have a constant value of p0. We have from equation(5.40) that

p(x)− p0 =
Th

r
(5.44)
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where r is the cross-sectional radius at location x. The pressure-radius

relation is obtained from equations (5.42) and (5.44) giving:

p(x)− p0 =
Eh

r

(r − r0)

r0

=
Eh

r0

(
1− r

r0

)
(5.45)

Calling the transmural pressure p′ = p−p0 and rearranging the equa-

tion (5.45), it is possible to obtain :

r =
r0

(1− ro
Eh
p′(x))

(5.46)

Then the displacement U along the axis of the pipe is:

U(x) = r0

(
r0

(1− ro
Eh
p′(x))

− 1

)
(5.47)

while the radial strain is:

εr(x) =
U

r0

=

(
r0

(1− ro
Eh
p′(x))

− 1

)
(5.48)

In this simulation it has been coupled a steady state flow simulation,

made with Star CD, with an elastic pipe simulated in ABAQUS. The

property of the fluid are the same described for the blood; a constant

and uniform velocity inlet boundary condition was used (v = 0.02m/s);

the outlet is placed to zero pressure that has been also considered as the

reference pressure (p0).

The finite volume mesh and the geometry is the same used in the

validation showed in the previous chapter (r0 = 0.01025 m and L = 0.2

m).

In ABAQUS we modeled a pipe of internal radius equal to r0 and

a thickness h = 0.00195 m, with a Young modulus E = 3 MPa. The

mesh has linear hexahedral elements. The axis of the cylinder is the Z

axis; the only degrees of freedom at the inlet and outlet bounds are the

displacements in the X-Y plane.

In the chapter dedicate to the aorta model we’ll go in deep in the

definition of the method used in order to do the coupling. Briefly, the

pressure resulting from the fluid simulation is mapped on the internal
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Figure 5.11: Pressure mapped on the internal surface of the pipe.

Note that the mesh is the ABAQUS hexahedral element based

mesh

surface of the solid pipe. In figure 5.11 is possible to appreciate the

pressure computed with the CFD code mapped on the mesh used in

ABAQUS for solving the solid mechanics problem (note the difference

with the results showed in 5.12).

Even when the flow is not completely developed, the pressure profile

along the axis of the pipe ( see figure 5.13) is quite linear. Also the profile

of the strain εr along the same axis is linear (see figure (5.14)) and is

equivalent to the theoretical results (equation (5.48)); particularly:

p(L) = 1.37Pa⇒ εr(x) =
U

r0

=

(
r0

(1− ro
Eh
p′(L))

− 1

)
= 2.4 · 10−6

(5.49)

In figure 5.15 the displacement magnitude on the deformed shape of

the pipe is mapped.
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Figure 5.12: Pressure in the fluid domain inside the pipe. Note the

polyhedral mesh of Star CD

Figure 5.13: Pressure [Pa] along the pipe axis. The inlet is the

section Z=0.2 m
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Figure 5.14: The radial strain εr along the Z axis.

Figure 5.15: The displacement U mapped on the deformed pipe

(The scale factor of the deformation is 106).
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Chapter 6

The aortic model

In this chapter the main fluid dynamics and biomechanical features of

two different models of ascending aorta will be compared. The aim is to

understand the influence of the bicuspid aortic valve pathology (BAV),

that is present in a patient since birth, on the further occurrence of

aneurysm in this stretch of the aorta.

For this reason the geometry of the two models are the same in both

cases and the dimensions are referred to an idealized aortic arch of an

adolescent patient, in which the upstream conditions (the physiological

or pathological morphology of the valve) determine the downstream con-

dition (that are the boundary conditions of the models).

6.1 The aortic blood flow model

As it was previously declared, the geometry used in the simulations is the

same for both models. In figure 6.1 the geometry used in ABAQUS in

order to simulate the mechanical behavior of the ascending aorta during

a cardiac cycle is shown.

In figure 6.1 it is possible to appreciate the dimensions of the model [19].

The fluid part correspond to the inner of this model.

The internal radius of the aortic arch is constant along the model from the

inlet to the outlet, and is equal to r = 10.195 mm; the radius of revolution

of the toroid that represents the aortic arch is equal to R = 36.995 mm.

The radius of the brachial-cephalic artery, the left common artery and the

left subclavian artery are equal to 4 mm, 3 mm and 3.5 mm, respectively.
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Figure 6.1: Geometry of the ascending aorta model

6.1.1 Fluid geometry and mesh

The geometry of the model has been made in ABAQUS; it is a simplified

geometry of the ascending aorta formed by a toroid and three cylinders.

The geometry has been imported in pro-surf Star CD as a .igs file; here

a triangular surface mesh has been created and exported as a .dbs file.

Starting from this surface mesh, the volume mesh (.ccmg file) has

been created in pro-amm Star CD. The polyhedral cells were chosen to

discretize the domain.

CD-adapco’s polyhedral meshes typically consist of cells of 12 and 14

faces (although the number of faces is unrestricted). This means that

they fill space in close to the most efficient way possible. For a given

resolution level, a mesh consisting of CD-adapco’s polyhedral cells has

fewer faces than a mesh of any other cell type.

Apart from the obvious benefits of economy, polyhedral meshes pro-

vide other advantages too. Because each polyhedral cell has more faces,

it also has more neighbors than traditional cell types. A tetrahedral cell

communicates with only four neighbor cells, and a hexahedral just six.

In both cases this limits the influence of each cell to just a few neighbors.

By contrast each polyhedral cell has an average of 12 or 14 neighbors.
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The net result of this is that information propagates much more quickly

through a polyhedral mesh, ultimately leading to an increased rate of

convergence.

In the same way that a polyhedral cell “speaks” to more of its neigh-

bors than other cell types, it also “listens” to the information from more

of them. Because each polyhedral cell receives information from more of

its surroundings, the cell centered values calculated for the cell are more

accurate than for other types.

The average size of the polyhedral cells used was 1 mm; considering

that a time step of 0.01 s has been used for all the simulations, this mesh

resolution ensures that the Courant number satisfies the cell-wise and

the globally criterion1. Also if a laminar flow has been simulated, the

mesh has been made considering the possibility to simulate a turbulent

flow too; two layers of polyhedral cells parallel to the wall of the model

[12] have been created; the thickness chosen is 0.5 mm for each layer (see

figure 6.2). In this way the domain is composed by 65539 cells and a

total of 304067 vertex.

1The Courant number is defined as Co = |−→v |·∆t
l

Cell-wise : setting |−→v | to an estimated local velocity and l to the corresponding

local mesh dimension (e.g. cell diagonal). The Courant number does not exceed 100.

Globally: setting |−→v | to the estimated average velocity in the flow field and l to a

characteristic overall dimension of the model. The time step should be chosen so

that it is commensurate with the time scale of the physical process being modeled.

Courant number derived from this criterion is typically in the range 100 to 500.
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Figure 6.2: Fluid mesh at the inlet of the aortic arch. Note the

layers parallel to the wall boundary

6.1.2 Boundary conditions

Three cardiac cycles have been simulated but only the last one has been

analyzed; this was made in order to take on the transient effects. Each

cardiac cycle takes 0.96 s (' 60 beats for minute). For the physiologic and

the BAV models a pressure condition has been chosen for the brachial-

cephalic artery, the left common carotid artery, the left subclavian artery

and the outlet section (fig 6.1) that represents the beginning of the de-

scending aorta.

The value of the pressure during the cardiac cycle is shown in figure

6.3. Here it can be noted that the minimum pressure is zero; indeed from

the physiological pressure, derived from the literature [22], the diastolic

pressure was subtracted, so that the resulting pressure is relative to the

diastolic one.

