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ABSTRACT
In this thesis we will deal with the creation of a Reduced Basis (RB)
approximation of parametrized Partial Differential Equations (PDE) for
three-dimensional problems. The the idea behind RB is to decouple the
generation and projection stages (Offline/Online computational proce-
dures) of the approximation process in order to solve parametrized (PDE)
in a fast, cheap and reliable way. The RB method, especially applied to
3D problems, allows great computational savings with respect to the clas-
sical Galerkin Finite Element (FE) Method. The standard FE method is
typically ill suited to (i) iterative contexts like in optimization, sensitivity
analysis and many queries in general and (ii) real time evaluation. We
consider both coercive and noncoercive PDEs. For each class we discuss
the steps to set up a RB approximation, either from an analytical and
a numerical point of view. Then we present the applications of the RB
method to three different problems of engineering interest and applica-
bility: (i) a steady thermal conductivity problem in heat transfer; (ii) a
linear elasticity problem; (iii) Stokes flows with emphasis on geometrical
and physical parameters.

ABSTRACT
In questa tesi tratteremo la creazione di un’approssimazione a Basi Ri-
dotte (RB) per Equazioni Differenziali alle Derivate Parziali (EDP) para-
metrizzate per problemi tridimensionali. L’idea alla base del metodo RB é
quella di disaccoppiare le fasi di generazione e di proiezione del processo
di approssimazione (procedura computazionale Offline/Online) in modo
da risolvere EDP parametrizzate in modo veloce, accurato e affidabile. Il
metodo RB, specialmente se applicato a problemi 3D, permette un grande
risparmio computazionale rispetto al classico Metodo Galerkin-Elementi
Finiti (EF). I metodi EF non sono adatti in un contesto iterativo, come
(i) ottimizzazioni e (ii) analisi di sensitività, dove una procedura itera-
tiva e’ richiesta. In questo lavoro considereremo due classi di EDP per
modellare problemi coercivi e non coercivi. Per ciascuna classe discuter-
emo i dettagli per creare un’approssimazione RB, sia dal punto di vista
analitico, sia dal punto di vista prettamente numerico. Infine presen-
teremo l’applicazione del Metodo RB a tre differenti problemi con un
certo interesse ingegneristico e applicabilitá: (i) conducibilitá termica in
trasmissione del calore, (ii) elasticitá lineare e (iii) flussi di Stokes con una
certa enfasi sulla scelta dei parametri geometrici e fisici.
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I N T R O D U C T I O N A N D M OT I VAT I O N

ENGINEERING POINT OF VIEW
Any engineering design can be summarized in the following statement:
Given a physical process and given a set of suitable parameters, the physical
behaviour depends on, find the optimal values of these parameters in order to
obtain a desirable behaviour of the process.
In this work the attention is focused on the designer point of view, but
it is also important to recall that there are many other applications of
engineering interest, such as real time evaluation of the performance of
a system or sensitivity analysis with respect to certain parameters, the be-
havior of the system depends on.
The physical process belongs to any field of engineering interest:

• heat and mass transfer,

• elasticity,

• acoustics,

• fluid dynamics,

• electromagnetism,

• etc. . .

or even in a broader sense to any quantitative disciplines (e. g., finance,
biology, ecology and medicine) and their combinations.
The physical process is analyzed by the designer in order to find the best
mathematical model able to describe the behavior of the system. As model
we refer to a system of equations and/or other mathematical relation-
ships able to "catch" the main properties of the process and to predict
its evolution in time and/or space. In this stage the engineer introduces
all the simplifications that the observation and a subsequent qualitative
analysis suggest to take into account.
The analytical model is then constituted by two "blocks":

1. general laws

2. constitutive equations

In this work the attention will be focused on models whose general laws
are those of continuum mechanics which appears as conservation/balance
of suitable quantities (e. g., mass, energy, linear momentum, angular mo-
mentum, ecc. . . ).
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The constitutive relationships come from experimental evidence and de-
pends upon the features of the process in exam. The result of the combi-
nation of these two blocks is often an equation or a system of Partial Differ-
ential Equations PDEs. This means that in the equations the unknowns will
appear along with partial derivatives with respect to multiple variables
(temporal or spatial). Tol solve differential equation it is also necessary,
in order to obtain the closure of the problem, specify a suitable set of
boundary conditions.
Therefore the parameters in the process can be of two kind:

• physical, within this category we have:

– coefficient of constitutive equation for the particular physical
process addressed;

– non-dimensional numbers;1

– boundary conditions imposed;

• geometrical.

The desired behavior could be a particular performance of the system,
such as an average temperature in a thermal block, a maximum displace-
ment of a loaded beam, a level of vorticity in a flow-field and so on,
depending on the particular process addressed.
Finally, the optimal configuration of these parameters can be found through
an iterative optimization process in which a suitable cost functional, that
depends upon the particular performance desired, has to be minimized.
To wit, the designer is interested to evaluate iteratively the input-output
relationship to evaluate the cost functional.
since the solution of PDEs by classical discretization methods like finite
elements, spectral methods or finite volumes, tipically involves thousands
(in some cases millions) of degrees of freedom (DOFs) to obtain a "good"
solution. Therefore a single evaluation of the input-output relationship
is very expensive and at last, in most cases, not suitable in a many-query
context on which the design strategy is based on.
In this context it is necessary to develop suitable Reduced Order Modelling
ROM techniques that reduces the cost and times of the computations. Re-
duced Basis Method (RB) is one of them and this work will focus on this
method that, as it will be shown, is able to reduce the computational cost
of orders of magnitude. Moreover the RB method is a certified and reliable
method because in addition to an output calculation is able to provide a
rigorous a-posteriori error estimators on the "exact" solution 2.
An important remark is constituted by the fact that all the procedure
is built upon a reference domain on which a suitable discretization is con-
structed. Then there is no need to re-discretize the domain at each itera-
tion, re-building a mesh, or deforming the domain itself even in the case

1 It is always necessary to write the PDEs in a non-dimensional version in order to highlight
the actual physical dependence on the parameters.

2 The discussion on our assumption of "exact" will be given in Chapter 1.
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of parameter-dependent geometry.

OVERVIEW ON REDUCED BASIS
As already said the RB method is a reduced order method that is able to
reduce the complexity of a system without loss of information or accu-
racy of the results thanks to the rigorous error bound provided and by the
properties of the Galerkin projection, see [PR09, RHP08].
This method does not replace an existing discretization method but "works
in collaboration with it" and upon it.
In this work the discretization method adopted for the applications is the
finite element method (FE): this choice does not constitute a limitation be-
cause the RB method is built over the user-defined assumption of "truth".
The choice of the correct method able to describe the physical process is
demanded to the user and it will not be treated here.
The idea is to start with FE basis of dimension N and then construct a
RB basis whose dimension N is much smaller than the former, so that
N << N.
The power of the RB lies in the splitting of the procedures into two parts:

1. an Offline phase,

2. an Online phase,

where the former is N dependent and computed once, whereas the latter
is N dependent and allows a fast, cheap and reliable input-output evalua-
tion.
The role played by this decomposition is immediately clear taking in con-
sideration for example an optimization process. The optimal configura-
tion can be found thanks to an iterative process, e. g. the Newton’s gradient
method in which a PDEs solution is needed at every step of iteration. In
this context the RB advantage is that the evaluation of the solution for
every step is order of magnitude smaller; furthermore the real time eval-
uation of the PDEs solution is possible, unlike as in the FE case.
The splitting procedure is possible if the weak formulation of the PDEs
can be expressed in an affine parameter decomposition (see Chapter 1). This
is one of the key-point of the procedure: all the parametric dependences of
the PDEs are actually separated by the non-parametric part, this allows
to compute the latter just in a reference domain, whereas the former can
be computed several times with a very cheap computational burden, see
[Roz09].
A graphical sketch of this idea is shown in Figure 1. The RB method is
depicted in the upper figure , whereas the FE classical method is depicted
in the lower one.

In the RB sketch it appears that the Offline computational burden that
is proportional to KN, where N is the number of degrees of freedom for
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(a) RB method

(b) FE method

Figure 1: RB computational saving

the FE problem and K is a positive constant that depends upon many
ingredients that will be in depth discussed in Chapter 3.

RB motivation

It is worth to recall that in the RB methodology the so-called Offline part
is very expensive but in a real time or in a many-query context the most
important part is played by the online evaluation of the input-output rela-
tionship that in the RB methodology this is very cheap.
In addition dealing with parametrized equations it is clear that in many
cases it is possible to restrict the attention on a tipically smooth and rather
low-dimensional parametrically induced manifold of the functional space, that
is the set of fields engendered as the input varies over the parameter
domain, [PR09, RHP08]. In Section 1.2 of Chapter 1, a more involved
discussion over these concepts will be given, which are the key points the
reduced basis method has been built upon.

Thesis motivation

To date, the works on the RB method has been mostly aimed to lay
the groundwork for a full comprehension of all its mathematical aspects.
There are of course still open issues, such as an a-priori convergence proof
for problems with more than one parameter [PR09].
Nonetheless, in the very few past years, dedicated software has been de-
veloped to implement the RB methodology. In particular we mention the
rbMIT software, that we have used in this thesis to exploit the creation of
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our RB system.
Unfortunately, the softwares available just deal with the 2-dimensional case,
then our work will be devoted to create a procedure to exploit the creation
of a RB approximation in the 3-dimensional case for steady problem.
The very first steps in this direction has been taken by F. Gelsomino dur-
ing his master thesis work at the EPFL, focusing on scalar time-dependent
problems, see [Gel10].
Our innovative contribution will consists in dealing with:

1. 3D scalar problems with higher parametric complexity (heat transfer
applications),

2. 3D vectorial problems (linear elasticity problem),

3. an extension to 3D non-coercive problems (Stokes flow).

Thesis outline

In Chapter 1 the motivations and scopes of the RB method will be dis-
cussed along with a briefly historical perspective, in Chapter 2 we will
recall some mathematical generalities and then we will provide the ab-
stract formulation for coercive and non-coercive problems.
In Chapter 3 the steps for the generation of the RB approximation spaces
for the solution of parametrized PDEs will be explained. Later, in Chap-
ter 4, the affine geometry preconditions will be presented focused on the 3D
case, necessary to allow a fully decoupling between Offline and Online
procedures.
In Chapter 5 we will provide a briefly insights on the software used to
exploit the creation of the RB approximation.
In Chapter 6 the RB approximation of a heat transfer application will be
addressed, then in Chapter 7 we will deal with a linear elasticity problem
and finally in Chapter 8 we will treat a Stokes flow.
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1 I N T R O D U C T I O N

In Section 1.1 of this chapter the motivations and scopes of the RB method
will be introduced.
In Section 1.2 the opportunities that can be gainfully exploited by the
RB method are discussed; this will be done focusing even on historical
perspective and on future developments related to this topic.
Sections 1.3 and 1.4 are devoted to applications of RB method in several
fields of engineering interest.

1.1 A BRIEF INTRODUCTION TO RB
In the past few years, thanks to the increased computational performances
it has been possible to use numerical simulation in the very first steps of
design for a very wide spectra of fields.
Unfortunately despite this hardware improvement, the greater part of en-
gineering problem involves the solution of partial differential equations,
furthermore in a design context the number of solution for various config-
urations of attempt can become very large and eventually impracticable.
Therefore it is necessary to develop techniques that are able to reduce the
complexity of the system without a loss of information or accuracy of the
results. The RB method is a promising approach to respond to this needs
moreover this method is not only rapid and efficient, but also provides a
reliable solution of partial differential equations thanks to a certified a-
posteriori error bound.
This method provides a useful tool for engineers, in fact thanks to the
very low cost of the input-output relationship evaluation, the design pro-
cedure can be enriched with highly accurate numerical simulation from
the very first steps.

1.2 RB SCOPE AND HISTORICAL PERSPECTIVE
The real-time and many-query contexts represent not only computational
challenges but also computational opportunities.
It is possible to identify two key opportunities that can be gainfully ex-
ploited with RB method [RHP08]:

• Opportunity I
In the parametric setting, the attention is restricted to a typically
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CHAPTER 1

smooth and rather low-dimensional parametrically induced manifold: the
set of fields engendered as the input varies over the parameter do-
main; in the case of single parameter, the parametrically induced
manifold is a one-dimensional filament within the infinite dimen-
sional space which characterizes general solutions to the PDEs. Clearly,
generic approximation spaces are unnecessarily rich and hence unnec-
essarily expensive within the parametric framework.

• Opportunity II
In the real-time or many-query contexts, in which the premium is on
marginal cost (or equivalently asymptotic average cost) per input-
output evaluation, we can accept greatly increased pre-processing or
Offline cost, not tolerable for a single or few evaluations, in exchange
for greatly decreased Online (or deployed) cost for each new/addi-
tional input-output evaluation, see [RHP08]. Clearly, resource allo-
cation typical for single-query investigations will be far from optimal
for many-query and real-time exercises. We shall review the devel-
opment of RB methods in terms of these two opportunities.

1.2.1 Opportunity I

Reduced Basis discretization is, in brief, a Galerkin projection on an N-
dimensional approximation space that focuses on the parametrically in-
duced manifold identified in Opportunity I.

(a) Xe space

Figure 2: Parametrically induced
manifold

Initial work (about in 1980s) grew
out of two related streams of inquiry:
from the need for more effective, and
perhaps also more interactive, many-
query design evaluation, for example
[FM71] considers linear structural ex-
amples; and from the need of more
efficient parameter continuation meth-
ods, [ASB78, NP80, Noo78, Noo82]
consider nonlinear structural analysis
problems.
Some modal analysis techniques pro-
posed in the same years, e.g. [Nag79]
deals with geometrically nonlinear be-
havior, are closely related to RB no-
tions.
At the very first moment the reduced basis method arises from the study
of nonlinear elasticity problem. The development of the RB method has
been mainly due to the engineering needs to obtain a very efficient toolRB born as efficient

tool to treat
nonlinear elasticity

problem

in the design context.
The following decade saw further expansion into different applications
and classes of equations, see for example [IR97] for a work dealing with

2



1.2 RB SCOPE AND HISTORICAL PERSPECTIVE

the control of PDEs, and [Pet89] for applications of reduced order meth-
ods to fluid dynamics and incompressible Navier-Stokes PDEs. However, then applied to fluid

dynamic and control
of fluid flows

in these early methods, the approximation spaces tended to be rather
local and typically rather low dimensional in parameter (often a single
parameter). In part, this was due to the nature of the applications taken
in account (parametric continuation), but it was also due to the absence
of a-posteriori error estimators and effective sampling procedures. In fact the
absence of this kind of techniques did not allow a certified an accurate
prediction of the error between the "real" solution1 and that obtained by Lack of a certified

a-posteriori error
bound: useless in an
engineering context

means of the reduced order model; the lack of a rigorous error certifica-
tion is unacceptable for example in a safe engineering context, in which
the reliability is an imperative.
Much current effort is thus devoted to development of (i) a posteriori
error estimation procedures and in particular rigorous error bounds for
outputs of interest [PRV+

02] and (ii) effective sampling strategies, in par-
ticular for higher dimensional parameter domains such as in the works
of [BTWG08, NVP05] and [Roz08].
The a-posteriori error bounds are of course mandatory for rigorous certifica-
tion of any particular reduced basis (Online) output evaluation. However,
the error estimators can also play an important role in efficient and effec-
tive (greedy) sampling procedures: the inexpensive error bounds permit
us first, to explore much larger subsets of the parameter domain in search The a-posteriori

error bound plays a
dual role in the
OFFLINE/ONLINE
computation

of most representative or best snapshots, and second, to determine when
the basis functions are enough to bound the error within a certified inter-
val.
The most used sampling methods are (i) the Greedy sampling procedure and
(ii) the POD (proper orthogonal decomposition): this two procedures dif-
fer under some aspects that will be discussed in Section 3.4. It is worth
to anticipate that the Greedy procedure is optimized for higher dimension
of the parameter space, while the POD procedure is better suited for one
dimensional (typically time) domain, [AK99, KV03, Rav02, WP02].

1.2.2 Opportunity II

Early work on the reduced basis method took into consideration the Op-
portunity II, but was not able to fully decouple the underlying standard
FE discretization.
More precisely, often the Galerkin stiffness equations for the reduced basis
system were generated by direct appeal to the high dimensional FE repre-
sentation: essentially, pre and post multiplying the FE stiffness system by
rectangular basis matrices; as a result the computational saving offered
by the model reduction was not fully exploited in [Noo78, Por85] and
[PL87]. The complete decoupling between the reduced order model and

1 "Real" here means the assumption of faithfulness achieved with the standard discretiza-
tion method, see section 2.3.2 in the chapter 2 for further explanation on the hypothesis
and on the consequences of this choice

3



CHAPTER 1

the standard discretization model is one of the crucial point on which
much of the current work has been devoted at that time.
In this work we will denote with N the computational complexity of the
standard discretization and with N the RB complexity. This opportunity
has been exploited thanks to an Offline/Online procedure that is possible in
a context of an affine parameter dependence of the operators constituting the
PDEs; this important concept will be recalled in Section 2.2.
One of the benefit related to this procedure is showed in figure 3;

(a) RB procedure

(b) FE procedure

Figure 3: Offline/Online splitting

it is clear that in a many-query
context, such as an optimization
design process, or in a real-time
closed loop control the split allows
a much more faster sub-iteration
(I/O evaluation), that should not
be possible in the classical FE dis-
cretization nor in the reduced or-
der methods that not implement-
ing this efficient tool. In fact in the
FE case (Figure 3b) a subiteration
involves a cost proportional to N,
whereas RB involves a cost propor-
tional only to N.
The Offline-Online idea is quite

self-apparent and it has been treated often [IR97, JA04, Pet89], nonethe-
less the idea/application of a-posteriori error bound is more involved and
recent [HRSP07, PRV+

02, PRVP02].
Actually even in the case of a non-affine parameter dependence the develop-
ment of the procedure is yet possible, although more complex procedures,
that have been estabilished in the few last years [MYNA04, GMNP07], are
needed in order to turn the non-affine form into an approximated affine
problem.

1.3 PROBLEM ADDRESSED

This thesis will deal with linear output functional and affinely parametrized
linear coercive or non-coercive PDEs: these classes of problems, although
the former relatively simple, are relevant to many important applications
in various field of engineering interest.
Although this thesis focuses on these classes of problems, the reduced ba-
sis is much more general and is able to treat nonaffine problems [GMNP07]classes of problem

addressed by the RB and parabolic equations [AK99].
Furthermore, the RB method can be used for nonlinear equations such as
the incompressible (quadratically non-linear) Navier-Stokes equations, fi-
nally even the hyperbolic equations are subject of study, there are proofs

4



1.4 FROM 2D TO 3D

which demonstrate that RB approximation and a posteriori error estima-
tion can be applied, although up to now there are still many issues related
to smoothness and stability [HO08, PR07].
The applications chosen in this work deals with: Parametrized linear

coercive and
non-coercive elliptic
PDEs

1. transport equation: thermal conduction,

2. continuum mechanics: linear elasticity,

3. fluid dynamics: Stokes flow;

these problems proves a convenient expository vehicle for the method-
ology exploitation and are already suitable, as it will be seen, to arise a
number of very specialized and involved engineering problems.

1.4 FROM 2D TO 3D
Up to now the RB method has been developed mainly for 2D problem, our
work constitutes the first steps in the natural extension and prosecution
of the RB work in the 3D frame. Only few works have been specialized on
this topic; the first step in this direction has been taken by F. Gelsomino
who has treated a 3D scalar elliptic coercive equation and a parabolic equa-
tion with relatively simple geometry and few parameters.
The goal of this thesis is to prove, thanks to numerical evidence, that the
methodology is also efficient and reliable for more involved and complex
3D applications.
In addition more complex geometries with a greater number of parame-
ters will be considered.
The upgrade to the 3D problem case may be quite complex because in
the most cases the physical problem can not leave aside the third spatial Focus on 3D

applicationdimension, see for example the viscous flow around a body or a thermal
conduction problem in which the material has an anisotropic conductiv-
ity in the three spatial coordinates.
This thesis is focused on real engineering applications. Some real appli-
cations will be exploited providing for each one a detailed discussion on:

1. Physical evidence,

2. Mathematical modelling,

3. RB approach,

4. Analysis of reliability and accuracy of the RB method.

This will allow us to demonstrate the power and efficiency of the method
applied to several fields of engineering interest.
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CHAPTER 1

(a) 2D discretization (b) 3D discretization

Figure 4: Geometric discretization complexity

1.4.1 3D case

The passage from a lower dimensional to a greater dimensional geometric
manifold is natural from an analytical point of view: in fact the method
is already suitable for this extension.
The main peculiarities concerning 3D problems lie mainly in the numeri-
cal modelling:

1. much greater computational efforts,

2. more involved geometrical preconditions,

3. absence of an already available 3D software.

1- The first problem is quite self-evident, than it will be treated here
briefly.
In the numerical solution of a PDEs the computational burden is linked
to the cubic power of the degrees of freedom chosen to discretize theDOFs proliferation

in the 3D case problem, than a 3D application involves computational costs orders of
magnitude greater than the 2D case.
This can be shown thanks to a simple example. Taking in account a
squared geometry (see figure 4) with an edge that measures L, if a mesh
is built on a cube with the same face and the same discretization h over
the edges, then:

• 2D case: DOFs ∝ L2

h2
= N2 ⇒ burden ∝ N23 = N6

• 3D case: DOFs ∝ L3

h3
= N3 ⇒ burden ∝ N33 = N9

This extremely simple example shows that, dealing with the 3D case,
the computational burden is order of magnitude greater then the 2D case,
therefore in this case RB methodology is (if not essential) very useful in
order to reduce computational cost in a reliable way.
Concerning the other two issues, it will be provided here just a brief re-
mark, because the implications of this two aspects will affect the whole
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numerical approach.

2- As already said, one of the most involved operation is carry out the
affine geometric decomposition that, in the 2D is possible to deal with affine geometric

decomposition issuerbMIT package [PR09]2. , while the 3D case has to be managed manually.

3- Another issue dealing with the 3D case lies in the fact that in the 2D
case in the whole RB methodology was managed by the rbMIT package
that works in the Matlab environment , while in this case the pre-process rbMIT built-in

software treats only
2D case

phase of FE matrices assembling has to be done with a third-part software.
In this thesis the software chosen to carry out this phase has been Comsol
multyphisics, [Com07b, Com07a], because it offers a great user versatil-
ity in the definition of the FE discretization as it will be shown in the
chapter 5.
The last two remarks (1-, 2-) will be clarified in Chapter 4 as regard the
affine geometric decomposition and in Chapter 3 as regard the matrices as-
sembling.

2 The software can be downloaded at http://augustine.mit.edu/methodology/
methodology_rbMIT_System.htm

7

http://augustine.mit.edu/methodology/methodology_rbMIT_System.htm
http://augustine.mit.edu/methodology/methodology_rbMIT_System.htm




2 PA R A M E T R I Z E D E L L I P T I C P D E S

In the first part of this chapter, we will briefly introduce some generalities
about parametric bilinear form, parametric linear functional, coercivity and
inf-sup constants. In particular the abstract formulation for coercive and
for non-coercive problem will be reported.

2.1 PARAMETRIC OPERATORS

In this section, definitions and properties about parametric bilinear and bi-
linear forms will be introduced. The conditions for the well-posedness of
this two classes of problem are different, therefore the coercivity constant
for the former case and the inf-sup constants for the parametric bilinear
form will be introduced.
The theory presented here is available with further details and explana-
tions in [PR09] for the coercive case, in [PR09, RV06] for the non coercive
case.
The basic concept of functional analysis concerning Cartesian product,
functional norms, bilinear forms and dual spaces are given as known, the
reader can find a useful introduction to this topics in [QV97] and [Yos71].

2.1.1 Linear and bilinear parametric forms

We first introduce a closed bounded parameter domain D ⊂ RP with a
typical parameter vector, or P−tuple, in D shall be denoted µ = (µ1, . . . ,µP).
We assume that D is suitably regular.
It is now necessary to introduce some definition that resembles the classi-
cal definition for non-parametric linear operators.

Definition 2.1. Let Z be an inner product space over R, b : Z× Z×D → R

is a parametric bilinear form if, for all µ ∈ D, b( · , · ;µ) : Z× Z → R is a
bilinear form, i.e. for any α ∈ R and for any w, v, z ∈ Z:

b(αw+ v, z ;µ) = αb(w, z ;µ) + b( v, z ;µ) ∀µ ∈ D

and for any β ∈ R and for any w, v, z ∈ Z:

b(w, βv+ z ;µ) = βb(w, v ;µ) + b(w, z ;µ) ∀µ ∈ D.
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CHAPTER 2

Definition 2.2. A parametric bilinear form b : Z× Z×D → Ris symmetric
if, for any v,w ∈ Z:

b(w, v ;µ) = b( v, w ;µ) ∀µ ∈ D (2.1)

A parametric bilinear form b : Z× Z×D → R is skew-symmetric if, for any
v,w ∈ Z:

b(w, v ;µ) = −b( v, w ;µ) ∀µ ∈ D (2.2)

Starting from the definition 2.2 it is possible to define the symmetric
and the skew-symmetric part of the bilinear form as it follows:

Definition 2.3. Given a parametric bilinear form, we define:

• the symmetric part of b as:

bS(w, v ;µ) =
1

2
(b(w, v ;µ) + b( v, w ;µ)) (2.3)

• the skew-symmetric part of b as:

bSS(w, v ;µ) =
1

2
(b(w, v ;µ) − b( v, w ;µ)) . (2.4)

For the coercive case it is necessary to introduce the definition of the
coercivity of the parametric bilinear form.

2.1.1.1 Coercivity

Definition 2.4. We say that a parametric bilinear form b : Z× Z×D → R is
coercive over Z if:

α(µ) = inf
w∈Z

b(w, w ;µ)
||w||2Z

(2.5)

is positive for all µ ∈ D.

We can define (0 <) α0 = minµ∈D α(µ).

2.1.1.2 Continuity

Now it is possible to define the continuity of the parametric bilinear form
in very similar way. We say that:

Definition 2.5. A parametric bilinear form b : Z×Z×D→ R is continuous
over Z if:

γ(µ) = sup
w∈Z

sup
v∈Z

b(w, v ;µ)
||w||Z||v||Z

(2.6)

is finite for all µ ∈ D.

It is useful to define γ0 = maxµ∈D γ(µ).
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2.1.2 Inf-sup stability constant

2.1.2.1 Definition

Concerning the non-coercive case the coercivity constant for the well-
posedness is replaced by the inf-sup stability constants [Bab71], it is useful
to introduce its definition for parametric bilinear forms.

Definition 2.6. Given a parametric bilinear form b : Z1 × Z2 ×D → R, we
define the inf-sup constant as:

β(µ) = inf
w∈Z1

sup
v∈Z2

b(w, v;µ)
||w||Z1 ||v||Z2

. (2.7)

Here Z1 and Z2 are Hilbert spaces with associated inner products and induced
norms, ( · , · )Z1 , || · ||Z1 and ( · , · )Z2 , || · ||Z2 respectively.

In general in general β(µ) is not necessarily strictly positive. Then:

Definition 2.7. If there does exist a positive β0 such that:

β(µ) > β0, ∀µ ∈ D (2.8)

then we shall say that b is "inf-sup stable" over Z1 ×Z2.

2.1.2.2 Supremizer operator

We shall prove convenient to define a "supremizing" operator for the subse-
quent steps. This tool will be used dealing with the reduced basis proce-
dure for non-coercive case (saddle point problem in this thesis); as it will
be seen, its importance lies in the study of the convergence and of the
algebraic stability of the system and in the construction of the reduced
basis, [RV06].

Definition 2.8. The supremizer operator Tµ : Z1 → Z2 associated with b is
defined as:

Tµw = arg sup
v∈Z2

b(w, v;µ)
||w||2Z2

(2.9)

In order to carry out the subsequent steps, an explicit representation of
the supremizer operator is needed. This can be obtained thanks to the
Cauchy-Schwarz inequality1; for any w ∈ Z1

(Tµw, v)Z2 = b(v,w;µ), ∀ v ∈ Z2 (2.10)

we observe that Tµ is linear.

1 We recall that the Cauchy-Schwarz states:

|(v,w)Z| 6 ||v||Z ||w||Z ∀ v,w ∈ Z
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2.1.3 Linear parametric form

Similarly as already done with the parametric bilinear form, we recall:

Definition 2.9. Let Z be an inner product space over R. g : Z×D → R is
a parametric linear form if, for all µ ∈ D, and for any w ∈ Z, g( · ;µ) :
Z×D→ R is a linear form. That is, for all α ∈ R, and for any w, v ∈ Z:

g(αw+ v ;µ) = αg(w ;µ) + g( v ;µ) ∀µ ∈ D (2.11)

2.1.3.1 Continuity

In order to ensure the well posedness of the problem, the continuity of
the parametric linear form is needed. We say that:

Definition 2.10. A parametric linear form g is continuous if, for all µ ∈ D,
g( · ;µ) ∈ Z ′

Z ′ denotes the dual space, that we recall is the space of all linear bounded
functionals over Z. Note that the dual norm of a parametric linear form
g, ||g( · ;µ)||Z ′ , will of course be a (finite) function of µ over D.

2.1.4 Coercivity eigenproblem

We recall here an additional problem which will be useful in order to
evaluate a rigouros error bound as it will be seen in the section 3.6, [PR09,
QSS00].
It is necessary to introduce an eigenproblem because in the subsequent
analysis it will be useful to recognize that α(µ) (and β(µ) in the non-
coercive case) can be seen as the minimum eigenvalue of a generalized
eigenproblem.

