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Facoltà di Ingegneria dell’Informazione

POLO REGIONALE DI COMO
Master of Science in
Computer Engineering

No-Reference Pixel-Based Estimation of
Channel-Induced Distortion in H.264/AVC
Video

Supervisor: Prof. Marco Tagliasacchi
Assistant Supervisor: Prof. Giuseppe Valenzise

Master Graduation Thesis by: Stefano Magni Id. number 707610

Academic Year: 2009/2010



POLITECNICO DI MILANO
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Abstract

Nowadays IP networks are used to deliver multimedia contents. Usually the

used networks provide only a best effort service, so there is no guarantee about

the delivery of contents. The final user and the provider may decide to stipulate a

service level agreement (SLA), fixing the perceived video quality at the end user

side. If the objective quality is not reached the provider pays a penalty. So it is

useful to search for a metric to estimate the perceived video quality working at

the end-user terminal. Typically video contents are compressed by the encoder

before transmission to the decoder and so the video may suffers from two dif-

ferent types of distortions. Quantization distortion is due to lossy compression

while channel distortion is linked to the losses of packets during transmission.

In particular, in the second case, the decoder tries to recover the lost information

running a specific concealment algorithm, that tries to guess the lost data from

the correctly received ones. Obviously this procedure can lead to wrong recon-

struction, and visual impairments arise in the reconstructed video.

Our objective is to estimate channel distortion at the decoder side using only

the reconstructed video, creating a no reference pixel base (NR-P) video quality

monitoring. Conventionally, these methods assume the availability of the cor-

rupted bitstream. However in some situations this is not possible, e.g. because

the bitstream is encrypted or processed by third party decoders, and only the de-

coded pixel values can be used. Our objective is reached thanks to NORM a no

reference quality monitoring for channel distortion that uses both decoded video

and bitstream information. In particular we estimate bitstream NORM inputs

from the reconstructed video, creating a NR-P NORM version. It turns out that

the major limitation in this scenario is the lack of knowledge about which slices

have been actually lost. Our major effort is so linked to the map of lost mac-

roblock estimation. In particular to solve this problem we search for concealed

macroblocks with visual impairments starting from mild assumptions valid for



a large class of concealment techniques. For each frame prediction residuals’ en-

ergy at macroblock level is used to recognize the desired blocks and a confidence

is applied to avoid false positives. Finally also spatial relationship between lost

blocks is taken into account thanks to Markov random fields model.

The estimated bitstream inputs are used to run NORM in its NR-P version.

The obtained channel distortion estimations are well correlated (linear correlation

coefficient larger than 0.9 over a wide range of packet loss rates) wrt the real

distortion calculated at frame and sequence level.
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T , and the obtained

ground truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.14 On the left the corrupted video, with the lost slices in red, on the

right the estimated likelihood map . . . . . . . . . . . . . . . . . . . 53
4.15 Example of overlapping pdf’s of the same feature in two classes. . . 54
4.16 Temporal likelihood ROC curves for Mobile sequence at two dif-

ferent PLRs, 1% on the left 5%, on the right, over 15 realizations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.17 Temporal likelihood ROC curves for Foreman sequence at two dif-
ferent PLRs, 1% on the left 5%, on the right, over 15 realizations

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.18 Temporal likelihood ROC curves for News sequence at two differ-

ent PLRs, 1% on the left 5%, on the right, over 15 realizations . . . 55
4.19 Macroblocks classified wrt their coding modes for three sequences. 56
4.20 Spatial reconstruction M̂i

REC(x,y, t) of the ith macroblock. . . . . . . . 59
4.21 On the left the corrupted video, with lost slices in red, on the right

the estimated likelihood map . . . . . . . . . . . . . . . . . . . . . . 60
4.22 Spatial likelihood ROC curves for Mobile sequence at two different

PLRs, 1% on the left 5%, on the right, over 15 realizations . . . . . . 61
4.23 Spatial likelihood ROC curves for Foreman sequence at two differ-

ent PLRs, 1% on the left 5%, on the right, over 15 realizations . . . 61



4.24 Spatial likelihood ROC curves for News sequence at two different
PLRs, 1% on the left 5%, on the right, over 15 realizations . . . . . . 61

4.25 Starting form the left the corrupted video the likelihood map and
the posterior map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.26 AUC surfaces for Foreman, News sequences at PLR 5% . . . . . . . 64
4.27 Temporal likelihood and prior ROC curves for Mobile sequence at

two different PLRs, 1% on the left 5%, on the right, over 15 realiza-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.28 Temporal likelihood and prior ROC curves for Foreman sequence
at two different PLRs, 1% on the left 5%, on the right, over 15 real-
izations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.29 Temporal likelihood and prior ROC curves for News sequence at
two different PLRs, 1% on the left 5%, on the right, over 15 realiza-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.30 T MD for each frame of Foreman and News sequences. . . . . . . . . 67
4.31 Starting form the left the corrupted video the likelihood map and

the posterior map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.32 AUC surfaces for Foreman, News sequences at PLR 5% . . . . . . . 69
4.33 Cumulative distribution for the L1 norm of the difference between

motion vectors belonging to the noiseless and corrupted frame. . . 69
4.34 Spatial likelihood and prior ROC curves for Mobile sequence at two

different PLRs, 1% on the left 5%, on the right, over 15 realizations 70
4.35 Spatial likelihood and prior ROC curves for Foreman sequence at

two different PLRs, 1% on the left 5%, on the right, over 15 realiza-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.36 Spatial likelihood and prior ROC curves for News sequence at two
different PLRs, 1% on the left 5%, on the right, over 15 realizations 70

4.37 The undirect graph used to model the estimated map of badly con-
cealed macroblock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.38 The adopted directed capacitated graph. Edge costs are reflected
by their thickness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.39 Starting form the left the corrupted video the likelihood map and
the posterior map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.40 Temporal likelihood and prior ROC curves with TPR and FPR ob-
tained by Min-Cut/Max-Flow algorithm for Mobile sequence . . . 76

4.41 Temporal likelihood and prior ROC curves with TPR and FPR ob-
tained by Min-Cut/Max-Flow algorithm for Foreman sequence . . 76

4.42 Temporal likelihood and prior ROC curves with TPR and FPR ob-
tained by Min-Cut/Max-Flow algorithm for News sequence . . . . 76

4.43 Spatial likelihood and prior ROC curves with TPR and FPR ob-
tained by Min-Cut/Max-Flow algorithm for Mobile sequence . . . 77

4.44 Spatial likelihood and prior ROC curves with TPR and FPR ob-
tained by Min-Cut/Max-Flow algorithm for Foreman sequence . . 77

4.45 Spatial likelihood and prior ROC curves with TPR and FPR ob-
tained by Min-Cut/Max-Flow algorithm for News sequence . . . . 77



4.46 Starting form the left the corrupted video the likelihood map and
the posterior map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.47 System overview for lost badly concealed macroblock . . . . . . . . 79

5.1 NR-PP and NR-PL scatter plots at frame level for Mobile sequence
at different PLRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 NR-PP and NR-PL scatter plots at frame level for Foreman at differ-
ent PLRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 NR-PP and NR-PL scatter plots at frame level for News at different
PLRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 NR-PMRF scatter plots at frame level for Mobile at different PLRs . 88
5.5 NR-PMRF scatter plots at frame level for Foreman at different PLRs 89
5.6 NR-PMRF scatter plots at frame level for News at different PLRs . . 90
5.7 Scatter plots at sequence level for all the sequences under exam . . 91

6.1 Overview of the final system . . . . . . . . . . . . . . . . . . . . . . 95



List of Tables

2.1 H.264 slice modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 H.264 spatial prediction modes . . . . . . . . . . . . . . . . . . . . . 15

3.1 Correlation coefficients with different motion vectors estimations
between real and estimated channel distortion for Mobile Sequence 27

3.2 Correlation coefficients with different motion vectors estimations
between real and estimated channel distortion for Foreman Sequence 27

3.3 Correlation coefficients with different motion vectors estimations
between real and estimated channel distortion for News Sequence . 27

3.4 Corr. coeff. between estimated channel distortion with bitstream-
NORM and NORM feed with different motion vectors estimations
for Mobile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Corr. coeff. between estimated channel distortion with bitstream-
NORM and NORM feed with different motion vectors estimations
for Foreman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Corr. coeff. between estimated channel distortion with bitstream-
NORM and NORM feed with different motion vectors estimations
for News . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 Correlation coefficients with different NR-P and NR-P/B methods
wrt real distortion for Mobile sequence . . . . . . . . . . . . . . . . . 84

5.2 Correlation coefficients with different NR-P and NR-P/B methods
wrt real distortion for Foreman sequence . . . . . . . . . . . . . . . . 84

5.3 Correlation coefficients with different NR-P and NR-P/B methods
wrt real distortion for News sequence . . . . . . . . . . . . . . . . . . 84

vii



CHAPTER 1

INTRODUCTION

The use of IP network for delivery of multimedia contents is gaining an increas-

ing success. Typically, networks used for transmission provide only best effort

services, so there is no guarantee that the content is delivered to the final user

without distortion. In some circumstances the content provider and the user stip-

ulate a service level agreement (SLA) that fixes a perceived video quality at the

end-user terminal. If the SLA is unfulfilled the provider pays a penalty to the

user. In this situation, where the network provides only a best effort service, it

is useful to search for a metric to estimate the perceived video quality working

at the end-user terminal. In IP networks and video broadcasting applications

the video contents are compressed before transmission. At the provider side the

video is encoded exploiting spatial and temporal redundancy, and some infor-

mation is discarded to achieve an higher compression. At the end-user terminal

Figure 1.1: Overview of channel distortion effect over received video
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a decoder reconstructs the sequence which may suffer from two different kinds

of distortion. The first one is the quantization distortion, and it is due to the lossy

nature of the encoding process. Since in the coding phase a significant fraction of

information is discarded to reach a higher compression, perfect reconstruction is

not possible and artifacts could arise in the reconstructed sequence. On the other

hand we have channel distortion, in which the loss of information is due to the

transmission process, it is in fact possible that some information is not received

by the decoder, Figure 1.1. In this case the decoder is not able to reconstruct the

original scene and tries to recreate the lost portion running a specific concealment

technique. The results obtained by the concealment are not always as expected,

and sometimes an appreciable distortion is introduced not only in the frames af-

fected by the loss, but also in other frames, due to predictive nature of the coding

process. We focus our attention on this second kind of distortions.