This is because the geometry of the model was created considering the
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Figure 6.3: Pressure versus time during the three cardiac cycle

used as boundary condition

dimensions in the diastolic part of the cardiac cycle, that is when the

internal pressure is 80 mmHg and the mass inlet is zero (aortic valve

closed).

This boundary condition has been implemented in Star CD through the

subroutine BCDEFP (see appendix B) allowing the pressure value to

change every time step and assuming a uniform distribution on the ref-

erence sections.

Now let us discuss the inlet condition. The velocity inlet condition

is chosen for the section that represent the region located 3-4 cm down-

stream of the aortic valve. The influence of the BAV condition on the flux

profile downstream the aorta valve was already discussed in the chapter 2.

The purpose of going to investigate the differences of the flow field

and mainly of the wall shear stress (WSS) between the physiological case

(normal valve) and the pathological one (BAV) is achieved by placing

appropriate inlet velocity boundary conditions.

For the physiological inlet condition we take as a reference the work of

Suo [49]. In figure 6.4 the blood flow at various section of the ascending

aorta during a cardiac cycle is shown.

Rearranging the information provided by the curve of the inlet flow

(the violet curve), using our geometrical dimension, we obtain the time
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Figure 6.4: Flow inside the ascending aorta at different section

during a cardiac cycle (Suo et all.)

trend of the average velocity inlet (v̄) on the inlet section, that is shown

in figure 6.5 for three cardiac cycles.

Figure 6.5: Average velocity at the inlet section v̄ during three

cardiac cycles of the simulation

The boundary condition used in the simulation of the physiological

case is then a velocity that have a parabolic profile on the inlet section

and is zero on the inlet border line. In each time step the value of average

velocity is given by the curve of the figure 6.5. This spacial profile and

time trend is implemented in the subroutine BCDEFI (see appendix C).
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Keeping the same volume flow rate, for the BAV model an eccentric

and asymmetric profile of the velocity inlet has been assumed according

with Robicsek [45]. We refer to the BAV morphology of the figure 2.1

with a maximum of the velocity profile changing its position along the

left-right axis during the cardiac cycle. The implementation of this profile

is discussed in appendix D.

In figure 6.6 it is shown the velocity profiles at several values of time

(1.92 s, 1.96 s, 2 s, 2.04 s, 2.08 s, 2.16 s, 2.24 s, 2.32 s). On the left

column the normal parabolic profiles is reported while on the right one

the BAV velocity inlet profiles during the systole are shown.
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Time=1.92 s

Time=1.96 s

Time=2.04 s

Time=2.08 s
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Time=2.16 s

Time=2.16 s

Time=2.24 s

Figure 6.6: Parabolic (left column) and BAV (right column)

velocity inlet profile at the time istant 1.92 s, 1.96 s, 2 s, 2.04 s, 2.08

s, 2.16 s, 2.24 s, 2.32 s
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6.1.3 Results

The results showed from here to the end of the chapter are selected at the

instants of time corresponding to the black cross marked in figure 6.5:

early systole (t = 1.96 s and t=2 s), peak systole (t=2.04 s and t=2.08

s), late systole-early diastole (t=2.24 s and t=2.32 s);

All the following results are referred to these six instants unless otherwise

stated.

Time=1.96 s

Time=2 s

Time=2.04 s
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Time=2.08 s

Time=2.24 s

Time=2.32 s

Figure 6.7: Wall pressure for the physiologic (left column) and

BAV (right column) models
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Pressure and velocity profiles

In figure 6.7 the pressure at the wall of the aortic arch is showed for the

the physiological model (left column) and the BAV model (right column);

the profiles are very similar, proving the low influence of the velocity pro-

file at the inlet section on the pressure distribution.

Time=1.96 s

Time=2 s

Time=2.04 s
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Time=2.08

Time=2.24 s

Time=2.32 s

Figure 6.8: Velocity magnitude and vector on the plane X-Z for

the physiologic (left column) and BAV (right column) models

During the cardiac cycle simulation the pressure rise from a quite

zero pressure to a maximum of about 5350 Pa (approximately equal to

40 mmHg) . This values have to be considered as a relative pressure;
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80 mmHg must be added to compare the value with the classical aortic

pressure trend. Almost the same can be said with regard to the velocity

profile showed in the figure 6.8. All the figures have been captured in

Star CD using the macro described in the appendix E.

In the figure 6.10 the secondary flow of the physiological model is

showed; the section used is the one created by the intersection of the

aortic arch with X-Y plane roted by 15 degree respect to the Y axis

(figure 6.9).
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Figure 6.9: Section of the model

Figure 6.10: Secondary flow in the section of figure 6.9 for the

physiologic model at the time (from left to the right and from top

to the bottom) 1.96 s, 2 s, 2.04 s, 2.08 s
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The wall shear stress

In figures 6.11 and 6.12 the module and the vectorial representation of

the shear stress at the wall of the models are shown, respectively .

Time=1.96 s

Time=2 s

Time=2.04 s
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Time=2.08 s

Time=2.24 s

Time=2.32 s

Figure 6.11: Wall shear stress magnitude for the physiologic (left

column) and BAV (right column) models

Star CD have the capability to calculate the component of wall shear

force. The definition given in the user’s guide [2] is used to calculate the

WSS :

Fs = τwAb
vpar

|vpar|
where Ab is the wall cell face area, vpar is the velocity vector component
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parallel to the wall at the center of a near-wall cell.

Time=1.96 s

Time=2 s

Time=2.04 s
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Time=2.08 s

Time=2.24 s

Time=2.32 s

Figure 6.12: Vectorial representation of the wall shear stress

components for the physiologic (left column) and BAV (right

column) models

In order to compare in a more quantitative way the results of WSS for

the physiological and BAV models, the figures and graphs in 6.13 were

created (see appendix E).
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In the left column the percent difference between the wss of the BAV

and the physiological model is shown at different instant of the cardiac

cycle. In the right column we have the wss values for the two different

models along the perimeter of the section of figure 6.9.

Time=1.96 s

Time=2 s

Time=2.04 s

78



Chapter 6 The aortic model

Time=2.08 s

Time=2.24 s

Time=2.32 s

Figure 6.13: On the left the percent difference of wss magnitude

between the BAV and the physiological model. On the right BAV

wss (violet curve) and physiological wss (red curve) along the

perimeter of the section 6.9
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These graphs confirm that the major difference regard the extrados

area.

During the first part of the systole the wall shear stress present higher

values in the intrados area (central part of the right graphs); this distri-

bution changes during the late systole when the wss magnitude becomes

generally to lower values.

It is possible to appreciate that the wss in the BAV model is generally

higher than the wss of the physiological model.

This is valid especially in the extrados area of the ascending aortic

arch (extremes of the right graphs) where in normal condition (physiolog-

ical red curve) the magnitude of the wss oscillates between 0.3 Pa·s and

5.5 Pa·s and the differences between the two models can be also higher

then the 70%; furthermore this area during the cardiac cycle moves from

the inlet to the brachial-cephalic artery in a cyclic way.

This is a very interesting result because this area is one of the most

common parts for the development of aneurysm.
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6.2 Coupling with the aortic wall

In order to have a complete view of the differences between the physio-

logic and pathologic case, the results of the fluid domain has been coupled

with the solid domain representing the wall of the aortic artery.

Before to explain the method used to couple the fluid and the structure

domain, the mesh and geometry make in ABAQUS will be discussed.