It is possible to rewrite 2.5 replacing the form b with his symmetric
part, denoted with bs:

α(µ) = inf
w∈Z

bs(w, w ;µ)
||w||2Z

(2.12)

it follows that α(µ) can be expressed as a minimun eigenvalue.
It is useful to introduce the coercivity symmetric (generalized) eigenprob-
lem associated with the parametric bilinear form b : Z×Z×D→ R.
Given µ ∈ D, find the couple (χ, λ)i(µ) ∈ Z×R, i = 1, . . . , dim(Z), such
that:

bS(χi, v; µ) = νi(χi(µ), v)Z (2.13)

and
||χi(µ)|| = 1 (2.14)
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2.1 PARAMETRIC OPERATORS

of course it will be possible to sort the dim(Z) eigenvalues in ascending
order such that: λ1(µ) < . . . < λdim(Z)(µ).
It simply descends from 2.13 and 2.12 that if b is coercive, then α(µ) =
λ1(µ) > 0.

2.1.5 Inf-Sup stability constant eigenproblem

Similarly as done in the coercive case, also in the non-coercive case an
additional problem has to be handled in order to obtain an efficient error
estimators and in this particular case even to obtain an algebraic well
conditioned problem 3.6.2, [Roz08].

2.1.5.1 Alternative expression for the inf-sup constant

In this case it is necessary to take an intermediate step, that is rewrite the
supremizer operator in a different fashion. It follows from the definition
of the inf-sup constant 2.7, the definition of the supremizer 2.9 and 2.10

that:

β(µ) = inf
w∈Z1

sup
v∈Z2

b(w, v;µ)
||w||Z1 ||v||Z2

= inf
w∈Z1

b(w, Tµw;µ)
||w||Z1 ||Tµw||Z2

= inf
w∈Z1

(Tµw, Tµw)Z2
||w||Z1 ||Tµw||Z2

= inf
w∈Z1

||Tµw||Z2
||w||Z1

(2.15)

2.1.6 Inf-Sup eigenproblem

It readily follows from the Rayleigh(-like) quotients 2.15 that β(µ) can be
easily expressed in terms of an eigenproblem.
Given a parametric bilinear form b : Z1 × Z2 ×D → R and given µ ∈ D,
find the couple: (Ξ, λ)i (µ) ∈ Z1 ×R+0, i = 1, . . . , dimZ1, such that:

(TµΞi(µ), Tµw)Z2 = λi(µ) (Ξi(µ),w)Z1 (2.16)

and
||Ξi(µ)|| = 1 (2.17)

where Tµw satisfies 2.10. The eigenvalues are then sorted in an ascending
order such that 0 6 λ1(µ) 6 . . . 6 λdimZ1(µ).
The usual orthogonality between eigensolution holds; given two different
eigensolution Ξi(µ), Ξj(µ) ∈ Z1:(

Ξi(µ),Ξj(µ)
)
= δij, 1 6 i, j 6 dimZ1 (2.18)
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where δij is the Kronecker-delta symbol.

It follows from the definition of the inf-sup constant 2.15 and from the
eigenproblem 2.16 that β(µ) can be evaluated as:

β(µ) =
√
λ1(µ) (2.19)

corresponding to the square root of the smallest eigenvalues of the inf-sup
eigenproblem, [QV97].

2.2 AFFINE PARAMETRIC DEPENDENCE
The affine parametric dependence of the bilinear form and of the linear func-
tional is one of the most important ingredient in the offline/online de-
composition and of course in the real-time input/output evaluation.
The idea is rather simple: split all the parametric dependent component
by those parametrically independent.
In addition we recall also the parametric coercivity definition.

2.2.1 Affine parametric bilinear forms

With regard to the bilinear parametric forms the affine dependence states
that:

Definition 2.11. A parametric bilinear form b : Z× Z×D → R is affine in
the parameter µ if, for all v,w ∈ Z:

b(w, v;µ) =
Qb∑
q=1

θ
q
b(µ)b

q(w, v) ∀µ ∈ D (2.20)

for some finite, preferably small, Qb.

Here the θqb(µ) : D → R are (tipically very smooth) parameter- de-
pendent functions, and bq(w, v) : Z×Z→ R are parameter-independent
bilinear forms.

2.2.2 Parametric coercivity

In the scope of an affine dependence it is useful also to consider the
parametric coercivity of the bilinear form.

Definition 2.12. We say that an affine parametric (coercive) form b : Z× Z×
D → R (definition 2.11) is parametrically coercive if, c ≡ bs (the symmetric
part of b) admits an affine development:

c(w, v;µ) =
Qc∑
q=1

θqc (µ) c
q(w, v) ∀µ ∈ D (2.21)
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that satisfies two conditions:

θqc (µ) > 0 ∀w, v ∈ Z, ∀µ ∈ D, 1 6 q 6 Qb (2.22)

and
cq(v, v) > 0 ∀ v ∈ Z, 1 6 q 6 Qb (2.23)

(Note that we suppose that each cq(w, v) is symmetric).

2.2.3 Parametric inf-sup condition

For the case of greatest interest in this thesis, in which b admits an affine
representation, also the supremizer operator admits an affine develop-
ment.

Definition 2.13. Given w ∈ Z1, we may express Tµw as:

Tµw =

Qb∑
q=1

θ
q
b(µ)Tqw ∀µ ∈ D (2.24)

where the parameter-independent operators Tq : Z1 → Z2 are given by:

(Tqw, v)Z2 = b
q(w, v), ∀ v ∈ Z2, 1 6 q 6 Qb (2.25)

The proof of 2.24 is simple, for any w ∈ Z1 and for any µ ∈ D: Qb∑
q=1

θ
q
b(µ)Tqw, v


Z2

=

Qb∑
q=1

θ
q
b(µ) (T

qw, v)Z2

=

Qb∑
q=1

θ
q
b(µ)b

q (w, v)

= b (w, v;µ)
= (Tµw, v)Z2 ∀ v ∈ Z2 (2.26)

This decomposition shall prove useful in developing inf-sup lower bounds.

2.2.4 Affine parametric linear form

Similarly as done for the bilinear form it is worth to introduce the affine
dependence for a linear bounded functional.

Definition 2.14. We shall say that the parametric linear form g : Z×D → R

is affine in the parameter if, for any v ∈ Z:

g(v;µ) =
Qg∑
q=1

θqg(µ)g
q(v) ∀µ ∈ D (2.27)

for some finite Qg.
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Once again, here the θqg : Z×D→ R are smooth parameter-dependent
functions and the gq(v) : Z → R are parameter-independent bounded
linear forms.
The affine representations 2.20 and 2.27 are not unique, though in general
will exist minimum Qb (in the former case) and Qg (in the latter) terms
of expansion able to describe the forms with an affine development.
Tipically the number of terms Q mainly depends on the complexity of
the parameter-dependent geometry. This concept will be treated in the
section 4.3.3 (chapter 4, pag.72) where the decomposition in the 2D and
in the more involved 3D case will be considered.

2.3 ABSTRACT FORMULATION: COERCIVE PROBLEM

In this section, an abstract problem for coercive elliptic partial differential
equations with affine parameter dependence will be introduced and in
the next section the non-coercive, specialized to saddle-point problems,
case will be treated. First instance the exact formulation (in weak form)
of the problem will be presented, then a finite element discretization will
be introduced in order to build the "truth" space on which the reduced
basis will be built upon.
As mentioned in the introduction, the interest lies the evaluation of the
solution field and the output that depend on the state equation which is
solution of a PDEs.

2.3.1 Exact formulation

Let Ω ∈ Rd, d = 1, 2, 3 be a suitable physical domain with Lipschitz
continuous boundary ∂Ω. Let D ⊂ RP be the parameter domain.
Moreover let Γ , be a boundary measurable segments of ∂Ω, over which
we shall ultimately impose Dirichlet boundary condition on the components
of the field variable. We next introduce a suitable scalar space Yei , 1 6 i 6
d:

Yei ≡
{
v ∈ H1(Ω) | v |ΓDi

= 0
}

(2.28)

in general H10(Ω) ⊂ Ye ⊂ H1(Ω). Clearly if Γ = ∂Ω, then Xe ≡ H10.
We then construct the space in which our vector-valued field variable shall
reside as a Cartesian product:

Xe = Ye1 × Ye2 × . . .× Yd1

We equip Xe with an inner product (v,w)Xe , ∀ v,w ∈ Xe and induced
norm ||w||Xe =

√
(w,w)Xe , ∀w ∈ Xe; any inner product which induces a

norm equivalent to the
(
H1
)d is admissible.
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Problem statement

It is now possible to state the problem in the "exact" space:
Let a : Z×Z×D→ R be a continuous coercive parametric bilinear form, let
f : Z×D→ R and l be a parametric linear functional bounded over Xe.
Given µ ∈ D ⊂ RP, find u(µ) ∈ Xe such that

a (ue(µ, v;µ)) = f (v;µ) ∀ v ∈ Xe (2.29)

and evaluate
se(µ) = l(ue(µ);µ) (2.30)

Here se(µ) is the output of interest, se(µ) : D → R is the input-output
relationship and l is the linear "output" functional that links the input to
the output through the field variable.
It follows from our hypothesis on a, f and l that the problem has a unique
solution thanks to the Lax-Milgram theorem [QSS00, QV97].

Recalling the affine development of the bilinear form and of the linear
functional (section 2.2), it is possible to write the operators in the follow-
ing form; for any µ ∈ D:

a(w, v;µ) =

Qa∑
q=1

θqa(µ)a
q(w, v) ∀ v,w ∈ Xe (2.31)

f(v;µ) =

Qf∑
q=1

θ
q
f (µ) f

q(v) ∀ v ∈ Xe (2.32)

l(v;µ) =

Ql∑
q=1

θ
q
l (µ) l

q(v) ∀ v ∈ Xe (2.33)

for finite and preferebly small Qa, Qf, Ql. We implicitly assume that the
θ
q
a for 1 6 q 6 Qa, θqf for 1 6 q 6 Qf and θql for 1 6 q 6 Ql are simple

algebraic expressions that can be readily evaluated in O(1) operations.

Compliant problem

In this section the problems considered will be "compliant", i.e. :

1. l( · ;µ) = f( · ;µ)

2. a(w; v;µ) = a(v,w;µ) ∀w, v ∈ Xe

that is the output functional and the load/source functional are the same
and the bilinear form is symmetric (e. g."compliancy" in linear elasticity).
Considering these two hypothesis the problem 2.29-2.30 can be rewritten
as follows.
Given µ ∈ D ⊂ RP, find u(µ) ∈ Xe such that

a (ue(µ, v;µ)) = f (v;µ) ∀ v ∈ Xe (2.34)

and evaluate
se(µ) = f(ue(µ);µ) (2.35)
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2.3.2 Truth approximation

We focus the attention on the "truth" approximation. The reduced basis ap-
proximation will be built upon and the error will be measured relatives
to this assumption of truth.
The role played by this assumption is very important; during the basis
assembling and the error measuring the RB will completely "forget" the
error between the exact solution and the truth-assumption. Then it is nec-
essary to take some caution in order to ensure that this error remains
suitably small for any given µ ∈ D.
For analytical purposes, in this thesis we assume that no variational
"crimes" are committed, therefore actually the "truth" takes the place of
the exact statement. In this thesis the standard finite element FE approxima-
tion [Qua09] has been chosen to represent the truth and to measure the
error in order to build the RB basis and evaluate the error bound for a
given new set of parameter input µ.

2.3.2.1 Galerkin projection

We introduce a family of conforming approximation spaces XN ⊂ Xe of
dimension dim(XN) = N <∞.
We then associate to our space a set of basis functions φN

k ⊂ XN, 1 6 k 6
N, by construction, any member of XN can be represented by a unique
linear combination of the basis functions φN

k ⊂ XN.
Finally, we associate the inner products and induced norms XN is equipped,
denoted by (v,w)XN , ∀ v,w ∈ XN, and induced norm ||w||XN =

√
(w,w)XN ,

∀w ∈ XN.
This inner product, along with those related to the exact space, is ex-
plained in the subsequent section.

Inner product and induced norms

We now define the inner product and the norm over the space XN and Xe

and the energy norm given by the coercive bilinear form a.
For w, v ∈ Xe, we define respectively the energy inner product and the
energy norm as:

((w, v))µ = a (w, v;µ) ,

|||w|||µ =
√
(w,w)µ, (2.36)

moreover, for a given µ̄ ∈ D, we define for w, v ∈ Xe the Xe-inner product
and the Xe-norm as:

(w, v)Xe = ((w, v))µ̄ + τ (w, v)L2(Ω) ,

||w||Xe =
√
(w,w)Xe , (2.37)
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where τ is a negative real parameter and(w, v)L2(Ω) =

∫
Ω

wv dΩ.

Remark 1: We note that in order to define our Xe-norm we have chosen
a fixed valued of the parameter µ.
Remark 2: since XN ⊂ Xe, the inner products and the norms defined
above are the same for the space XN.
The choice of µ̄ and τ will affect the quality and efficiency of our reduced
basis a posteriori error estimators, but will not affect directly our reduced
basis output predictions [RHP08].

Problem statement

Now we can state the problem in the truth space taking the Galerkin pro-
jection of the problem 2.34-2.35; given µ ∈ D ⊂ RP, find u(µ) ∈ XN such
that

a
(
uN(µ), v;µ

)
= f (v;µ) ∀ v ∈ XN (2.38)

and evaluate
sN(µ) = f(uN(µ);µ). (2.39)

Coercivity and continuity

We can define precisely the exact and the finite element approximated coer-
civity constants respectively, as:

αe(µ) = inf
w∈Xe

b(w, w ;µ)
||w||2Xe

, (2.40)

αN(µ) = inf
w∈XN

b(w, w ;µ)
||w||2Xe

. (2.41)

From the coercivity hypothesis, we have that αe(µ) > α0, ∀µ ∈ D; fur-
thermore from our hypothesis on XN, that is a conforming space, we
have that αN(µ) > αe(µ), ∀µ ∈ D. Than even after the approximation
the problem remains coercive.
In the same way, the continuity constants are defined as

γe(µ) = sup
w∈Xe

sup
v∈Xe

b(w, v ;µ)
||w||Xe ||v||Xe

, (2.42)

γN(µ) = sup
w∈XN

sup
v∈XN

b(w, v ;µ)
||w||XN ||v||XN

, (2.43)

once again from our hypothesis follows γe(µ) < ∞ and γN(µ) 6 γe(µ),
∀µ ∈ D.

Well-posedness inheriting

The Galerkin approximation on XN must satisfy the same conditions that
the exact formulation satisfies over Xe. For the particular class of prob-
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lems of interest in this section (elliptic coercive PDEs) the Galerkin for-
mulation in fact directly inherits and even improves upon all the good prop-
erties of the exact formulation:

1. The dual norm of f over XN(⊂ Xe) is bounded by the dual norm of
f over Xe;

2. symmetry is preserved;

3. a is coercive over XN with:

αN(µ) > αe(µ) ∀µ ∈ D (2.44)

4. a is continuos over XN with:

γN(µ) 6 γe(µ) ∀µ ∈ D (2.45)

5. the affine expansions for f and a are still valid for w, v restricted to
XN;

6. a still satisfies the two conditions for parametric coercivity (2.2.2);

thus, for any N and associated XN, the Galerkin approximation preserves
the "parametrically coercivity and affine compliancy" property.

2.4 ABSTRACT FORMULATION: NON-COERCIVE PROB-
LEM

In this section, the abstract problem for non-coercive elliptic partial differ-
ential equations with affine parameter dependence will be stated.
Concerning this class of PDEs, we will deal with the particular Stokes
problem. This equations are of special interest as they model the incom-
pressible flow of viscous fluids at low Reynolds.
Although the Stokes problem is a self-contained problem, it is also the
first (main) step for the solution of the more general nonlinear Navier-
Stokes equations.
The peculiarity of this class of PDEs is the loss of coercivity and to prop-
erly solve this kind of problem a more general property has to be ensured,
the inf-sup stability condition, [Bab71, QV97].

2.4.1 Exact formulation

Let Ω ∈ Rd, d = 1, 2, 3 be a suitable physical domain with Lipschitz con-
tinuous boundary ∂Ω. Let D ⊂ RP be the parameter domain.
Then let Γ , be a boundary measurable segments of ∂Ω.
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We start introducing a 3D vectorial "exact" space Ve(Ω) built as a carte-
sian product of a scalar space Xe(Ω) ∈ H1

ΓD
(Ω), such that

Ve = Xe1 ×Xe2 . . .×Xed (2.46)

where:
H1ΓD =

{
u ∈ H1(Ω) | u = 0 on ΓD

}
(2.47)

We also require a scalar space:

Me = L2(Ω) (2.48)

The space 2.46 will be used for the components of the velocity, whereas
the space 2.48 will be used for the pressure.
Finally we require the cartesian space Xe = Ve ×Me, thanks to this as-
sumption the inner products and induced norms for these spaces are
defined in the usual way (see Section 2.4.2). that is the components of
the velocity are measured with an H1 norm, whereas the pressure is mea-
sured with an L2 norm, [QV97].

Problem statement

Let a : Ve × Ve ×D and b : Ve ×Me ×D be parametric bilinear forms,
where b is non-square, moreover let f : Ve ×D and g : Me ×D be para-
metric linear bounded functionals. The problem in the parametric weak
formulation reads: find (u(µ),p(µ)) (= v) ∈ Ve ×Me(= Ye) such that{

a(ue(µ),w;µ) + b(pe(µ), w;µ) = f(w;µ), ∀w ∈ Ve,

b(q, ue(µ);µ) = 0, ∀q ∈Me
(2.49)

then evaluate:

se(µ) = l(v;µ) = lu(ue(µ);µ) + lp(pe(µ);µ) (2.50)

here se(µ) is the output of engineering interest, for example a flow rate, a
lift or a drag, see for example [Roz08]. se(µ) : D→ R is the input/output
relationship, where lu( · ;µ) ∈ Ve and lp( · ;µ) ∈ Me are linear bounded
functionals ∀µ ∈ D.
We now introduce the bilinear form A : Ye × Ye ×D → R associated to
the Stokes problem, we recall that v, z ∈ Ye:

A (v, z;µ) =

{
a(ue(µ),w;µ) + b(pe(µ), w;µ)

b(q, ue(µ);µ)
∀ v ∈ Ye (2.51)

and the associated linear functional F : Ye ×D→ R, defined as:

F (v;µ) =

{
f(w;µ)

0
∀ v ∈ Ye (2.52)
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We note that a is symmetric, that is ∀µ ∈ D, ∀u, v ∈ Ve

a(u, v;µ) = a(v, u;µ) (2.53)

Recalling the definition given in the section 2.1 of this chapter, in partic-
ular the definition 2.6 with regard to continuity, def. 2.5 with regard to
coercivity and def. 2.7 for the inf-sup condition for the parametric bilinear
forms, we also assume that the bilinear forms are:

1. Continuous: there exist ∀µ ∈ D, γa(µ) > 0 and γb(µ) > 0 such that

a(w, v;µ) 6 γa(µ)||w||Ve ||v||Ve ∀w, v ∈ Ve

b(w,q;µ) 6 γb(µ)||w||Ve ||q||Me ∀∈Ve, ∀q ∈Me
(2.54)

2. Stable: there exist ∀µ ∈ D, α(µ) > α0 and β(µ) > β0, such that

0 < α0 6 α(µ) = inf
v∈Ve

a(v, v;µ)
||||2Ve

∀ v ∈ Ve

0 < β0 6 β(µ) inf
q∈Me

sup
w∈Ve

b(v,q;µ)
||v||Ve ||q||Me

∀ v ∈ Ve, ∀q ∈Me

(2.55)

The conditions above are sufficient to ensure existence and uniqueness
[QV97] of the solutions to problems 2.49 and 2.50.
Finally, we make the assumption of affine parameter dependence of the
linear and bilinear parametric forms:

a(w, v;µ) =
Qa∑
q=1

θqa(µ)a
q(w, v) ∀w, v ∈ Ve (2.56)

b(w,q;µ) =
Qb∑
q=1

θ
q
b(µ)b

q(w,q) ∀w ∈ Ve, ∀q ∈Me (2.57)

f(y;µ) =
Qf∑
q=1

θ
q
f (µ) f

q(y) ∀ y ∈ Ye (2.58)

l(y;µ) =
Ql∑
q=1

θ
q
l (µ) l

q(y) ∀ y ∈ Ye (2.59)

for finite Qa, Qb, Qf, Ql that depends on the parametric complexity of
the particular problem.

2.4.2 Truth approximation

To ensure the stability of the approximated problem, the FE basis function
have to be properly chosen in order to satisfy the discrete inf-sup condi-
tion [Bab71].
There are different way to satisfy this condition, [QV97]:
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1. formulate the problem 2.49 in a divergence free space,

2. make use of the so called P2-bubble element,

3. make use of P1 element for the pressure and P2 element for the
velocity, respectively;

in this thesis we will pursue the third option which is quite standard.

2.4.2.1 Galerkin projection

We introduce a family of conforming approximation spaces:

YN ≡
(
VNv ×MNp

)
⊂ Ye ≡ (Ve ×Me) (2.60)

of dimension dim(YN) = dim
(
VNv

)
+ dim

(
MNp

)
= N < ∞; the sub-

script v and p denote the velocity and pressure spaces respectively.
We then associate to our space two set of basis functions:

• φv
k ⊂ VNv , 1 6 k 6 Nv, P2 element

• φpk ⊂M
Np , 1 6 k 6 Np, P1 element

such that, by construction, any member of YN can be represented by a
unique linear combination of this basis functions.
We remark that, in the case of third option for the stabilization of the
problem, it follows that:

N = Nv +Np = 4Np

We now define the inner product and the norm with which to equip the
space YN and Ye, and the energy norm.
For any w, v ∈ Ye, we define respectively the energy inner product and the
energy norm as:

((w, v))µ = A (v, w;µ), (2.61)

|||w|||µ =
√

((w, w))µ, (2.62)

moreover, for a given fixed µ̄ ∈ D, we define the Ye-inner product and the
Ye-norm as

(w, v)Ye = ((w, v))µ , (2.63)

||w||Ye =
√

(w, w)Ye . (2.64)
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Problem statement

Now we can state the problem in the truth space taking the Galerkin pro-
jection of the problem 2.49-2.50. Given µ ∈ D find the couple (u(µ),p(µ)) (=
v) ∈ VNv ×MNp(= YN) such that{

a(uNv(µ),w;µ) + b(pNp(µ), w;µ) = f(w;µ), ∀w ∈ VNv ,

b(q, uNv(µ);µ) = g, ∀q ∈MNp
(2.65)

then evaluate:

sN(µ) = l(v;µ) = lu(uNv(µ);µ) + lp(pNp(µ);µ) (2.66)

Continuity, coercivity and inf-sup condition

We can define precisely the finite element approximated continuity for
the parametric bilinear forms a and b as:

γa(µ) = sup
w∈VNw

sup
v∈VNv

a(w, v;µ)
||u||VNv ||v||VNv

(2.67)

γb(µ) = sup
w∈VNw

sup
q∈MNp

b(u,q;µ)
||u||VNv ||q||MNp

(2.68)

from our hypothesis on the bilinear forms (2.54) it follows that γa(µ) <∞
and γb(µ) <∞, ∀µ ∈ D. Then, the coercivity of a and the inf-sup stability
condition of b are defined respectively as:

α(µ) = inf
v∈VNv

a(v, v;µ)
||v||2

VNv

(2.69)

β(µ) = inf
q∈MNp

sup
v∈VNv

b(v,q;µ)
||v||VNv ||q||MNp

(2.70)

it also follow from our hypothesis (2.55) that αNv(µ) > α0 > 0; thanks to
the proper choice of the FE basis function (discussed in section 2.4.2) it
immediately follows that βN(µ) > β0 > 0.

2.4.2.2 Well-posedness inheriting

The Galerkin approximation on YN must satisfy the same conditions that
the exact formulation satisfies over Ye.
In particular, thanks to our hypothesis on the discretization it follows that
our Galerkin formulation inherit the good properties of well-posedness
of the exact formulation:

1. the dual norm of f over VNv and is bounded by the dual norm of f
and over Ve

2. a is coercive over VNv with

αNv(µ) > αe(µ) ∀µ ∈ D (2.71)
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3. b is inf-sup stable over YN, with

βN(µ) > βe(µ) ∀µ ∈ D (2.72)

4. a is continuos over VNv with

γNva (µ) 6 γea(µ) (2.73)

5. b is continuos over YN with

γNb (µ) 6 γ
e
b(µ) (2.74)

6. the affine expansion for f, l, a and b (2.56-2.59) are still valid.

thus the non-coercive Stokes problem is endowed with all the properties to
ensure a unique solution by Galerkin method.
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3 R B M E T H O D F O R PA R A M E T R I Z E D E L-
L I P T I C P D E S

In this chapter we will introduce the relevant steps for the generation of
the rapidly convergent global RB approximation spaces for the approx-
imation of the solution of parametrized coercive and noncoercive elliptic
partial differential equations with affine parameter dependence will be
explained.
Subsequently it will be possible to introduce the reduced basis approxi-
mation methodology, the sampling strategies and the construction of the
reduced spaces.
Then an a-posteriori error bound necessary to achieve an efficient RB sam-
pling it will be explained.
The RB methodology in the coercive and noncoercive case differs in the ba-
sis assembling procedure and in the a-posteriori error evaluation.
The lack of coercivity will lead to the introduction of an additional space -the
supremizer- in the reduced base assembling.

3.1 RB IDEA

As described in the chapter 1, the Reduced Basis RB approach derives
from the two opportunities: described in 1.2.1 and 1.2.2.
In particular regarding the Opportunity I, although uN(µ) is a member of
the space XN of typically very high dimension N, in fact uN(µ) resides on
a low-dimensional parametrically induced

(a)

Figure 5: Parametrically induced mani-
fold on XN

manifold M ≡
{
uN(µ) | µ ∈ D

}
.

In figure 5 a graphical heuris-
tic idea of the finite dimensional
(truth) manifold XN with the para-
metrically induced manifold MN

(filament) is shown. The same idea
in the exact infinite dimensional
space is depicted in Figure 2 of Sec-
tion 1.2.1.
It is thus wasteful to express the
solution u(µ) as an arbitrary mem-
ber of the unnecessarily rich space

XN; rather, presuming that M is sufficiently smooth, we should represent
u(µ) in terms of elements of an ad-hoc manifold much more lower dimen-
sional, see [PR09, RHP08].
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(a)

Figure 6: Approximation of uNN(µ∗)

The RB recipe is very simple (see figure 6 for a graphical interpreta-
tion). The basic idea is to efficiently chose and compute N solutions
or "snapshots" ξN1 , ξN2 , . . . , ξNN ∈ XN and then, for any arbitrary new
µ∗ ∈ D, compute the solution uNN(µ

∗) associated to this parameter
thanks to an appropriate combination of the previously computed snapshots
ξNk , k = 1, . . . , N.
Note that "uNN(µ)" is not redundant; it means that this is the solution in
the truth space XN computed along the reduced manifold MN, selecting
N snapshots.
In the most part this thesis, if not specified, when dealing with RB solu-
tion we will always simply write uN(µ) meaning the reduced solution in
the truth space.

Now also the Opportunity II (section 1.2.1, chapter 1) can be understood;
starting from the RB idea it is evident that are needed at least N solutions
of the problem on the N-dimensional truth space.
The RB approach is thus clearly ill-suited to the single-query or few-query
situation; however, in the real-time and many-query context this Offline in-
vestment is readily acceptable in exchange for future asymptotic or On-
line computational burden reduction.

3.2 COERCIVE CASE

In this section the RB problem formulation in the coercive case is dis-
cussed.
We begin introducing the spaces and basis that allow us to build the re-
duced basis problem, subsequently the creation of the RB system, the Of-
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fline/Online procedure and the a-posteriori error bound will be introduced.

3.2.1 RB spaces and basis

There are different possible choices for the selection of the reduced basis
spaces (Hermite, Lagrange, ecc. . .) that will lead ultimately to different
reduced order model, see [RHP08, PR09, Por85, IR01].
In the following the Lagrange hierarchical spaces used in this work will be
discussed.

3.2.2 Lagrange hierarchical spaces

We introduce a set of linearly independent functions:

ξn ∈ X, 1 6 n 6 Nmax (3.1)

where Nmax is the maximum dimension of the RB space, in terms of which
we define the RB approximation spaces:

XN = span {ξn, 1 6 n 6 N} 1 6 N 6 Nmax (3.2)

where we assume, in order to build a "reduced basis" that the ξn are
somehow related to the manifold M.
By construction we obtain

XN ⊂ X, dim(XN) = N, 1 6 N 6 Nmax (3.3)

moreover, as the same property holds recursively for any nested subset
of XN, we can say that the space X is hierarchical.