The main objective of this work is to estimate the channel distortion using

only the reconstructed video at the decoder side, for video quality monitoring

purposes.

In the literature the algorithms proposed to solve the video quality monitoring

problem often take advantage of knowing the bitstream. However, in some cir-

cumstances, the bitstream may be unavailable, e.g. because it is encrypted and/or

processed by third party decoders and only the pixel values of the decoded video

sequence can be used. In this case, the no-reference quality monitoring task is

pixel based, in the sense that both the coding parameters and the map of pixels

that have been lost must be estimated from the pixel values at the decoder side.

To solve this problem is therefore necessary to estimate all bitstream parameters

from the decoded video, such as:

• Motion Vectors (Real and Concealed)

• Residuals

• Structure of the Group Of Pictures, (GOP)

• Coding Modes of each macroblock
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• Map of Lost Macroblocks

We focus our attention on the map of lost macroblocks since is crucial for a good

channel distortion estimation and there are no available methods solving this

problem in current state of the art quality monitoring systems. This information

is so estimated form the bitstream and used to feed NORM, a No-Reference video

quality Monitoring proposed by Naccari et al. (2009), which is able to to give an

estimation of the mean square error (MSE) at the macroblock level using only

data available at the decoder side. The correlation that NORM exhibits against

MSE is quite high (correlation coefficient 0.80) with respect to other similar work.

Moreover this fine-granularity estimation is particularly beneficial as it can be

used to compute more sophisticated perceptual metrics (such as the SSIM metric)

that leverage localized distortion information. In the following section we classify

the main approaches proposed in the literature. Finally we present our novel

contributions to this problem.

1.1 Related Work

First of all it is useful to classify the metrics that can be used to fulfill the video

quality monitoring task as described in Winkler (2009). Two main classes can be

defined, subjective and objective metrics.

The first class have been formalized in BT 500-10 (2002) and P 910 (2008), sug-

gesting standard viewing conditions, criteria of selection of the observers and test

material, assessment procedures, and data analysis methods. The outcome of any

subjective experiment are quality ratings from viewers, which are then averaged

for each test clip into Mean Opinion Scores (MOS).

On the other side objective quality metrics are designed to characterize the

quality of a video with respect to a predictable video viewer opinion, and so

trying to predict MOS values and can be classified as follows:

• Data metrics: measure the fidelity of the signal without taking into account

its content. MSE and PSNR are good examples of this class since none of

them takes into account the different visual importance of the pixels.
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Figure 1.2: Classification of packet-based, bitstream-based, picture and hybrid
metrics, adapted from ITU-T.

• Picture metrics: measure the video quality using the visual information con-

tained into the sequence. They specifically account for effect of distortion

and content on perceived video quality, reeling on human vision system

models or extracting specific features and artifacts from the video.

• Bitstream metrics: look directly at the information contained into the bit-

stream without full decoding. These approaches obviously lead to a lower

processing requirements, making possible to process different bitstreams in

parallel.

• Hybrid metrics: which use a combination of the previously described ap-

proaches.

This classification is also shown in Figure 1.2. Moreover metrics could be

classified with respect to the amount of needed reference information:

• Full Reference (FR) metrics measure the degradation with respect to a refer-

ence video. The entire unimpaired and the uncompressed reference video

must be available, moreover a precise spatial and temporal alignment must

be reached in order to match every pixel with its exact counterpart in the

reference video.
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• No Reference (NR) metrics estimate the degradation using only the received

sequence, without the help of any references. These metrics are completely

free from video alignment issues and their main challenge lies in finding an

estimation with high correlation with respect to the full reference measure.

• Reduced-reference (RR) metrics are a combination of the previous FR and

NR metrics. Features are extracted from reference and tested videos and

comparison is made upon these. This class of metrics permits to avoid some

necessary assumption made in NR approach keeping amount of reference

information manageable.

The FR class is more suitable for offline video quality measurement such as

codec tuning or lab testing, while NR and RR classes are used in monitoring of

in-service video. Obviously the RR metrics need a back-channel to access to the

reference information.

The NR methods can be moreover divided into two classes:

• No-Reference Pixel (NR-P) methods which use only the pixels of the recon-

structed video sequence.

• No-Reference Bitstream (NR-B) methods which use only the bitstream in-

formation.

The NR-P methods proposed till now do not achieve accurate quality evalua-

tions. In fact due to the lack of original video information it is difficult to distin-

guish video degradation from video features. In the literature, the NR-P approach

has been used only to blindly estimate the degree of blur Marziliano et al. (2002)

or blockiness Tan and Ghanbari (2000), while there is not much about channel-

induced distortion. On the other hand NR-B methods are used in situation in

which it is not possible to access to the final decoded video such as in Reibman

et al. (2004); Yamada et al. (2010). So usually a mixture of NR-P and NR-B meth-

ods (NR-PB) are used to achieve video quality monitoring.
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As described in Winkler (2009), the purposes of video quality measurement

can be summarized as follows:

• Defining the meaning of MOS for a given application.

• Defining the method for MOS prediction that is reliable.

• Defining the method for MOS prediction which is reproducible.

Existing standards achieved some of these objective. We summarize now briefly

some solutions for channel distortion estimation. This task can be fulfilled ei-

ther at the transmitter or at the receiver side. At the transmitter original and

decoded sequence are available, so challenge is related to the unknown error pat-

tern. Otherwise NR-BP methods working at the decoder side know perfectly the

error pattern but the original sequence is unavailable.

The techniques proposed in K. Stuhlmuller and Girod (2000) N. Farber and

Girod (1999) R. Zhang and Rose (2000) Yang and Rose (2007) rely on a statisti-

cal representation of the channel providing an estimate of the channel distortion

at frame macroblock or pixel level. The main goal pursuit in this scenario is to

provide a mean of tuning encoder parameters to obtain an optimal end-to-end

coding efficiency. At the receiver the deterministic knowledge of the error pat-

tern simplifies the task, however the unavailability of the original video forces to

adopt a no-reference method complicating the problem.

Work described in Reibman et al. (2004) suggests an algorithm able to esti-

mate MSE distortion with any conventional motion compensated video codec.

Different granularity level are available: Full Parse (FP), Quick Parse (QP), and

No Parse (NP) with different level of complexity and estimation accuracy. The

FP method gives an accurate estimation of the channel distortion at pixel level.

To achieve this goal it analyzes some parameters by entropy decoding and in-

verse quantization on the bitstream. The QP method relies on the analysis of

the received bitstream at the transport level, giving an estimate of channel in-

duced distortion at slice level. Finally the NP method simply estimates the chan-

nel distortion wrt the packet loss rate (PLR) experienced at the decoder side, no
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bitstream information are needed in this case. These method provide a low com-

putational complexity and so are particular useful for monitoring by the network

provider point of view.

The model proposed in T. Shu and Gu’erin (2005) is a tradeoff between accu-

racy and computational complexity, that tries to estimate the channel distortion at

sequence level. A model to estimate the received video quality is created taking

into account parameters such as the used codec, the adopted error concealment

strategy, the bit-rate and the packetization used. The relative PSNR (rPSNR) met-

ric is then defined as the difference between the PSNR at the receiver side and

the pre-negotiated target PSNR, in this way is possible to avoid the dependence

from a particular sequence. The results obtained by this approach on real video

sequence and network condition reveal good correlation between real and esti-

mated values.

The approach proposed in Yamada et al. (2007) is embedded within the H.264/

AVC compliant decoder and achieve good results with only a little computational

complexity overhead. The method is based on the concept of error concealment

effectiveness. Concealment algorithm achieve different performance wrt motion

complexity and local texturing of lost macroblock. The authors propose a metric

to measure the error concealment effectiveness that relies on motion information

and boundary distortion, taking advantage of the know slice pattern. The method

achieve reasonably accurate results in the estimation of the channel distortion at

sequence level.

In S. Kanumuri and Vaishmpayan (2006) machine learning classifier are used

to predict packet loss visibility in H.264 coded bitstream. Training data were col-

lected in extensive subjective campaigns and a NR and RR approach are proposed

to achieve video quality assessment.