The geometry of the model was extruded from the surface of the fluid

domain; the thickness of the wall’s arteries is constant and equal to 1.95

mm.

The mesh is composed by 32121 linear hexahedral hybrid elements

(figure 6.16); meshing the model, the geometry has been partitioned by

using several planes (see figure 6.14), allowing to mesh some regions of

the model with a structured technique and some other with a sweep

(mapped) one (figure 6.15); the thickness of the model was seeded creat-

ing three parallel layers of elements.

Figure 6.14: The wall model partitioned by using several planes
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Figure 6.15: Different kinds of region meshes; the green regions

are meshed by using a structured technique while the yellow

regions are meshed by using a sweep technique

Figure 6.16: Final mesh of the solid domain
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When the mesh is created in ABAQUS and an input file (.inp) of the

model is ready, Star CD is able to import the solid mesh through this file;

the figure 6.17 shows the result of this operation. Note that the inner

(orange colored) has a polyhedral mesh while the wall has a hexahedral

mesh coming from ABAQUS (green colored).

Figure 6.17: The solid mesh imported by ABAQUS in Star CD

Furthermore Star CD is able to map the pressure resulting from the

simulations discussed in the section 6.1 on the solid mesh already im-

ported. In figure 6.18 it is possible to see an example of this operation.

This is done by creating a .mapd file (see appendix F) containing the

value of the load applied on the element of the coupling surface.

We decided to map the pressure results for both the physiological

model and the BAV model every four time steps (0.04 s) starting from

the beginning of the third cardiac cycle of the previous fluid dynamic

simulations.
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Figure 6.18: Field of pressure mapped on the surface’s elements of

the arterial wall model

6.2.1 The solid model

From the early days after applying FEM in researches and investigations,

in order to achieve the best model of the arterial system, the issue of the

best boundary conditions arise and until today is being discussed in re-

searches and articles [18] [32] [7] . Specifically for the inlet section of our

model different conditions have been developed, considering this is the

nearest to the hearth.

Some authors suggest to impose a periodic rotation to the plane of

the inlet section and an axial displacement too. In our case (many steps,

loads changing step by step) we decided to apply a simple encastre to

this section in order to minimize the computational costs and to ensure

convergence of the numerical simulation.This allows us to still be able to

compare the results of the two models in a completely satisfactory way.

For the other sections (the outlet sections of the descending aorta, the

brachial-cephalic, the left common carotid and the subclavian arteries)

an in-plane displacement boundary condition is applied: nodes can move

only in X-Y plane. It means that the nodes will remain in their initial
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plane during the entire simulation.

This is an option which ABAQUS offers by its distributing force bound-

ary condition, the: distributing coupling [1]. It constrains the motion of

the coupling nodes to the rigid body motion of the reference node, which

in our case is the central point of boundary sections.

The dimensions of the model are taken from works [19] in which the

geometrical informations are given by using angiographic or TAC tech-

niques. These are in vivo imaging techniques and for this reason the

dimensions are obtained at particular values of pressure, normally the

diastolic pressure (at least in the following discussion this will be sup-

posed).

Then the geometry used is referred to a situation in which the internal

pressure is 80 mmHg. If we consider that the pressure mapped from

the fluid simulations are lacking the diastolic pressure (see the boundary

conditions of the model) we have the needs to achieve the equilibrium of

the initial geometry with the initial load (the diastolic pressure for this

case); so the evaluation of the initial stress field in the model is required.

The importance of the initial stress condition can be appreciate just

looking the graph of figure 6.19. If we use a zero-stress initial condition

the geometry deforms excessively (∆DA ). This is because of the low

stiffness of the material at low level of load (pressure in this case); the

deformation is realistic working at different operating point of the curve;

for our work we can imagine that the pressure PA represent the diastolic

pressure while the pressure PB the systolic one.

In order to take into account the diastolic pressure the values of

stresses have been calculated using the small thickness theory applied

to the aortic arch and the efferent arteries; moreover these stress field

applied should lead to little displacement of the model. This condition

is realized introducing an initial first step in which only the initial load

(diastolic pressure of 80 mmHg equal to 10665 Pa) is applied balancing

the initial conditions of stress field.

Using this method, the circumferential stress of 27.8 kPa has been
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Figure 6.19: schematic representation of the curve

diameter-pressure

applied to the aortic arch, and 21.8 kPa, 16.4 kPa, 19.1 kPa respectively

to the brachial-cephalic, common carotid, subclavian arteries; also a lon-

gitudinal stress, equal to the half of the circumferential one, has been

applied for each part.

In the figure 6.20 the results of the balancing step of the simulation is

shown. It is possibile to note that the initial displacements obtained are

small and the mesh is quite superposed on the original one.

Figure 6.20: Deformed and configuration after the balancing step

It is important underline that it is necessary to define the radial, cir-

cumferential and longitudinal directions for every point of the model in
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order to introduce the initial stress conditions. For the briachial-cephalic,

common carotid and subclavian arteries three different cylindrical refer-

ence systems were created in ABAQUS CAE.

For the aortic arch (that have a more complex geometry), the direction

cosines of the three axis were defined through the subroutine ORIENT

(see appendix A). In figure 6.21 the assigned direction are showed.

Figure 6.21: Assigned directions of the local reference system for

the aortic arch. The axis 1 (blue), 2 (yellow) and 3 (red) are

respectively the radial, longitudinal and circumferential directions

The constitutive model of the aortic wall has been implemented as a

non linear hyperelastic Demiray material. In chapter 3 the features of

this model and its implementation was discussed. The model needs two

parameters to be defined (a, and b). The constants used in these simula-

tions comes from the work of Herrera [19], in which in vitro experimental

data on aortic samples are fitting using the Demiray material model.

The values used in our simulations will be a = 54.419 kPa and b = 1.936.

The cardiac cycle for the aortic wall was simulated by charging the

internal surface of the model with a pressure load represented by the

mapped pressure; practically this is done including a different .mapd file

for each load step of the simulation. In this way 24 steps are required;

every step is solved as a static analysis. This is a limitation of our model
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that will be discuss in the chapter dedicate to the conclusions. A dynamic

simulation should be a better choice but in this work the use of several

static analyses can be a good approximation (see chapter 7).

6.2.2 Results

Time= 1.96 s

Time= 2 s

Time= 2.04 s
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Time= 2.08 s

Time= 2.24 s

Time= 2.32 s

Figure 6.22: On the left column: mapping of displacements for the

physiological model. On the right column: mapping of

displacements for the BAV model
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In the following pages the results of the physiological and BAV model

will be compared as we did for the fluid domain results.

The deformation of the model, the circumferential and longitudinal stresses

will be showed for the same time instants analyzed in the previous section.

In the figure 6.22 the map of the displacements is showed at different

time instants, for the physiological model (right column) and for the BAV

model (left column).

Time= 1.96 s

Time= 2 s

Time= 2.04 s
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Time= 2.08 s

Time= 2.24 s

Time= 2.32 s

Figure 6.23: Circumferential stresses for the physiological (right)

and the BAV model (left)

The maximum displacement is obviously observed during the systolic

peak in the extrados region of the ascending aorta and it is about 2.7 mm

according with the literature and with no significant differences between

the two models.
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In figure 6.23 the circumferential stress is shown. Also in this case the

maximum stress is localized in the ascending aorta during the systolic

peak and it is about σθ = 102.2 kPa.

Time= 1.96 s

Time= 2 s

Time= 2.04 s
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Time= 2.08 s

Time= 2.24 s

Time= 2.32 s

Figure 6.24: Longitudinal stresses for the physiological (right) and

the BAV model (left)
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In figure 6.24 the longitudinal stress is shown for both models. The

results are showed for our section of interest, downstream of the aortic

root. The value are one magnitude lower than the circumferential stress

with a maximum of about 28.8 kPa.