Definition 3.1. Given a space X, givenNmax subsets of this space Xn ⊂ X, 1 6
n 6 Nmax, we say that X is a hierarchical (or nested) space if:

X1 ⊂ X2 ⊂ . . . ⊂ XNmax−1 ⊂ XNmax (3.4)

The hierarchical property 3.4, as we shall see, is important in ensuring
(memory) efficiency for the resulting reduced basis approximation.
To introduce the Lagrange (hierarchical) RB recipe, we first define a mas-
ter set of parameter points µn ∈ D, 1 6 n 6 Nmax, we then define, for
given N ∈ {1, . . . ,Nmax}, the Lagrange parameter samples

SN =
{
µ1, . . . , µN

}
, (3.5)

that we choose nested in order to build a hierarchical space, that is:

S1 =
{
µ1
}
⊂ S2 =

{
µ1, µ2

}
⊂ . . . ⊂ SNmax . (3.6)
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The associated Lagrange RB spaces are defined as:

WN
N = span

{
uN(µn)

}
, 1 6 n 6 N. (3.7)

We observe that, by construction, these Lagrange spaces WN
N = XN

N are
hierarchical; in fact the samples SN are nested thanks to the choice 3.6,
then accordingly:

WN
1 = span

{
uN(µ1)

}
⊂WN

2 = span
{
uN(µ2), uN(µ1)

}
⊂ . . . ⊂WN

Nmax
(3.8)

The uN(µn), 1 6 n 6 Nmax are the so-called "snaphots" related to the
low dimensional manifold MN. As already mentioned in section 3.1, we
would expect to well approximate any member of the manifold thanks to
a good combination of the available snapshots.
In theory, in order to build the RB approximation spaces, it would be
necessary to choose a set of parameter sample (see Section 3.5 that in-
duces a set of linearly independent snapshot; the greedy sampling, that
will be introduced in Section 3.4, induces linear dependent functions as
N increases. In fact, if the snapshot chosen WN contains much of the D

induced manifold M, then it will be clear that the new µN+1 ∈ D will
perforce be a combination of this functions.
We therefore pursue a Gram-Schmidt orthogonalization in the ( · , · )X
inner product to recover an orthonormal well-conditioned set of basis
functions in order to guarantee a good algebraic stability without an ill-
conditioning [PR09].

3.2.3 Orthogonal RB basis

To achieve the orthogonalization, we apply the already mentioned Gram-
Schmidt standard orthogonalization [Mey00]. Given the basis functions
ξn, 1 6 n 6 Nmax (3.1), that in the Lagrange space choice are the
u(µn), 1 6 n 6 Nmax (3.7), we obtain the set of basis function ζn, 1 6
n 6 Nmax as:

ζ1 = ξ1/||ξ1||X;

for n = 2 : Nmax

zn = ξn −

n−1∑
m=1

, (ξn, ζm)X ζ
m;

ζn = zn/||zn||X;

end

(3.9)

As a result of this process we obtain the orthogonality condition:

(ζm, ζn)X = δmn 1 6 m,n 6 Nmax (3.10)

where δmn is the Kronecker-delta symbol.
Finally we can express our reduced basis spaces XN as:

XN = span {ζn, 1 6 n 6 N} 1 6 N 6 Nmax (3.11)

30



3.2 COERCIVE CASE

Now any function wN ∈ XN can be expressed as a linear combination
of the reduced base XN as:

wN =

N∑
n=1

wNn ζ
n 1 6 N 6 Nmax (3.12)

for a unique combination of (RB) coefficients wNn ∈ R, 1 6 n 6 Nmax.

3.2.4 Algebraic representation of RB basis

We now reconsider the orthogonalization process in order to introduce
some concepts that will be necessary to build our RB problem starting
from the FE original frame.
If we express our snapshots ξn in terms of FE functions φi, 1 6 i 6 N:

ξn =

N∑
i=1

ξni φi, 1 6 n 6 Nmax, (3.13)

similarly we may express our RB orthogonalized functions ζn as

ζn =

N∑
i=1

ζni φi, 1 6 n 6 Nmax. (3.14)

Now, in the two cases above, we sort the FE coefficients in an array

ξn ≡
{
ξn1 ξ

n
2 . . . ξ

n
N

}T
1 6 n 6,Nmax (3.15)

ζn ≡
{
ζn1 ζ

n
2 . . . ζ

n
N

}T
1 6 n 6 .Nmax (3.16)

We then introduce the algebraic representation XN ∈ RN×N of the
inner product ( · , · )X:

XN

ij
=
(
φi,φj

)
XN 1 6 i, j 6 N. (3.17)

The orthogonalization process can be now formulated as:

ζ1 = ξ1/

√
ξ1
T

X ξ1;

for n = 2 : Nmax

zn = ξn −

n−1∑
m=1

,
(
ξnX ζm

)
ζm;

ζn = zn/
√
znTX zn;

end

(3.18)

Finally it is useful to introduce the "basis" matrices Z ∈ RN×N, 1 6
N 6 Nmax:

ZNjn = ζnj 1 6 j 6 N, 1 6 n 6 N. (3.19)
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This matrices is built in such a way that the nth-column of the matrix is
formed by the vector of FE coefficients ζnNj , 1 6 j 6 N associated to the
nth RB function.

3.2.5 Galerkin projection

The projection strategy used in order to obtain the RB approximation is
given by a Galerkin projection, which is arguably the best approach. We
remark that the RB weak formulation has formally the same appearance
as the "exact" weak formulation (see equations 2.29-2.30, Section 2.3.1); in
this case we properly replace the FE truth functional space with the RB
approximation space; in the next Section we will show how to obtain the
latter from the former by means of an algebraic procedure.
The problem states: given µ ∈ D, find uN

(
≡ uNN

)
∈ XN

(
XN
N

)
such that

a(uN(µ), v;µ) = f(v;µ) ∀ v ∈ XN (3.20)

we evaluate
sN(µ) = f(uN(µ)) (3.21)

From coercivity and continuity hypothesis on a and f, our conforming
reduced basis XN

N ⊂ XN and from our assumption of linear independence
of snapshots, the problem 3.20-3.21 admits an unique solution, [QV97,
Qua09].
Thanks to the Galerkin projection, the optimality results subsequently
discussed holds, see [RHP08, PR09].

Proposition 3.1. For any µ ∈ D and uN(µ) and sN(µ) satisfying 3.20-3.21:

|||uN − uNN|||µ = inf
wN∈XN

N

|||uN −wN|||µ (3.22)

||uN − uNN||X 6

√
γe(µ)

αe(µ)
inf

wN∈XN
N

||uN −wN||X (3.23)

as regard the output optimality results, in the compliant case we obtain:

sN − sNN = |||uN − uNN|||
2
µ

= inf
wN∈XN

N

|||uN −wN|||
2
µ (3.24)

and furthermore

0 6 sN − sNN 6 γe(µ) inf
wN∈XN

N

||uN −wN||
2
X, (3.25)

where γe(µ) and αe(µ) are, respectively, the continuity and coercivity
constants (defined in section 2.6 and 2.5) in the exact space. It will be
shown that these optimality results will be used even after, replacing the
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exact constants with those evaluated with the reduced space approxima-
tion.
It is also necessary to remark from the equation 3.24 that, in the compliant
case, the error on the output is the square of the error of the field variable:
we have the so-called "square effect", this is crucial for the input/output
accuracy and efficiency of the method.
Last but not least, sN(µ) is a lower bound for sN, in fact: (i) sN(µ) =
a(uN(µ),uN(µ);µ) is a positive quantity, and (ii) the error in the output
is the square of the error of the field variable, see [RHP08].

3.2.6 Offline-Online procedure

In this section the algebraic formulation for the coercive problem will be
explained. The crucial point that will be treated is the Online/Offline
splitting procedure; this procedure will be equipped with an operation
count to highlight the potential computational saving offered by the RB
method.

3.2.6.1 Algebraic formulation

In order to apply the standard variational procedure to obtain the alge-
braic formulation of the problem, we first expand uN(µ):

uN(µ) =

N∑
j=1

u
j
N(µ) (3.26)

now, inserting the expansion 3.26 in the problem 3.20 and choosing v =
ζi, 1 6 i 6 N as our test function, we obtain the set of linear algebraic
equations

N∑
j=1

a(ζj, ζi;µ)ujN(µ) = f(ζ
i;µ), 1 6 i 6 N (3.27)

for the reduced basis coefficients ujN(µ) 1 6 i 6 N.
The output can then be expressed as

sN(µ) =

N∑
j=1

u
j
N(µ) f(ζ

j;µ) (3.28)

We now express these operations in matrix form; we first introduce the
array of RB basis coefficients uN(µ) as

uN ≡ [uN1uN2 . . . uNN ] (3.29)

It follows from 3.27 that uN ∈ RN satisfies

A
N
(µ)uN(µ) = FN(µ) (3.30)
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where A
N
(µ) ∈ RN×N is the "stiffness matrix", and FN(µ) ∈ RN is the

"load/source" array. This quantity are in particular given by:

A
Ni,j

(µ) = a(ζj, ζi;µ) 1 6 i, j 6 N (3.31)

and
FNi(µ) = f(ζ

i;µ) 1 6 i 6 N. (3.32)

Finally, the output can now be expressed as

sN(µ) = F
T
N uN (3.33)

It follows from our assumption of linear independence of the snapshots
that the stiffness matrix is symmetric and positive definite.

3.2.6.2 Offline-Online

It is now possible, starting from the algebraic problem, to introduce the
Offline/Online procedure.
The reduced basis system 3.30 is clearly of small size, in fact it is anN×N
linear system that requires O(N3) operation to solve it, plus O(N) opera-
tion to obtain the output from the equation 3.33.

By appealing to our previous assumption of affine parameter depen-
dence discussed in Section 2.2, from equations 2.20 and 2.27, the stiffness
matrix and load/source vector can be expressed, respectively, as

a(ζm, ζn;µ) =
Qa∑
q=1

θqa(µ) a(ζ
m, ζn) 1 6 m,n 6 N (3.34)

and

f(ζn;µ) =
Qf∑
q=1

θ
q
f (µ) f(ζ

n) 1 6 n 6 N. (3.35)

The Offline-Online decomposition is now:

Offline

In the offline part we form:

1. the parameter independent matrices Aq
N
∈ RN×N

Aq
Nm,n

= aq(ζm, ζn), 1 6 m,n 6 N, 1 6 q 6 Qa (3.36)

2. the parameter independent vectors F
q
N ∈ RN

F
q
Nn

= fq(ζn), 1 6 n 6 N, 1 6 q 6 Qf (3.37)

This operations N-dependent and hence very expensive are computed
once.

34



3.2 COERCIVE CASE

Online

In the online stage we assemble, for any new µ ∈ D:

1. the RB reduced stiffness matrix A
N
(µ)

A
N
(µ) =

Qa∑
q=1

θqa(µ) Aq
N

(3.38)

2. the RB reduced load/source vector FN(µ)

FN(µ) =

Qf∑
q=1

θ
q
f (µ) F

q
N (3.39)

the operation count is actually N-independent and hence very inexpen-
sive.

Link between FE and RB

Before a detailed discussion over the operation count, it is necessary to
provide the link between the FE and the RB stiffness matrix and load/-
source vector; it is worth to remark that this operation will be completed
once in the offline stage.
In particular it can be showed that the former are linked to the latter via
the "basis" matrices Z ∈ RN×N, 1 6 N 6 Nmax.
The stiffness matrix 3.31 that can be written as:

a(ζm, ζn;µ) =
N∑
j=1

N∑
i=1

ζmj a(φ
i,φj;µ) ζni 1 6 m,n 6 Nmax (3.40)

thanks to the definition of the basis matrix Z (3.19) and the FE develop-
ment of the reduced basis functions ζn (3.14) we may rewrite the stiffness
matrix 3.40 as

A
N
(µ) = ZTA(µ) Z. (3.41)

In the same way the reduced parametric independent stiffness matrices
Aq
N

3.38 are linked to the FE matrices:

Aq
N

= ZTAq Z. (3.42)

The load/source vectors 3.33 admit a similar treatment

FN(µ) = ZTF(µ). (3.43)

finally the parameter independent load/source vector 3.39 can be written
as

F
q
N = ZTFq(µ) 1 6 q 6 Qf. (3.44)
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3.2.7 Operation count and storage

Thanks to the Offline/Online splitting procedure, we have achieved an
Online N-independent stage, hence very inexpensive.
It is necessary to focus on the Offline and Online complexity to quantify
the computational reduction provided by the RB method.
We make use of Table 1 to summarize the computational burden re-
quested to perform: (i) Offline, the RB basis assembling, (ii) Online, a
single input/output evaluation.

part item burden equation

Offline
Z
N

NO(N3) 3.19

Aq
N

QaNA-matvec+QaN2 XN-inprod 3.42

FN QfNX
N-inprod 3.44

Online

A
N

QaN
2

3.38

FN QfN 3.39

uN O(N3) 3.27

sN N2 3.33

Table 1: Offline/Online: coercive case

In this table we have denoted with "A-matvec" and "XN-inprod", the
matrix-vector multiplication and the inner product between two vectors
∈ XN, respectively.
As regard the storage we need only to store Aq

Nmax
1 6 q 6 Qa and

F
q
Nmax

1 6 q 6 Qf, then extract only the sub-matrices and sub-vectors of
desiredN thanks to the hierarchical base property, as explained in Section
3.4.

3.3 NON-COERCIVE CASE: STOKES PROBLEM
We introduce the projection strategy chosen in order to obtain our RB ap-
proximation for the non-coercive Stokes problem, as a particular case (of
interest) as non-coercive problem, [QV97, Qua09].
The RB base assembling is more involved than in the coercive case.
The consequences will be the creation of an additional base beside the clas-
sical Lagrange base described in Section 3.2.1 in order to provide stability
to the RB approximation. Even for this particular class of equations, Ga-
lerkin projection is the best approach.
We recall from Section 2.4 that the Stokes problem describes the velocity
and the pressure field in a viscous flow. We look for the velocity field into
a
(
H10(Ω)

)3
(= Ve) space and the pressure into a L2(Ω) (=Me(Ω)) space,
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3.3 NON-COERCIVE CASE: STOKES PROBLEM

[Qua09]. We briefly recall the weak formulation for the non-coercive
Stokes problem: find (u(µ),p(µ)) (= v) ∈ Ve ×Me(= Ye) such that{

a(ue(µ),w;µ) + b(pe(µ), w;µ) = f(w;µ), ∀w ∈ Ve,

b(q, ue(µ);µ) = 0, ∀q ∈Me

3.3.1 RB spaces and basis

We select some samples SN =
{
µ1, . . . , µN

}
, where µn ∈ D, 1 6 n 6 N

and we solve N times the problem 2.65 using the Galerkin-FE method.
Concerning Stokes problem, the reduced basis pressure space is built as

MN = span {ψn, 1 6 n 6 N} (3.45)

where ψn = pNp(µn).
Otherwise as regard the velocity, it is necessary to introduce a particular
recipe to build the basis space. We begin recalling the definition of the
"supremizer operator" Tµ( · ) given in 2.9 (page 11).
Now we build the reduced basis velocity space enriching the velocity space
with the supremizer solutions, this space will be denoted with the super-
script µ to remind this key-point feature:

V
µ
N = span {ξn, 1 6 n 6 N; Tµψn, 1 6 n 6 N} (3.46)

where ξn = uNv(µn).
This choice is necessary to satisfy an equivalent inf-sup stability condition;
without appending this "additional" space the RB problem will lead us to
a solution which may be not stable.
The supremizer in the Stokes case can be computed as solution, for any
ψn, 1 6 n 6 N, of the following Poisson-like problem, [RHP08, PR09]

(Tµψn, w)V = b(q, w;µ) ∀w ∈ VNv (3.47)

where the bilinear form b has been introduced in the exact formulation
(2.49).
Finally we define the global space YµN as the cartesian product of the
above defined spaces VµN and MN

Y
µ
N = VµN ×MN. (3.48)

As already done with the coercive spaces 3.2.1, we now pursue a Gram-
Schmidt orthogonalization in the ( · , · )Y inner product to recover a or-
thonormal well-conditioned set of basis functions.
Remark: In the Stokes problem, Nv denotes the number of DOFs of the
velocity, whereas Np denotes the DOFs of the pressure. We remark that,
since we are dealing with a 3D problem, the velocity unknowns in each
node is a vector with three components v = {u, v, w}. Hence, the velocity
DOFs are Nu +Nv +Nw = 3Nu (= Nv).
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3.3.2 Orthogonal RB basis and space

To achieve the orthogonalization, we apply the already mentioned Gram-
Schmidt orthogonalization [Mey00]. In the Stokes case the orthogonaliza-
tion procedure is similar to that relatives to the coercive case, [Mey00].
The main difference lies in the definition of the ( · , · )Y inner product. We
have chosen to measure and therefore to orthogonalize the functions accord-
ingly to the space to which this function belongs to; it follows that the
velocity and the supremizer functions will be orthogonalized in an H1 met-
ric, whereas the pressure will be orthogonalized in an L2 metric. In our
work we have chosen to orthogonalize the velocity space separately from
the supremizer space. There are more options possible, see [RV06] for dif-
ferent orthogonalization choice.
Let we introduce our velocity and pressure basis functions respectively
as wµn ∈ VµN, 1 6 n 6 Nmax and qn ∈ MN, 1 6 n 6 Nmax, we denote
with vn =

(
wµn, qn

)
, 1 6 n 6 Nmax the generic basis function ∈ VµN.

Then we denote the orthogonal velocity and basis functions respectively as
ζ
µ
n ∈ VµN, 1 6 n 6 Nmax and ψn ∈MN, 1 6 n 6 Nmax, finally we denote

an orthogonal basis function as γn
(
=
(
ζ
µ
n, ψn

))
∈ YµN , 1 6 n 6 Nmax.

We now obtain our set of orthogonormal basis functions γn in the ( · , · )Y
inner product as

γ1 = v1/||v1||Y ;

for n = 2 : Nmax

γn = vn −

n−1∑
m=1

(vn,γm)Y γm;

γn = γn/||γn||Y ;

end

(3.49)

as final result we obtain the orthogonality condition

(γm,γn) = δmn 1 6 m,n 6 Nmax (3.50)

Our orthogonal space can be expressed, for any 1 6 N 6 Nmax as:

Y
µ
N = span {γn, 1 6 n 6 N} =

= span {ζµn, 1 6 n 6 N; ψn, 1 6 n 6 N} (3.51)

3.3.3 Algebraic representation of RB basis

It is useful to introduce the algebraic representation of RB basis to better
understand the link between the FE and RB matrices and vectors, that
will be discussed in section 3.3.5.1, in order to exploit the Offline/Online
procedure.
We need to express our basis functions in terms of the FE basis functions
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3.3 NON-COERCIVE CASE: STOKES PROBLEM

φi , 1 6 i 6 Nv +Np.
We recall from Section 2.4.2 that the pressure and the velocity "lives" on
different FE basis (P2-P1, Taylor-Hood FE for the velocity and pressure,
respectively); moreover we recall that the velocity base VµN is enriched by
the solution Tµq ≡ wsup of the supremizer problem.
The velocity as well as the supremizer solution, share the same basis
functions; therefore to express the RB basis in terms of FE basis we need
to enlarge the array of coefficients to place the Nv added FE coefficients
and duplicate the FE velocity basis functions.
To wit, we sort the basis functions as follows:

φ =
{
φ

v

i φ
v

i φ
p

i

}T (3.52)

here φv
i , 1 6 i 6 Nv are the FE velocity basis functions that we have

duplicated in the array since we must consider either the velocity and the
supremizer basis functions, whereas φpi , , 1 6 i 6 Np are the FE pressure
basis functions.
We remark that, since we are dealing with a 3D Stokes problem, the di-
mension of the FE basis functions array (3.52) is the following:

φ =
{

RNv×1 RNv×1 RNp×1
}T

=
{

R3Nu×1 R3Nu×1 RNp×1
}T . (3.53)

Then our basis can be expressed as

vn =

2Nv+Np∑
i=1

vni φi, 1 6 n 6 Nmax (3.54)

Similarly our orthogonalized functions γn can be expressed as

γn =

2Nv+Np∑
i=1

γni φi, 1 6 n 6 Nmax. (3.55)

Where we have sorted the FE coefficients in an array, dividing those re-
lated to the velocity, to the supremizer and those relatives to the pressure:

vn =
{

wµn ; q
n

}
(3.56)

=
{{

wn ; wsupn

}
; q
n

}
=

{ {
w1n . . . wNv

}T ;
{

w1supn
. . . wNv

supn

}T
;
{
q1n . . . q

N
n

}T } .

We then introduce the algebraic representation of the inner product ( · , · )Y ,
denoted by Y ∈ R(2Nv+Np)×(2Nv+Np):

Y =

[
Vµ 0

0 M

](
=

[
R2Nv×2Nv R2Nv×Np

RNp×2Nv RNp×Np

])
(3.57)
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where the sub-matrices relatives to the velocity and supremizer are de-
fined as follows

Vµ =

[
V 0

0 V

](
=

[
RNv×Nv RNv×Nv

RNv×Nv RNv×Nv

])
(3.58)

V
ij
=
(
φv
i ,φ

v
j

)
V

, 1 6 i, j 6 Nv (3.59)

whereas the sub-matrices relatives to the pressure M ∈ RNp×Np

M
ij
=
(
φ
p
i ,φpj

)
M

, 1 6 i, j 6 Np. (3.60)

The orthogonalization process can be now explained

γ
1
= v1/

√
v1TY v1;

for n = 2 : Nmax

zn = vn −

n−1∑
m=1

(
vnY γ

m

)
γ
m

;

γ
n
= zn/

√
znTY zn;

end

(3.61)

Finally we introduce the "basis" matrices Z
N
∈ R(Nv+Np)×3N, that will

be prove useful to build our RB system:

Z
N

=

 Z
vel

Z
sup

0

0 0 Z
pre

 (3.62)

(
=

[
RNv×N RNv×N RNv×N

RNp×N RNp×N RNp×N

])
where the three contributes, are relatives to the velocity, supremizer and
pressure respectively:

Z
vel

jn
= ζnj , 1 6 j 6 Nv, 1 6 n 6 N (3.63)

Z
sup

jn
= Tµψnj , 1 6 j 6 Nv, 1 6 n 6 N

Z
pre

jn
= ψnj , 1 6 j 6 Np, 1 6 n 6 N

3.3.4 Galerkin projection

It is now possible to state the reduced problem as follows: find (uN(µ),pN(µ)) ∈
V
µ
N ×MN

(
≡ YµN

)
such that{

a(uN(µ), w;µ) + b(pN(µ), w) = f(w;µ) ∀w ∈ VµN
b(q, uN(µ)) = 0 ∀q ∈MN

(3.64)
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3.3 NON-COERCIVE CASE: STOKES PROBLEM

and then evaluate

sN(µ) = l(vN;µ) = lv(uN;µ) + lp(pN;µ). (3.65)

In order to satisfy the Lax-Milgram theorem [Bab71] it is necessary to en-
sure the continuity of b, the coercivity and continuity of the bilinear form
a, and finally it is necessary to ensure the continuity and the inf-sup sta-
bility of b.
It is possible to show that, thanks to our hierarchical space and thanks to
the choice of the spaces for the pressure and for the velocity, ∀µ ∈ D the
following results holds:

1. stability

a) coercivity on a
αN(µ) > α

N(µ) > 0 (3.66)

b) inf-sup condition on b

βN(µ) > α
N(µ) > 0 (3.67)

2. continuity

a) bilinear form a

γaN(µ) 6 γ
N
a (µ) 6∞ (3.68)

b) bilinear form b

γbN(µ) 6 γ
N
b (µ) 6∞ (3.69)

finally the linear functional g remains bounded over the dual norm of VµN,
therefore the reduced problem 3.64 has a unique solution. Thanks to the
Galerkin projection, for the RB approximation, the subsequent optimality
result holds:

Proposition 3.2. For any µ ∈ D and uN(µ), pN(µ) and sN(µ) satisfying
3.64-3.65 , see [QV97]:

• For the velocity

|||uNv − uNv
N |||µ = inf

wN∈VµN
|||uNv − uN|||µ (3.70)

||uNv − uNv
N ||VµN

6

(
1+

γea
βe

)(
1+

γea
αe

)
inf

wN∈VµN
||uNv − wN||V+

+
γeb
αe

inf
qN∈MN

||pNp − qN||M

(3.71)
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• For the pressure

|||pNp − p
Np
N |||µ = inf

qN∈MN

|||pNp − qN|||µ (3.72)

||pNp − pN||M 6
γea
βe

(
1+

γea
αe

)
inf

wN∈VµN
||uNv − wN||V+

+

(
1+

γeb
βe

+
γebγ

e
a

αeβe

)
inf

qN∈MN

||pNp − qN||M

(3.73)

We can see there is a coupling between the velocity and the "true" er-
rors.
In this results, thanks to the properties 3.66-3.69 we can replace the ex-
act constants αe, βe, γea, γeb with their RB approximated counterparts
αN, βN, γaN , γbN .

3.3.5 Offline-Online procedure

In this section it will be discussed the operations needed to reduce the
original problem into a RB algebraic system, moreover the Offline/On-
line splitting procedure will be discussed and finally the computational
burden reduction offered by the RB method will be explained.

Algebraic formulation

Recalling the affine dependence on the parameter of the supremizer op-
erator (2.24) Tµq :MN → V

µ
N, we write

Tµq =

Qb∑
k=1

φk(µ)Tkq, (3.74)

thanks to the linearity of Tµ, we can rewrite VµN (3.46) in the following
fashion:

V
µ
N = span


Qb=Qb+1∑
k=1

φk(µ)σkn, n = 1, . . . , 2N

 (3.75)

where φk(µ) is defined as

φk(µ) =

θb(µ) if k = 1, . . . ,Qb

1 if k = Qb

(3.76)
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and where σkn are defined as

σkn =



{
0 for k = 1, . . . ,Qb

ζ(µn) for k = Qb
n = 1, . . . ,N

{
Tkψ(µn−N) for k = 1, . . . ,Qb

0 for k = Qb
n = N+ 1, . . . , 2N.

(3.77)

In this way we have compacted the reduced basis velocity space made up
of velocity ζn and supremizer solutions Tµψn. In order to introduce the
algebraic formulation, we now expand uN(µ) and p(µ) as a combination
of the precomputed solutions as basis functions:

uN(µ) =
2N∑
j=1

uNj(µ)

Qb∑
k=1

φk(µ)σkj

 , (3.78a)

pN(µ) =

N∑
m=1

pNm ψm. (3.78b)

We now expand the RB solution uN and pN thanks to the development
above, then we choose wµ ∈ VµN as our velocity test functions and q ∈MN

as our pressure test function.
Replacing this quantities in the problem 3.64, after few operations we
obtain: 

2N∑
j=1

Aµ
Nij
uNj(µ) +

N∑
m=1

Bµ
Nim

pNm(µ) = F
µ
i

2N∑
j=1

Bµ
Njm

uNj(µ) = G
µ
N

(3.79)

where the reduced matrices Aµ
N
∈ R(2N)×(2N), Bµ

N
∈ R(2N)×(N) and the

reduced vectors FµN ∈ R2N, GµN ∈ RN, exploiting the affine decomposi-
tion 2.56-2.59 (pag.22), can be obtained as follows:

Aµ
Nij

=

Qa∑
k=1

Qb∑
k ′=1

Qb∑
k ′′=1

θka(µ)φ
k ′(µ)φk

′′
(µ)ak

(
σk ′i,σk ′′j

)
=

Qa∑
k=1

Qb∑
k ′=1

Qb∑
k ′′=1

θka(µ)φ
k ′(µ)φk

′′
(µ)Ak

Nij
(3.80a)

1 6 i, j 6 2N
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Bµ
Nim

=

Qb∑
k=1

Qb∑
k ′=1

φk(µ)φk
′
(µ)bk (σk′i,ψm)

=

Qb∑
k=1

Qb∑
k ′=1

φk(µ)φk
′
(µ)Bk

Nim
(3.80b)

1 6 i 6 2N, 1 6 m 6 N

F
µ
Ni

=

Qf∑
k=1

Qf∑
k ′=1

θkf (µ)φ
k ′(µ) fk (σk ′i)

=

Qf∑
k=1

Qf∑
k ′=1

θkf (µ)φ
k ′(µ)FkNi (3.80c)

1 6 i 6 2N

G
µ
Nm

=

Qg∑
k=1

θkg(µ)g
k (ψm)

=

Qg∑
k=1

θkg(µ)GkNm (3.80d)

1 6 m 6 N.

Then to evaluate the output (3.65), the reduced basis formulation reads:

s
µ
N(µ) =

Qlv∑
k=1

Qb∑
k ′=1

θklv
(µ)φk

′
(µ) lkv (σk ′i) +

Qlp∑
k=1

θklp(µ) l
k
p (ψm)

=

Qlv∑
k=1

Qb∑
k ′=1

θklv
(µ)φk

′
(µ)Lkvi +

Qlp∑
k=1

θklp(µ)LkpNm
. (3.81)

Finally, problem 3.64 can be written in compact R3N×3N form as[
Aµ
N

Bµ
N

Bµ
T

N
0
N

]{
uN
p
N

}
=

{
F
µ
N

G
µ
N

}
(3.82)

where 0
N

is a null matrix ∈ RN×N.
This linear system whose unknowns are the RB coefficients ui, 1 6 i 6
2N and pm, 1 6 m 6 N, has the same structure of a FE Stokes problem.
The RB method builds a considerably smaller system (order of N) and
with full matrices, where FE creates sparse matrices.
Then, introducing the RB vectors LvN ∈ R2N and LpN ∈ RN, the output
can be written in a compact form as

s
µ
N =

{
LvN LpN

}{ uN
p
N

}
. (3.83)
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It is possible to exploit the link between the RB matrices and vectors
introduce above, in order to provide the Offline/Online computational
cost.

3.3.5.1 Offline/Online

The RB system 3.82 is clearly of small size, in fact is an 3N× 3N linear
system, that requires O(27N3) operations to solve it, plus 9N operations
to evaluate the output from equation 3.83. Thanks to the affine parameter
dependence we have obtained an Offline/Online splitting procedure in
order to build the RB system.