The NORM algorithm, proposed in Naccari et al. (2009) and shown in 1.3, is a

NR-PB method that receives as input a H.264/AVC compliant bitstream that has

been transmitted over a noisy channel and the reconstructed video. The received

bitstream is processed by the H.264/ AVC decoder, which applies its own em-

bedded concealment strategy over lost data. The decoded frame, together with
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Figure 1.3: Block diagram of the proposed NORM algorithm.

the received/ concealed motion vectors, prediction residuals and coding modes

are fed into NORM, which provides an estimate of the channel induced distor-

tion M̂SE
i
n, for the ith macroblock in frame n. Also, NORM needs to know the

pattern of channel errors, which consists of a binary map of the macroblocks that

have been lost during transmission. The complexity of motion affects the accu-

racy of NORM estimate of true MSE, giving correlation values around 0.76-0.83

for a complex motion, and around 0.81-0.93 for a simpler one.

1.2 Novel Contributions

Our objective is to estimate bitstream information from the decoded video in

order to feed NORM obtaining a NR-P method for channel distortion estimation.

As already said, the bitstream is not always available. Different scenarios fit this

assumption. First of all we can think about a bitstream which is not accessible

since is encrypted by third party decoder. In other situation, the video could suf-

fer of multiple coding-decoding processes. Since the available bitstream is related

only to the last transmission, no information about previous transmissions losses

can be reached, and the only way to exploit an estimation of the total channel
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distortion is to extract information from the reconstructed video sequence.

An illustrative example of this situation is given in Figure 1.4, where a video

signal, X , is first coded through a H.264/AVC compliant ITU (2003) encoder, and

the resulting bitstream b is transmitted over an error-prone network. The noisy

channel drops packets with some unknown packet loss rate (PLR), thus the re-

ceived bitstream b̃ may differ from the original b. A H.264/AVC decoder pro-

cesses the corrupted bitstream, possibly applying an error concealment startegy

as in Sullivan et al. (2003) to partially alleviate the effect of packet losses, and

produces a reconstructed video X̃ in the pixel domain. This decoded video X̃ is

all the information we postulate to have in order to produce an estimate of the

mean square error distortion, M̂SE, between the error-free decoded video X̂ and

the noisy one X̃ , as in the NORM setting. The distortion introduced by lossy cod-

ing, indeed, can be approximately considered to be uncorrelated with channel-

induced distortion He et al. (2002), so the two terms can be summed up in order

to obtain the overall distortion with respect to X .

Our challenge is to estimate motion vectors, prediction residuals and map

of lost macroblocks from the reconstructed decoded video. Motion vectors are

found by performing motion estimation on the decoded sequence. Any motion

estimation algorithm can be used for this purpose. We set a number of reference

frames k on which the search is carried out, as it is not known which is the exact

number of reference frames used by the encoder. Prediction residuals can be

readily computed once MVs have been found.

X
H.264/AVC

encoder
b noisy

channel
b̃ H.264/AVC

decoder
X̃

Ê

M̂V

M̃

NORM M̂SE(X̃, X̂)

H.264/AVC
decoder

X̂

Figure 1: System overviewFigure 1.4: Overview of the blind no-reference quality assessment system. We
estimate the missing parameters from the corrupted decoded video X̃ and use
them as input to NORM. The results is a macroblock-level map of MSE distortion
between the noisy decoded X̃ and the video reconstructed at the encoder X̂ .
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In literature map of lost macroblock estimation problem is not solved and this

map is crucial for NORM to achieve a good channel estimation. The concealment

procedures are not standardized and a simple retro-engineering of the processes

is not possible. To avoid an estimation which is linked to a particular type of

concealment it is necessary to made mild assumptions that are valid for a large

class of concealment techniques. Basically two types of concealment can run on

a decoder: spatial concealment and temporal concealment. Spatial concealment

is applied when a macroblock belonging to I frame is lost and reconstructs the

block as a combination of its neighborhood. Lost macroblocks belonging to a

P frame are on the other hand reconstructed with a temporal concealment tech-

nique, copying a macroblock from previous reference frame. Summarizing the

mild assumptions that can be done above the concealed macroblocks are:

• Spatial concealed macroblocks are a combination of neighborhood with resid-

ual’s energy near to zero.

• Temporal concealed macroblocks must have a predictor, in a previous ref-

erence frame, with prediction residual’s energy near to zero.

From these consideration we built an estimation of the lost macroblocks map

able to feed NORM achieving good results in channel distortion estimation.



CHAPTER 2

BACKGROUND

In this chapter are presented the tools used in our work. First of all some in-

formation about the H.264/AVC coding standard are given, with particular em-

phasis on the prediction process and packetization. Then an overview of the

non-standardized concealment technique of the used reference software are pre-

sented. Finally the already introduced NORM algorithm is presented focusing

on the estimation process of the different types of channel distortion.

2.1 H.264/AVC Standard

Each frame of a video sequence is encoded to produce a coded picture, which

is composed by a certain number of macroblocks. Moreover, inside each picture,

macroblocks are grouped into slices. An I slice can contain only intra predicted

macroblocks, while a P slice can contain inter and intra macroblocks. A video

picture can be coded with a chosen number of slices and no assumptions are

made upon the number of macroblocks in each slice, which can spawn from one

(1 macroblock per slice) to the total number of macroblocks in a picture (1 slice

per picture). Finally macroblocks number per slice need not to be constant within

a picture. Different type of slices are available and a picture can be composed of a

mixture of them (Table 2.1). Baseline profile, for example, contains I and P slices

only, while Main Profile could also contain B slices. A simplified illustration of

the syntax of a coded slice is shown in Figure 2.1. Slice type and reference to
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the picture to which slice belongs, are stored inside slice header. The slice data

contains the coded macroblocks, each one containing a series of header elements

and coded residual data. It must be noticed that P slices can also contain skipped

macroblocks. When a skipped macroblock is signalled in the bitstream no further

information about it are sent. The decoder simply reconstructs a vector for the

skipped macroblock reconstructing it by motion-compensated prediction.

Slyce Type Description Profile(s)
I (Intra) Contains only I macroblocks (each block or All

macroblock is predicted from previously coded
data within the same slice).

P (Predicted) Contains P macroblocks (each macroblock All
or macroblock partition is predicted from one
t 0 reference picture) and/or I macroblocks.

B (Bi-predictive) Contains B macroblocks (each macroblock Extended and Main
or macroblock partition is predicted from
a list 0 and/or a list 1 reference picture)
and/or I macroblocks.

SP (Switching P) Facilitates switching between coded streams; Extended
contains P and/or I macroblocks.

SI (Switching I) Facilitates switching between coded streams; Extended
contains SI macroblocks (a special type of
intra coded macroblock).

Table 2.1: H.264 slice modes

Figure 2.1: Slice Syntax

Each coded macroblock is predicted from previously decoded data by H.264.

Intra macroblocks are predicted from samples in the same frame that have al-
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ready been encoded, decoded and reconstructed. On the other side inter mac-

roblocks are predicted from samples belonging to previously reconstructed frames.

A prediction can be defined as a model that resembles the macroblock under

consideration as much s possible. Once the prediction is created from already

encoded data, is subtracted from the current macroblock. The obtained residuals

are compressed and sent to the decoder, together with all information useful to

repeat the prediction process. The decoder recreates the prediction and adds the

residuals.

Inter prediction creates a predictor from previously reconstructed frames by

block-based motion compensation. Each 16x16 macroblock can be partitioned as

shown in Figure 2.2, and each partition need a separate motion vector. Choosing

Figure 2.2: Macroblock and Sub-Macroblock Partition

large partitions assure a small number of bits during transmission but the mo-

tion compensated residuals may contain a significant amount of energy for high

textured area. On the other hand small partitions may achieve better predictions

but a larger number of bits is needed. Roughly speaking large partitions are suit-

able for homogenous areas while small ones for high detailed areas. It is trivial

to understand that choose the appropriate partition can lead to higher compres-

sion performances. Each partition is so predicted from an area of the same size

in the reference picture. Motion vectors has quarter-sample resolution, the miss-
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Figure 2.3: Example of integer and sub-sample prediction

ing samples are recreated by interpolation from nearby coded samples (Figure

2.3). The predictor is so chosen minimizing a cost function. Finally to achieve an

higher compression a motion vector predictor (MVP) is created from vectors of

nearby, since often motion vectors are highly correlated wrt its neighbor previ-

ously coded partitions.