In order to understand the influence of the pathology on the perceived

stresses from the ascending aorta, the results have been compared along

particular paths showed in the figure 6.25.

Figure 6.25: Axial (top) and radial (bottom) paths (red lines) for

comparing the computed stresses

This particular axial path was chosen considering the wall shear stress

distribution of figure 6.13; during the cardiac cycle the maximum differ-

ence between the two models appears along this path. Particularly during

the peak of systole the maximum values of WSS are along the perimeter
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of the section shown in 6.9, and for this reason the radial path of figure

6.25 was chosen to compare the values of stress of the two models.

In figures 6.26 and 6.27 it is possible to see that there are not significant

differences of stress between the BAV and the physiological model.

(a) longitudinal stress
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(b) circumferential stress

Figure 6.26: The longitudinal (a) and the circumferential (b) stress

along the axial path (figure 6.25) at the time instants 2.08 s and

2.24 s
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(a) longitudinal stress

97



Chapter 6 The aortic model

(b) circumferential stress

Figure 6.27: The longitudinal (a) and the circumferential (b) stress

along the radial path (figure 6.25) path at the time instants 2.08 s

and 2.24 s
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Conclusions

In this work the applied methodology and the results obtained with two

models of the aortic arch have been described. One model represents the

physiological cardiac cycle for an aortic arch including its main efferents

arteries. The physiological conditions assume a three leaflets valve up-

stream of our geometry model; for these simulations a parabolic velocity

profile at the inlet section (downstream of the aortic valve) was used.

The second model represents a cardiac cycle for an aortic arch down-

stream of a bicuspid aortic valve (BAV); in this case a particular asym-

metric velocity profile at the inlet section was used in order to consider

the abnormal opening way of the pathologic valve.

Both models don’t include the aortic valve and the sinus. The models

take into account the downstream effect of the valve for the physiologi-

cal and pathological case. In the models the different valve morphology

results in different velocity distribution at the inlet section.

The adequacy of the selected profiles will be further discussed.

With the proposed methods, the differences between the two clinical

conditions have been analyzed.

Particularly the differences regarding the wall shear stress distribution

have been investigate together with the pressure distributions and the

corresponding stresses on the aortic wall during the cardiac cycle.

This has been done focusing especially on the region of the aortic arch

called ascending aorta.
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Many of the results discussed don’t show relevant differences in the

two models both for the fluid domain (blood flow) and the solid domain

(aortic wall). Only comparing the wall shear stress results we can find

significant differences, that are higher than 70 % in the region of the

ascending aorta.

This is a very interesting result considering the clinical and biologic re-

searches described in the chapter 2.

The increasing WSS caused by the BAV pathology seems to support

the so called “hemodynamic” theory in the development of aneurysm of

the ascending aorta; indeed the stresses “felt” by the aortic wall results

quite independent from the blood’s rheology features coming from the

pathology condition. Then the WSS can actually play the main role

in the aneurysm’s developing through molecular pathway that can lead

to the medial degeneration and consequent dilatation of the ascending

aorta.

7.1 Limitations and possible improvements

The models presented in the previous chapters present various simplifi-

cations of the clinical reality from several points of view.

In this section we analyze the most critical aspects regarding the models

used in this work.

In chapter 3 several constitutive models have been described. The

Demiray model has been chosen for its computational simplicity and be-

cause of its adequacy to simulate the macroscopic mechanical behavior

of the large arteries, as established in several work [10] [4]. Furthermore

if the anisotropic behavior of the three layers of the arterial wall (with

different collagen orientation) have to be taken in account, other models

must to be used, for example the Holzapfel constitutive model. At the

same way a time-dependent model could be used in order to consider the

viscoelastic effects in the arteries.

In chapter 5 the mathematical aspect of the fluid-structure coupling

100



Chapter 7 Conclusions

have been discussed; the need to implement a strong coupling for our

models seems clear.

ABAQUS 6.8 and Star CD 4.1 support the co-simulation tool for the

coupling but unfortunately this is a weak coupling: the pressure and

shear stress information coming from the transient fluid dynamic simula-

tions (Star CD) are exchanged with the solid domain solver (ABAQUS)

that return the new position of the nodes match on the coupled surface

and the velocity displacement too; in a weak coupling this exchange hap-

pens only one time for each time step.

In our model the terms of the equation (5.32) are too much similar (the

blood density ρf is quite similar to the wall ’s arteries density ρs) so,

coupling the wall and the blood models, the simulations doesn’t achieve

convergence and are numerically unstable.

For this reason a one-way coupling was implemented with the methods

described in chapter 6. The use of this coupling method is the main

source of limitations of the model used.

Particularly, the fluid mesh is fixed along the cardiac cycle as if the aortic

wall was rigid. In this way we lost the influence of the wall motion on

the flow patterns and on the wall shear stress distribution.

Comparing a fixed wall and a moving wall model (made by using MRI

data and FEM tools) some authors find that the WSS could be 25% less

considering the wall motion [49]. Another approach could be to work

with programs that support a monolithic coupling method like ANSYS

or ADINA.

Also if our results for each model are affected by this errors, the protocol

followed allows us to say that, anyway, the general effectiveness of com-

paring the BAV and the physiological models remains.

The boundary conditions used to simulate the differences between the

two models, were described in chapter 6.

Particularly the velocity distributions on the inlet section are chosen as

showed in the figure 6.6 assuming this special influence of the upstream

aorta morphology on the downstream velocity profiles; both the profiles

(for the physiological and BAV model) have a quite parabolic shape.

This is clearly a simplification in the ascending aorta’s region where the

flow is not completely developed. The model could be improved by us-
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ing velocity distributions coming from MRI imaging data that could be

inserted in the model as boundary conditions.

It was declared that the simulations done in ABAQUS are composed

by several static instead of dynamic steps. In this way the inertial com-

ponent of the solution for the aortic wall are neglected. This can be a

reasonable approximation if the frequency content of the loads is lower

than the first modal frequency of the solid structure.

Figure 7.1: Frequency spectrum for the pressure outlet (top) and

the velocity inlet (bottom) boundary conditions

In figure 7.1 the frequency spectrum of the boundary conditions used

in the fluid domains are shown. The time trend is the same for both the

physiological and the BAV model.

Some modal analysis have been done in ABAQUS; the first modal fre-

quency found is 50 Hz that is greater than the frequency content of the
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pressure applied.
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Subroutines used in Abaqus

This Fortran file is composed by two subroutine. The first is the UHY-

PER subroutine, used for the definition of the hyperelastic material.

The second is ORIENT, used to define the local reference system of the

aortic arch.

SUBROUTINE UHYPER(BI1,BI2,AJ,U,UI1,UI2,UI3,TEMP,NOEL,

1 CMNAME,INCMPFLAG,NUMSTATEV,STATEV,NUMFIELDV,FIELDV,

2 FIELDVINC,NUMPROPS,PROPS)

C

INCLUDE ’ABA_PARAM.INC’

C

CHARACTER*80 CMNAME

DIMENSION U(2),UI1(3),UI2(6),UI3(6),STATEV(*),FIELDV(*),

1 FIELDVINC(*),PROPS(*)

C MATERIAL DE DEMIRAY

REAL*8 A,B

C

A=PROPS(1)

B=PROPS(2)

C

U(1)=A/B*(EXP(B/2*(BI1-3))-1)
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UI1(1)=A/2*EXP(B/2*(BI1-3))

UI1(2)=0.