Offline

In the Offline part we form:

1. the µ-independent matrices A
N
q ∈ R2N×2N

Aq
Nmn

= aq (σm,σn) , 1 6 m,n 6 2N, 1 6 q 6 Qa (3.84)

2. the µ-independent matrices B
N
q ∈ R2N×2N

Bq
Nim

= bq (σi,ψm) , 1 6 i 6 2N, 1 6 m 6 N, 1 6 q 6 Qb (3.85)

3. the µ-independent vectors F
q
N ∈ R2N

F
q
Ni

= fq (σi) , 1 6 i 6 2N, 1 6 q 6 Qf (3.86)

4. the µ-independent vectors G
q
N ∈ RN

G
q
Nm

= gq (ψm) , 1 6 m 6 N, 1 6 q 6 Qg (3.87)

Online

In the Online stage we assemble, for any new µ ∈ D:

1. the RB matrices:

• Aµ
N

, equation 3.80a;

• Bµ
N

, equation 3.80b;

2. the RB vectors

• FµN, equation 3.80c;

• GµN, equation 3.80d.
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Link between FE and RB

We now recall, and slightly modify, the definition of the "basis" matri-
ces Z

N
(eq.3.62) to provide the link between the FE and RB matrices

expressed in a matricial way.
In the RB system we have already compacted the velocity and supremizer
thanks to 3.75. Therefore to obtain the desired relation accordingly to the
notation used in 3.79, it will prove useful to write the basis matrices in
the following compact form:

Zµ
N

=

 Zvelµ

N
0

0 Z
pre

N

 (3.88)

(
=

[
RNv×2N RNv×N

RNp×2N RNp×N

])

where:

Zvelµ

Njn
= σjkn, 1 6 k 6 Qb, 1 6 n 6 2N, 1 6 j 6 2Nv (3.89)

Z
pre
Njn

= ψjn, 1 6 n 6 N, 1 6 j 6 Np

We now recover the definition of the RB vectors and matrices, showing
the dependence upon the FE basis functions.
We start from the bilinear form a of equation 3.80a:

ak (σk ′n,σk ′′m) =

Nv∑
i=1

Nv∑
j=1

σik ′n a
k (φv

i ,φ
v
i)σ

j
k ′′m

=

Nv∑
i=1

Nv∑
j=1

σik ′nAk
ij
σjk ′′m 1 6 n,m 6 2N (3.90)

then, as regard to the bilinear form b (3.80b):

bk (σk′n,ψm) =

Nv∑
i=1

Np∑
m=1

σik ′n b
k
(
φv
i ,φ

p
j

)
ψjm

=

Nv∑
i=1

Np∑
m=1

σik ′nBk
ij
ψjm 1 6 n 6 2N, 1 6 m 6 N. (3.91)

The linear functional f (3.80c):

fk (σk ′i) =

Nv∑
i=1

σik ′n f
k (φv

i)

=

Nv∑
i=1

σik ′n Fk 1 6 n 6 2N, (3.92)
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and finally g (3.80b) can be written as:

gk (ψm) =

Np∑
i=1

ψim g
(
φ
p
i

)
N

=

Np∑
i=1

ψimGk 1 6 m 6 N. (3.93)

Endowed with the definition of the basis matrix of equation 3.88, we
obtain the desired matricial relation:[

Aµ
N

Bµ
N

Bµ
T

N
0
N

]
=

=

 Zvelµ

N
0

0 Z
pre

N

T [ A B

BT 0

] Zvelµ

N
0

0 Z
pre

N

 (3.94)

by this, we pass (Offline) from the FE matrices to their RB counterparts.

3.3.5.2 Operation count and storage

Also in the Stokes case, we achieve an Online N-independent stage, hence
very inexpensive. It is necessary to focus on the Offline and Online
complexity to quantify the computational reduction provided by the RB
method.
We make use of Table 2 to summarize the computational burden re-
quested to perform: (i) Offline, the RB basis assembling, (ii) Online, a
single input/output evaluation.

3.4 SAMPLE/SPACE ASSEMBLING

We now discuss the procedure used to select the snapshots in order to as-
semble the reduced basis approximation spaces, after a few preliminaries.
We then turn to the Greedy sampling strategy exploited in this thesis [PR09].
See also [PR09, HRSP07, RHP08] for more options sampling strategies.

We shall denote by Ξ a finite sample of points in D. These "test" sam-
ples Ξ serve as surrogates for D in the calculation and presentation of
errors over the parameter domain. Typically these samples are chosen by
Monte Carlo methods with respect to a uniform or log−uniform density.
Concerning the dimension of the sample, we always ensure that Ξ is suffi-
ciently large that the reported results are insensitive to further refinement
of the parameter sample.
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part item burden equation

Offline

Z
N

2NO((Nv +Np)
3) 3.19

Ak
N

QaNA-matvec+QaN2 XNv -inprod 3.84

Bk
N

QbNB-matvec+QbN2 XNp-inprod 3.85

FN QfNX
Nv -inprod 3.86

GN QgNX
Np-inprod 3.87

Online

Aµ
N

QaN
2

3.80a

Bµ
N

QbN
2

3.80b

F
µ
N QfN 3.80c

G
µ
N QgN 3.80d

(uN,pN) O(27N3) 3.27

sN 9N2 3.83

Table 2: Offline/Online: Stokes case

Definition 3.2. Given a function y : D → R, we define the L∞(Ξ) and Lp(Ξ)
norms respectively as:

||y||L∞(Ξ) ≡ max
µ∈Ξ

|y(µ)|

||y||Lp(Ξ) ≡

|Ξ|−1
∑
µ∈Ξ

|y(µ)|p

1/p .
(3.95)

Definition 3.3. Given a function z : D → XN (or Xe), we define the L∞(Ξ;X)
and Lp(Ξ;X) norms respectively as:

||z||L∞(Ξ;X) ≡ max
µ∈Ξ

|z(µ)|X

||z||Lp(Ξ;X) ≡

|Ξ|−1
∑
µ∈Ξ

||z(µ)||pX

1/p .
(3.96)

Here |Ξ| denotes the cardinality of (the finite number of elements in)
the test sample Ξ.
We now introduce the Greedy Lagrange spaces, that will be used to build
our RB approximation.

3.4.1 Greedy Lagrange spaces

We have already introduced the concept of Lagrange spaces (see section
3.2.1, pag.29), we now have to extend this idea to Greedy Lagrange spaces.
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We remark that this strategy is not indispensable to build a basic model
reduction, but it is a prerogative of the Reduced Basis method. In fact the
Greedy sampling, we are going to discuss, can be efficiently exploited
only combined to an Offline/Online splitting procedure.
The idea of this strategy is starting with a train sample Ξtrain , we select N
parameters µ1, . . . ,µN and, as already seen in section 3.2.1, we form the
reduced basis space XN as:

XN = span
{
ξn = uN(µn), 1 6 n 6 N

}
. (3.97)

More precisely, for the Greedy approach, we need a also sharp, rigorous
and efficient bound ∆enN (µ) for the reduced basis error ||uN(µ) − uN(µ)||X,
where uN is our RB approximation associated with the space XN, [RHP08].
The superscript en denotes that the bound is related to the energy norm of
the error, other options are discussed in [PR09].
To quantify the sharpness and rigour properties, we recall the effectivity of
an error bound.

Definition 3.4. The effectivity of an error bound, denoted by η, is defined as
follows

ηen
N

=
∆en
N

||uN(µ) − uN(µ)||X
(3.98)

we require that

1 6 ηen
N

6 ηen
max,UB

∀µ ∈ D, 1 6 N 6 Nmax (3.99)

where ηen
max,UB

is finite and N independent.

Proof 1. It is possible to show that the inequality 3.99 is always fullfilled in the
RB method, [RHP08].

The rigour property is illustrated by the left inequality: the error bound
∆enN (µ) is never smaller than the true error ||uN(µ) −uN(µ)||X. The sharp-
ness property is illustrated by the right inequality: ∆enN (µ) has not to bee
much bigger than the true error. Last, efficient means that the evaluation
of ∆enN (µ) is N independent, thanks to the Offline/Online procedure that
we will show in section 3.5.2. The last property is crucial in the Greedy
procedure, in fact it permits us to exploit a very large train sample Ξtrain in
order to select the best snapshots to be include in our RB approximation
spaces.
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3.4.2 Greedy algorithm

We define Nmax, an upper bound for Nmax and εtoll,min the desired mini-
mum tolerance over the error bound.
Given Ξtrain , S1 =

{
µ1
}

and X1 = span
{
uN(µ1)

}
,

for N = 2 : Nmax

µN = arg max
µ∈Ξtrain

εN−1 = ∆
en
N

(µN)

if εN−1 6 εtoll,min

Nmax = N− 1

end

SN = SN−1 ∪ µN

XN = XN−1 + span
{
uN(µN)

}
end

(3.100)

In the Greedy algorithm the key point is to exploit an approximated (very
cheap) error bound ∆en

N
(µN) instead of the true error (hence very expen-

sive) ||uN(µ) − uN(µ)||.
We remark that the Greedy algorithm heuristically minimizes the RB error
bound in L∞(Ξtrain;X) norm, see [PR09, RHP08]: the algorithm evaluates
the error bounds ∀µ ∈ Ξtrain , then the next snapshot is selected such that
it corresponds to the maximum error bound.

3.5 A-POSTERIORI ERROR BOUND
A-posteriori error bounds are crucial in the RB methodology. They are im-
portant for both efficiency and reliability of RB approximations.
As regards efficiency, error bounds play a role in Offline and Online stage.
In the Greedy algorithm for example, the application of error bounds per-
mits larger training sample at reduced Offline computational cost. Hence,
we have a better accuracy of the reduced basis approximation which can
be obtained with a smaller number N of basis functions, and hence we
have a further reduction in the Online computational cost.
In other words, a posteriori error estimation permits us to control the er-
ror thus allowing us to minimize the computational effort, [PR09].
As regards reliability, our Offline sampling procedures could not be ex-
haustive without a Greedy approach. For a large number of parameters
P, there would be a large portion of the parameter space D which would
remain unexplored. So, the error of a large parts of the parameter domain
D would be uncharacterized.
The a-posteriori error bounds permit to rigorously bound the error for all
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new value of parameter µ∗ ∈ D. So we do not lose any confidence in
the solution compared to the underlying FE solution while exploiting the
rapid predictive power of the RB approximation.
As mentioned in section 3.4.1, the a-posteriori error bound must be rigor-
ous (greater or equal to the true error) for all N and all parameters values
in the parameter domain D. Second, the bound must be reasonably sharp.
An overly conservative error bound can yield inefficient approximations,
typically N too large, or suboptimal engineering results, for example too
much big safety margins.
For the coercive case, see [PR09, RHP08], whereas for the non-coercive
case see [Roz08, Rov03].

3.5.1 Preliminaries

We define the residual r : D→
(
XN
) ′ as

r(v;µ) = f(v;µ) − a(uNN(µ, v;µ)) ∀ v ∈ XN (3.101)

where
(
XN
) ′ is the dual space of XN.

We also introduce the function ê : D → XN, the Riesz representation of
r(v;µ), see [Qua09]:

(ê(µ), v)X = r (v;µ) ∀ v ∈ XN. (3.102)

Finally, introducing the real error eN(µ) (≡ e(µ))

e(µ) = uN(µ) − uNN. (3.103)

Recalling that uN(µ) and uN(µ) satisfies the equations 2.38 and 3.20,
respectively, we get from 3.101, 3.102 that the error e(µ) satisfies the fol-
lowing relation

a(e(µ), v;µ) = r(v;µ) = (ê(µ), v) ∀ v ∈ XN (3.104)

We note that for our choice of inner product 2.37, ê(µ) = e(µ).
We then define the dual norm of r( · ;µ) associated to the dual space

(
XN
) ′:

||r(v;µ)||X ′ = sup
v∈X

r(v;µ)
||v||X

= ||ê(µ)||X (3.105)

Note that the second equality follows from the Riesz representation theorem.
This definition is crucial for the Offline-Online procedure.
Our aim is to find an approximated lower bound for αN(µ) (see 2.5), that
is a function αN

LB : D→ R such that

1. 0 < αN
LB(µ) 6 α

N(µ) ∀µ ∈ D

2. the evaluation µ→ αN
LB should be independent of N

We will discuss the procedure to evaluate this coercivity lower bound in
Chapter 3.6.
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Error bound estimators

Now we can define our energy, output and relative output error bound esti-
mators, that are defined respectively as, see [PR09, RHP08]:

∆enN (µ) =
||ê(µ)||X(

αLBN(µ)
)1/2 , (3.106a)

∆sN(µ) =
||ê(µ)||2X
αLBN(µ)

, (3.106b)

∆s,rel
N (µ) =

||ê(µ)||2X
αLBN(µ) sNN(µ)

=
∆sN(µ)

sNN(µ)
. (3.106c)

Effectivity estimators

As already discussed in Section 3.4, associated to each estimator theres
is an effectivity estimator as a measure of the quality of the error bound
estimators and are needed to certify that the RB method is rigorous and
sharp. We introduce the following ones:

ηenN (µ) =
∆enN (µ)

|||e(µ)|||µ
, (3.107a)

ηsN(µ) =
∆sN(µ)

sN(µ) − sNN(µ)
, (3.107b)

ηen,rel
N (µ) =

∆s,rel
N (µ)(

sN(µ) − sNN(µ)
)
/sN(µ)

. (3.107c)

It is can be shown that the effectivities are a measure of the rigor and
sharpness for an error bound.

Proposition 3.3. The following results holds (see [RHP08] for the proof):

1 < ηenN (µ) 6

√
γe(µ)

αN
LB(µ)

, (3.108)

1 < ηsN(µ) 6
γe(µ)

αN
LB(µ)

, (3.109)

and finally, with regard to ηen,rel
N (µ), it can be shown that:

ηen,rel
N (µ) = (ηenN (µ))2. (3.110)

3.5.2 Offline-Online procedure

The main component of the error bound is the computation of the dual
norm of the residual ||ê(µ)||X. To develop the Offline-Online procedure,
we introduce the residual expansion, ∀ v ∈ X:

r(v;µ) =
Qf∑
q=1

θ
q
f (µ) f

q(v) +

Qa∑
q=1

N∑
n=1

θqa(µ)uNn(µ)a
q (ξn, v) . (3.111)
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This expansion directly follows from our affine assumption 2.20 and from

the RB development uN(µ) =
N∑
n=1

uNn ξn.

Moreover, we have from the equation 3.104 that:

(ê(µ), v)X =

Qf∑
q=1

θ
q
f (µ) f

q(v) +

Qa∑
q=1

N∑
n=1

θqa(µ)uNn(µ)a
q (ξn, v) . (3.112)

Consequently, defining

(Cq, v)X = fq(v) 1 6 q 6 Qf (3.113a)
(Lqn, v)X = −aq(ξn, v) 1 6 q 6 Qa, 1 6 n 6 N (3.113b)

we can write

ê(µ) =

Qf∑
q=1

θ
q
f (µ)C

q +

Qa∑
q=1

uNn(µ) θ
q
a(µ)L

q
n (3.114)

We remark that 3.113a and 3.113b are parameter-independent Poisson-like
problems, hence Cq and L

q
n are computed Offline.

We thus obtain

||ê(µ)||X =

 Qf∑
q=1

θ
q
f (µ)C

q +

Qa∑
q=1

N∑
n=1

θqa(µ)unN(µ)L
q
n, "


X

=

Qf∑
q=1

Qf∑
q ′=1

θ
q
f (µ)θ

q ′

f (µ)
(
Cq,Cq

′
)
X
+

+

Qa∑
q=1

N∑
n=1

θqa(µ)uNn

2
Qf∑
q ′=1

θqa(µ)θ
q ′

f (µ)
(
Lqn,Cq

′
)
X
+

+

Qa∑
q ′=1

N∑
n ′=1

θq
′
a

(
Lqn,Lq

′

n ′

)
X

 . (3.115)

The Offline-Online procedure is clear. In the Offline stage, we first com-
pute Cq, 1 6 q 6 Qf and L

q
n, 1 6 q 6 Qa, 1 6 n 6 N, then we compute

and store the quantities:(
Cq,Cq

′
)
X

1 6 q 6 Qf, 1 6 q ′ 6 Qf (3.116)

(Lqn,Cq)X 1 6 q 6 Qa, 1 6 q ′ 6 Qf (3.117)
(Lqn,Lq)X 1 6 q 6 Qa, 1 6 q 6 Qa (3.118)

In the Online stage we evaluate the expression 3.115 which consists in
a sum.
The computational cost to perform this evaluation is:

n2×Q2a + 2n×Qa×Qf + n×Q2f ,
(3.119)
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so it is N independent, hence very cheap.

3.6 SUCCESSIVE CONSTRAINT METHOD
We now discuss the successive constraint method (SCM). This tool en-
ables the construction of lower (and upper) bounds for the coercivity and
inf–sup stability constants (defined in 2.5 and 2.7 respectively), required
in a posteriori error analysis of RB approximations. The method, basednb: Without risk of

a global
comprehension loss,

the reader can¹ to
proposition 3.4

on an Offline–Online strategy, reduces the Online calculation to a small
Linear Programming problem: the objective is a parametric expansion of the
underlying Rayleigh quotients, the constraints reflect stability information
at optimally selected parameter points. The state of the art method is pre-
sented in [HRSP07], see also [RHP08, PR09].

3.6.1 Coercive case

We define

Y ≡

{
y =

(
y1 . . . yQa

)
∈ RQa |∃wy ∈ XN s.t.yq =

aq(wy,wy)
||w||

X
N

, 1 6 q 6 Qa

}
.

(3.120)
We further define the objective function F : D×RQa → R as

F (y;µ) =
Qa∑
q=1

θqa(µ)yq. (3.121)

We may then write our coercivity constant as

αN(µ) = min
y∈Y

F (y;µ) (3.122)

We next introduce a constraint box that is the set of all the feasible value
for y, defined as

B =

Qa∏
q=1

{
σ
q
−, σq+

}
=

Qa∏
q=1

{
inf
w∈XN

aq (w,w)
||w||2

X
N

, sup
w∈XN

aq (w,w)
||w||2

X
N

}
. (3.123)

We also introduce the two parameter set S and P, that will be used to
define the stability and positivity constraint, respectively:

S = {s1 ∈ D, . . . , sk ∈ D} , (3.124)
P = {p1 ∈ D, . . . ,pk ∈ D} . (3.125)
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Moreover, for any finite-dimensional subset of D (= S or P), we denote
with SM,µ

(
or PM,µ

)
the set of M points closest to1 µ in S (or P).

If M > |S| , (or > |P|)2, then SM,µ = |S|
(
or PM,µ = P

)
.

Lower and Upper bound

For given S ⊂ D, Mα ∈ N (stability constraints), M+ ∈ N (positivity
constraints), we define the lower bound set as

YLB(S;µ) ≡

y ∈ B |

Qa∑
q=1

θqa(µ
′)yq > αN(µ ′), ∀µ ′ ∈ SMα,µ;

Qa∑
q=1

θqa(µ
′)yq > 0, ∀µ ′ ∈ PM+,µ

 (3.126)

Furthermore we define the upper bound set as

YUB(S) ≡ {y?(µ)(sk), 1 6 k 6 |S|} (3.127)

for

y?(µ) ≡ arg min
y∈Y

F (y;µ). (3.128)

Finally we obtain the coercivity lower and upper bound as

αLB(S;µ) = min
y∈YLB(y;S)

F (y;µ), (3.129)

αUB(S;µ) = min
y∈YUB(S)

F (y;µ). (3.130)

It is possible to show that the lower/upper bounds provided above, effectively
bound the coercivity constant, the subsequent result holds:

Proposition 3.4. Given S, P and Mα ∈N, M+ ∈N

αLB(S;µ) 6 αN(µ) 6 αUB(S;µ) ∀µ ∈ D (3.131)

The proof can be found on [HRSP07, RHP08].

We expect that if S is sufficiently large, then

1. y?(µ) will be sufficiently close to a member of YUB to provide a
good upper bound;

2. the stability and positivity constraints in YLB will sufficiently restrict
y to provide a good lower bound.

1 In the Euclidean norm
2 We recall that | · | denotes the cardinality of a finite set of elements
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3.6.2 non-coercive case

We now address the generic non-coercive case, the Stokes case is a subset
of this class of problems. Therefore, we will consider the global operator
A of the Stokes problem, defined in equation 2.51 and the Babuska inf-
sup stability constant β, see [Bab71].
We introduce the operators Tq : XN → XN

(Tqw, v)
X

N = A q(w, v) ∀ v ∈ XN, 1 6 q 6 Qa (3.132)

and

Tµw =

Q∑
q=1

θq(µ)Tq(w) (3.133)

It can be demonstrated, from equation 2.15, see [HRSP07], that:(
βN(µ)

)2
= inf
w∈XN

(Tµw, Tµw)
X

N

||w||2
X

N

(3.134)

which can be expanded, replacing the affine development 3.133 of the
supremizer operator, as

(
βN(µ)

)2
= inf
w∈XN

 Q∑
q=1

Q∑
q ′=q

(
2− δqq ′

)
θq(µ)θq

′
(µ)

(
Tqw, Tq

′
w
)
XN

||w||2
X

N


(3.135)

where δqq ′ is the Kronecker delta. We now identify:(
βN(µ)

)2
7→ α̂N(

2− δqq ′
)
θq(µ)θq

′
(µ), 1 6 q 6 q ′ 6 Q̂ 7→ θ̂q (3.136)(

Tqw, Tq
′
v
)
X

N
, 1 6 q 6 q ′ 6 Q̂ 7→ âq (w, v)

where θ̂q, 1 6 q 6 Q̂ ≡ Q(Q+ 1)/2.
We then observe that the inf-sup constants can be rewritten as

(
βN(µ)

)2
≡ α̂N(µ) = inf

w∈XN

Q̂∑
q=1

θ̂q(µ)âq (w, v) Q̂ (3.137)

We may thus directly apply our SCM procedure to 3.137.

3.6.3 SCM algorithm

We now present the algorithm to exploit the evaluation of the coercivity
(and/or inf-sup) constant.
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The task of the SCM is, given a sample train ΞSCM =
{
µ1

SCM
, . . . ,µ

nSCM
SCM

}
of dimension |ΞSCM | = nSCM , to select Greedy parameters in ΞSCM and con-
struct the sets Sk =

{
s1 = µ

1
SCM
∪ . . .∪ sKmax = µ

Kmax
SCM

}
. We now give the

algorithm.
We define Mα, M+, P and a tolerance εSCM ∈ ] 0, 1 [ , then we set KS = 1

and choose S1 =
{
s1 = µ

1
SCM

}
arbitrarily, then

while max
µ∈ΞSCM

[
αUB(S;µ) −αLB(S;µ)

αUB(S;µ)

]
> εSCM

sK+1 = arg max
µ∈ΞSCM

[
αUB(S;µ) −αLB(S;µ)

αUB(S;µ)

]
SK+∞ = SK ∪ sK+1
K = K+ 1

end

Kmax = K

(3.138)

Normally we set εSCM ≈ 0.75 which is a crude lower bound but with a
little effect on our error bounds, [HRSP07].

3.6.4 Offline-Online procedure

We note that to compute the arg max we must solve a linear optimization
problem or Linear Program (LP), for the lower bound αLB(µ), 3.130.
In the coercive case, the lower bound LP’s contains:

• design variables

1. Qa variables, y =
{
y1, . . . ,yQa

}
;

• constraints

1. 2Qa bounding boxes for y ∈ B;

2. Mα stability;

3. M+ positivity.

It is clear that the operation count for the Online stage µ → αLB(µ) is
independent of N.
Nonetheless we first must determine our set S and obtain the αN(sk), 1 6
k 6 |S| (≡ KS), by an Offline Greedy SCM algorithm.

Offline

In the Offline stage, we have to construct the set B (once) and then:

1. evaluate αN(sk);

2. evaluate y?(sk);
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3. form YLB;

4. perform a lower bound LP’s to evaluate αLB(sk).

The first three quantities of course depends on N, nonetheless it is impor-
tant to remark that there are no cross terms O (nSCM ×N).

Online

In the Online stage, given a new value µ we have to perform a lower
bound LP’s (LP) to evaluate αLB(µ). This Online stage is hence indepen-
dent on N.
In the table 3 we summarize the computational cost to evaluate the Of-
fline/Online stage of the SCM:

part item complexity equation

Offline

B 2Qa-eigenproblems over XN
3.123

αN(sk) Kmax-eigenproblems over XN
3.126

y?(sk) KmaxQa-inner product 3.128

YLB NQa Kmax 3.126

αLB(sk) nSCM Kmax LP’s of "size" O (2Qa + Mα + M+) 3.130

Online αLB(µ) 1 LP’s of "size" O (2Qa + Mα + M+) 3.39

Table 3: Offline/Online: SCM
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3.7 CHOICE OF TRUTH APPROXIMATION
It would be preferable to build the RB approach directly upon the exact
solution, but this is not in general possible. As indicated earlier, the
RB approximation shall be built upon and reduced basis error will be
measured relative to a "truth" Galerkin FE approximation. Therefore it is
necessary to choose properly the underlying discretization.

3.7.1 Choice of N

In order to obtain a satisfying reduced basis model able to describe in an
accurate way the exact behavior of the physical process, it is necessary to
chose the discretization properly; that is in order to minimize the under-
lying error between exact solution and the truth approximation.
Let uRB(µ) be the RB solution of the problem and uN(µ) the finite ele-
ment solution, than the error is the sum of (at least) two terms:

||ue(µ) − uRB(µ)|| = ||ue(µ) − uN(µ)||︸ ︷︷ ︸
neglected

+ ||uN(µ) − uN(µ)||︸ ︷︷ ︸
considered

. (3.139)

The minimization of the second addendum is a task delagated to the re-
duced basis method, on the contrary the minimization of the first is not
related to the method.
Because of this, it is necessary to provide a feasible "starting point". This
can be achieved thanks to the choice of a discretization method able to
describe correctly the problem.
We shall require that our family of truth subspaces XN satisfies the ap-
proximation condition:

max
µ∈D

inf
w∈XN

||u(µ) −w||Xe → 0 as M→∞. (3.140)

The choice of a finite element approximation automatically fulfill this re-
quirement because the method is strongly consistent, [QV97, Qua09]; thus
for sufficiently large N, it is possible to approximate ue(µ) and se(µ) ar-
bitrarily closely.
In particular we define the difference εN between the exact solution and
the approximation as:

εN = max
µ∈D

||u(µ) − uN(µ)||Xe
N→∞−→ 0. (3.141)

In general, N must be chosen rather large to achieve a reasonable engi-
neering accuracy εN.
In 3D problems the complexity is higher since there is greater variability
of the solution field as the parameters changes. Therefore it is necessary
to discretize the problem so that for any possible combination of the pa-
rameters the accuracy is kept under a safe tolerance. In fact it is worth to
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recall that the RB Offline representation has to be built over a unique truth
representation for all µ ∈ D; the truth approximation is "frozen" in the RB
methodology.

3.7.1.1 Mesh saturation

The choice of the optimum (or at least of a suitable) truth solution is not
trivial, nevertheless it is possible to verify a-posteriori if the discretization
is enough rich to seize all the geometrical and physical complexity of the
problem.
This can be achieved verifying the so called grid saturation. We will not
go in deep into this issue, nevertheless it can be shown a glimpse just to
give an idea of the issue, considered in [RHP08] and [PR09].
An example taken from [RHP08] is shown in Figure 7, dealing with a
heat conduction problem. The figure shows the "convergence" of the RB
procedure as function of the steps N, for various underlying truth ap-
proximation.
It can be seen that as N increases, the convergence of the method is not
influenced by N (saturation effect).

Figure 7: 2D case mesh saturation
N = 137 (dotted), N = 453 (dashed), and N = 661, 1737, 2545, 6808 (all

quite similar)

Therefore can be stated that if the truth is too poor, the RB method con-
verges anyway (the y-axis shows the error bound as N increases), but the
convergence is limited to a subspace of possible solution of the parametric
problem.
Beyond, if N is enough rich, all the complexity has been captured by the
discretization, therefore there is no need to go further. This is the heuristic
idea of mesh saturation.
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In this chapter, we will explain how to deal with a domain which is pa-
rameter dependent.
The RB method described in Chapter 3 requires that Ω is parameter inde-
pendent: if we wish to consider linear combinations of snapshots, these
snapshots must be defined relative to a common spatial configuration
(domain) .
Then to permit geometric variations, we must interpret Ω, our param-
eter independent domain, as the pre-image of Ωo, the original (actual,
deformed) parameter dependent domain, see [RHP08].
The geometric transformation will yield variable (parameter-dependent)
coefficients in the reference-domain linear and bilinear forms that, under
suitable hypotheses to be discussed below, will take at the end the requi-
site affine form (2.20).

4.1 AFFINE PARAMETRIC PRECONDITION
We now introduce a domain decomposition:

Ωo(µ) =

Kdom⋃
k=1

Ωko(µ) (4.1)

where the Ωko(µ) are mutually non overlapping subdomains, that is for
any µ ∈ D

Ωko(µ)∩Ωk
′
o (µ) = 0 1 6 k,k ′ 6 Kdom, k 6= k ′.

This coarse domain decomposition will be denoted RB discretization.
We now choose a parameter of reference µref ∈ D and define our refer-
ence domain as Ωr ≡ Ω(µref).
We will never omit the underscript beside the domain Ω we are dealing
with, to avoid any confusion between the parameter dependent original
domain Ωo(µ) (sometimes for brevity, just Ωo) and the parameter inde-
pendent reference domain Ωr.
We will build our FE approximation on a very fine FE subtriangulation
of the coarse RB decomposition.
This FE subtriangulation ensures that the FE approximation accurately
treats the perhaps discontinuous coefficients (that could arise from prop-
erty and geometry variation) associated with the different subdomains.
The subtriangulation also plays an important role in the generation of the
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affine representation.
The choice of µref has to be done in an optimal way to reduce both Offline
and Online computational effort.
Tipically the reference domain shall be built choosing a µref at the "cen-
ter" of our parameter domain D in order to minimize the distorsion and
consequently reduce the requisite N.