Intra prediction creates a predictor based upon spatially near previously en-

coded and reconstructed blocks. As for inter prediction residuals are calculated

by subtracting the predictor to the current macroblock. There are a total of nine

optional prediction modes for each 4x4 block and more four modes for a 16x16

block. In Figure 2.5 it is possible to see how different modes work. The predic-

Figure 2.4: Labeling of prediction samples (4x4)

tion of the samples a, b, c, . . ., p is done wrt the samples A-M (Figure 2.4). All the

available modes are tested and the one achieving the best Sum of Absolute Errors

(SAE) is chosen. The same considerations hold for 16x16 macroblock prediction

which is alternative to the 4x4 prediction. Table 2.2 summarizes all possible the

modes.
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Figure 2.5: 4x4 prediction mode

Mode 0 (Vertical) The upper samples A, B, C, D are extrapolated vertically.
Mode 1 (Horizontal) The left samples I, J, K, L are extrapolated horizontally.
Mode 2 (DC) All samples in P are predicted by the mean of samples

A . . . D and I . . . L.
Mode 3 (Diagonal The samples are interpolated at a 45. angle between lower-left
Down-Left) and upper-right.
Mode 4 (Diagonal The samples are extrapolated at a 45. angle down and to the right.
Down-Right)
Mode 5 (Vertical-Right) Extrapolation at an angle of approximately 26.6. to the left of

vertical (width/height = 1/2).
Mode 6 (Horizontal-Down) Extrapolation at an angle of approximately 26.6. below

horizontal.
Mode 7 (Vertical-Left) Extrapolation (or interpolation) at an angle of approximately 26.6.

to the right of vertical.
Mode 8 (Horizontal-Up) Interpolation at an angle of approximately 26.6. above horizontal.

Mode 0 (vertical) Extrapolation from upper samples (H)
Mode 1 (horizontal) Extrapolation from left samples (V)
Mode 2 (DC) Mean of upper and left-hand samples (H + V).
Mode 4 (Plane) A linear ’plane’ function is fitted to the upper and

left-hand samples H and V. This works well in areas
of smoothly-varying luminance.

Table 2.2: H.264 spatial prediction modes
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At the end of the prediction process to attenuate the blocking distortion a filter

is applied to each decoded macroblock. In particular the deblocking filter is ap-

plied after the inverse transform in the encoder and in the decoder. The objective

of the filter is to smooth edges, achieving better visual appearance in the decoded

frames. Moreover the filtered macroblocks are used for motion-compensated pre-

diction, this choice can improve compression performances since the filtered im-

age is often a better prediction.

2.2 Concealment

In real applications there is no assurance that all packets are received by the

decoder. So it may happen that a packet is lost due to network transmission prob-

lems. All slices and macroblocks information packetize inside it get lost too. The

decoder tries so to reconstruct the lost macroblocks running a concealment algo-

rithm. No standardization are made upon concealment procedures. For example

in some cases no efforts are done and simply a green macroblock is shown. We

prefer to focus on higher level concealment techniques:

• Spatial concealment: reconstructs the block as a linear combination of its

neighborhood.

• Temporal concealment: copies a macroblock from previous reference frame.

In our work we used concealment algorithms implemented in the reference

software. We briefly describe their implementations to better understand how

concealment can lead to artifacts in the reconstructed video scene.

First of all each macroblock is tagged wrt its status: "correctly received" in

which macroblock is included was available for decoding; "lost" otherwise (Fig-

ure 2.6). All correctly received macroblocks are then decoded, and if status map

contains "lost" macroblocks, concealment starts. The algorithm works at mac-

roblock level starting from the slice structure and the status map of each frame.

Each 16x16 macroblock tagged as "lost" in the status map is concealed and tagged
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Figure 2.6: snapshot of the status map during the concealment phase where al-
ready concealed MBs have the status of "Concealed", and the currently processed
(concealed) MB is marked as "Current MB".

as "concealed". The conceal processing order is of great importance, since there is

no assurance that for each macroblock there is a set of "correctly received" neigh-

bor macroblocks to be used during concealment process. In fact it may happen

that also "concealed" macroblock are used during the process when no "correctly

received" immediate neighbors of a "Lost" MB exist. It is possible that a wrong

concealment procedure can lead to an error propagation to neighbor not already

concealed macroblocks. "Lost" macroblock are processed starting from the edge

of the frame first and then move inwards column-by-column, trying to avoid er-

ror propagation from the usually "difficult" center area to the "easy" side parts

of the frame. Usually center areas are characterized by discontinuous motion

and large coded prediction errors, since scenes usually take action in this por-

tion of the sequence. On the other hand the side parts of the frame represent the

background of the scene with continuous motion areas and similar motion over

several frames.

First of all we focus on concealment procedure adopted in I frame by the ref-

erence software. The "lost" macroblocks in intra frame are spatially concealed

since there is no assurance that previous frame areas may resemble the lost mac-

roblocks. All the spatial concealment process is based on weighted sample av-

eraging as described in Katsaggelos and Galatsanos (1998). The lost macroblock

is restored as a weighted sum of the nearest samples belonging to the neighbor

macroblocks. Each boundary samples is so weighted wrt the inverse of distance



2.2 Concealment 18

between the boundary sample itself and the sample that need concealment, as

described in the following formula:

SampleValue =
(∑ai(B−di))

∑(B−di)
(2.1)

where ai is the boundary sample value belonging to the adjacent macroblock, B

is the macroblock size and di is the distance between ai and the sample to be con-

cealed. As an example the missing sample in Figure 2.7 is calculated as follows:

SampleValue =
(15(16−3)+21(16−12)+32(16−7)+7(16−8))

(13+4+9+8)

The conceal tries to use only "Correctly received" neighbor macroblocks if at least

two of them are available, otherwise also "Concealed" macroblocks are involved

in concealment process.

Figure 2.7: Spatial concealment based on weighted sample averaging.

The conceal procedure adopted in P frame tries to guess the possible motion

vector of the lost macroblock on the basis of the motion vectors belonging to

neighbors. Once the motion vector is found the concealed macroblock is sim-

ply recreated by motion copy from the correct reference frame. The algorithm

implemented in the reference software is based on Lam et al. (1993). First of all

motion activity of the picture under exam is investigated, if the average motion

vector is smaller than a pre-defined threshold all the lost slices are concealed by

copying from co-located positions in the reference frame. If this condition is not
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achieved motion-compensated error concealment starts. Since motion vectors be-

longing to spatially near macroblocks are highly correlated, the motion vector of

a "Lost" macroblock is predicted from motion vectors of neighbor macroblocks.

This procedure is particulary suitable for continuous motion vector fields, such

as a frame area covered by a moving foreground scene object. "Lost" macroblocks

is so reconstructed by choosing the motion vector of the neighbor that select the

macroblock which minimizes the Side Match Distortion (SMD). The minimum

partition for neighbor macroblocks is 8x8, if subpartitions are present the 8x8 mo-

tion vector is obtained by averaging the subpartitions motion vectors. The SMD

is calculated as:

SMD = ∑ |iin− iout | (2.2)

where iin is the luminance of the samples at boundaries of the macroblock selected

by motion vector under exam, while iout is the luminance of samples at bound-

aries of the neighbor macroblocks, as shown in Figure 2.8. The winning predictor

is so the one which minimizes the luminance change across boundaries.

Figure 2.8: Motion Concealment

All the motion concealment process can be so summarized in the following
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formula:

Prediction = argmin
mv

(∑ |iin(mv)− iout |) (2.3)

When multiple references are used, the reference frame of the candidate mo-

tion vector is used as the reference frame for the current macroblock. That is,

when calculating SMD , the iin(mv) samples are from the reference frame of the

candidate motion vector.

2.3 NORM

NORM was proposed in Naccari et al. (2009) as a No-Reference video quality

Monitoring for the H.264/AVC standard.

NORM receives in input the decoded frame, the received/concealed motion

vectors, prediction residuals and coding modes, giving as output an estimate of

the channel induced distortion D̂i
n for the ith macroblock in frame n. The accuracy

of the estimate with respect to the distortion computed in full reference mode can

be evaluated at macroblock level. In general channel distortion can be written as:

D̂i
n =

1
B2

B

∑
x=1

B

∑
y=1

(E i
n(x,y))

2 =
1

B2

B

∑
x=1

B

∑
y=1

(M̂i
n(x,y)− M̃i

n(x,y))
2 (2.4)

where N is the number of macroblocks, M̂i
n(x,y) is the BxB macroblock recon-

structed at the decoder side with no channel losses, and M̃i
n(x,y) is the BxB mac-

roblock reconstructed at the decoder side when channel losses occurred. The

algorithm specifically considers four different types of distortion:

• Di,SP
n distortion due to spatial propagation

• Di,T P
n distortion due to temporal propagation

• Di,SC
n distortion due to spatial concealment

• Di,TC
n distortion due to temporal concealment

It is possible to demonstrate that these contributions could be used to calculate

the induced channel distortion of each different type of macroblock:
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• Di
n(intra−ok) = Di,SP

n : the distortion of a correctly received intra macroblock

is due to spatial error propagation.

• Di
n(inter−ok) = Di,T P

n : the distortion of a correctly received inter macroblock

is due to temporal error propagation.

• Di
n(intra−ko) = Di,SC

n +Di,SP
n : the distortion of a lost intra macroblock is due

to spatial error propagation and spatial concealment.

• Di
n(inter−ko) = Di,TC

n +Di,SP
n : the distortion of a lost inter macroblock is due

to temporal error propagation and temporal concealment.

So NORM is able to evaluate the distortion of each macroblock by simply esti-

mating the four different types of distortion Di,SC
n , Di,TC

n , Di,SP
n , Di,T P

n .

The spatial error propagation Di,SC
n accounts for a negligible fraction of the

overall macroblock distortion in intra-frames, so the estimated spatial error prop-

agation D̂i,SC
n is set to zero:

D̂i,SP
n = 0 (2.5)

Di,SP
n can be so erased by Di

n(intra−ok) and Di
n(intra− ko) definition.