UI2(1)=A*B/4*EXP(B/2*(BI1-3))

UI2(2)=0.

UI2(4)=0.

C

RETURN

END

C

SUBROUTINE ORIENT(T,NOEL,NPT,LAYER,KSPT,COORDS,BASIS,ORNAME,

1 NNODES,CNODES,JNNUM)

C

INCLUDE ’ABA_PARAM.INC’

C

CHARACTER*80 ORNAME

DIMENSION T(3,3),COORDS(3),BASIS(3,3),CNODES(3,NNODES)

DIMENSION JNNUM(NNODES)

C

R=36.995D-3

C

XT=SQRT(COORDS(1)**2+COORDS(3)**2)

C

XR=SQRT(COORDS(1)**2+COORDS(2)**2)

C

T(1,1)=COORDS(1) - COORDS(1)/XT*R

T(2,1)=COORDS(2)

T(3,1)=COORDS(3) - COORDS(3)/XT*R

T(1,2)=-COORDS(3)

T(2,2)=0D0

T(3,2)=COORDS(1)

C

RETURN

END
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Subroutines used in Star Cd

for the outlet pressure

boundary conditions

C*********************************************************

SUBROUTINE BCDEFP(UB,VB,WB,PR,TE,ED,T,SCALAR,TURINT,RSU)

C Boundary conditions definition for pressure boundaries

C********************************************************

C-------------------------------------------*

C STAR-CD VERSION 4.10.000

C-------------------------------------------*

INCLUDE ’comdb.inc’

COMMON/USR001/INTFLG(100)

DIMENSION SCALAR(*)

DIMENSION RSU(6)

DIMENSION A(288)

LOGICAL TURINT

INCLUDE ’usrdat.inc’

DIMENSION SCALC(50)

EQUIVALENCE( UDAT12(001), ICTID )

EQUIVALENCE( UDAT02(002), DEN )

EQUIVALENCE( UDAT04(002), DENC )

EQUIVALENCE( UDAT04(003), EDC )

EQUIVALENCE( UDAT04(005), PRC )
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EQUIVALENCE( UDAT04(009), SCALC(01) )

EQUIVALENCE( UDAT04(007), TC )

EQUIVALENCE( UDAT04(008), TEC )

EQUIVALENCE( UDAT04(059), UC )

EQUIVALENCE( UDAT04(060), VC )

EQUIVALENCE( UDAT04(061), WC )

EQUIVALENCE( UDAT04(064), UCL )

EQUIVALENCE( UDAT04(065), VCL )

EQUIVALENCE( UDAT04(066), WCL )

EQUIVALENCE( UDAT02(070), X )

EQUIVALENCE( UDAT02(071), Y )

EQUIVALENCE( UDAT02(072), Z )

C---------------------------------------------

C

C This subroutine enables the user to specify the conditions at

C PRESSURE boundaries for UB,VB,WB,PR,TE,ED,T,SCALAR.

C

C ** Parameters to be returned to STAR-CD: UB,VB,WB,PR,

C TE,ED,T,SCALAR,TURINT

C

C--------------------------------------------

Rmax = 0.010195

Xo = 0.036995

Rlocal = ((X-Xo)**2.0+Y**2.0)**0.5

i = 1

data A/0,

& 18.75,

& 37.5,

& 56.25,

& 75,

& 93.75,
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& 112.5,

& 131.25,

& 150,

& 501.4917983,

& 749.8858657,

& 1002.450097,

& 1249.812385,

& 1482.600626,

& 1691.442712,

& 1866.966539,

& 1999.8,

& 2082.912549,

& 2118.639874,

& 2111.659223,

& 2066.647845,

& 1988.282985,

& 1881.241893,

& 1750.201815,

& 1599.84,

& 1434.971717,

& 1260.964325,

& 1083.323205,

& 907.5537366,

& 739.1613013,

& 583.6512797,

& 446.5290523,

& 333.3,

& 247.8778089,

& 187.8093874,

& 149.0499495,

& 127.554709,

& 119.2788798,

& 120.177676,

& 126.2063114,

& 133.32,

& 138.4167816,
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& 142.1660001,

& 146.1798255,

& 152.0704275,

& 161.4499761,

& 175.9306412,

& 197.1245925,

& 226.644,

& 265.3796116,

& 311.336487,

& 361.7982642,

& 414.0485809,

& 465.371075,

& 513.0493843,

& 554.3671467,

& 586.608,

& 607.72253,

& 618.3291143,

& 619.7130788,

& 613.1597489,

& 599.9544504,

& 581.382509,

& 558.7292503,

& 533.28,

& 506.1704092,

& 477.9374306,

& 448.9683427,

& 419.6504235,

& 390.3709514,

& 361.5172046,

& 333.4764614,

& 306.636,

& 281.2888099,

& 257.3507256,

& 234.6432928,

& 212.9880571,

& 192.2065643,
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& 172.12036,

& 152.55099,

& 133.32,

& 114.3070621,

& 95.62435439,

& 77.44218152,

& 59.93084806,

& 43.26065859,

& 27.6019177,

& 13.12492997,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 18.75,

& 37.5,

& 56.25,

& 75,

& 93.75,

& 112.5,

& 131.25,

& 150,

& 501.4917983,

& 749.8858657,

& 1002.450097,

& 1249.812385,

& 1482.600626,

& 1691.442712,

& 1866.966539,

& 1999.8,

& 2082.912549,
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& 2118.639874,

& 2111.659223,

& 2066.647845,

& 1988.282985,

& 1881.241893,

& 1750.201815,

& 1599.84,

& 1434.971717,

& 1260.964325,

& 1083.323205,

& 907.5537366,

& 739.1613013,

& 583.6512797,

& 446.5290523,

& 333.3,

& 247.8778089,

& 187.8093874,

& 149.0499495,

& 127.554709,

& 119.2788798,

& 120.177676,

& 126.2063114,

& 133.32,

& 138.4167816,

& 142.1660001,

& 146.1798255,

& 152.0704275,

& 161.4499761,

& 175.9306412,

& 197.1245925,

& 226.644,

& 265.3796116,

& 311.336487,

& 361.7982642,

& 414.0485809,

& 465.371075,
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& 513.0493843,

& 554.3671467,

& 586.608,

& 607.72253,

& 618.3291143,

& 619.7130788,

& 613.1597489,

& 599.9544504,

& 581.382509,

& 558.7292503,

& 533.28,

& 506.1704092,

& 477.9374306,

& 448.9683427,

& 419.6504235,

& 390.3709514,

& 361.5172046,

& 333.4764614,

& 306.636,

& 281.2888099,

& 257.3507256,

& 234.6432928,

& 212.9880571,

& 192.2065643,

& 172.12036,

& 152.55099,

& 133.32,

& 114.3070621,

& 95.62435439,

& 77.44218152,

& 59.93084806,

& 43.26065859,

& 27.6019177,

& 13.12492997,

& 0,

& 0,
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& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 18.75,