We now state our Affine Geometry Precondition. We can treat any original
domain Ωo(µ), that admits a domain decomposition 4.1, for which, ∀µ ∈ D

Ωr = Taff,k(Ωo(µ)k;µ) (4.2)

for affine mappings Taff,k( · ;µ) : Ωo(µ) → Ωr, 1 6 k 6 Kdom, that satisfy
two requisites:

1. individually bijective

2. collectively continuos (interface condition), that is, given two different
subdomains denoted with k and k ′, ∀ xo ∈ Ωko(µ) ∩Ωk

′
o , holds the

following condition

Taff,k(xo;µ) = Taff,k ′(xo;µ) (4.3)

We have depicted the idea of the affine transformation in Figure 8. Of

Figure 8: A 3D affine transformation

course, thanks to the requested bijective property, we can replace this def-
inition with the forward version taking the inverse of Taff committing any
crime.
The Affine Geometry Precondition is a necessary condition for affine param-
eter dependence as defined in 2.20 (page 14).
Note that we purposely define Kdom with respect to the exact problem,
rather than the FE approximation: Kdom is not depending on N.
We now give a more explicit representation of the affine transformation Taff,
to better understand how this geometry precondition will be exploited.
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We state that, for 1 6 k 6 Kdom, for any µ ∈ D and for all xo ∈ Ωko(µ), the
affine transformation is defined as follows:

xr = T
aff,k
i (xo;µ) = Caff,k

i (µ) +

d∑
j=1

Gaff,k
ij (µ) xo, 1 6 i 6 d (4.4)

for given Caff,k(µ) : D → Rd and Gaff,k(µ) : D → Rd×d, that are called
the affine mapping coefficients; we recall that d is the spatial dimension of
the problem, hence in our case d = 3.
The affine transformation is thus the superposition of a translation Caff(µ),
that do not modify the shape of the domain, and a deformation Gaff(µ)
that can be a dilation/contraction or a shear. It is worth to remark that,
in this work, the transformation must depends only upon the parameter
µ.

A more general transformation, that involves a spatial coordinates de-
pendence, is not considered in the framework of this thesis. This kind of
transformation called "nonaffine" has been recently adopted in the context
of the RB methodology, for example in [MYNA04, Roz08]. The non-affine
representation of the geometry arises from the so-called free form defor-
mation techniques, which are very well suited, for example, for shape
optimizations of complex geometries, see [MQR10, LR10] and [RM10].
The basic idea is that, thanks to an highly specialized technique, the so-
called "empirical interpolation" (EIM), it is possible to approximate a non-
affine tranformation thanks to a superposition of different affine transforma-
tions.
Nonetheless this results has been established in a 2D context, the exten-
sion to the 3D case in still under investigation.

We can now define the associated Jacobians:

Jaff,k(µ) =
∣∣∣det

(
Gaff,k(µ)

)∣∣∣ , 1 6 k 6 Kdom, (4.5)

which are constants in space over each subdomain. We further define, for
any µ ∈ D

Daff,k(µ) = Gaff,k(µ), (4.6)

this matrix shall prove convenient in subsequent derivative transforma-
tions, as we will see in section 4.3.
We may interpret our local mappings in terms of a global transformation. In
particular, for any µ ∈ D, the local mapping 4.2 induce a global bijective
piecewise-affine mapping Taff : Ωo(µ)→ Ωr, such that:

Taff(xo;µ) = Taff,k(xo;µ), k = min
k ′∈{1,...,Kdom} | x∈Ωk ′o (µ)

(4.7)

note the one-to-one property of this mapping (and, hence the arbitrari-
ness of our min choice in 4.7) is ensured by the interface condition 4.3.
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In the following section the creation of an affine mappings will be dis-
cussed, subsequently the treatment of the parametric geometry depen-
dence will be exploited thanks to an operative example. A parallel study
has been carried out in [Gel10].

4.2 AFFINE MAPPINGS CREATION
For simplicity we now consider a single subdomain, nonetheless the ex-
tension to the multi-subdomains case is readily obtainable as we will see.
As we consider a single subdomain in this section, we shall suppress the
subdomain superscript for clarity of exposition. The procedure, in the 2D
case, is explained in [RHP08], in this work it has been extended to the
more general 3D case.
In the 3D case (d = 3, see equation 4.4) the affine mapping coefficients
are Caff(µ) ∈ R3 and Gaff(µ) ∈ R3×3, that is we have 3+ 9 = 12 unknows
to find in order to entirely define the affine transformation.
Under our assumption that the mapping is invertible, we know that the
Jacobian Jaff of 4.5 is strictly positive and that the derivative transformation
matrix Daff of 4.6 is well defined.

Then the mapping coefficient can be identified by the relationship be-
tween 4 non-planar parametrized image points ∈ Ωo(µ), denoted with zo(µ)
and the corresponding 4 pre-image points ∈ Ωr, denoted with zr 1:

z1o(µ)
z2o(µ)
z3o(µ)
z4o(µ)

 =


{
z1o1 , z

1
o2

, z1o3
}{

z2o1 , z
2
o2

, z2o3
}{

z3o1 , z
3
o2

, z3o3
}{

z4o1 , z
4
o2

, z4o3
}
 ,


z1r
z2r
z3r
z4r

 =


{
z1r1 , z

1
r2

, z1r3
}{

z2r1 , z
2
r2

, z2r3
}{

z3r1 , z
3
r2

, z3r3
}{

z4r1 , z
4
r2

, z4r3
}
 ,

In particular, for given µ ∈ D, the application of 4.4 to the selected nodes
yields to:

zmri = C
aff
i +

3∑
j=1

G
m

ij z
m

oj
, 1 6 i 6 3, 1 6 m 6 4, (4.8)

The 4.8 provides a system made of 12 equations, by which to determine
the 12 mapping coefficients. If we choose at least two coplanar points, than
the system is singular.

1 Here we denote with the superscript one of the 4 point considered, whereas the subscript
indicates one of the 3 the components (x,y, z) of the spatial coordinates.
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4.2 AFFINE MAPPINGS CREATION

To be more explicit, we provide a matricial representation of equation 4.8:

Baffcaff = vaff (4.9)

Where the matrix B ∈ R12×12 summarizes the coefficients of the linear
system, that depends upon the coordinates of the "original" points:

Baff =



 I3×3

  z1o 0 0

0 z1o 0

0 0 z1o


 I3×3

  z2o 0 0

0 z2o 0

0 0 z2o


 I3×3

  z1o 0 0

0 z2o 0

0 0 z3o




(4.10)

moreover caff ∈ R12×1 is the array of unknows (i.e. the mapping coeffi-
cients) sorted as shown in 4.11; finally vaff ∈ R12×1 is the array of known
terms, that depends upon the coordinates of the reference points:

caff =



C
aff

1

C
aff

2

C
aff

3

G
aff

11

G
aff

12

G
aff

13

G
aff

21

G
aff

22

G
aff

23

G
aff

31

G
aff

32

G
aff

33



vaff =


z1r
z2r
z3r
z4r

 (4.11)

The mapping coefficients can be easily found solving the linear system
4.9 as follow:

caff = Baff−1 vaff. (4.12)

The solution of the system requires 123 operation, negligible if compared
to the previously discussed basis assembling cost.

4.2.1 Single domain mapping

We now use an example to illustrare the procedure. We will use as test
case the transformation depicted in figure 9.
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Figure 9: Affine transformation construction
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4.2 AFFINE MAPPINGS CREATION

With regard to the figure 9, we choose as geometrical parameters µ =
{µ2, µ3,µ1} = {2, 3, 4}, in addition to simplify we choose dr = do(µ),
hence we can use a local system attached to the first node (z1∗).
Now, exploiting the procedure showed in section 4.2, we can build the
system 4.9 by which obtain the mapping coefficients.



C
aff

1

C
aff

2

C
aff

3

G
aff

11

G
aff

12

G
aff

13

G
aff

21

G
aff

22

G
aff

23

G
aff

31

G
aff

32

G
aff

33



=





1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

1 0 0 µ
1

0 0 0 0 0 0 0 0

0 1 0 0 0 0 µ
1

0 0 0 0 0

0 0 1 0 0 0 0 0 0 µ
1

0 0

1 0 0 µ
1

0 µ
3

0 0 0 0 0 0

0 1 0 0 0 0 µ
1

0 µ
3

0 0 0

0 0 1 0 0 0 0 0 0 µ
1

0 µ
3

1 0 0 µ
1

µ
2

µ
3

0 0 0 0 0 0

0 1 0 0 0 0 µ
1

µ
2

µ
3

0 0 0

0 0 1 0 0 0 0 0 0 µ
1

µ
2

µ
3





−1

0

0

0

1

0

0

1

0

1

1

1

1



.

(4.13)
Then solving the system 4.13 we obtain:

Caff(µ) =


0

0

0

 Gaff(µ) =


1
µ1

0 0

0 1
µ2

0

0 0 1
µ3

 . (4.14)

The Jacobian of the transformation (4.5) is Jaff(µ) = 1
µ1µ2µ3

= 1
12 .

We remark that the Jacobian of a transformation can be seen as the ratio
between the final and initial volumes on which the deformation takes
place.
In order to verify the affine transformation we apply the transformation
to each nodes of the original domain and, if correct, the affine mapping must
trace back the corresponding nodes on the reference domain:

z1 Gaff

{
0
0
0

}
=

{
0
0
0

}
X z2 Gaff


µ
1

0

0

 =


1

0

0

 X

z3 Gaff


µ
1

0

µ
3

 =


1

0

1

 X z4 Gaff


µ
1

µ
2

µ
3

 =


1

1

1

 X

(4.15)

We remark that in this simple test case the transformation is "diagonal"
because we are deforming the domain by mean of a simple dilation. In
the case of a shear deformation for example, we would have even the
extradiagonal terms, [RHP08].
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4.2.2 Global affine mappings

Exploited the case of a single domain, we need to extend the procedure to
a multi-subdomain case. We will make use of an example as in Figure 10.
In figure 10 the test case is sketched. We have two adjacent subdomains

Figure 10: Global affine mappings

denoted with Ω1∗ and Ω2∗ . The first domain can be deformed along the
x-axes thanks to the parameter denoted with µ1, all the other dimensions
are held fixed.
The procedure is quite similar, we just need in addition to satisfy the
global continuity condition 4.3. A way to satisfy it, is to use a unique system
of reference for the different subdomains.
In this way the procedure described in section 4.2 will implicitly provide
the suitable translation Caff(µ) to satisfy the interface condition.
Using the procedure for the two domains we obtain the following results:

Caff
1 (µ) =


0

0

0

 Gaff
1
(µ) =

 1
µ1

0 0

0 1 0

0 0 1


Caff
2 (µ) =


2− µ1
0

0

 Gaff
2
(µ) =

 1 0 0

0 1 0

0 0 1

 (4.16)

We now take two adjacent nodes (denoted with Po in the figure 10) on
the original domains; if the global mappings satisfies the interface condition,
applying the two different affine transformation at the node, we will obtain
again two adjacent nodes (Pr) on the reference domain:

Taff
1 (Po(µ),µ) = Caff

1 +Gaff
1

{µ1, 2, 1}T = {2, 2, 1} = Pr ,X

Taff
2 (Po(µ),µ) = Caff

2 +Gaff
2

{µ1, 2, 1}T = {2, 2, 1} = Pr .X

The node Po is identically projected into Pr thanks to the two different
affine transformations, hence the continuity of the global mapping is satisfied.
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4.3 LINEAR AND BILINEAR FORMS
In this section, we will focus on the transformations that we have to op-
erate on the weak forms that arise from our system of partial differential
equations, if our domain Ωo(µ) allows the affine geometry precondition de-
scribed in the previous section.
We will use a simple scalar coercive 3D problem to show how to exploit
the geometry parametric dependence of the domain; the Stokes case admits
a straightforward extension.
The procedure is discussed in the 2D case, in [RHP08, Roz08].

4.3.1 Formulation on the original domain

Our problem is initially posed on the original domain Ωo(µ). We shall
assume for simplicity that Xe0(µ) = H10(Ω0(µ)), which corresponds to
homogeneous Dirichlet boundary conditions over the entire boundary
∂Ωo(µ). Given µ ∈ D, find ueo(µ) ∈ Xe0(µ) such that:

ao(u
e
o(µ), v;µ) = fo(v;µ), ∀ v ∈ Xe0(µ) (4.17)

then evaluate
seo(µ) = fo(u

e
o(µ)). (4.18)

We now place conditions on ao and fo such that, in conjunction with the
affine geometry precondition, we are ensured an affine expansion of the bilin-
ear form (eq. 2.20, pag. 14).
We require that ao( · , · ;µ) : H10(Ωo(µ)) × H10(Ωo(µ)) → R can be ex-
pressed as:

ao(w, v;µ) =

=

Kdom∑
k=1

∫
Ωko(µ)

{
∂w

∂xo1

∂w

∂xo2

∂w

∂xo3
w

}
Kkoij(µ)



∂w

∂xo1
∂w

∂xo2
∂w

∂xo3
w


dΩko

(4.19)

where xo = {xo1 , xo2 , xo3} denotes a point in Ωo(µ); and where for 1 6
k 6 Kdom, Kk

o
: D → R4×4 is a given symmetric positive definite matrix

(which in turn ensures coercivity of our bilinear form):

Kk
o
=


 R3×3

  R3×1


[

R1×3
] [

R1×1
]
 (4.20)
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the upper 3× 3 principal submatrix of Kk
o

represent the usual diffusity/con-
ductivity tensor, the element (4, 4) represent the identity tensor (e. g. mass
matrix or a reaction term), finally the elements Kk

o1:3,3
and Kk

o3,1:3
, that we

set to zero because we are dealing with symmetric operators, represent
the first derivative operators (e. g. convective terms).
Similarly we require that fo : H1o(Ωo(µ))→ R can be expressed as

fo(v;µ) =
Kdom∑
k=1

∫
Ωko(µ)

Fko v dΩ
k
o. (4.21)

In this case we have assumed that the linear functional is only due to
volume force, a similar treatment is possible in the case of Dirichlet non-
homogeneus condition and/or non-homogeneus Neumann condition. In the
chapters devoted to the mathematical modelling, we will cope with these
different boundary conditions.

4.3.2 Formulation on reference domain

We now apply standard techniques to transform the problem over the
original domain to an equivalent problem over the reference domain.
Given µ ∈ D, find ue(µ) ∈ Xe ≡ H10(Ω) such that:

a(ue, v;µ) = f(v;µ) ∀ v ∈ Xe (4.22)

then evaluate
se(µ) = f(ue(µ)). (4.23)

We may then identify the relations between the output and the solution
field, in the original and in the reference domain:

se(µ) = seo(µ)

ue(µ) = ueo(µ) ◦ Taff( · ;µ).
(4.24)

The transformed bilinear form a, can be expressed as:

a(w, v;µ) = (4.25)

∫
Ωkr

{
∂w

∂xr1

∂w

∂xr2

∂w

∂xr3
w

}
Kkij(µ)



∂w

∂xr1
∂w

∂xr2
∂w

∂xr3
w


dΩkr (4.26)

where xr = {xr1 , xr2 , xr3} denotes a point in Ωr and where K‖r : D →
R4×4, 1 6 k 6 Kdom are symmetric positive definite matrices.
To obtain this matrices we first need to find the relation between the

70



4.3 LINEAR AND BILINEAR FORMS

derivative operator written in the original domain and the corresponding
operator written in the original domain. In particular, we have that

∂ ·
∂xoi

=
∂xrj
∂xoi

∂ ·
∂xrj

= Gaff
ij (µ)

∂ ·
∂xoi

= Daff(µ)
∂ ·
∂xoi

(4.27)

The definition (4.6) of the derivatives operator Daff,k is now clear; the ma-
trices Gaff,k automatically provide the relation between the derivatives
operator in the original and in the reference domain.
Moreover, since we are acting a change of variable xo → xr in the integral
(4.19), recalling the equation 4.5, we get

dΩo(µ) = det(Gaff(µ)
−1

)dΩr =
(
Jaff,k(µ)

)−1
. (4.28)

It follows that, considering the equations 4.27-4.28, the relation between
Kk
o
(µ) and K

r
(µ) can be written as

Kk
r
(µ) =

(
Gk(µ)

)T
Kk
o
(µ) Gk(µ)

(
Jaff,k(µ)

)−1
1 6 k 6 Kdom (4.29)

where we have defined Gk(µ) : D→ R4×4, 1 6 k 6 Kdom as

Gk(µ) =

[
Daff,k(µ) 03×1

01×3 1

]
. (4.30)

Similarly, the transformed linear form can be expressed as

f(v;µ) =
Kdom∑
k=1

∫
Ωkr

Fk(µ) v dΩkr . (4.31)

Here Fk(µ) : D→ R, 1 6 k 6 Kdom is given by:

Fk(µ) = Fko

(
Jaff,k(µ)

)−1
1 6 k 6 Kdom (4.32)

We note that, in general, the Kk(µ), F(µ), will be different for each
subdomain Ωk, 1 6 k 6 Kdom. The differences can be due to property
variation (e. g. a diffusivity of a particular subdomain) or to geometry vari-
ation (e. g.a characteristic dimension of the physical problem), or both.
We thus require, as already indicated earlier, that the FE approximation
be built upon a subtriangulation of the RB discretization: discontinuities
in PDEs coefficients are therefore restricted to element faces.
In this way, the boundary elements chosen for the RB triangulation will
delimit a very well defined region of space (our RB subdomains), on
which we assume that the parameters will be constants in space. This al-
lows a simpler identification/extraction of the terms in the affine expansion
2.20, as we now discuss.
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4.3.3 Affine form

We focus here on a, though f admits a similar treatment. We simply
expand the transformed form on the reference domain, by considering in
turn each subdomain Ωkr and each entry of the diffusivity/conductivity
tensor Kij, 1 6 ij 6 4, 1 6 k 6 Kdom.
Thus the affine form 4.26 can be written as follows:

a(w, v;µ) =K111

∫
Ω1r

∂w

∂xr1

∂v

∂xr1
dΩ1r + . . .

. . .+ Kkij︸︷︷︸
θ
q
a(µ)

∫
Ωkr

∂w

∂xri

∂v

∂xrj
dΩkr︸ ︷︷ ︸

aq(w,v)

+ . . .

. . .+K
Kdom
44

∫
Ω
Kdom
r

wv dΩKdom
r (4.33)

We can then identify each component in the affine expansion: for each
term in 4.33 the pre-factor of the integral represents θqa(µ), whereas the
integral represents the parameter independent matrices Aq = aq(w, v).
For a better understanding of what we have just obtained, we can have
a look to the equation 3.36 (pag.34), in which we were building the RB
system in the coercive case. The parameter independent matrices Aq can be
now exploited even in the general case of geometric parameter dependence,
thanks to the geometric affine precondition.

Affine expansion terms count

In the most general scalar case, the number of affine expansion terms can
be (at most) Qa = 4× 4× Kdom. Exploiting the symmetry of the bilinear
form, hence of the tensor Kk, only Qa = 10×Kdom terms are needed. In
fact since Kkij = Kkji, i 6= j, the pre-factor associated to these integrals can
be assembled together.
We first consider the 6 differents entries of the simmetric tensor K of the
first subdomain, then the second subdomain and so on. Hence, the θqa(µ)
and the associated parametric independent matrices are given by:

Dealing with the vectorial case, as we shall see in the elastic block case (7),
the number of affine expansion terms can be Qa = 9× 9×Kdom. Thanks
to the symmetry of the problem and to the particular structure of the elas-
tic tensor, we will limit this terms (at most) to Qa = 7×Kdom.
Therefore it is crucial, in order to reduce the RB computational cost that
depends on Qa (see table 1), to minimize the number of terms of the
affine expansion.
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q θ
q
f (µ) Fq

1 K11

∫
Ω1r

∂w

∂xr1

∂v

∂xr1
dΩ1r

2 K112

∫
Ω1r

∂w

∂xr1

∂v

∂xr2
dΩ1r

7 K211

∫
Ω2r

∂w

∂xr1

∂v

∂xr1
dΩ2r

Qa K
Kdom
11

∫
Ω
Kdom
r

wv dΩ
Kdom
r

Table 4: θq(µ)−functions and parameter independent matrices
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5 S O F T W A R E

In this chapter we will present the software used to exploit our RB approx-
imation for 3D applications.
In the past few years a software has been released called rbMIT©, which
implements the RB method.
The software has been developed at the MIT (Massachusetts Institute of
Technology) by a research team, composed by D.B.P. Huynh, NC. Nguyen,
A.T. Patera and G. Rozza.
The software is copyrighted but freely distributed and available for non-
commercial purposes at the following web address
http://augustine.mit.edu/.
We will not go deeply inside the software, we will only present the task
demanded to the software related to our particular purposes. Further ex-
planations may be found on the software’s manual present in [PR09].
In particular, within the framework of the thesis, we cannot simply make
use of the rbMIT to build our RB approximation of the FE truth. This is
due to the fact that the software is able just to exploit 1D and 2D case.
Therefore dealing with 3D applications, we have used other capabilities
offered by a software which would be able to fill the gap. The software
chosen to collaborate with the rbMIT is COMSOL multiphysics. The inter-
action of this two softwares, will provide us the right tools to exploit the
RB in the 3D case.

5.1 SOFWARE INTERACTION
We now briefly explain the RB procedure in the 2D and 3D case, focusing
on the task demanded to the two software.
In the 2D case the rbMIT entirely covers the reduced basis methodology,
starting from the geometrical setting until the Online stage, whereas in
the 3D case the procedure is accomplished thanks to a strict interaction
with COMSOL.

5.1.1 2D case

In the 2D case rbMIT, see Figure 11, is able to cover the whole RB proce-
dure, hence actually no interaction with third party software is needed.
We can summarize the main steps as follows:

1. Problem settingrbMIT
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Figure 11: software 2D case

• parametric geometry definition

• PDEs definition

• boundary condition setting

2. Offline stagerbMIT

• RB triangulation

• FE meshing

• FE matrices and vectors assembling

• RB system assembling

3. Online stagerbMIT

• RB solution

• output evaluation

• a-posteriori error bound evaluation

• visualization & post-processing

5.1.2 3D case

In the 3D case, see figure 12, the RB procedure can be achieved thanks
to an interaction of the two softwares in the Matlab environment. Some
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Figure 12: software 3D case

steps will be demanded to the rbMIT, in particular the RB system assem-
bling, whereas COMSOL will be used to build the FE truth approximation,
over which the RB approximation will be build and treated by the rbMIT.
We can summarize the main steps as follows:

1. Problem setting

• parametric geometry definitionby hand

• PDEs definitionCOMSOL

• boundary condition settingCOMSOL

2. Offline stage

• RB triangulation/affine geometry preconditionby hand

• FE meshing COMSOL

• FE matrices and vectors assemblingCOMSOL

• RB system assemblingrbMIT

3. Online stage

• RB solutionrbMIT

• output evaluationrbMIT

• a-posteriori error bound evaluationrbMIT

• visualization & post-processingCOMSOL

We now introduce each step summarized above.
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Parametric geometry definition

In this section, equipped with blackboard and chalk,
the original domain with the ge-
ometric parameter dependence is
drawn.
This stage is crucial in the subse-
quent affine geometric precondition.
In fact, since in the 3D case an
automatic procedure to compute
an RB discretization lacks, the user
must provide a suitable domain de-
composition able to satisfy the con-

ditions discussed in Section 4.1.

PDEs definition/boundary conditions

This steps are achieved with COMSOL. The procedure is innovative in the
RB context, hence will explain it thoroughly in section 5.2.2.

RB discretization/affine geometry precondition

With regard to this step, we refer the reader to the Chapter 4. In that
chapter we have discussed the theoretical aspects (Section 4.1) and by
means of two examples (Sections 4.2.1 and 4.2.2) we have presented the
numerical procedure.

FE meshing and assembling

In this step the software used is COMSOL, the aim is to provide the set of
parameter independent FE matrices and vectors with which build our RB
system.
We remark that, thanks to the affine parametric dependence (section 2.2) and
to the affine geometric precondition (Section 4.1), we have to perform the
meshing and the FE assembling only once.
In fact, even in the case of geometrical deformation induced by geometri-
cal parameters, the procedure shown in Section 4.3 allows us to recover
the geometrical dependence using the affine decomposition.

RB system assembling/Output evaluation

In this stage the FE ingredients are passed to the rbMIT software which
will provide the RB approximation.
We will briefly summarize the entries needed by the software and the
main steps of the numerical procedure.
With regard to the entries we have to provide the following inputs:
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1. Qa terms of the affine expansion of the bilinear form, see equations
3.36-3.38:

• FE matrices A;

• parametric dependent functions θqa(µ);

2. Qf terms of the affine expansion of the linear functional, see equa-
tions 3.37-3.39:

• FE vectors F;

• parametric dependent functions θqf (µ);

3. Mass matrix1

4. Class of problem:

• elliptic coercive;

• elliptic non-coercive;

• parabolic;

5. Parameter definition:

• number of parameters;

• parameter domain D.

Whereas with regard to the rbMIT task, the software traces the procedure
explained in the chapter 3. Hence, the main steps achieved are:

• Offline

1. Greedy sampling for the successive constraint method SCM, see
Section 3.6.3;

2. Greedy sampling for the RB basis assemblingm, Section 3.4.2;

• Offline

1. RB system solution, Section 3.2.6;

2. output evaluation, as mentioned above;

3. a-posteriori error bound evaluation, Section 3.5.

In the following section we introduce the COMSOL software and we will
explain how to compute our FE truth approximation.
Since the rbMIT software is equipped by a fully descriptive manual [PR09],
we will only describe the main steps to obtain the FE ingredients with
COMSOL.

1 In order to build the matrix representation of the X−norm
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5.2 comsol multiphysics FE ASSEMBLING

COMSOL Multiphysics© is a powerful environment for modeling and
solving all kind of scientific and engineering problems based on PDEs.
The software is able to work with one dimensional, two dimensional an
three dimensional domains, thus is really well suited for our purposes,
even if not in its default settings.
With COMSOL it is possible to deal also with multiphysics models which
solve coupled physical phenomena. Actually this feature will not be ex-
ploited in this thesis, but of course in the following works dealing with
the RB methodology it could be of great interest.
Thanks to the built-in physics mode it is possible to define the relevant
physical quantities—such as material properties, loads, constraints, sources,
and fluxes—rather than by defining the underlying equations. These vari-
ables, expressions, or numbers can always be applied directly to solid
domains, boundaries, edges, and points independently of the computa-
tional mesh.
It is possible to access to COMSOL Multiphysics through a script by pro-
gramming in the MATLAB language.
Thanks to the great flexibility of the software, we will be able to obtain
the numerical ingredients required by the RB method in a proper way. In
the following sections we will discuss the procedure used.

We begin recalling the finite element matrices and vectors needed to build
our RB system. We then introduce some basic commands of COMSOL used
in order to better understand the FE assembling procedure.

5.2.1 FE ingredients

In order to create the RB approximation (section 3.2 in the coercive case
and section 3.3 in the Stokes case), we need an underlying FE approxima-
tion.
This will be accomplished providing the FE matrices and array built on
our reference domain (refer to Section 4 for a detailed explanation).
To show the FE matrices assembling within the COMSOL environment,
we consider a coercive scalar case.
Therefore, we recall from section 3.2.6 (pag.33) that we need to form:

1. Qa parametric independent matrices Aq (eq.3.36)

2. Qf parametric independent arrays Fq (eq.3.37)

built thanks to a standard FE discretization of the PDE problem.

5.2.2 Problem definition

The main steps to assemble the FE matrices, are summarized as follows:
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1. creation of the geometry;

2. definition of the PDEs;

3. imposition of the boundary condition;

4. choice of the FE basis functions;

5. meshing;

6. matrices assembling.

We will just consider the definition of the partial differential system tuned
for our particular purposes along with the choice of the boundary con-
ditions, since the other steps can be easily accomplished following the
COMSOL reference manual [Com07b]. Moreover we will consider a single
subdomain, the extension to the multi-subdomain case is straightforward.

5.2.2.1 Definition of the PDEs/boundary conditions

There are several built-in automatic applications in the COMSOL software
thanks to which the stiffness matrix and the relative RHS (right hand side)
can be easily build for a wide range of physical problem, such as: acous-
tics, electromagnetics, fluid dynamics, heat transfer, structural mechanics,
transport phenomena, etc. . .
Unfortunately, due to our highly specialized task, this automatic way to
proceed is unsuited. Our efforts will be devoted to the creation of an
ad-hoc application able to provide the matrices arising from the affine ex-
pansion.
Therefore to build the FE ingredients, we will define our PDEs thanks to
another application offered by COMSOL, the PDE mode.