The distortion due to the temporal propagation of errors Di,T P
n is modeled as

a weighted sum of the distortions already found for the macroblocks used as

predictors:

D̂i,T P
n =

1
16

16

∑
q=1

(
No(q)

∑
p=1

ηpD̂(p)
n−r(q)) (2.6)

where D̂n−r(q) is the distortion of one of the No(q) (1≤ No(q) ≤ 4) 4x4 subpartition

that predicts the macroblock under consideration and ηp is proportional to the

number of pixels of subpartition involved into prediction. This distortion is used

to calculate Di
n(inter−ok) and Di

n(inter− ko)

The distortion due to the action of the spatial concealment is related to the loss

of high frequency content of the lost macroblock, caused by the spatial interpo-

lation performed during concealment. NORM estimates this loss by comparing

the interpolated block with the one obtained with a simple zero-motion temporal

concealment, which typically preserves the high frequency content of the original
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block:

D̂i,SC
n =

1
B2

B

∑
x=1

B

∑
y=1

(M̃i
n(x,y)− M̃i,0

n (x,y))2 (2.7)

where M̃i
n(x,y) is the macroblock reconstructed by the spatial concealment, while

M̃i,0
n (x,y) is the macroblock obtained by a simple zero motion concealment. This

distortion is involved into Di
n(intra− ko) calculation.

Temporal concealment, distortion is due to the loss of the original motion vec-

tors and to the lack of prediction residuals, both terms are explicitly considered by

NORM. Temporal concealment distortion Di,TC
n estimates the difference between

the predictor provided by temporal concealment and the one corresponding to

the original motion vectors, and can be written as:

Di,TC
n = Di,MV

n +Di,PR
n (2.8)

where Di,MV
n and Di,PR

n represent respectively distortion due to lack of real motion

vector and prediction residuals. The distortion induced by lack of motion vectors

is estimated as:

D̂i,MV
n =

1
B4

B−1

∑
j=0

B−1

∑
k=0

Φ
i
n(ω j,ωk)(1− cos(ω jδx +ωkδy)) (2.9)

where Φi
n(ω j,ωk) is the estimated power spectral density of the predictor obtained

with the temporal concealment and δx , δy are the differences between the real

and concealed motion vector along the two axis. The estimation δ̂x and δ̂y are

calculated as the standard deviation of the 8x8 neighbor motion vectors wrt the

concealed one:

δ̂
i
n =

√√√√1
L

Lϕ

∑
l=1

(ṽi
n− vl

8x8)2 (2.10)

where vl
8x8 is the lth candidate motion vector related to the 8x8 neighbor mac-

roblocks used by temporal concealment. The distortion induced by lack of pre-
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diction residuals is estimated as:

D̂i,PR
n =

1
B2

B

∑
x=1

B

∑
y=1

Θ
i
n−r(x+ ṽi

x,y+ ṽi
y)

2 (2.11)

where ṽi
x, ṽi

y are the concealed motion vector, and Θi
n−r(x+ ṽi

x,y+ ṽi
y) are the predic-

tion residuals of the macroblock used to create the concealment prediction. The

total distortion Di,TC
n is so used to calculate Di

n(inter− ko).

So the distortion for each macroblock can be readily computed simply apply-

ing the following algorithm:

1: for n = 0 to N do

2: for i = 0 to M do

3: if macroblock i is lost then then

4: if if macroblock i ε I frame then

5: D̂i
n = D̂i

n(intra− ko) = D̂i,SC
n

6: else

7: D̂i
n = D̂i

n(inter− ko) = D̂i,TC
n + D̂i,T P

n

8: end if

9: else

10: if macroblock i ε P or B frame then then

11: D̂i
n = D̂i

n(intra−ok) = 0

12: else

13: D̂i
n = D̂i

n(inter−ok) = D̂i,T P
n

14: end if

15: end if

16: end for

17: end for



CHAPTER 3

STUDY OF NR-P NORM

PERFORMANCES

One of the objective of this work is to run NORM without the help of bitstream

information, NORM inputs must be so estimated from the decoded video. As a

reminder NORM inputs that must be estimated are:

• Motion Vectors (Real and Concealed)

• Residuals

• Structure of the Group Of Pictures, (GOP)

• Coding mode of each Macroblock

• Map of Lost Macroblocks

In the following sections we separately study the impact of each estimation over

NORM performances.

3.1 Motion Vector and Residuals Estimation

Real and concealed motion vectors are used by NORM to search for distortion

created by temporal concealment, and distortion due to temporal propagation.

Motion vectors are estimated by performing motion estimation on the decoded

sequence. Any motion estimation algorithm can be used for this purpose. We
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set a number of reference frames k on which the search is carried out, as it is

not known which is the exact number of reference frames used by the encoder.

Larger values of k provide a better estimation, but they clearly entail a larger

computational cost. We use k = 5 in our experiments.

Prediction residuals can be readily computed once MVs have been found. To-

gether with the prediction residuals, for each frame of M×N pixels we build

a (M/B)× (N/B) map of prediction residual energies, whose ith entry gives the

MSE distortion between the ith B× B macroblock in the current frame and its

respective predictor in the reference frame.

Our tests are executed over Foreman, News, Mobile CIF resolution video se-

quences. The video sequence has been coded with a fixed quantization parame-

ter for I and P slices (QP = 36), with a frame rate of 30 Hz, using the H.264/AVC

reference software encoder (version JM12.3 (JVT)) with the main profile.

Each coded frame is partitioned into slices, where each slice contains a hor-

izontal row of macroblocks. Each coded slice is then packetized according to

the real-time transfer protocol (RTP) specifications Wenger (2003). The simulated

error-prone channel drops coded packets according to a packet loss rate (PLR)

in the range [0.1 10]. The error patterns have been generated using a two-state

Gilbert’s model Gilbert et al. (1960) with average burst length of three packets.

We simulated the transmission of the test sequences over 15 channel realizations

for each considered PLR value [0.1 0.4 1 3 5 10].

In tabs. 3.1, 3.2, 3.3 are presented the obtained correlation coefficients between

the estimated channel distortions and the real ones with three different granu-

larity levels (macroblock, frame, sequence). Four different estimations are pre-

sented. In NORM pure estimation all bitstream information are used, while in the

other three cases NORM is ran using different motion vectors and residuals esti-

mations. In particular motion vectors are estimated using H.264/AVC algorithm

for block motion estimation changing the used motion estimation modes and rate

distortion optimization (RDO). Motion estimation modes specify the search pat-

tern used to find the best matching block. A full search it may for example be used

in the sense that all the candidates are tested. Obviously this approach is quite
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Figure 3.1: Hexagon search pattern

computationally intensive. Generally only a subset of all the possible candidates

are taken into account. The subsets are generated thanks to search patterns.

We chose to run Hexagon search and the Simplified Hexagon search algo-

rithms. Hexagon search pattern starts from the candidate selected by the motion

copy vector (mvx=0, mvy=0) and tries out all the possible blocks centered on the

hexagon vertices till the best prediction is found as depicted in Figure 3.1. Sim-

plified Hexagon has a similar pattern search but changes the decision mode to

select the best matching block, achieving faster but poorer performances.

On the other hand the RDO acts over the choice of the best predictor taking

into account its distortion and the amount of data required to encode it. Two

settings are used during our tests. In one case no RDO optimization is used and

the predictor is chosen wrt its distortion. In the second case RDO optimization is

active and so the best predictor is also selected taking into account its rate.

It is possible to notice in tabs. 3.1, 3.2, 3.3 how the obtained correlation coeffi-

cients at frame level are above 0.94 in all cases. In particular the best predictions

are achieved with Hexagon search pattern and active RDO. This is an expected

result since the tested sequences are coded with active RDO optimization. It is

also possible to notice how the change of the particular search pattern do not af-

fect too much the channel distortion estimation, since the results obtained with
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Hex - RDO Off SHex - RDO Off Hex - RDO ON NORM
PLR [%] MB Frm Seq MB Frm Seq MB Frm Seq MB Frm Seq
0.1 0.91 0.99 0.99 0.87 0.99 0.99 0.92 0.99 0.99 0.92 0.99 0.99
0.4 0.86 0.97 0.97 0.86 0.97 0.97 0.87 0.97 0.97 0.87 0.97 0.97
1 0.91 0.98 0.98 0.90 0.98 0.98 0.91 0.98 0.98 0.91 0.98 0.98
3 0.90 0.98 0.99 0.89 0.98 0.99 0.91 0.99 0.99 0.92 0.99 0.99
5 0.91 0.99 0.99 0.91 0.99 0.99 0.92 0.99 0.99 0.92 0.99 0.99
10 0.89 0.97 0.97 0.88 0.96 0.97 0.90 0.97 0.98 0.90 0.97 0.98

Table 3.1: Correlation coefficients with different motion vectors estimations be-
tween real and estimated channel distortion for Mobile Sequence