& 37.5,

& 56.25,

& 75,

& 93.75,

& 112.5,

& 131.25,

& 150,

& 501.4917983,

& 749.8858657,

& 1002.450097,

& 1249.812385,

& 1482.600626,

& 1691.442712,

& 1866.966539,

& 1999.8,

& 2082.912549,

& 2118.639874,

& 2111.659223,

& 2066.647845,

& 1988.282985,

& 1881.241893,

& 1750.201815,

& 1599.84,

& 1434.971717,

& 1260.964325,

& 1083.323205,

& 907.5537366,

& 739.1613013,

113



Appendix B

& 583.6512797,

& 446.5290523,

& 333.3,

& 247.8778089,

& 187.8093874,

& 149.0499495,

& 127.554709,

& 119.2788798,

& 120.177676,

& 126.2063114,

& 133.32,

& 138.4167816,

& 142.1660001,

& 146.1798255,

& 152.0704275,

& 161.4499761,

& 175.9306412,

& 197.1245925,

& 226.644,

& 265.3796116,

& 311.336487,

& 361.7982642,

& 414.0485809,

& 465.371075,

& 513.0493843,

& 554.3671467,

& 586.608,

& 607.72253,

& 618.3291143,

& 619.7130788,

& 613.1597489,

& 599.9544504,

& 581.382509,

& 558.7292503,

& 533.28,

& 506.1704092,
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& 477.9374306,

& 448.9683427,

& 419.6504235,

& 390.3709514,

& 361.5172046,

& 333.4764614,

& 306.636,

& 281.2888099,

& 257.3507256,

& 234.6432928,

& 212.9880571,

& 192.2065643,

& 172.12036,

& 152.55099,

& 133.32,

& 114.3070621,

& 95.62435439,

& 77.44218152,

& 59.93084806,

& 43.26065859,

& 27.6019177,

& 13.12492997,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0/

if (TIME.LE.2.88) then

i=100*TIME

PR=A(i)

endif
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RETURN

END

C
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Subroutines used in Star CD

for the physiologic inlet

coundary condition

C*******************************************

SUBROUTINE BCDEFI(SCALAR,U,V,W,TE,ED,T,DEN,TURINT,RSU,V2P,F2P)

C Boundary conditions at inlets

C*******************************************

C----------------------------------------------*

C STAR-CD VERSION 4.06.000

C----------------------------------------------*

INCLUDE ’comdb.inc’

COMMON/USR001/INTFLG(100)

DIMENSION SCALAR(*)

DIMENSION RSU(6)

DIMENSION A(288)

LOGICAL TURINT

INCLUDE ’usrdat.inc’

DIMENSION SCALC(50)

EQUIVALENCE( UDAT12(001), ICTID )

EQUIVALENCE( UDAT04(002), DENC )

EQUIVALENCE( UDAT04(003), EDC )

EQUIVALENCE( UDAT02(005), PR )

EQUIVALENCE( UDAT04(005), PRC )
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EQUIVALENCE( UDAT04(009), SCALC(01) )

EQUIVALENCE( UDAT04(007), TC )

EQUIVALENCE( UDAT04(008), TEC )

EQUIVALENCE( UDAT04(059), UC )

EQUIVALENCE( UDAT04(060), VC )

EQUIVALENCE( UDAT04(061), WC )

EQUIVALENCE( UDAT04(064), UCL )

EQUIVALENCE( UDAT04(065), VCL )

EQUIVALENCE( UDAT04(066), WCL )

EQUIVALENCE( UDAT02(070), X )

EQUIVALENCE( UDAT02(071), Y )

EQUIVALENCE( UDAT02(072), Z )

C------------------------------------------- C

C This subroutine enables the user to specify INLET boundary

C conditions for U,V,W,TE,ED,T,(V22,F22 for V2F model) and SCALAR.

C

C

C ** Parameters to be returned to STAR: U,V,W,TE,ED,T, C SCALAR,

C DEN, TURINT

C

C NB U,V and W are in the local coordinate-system of the

C inlet boundary.

C

C--------------------------------------C

C---- This subroutine gives the inlet fluid a parabolic profile.

C It will be required to update this subroutine with different

C geometries, flow conditions, and coordinate systems.

Rmax = 0.01025

Xo = 0

Rlocal = ((X-Xo)**2.0+Y**2.0)**0.5

i = 0

data A/0,
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& 0.015,

& 0.03031256,

& 0.060625121,

& 0.090937681,

& 0.121250242,

& 0.181875362,

& 0.35125683,

& 0.533042729,

& 0.717525777,

& 0.894998693,

& 1.055754193,

& 1.190084995,

& 1.288283817,

& 1.343453989,

& 1.359941297,

& 1.34490214,

& 1.305492915,

& 1.24887002,

& 1.182189855,

& 1.112085515,

& 1.043096886,

& 0.97924055,

& 0.924533092,

& 0.881670074,

& 0.84806298,

& 0.819802273,

& 0.792978419,

& 0.763681881,

& 0.728003123,

& 0.682032609,

& 0.623064256,

& 0.553205794,

& 0.47576841,

& 0.394063285,

& 0.311333121,

& 0.23054668,
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& 0.154604241,

& 0.086406082,

& 0.028852482,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,
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& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0.015,

& 0.03031256,

& 0.060625121,

& 0.090937681,

& 0.121250242,

& 0.181875362,

& 0.35125683,

& 0.533042729,

& 0.717525777,

& 0.894998693,

& 1.055754193,

& 1.190084995,
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& 1.288283817,

& 1.343453989,

& 1.359941297,

& 1.34490214,

& 1.305492915,

& 1.24887002,

& 1.182189855,

& 1.112085515,

& 1.043096886,

& 0.97924055,

& 0.924533092,

& 0.881670074,

& 0.84806298,

& 0.819802273,

& 0.792978419,

& 0.763681881,

& 0.728003123,

& 0.682032609,

& 0.623064256,

& 0.553205794,

& 0.47576841,

& 0.394063285,

& 0.311333121,

& 0.23054668,

& 0.154604241,

& 0.086406082,

& 0.028852482,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,
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& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,
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& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0.015,

& 0.03031256,

& 0.060625121,

& 0.090937681,

& 0.121250242,

& 0.181875362,

& 0.35125683,

& 0.533042729,

& 0.717525777,

& 0.894998693,

& 1.055754193,

& 1.190084995,

& 1.288283817,

& 1.343453989,

& 1.359941297,

& 1.34490214,

& 1.305492915,

& 1.24887002,

& 1.182189855,

& 1.112085515,

& 1.043096886,

& 0.97924055,

& 0.924533092,

& 0.881670074,
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& 0.84806298,

& 0.819802273,

& 0.792978419,

& 0.763681881,

& 0.728003123,

& 0.682032609,

& 0.623064256,

& 0.553205794,

& 0.47576841,

& 0.394063285,

& 0.311333121,

& 0.23054668,

& 0.154604241,

& 0.086406082,

& 0.028852482,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,
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& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0/
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if (TIME.LE.2.88) then

i=100*TIME

W = 2*A(i)*(1.0-(Rlocal/Rmax)**2)

endif

RETURN

END
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Subroutines used in Star CD

for the inlet velocity in the

BAV computational model

C**********************************************************

SUBROUTINE BCDEFI(SCALAR,U,V,W,TE,ED,T,DEN,TURINT,RSU,V2P,F2P)

C Boundary conditions at inlets

C**********************************************************

C----------- STAR-CD VERSION 4.06.000 ---------C

INCLUDE ’comdb.inc’

COMMON/USR001/INTFLG(100)

DIMENSION SCALAR(*)

DIMENSION RSU(6)

DIMENSION A(288)

LOGICAL TURINT

INCLUDE ’usrdat.inc’

DIMENSION SCALC(50)

EQUIVALENCE( UDAT12(001), ICTID )

EQUIVALENCE( UDAT04(002), DENC )

EQUIVALENCE( UDAT04(003), EDC )

EQUIVALENCE( UDAT02(005), PR )

EQUIVALENCE( UDAT04(005), PRC )

EQUIVALENCE( UDAT04(009), SCALC(01) )
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EQUIVALENCE( UDAT04(007), TC )

EQUIVALENCE( UDAT04(008), TEC )

EQUIVALENCE( UDAT04(059), UC )

EQUIVALENCE( UDAT04(060), VC )

EQUIVALENCE( UDAT04(061), WC )

EQUIVALENCE( UDAT04(064), UCL )

EQUIVALENCE( UDAT04(065), VCL )

EQUIVALENCE( UDAT04(066), WCL )

EQUIVALENCE( UDAT02(070), X )

EQUIVALENCE( UDAT02(071), Y )

EQUIVALENCE( UDAT02(072), Z )

C----------------------------------------------- C

C This subroutine enables the user to specify INLET boundary

C conditions for U,V,W,TE,ED,T,(V22,F22 for V2F model) and SCALAR.