PDE mode

The PDE mode is an equation-based modeling procedure: the system of equa-
tion is given in the coefficient form, that is the strong formulation, for
further details we refer to the COMSOL manual [Com07a].
In the scalar case the coefficient form in COMSOL is written as

ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · (c∇u−αu+ γ) +β · ∇u+ au = f inΩ

n · (c∇u+αu− γ) + qu = g− hTµ on∂Ω

hu = r on∂Ω
(5.1)

where Ω = Ωr is our reference domain, the union of all subdomains Ωkr ,
∂Ω = ∂Ωr is the domain boundary, n is the outward unit normal vector
on ∂Ω.
The first equation in the list above is the PDEs, which must be satisfied in
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Ω. The second and third equations are the boundary conditions, which
must hold on ∂Ω. The second equation is a generalized Neumann boundary
condition, whereas the third equation is a Dirichlet boundary condition. The
system is written in the most general way; since we are dealing with ellip-
tic equations the temporal terms vanishes. We now provide an explanation
of the terms appearing in the equation 5.1:

• ∇ is the differential operator (gradient) defined as a column vector

∇ =

{
∂

∂x1
,
∂

∂x2
,
∂

∂x3

}T
,

• ∇ · (c∇u) is due to diffusivity/conductivity, where c ∈ R3×3 and it
means

∂

∂x1

(
c11

∂u

∂x1

)
+

∂

∂x1

(
c12

∂u

∂x2

)
+ . . .+

∂

∂x3

(
c33

∂u

∂x3

)
,

• ∇ · (αu) is due to convection, where a ∈ R3×1 is the convective
velocity

∂α1 u

∂x1
+
∂α2 u

∂x2
+
∂α3 u

∂x3
,

• ∇ · (γ), is due to source term, where γ ∈ R3×1

∂γ1
∂x1

+
∂γ2
∂x2

+
∂γ3
∂x3

,

• β · ∇u, that will prove useful to build the Stokes problem (see Chap-
ter 8) and it means

β1
∂u

∂x1
+β2

∂u

∂x2
+β3

∂u

∂x3
,

where β ∈ R3×1.

The formulation of the boundary conditions considers Dirichlet and Neu-
mann conditions.

• Generalized Neumann condition:

– (c∇u−αu+ γ) is the flux vector of the homogeneus Neumann
conditions;

– g ∈ R is the boundary source term;

– q ∈ R is the terms related to the Robin boundary condition;

• Dirichlet condition:

– r is the term related to the non-homogeneus Dirichlet conditions.
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The combination of both boundary condition is possible thanks to a
new dependent variable µ, which is defined only on the boundary. The
unknown variable µ is called a Lagrange multiplier.
The apposition of a Neumann condition rather than a Dirichlet condition
depends upon a pre-factor h, see [Com07a].
In scalar problems, h is a scalar; if h = 0, the Neumann condition on that
boundary is deactivated and the Dirichlet condition is apposed.
In the vectorial case h is a matrix R3×3, if h = I3×3 (=identity matrix)
only the Dirichlet boundary conditions are active, whereas if h differs
by the identity matrix, then the result will be a mixing of Dirichlet and
Neumann conditions, coupled by the Lagrange multiplier µ.

5.2.3 A test case

In this section, thanks to a test case, we will show how to set up the prob-
lem within the COMSOL environment.
We will exploit a thermal problem, that is governed by the Fourier equa-
tion. The domain is constituted by a single block made by a isotropic
conductive media. With regard to the figure 13, we suppose that the

Figure 13: Original domain test case

edges are parameter dependent µ = {µ1,µ2,µ3}. Moreover, on face Γ1 we
impose an homogeneus Dirichlet condition, on Γ6 we impose an unitary
non-homogeneus Neumann condition, on all the other faces we impose
an homogeneus Neumann condition.
We recall that, to create our FE approximation we choose a set of reference
parameters, in order to build our reference domain Ωr.
Hence we choose a parameter of reference µ = {µ1,µ2,µ3} that induces a
reference domain Ωr = Ωo(µ), over which we will assemble our parame-
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ter independent matrices Aq representing the discretization of the weak
formulation of the following problem:

−∇r ·
(
K
r
∇ru

)
= 0 in Ωr

u = 0 on Γr1
∂u

∂n
= 1 on Γr6

(5.2)

Recalling that the conductive media is isotropic2, we can represent it as
the following matrix:

K
r
=

 κ 0 0

0 κ 0

0 0 κ

 . (5.4)

Therefore, recalling the procedure shown in Section 4.3.3, we need to
build three matrices relatives to the three different entries of the conduc-
tivity tensor K

r
.

Then, recalling the weak formulation 4.33, we assemble the three FE ma-
trices defined as follows:

A1 = a1(w, v) =
∫
Ωr

∂w

∂xr1
Kr11

∂v

∂xr1
dΩr,

A2 = a2(w, v) =
∫
Ωr

∂w

∂xr2
Kr22

∂v

∂xr2
dΩr,

A3 = a3(w, v) =
∫
Ωr

∂w

∂xr3
Kr33

∂v

∂xr3
dΩr. (5.5)

To form this matrices with COMSOL (recalling the nomenclature of equa-
tion 5.1), we assemble the FE matrices setting on Ωr in the three cases:

c1 =

 κ 0 0

0 0 0

0 0 0

 ,

c2 =

 0 0 0

0 κ 0

0 0 0

 ,

c3 =

 0 0 0

0 0 0

0 0 κ

 , (5.6)

in addition we set to zero the constants: α, γ, β and a.
The boundary conditions, imposed on ∂Ωr3, are the same in the three

2 That is the conductivity tensor is defined as

Kij =

{
κ if i = j
0 if i 6= j

(5.3)

3 ∂Ωr =

6⋃
k=1

Γrk

84



5.2 comsol multiphysics FE ASSEMBLING

cases.
To define the boundary conditions shown in system 5.2, we set:

• on Γ1 
q = 0
g = 0
h = 1
r = 0

Homogeneus Dirichlet,

• on Γr1 , Γr2 , Γr3 , Γr4 , Γr5
q = 0
g = 0
h = 0
r = 0

Homogeneus Neumann,

• on Γr6 
q = 0
g = 1
h = 0
r = 0

Non-homogeneus Neumann (5.7)

We remark that we have chosen a coercive scalar problem on a single
subdomain, hence the procedure here is very straightforward. In the part
devoted to the Mathematical Modelling, we will discuss more involved
problems.

COMSOL input file

We now provide, as example, the code associated to the test case dis-
cussed above, to provide a sample of the input file within the COMSOL
environment.
COMSOL input file is written with the same programming language of
MATLAB, hence the command list is very "user friendly".

COMSOL input file for A1 assembling
% COMSOL Multiphysics Model M-file

flclear fem

% Geometry
g1=block3(’1’,’1’,’1’,’base’,’corner ’,’pos’,{’0’,’0’,’0’},’axis’,{’0’

,’0’,’1’},’rot’,’0’);

% Analyzed geometry
fem.geom=geomobject(g1);

% Constants
fem.const = {’k’,’1’};
descr.const= {’k’,’Conductivity ’};
fem.descr = descr;

% Mesh
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fem.mesh=meshinit(fem ,’hauto’ ,4);

%% Application mode 1

% FE basis functions
clear appl
appl.mode.class = ’FlPDEC ’;
appl.shape = {’shlag(1,’’u’’)’};
appl.gporder = {2 ,4};
appl.cporder = 1;
appl.assignsuffix = ’_c’;

% Boundary conditions
clear bnd
bnd.g = {0,0,1};
bnd.name = {’Homogeneus Dirichlet ’,’Homogeneus Neumann ’,’Inhomogeneus

Neumann ’};
bnd.type = {’dir’,’neu’,’neu’};
bnd.ind = [1,2,2,2,2,3];
appl.bnd = bnd;

% PDEs setting
clear equ
equ.f = 0;
equ.da = 0;
equ.bndgporder = 2;
equ.c = {{{’k’;0;0}}};
equ.ind = [1];
appl.equ = equ;
fem.appl {1} = appl;

% Multiphysics
fem=multiphysics(fem);

% Meshextend
fem.xmesh=meshextend(fem);

% Assembling
[K,F,Null ,ud] = femlin(fem); %with Dirichlet condition �
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6.1 INTRODUCTION

In this chapter we will exploit the creation of our RB problem in the 3D
case dealing with a scalar elliptic coercive problem.
We deal with a steady conduction thermal problem, assuming that the
thermal conductivity K is represented by a positive definite matrix; then
the unknown is the 3D field of temperature, that we will denote with
u(x;µ) ∈ R. This class of problem, although rather simple, is able to de-
scribe a wide range of engineering problem, see for example [Arp66].
We mention, for example, the study of the performance of an heat sink
designed for the thermal management of high-density electronic compo-
nents, the design of an insulated coverage of a building to reduce the
energetic consumption, the control of the temperature within an engine
shaft to prevent thermal stresses or deformation, etc. . .
Another notable application can be the non-destructive testing of mechan-
ical components or the identification of an inclusion within a casting steel;
in short, despite the simple mathematical fomrulation, this case is more
than a Mathematical abstraction.

6.2 PROBLEM DESCRIPTION

We now briefly introduce the Thermal Block problem, henceforth we will
refer to this case with the "TB" label.

Physical problem

The problem of a steady-conduction is considered here in a cubic domain.
We want to evaluate the thermal field in a non-isotropic conductive block,
with an heat flux q imposed on a face of the cube, with regard to a refer-
ence environmental temperature taken on the opposite face and assuming
that the other faces are insulated. The cube has an anisotropic conductiv-
ity due to an inclusion of different materials within the piece.
Dealing for example with the material science, the inclusion can be, see
[Wal93]:

1. a deficiency of material, a hole due to gas bubble present within the
casting during solidification, or due to a fatigue crack;
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2. an inhomogeneity of the material, due to an unbalancing of concen-
tration of the alloyants.

Therefore, in order to seize the behavior of such a phenomena, the RB
parametric approach is very well suited. The thermal problem, in the 2D
frame, has been treated by [RHP08, PR09] and [HRSP07].
The output of interest is the average temperature of the heated face.
Now we formulate the problem into the mathematical setting.

Analytical problem

The equation that describes the field of temperature is represented by the
Fourier equation in which will be neglected the time derivative thanks to
the hypothesis of a steady state problem (no transient effect considered)
as well as the volume force that will be considered negligible.

6.3 PARAMETERS CHOICE
Due to the nature of the inclusion, its shape and dimension can vary
arbitrarily, hence we introduce some geometric parameters in order to de-
scribe it. It is important to remark that, due the fact that the parametrized
geometry should allow an affine geometric precondition (discussed in Chap-
ter 4), we restrict our attention to a parallelepiped inclusion.
In particular, with regard to the Figure 14, we have assumed that the cu-
bic block can vary its dimension along the three axis by means of a set
of parameters µ = {µ4, µ5, µ6}. In addition we have chosen other three
parameters, denoted by µ = {µ1,µ2,µ3} to parametrize the position of the
inclusion. The solid is schematized as 3× 3× 3 cubic blocks, the central

Figure 14: TB domain decomposition
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block (subdomain Ω14 in our scheme) represents the inclusion.
Each block, due to the parametric geometry dependence of the inclusion
and to the hypothesis required by an affine geometry (Section 4.1), is
subjected to a geometrical parametric dependence. Each sub-block is
considered isotropic. The conductivity constant for the central sub-block
(inclusion) is another parameter, denoted by µ7, whereas for the other
sub-blocks the conductivity is the unity (reference).

Parameters domain

We now summarize the parameters and the parameter domain chosen to
describe our TB problem as:

• the dimension and the position of the inclusion, that can be de-
scribed by 6 parameters, that are 3 translations and 3 dimensions. The
parameters µ1:6 are shown in Figure 14.
The parameter domain for the geometrical quantities is:

Dgeom =
[
µ

min

1 , µ
max

1

]
× . . .×

[
µ

min

6 , µ
max

6

]
= [0.5, 1.45]× . . .× [0.5, 1.45] , (6.1)

• the conductivity coefficient of the inclusion, denoted with µ7.
The parameter domain for this physical quantity is:

Dphysics =
[
µ

min

7 , µ
max

7

]
= [0.1, 10] . (6.2)

The parameter domain is therefore given by µ ∈ D ∈ RP=7, such that:

D = Dgeom ×Dphysics

= [0.5, 1.45]× . . .× [0.5, 1.45]× [0.1, 10] .

Boundary conditions

With regard to the boundary conditions (Figure 15), a non-homogeneus
Neumann boundary condition is imposed on Γ6 representing an heat flux,
an homogeneus Dirichlet boundary condition is imposed on Γ1 represent-
ing the imposition of a temperature (adimensional, i.e. environmental
temperature), whereas on the other external faces of the cube Γ2:5 homo-
geneus Neumann conditions has been chosen, representing insulation of
the walls. Finally, on the internal faces we have assumed continuity of
temperature and fluxes.
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Figure 15: TB boundary conditions

6.4 TB PROBLEM FORMULATION

6.4.1 Original domain

We introduce the analytical formulation of the governing PDEs on the orig-
inal domain.The equation which describes the field of temperature, within
the hypothesis described in Section 6.1, is the following:

−∇ ·
(
K
o
∇ou

)
= 0 in Ωo(µ)

u = 0 on Γo1(µ)
∂u

∂n
= q on Γo6(µ)

(6.3)

Multiplying the equation by a suitable test function v such that v ∈ Xe ≡{
v ∈ H10(Ω)| v|ΓD = 0

}
and integrating over the domain Ω we obtain:∫

Ωo(µ)
−∇o ·

(
K
o
∇ou

)
v dΩo = 0 (6.4)

The domain Ωo is the original domain on which the PDE is defined. The
whole domain Ωo(µ) is decomposed (Section 4.1) in Kdom non overlap-
ping subdomains such that:

Ωo(µ) =

K27⋃
k=1

Ωko(µ)

in addition, recalling the Green Theorem for the laplacian, [Qua09]:∫
Ω

∆u v dΩ =

∫
Ω

∇u · ∇v dΩ−

∫
∂Ω

∂u

∂n
v dγ

the equation 6.4 becomes

27∑
k=1

∫
Ωko

−K
o
∇ou · ∇ov dΩko +

27∑
k=1

∫
∂Ωko

K
o

∂u

∂n
v ∂Ωko = 0
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Thanks to the functional space chosen, the boundary terms vanish on the
face on which we have imposed a zero temperature (on Γ1 → v = 0). The
boundary terms relatives to Γ2:5 vanish because we have imposed an ho-
mogeneus Neumann condition (on Γ2:5 → ∂u/∂n = 0).
The internal faces contributes disappear thanks to the continuity of tem-
perature and fluxes. Then the only remaining boundary term is the one
relative to the face Γ6 on which we have imposed an heat flux q.
Therefore, the equation 6.5 can be simplified as:

27∑
k=1

∫
Ωko

K
o
∇ou · ∇ov dΩko =

∫
Γo6

K
o

∂u

∂n
v dΓo6 . (6.5)

Replacing the Neumann boundary condition (system 6.3):

K
o
∇ou ·n = K

o

∂u

∂n
= q

in the weak formulation 6.5, we finally obtain:

27∑
k=1

∫
Ωko

K
o
∇ou · ∇ov dΩko =

∫
Γo6

q v dΓo6 . (6.6)

Introducing the bilinear form

a(u, v;µ) =
27∑
k=1

∫
Ωko

K
o
∇ou · ∇ov dΩko (6.7)

and the linear functional

f(v;µ) =
∫
Γo6

q v dΓo6 , (6.8)

we can restate the problem 6.6 as: find u ∈ Xe(Ωo(µ)), such that

a(u, v;µ) = f(v;µ) ∀v ∈ Xe(Ωo(µ)) (6.9)

The coercivity and the continuity of the bilinear form a and the conti-
nuity of the functional f can be proved. Then the Lax-Milgram theorem
ensures the existence and uniqueness of the solution, see [Qua09].

6.4.2 Reference domain

In this section we apply standard techniques to transform the problem
statement over the original domain to an equivalent problem fomrulated
over reference domain.
We shall be ultimately able to write the problem in an affine formulation
(2.20), to exploit the crucial Offline/Online computational splitting pro-
cedure. In order to obtain the problem formulation 6.9 on the reference
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domain, we need to evaluate the affine transformation for each subdomain
Ωko(µ) ∈ Ωo(µ), tracing back the derivatives operator and all the geometric
parameter dependent quantities to the reference domain, by the recipe pro-
vided in Section 4.3.2.
In order to build the affine decomposition, we must compute the affine map-
pings for each subdomain Taff,k( · ;µ) : Ωo(µ)→ Ωr, 1 6 k 6 27, in order
to evaluate:

1. the Jacobian Jaff,k(µ), 1 6 k 6 27 (equation 4.5)

Jaff,k(µ) =
∣∣∣det

(
Gaff,k(µ)

)∣∣∣ ;
2. the derivatives operator Daff,k(µ) (equation 4.6)

Daff,k(µ) = Gaff,k(µ);

We will not present in detail the procedure to obtain the affine transfor-
mation for all the subdomains, we refer the reader to the Section 4.2.1 and
4.2.2 for a detailed abstract explanation. In this section we just provide
the results in Table 5.
We remark that the matrices Gaff,k(µ), 1 6 k 6 27 are diagonal thanks to
the particular choice of the geometric parameters. Once the affine map-
pings have been computed, we are able to rewrite the weak formulation
6.9 into the reference domain.

Bilinear form

Recalling the bilinear form defined in equation 6.7, we recall the defini-
tion of the conductivity tensor K

r
given in equation 4.29 (section 4.3.2).

Due to the isotropic nature of the material, for each subdomain Ωkr , 1 6
k 6 27, we need to extract three different affine terms, corresponding
to the three different entries of the conductivity tensor, hence we would
have 27× 3 = 81 terms in our affine development. We obtain:

a(w, v;µ) =
27∑
k=1

∫
Ωkr

K
r
(µ)∇u · ∇v dΩkr

=

∫
Ω1r

µ2µ3
µ1

∂u

∂xr1

∂v

∂xr1
+
µ1µ3
µ2

∂u

∂xr2

∂v

∂xr2
+
µ1µ2
µ3

∂u

∂xr3

∂v

∂xr3
dΩ1r + . . .

. . .+

∫
Ω3r

(
−
µ2(µ3 + µ6 − 3)

µ1

∂u

∂xr1

∂v

∂xr1
+

−
µ1(µ3 + µ6 − 3)

µ2

∂u

∂xr2

∂v

∂xr2
−

µ1µ2
µ3 + µ6 − 3

∂u

∂xr3

∂v

∂xr3

)
dΩ3r + . . .

. . .+ θ81a (µ)

∫
Ω27r

∂u

∂xr3

∂v

∂xr3
dΩ27r (6.10)
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sub Gaff
11 Gaff

22 Gaff
33 Caff

1 Caff
2 Caff

3

Ω1 1/µ1 1/µ2 1/µ3 0 0 0

Ω2 1/µ1 1/µ2 1/µ6 0 0 1− µ3

Ω3 1/µ1 1/µ2 1/(3− µ6 − µ3) 0 0 2− µ6 − µ3

Ω4 1/µ1 1/µ4 1/µ3 0 1− µ1 0

Ω5 1/µ1 1/µ4 1/µ6 0 1− µ1 1− µ3

Ω6 1/µ1 1/µ4 1/(3− µ6 − µ3) 0 1− µ1 2− µ6 − µ3

Ω7 1/µ1 1/(3− µ5 − µ2) 1/µ3 0 2− µ5 − µ1 0

Ω8 1/µ1 1/(3− µ5 − µ2) 1/µ6 0 2− µ5 − µ1 1− µ3

Ω9 1/µ1 1/(3− µ5 − µ2) 1/(3− µ6 − µ3) 0 2− µ5 − µ1 2− µ6 − µ3

Ω10 1/µ5 1/µ2 1/µ3 1− µ2 0 0

Ω11 1/µ5 1/µ2 1/µ6 1− µ2 0 1− µ3

Ω12 1/µ5 1/µ2 1/(3− µ6 − µ3) 1− µ2 0 2− µ6 − µ3

Ω13 1/µ5 1/µ4 1/µ3 1− µ2 1− µ1 0

Ω14 1/µ5 1/µ4 1/µ6 1− µ2 1− µ1 1− µ3

Ω15 1/µ5 1/µ4 1/(3− µ6 − µ3) 1− µ2 1− µ1 2− µ6 − µ3

Ω16 1/µ5 1/(3− µ5 − µ2) 1/µ3 1− µ2 2− µ5 − µ1 0

Ω17 1/µ5 1/(3− µ5 − µ2) 1/µ6 1− µ2 2− µ5 − µ1 1− µ3

Ω18 1/µ5 1/(3− µ5 − µ2) 1/(3− µ6 − µ3) 1− µ2 2− µ5 − µ1 2− µ6 − µ3

Ω19 1/(3− µ4 − µ1) 1/µ2 1/µ3 2− µ4 − µ2 0 0

Ω20 1/(3− µ4 − µ1) 1/µ2 1/µ6 2− µ4 − µ2 0 1− µ3

Ω21 1/(3− µ4 − µ1) 1/µ2 1/(3− µ6 − µ3) 2− µ4 − µ2 0 2− µ6 − µ3

Ω22 1/(3− µ4 − µ1) 1/µ4 1/µ3 2− µ4 − µ2 1− µ1 0

Ω23 1/(3− µ4 − µ1) 1/µ4 1/µ6 2− µ4 − µ2 1− µ1 1− µ3

Ω24 1/(3− µ4 − µ1) 1/µ4 1/(3− µ6 − µ3) 2− µ4 − µ2 1− µ1 2− µ6 − µ3

Ω25 1/(3− µ4 − µ1) 1/(3− µ5 − µ2) 1/µ3 2− µ4 − µ2 2− µ5 − µ1 0

Ω26 1/(3− µ4 − µ1) 1/(3− µ5 − µ2) 1/µ6 2− µ4 − µ2 2− µ5 − µ1 1− µ3

Ω27 1/(3− µ4 − µ1) 1/(3− µ5 − µ2) 1/(3− µ6 − µ3) 2− µ4 − µ2 2− µ5 − µ1 2− µ6 − µ3

Table 5: TB affine mappings

Linear functional

In this case the parametric linear functional (equation 6.8) arises from an
inhomogeneous Neumann boundary condition. This case has not been
treated in Section 4.3. In order to cast the integral of equation 6.8 into the
reference domain, we proceed as follows:

f(v;µ) =
∫
Γo6(µ)

q v dΓo6(µ)

=

∫
Γr6

q v

∣∣∣∣(Gaff,k(µ)
)−1
· et
∣∣∣∣ dΓr6︸ ︷︷ ︸

dΓo6

(6.11)

where et denotes the tangential unit vector and k indicates the indexes of
the subdomains to which the face Γr6 belong. In particular, with regard
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the chosen subdomain enumeration (Figure 14), we see that Γr6 is given
by

Γr6 =

6⋃
k=1

Γkr6 .

(6.12)

Therefore the linear functional can be rewritten in an affine development
as:

f(v;µ) =
∫
Γ1r6

µ2µ3 q vdΓ
1
r6

+

∫
Γ2r6

µ1µ6 q vdΓ
2
r6

+ . . .

. . .+

∫
Γ6r6

−µ5 (µ3 + µ6 − 3) q vdΓ
6
r6

+ . . .

. . .+θ9f(µ)

∫
Γ9r6

q v dΓ9r6 . (6.13)

The affine decomposition is now clear and we have

a(u, v;µ) =
81∑
1

θqa(µ)a
q(u, v),

f(v;µ) =
9∑
1

θ
q
f (µ)f

q(v),

where the θ-functions are the parameters dependent terms which appear
in the bilinear form 6.10 and in the linear functional 6.13 expressed in the
reference domain.
Since the geometric parameter dependence is quite involved, we will
present only few results from our set of theta functions θqa(µ), 1 6 q 6 81,
θ
q
f (µ), 1 6 q 6 9 in tables 6a and 6b. In the same tables we present also

the definition of the µ−independent bilinear forms.
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q θqa(µ) Aq

1

µ2µ3
µ1

∫
Ω1r

∂u

∂xr1

∂v

∂xr1
dΩ1r

2

µ1µ3
µ2

∫
Ω1r

∂u

∂xr2

∂v

∂xr2
dΩ1r

5

µ1µ3
µ2

∫
Ω1r

∂u

∂xr2

∂v

∂xr2
dΩ1r

9

µ2µ6
µ1

∫
Ω2r

∂u

∂xr2

∂v

∂xr2
dΩ2r

14

µ1µ6
µ5

∫
Ω5r

∂u

∂xr2

∂v

∂xr2
dΩ5r

27

µ1(µ2 + µ5 − 3)

µ3 + µ6 − 3

∫
Ω9r

∂u

∂xr3

∂v

∂xr3
dΩ9r

40

µ5µ6µ7
µ4

∫
Ω14r

∂u

∂xr1

∂v

∂xr1
dΩ14r

60 −
µ2(µ1 + µ4 − 3)

µ6

∫
Ω20r

∂u

∂xr3

∂v

∂xr3
dΩ20r

70

µ5(µ3 + µ6 − 3)

µ1 + µ4 − 3

∫
Ω24r

∂u

∂xr1

∂v

∂xr1
dΩ24r

78

(µ2 + µ5 − 3)(µ1 + µ4 − 3)

µ6

∫
Ω26r

∂u

∂xr3

∂v

∂xr3
dΩ26r

(a) TB θqa(µ)-functions

q θ
q
f (µ) Fq

1 µ1µ3

∫
Γ1r6

q v dΓ1r6

2 µ1µ3

∫
Γ2r6

q v dΓ2r6

3 µ2µ6

∫
Γ3r6

q v dΓ3r6

6 −µ5(µ3 + µ6 − 3)

∫
Γ6r6

q v dΓ6r6

9 (µ2 + µ5 − 3)(µ3 + µ6 − 3)

∫
Γ9r6

q v dΓ9r6

(b) TB θqa(µ)-functions

Table 6: TB θ(µ)-functions

95



CHAPTER 6

6.5 RESULTS AND VISUALIZATION
In this section we present the results obtained, linking COMSOL and rbMIT,
in order to create a RB approximation for the 3D thermal block example.
First we will give some informations about the FE approximation con-
cerning the mesh, the basis function chosen and the entries needed by
COMSOL, as discussed in Chapter 5.
Later on, we will focus on the results obtained with the SCM algorithm
(Section 3.6, Chapter 3) for the error bounds calculations, then we will
present the convergence of the Greedy procedure (Section 3.4).
Finally we will present the output evaluation for particular combinations
of the parameters, along with the certified a-posteriori error bound, to prove
that the RB approximation is reliable and efficient.

6.5.1 FE approximatiom with COMSOL

FE discretization on reference domain

We represent in Figure 16 the reference domain upon we assemble FE
components (Chapter 5).
In the figure we also report the properties of the mesh and the basis
functions chosen to discretize the TB problem. We recall that, since the
maximum derivatives order that appears in the strong formulation of the
PDEs is 2, then P1 basis function are still a good choice for the solution
of the problem with the Galerkin method.
We remark that the degrees of freedom (DOFs) are fewer than the mesh ver-
tices since we have imposed a homogeneus boundary condition on Γ1. We
have in fact eliminated the rows and the columns in the assembled matrices,
corresponding to the nodes upon a Dirichlet condition is imposed, [Qua09].
The mesh has been generated by a COMSOL pre-process routine called
meshinit, see [Com07a] for further explanations.

Figure 16: TB reference domain discretization
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Matrices assembling

Following the procedure discussed in chapter 5 and in particular with
regard to the notation introduced in equation 5.1, we assemble the pa-
rameter independent matrices (see table 6a and 6b) needed by the RB
procedure.
In Figure 17 we depict a graphical view of the matrices assembling.
We consider the matrix A20, looking at Table 8 we note that the only sub-
domain that plays a role in the building of the parameter independent
matrix is Ω9r , see Figure 17a. In Figure 17b we depict the matrix pattern.

(a) subdomain Ω7r (b) A20

Figure 17: In figure 17b we have depicted the contributes of the local A20 matrix
(•) to the global stiffness matrix (•).

6.5.2 SCM algorithm

For the SCM algorithm (section 3.6.3) we have took a sample train ΞSCM of
size nSCM = 3000, a tolerance εSCM = 0.7, Mα = 16, M+ = 0 and |P| = 200.
In figure 18a we show the αLB (−) and the αUB (−) for each element of
the sample train ΞSCM of the first iteration K = 1, whereas in figure 18b we
depict the same quantities for the last iteration K = Kmax = 4 of the SCM
algorithm. It is evident that the upper and lower bound for the parametric
coercivity constant are converging to the exact value and restricting the
possible gap between the lower and upper bound. Convergence for this
problem is quite fast, see [Gel10, RHP08].

6.5.3 Greedy algorithm

We present the results for the Greedy algorithm (Section 3.4.2), during the
RB aseembling procedure.
Here, we have chosen a sample train Ξtrain of size is ntrain = 3000, the
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(a) TB: First iteration of the SCM (b) TB: Last iteration of the SCM

Figure 18: TB SCM algorithm

tolerance is εtoll,min = 0.9 · 10−3 and the maximum size of the RB space
is taken Nmax = 100. We have chosen to minimize the absolute error
bound in energy norm ∆enN (µ) (Section 3.5.1, page 52). In figure 20a
we have represented the error bound ∆enN (µ) for 1 6 N 6 Nmax. We
can see that the error is monotonically decreasing. Moreover, just few
basis ≈ 40 (versus ≈1500 FE DOFs) are needed to obtain a maximum
error bound 6 10−2 on the temperature field for all the samples in Ξtrain .