Hex - RDO Off SHex - RDO Off Hex - RDO ON NORM
PLR [%] MB Frm Seq MB Frm Seq MB Frm Seq MB Frm Seq
0.1 0.69 0.96 0.97 0.66 0.96 0.97 0.76 0.96 0.97 0.77 0.97 0.97
0.4 0.71 0.94 0.94 0.73 0.94 0.94 0.71 0.94 0.94 0.82 0.94 0.96
1 0.84 0.96 0.96 0.84 0.96 0.96 0.84 0.96 0.96 0.84 0.96 0.96
3 0.79 0.96 0.96 0.79 0.96 0.96 0.80 0.96 0.96 0.81 0.96 0.97
5 0.82 0.95 0.96 0.82 0.95 0.96 0.81 0.95 0.96 0.84 0.96 0.97
10 0.82 0.93 0.93 0.81 0.93 0.93 0.82 0.93 0.93 0.85 0.94 0.93

Table 3.2: Correlation coefficients with different motion vectors estimations be-
tween real and estimated channel distortion for Foreman Sequence

Hex - RDO Off SHex - RDO Off Hex - RDO ON NORM
PLR [%] MB Frm Seq MB Frm Seq MB Frm Seq MB Frm Seq
0.1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
0.4 0.87 0.97 0.97 0.88 0.98 0.98 0.87 0.97 0.97 0.89 0.98 0.98
1 0.94 0.99 0.99 0.93 0.99 0.99 0.93 0.99 0.99 0.94 0.99 0.99
3 0.93 0.98 0.99 0.93 0.98 0.99 0.94 0.98 0.99 0.94 0.98 0.99
5 0.87 0.96 0.96 0.87 0.96 0.96 0.89 0.96 0.96 0.88 0.97 0.97
10 0.92 0.97 0.98 0.92 0.97 0.98 0.92 0.97 0.98 0.92 0.97 0.98

Table 3.3: Correlation coefficients with different motion vectors estimations be-
tween real and estimated channel distortion for News Sequence
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Hex - RDO Off SHex - RDO Off Hex - RDO ON
PLR [%] MB Frm Seq MB Frm Seq MB Frm Seq
0.1 0.95 0.99 0.99 0.92 0.99 0.99 0.97 0.99 0.99
0.4 0.92 0.99 0.99 0.92 0.99 0.99 0.92 0.98 0.98
1 0.95 0.98 0.98 0.95 0.98 0.98 0.95 0.98 0.98
3 0.95 0.99 0.99 0.95 0.99 0.99 0.97 0.99 0.99
5 0.96 0.99 0.99 0.96 0.99 0.99 0.96 0.99 0.99
10 0.96 0.99 0.99 0.96 0.99 0.99 0.97 0.99 0.99

Table 3.4: Corr. coeff. between estimated channel distortion with bitstream-
NORM and NORM feed with different motion vectors estimations for Mobile

Hex - RDO Off SHex - RDO Off Hex - RDO ON
PLR [%] MB Frm Seq MB Frm Seq MB Frm Seq
0.1 0.85 0.97 0.98 0.82 0.97 0.98 0.89 0.97 0.98
0.4 0.86 0.94 0.94 0.87 0.95 0.95 0.84 0.97 0.97
1 0.94 0.98 0.98 0.94 0.98 0.99 0.93 0.98 0.99
3 0.94 0.98 0.98 0.94 0.98 0.98 0.93 0.98 0.98
5 0.94 0.98 0.99 0.94 0.98 0.99 0.91 0.98 0.99
10 0.94 0.98 0.98 0.93 0.98 0.98 0.93 0.98 0.98

Table 3.5: Corr. coeff. between estimated channel distortion with bitstream-
NORM and NORM feed with different motion vectors estimations for Foreman

Hex - RDO Off SHex - RDO Off Hex - RDO ON
PLR [%] MB Frm Seq MB Frm Seq MB Frm Seq
0.1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
0.4 0.95 0.98 0.98 0.96 0.99 0.99 0.95 0.98 0.98
1 0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99
3 0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99
5 0.98 0.99 0.99 0.98 0.99 0.99 0.98 0.99 0.99
10 0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99

Table 3.6: Corr. coeff. between estimated channel distortion with bitstream-
NORM and NORM feed with different motion vectors estimations for News
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Hexagon and simplified Hexagon search are similar. Finally in tabs. 3.4, 3.5, 3.6

all the channel distortion estimations obtained feeding NORM with estimated

motion vectors and residuals are correlated to the results obtained by NORM fed

with bitstream information. In all cases the correlation coefficients at frame level

are always above 0.97, which means that the motion vectors and residuals esti-

mations do not affect significantly NORM performances.

Since all performed motion vectors and residuals estimation have high cor-

relation wrt NORM we decided to use the ones obtained with Hexagon search

pattern and no RDO optimization, to avoid a loss of generality.

3.2 Structure of Group Of Pictures

Structure of GOP defines the order of the different types of frames (I, P, B). In

our tests for example the defined structure of GOP is (I BB P BB P BB P BB P BB

I). So I frames substitutes the P frames every 5 frames, while each P frame two B

frames are inserted.

First of all the periodicity of B frame is estimated thanks to a QP estimator

described as defined in Tagliasacchi and Tubaro (n.d.). Then the periodicity of I

frame is computed.

The ran motion estimation algorithm produces also motion vectors for I frames

with the associated residuals. Since the I frames are intra coded the number of

macroblocks with a residuals’ energy larger then a given threshold, is bigger wrt

P frames.

For each frame prediction residuals’ energy Eres at macroblock 16x16 level

is computed. For each obtained map the number of macroblocks with an Eres

higher then a given threshold is then computed. In Figure 3.2 is possible to notice

that I frames produce a peak in the calculated function. The I periodicity is so

computed searching for the frequency of the greatest peak in the autocorrelation

spectrum of the given function, (Figure 3.3). The experimental results confirm

that the estimated GOP structure is always as expected.
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Figure 3.2: Total MSE of inter prediction residuals over each frame
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Figure 3.3: Autocorrelation of the function in Figure 3.2
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3.3 Coding mode of each Macroblock

Coding mode of each macroblock are used by NORM since in P frame it is

possible to have intra predicted macroblock. While there is no problem when

intra macroblocks in P frame are lost, since the temporal concealment is used, a

correctly received intra macroblock in a P frame does not account for temporal

drift, since it is not motion predicted.

However as stated in Naccari et al. (2009) the percentage of intra predicted

macroblocks in P frames is around the 4% . It is so possible to approximate this

behavior considering all macroblocks in P frames as inter predicted. The obtained

experimental results confirms that this approximation leads to high correlation

wrt NORM performed using real coding modes extracted form the bitstream.

3.4 Map of Lost Macroblocks

In this section we describe the impact of map of lost macroblocks estimation,

demonstrating that errors done during this estimate have an higher impact over

channel distortion estimation wrt errors done in motion vectors and residuals

estimation.

Channel distortion for each macroblock can be modeled as:

Di(t) = α
i(t)Di

C(t)+β
i(t)Di

MCt
(t−1) (3.1)

where Di(t) is the channel induced distortion at frame t, Di
C(t) is the distortion

introduced at time t by a channel loss, α(t)i is the map of lost macroblock at time

t, βi(t) is the transmission coefficient of distortion from frame t−1 to frame t due

to predictive nature of coding and finally Di
MC(t− 1) is the motion compensated

distortion of previous frame at time t−1 that flows in t due to drift propagation.

It must be noticed that Di
MC(t−1) can be rewritten as:

Di
MC(t−1) = α

i(t−1)Di
C(t−1)+β

i(t−1)Di
MCt−1

(t−2) (3.2)
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and so the eq. 3.1 can be redefined as:

Di(t) = α
i(t)Di

C(t)+α
i(t−1)βiDi

MCt
(t−1)+β

i
β

i(t−1)Di
MCtMCt−1

(t−2) (3.3)

that can be generalized as:

Di(t) =
t

∑
f =1

α( f )i
β( f )i(t− f )Di

MCt− f
( f ) (3.4)

roughly speaking this equation states that the channel induced distortion Di(t) of

a ith macroblock at time t is the sum of all the distortions due to concealment that

are forward propagated due to the predictive nature of the coding tool.

The estimated map α(t)i can be affected by false positives, macroblocks tagged

as lost but correctly received, and false negatives, lost macroblocks tagged as re-

ceived. A false positive at time t introduces an over estimation of the channel

distortion at time t equal to Di
C(t), so all the distortion Di(t +n) are overestimated

of a factor equal to β( f )i(n)Di
MCn

(t). Trivially a false negative produces an under-

estimation with the same values. It must be noticed that errors in map of lost

macroblocks estimation at certain time t leads not only to wrong channel distor-

tion estimation at time t, but also to a wrong estimation of the drift tail generated

by the loss under exam at time τ > t.

We want now to study the impact on distortion estimation of errors in map

of lost macroblocks estimation wrt errors in motion vectors and residuals estima-

tion. First of all we analyze a macroblock ith which does not suffer from distortion

due to drift:

Di(t) = α
i(t)Di

C(t) (3.5)

Algorithm like NORM give an estimation D̂i(t) of the distortion that can be ex-

pressed as:

D̂i(t) = α
i(t)D̂i

C(t,MV,Res) (3.6)

D̂i
C(t,MV,Res) represents the estimation of Di

C(t) obtained using motion vectors

and residuals information. Equation 3.6 can be rewritten as follows when motion
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vectors and residuals are estimated:

D̂i
M̂V−R̂(t) = α

i(t)D̂i
C(t,M̂V , ˆRes) (3.7)

this is the case of results obtained in Section 3.1, where estimated motion vec-

tors and residuals are used to ran NORM and obtain an estimated distortion

D̂i
M̂V−R̂

(t). It is important to notice that D̂i
C(t,M̂V , ˆRes) can also be rewritten as:

D̂i
C(t,M̂V , ˆRes) = D̂i

C(t,MV,Res)+ eM̂V−R̂(t) (3.8)

where e ˆMV−R(t) represents the error committed in distortion estimation due to

motion vectors and residuals estimate. Since also the map of lost macroblocks

need to be estimated is always possible to write:

D̂i
α̂
(t) = α̂

i(t)D̂i
C(t,MV,Res) (3.9)

which represents the estimated distortion with an estimated map of lost mac-

roblocks.