C

C

C ** Parameters to be returned to STAR: U,V,W,TE,ED,T,

C SCALAR, DEN, TURINT C C NB U,V and W are in the local

Ccoordinate-system of the inlet boundary.

C

C--------------------------------------------- C

R = 0.01025

X0=0.036995

a0=1

b0=1

a=1.7

b=1

c=1

d=1

i=1

data A/0,

& 0.015,
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& 0.03031256,

& 0.060625121,

& 0.090937681,

& 0.121250242,

& 0.181875362,

& 0.35125683,

& 0.533042729,

& 0.717525777,

& 0.894998693,

& 1.055754193,

& 1.190084995,

& 1.288283817,

& 1.343453989,

& 1.359941297,

& 1.34490214,

& 1.305492915,

& 1.24887002,

& 1.182189855,

& 1.112085515,

& 1.043096886,

& 0.97924055,

& 0.924533092,

& 0.881670074,

& 0.84806298,

& 0.819802273,

& 0.792978419,

& 0.763681881,

& 0.728003123,

& 0.682032609,

& 0.623064256,

& 0.553205794,

& 0.47576841,

& 0.394063285,

& 0.311333121,

& 0.23054668,

& 0.154604241,
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& 0.086406082,

& 0.028852482,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,
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& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0.015,

& 0.03031256,

& 0.060625121,

& 0.090937681,

& 0.121250242,

& 0.181875362,

& 0.35125683,

& 0.533042729,

& 0.717525777,

& 0.894998693,

& 1.055754193,

& 1.190084995,

& 1.288283817,

132



Appendix D

& 1.343453989,

& 1.359941297,

& 1.34490214,

& 1.305492915,

& 1.24887002,

& 1.182189855,

& 1.112085515,

& 1.043096886,

& 0.97924055,

& 0.924533092,

& 0.881670074,

& 0.84806298,

& 0.819802273,

& 0.792978419,

& 0.763681881,

& 0.728003123,

& 0.682032609,

& 0.623064256,

& 0.553205794,

& 0.47576841,

& 0.394063285,

& 0.311333121,

& 0.23054668,

& 0.154604241,

& 0.086406082,

& 0.028852482,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,
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& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,
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& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0.015,

& 0.03031256,

& 0.060625121,

& 0.090937681,

& 0.121250242,

& 0.181875362,

& 0.35125683,

& 0.533042729,

& 0.717525777,

& 0.894998693,

& 1.055754193,

& 1.190084995,

& 1.288283817,

& 1.343453989,

& 1.359941297,

& 1.34490214,

& 1.305492915,

& 1.24887002,

& 1.182189855,

& 1.112085515,

& 1.043096886,

& 0.97924055,

& 0.924533092,

& 0.881670074,

& 0.84806298,
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& 0.819802273,

& 0.792978419,

& 0.763681881,

& 0.728003123,

& 0.682032609,

& 0.623064256,

& 0.553205794,

& 0.47576841,

& 0.394063285,

& 0.311333121,

& 0.23054668,

& 0.154604241,

& 0.086406082,

& 0.028852482,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,
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& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0,

& 0/

if (TIME.LE.0.2) then
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i=100*TIME

a0=a0-6*i

W=2*A(i)*((X-X0)**2+Y**2-R**2)*(exp(-c*(X-X0)**2-d*Y**2

.-a0*(X-X0)-b0*Y));

endif

if (TIME.GT.0.2.AND.TIME.LE.0.96) then

i=100*TIME

a0=a0-120+6*i

W=2*A(i)*((X-X0)**2+Y**2-R**2)*(exp(-c*(X-X0)**2-d*Y**2

.-a0*(X-X0)-b0*Y));

endif

if (TIME.GT.0.96.AND.TIME.LE.1.16) then

i=100*TIME

a0=a0-6*(i-96)

W=2*A(i)*((X-X0)**2+Y**2-R**2)*(exp(-c*(X-X0)**2-d*Y**2

.-a0*(X-X0)-b0*Y));

endif

if (TIME.GT.1.16.AND.TIME.LE.1.92) then

i=100*TIME

a0=a0-120+6*(i-116)

W=2*A(i)*((X-X0)**2+Y**2-R**2)*(exp(-c*(X-X0)**2-d*Y**2

.-a0*(X-X0)-b0*Y));

endif

if (TIME.GT.1.92.AND.TIME.LE.2.12) then

i=100*TIME

a0=a0-6*(i-192)

W=2*A(i)*((X-X0)**2+Y**2-R**2)*(exp(-c*(X-X0)**2-d*Y**2

.-a0*(X-X0)-b0*Y));

endif

if (TIME.GT.2.12) then
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i=100*TIME

a0=a0-120+6*(i-212)

W=2*A(i)*((X-X0)**2+Y**2-R**2)*(exp(-c*(X-X0)**2-d*Y**2

.-a0*(X-X0)-b0*Y));

endif

RETURN

END
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Macro used in Star CD

E.1 Plot pressure and velocity magnitude

in a transient analysis

!

! Macro 12-1: Animate transient results.

!

!-User to define:

*SET,TIME,1.91,0.01

!-End of user defined values

TRLOAD,,

POPT,CONT

PLTY,EHID

CSET,NEWS,FLUID

TRINTERPOLATE,ON,CAVER,CSET

*SET,FRM,1097,1

*DEFI,NOEX

STOR,TIME,TIME

GETC,VMAG,P

SCDU,GIF,FRM

CPLOT

SCDU,OFF

*END

*LOOP,1.0,97,1.0
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E.2 Plot wall shear stress magnitude in a

transient analysis

!

! Macro 12-2: Animate transient results.

!

!-User to define:

*SET,TIME,1.91,0.01

!-End of user defined values

TRLOAD,,

POPT,CONT

PLTY,EHID

CSET,NEWS,FLUID

TRINTERPOLATE,ON,CAVER,CSET

*SET,FRM,1195,1

*DEFI,NOEX

STOR,TIME,TIME

oper,getw,sfxyz,6

oper,getw,area,5

oper,divid,6,5,4

oper,plload

cave,all

SCDU,GIF,FRM

popt,cont

wplot $replot

SCDU,OFF

*END

*LOOP,1.0,97,1.0

E.3 Plot the vectorial representation of the

wall shear stress in a transient analysis

!

! Macro 12-3: Animate transient results.