Figure 19: Greedy selection for
parameter µ4 and µ5

We remark that this result holds despite a
large variation of either physical (the con-
ductivity) and geometrical (the dimension
and the position of the central block) pa-
rameters. In figure 20b we have depicted a
subset of the parameters µ = (µ2,µ5,µ6),
automatically selected by the Greedy algo-
rithm as representative snapshots. The er-
ror bounds help us to save also Offline
computational cost since the evaluation of
the error bounds during the Greedy proce-
dure is ver inexpensive. It is possible to
see that the algorithm often select parameters near to the bounds (upper
and lower) of the parameters domain. In fact the more the parameters are
chosen distant from the "center" of the set, the most the reference domain
is deformed by means of the geometrical parameters. These phenomena
will perforce increase the error bound, therefore the Greedy algorithm
will preferably choose this outer parameters, being based on the worst
case scenario.
This aspect can be better seen, looking at the figure 19, we can see that the
geometrical parameters chosen are always in the outer part of the domain,
where it is evident a clustering phenomena. In this figure, the dimension
of the markers are proportional to the maximum error bound at the K-th
Greedy iteration.
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(a) Error bound ∆enN (µ)

(b) Parameters distribution

Figure 20: TB Greedy results

6.5.4 Output

Since the output is the average of the temperature on the face Γ6 of the
domain, then we are dealing with a compliant case (see Section 2.3.1). In
fact we have that:

sN(µ) = f(uN;µ). (6.14)

Since we have 7 parameters, we decided to fix some parameters and add
relationship between others to obtain a graphical visualization of the out-
put.
In particular we have chosen to vary the parameters µ5 and µ4, i.e. the
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x and y dimension of the inclusion. In addition we have introduced the
following relationships:

µ1 =
3− µ4
2

;

µ2 =
3− µ5
2

;

µ3 = 1;
µ6 = 1;
µ7 = 1.

In Figure 21a we depict the tenmperature output obtained with the RB
method, in Figure 21b we depict the error bound ∆sN(µ) on the output
between the FE and the RB method.
We can see that the output estimated error is 6 8 · 10−5, hence the error
on the output is effectively bounded by the square of the error on the
solution field (we recall that in the Greedy we have set ∆en

N(µ) 6 εtoll,min =
0.9 · 10−3, ∀µ ∈ Ξtrain).
We remark that this result follows from our assumption of compliance,
enabling the so called square effect (see equation 3.24, chapter 3.2).
In figure 21c we have depicted the ratio between the computational time
needed to evaluate the output in the FE (denoted with tsFE(µ)) and in
the RB case (tsRB(µ)) for a large test sample. We can see that the RB
method provides a computational time saving of two order of magnitude
with respect to the ordinary FE method.
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(a) TB output s(µ)

(b) TB error bound ∆sN(µ)

(c)
tsFE(µ)

tsRB(µ)

Figure 21: TB output results
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6.5.5 Visualization

We now report the visualization of some representative RB solutions. On
the upper figures, we show the solution for different value of the param-
eters µ. On the lower figures, we represent the pointwise error between
the RB approximations and the FE solution.
In the first example, Figure 22, we show the solution on the reference do-
main. In the second example, Figure 23, we show the solution field after
selecting a generic combination of parameters in the parameter domain
D. In the first case, thanks to the absence of geometrical distortion, we
obtain a smaller error bound on the solution.

(a) Solution field: ∆en
N(µ) 6 2.3 · 10−3

(b) Pointwise error: uN(µ) − uN(µ)

Figure 22: Example of representative solution for the TB problem and pointwise
error for µ = {1, 1, 1, 1, 1, 1, 1}
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(a) Deformed domain

(b) Error bound: ∆en
N(µ) 6 6.3 · 10−3

(c) Pointwise error: uN(µ) − uN(µ)

Figure 23: Example of representative solution and pointwise error for µ =
{0.7, 0.7, 0.7, 1.3, 1.3, 1.3, 0.05}
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7 E L A S T I C P R O B L E M

7.1 INTRODUCTION
In this chapter we will exploit the creation of the RB approximation in the
3D case dealing with a vectorial elliptic coercive problem.
We consider a static stress application represented by a linear elasticity prob-
lem, where the displacement is given by:

u(x;µ) =


u

v

w

 .

The elastic tensor Cijkl is represented with the Voigt notation, by a positive
definite matrix C ∈ R6×6, see [DL00].
This case will be useful to show one of the most interesting field of appli-
cation for the RB method. In particular in section 7.6 we will show that
the Offline/Online splitting, may allow an efficient structural optimization
that combines the accuracy of the FE to the cheapness of the RB method-
ology.

7.2 PROBLEM DESCRIPTION
We now briefly introduce the linear elasticity problem (in a cubic domain),
referring to this case as the EB (elastic block) problem.

Physical problem

The linear elasticity is the study of how solid objects deform and become
internally stressed due to prescribed loading conditions.
In particular we will consider a solid block formed by three superposed
layer of different isotropic materials, pulled by an axial load applied on a
face and clamped to the opposite one.
Our aim is to evaluate the average displacement of the loaded face conse-
quently to the variation of the thickness, or the material composition of
the three layers. We are still in a compliant case (Section 2.3.1 in Chapter
2.3), therefore we inherit all the good convergence properties already dis-
cussed (see Chapter 3.2).
This case is geometrically simple, nonetheless the methodology and the
procedure discussed is comprehensive and provide the tools to build
more involved and specialized problems.
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Analytical problem

In the EB problem, the displacement field is governed by an equilibrium
equation supplied with a constitutive relationship, i.e. Hooke’s law, see [Lov44,
DL00]. We consider a static stress problem, hence no inertial nor dissipa-
tive terms are accounted, in addition we will not consider for simplicity
volume forces.

7.3 PARAMETERS CHOICE

We introduce two parameters µgeom = {µ1,µ2} to describe the thickness
of each layer, as depicted in Figure 24. Moreover since each layer can be
made by different material, or may had been subjected to different tech-
nological process, also the Young modulus E is taken as a parameter, then
µphysic = {µ3,µ4,µ5} (≡ {E1, E2, E3}).
For simplicity, we have chosen to deal with isotropic material. This as-
sumption is quite restrictive, especially in the aeronautic field where we
possibly deal with composite material; the extension to the ortotropic
case, which can be used to model these particular materials, is studied in
[MQR08].

Figure 24: EB domain decomposition

Parameter domain

We now summarize the parameters and the parameter ranges chosen to
describe our EB problem:

106



7.3 PARAMETERS CHOICE

• the domain for the geometrical parameters, representing the thick-
ness of the layers, is:

Dgeom =
[
µ

min

1 , µ
max

1

]
×
[
µ

min

2 , µ
max

2

]
= [0.1, 0.45]× [0.1, 0.45] , (7.1)

• The domain for the physical parameters, representing the Young
modula of the three layers:

Dphysics =
[
µ

min

1 , µ
max

1

]
×
[
µ

min

2 , µ
max

2

]
×
[
µ

min

3 , µ
max

3

]
= [0.1, 3]× [0.1, 3]× [0.1, 3] , (7.2)

The total parameter domain is therefore:

D = Dgeom ×Dphysics

= [0.1, 0.45]× [0.1, 0.45]× [0.1, 10]× [0.1, 3]× [0.1, 3]× [0.1, 3] .

Boundary conditions

With regard to the boundary conditions (Figure 25), an non-homogeneus
Neumann boundary condition, which represent a distributed load p along
the x direction, is imposed on Γ6. In addition an homogeneus Dirichlet
boundary condition, which represents the clamping, is imposed on Γ6,
whereas on the other external faces of the cube Γ2:5, on which we assume
a free stress condition, homogeneus Neumann conditions has been set. Fi-
nally, on the internal faces we assume the continuity of the displacements
and of stresses.

Figure 25: EB boundary conditions
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7.4 EB PROBLEM FORMULATION

7.4.1 Original domain

In this section the analytical formulation of the governing PDEs on the
original domain will be introduced. The equation and the boundary con-
ditions that describes the field of displacement, within the hypothesis
described in Section 7.1, is the following [Lov44, DL00]:

∂σoij
∂xoj

+ boi = 0 in Ωo(µ)

u = 0 on Γo1(µ)

σ
o
· n = p =


p1
0

0

 on Γo6(µ)

(7.3)

Here σoij is given by the constitutive Hooke’s law, [Lov44]:

σoij = Coijkl εokl , (7.4)

where:

• Coijkl is the elastic tensor and for isotropic materials is defined as

Coijkl = λδijδkl +G
(
δikδjl

)
,

λ and G are the Lamè constants given by:{
λ =

Eν

(1+ ν) (1− 2ν)
G =

E

2 (1+ ν)
(7.5)

where E is the Young modulus and ν the Poisson coefficient.

• εokl is the linearized deformation, given by

εokl =
1

2

(
∂uok
∂xol

+
∂uol
∂xok

)
, (7.6)

We now give the matrix representation C of the elastic tensor, which shall
prove useful for the next

C =
E

(1+ ν) (1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2 0 0

0 0 0 0 1−2ν
2 0

0 0 0 0 0 1−2ν
2


(7.7)
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Now we derive the weak formulation for the EB problem.
We recall that the domain Ωo(µ) is made up by different subdomains of
different materials, such that:

Ωo(µ) =

3⋃
m=1

Ωmo (µ),

furthermore each boundary Γom(µ), 1 6 m 6 6 is made by different faces;
for example Γo6(µ) is defined as

Γo6(µ) =

3⋃
m=1

Γmo6(µ).

The decomposition of the boundary shall prove useful in the affine de-
composition of the linear functional. We now introduce a functional space
Xe =

{
v ∈

(
H1(Ωo)

)3∣∣∣ v = 0 on Γo1
}

.
Multiplying the equation 7.3 for the test function v ∈ Xe, integrating on
Ωo(µ), using the divergence theorem and applying boundary conditions
we get the weak formulation as follows, [DL00, QV97]:

3∑
m=1

∫
Ωmo (µ)

∂vi
∂xoj

σoij dΩ
m
o (µ) =

3∑
m=1

∫
Γmo6

(µ)
vi pi dΓ

m
o6
(µ). (7.8)

Introducing the parametric bilinear form

a(u, v;µ) =
3∑

m=1

∫
Ωmo (µ)

∂vi
∂xoj

σoij dΩ
m
o (µ)

=

3∑
m=1

∫
Ωmo (µ)

∂vi
∂xoj

Cmoijkl
∂wj

∂xml

dΩmo (µ), (7.9)

and the parametric linear functional

f(v;µ) =
3∑

m=1

∫
Γmo6

(µ)
vi pi dΓ

m
o6
(µ), (7.10)

we can restate the problem 7.3 as: find u ∈ Xe(Ωo(µ)), such that:

a(u, v;µ) = f(v;µ) ∀ v ∈ Xe(Ωo(µ)). (7.11)

The coercivity and the continuity of the bilinear form a and the continuity
of the functional f can be proved. Then the Lax-Milgram theorem ensures
the existence and uniqueness of the solution [Qua09].
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7.4.2 Reference domain

We now apply standard techniques to transform the problem statement
over the original domain to an equivalent problem set on the reference do-
main.
We shall be ultimately able to write our problem in an affine form (2.20),
to exploit our crucial Offline/Online splitting procedure. As already seen
in the TB problem, to perform this transformation we need to evaluate
the affine mapping for each subdomain. We summarize the result for the
geometrical transformation on the reference domain, in table 7.

sub Gaff
11 Gaff

22 Gaff
33 Caff

1 Caff
2 Caff

3

Ω1 1 1 1/µ1 0 0 0

Ω2 1 1 1/µ2 0 0 µ1

Ω3 1 1 1/ (1− µ1 − µ2) 0 0 µ1 + µ2

Table 7: EB affine mappings

Furthermore we get:

dΩmo (µ) = det
(
Gaff,m(µ)

)
dΩmr 1 6 m 6 3, (7.12)

dΓmo6(µ) =
∣∣∣Gaff,m(µ) · emt

∣∣∣dΓmr 1 6 m 6 3, (7.13)

where emt is the tangential unit vector of facem and where (see [MQR08]):

∣∣∣Gaff(µ) · et
∣∣∣ = (d=3∑

i=1

(
Gaff
ij eti

)2)

Once this quantities have been evaluated, we are able to rewrite the weak
formulation 6.9 into the reference domain.

Bilinear form

In the EB case, since we are dealing with a vectorial problem, the proce-
dure to decompose the parametric bilinear form onto the reference domain
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into an affine development is quite involved, especially in the 3D case.
Recalling the bilinear form defined in 7.9, it follows:

a(u, v;µ) =
3∑

m=1

∫
Ωmo (µ)

∂vi
∂xoj

Coijklm
∂wj

∂xol
dΩmo (µ)

=

3∑
m=1

∫
Ωmr

(
G

aff,m

jj ′ (µ)
∂wi
∂xrj

)
Cmoij ′kl ′ (µ)

(
G

aff,r

ll ′ (µ)
∂vk
∂xrl

)(
J

aff,m(µ)
)−1

dΩmr

=
1

(1+ ν) (1− 2ν)

(
3µ1µ3

∫
Ω1r

(1− ν)

(
∂v1
∂xr1

∂w1
∂xr1

+
∂v1
∂xr2

∂w1
∂xr2

)
+

+

(
1− 2ν

2

)(
∂v2
∂xr1

∂w2
∂xr1

+
∂v1
∂xr2

∂w1
∂xr2

+
∂v3
∂xr2

∂w3
∂xr2

+
∂v3
∂xr1

∂w3
∂xr1

)
+

+ ν

(
∂v1
∂xr1

∂w2
∂xr2

+
∂v1
∂xr2

∂w2
∂xr1

+
∂v2
∂xr2

∂w1
∂xr1

+
∂v2
∂xr1

∂w1
∂xr2

)
dΩ1r+

+
µ3
3µ1

∫
Ω1r

(1− ν)
∂v3
∂xr3

∂w3
∂xr3

+

(
1− 2ν

2

)(
∂v1
∂xr3

∂w1
∂xr3

+
∂v2
∂xr3

∂w2
∂xr3

)
dΩ1r+

+ µ3

∫
Ω1r

ν

(
∂v1
∂xr1

∂w3
∂xr3

+
∂v1
∂xr3

∂w3
∂xr1

+
∂v2
∂xr2

∂w3
∂xr3

+
∂v2
∂xr3

∂w3
∂xr2

)
dΩ1r + . . .

. . .+ θ9a(µ)

∫
Ω3r

ν

(
∂v1
∂xr1

∂w3
∂xr3

+
∂v1
∂xr3

∂w3
∂xr1

+
∂v2
∂xr2

∂w3
∂xr3

+
∂v2
∂xr3

∂w3
∂xr2

)
(7.14)

Linear functional

As already seen in the TB case, in this case the RHS arises from the non-
homogeneus Neumann condition (the distributed axial load) applied on the
face Γ6.
Considering the relationship 7.13 and recalling that Γ6 is made by three
different subfaces to which correspond three different geometric transfor-
mations, starting from the linear functional 7.17 we get

f(v;µ) =
3∑

m=1

∫
Γmo6

(µ)
vi pi dΓ

m
o6
(µ)

= 3µ1

∫
Γ1r6

v1 p1 dΓ
1
r6

+ 3µ2

∫
Γ2r6

v1 p1 dΓ
2
r6

+

∫
Γ3r6

v1 p1 dΓ
3
r6

(7.15)

In Table 8 and 9 we present the θ-functions for the bilinear form and for
the linear functional respectively.
We remark that, thanks to the choice of a particularly simple geometry,
the terms in the affine development are rather few.
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q θ
q
a(µ) Aq

1 3µ1µ3

1

(1+ ν) (1− 2ν)

(∫
Ω1r

(1− ν)

(
∂v1
∂xr1

∂w1
∂xr1

+
∂v1
∂xr2

∂w1
∂xr2

)
+

+

(
1− 2ν

2

)(
∂v2
∂xr1

∂w2
∂xr1

+
∂v1
∂xr2

∂w1
∂xr2

+
∂v3
∂xr2

∂w3
∂xr2

+
∂v3
∂xr1

∂w3
∂xr1

)
+ν

(
∂v1
∂xr1

∂w2
∂xr2

+
∂v1
∂xr2

∂w2
∂xr1

+
∂v2
∂xr2

∂w1
∂xr1

+
∂v2
∂xr1

∂w1
∂xr2

)
dΩ1r

2

µ3
3µ1

1

(1+ ν) (1− 2ν)

∫
Ω1r

(1− ν)
∂v3
∂xr3

∂w3
∂xr3

+

(
1− 2ν

2

)(
∂v1
∂xr3

∂w1
∂xr3

+

+
∂v2
∂xr3

∂w2
∂xr3

)
dΩ1r

3

µ3
1

(1+ ν) (1− 2ν)

(∫
Ω1r

ν

(
∂v1
∂xr1

∂w3
∂xr3

+
∂v1
∂xr3

∂w3
∂xr1

+
∂v2
∂xr2

∂w3
∂xr3

+

∂v2
∂xr3

∂w3
∂xr2

)
dΩ1r

)

4 3µ2µ4

1

(1+ ν) (1− 2ν)

(∫
Ω2r

(1− ν)

(
∂v1
∂xr1

∂w1
∂xr1

+
∂v1
∂xr2

∂w1
∂xr2

)
+

+

(
1− 2ν

2

)(
∂v2
∂xr1

∂w2
∂xr1

+
∂v1
∂xr2

∂w1
∂xr2

+
∂v3
∂xr2

∂w3
∂xr2

+
∂v3
∂xr1

∂w3
∂xr1

)
+ν

(
∂v1
∂xr1

∂w2
∂xr2

+
∂v1
∂xr2

∂w2
∂xr1

+
∂v2
∂xr2

∂w1
∂xr1

+
∂v2
∂xr1

∂w1
∂xr2

)
dΩ2r

)

5

µ4
3µ2

1

(1+ ν) (1− 2ν)

∫
Ω2r

(1− ν)
∂v3
∂xr3

∂w3
∂xr3

+

(
1− 2ν

2

)(
∂v1
∂xr3

∂w1
∂xr3

+

+
∂v2
∂xr3

∂w2
∂xr3

)
dΩ2r

6

µ4
1

(1+ ν) (1− 2ν)

(∫
Ω2r

ν

(
∂v1
∂xr1

∂w3
∂xr3

+
∂v1
∂xr3

∂w3
∂xr1

+
∂v2
∂xr2

∂w3
∂xr3

+

∂v2
∂xr3

∂w3
∂xr2

)
dΩ2r

)

7 3µ2µ4

1

(1+ ν) (1− 2ν)

(∫
Ω3r

(1− ν)

(
∂v1
∂xr1

∂w1
∂xr1

+
∂v1
∂xr2

∂w1
∂xr2

)
+

+

(
1− 2ν

2

)(
∂v2
∂xr1

∂w2
∂xr1

+
∂v1
∂xr2

∂w1
∂xr2

+
∂v3
∂xr2

∂w3
∂xr2

+
∂v3
∂xr1

∂w3
∂xr1

)
+ν

(
∂v1
∂xr1

∂w2
∂xr2

+
∂v1
∂xr2

∂w2
∂xr1

+
∂v2
∂xr2

∂w1
∂xr1

+
∂v2
∂xr1

∂w1
∂xr2

)
dΩ3r

)

8

µ4
3µ2

1

(1+ ν) (1− 2ν)

∫
Ω3r

(1− ν)
∂v3
∂xr3

∂w3
∂xr3

+

(
1− 2ν

2

)(
∂v1
∂xr3

∂w1
∂xr3

+

+
∂v2
∂xr3

∂w2
∂xr3

)
dΩ3r

9

µ4
1

(1+ ν) (1− 2ν)

(∫
Ω3r

ν

(
∂v1
∂xr1

∂w3
∂xr3

+
∂v1
∂xr3

∂w3
∂xr1

+
∂v2
∂xr2

∂w3
∂xr3

+

∂v2
∂xr3

∂w3
∂xr2

)
dΩ3r

)
Table 8: EB θqa(µ)−functions
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q θ
q
f (µ) Fq

1 3µ1µ3

∫
Γ1r6

v1 p1 dΓ
1
r6

2 3µ2µ3

∫
Γ2r6

v1 p1 dΓ
2
r6

3 3− 3µ2 − 3µ1

∫
Γ3r6

v1 p1 dΓ
3
r6

Table 9: EB θqf (µ)−functions
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7.5 RESULTS AND VISUALIZATION

We present now some results obtained for the 3D elastic block case.
First we give some informations about the FE approximation concerning
the mesh, the basis function chosen and the entries needed by COMSOL, as
discussed in Chapter 5.
Then, we focus on the results obtained with the SCM algorithm (Section
3.6, Chapter 3) and we focus on the convergence of the Greedy procedure
(Section 3.4). We present an example for the output evaluation, the aver-
age displacement of the loaded face as function of either geometrical and
physical parameters.
In the last section we will present a RB application in the engineering
design; in particular we will deal with a simple optimization problem
solved via the classical FE method and via the efficient RB method.

7.5.1 FE approximatiom with COMSOL

FE discretization on reference domain

We depict in Figure 26 the reference domain over which we assemble our
FE components (section 5).
The mesh has been generated by COMSOL. In figure 26 we summarize the
main features of the mesh along with the FE basis functions and the DOFs
for the EB problem.

Figure 26: EB reference domain

Matrices assembling

We assemble the stiffness matrices Aq ∈ RN×N, 1 6 q 6 9 related to
the affine terms reported in Table 8; then we form the RHS vectors Fq ∈
RN×1, 1 6 q 6 3 related to the face Γr6 on which we have imposed a
unitary distributed load p, as reported in Table 9.
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(a) subdomain Ω1r (b) A3

Figure 27: In figure 27b we have depicted for example the contributes of the
local A3 matrix (•) to the global stiffness matrix (•).

7.5.2 SCM algorithm

For the SCM algorithm (section 3.6.3) we have took a sample train ΞSCM of
size nSCM = 1000, a tolerance εSCM = 0.8, Mα = 16, M+ = 2 and |P| = 300.
In figure 28a we show the αLB (−) and the αUB (−) for each element of the
sample train ΞSCM for the first iteration K = 1, whereas in figure 28b we
depict the same quantities for the last iteration K = Kmax = 24 of the SCM
algorithm. We can see ho the lower an upper bounds are approaching.
In EB problem, the convergence is reached with more iterations due to
fact that we deal with a vectorial problem.

(a) EB: First iteration of the SCM (b) EB: Last iteration of the SCM

Figure 28: EB SCM algorithm
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7.5.3 Greedy algorithm

We provide here the results of the Greedy algorithm (Section 3.4.2).
Here, we have chosen a sample train Ξtrain of size is ntrain = 3000, the
tolerance is Aεtoll,min = 1 · 10−2 and the maximum size of the RB space
Nmax = 150. As already done in the TB problem, even for the EB we have
chosen to minimize the absolute error bound in energy norm ∆enN (µ) (sec-
tion 3.5.1, page 52). In figure 29a we have represented the a-posteriori error
bound ∆enN (µ) for 1 6 N 6 Nmax. We can see that the error is monotoni-
cally decreasing. Just few basis ≈ 30 (versus ≈10000 FE DOFs) are needed
to obtain a maximum error bound 6 10−2 on the displacement field.

We have performed a Greedy algorithm minimizing the absolute error
on the displacement field (over the sample train Ξtrain); it is clear that from
an engineering point of view it would be of greater interest to minimize,
for example, the error on a stress (derivative of the displacement).
This choice is supported by the RB method, in this case we need to per-
form a second Greedy sampling on the so-called dual problem. For further
explanation on this issue, we refer the reader to [RHP08]. In Figure 30a
we depict the Greedy selected geometrical parameters, whereas in Figure
30b we show the physical parameters (the parameter choice is discussed
in Section 7.3). As we can see the parameters chosen by the algorithm are
clustered at the lower and upper bound of the parameters domain D.

7.5.4 Output

Since we are dealing with a compliant case , the output in this case is the
average of the displacement of the face Γ6. In fact we have that:

sN(µ) = f(uN;µ), (7.16)

This choice is not mandatory, and just illustrative, since as output may
be chosen for example as average stress on a subdomain, as maximum
stress on the whole domain and so on. Unfortunately to obtain a rigorous
a-posteriori error bound for the output, as already said in Section 7.5.3, we
must perform an additional Greedy procedure on the so-called dual problem,
see [RHP08, Gel10] for further explanations.

Since we have 5 parameters, we fix two parameters and add a relation-
ship between the others to obtain a graphical visualization of the output.
In particular we have chosen to vary parameters µ2 and µ5, i.e. the Young
modula and the thickness of the central layer respectively. In addition we
have set:

µ4 =
1− µ5
2

.

In Figure 31a we depict the output obtained with the RB method, in
Figure 31b we depict the a-posteriori error bound on the output ∆sN(µ)
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(a)

Figure 29: Error bound ∆enN (µ) during Greedy convergence

(a) Parameters µgeom distribution (b) Parameters µphysic distribution

Figure 30: EB Greedy results

between the FE and the RB method. We can see that the output error
is 6 1 · 10−4, hence the error is effectively bounded by the square of
the error on the solution field (we recall that in the Greedy we have set
∆en
N(µ) 6 εtoll,min = 1 · 10−2, ∀µ ∈ Ξtrain).

We remark again that this result follows from our assumption of compli-
ance, that enables the so called square effect (equation 3.24, Chapter 3.2).
Finally in Figure 31c we have depicted the ratio between the computa-
tional time needed to evaluate the output in the FE: the RB method pro-
vides a computational time saving at leat two order of magnitude greater
with respect to the ordinary FE method.
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(a) EB output

(b) EB output error

(c)
tsFE(µ)

tsRB(µ)

Figure 31: EB output results
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7.5.5 Visualization

We report in this section the visualization of some representative RB so-
lutions. In the first example, Figure 32, we show the solution on the ref-
erence domain. In the second example, Figure 33, we show the solution
field selecting a generic combination of parameters into our parameter
domain D.
For each example we show: the three displacement (u, v, w) in the three
direction x, y, z respectively and the error betweem the RB and FE solu-
tion. We can see from the pictures that the error bound compared to the
true error is very sharp.
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(a) u displacement and error

(b) v displacement and error

(c) w displacement and error

Figure 32: Example of a representative solution and error for µ =
{1, 1, 1, 1/3, 1/3}, ∆en

N(µ) 6 4.17 · 10−4



(a) u displacement and error

(b) v displacement and error

(c) w displacement and error

Figure 33: Example of a representative solution and error for µ =
{0.5, 5, 0.5, 0.8, 0.1}, ∆en

N(µ) 6 6.7 · 10−3
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7.6 EB OPTIMIZATION
In this section we highlight, by means of a simple optimization problem, the
great potential offered by the RB method.

Physical setup

With regard to the geometry of the EB problem, we assume that the upper
and lower layer are made by Aluminum, whereas the central layer is made
by steel.
The tickness of the central layer is our design variable, the other two layers
have a dimension dependent upon the former. As already done in Section
7.5.4, we keep the steel layer centered between the Aluminum layers, so
that the layers are symmetric with respect to the x− y plane (see Figure
24).
We suppose that the solid is stretched from a face with a distributed load
in x-direction and clamped on the other one.

layer tickness E [N/mm2] density [Kg/dm3]

Ω1
1− µ5
2

70000 2.7

Ω2 µ5 210000 7.8

Ω1
1− µ5
2

70000 2.7

Table 10: EB optimization setup

Optimization target

We suppose that we are interested in the minimization of the average
displacement of the loaded face.
Due to the different stiffness and density between the Aluminum and
the Steel, if we enlarge the central layer (made of Steel) we will obtain a
smaller displacement but we will also increase the weight and vice versa
if we reduce the central layer we will reduce the weight but we will obtain
a greater displacement.
Therefore we must cope with an optimization problem, so that we evaluate
for example the optimal thickness that minimize a suitable objective function.
Our needs are to minimize either the displacement and the weight of the
structure. The objective function has to weigh two contributions:

• the displacement of the face

• the total weight of the the structure
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Hence we define the multi-objective function F : D→ R as

F (µ) =

(
s(µ)

s0

)2
+

(
W(µ)

W0

)2
(7.17)

where:

• s(µ) is the average x-displacement (the compliant output of Section
7.5.4) of the face Γ6;

• W(µ) is the total weight of the solid block (sum of the weight of the
three layers);

• s0 and W0 are the reference displacement and the reference weight re-
spectively, obtained setting a reference parameter µ0 equal to

µ0

{
0.7 · 105, 2.1 · 105, 0.7 · 105,

1

3
,
1

3

}
.

We remark that our objective function is built so that the two contribu-
tions are on the order of unit. This choice is not mandatory, but it is the
ordinary way to weigh contributions with different unit measure.
Our optimization problem states

find µ→ min
µ∈D

F (µ) (7.18)

We will not go in deep into the minimization algorithm choice because
this aspects lies outside from the thesis purposes. We have chosen a nu-
merical tool implemented within Matlab, called fminbnd.
This numerical method uses either the golden section method and the suc-
cessive parabolic interpolation, for further explanation see [FMM77].

7.6.1 FE-RB comparison

For the RB approximation we have used all the basis function selected by
the Greedy. Of course in the optimization context the designer will take
the minimum number of basis functions that will permit to bound the
error (on the solution field or on a particular output) under a desirable
threshold.
This means that the ratio between the time to obtain the optimal solution

µ5 iter DOFs time

RB 0.297463 11 10509 0.2028

FE 0.297467 11 26 30.7790

Table 11: EB optimization result
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in the RB and FE method is

t
opt
FE

t
opt
RB

≈ 150 (7.19)

Therefore, we notice from 7.19 that the RB approximation provides a com-
putational saving two order of magnitude greater than the classical FE
method. This result is in accordance with previous tests carried out for
example in [RHP08].
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8 S TO K E S P R O B L E M

8.1 INTRODUCTION
In this chapter we will exploit the creation of a RB approximation in the
3D case dealing with a vectorial elliptic noncoercive problem.
We deal with a steady Stokes problem, hence the unknowns are the three
components of the velocity field plus the pressure (scalar), i.e. ∀x ∈ Ω

u(x;µ) ∈ R4 = {u, v, w, P}T

The lack of coercivity, since the Stokes problem is a saddle-point, see
[QV97], brings some extra-difficulties in the construction of the RB ap-
proximation. Nonetheless, as we have seen in the previous chapters, we
possess all the mathematical tools which allow us to build a proper RB
approximation.
Up to date, this thesis is the first work that deals with a 3D Stokes prob-
lem; this work is oriented to be the first step for the construction of a RB
approximation for Navier-Stokes equations in a 3D setting.
To build the FE ingredients (Section 3.3.5) we use the COMSOL multiphysics
software and for the RB assembling we use the rbMIT routine available for
noncoercive problems with few modifications to extend the procedure to 3D
problems.