It is so now possible to show how distortion errors due to map of lost mac-

roblock estimation are always bigger wrt the ones due to motion vectors and

residuals estimate for a chosen macroblock ith. In particular two cases must be

handled, α̂i representing a false positive (FP) or α̂i representing a false negative

(FN).

In the first case (FP) αi(t) = 0 but α̂i(t) = 1 so the real distortion is correctly

estimated from Di
C(t,M̂V , ˆRes) and no errors are introduced. On the other hand

D̂i
α̂
(t) = D̂i

C(t,MV,Res), which always introduces an estimation error greater than

the one introduced by motion vectors and residuals.

In the second case (FN) αi(t) = 1 but α̂i(t) = 0, the estimated motion vectors

and residuals introduce an error equal to eM̂V−R̂(t), while the FN in αi(t) leads

to an error in absolute value equal to D̂i
C(t,MV,Res). Since from results in 3.1 we

can assure that D̂i
C(t,M̂V, R̂es) is a good predictor of D̂i

C(t,MV,Res) is also possi-

ble to write that D̂i
C(t,MV,Res) >> eM̂V−R̂(t). Which finally demonstrates that the
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estimation of map of lost macroblocks is the most sensible part among all the

estimations.

Moreover it must be remembered that while estimation errors in motion vec-

tors and residuals estimation are localized in time and do not affect future results,

errors in map of lost macroblocks estimation always lead to a drift of the error that

affects a certain number of frames after the burst, giving birth to an higher error

energy.

Obliviously different FPs and FNs lead to different estimation errors. We want

to understand which FPs and FNs could be negligible wrt NORM estimation. We

know that NORM calculates D̂i
C(t,MV,Res) in two different ways depending from

the type of used concealment, we will analyze them separately.

3.4.1 Temporal Concealment

We first analyze the weight of FPs and FNs when D̂i
C(t,MV,Res) is expressed as

in eq. 2.8. In this case D̂i
C = D̂i

TC and represents the distortion due to temporal

concealment.

We now want to quantify the specific D̂i,TC
n estimation error when a FN or FP

is present, wrt the particular features of the macroblock under consideration.

As already said D̂i,TC
n is computed as the sum of two different contributes eq.

2.8 The first term models the distortion due to motion vectors lack as written in

eq. 2.9. In particular Φi
n(w j,wk) denotes the power spectral density of the spatial

predictor P̂i
n(w) and it is computed as:

Φ
i
n(w j,wk) = | 1

B2

B−1

∑
x=0

B−1

∑
y=0

P̂i
n(w)e− j(w jx+wky)|2 (3.10)

while δx, δy are the differences between the real motion vector and the concealed

one:

δx|y = |v̄i
n,x|y− ṽi

n,x|y| (3.11)

We now want to understand for which features D̂i,MV
n is near to zero or small

enough (ε) wrt the general distortion. First of all we analyze the second term of
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the expression:

(1− cos(w jδx +wkδy))→ ε

cos(w jδx +wkδy)→ 1

(w jδx +wkδy)→ 0

this term tends to zero if and only if w jδx→ 0 and wkδy→ 0. We can so study two

different situations:

• δx→ 0 and δy→ 0

• w j→ 0 and wk→ 0

In the first case we know that δ̂i
n is estimated as in eq. 2.10 which can be rewritten

as the expected value of the mean square error between the concealed motion

vector ṽi
n and all the neighbors motion vectors vl

SxS:

δ̂
i2
n = E[(ṽi

n− vl
SxS)] (3.12)

So when δx→ 0 and δy→ 0 also E[(ṽi
n− vl

SxS)]→ 0.

We can so conclude that, if a macroblock is placed in a zone with a simple uniform

motion, its E[(ṽi
n− vl

SxS)]→ 0 and also its estimated distortion Di,MV
n → 0.

The second case of interest is the one related to the spatial frequency w j → 0

and wk→ 0. As already said for low frequencies (1− cos(w jδx +wkδy))→ ε while

it grows up as the frequencies become higher. Since the PSD Φi
n(w j,wk) works as

a weight for (1− cos(w jδx + wkδy)), we can argue that, if the PSD lays in the low

frequency range:

Φ
i
n(w j,wk)(1− cos(w jδx +wkδy))→ ε

Summarizing, for macroblock with a simple texture whose PSD Φi
n(w j,wk) lays in the

low frequency range, the estimated distortion Di,MV
n → 0.

We now focus our attention over the second term of D̂i,TC
n = D̂i,MV

n + D̂i,PR
n

which models the distortion due to the lack of real prediction residuals computed

as in eq.2.11 where Θi
n−r represents the prediction residuals of the macroblock in
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the reference frame pointed by the motion vector. We can also rewrite the esti-

mated distortion as:

D̂i,PR
n = E[(Θi

n−r)
2] (3.13)

so it is trivial to write that D̂i,PR
n → ε when E[(Θi

n−r)
2]→ ε. The dimension of the

prediction residuals variance depends from the features of the particular coded

macroblock. If the variance is small the macroblock has simple texture and lays in

a zone with a uniform simple motion so E[(Θi
n−r)

2]→ ε, since it is easier to create

a predictor which is a good approximation of the real macroblock. On the other

hand, a big variance is linked to macroblock with high texture that lays in a zone

with a chaotic motion. In this case much more information is contained in the

prediction residuals, and so E[(Θi
n−r)

2] grows higher.

In conclusion, if the coded macroblock has simple texture and lays in a zone with a

uniform simple motion, its E[(Θi
n−r)

2]→ ε and so the estimated distortion Di,PR
n → 0.

Matching up all the results we can argue that zones with a simple texture

and simple and uniform motion produce a D̂i,TC
n which is smaller wrt the ones

computed in different zones. These results are coherent wrt the concealment al-

gorithm, which works obviously better in this kind of regions. So if an FP or FN

falls in these zones its impact over the total estimated distortion is smaller wrt

FPs or FNs fallen in different areas.

3.4.2 Spatial Concealment

We now analyze the weight of FPs and FNs when D̂i
C(t,MV,Res) is expressed as

in eq. 2.7. In this case D̂i
C = D̂i

SC and represents the distortion due to spatial

concealment.

From eq. 2.7 we can argue that Di
SC→ ε when (M̃i

n(x,y)− M̃i,0
n (x,y))→ ε, which

can be rewritten as M̃i
n(x,y)→ M̃i,0

n (x,y). So the spatial concealment distortion is

negligible only when the lost macroblock is similar to the co-located macroblock

in the previous frame, which may happens when there is no motion and the tex-

ture of the macroblock is easy predictable from the spatial conceal.

Also in this case we can finally argue that FPs and FNs produce a negligible
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distortion only if they fall in areas with no motion and a very simple texture that

can be easily reconstructed by the spatial concealment algorithm.

It must be noticed that in the modern network PLR never exceeds the 10%, so

the number of true negatives is much more bigger than the one of true positives

(T N >> T P). If we suppose to have the same probability for FPs or FNs, we have

much more FPs than FNs, which means a greater contribution in total estimated

distortion by the FPs. So it’s more likely to set up the estimation algorithm for the

map of lost macroblocks with a greater probability for FNs than for FPs in regions with a

simple texture and simple and uniform motion.



CHAPTER 4

MAP OF LOST MACROBLOCKS

ESTIMATION

This chapter is dedicated to the map of lost macroblocks (MLM) estimation prob-

lem. As already described the decoder recovers the lost macroblocks running a

particular concealment algorithm. In our scenario we suppose to not know which

algorithm is ran. However in Section 1.2 we identified several mild assumptions

that are valid for a large class of concealment algorithms. Our objective is to use

these assumptions to find macroblocks properties whose values can be due to a

reconstruction process, e.g. residuals’ energy, motion vectors, boundaries discon-

tinuity. Roughly speaking we want to extract for each macroblock belonging to

a corrupted sequence a set of features that are indexes of the macroblock status,

lost or correctly received. For example, in our scenario, the temporal concealment

recovers a lost block by coping a macroblock from a previous reference frame. So

for lost temporal concealed macroblocks we can argue that the temporal predic-

tion residuals’ energy will be zero.