!
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!-User to define:

*SET,TIME,1.91,0.01

!-End of user defined values

TRLOAD,,

POPT,CONT

PLTY,EHID

CSET,NEWS,FLUID

TRINTERPOLATE,ON,CAVER,CSET

*SET,FRM,1629,1

*DEFI,NOEX

STOR,TIME,TIME

oper,getw,sfx,1

oper,getw,sfy,2

oper,getw,sfz,3

oper,getw,area,5

oper,divid,1,5,1

oper,smult,-1,1,1

oper,divid,2,5,2

oper,smult,-1,2,2

oper,divid,3,5,3

oper,smult,-1,3,3

oper,plload

cave,all

SCDU,GIF,FRM

popt,vect

wplot $replot

SCDU,OFF

*END

*LOOP,1.0,97,1.0
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E.4 Plot the WSS percentage difference be-

tween the BAV and the physiological

model

First the wss is aquired from the result file of the simulation regarding

the physiological model:

oper,clear,1

oper,clear,2

oper,clear,3

oper,clear,4

oper,clear,5

oper,clear,6

oper,getw,sfxyz,6

oper,getw,area,5

oper,divid,6,5,6

oper,plload

popt,cont

wplot $replot

Later the wss is acquired from the result file of the BAV simulation

(opening the result file and executing the following macro)

oper,getw,sfxyz,4

oper,getw,area,5

oper,divid,4,5,4

oper,plload

popt,cont

wplot $replot

Last the following macro is executed

oper,subtract,6,4,4

oper,divid,4,6,4

oper,smult,100,4,4

oper,plload

cave,all

popt,cont

wplot $replot
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.mapd files

This is a part of a .mapd file genereted by Star CD. In this case the pres-

sure at the time instant 2.36 resulting from the fluid dynamics simulation

of the BAV model is mapped on the coupling surface of the ABAQUS

model.

*DLOAD, op=NEW

AORTA_SOLID.106,P5, 101.06851

AORTA_SOLID.107,P5, 105.84074

AORTA_SOLID.116,P5, 104.39200

AORTA_SOLID.232,P5, 101.06851

AORTA_SOLID.233,P5, 105.84074

AORTA_SOLID.242,P5, 80.271000

AORTA_SOLID.358,P5, 69.539634

AORTA_SOLID.359,P5, 86.216580

AORTA_SOLID.368,P5, 39.613300

AORTA_SOLID.415,P5, 147.36860

AORTA_SOLID.416,P5, 147.14630

AORTA_SOLID.417,P5, 157.65300

AORTA_SOLID.418,P5, 148.03200

AORTA_SOLID.419,P5, 147.51360

AORTA_SOLID.420,P5, 148.06762

AORTA_SOLID.421,P5, 147.79020

AORTA_SOLID.422,P5, 147.76150

AORTA_SOLID.423,P5, 146.10040

AORTA_SOLID.424,P5, 148.61882
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AORTA_SOLID.425,P5, 150.54351

AORTA_SOLID.426,P5, 152.28160

AORTA_SOLID.427,P5, 154.23790

AORTA_SOLID.428,P5, 155.43670

AORTA_SOLID.429,P5, 156.49240

AORTA_SOLID.430,P5, 156.31022

AORTA_SOLID.431,P5, 162.42904

AORTA_SOLID.432,P5, 166.42650

AORTA_SOLID.469,P5, 147.50460

AORTA_SOLID.470,P5, 147.50460

AORTA_SOLID.471,P5, 155.77770

AORTA_SOLID.472,P5, 147.67970

AORTA_SOLID.473,P5, 147.46820

AORTA_SOLID.474,P5, 147.57521

AORTA_SOLID.475,P5, 147.74730

AORTA_SOLID.476,P5, 148.84610

AORTA_SOLID.477,P5, 146.10040

AORTA_SOLID.478,P5, 148.61882

AORTA_SOLID.479,P5, 150.68611

AORTA_SOLID.480,P5, 152.12730

AORTA_SOLID.481,P5, 153.50524

AORTA_SOLID.482,P5, 155.43670

AORTA_SOLID.483,P5, 156.72610

AORTA_SOLID.484,P5, 155.53920

AORTA_SOLID.485,P5, 164.33911

AORTA_SOLID.486,P5, 166.42650

AORTA_SOLID.523,P5, 150.60823

AORTA_SOLID.524,P5, 147.78170

AORTA_SOLID.525,P5, 158.47610

AORTA_SOLID.526,P5, 147.74640

AORTA_SOLID.527,P5, 146.66040

AORTA_SOLID.528,P5, 147.38710

AORTA_SOLID.529,P5, 147.68070

AORTA_SOLID.530,P5, 147.43190

AORTA_SOLID.531,P5, 147.24270

AORTA_SOLID.532,P5, 148.91320
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AORTA_SOLID.533,P5, 150.68611

AORTA_SOLID.534,P5, 152.12730

AORTA_SOLID.535,P5, 154.08100

AORTA_SOLID.536,P5, 154.72900

AORTA_SOLID.537,P5, 156.72610

AORTA_SOLID.538,P5, 157.18070

AORTA_SOLID.539,P5, 164.56350

AORTA_SOLID.540,P5, 166.79680

AORTA_SOLID.577,P5, 149.70472

AORTA_SOLID.578,P5, 146.76112

AORTA_SOLID.579,P5, 158.47610

AORTA_SOLID.580,P5, 146.75050

AORTA_SOLID.581,P5, 145.97540

AORTA_SOLID.582,P5, 146.44110

AORTA_SOLID.583,P5, 146.61192

AORTA_SOLID.584,P5, 147.43190

AORTA_SOLID.585,P5, 146.51611

AORTA_SOLID.586,P5, 148.91320

AORTA_SOLID.587,P5, 149.82681

AORTA_SOLID.588,P5, 151.58830

AORTA_SOLID.589,P5, 152.56920

AORTA_SOLID.590,P5, 154.72900

AORTA_SOLID.591,P5, 156.20840

AORTA_SOLID.592,P5, 156.86694

AORTA_SOLID.593,P5, 164.37600

AORTA_SOLID.594,P5, 167.21594

AORTA_SOLID.631,P5, 148.71170

AORTA_SOLID.632,P5, 146.51643

AORTA_SOLID.633,P5, 148.71170

AORTA_SOLID.634,P5, 146.45490

AORTA_SOLID.635,P5, 144.72343

AORTA_SOLID.636,P5, 145.45080

AORTA_SOLID.637,P5, 146.60280

AORTA_SOLID.638,P5, 146.33860

AORTA_SOLID.639,P5, 146.30943

AORTA_SOLID.640,P5, 148.07710
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AORTA_SOLID.641,P5, 149.99850

AORTA_SOLID.642,P5, 151.03300

AORTA_SOLID.643,P5, 152.43840

AORTA_SOLID.644,P5, 155.11530

AORTA_SOLID.645,P5, 155.42320

AORTA_SOLID.646,P5, 156.96550

AORTA_SOLID.647,P5, 164.37600

AORTA_SOLID.648,P5, 165.88050

AORTA_SOLID.685,P5, 144.30644

AORTA_SOLID.686,P5, 144.92600

AORTA_SOLID.687,P5, 144.30644

AORTA_SOLID.688,P5, 144.37303

AORTA_SOLID.689,P5, 143.60430

AORTA_SOLID.690,P5, 144.24980

AORTA_SOLID.691,P5, 144.51370

AORTA_SOLID.692,P5, 145.42810

AORTA_SOLID.693,P5, 145.94210

AORTA_SOLID.694,P5, 146.96081

AORTA_SOLID.695,P5, 149.38700

AORTA_SOLID.696,P5, 150.14854

AORTA_SOLID.697,P5, 152.30073

AORTA_SOLID.698,P5, 152.16183

AORTA_SOLID.699,P5, 156.37710

AORTA_SOLID.700,P5, 157.74440

AORTA_SOLID.701,P5, 162.51133

AORTA_SOLID.702,P5, 165.88050

AORTA_SOLID.739,P5, 139.56114

AORTA_SOLID.740,P5, 139.58290
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