8.2 PROBLEM DESCRIPTION
We now briefly introduce the application chosen in order to exploit the
RB approximation of the Stokes problem.

Physical and analytical problem

The Stokes problem is able to describe a flow at very low Reynolds number.
The field of applicability of these equations is quite wide, e. g. hemody-
namics, lubrication/micro-lubrication and MEMS 1 applications. In our
case we will deal with a particular MEMS application, the Viscous Pump
VP, see for example [SSG97, Woi05]. The MEMS are devices of charac-
teristic dimension are between 1 to 100 [µm]. In the past few years, this
micromachines have reached a great development thanks to the recent ad-
vance in microtechnology process.

1 Micro Electro-Mechanical Systems
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In particular, the VP exploits the viscosity of a fluid to create a net flux in
a micro channel. The pump (a sketch is depicted in Figure 34) is consti-

Figure 34: VP sketch

tuted by a tube in which an eccentric rotor is mounted (perpendicular to
the flow direction) on a shaft and kept in rotation.
The rotor drags some fluid flow into rotation due to the viscosity, thanks
to the eccentricity of the rotor there is a net flux of fluid that moves into
the channel.
Many works in the last ten years have been devoted to the study of this
device, especially in the design optimization context, we cite for example
[SSG97] and [AHE04].
The RB approach is very well suited here, in fact the Online cheap and
reliable stage permits fast evaluation of the output, hence a very inespen-
sive design strategy. A generic viscous pump can depend on either ge-
ometrical and physical parameters. In particular, we will consider: the
eccentricity of the rotor, the pressure imposed at the side of the channel
and the angular speed of the shaft.
A classical optimization problem is to maximize the mass flow rate and
at the same time minimize shaft power consumption when an external
pressure load is applied along the channel housing the rotor, [DKC07].
The output, in our example, is the net mass flux obtained by the VP. The
procedure to manage with the RB approximation of this problem is dis-
cussed in Section 3.3.

8.3 PARAMETERS CHOICE

In our problem, the parameters on which we will act to modify the be-
havior of the flow are three: the eccentricity, the angular speed of the rotor
and the pressure load imposed at the channel.
We remark that the load pressure imposed (on the outlet, on the inlet
we assume a null pressure) induces a flux in x direction that has to be
overcome by the counter flux induced by the clockwise positive rotation
of the rotor, as depicted in Figure 35. Either viscosity of the fluid and
the density are kept constant. We have chosen a fluid with physical char-
acteristic similar to the water, hence with a density ρ̃ = 1 · 103[Kg/m3]
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and dynamic viscosity µ̃ = 1 · 10−3[Kgm/s]. It follows that the kinematic
viscosity is ν̃ = µ/ρ = 1 · 10−6[m/s].
The quantities with a tilde ˜ correspond to the dimensional quantities,
whereas the absence of a tilde denotes non-dimensional quantities.

Figure 35: VB domain decomposition: the dimension are expressed in [m]

Parameters domain

We now summarize the parameters and the parameter domain chosen to
describe our VP problem:

• the non-dimensional angular speed of the rotor, which correspond
to the Reynolds number Re

D
(see Section 8.4), denoted with µ1, is

defined as:

µ1 =
ω̃D̃2

2µ̃
=
D̃Ũ
µ̃

= Re
D

, (8.1)

where:

– Ũ =
D̃ω̃

2
[m/s] is the dimensional speed of reference,

– ω̃ (= [rad/s]) is the dimensional angular speed of the rotor;

• The eccentricity of the rotor, denoted with µ2, defined as:

µ2 = 1−
d̃

H̃/2
, (8.2)

where:

1. H̃ = 1.4 · 10−4 [m] is the total height of the channel;

2. d̃ (= [m]) = is the height of the subdomain Ω1.
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Figure 36: VP boundary conditions

• the non-dimensional load pressure imposed at the outlet of the
channel, denoted with µ3, defined as

µ3 =
P̃outD̃

2

ν̃2ρ̃
, (8.3)

where P̃out (= [Pa]) is the dimensional load pressure imposed at the
channel.

The dimensional parameter domain is:

D =
[
ω̃

min
, ω̃

max
]
×
[
P̃

min

out, P̃
max

out

]
×
[
d̃

min
, d̃

max
]

[50, 200] [rad/s]× [0.025, 0.25]10−4[m]× [0.05, 10] [Pa] (8.4)

Thanks to the relationships given above, we can rewrite the parameter
domain 8.4 in a non-dimensional way:

D =
[
µ

min

1 , µ
max

1

]
×
[
µ

min

2 , µ
max

3

]
×
[
µ

min

3 , µ
max

3

]
= [0, 7.5] 10−4 × [0.65, 0.95]× [0, 30] (8.5)

Boundary conditions

Now we explain the boundary condition chosen to represent our physical
model, (see Figure 36). With regard to the velocity boundary conditions,
we have imposed an homogeneus Dirichlet condition on Γ2:5 that represent
a no-slip condition on the wall channel.
In addition we have imposed a non-homogeneus Dirichlet condition on Γ7
that represent the no-slip condition on the rotating surface of the rotor.
We now give the explicit definition of the tangential velocity that con-
stitutes our boundary condition. We will denote this velocity with g̃ =
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g̃ (x;µ).
We recall that the rotor is normal to the channel so that the angular veloc-
ity is represented by a vector directed along the z-axis. It follows that the
non-dimensional velocity g (x;µ) ∀x ∈ Γ7 is defined as:

g(x;µ) =
g̃(x;µ)

Ũ

=
2

D̃ω̃


ω̃ D̃2 cos

(
arctan

(
x−x

O

z−z
O

))
−ω̃ D̃2 sin

(
arctan

(
x−x

O

z−z
O

))
0

 =


cos
(

arctan
(
x−x

O

z−z
O

))
− sin

(
arctan

(
x−x

O

z−z
O

))
0


(8.6)

With regard to the pressure boundary conditions, we have imposed P̃ =
P̃in = 0 on Γ1 (inlet) and P̃ = P̃out = µ3 on Γ6 (outlet).
The pressure boundary condition at the inlet and outlet is implemented as

σn = Pin/out, (8.7)

where σ is the non-dimensional Stokes stress tensor, n is the unit normal
outward vector and P is the imposed non-dimensional pressure.
Finally on the internal faces we have assumed continuity of either pres-
sure, velocity and fluxes.

8.4 VP PROBLEM FORMULATION

8.4.1 Original domain

In this section the analytical formulation of the governing PDEs for the
Stokes problem on the original domain will be introduced. The equation
that describes the pressure and velocity field, within the hypothesis de-
scribed in section 8.1, is the following:

−Re
D
∆oû +∇o P̂ = f in Ωo(µ)

∇o · û = 0 in Ωo(µ)

û = 0 on Γo2:5(µ)

û = g on Γo7(µ)

Re
D

∂û
∂n

− P̂n = 0 on Γo1(µ)

Re
D

∂û
∂n

− P̂n = µ3 on Γo6(µ)

(8.8)

where:

• u = {u, v, w}T is the non-dimensional field velocity, defined as:

u =
1

Ũ
ũ =

1

Ũ
{ũ, ṽ, w̃}T ; (8.9)
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• P is the non-dimensional field of pressure, defined as

P =
P̃D̃2

ν̃2ρ̃
; (8.10)

• Re
D
= µ1 is the Reynolds number, defined as:

Re
D
=
D̃Ũ
µ̃

; . (8.11)

We remark that, tipically, the momentum equation is written so that the
non-dimensional coefficient associated to the viscous stress is the inverse
of Re. We have pursued another choice, i.e. to follow the notation used
in literature with regard to this topic, see [SSG97, DKC07].
We now introduce two functional spaces for the velocity and for the pres-
sure. For the velocity we choose Ve =

{
v ∈

(
H1(Ωo)

)3∣∣∣ v = 0 on Γ2:5
}

,

whereas for the pressure we choose Qe =
{
q ∈ L20(Ωo)

}
, where the sub-

script 0 of the space L20 denotes that we are interested in a solution with
a zero average pressure. We recall that the domain is decomposed in three
subdomains and each face of the domain is divided in subfaces, as de-
picted in Figure 35-36.
Then, multiplying the first equation of the problem 8.8 by a test function
v ∈ Ve and the second equation by q ∈ Qe, integrating on Ωo(µ) and
using the Green formula we get the weak formulation:

3∑
k=1

∫
Ωko(µ)

µ1∇oû · ∇ov dΩko −
∫
Ωko(µ)

P̂∇ov dΩko = 0

3∑
k=1

∫
Ωko(µ)

q∇o · û dΩko = 0

(8.12)

We now define the bilinear forms a : Ve×Ve×D→ R and b : Ve×Qe×
D→ R and the linear functional f : Ve ×D→ R as follows:

a(û, v;µ) =
3∑
k=1

∫
Ωko(µ)

µ1∇oû · ∇ov dΩko (8.13)

b(û,q;µ) =
3∑
k=1

∫
Ωko(µ)

q∇o · û dΩko (8.14)

With these notations the problem 8.12 becomes:{
a(û, v;µ) + b(v, P̂;µ) = 0 ∀v ∈ Ve

b(û,q;µ) = 0 ∀q ∈ Qe
(8.15)

Since we are dealing with non-homogeneus Dirichlet and Neumann condi-
tions (as indicated in 8.8) and due to the choice of our functional space,
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the weak formulation becomes, [Qua09]: find (u,P) ∈ Ve ×Qe such that,
[QV97]:

{
a(u, v;µ) + b(v,P;µ) = F(v;µ) ∀v ∈ Ve

b(u,q;µ) = G(q;µ) ∀q ∈ Qe
(8.16)

Denoting a lifting of the boundary datum g with Rg ∈
[
H1(Ωo(µ))

]3, we
have placed u = û − Rg, whereas no lifting is required for the pressure
field, hence P = P̂. We remark that the function g arises from the no-slip
condition on the rotor. The new known terms F(v;µ) and G(q;µ) are
defined as:

F(v;µ) =
3∑
k=1

∫
Γko6

(µ)
Pout v dΓko6 + a(Rg , v;µ), (8.17)

G(q;µ) = −b(Rg ,q;µ). (8.18)

8.4.2 Reference domain

We now rewrite the problem 8.16 on the reference domain to exploit the
affine decomposition.
We need to evaluate the affine mappings for each subdomain to rewrite
all the parameter dependent quantities in an affine formulation.
We summarize the results for the geometric transformation in Table 12.
In addition the same relationships for the Jacobian and the derivatives

sub Gaff
11 Gaff

22 Gaff
33 Caff

1 Caff
2 Caff

3

Ω1 1 1 −
1

7(µ2 − 1)
0 0 −µ2

Ω2 1 1 1 0 0 0

Ω3 1 1
2

7µ2 − 4
0 0

7(µ2−1)
11

Table 12: VP affine mappings

operator used in the TB and EB hold, hence we can directly step to the
definition of the bilinear and linear forms on the reference domain.
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Bilinear form

Starting from the bilinear form a (8.13) we can write:

a(u, v;µ) =
3∑
k=1

∫
Ωko(µ)

µ1∇ou · ∇ov dΩko =

=

3∑
k=1

∫
Ωkr (µ)

µ1∇Tu
(
Gaff,k

)T (
Gaff,k

)
∇v
(
Jaff,k

)−1
dΩkr =

= 1

(∫
Ω1r

µ1

(
∂u1
∂xr1

∂v1
∂xr1

+ . . .+
∂u3
∂xr2

∂v3
∂xr2

)
dΩ1r + . . .

. . . +

∫
Ω3r

µ1

(
∂u1
∂xr1

∂v1
∂xr1

+ . . .+
∂u3
∂xr2

∂v3
∂xr2

)
dΩ3r

)
+ . . .

. . .+ θ3a(µ)

∫
Ω3r

(
∂u1
∂xr3

∂v1
∂xr3

+
∂u2
∂xr3

∂v2
∂xr3

+
∂u3
∂xr3

∂v3
∂xr3

)
dΩ3r (8.19)

Meanwhile the bilinear form b becomes:

b(u,q;µ) =
3∑
k=1

∫
Ωko(µ)

q∇oû dΩko =

=

3∑
k=1

∫
Ωko(µ)

qGaff,k∇ · u
(
Jaff,k

)−1
dΩkr =

= 1

(∫
Ω1r

q

(
∂u1
∂xr1

+ . . .+
∂u3
∂xr3

)
dΩ1r + . . .+

∫
Ω3r

q

(
∂u1
∂xr1

+ . . .

+ . . .
∂u3
∂xr3

))
+ θ2b(µ)

∫
Ω3r

q

(
∂u1
∂xr1

+ . . .+
∂u3
∂xr3

)
dΩ3r (8.20)

We present in detail the definition of each θ-function and each parameter
independent matrix associated to the parametric bilinear forms a and b
in Table 13-14.

Linear functional

We now briefly present the RHS of the Stokes problem on the original
domain. We remark that the first addendum of equation 8.17 comes from a
Neumann non-homogeneous condition, hence the treatment is standard;
whereas the second addendum of equation 8.17 and the equation 8.18

arise from a non-homogeneous Dirichlet condition.
Since we have placed the Stokes equations in a non-dimensional frame,
then the parametric dependence upon the angular velocity of the rotor
is accounted in the bilinear form a, therefore the boundary condition g
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has been set in a parameter independent way (we recall that we have set
µ1 = ReD). The linear forms F(v;µ) and G(q;µ) can be written as:

F(v;µ) =
3∑
k=1

∫
Γko6

(µ)
Pout v dΓko6 + a(Rg , v;µ) =

= µ2 · 105µ3
∫
Γ1r6

v dΓ1r6 + µ3
∫
Γ2r6

v dΓ2r6+

+
(
15µ3 − µ2 · 105/2µ3

) ∫
Γ3r6

v dΓ3r6 + a(Rg, v;µ). (8.21)

G(q;µ) = −b(Rg,q;µ)

We summarize the parameter dependent functions and the Offline param-
eter independent vectors associated to the linear forms in Table 15-16.

q θ
q
a(µ) Aq

1 µ1

∫
Ω1r

(
∂u1
∂xr1

∂v1
∂xr1

+
∂u1
∂xr2

∂v1
∂xr2

+
∂u2
∂xr1

∂v2
∂xr1

+
∂u2
∂xr2

∂v2
∂xr2

)
dΩ1r+

+

∫
Ω2r

(
∂u1
∂xr1

∂v1
∂xr1

+
∂u1
∂xr2

∂v1
∂xr2

+
∂u1
∂xr3

∂v1
∂xr3

+
∂u2
∂xr1

∂v2
∂xr1

+

+
∂u2
∂xr2

∂v2
∂xr2

+
∂u2
∂xr3

∂v2
∂xr3

)
dΩ2r+

+

∫
Ω3r

(
∂u1
∂xr1

∂v1
∂xr1

+
∂u1
∂xr2

∂v1
∂xr2

+
∂u2
∂xr1

∂v2
∂xr1

+
∂u2
∂xr2

∂v2
∂xr2

)
dΩ3r

2 2
(7µ2)−1

(7µ2−4)
2

∫
Ω1r

(
∂u1
∂xr3

∂v1
∂xr3

+
∂u2
∂xr3

∂v2
∂xr3

+
∂u3
∂xr3

∂v3
∂xr3

)
dΩ1r

3
2µ1((7µ2)−1)

(7µ2−4)2

∫
Ω3r

(
∂u1
∂xr3

∂v1
∂xr3

+
∂u2
∂xr3

∂v2
∂xr3

+
∂u3
∂xr3

∂v3
∂xr3

)
dΩ3r

Table 13: θa-functions
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q θ
q
b(µ) Bq

1 1

∫
Ω1r

q

(
∂u1
∂xr1

+
∂u2
∂xr2

+
∂u3
∂xr3

)
dΩ1r+

+

∫
Ω2r

q

(
∂u1
∂xr1

+
∂u2
∂xr2

+
∂u3
∂xr3

)
dΩ2r+

+

∫
Ω3r

q

(
∂u1
∂xr1

+
∂u2
∂xr2

)
dΩ3r+

2

7µ2 − 1

7µ2 − 4

∫
Ω3r

q
∂u3
∂xr3

dΩ3r

Table 14: θb-functions

q θ
q
F (µ) Fq

1

202µ3
102 1.12

∫
Γ1o6

(µ)
v dΓ1o6

2 −
202µ3(7µ2 − 7)

102 1.12

∫
Γ2o6

(µ)
v dΓ2o6

3

202µ3((7µ2)/2− 2)

102 1.12

∫
Γ3o6

(µ)
v dΓ3o6

4 : 7 µ1θ
1:3

a (µ) a
1:3
(Rg, v)

Table 15: θF-functions

q θ
q
G(µ) Gq

1 : 2 µ1θ
1:2

b (µ) b
1:2
(Rg,q)

Table 16: θG-functions
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8.5 RESULTS AND VISUALIZATION
In this section we will present the results obtained for the 3D viscous pump
case.First we will give some details about the FE approximation concern-
ing the mesh, the basis function and the input needed by COMSOL, then
we will present the convergence results for either the SCM and the Greedy
algorithm.
Below we will show the results for the output along with the computa-
tional time saving obtained with the RB method.

8.5.1 FE approximatiom with COMSOL

FE discretization on reference domain

We depict in Figure 37 the reference domain over which we will assemble
our FE components; we also summarize the main characteristic of the
mesh together with the FE basis functions and the DOFs for the pressure
and velocity fields.

Figure 37: VP reference domain

Matrices assembling

In this section, we assemble the parameter independent matrices (see Sec-
tion 8.4.2) needed by the RB procedure.
In the Stokes case, after COMSOL assembling, we have to perform an inter-
mediate step, as we will see in the following section.
To assemble the Stokes matrices and vectors we just need to provide to
COMSOL the entries reported in the Tables 13, 14, 15 and 16.
In the VP case, the definition of the the Stokes problem is quite involved,
we refer to the COMSOL manuals [Com07b, Com07a] for more detailed ex-
planations.
We show in figure the assembled matrices A3

COMSOL
B2

COMSOL
(see Tables 13-14).

The underscript COMSOL recalls that, before passing the FE ingredients to the
rbMIT, we must take an intermediate step (see Section 8.5.1.1).
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(a) subdomain Ω1r (b) A3
COMSOL

Figure 38: In Figure 38a we have highlighted the subdomain and the definition
of the coefficients used to assemble the matrix A3

COMSOL
, whereas in

Figure 38b we have depicted the pattern of this matrix (•) along with
the pattern of the global stiffness matrix (•).

(a) subdomains Ω1:3r (b) B2
COMSOL

Figure 39: In Figure 39a we have highlighted the subdomains and the definition
of the coefficients used to assemble the matrix B2

COMSOL
, whereas in

Figure 39b we have depicted the pattern of the matrix
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8.5.1.1 Matrices reordering

Unlike the TB and EB case, we have denoted the assembled FE matrices
and vectors with the superscript COMSOL. In fact, in the Stokes case, we
must perform a reordering on the DOFs of the assembled entities.
We first recall that the linear system arising from a classical FE approxi-
mation of the Stokes problem is the following, [QV97]:[

A
Nv×Nv

B
Nv×Np

BT
Nv×Nv

0
Np×Np

]{
uNv×1

PNp×1

}
=

{
FNv×1

GNp×1

}
(8.22)

In this case, the DOFs of velocity and pressure are separated into the
vector of unknowns.
Unfortunately COMSOL exploit a different sorting, so that the pressure and
velocity DOFs are mixed and the linear system is set in the following way:[

K
COMSOL

]{
x
COMSOL

}
=
{
f
COMSOL

}
(8.23)

([
R(Nv+Np)×(Nv+Np)

]{
R(Nv+Np)×1

}
=
{

R(Nv+Np)×1
})

(8.24)

where K
COMSOL

and f
COMSOL

are the COMSOL assembled stiffness matrix and RHS
vector respectively. The vector of DOFs is sorted as follows:

{
x
COMSOL

}
=
{
u1, v1, w1,p1, . . . , u

Nv
, v

Nv
, w

Nv
,p

Np

}T
(8.25)

Hence, the FE matrices and vectors must be reordered before being passed
to rbMIT. In particular, introducing a permutation matrix, denoted with M,
such that: {

u

P

}
=
[
M
] {

x
COMSOL

}
(8.26)

and replacing this equation into the COMSOL linear system 8.23, we obtain
the reordering conditions:[

A
Nv×Nv

B
Nv×Np

BT
Nv×Nv

0
Np×Np

]
=
[
M
]T [

K
COMSOL

] [
M
]

(8.27){
F

G

}
=
[
M
]T {

f
COMSOL

}
(8.28)

These operations are expensive because involves a cost O((Nv +Np)
2),

nonetheless thanks to the Offline/Online RB splitting procedure, they are
performed just once.
We depict in Figure 40 the global stiffness matrix pattern before and after
the reordering (on the global Stokes stiffness matrix).
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(a) COMSOL ordering (b) classical ordering

Figure 40: VP matrices reordering

8.5.2 SCM algorithm

We recall that in this case we are interested in the estimation a lower
bound of the inf-sup constant βN(µ) (see Section 3.3).
For the SCM algorithm (section 3.6.3) we take a sample train ΞSCM of size
nSCM = 1000, a tolerance εSCM = 0.8, Mα = 10, M+ = 5 and |P| = 200.
In figure 41 we depict the cover percentage as function of the SCM al-
gorithm iteration. The cover percentage is defined as the percentage
of samples in the ΞSCM that satisfies either (i) the tolerance εSCM (over
(βUB −βLB) /βUB, see 3.138) and (ii) the positivity of βLB.

Figure 41: VP SCM algorithm: cover percentage

138



8.5 RESULTS AND VISUALIZATION

8.5.3 Greedy algorithm

We present the results for the Greedy algorithm (Section 3.4.2), during the
RB assembling procedure.
We have chosen a sample train Ξtrain of size is ntrain = 3000, a tolerance is
εtoll,min = 1 · 10−6 and a maximum size of the RB space is taken Nmax =
100. We have chosen to minimize the absolute error bound in the energy
norm ∆enN (µ); we recall from Chapter 2.4 that this choice corresponds
to minimize H1-norm of the error bound on the velocity and L2-norm
of error bound on the pressure. In figure 42 we have represented the

Figure 42: Error bound ∆enN (µ)

error bound ∆enN (µ) for 1 6 N 6 Nmax. We can see that the error is
monotonically decreasing. Just very few basis ≈ 13 (versus ≈30000 FE
DOFs) are needed to obtain a maximum error bound 6 1 · 10−6 on the
velocity and pressure field for all the samples in Ξtrain .
In Figure 43 we depict the parameter samples selected by the Greedy
algorithm. We note that, the algorithm selects the samples in the worst
case scenario, i.e. the parameters chosen are those clustered far from the
"center" of the parameter domain.

Figure 43: Parameters distribution
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8.5.4 Output

The output is the net mass flux of fluid which moves in the channel.
We recall that we are dealing with a fluid with constant density ρ̃ =
1 · 103[Kg/m3].
In this case we are dealing with a non-compliant problem since in the
RHS there are terms arising from the inhomogeneous Dirichlet condition
(equations 8.17 and 8.18). The output can be evaluated as follows:

s(µ) = l(u(µ);µ)

= ρ̃

(
202µ3
102 1.12

∫
Γ1r6

u(µ) dΓ1r6 −
202µ3(7µ2 − 7)

102 1.12

∫
Γ2r6

u(µ) dΓ2r6+

+
202µ3((7µ2)/2− 2)

102 1.12

∫
Γ3r6

u(µ) dΓ3r6

)
(8.29)

If we want to recover the "square-effect" on the error bound of the output,
we have to solve an additional problem, called the dual problem. Since
this work is focused on another topic, we will not exploit this additional
tool offered by the RB methodology, see [RHP08, Gel10] for a detailed
explanation of the dual-problem.
Since we have 3 parameters, we have fixed the pressure, that is µ3 = 5

and we left vary the angular velocity µ1 (the Reyenolds number) and the
eccentricity µ2 of the rotor.
In Figure 44 we depict the output obtained with the RB method. In Figure
45a we depict the error bound ∆sN(µ) on the output, in Figure 45b we
depict the computational time savings offered by the RB method.
As we would have expected, the greater µ1 (= ReD) is (that we recall is

Figure 44: VP output: net flux

proportional to the rotor angular speed) and the more the mass net flux
is.
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(a) VP output error bound ∆sN(µ)

(b)
tsFE(µ)

tsRB(µ)

Figure 45: VP output results

Moreover, as it has been proved in [DKC07], the more the eccentricity
(µ2) increases, the more the mass flux increases. In fact a non-symmetry
of the geometry creates an unbalancing in the velocity field that induces
a net flux through the channel.
We note that, in this case, the computational saving is three orders of
magnitude with respect to the FE method, which is a quite astonishing
result.

8.5.5 Visualization

We now report the visualization of some representative RB solutions. On
the upper figures, we show the solution for different value of the parame-
ters µ. In the first example, we show the solution on the reference domain.
In the second example, we show the solution field after selecting a generic
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combination of parameters in the parameter domain D.

(a) RB solution: velocity field and streamlines

(b) RB solution: pressure field

Figure 46: Example of a representative solution and for µ = {100, 0.1, 0.1}, ∆enN 6
8.95 · 10−7
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(a) RB solution: pointwise error on velocity field

(b) RB solution: pointwise error on pressure field

Figure 47: Pointwise error for µ = {100, 0.1, 0.1}, ∆enN 6 8.95 · 10−7
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9 S U M M A R Y A N D C O N C L U S I O N S

In this thesis, we have studied the RB method for 3D coercive and nonco-
ercive, scalar and vectorial problems. First, we have introduced the funda-
mentals of the RB method for parametrized coercive and noncoercive elliptic
PDEs: (i) the affine decomposition to enable an Offline/Online splitting
procedure, (ii) the a-posteriori error estimates to efficiently create the RB
Greedy space (Offline) and inexpensive and rigorous error bounds for
the RB solution and output (Online). In order to obtain an affine rep-
resentation of the parametrized linear and bilinear forms we exploited
an affine geometry precondition properly extended to the 3D case. The RB
procedures, i.e. the Offline creation of the RB space and basis, the On-
line RB system solution, the input/output evaluation and post-processing
were carried out thanks to the collaboration of two softwares, COMSOL
multiphysics and rbMIT. We presented the applications of the RB method
to a wide spectrum of engineering problem of interest: (i) a steady ther-
mal conductivity problem in heat transfer; (ii) a linear elasticity problem, with
regard to coercive problems; a (iii) Stokes flows application, concerning
noncoercive problems.
We obtained in each applicative case a good and rapid convergence of
either the SCM and the Greedy algorithm. Hence we experimentally
proved that the RB method is very well suited to efficiently approximate
also 3D problems with a rather involved parameter dependence, either
physical and geometrical.
The Offline stage is quite expensive in the 3D context, nonetheless the
very inexpensive and rigorous Online stage renders invaluable the worth
of the RB method in many engineering field of interests: optimization,
control, sensitivity analysis and real-time context.
In fact with the RB method we obtained (Online) a computational saving
of at least two order of magnitude with respect to the FE approximation
in the thermal and in the linear elasticity applications; corroborating the
recent results obtained in parallel work [Gel10] dealing with 3D coercive
problems. In the Stokes flow application, we obtained computational sav-
ing even of three order of magnitude; this result may have been possible
even in consequences of a quite simple parameter dependence, nonethe-
less since the application is already able to seize the main properties and
characteristic of a state-of-the-art viscous pump, see e. g.[SSG97, AHE04,
DKC07], we concretely foresee a possible development of the RB method
in the 3D fluid-dynamic field.

The applications chosen to exploit the RB approximation of 3D prob-
lems are a little, although representative, subset of the applications the
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current efforts on the RB are devoted to. Different branches of the re-
search field related to the RB method are dealing nowadays with a plenty
of different problems and different context: the study of potential flows,
see e. g.[Roz10], thermal problems, see [RNPD09, RHNP09], hemodyna-
mics and biomedical devices optimization, see [MQR10], the study of
nonlinear equations such as the Navier-Stokes problem, [DR09], the devel-
opment of RB approximation in parabolic, see [NRHP10], and hyperbolic
equations, see [NRP09]. Up to now, much efforts have been focused on
2D problems, our work constitutes the first steps in the natural extension
and prosecution of the RB work in the 3D frame.

We also remark that in this work we have used a rather simple RB
discretization, this is because in the 3D framework an automatic affine ge-
ometry precondition treatment is not available yet. On the contrary in the
2D case, the procedure has been developed and implemented, see rbMIT
and for other works dealing with parametrically complex 2D geometries
see [Qua05, Mil06].
Unfortunately, the affine parametrization of a geometry, is not enough
flexible for some purposes, e. g.the shape-optimization of a vessel in a
hemodynamic context or the design of an air intake in an aerodynamic
context. Hence in the very few years, new techniques based on the so-
called free form deformation has been developed in collaboration with the
RB method, see [MQR10, LR10] and [RM10] for works dealing with shape
optimization of cardiovascular geometries.
A possible and remarkable upgrade of our work would be to enrich the
3D geometry parametrization with these new free-from techniques. Re-
cent work are devoted to this topic, which, in my opinion, will gainfully
improve the power of RB method in the engineering context.
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