Once this set of features has been found we want to estimate the posterior

probability that a ith macroblock is lost observing the identified set of features:

Pi(L|f) (4.1)

where L indicates that the macroblock is lost and L that the block is correctly
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received. On the other hand f is a vector of features, where each f j feature is

extracted from the corrupted video and is linked to the particular status of the

macroblock. So each ith macroblock will be classified thanks to the estimated

posterior Pi(L|f). To estimate the posterior Pi(L|f) we rewrite it using the Bayes

theorem:

Pi(L|f) =
Pi(f|L) ·Pi(L)

Pi(f)
(4.2)

where the likelihood Pi(f|L) is the conditional probability to have a certain set of

features knowing that the macroblock is lost, the prior Pi(L) is the probability to

have a lost macroblock and finally Pi(f) is a normalizing constant that indicates

the probability of certain set of features f. So to solve the prior estimation problem

we decide to estimate the likelihood and the prior from the corrupted video:

• Estimated likelihood: P̂i(f|L)

• Estimated prior: P̂i(L)

it must be noticed that we do not estimate Pi(f) since it works as a normaliz-

ing term and can be neglected for our purposes. With the estimated prior and

likelihood we will be so able to create a probability map that gives for each mac-

roblock the probability to be lost observing the chosen features, solving the MLM

estimation problem.

However in the following section we will see that it is not possible to solve

the described estimation problem since it is not unusual that the concealment

perfectly restores the lost macroblocks. We will so redefine the MLM estimation

problem with a new posterior Pi(BC|f), which is the probability for the ith mac-

roblock to be badly concealed observing the chosen set of features. Then we will

estimate the likelihood and the prior for the new defined posterior, obtaining

an estimation of Pi(BC|f). Finally we will introduce the Markov random fields

model to take advantage from the spatial relationship between badly concealed

macroblocks and we solve the related maximum a posterior (MAP) problem to

obtain the boolean map of lost macroblocks using a Min-Cut/Max-Flow algo-

rithm.
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4.1 Concealment Effectiveness

The objective of concealment is to restore as much as possible lost informa-

tion. Two different types of concealment are used in I and P frames, spatial and

temporal. In both cases the algorithms try to recreate the lost macroblocks using

the information available at the decoder side. It must be noticed that, since the

concealment algorithm takes advantage of the received or already restored in-

formation of the neighborhood, the quality of the reconstruction strictly depends

from the characteristics of the neighborhood and of the macroblock itself.

It may happen that concealment is able to perfectly restore the lost macroblock:

Mi(x,y) = M̃i(x,y) (4.3)

where Mi(x,y) is the BxB macroblock reconstructed at the decoder side with no

channel losses and M̃i(x,y) is the BxB macroblock reconstructed by concealment at

the decoder side when channel losses occurred. The induced channel distortion

of the ith macroblock is so perfectly zero:

Di =
1

B2

B

∑
x=1

B

∑
y=1

(Mi(x,y)−M̃i(x,y))2 = 0 (4.4)

In this case likelihood Pi(f|L) estimation problem is ill posed, since there is no way

to distinguish the lost macroblocks from the reconstructed ones. As an example

we study the particular concealment algorithms implemented in the H.264/AVC

reference software, which are the ones performed during our tests.

First we analyze the performances of the temporal concealment applied in P

frames, searching for cases in which the concealment is able to reconstruct lost

macroblocks perfectly:

Mi(x,y) = M̃i
T (x,y) (4.5)

where M̃i
T (x,y) is the BxB macroblock reconstructed by temporal concealment.

Intuitively features that affect the concealment performances are the motion and

texture of the area in which M̃i
T (x,y) lays.
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Figure 4.1: Distribution of channel distortion of lost macroblocks reconstructed
with temporal concealment for the Mobile sequence.
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Figure 4.2: Distribution of channel distortion of lost macroblocks reconstructed
with temporal concealment for the Foreman sequence.
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Figure 4.3: Distribution of channel distortion of lost macroblocks reconstructed
with temporal concealment for the News sequence.
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Figure 4.4: On the left the original noiseless frame with the lost slices in pink. On
the right the corrupted and concealed frame with blue macroblocks perfectly re-
stored. The perfectly restored zones have uniform zero motion. (Induced channel
distortion equals to zero)

Figure 4.5: On the left the original noiseless frame with the lost slices in pink. On
the right the corrupted and concealed frame with blue macroblocks perfectly re-
stored. (Induced channel distortion equals to zero). The perfectly restored zones
have uniform motion.

Figure 4.6: On the left the original noiseless frame with the lost slices in pink. On
the right the corrupted and concealed frame with blue macroblocks perfectly re-
stored. (Induced channel distortion equals to zero). The perfectly restored zones
are "Flat".
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Two cases in which is more probable that nearly perfect reconstruction may

be reached can be identified:

• The motion of the area is uniform: all the motion vectors point to the same

direction.

• The texture of the area is simple: its spectrum is localized in low frequencies

range.

The first case is shown in Figure 4.4, it is possible to notice that a portion of the

lost slice is perfectly reconstructed. In this area the motion in nearly uniform and

near to zero. The concealment algorithm reconstructs the macroblock copying

a motion vector from the neighbors, so there is an high probability that the cor-

rect motion vector is restored, since all neighbors share the same motion vector

(area with uniform motion). In Figure 4.5 is depicted another example of uniform

motion, with motion vectors different from zero.

Nearly perfect reconstruction is also possible in areas where the spectrum is

localized in low frequency range, Figure 4.6. If the lost area is "flat", choosing an

incorrect motion vector during concealment can however lead to perfect recon-

struction, since all neighbor macroblocks are similar.

Histograms in Figures 4.1, 4.2, 4.3 represent the distortion Di
T produced by

temporal concealed macroblocks of three sequences, Mobile Foreman and News,

at two different PLRs (1, 5) over 15 realizations. The percentage of macroblocks

nearly perfectly reconstructed is higher in News wrt Mobile and Foreman sequences,

due to uniform motion areas and "flat" macroblocks.

Performances for spatial concealment are then evaluated. Also in this case we

are searching for perfectly reconstructed macroblocks:

Mi(x,y) = M̃i
S(x,y) (4.6)

where M̃i
S(x,y) is the BxB macroblock reconstructed by spatial concealment. Intu-

itively also in this case zones without high spatial frequencies are the ones that

can reach lower channel distortion.
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Figure 4.7: Distribution of channel distortion of lost macroblocks reconstructed
with spatial concealment for the Mobile sequence.
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Figure 4.8: Distribution of channel distortion of lost macroblocks reconstructed
with spatial concealment for the Foreman sequence.

−100 0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Channel Distortion

%

−100 0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Channel Distortion

%

Figure 4.9: Distribution of channel distortion of lost macroblocks reconstructed
with spatial concealment for the News sequence.
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Figure 4.10: On the left the original noiseless frame with the lost slices in pink.
On the right the corrupted and concealed frame with blue macroblocks nearly
perfectly restored. The nearly perfectly restored zone is "Flat".

Figure 4.11: On the left the original noiseless frame with the lost slices in pink.
On the right the corrupted and concealed frame with blue macroblocks perfectly
restored. (Induced channel distortion equals to zero)
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In Figure 4.10 is possible to appreciate that "flat" areas exhibit a better recon-

struction, since lost macroblocks are more predictable from boundaries of their

neighbors using the interpolating function in eq. 2.1. Moreover in Figure 4.11 it is

possible to appreciate an artificial example in which perfect spatial reconstruction

is achieved due to the particular texture of the image.

Histograms in Figures 4.7, 4.8, 4.9 represent the distortion Di
S of spatially con-

cealed macroblocks for the same dataset used for temporal concealment. In gen-

eral the temporal conceal performs better than the spatial one. Moreover in Fore-

man sequence spatial concealment reaches higher performances, since its back-

ground has a texture easily spatially predictable.

From above considerations we understand that likelihood Pi(f|L) estimation

problem is ill-posed. For cases in which concealed and real macroblocks are indis-

tinguishable Mi(x,y) = M̃i(x,y), it is not possible to find features f able to discrim-

inate between Pi(f|L) and Pi(f|L) distributions. From this consideration we are

forced to redefine the likelihood as the probability of the ith macroblock to have a

certain set of features f observing that the macroblock is badly concealed Pi(f|BC).

Roughly speaking we search for a set of features f discriminating between poorly

concealed macroblocks, that produce an appreciable channel distortion, and all

the other blocks. Fortunately these limitations do not affect our final objective

since we are interested in channel distortion estimation and not detectable cases

are the ones with channel distortion Di equal to zero.

4.2 New Posterior Estimate

In previous section a new likelihood was introduced to overcome the prob-

lem of perfectly or nearly perfectly concealed macroblocks. The prior estimation

problem must be so redefined to fit the new likelihood. In particular we are in-

terested in estimating the probability of the ith macroblock to be badly concealed

observing a set of features f:

Pi(BC|f) (4.7)

where BC indicates that the macroblock is badly concealed and BC that the block
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is correctly received or concealed without visual impairments. Roughly speaking

this probability states that we are interested in searching concealed macroblocks

that introduce visual impairments in the decoded video.

Thanks to Bayes theorem we can rewrite posterior Pi(BC|f)) as:

Pi(BC|f) =
Pi(f|BC) ·Pi(BC)

Pi(f)
(4.8)

where the likelihood Pi(f|BC) is the conditional probability to have a certain set of

features knowing that the macroblock is badly concealed, the prior Pi(BC) is the

probability to have a badly concealed macroblock and finally Pi(f) is a normaliz-

ing constant that indicates the probability of certain set of features f.

We have so to estimate the likelihood and the prior from the corrupted video

sequence:

• Estimated likelihood: P̂i(f|BC)

• Estimated prior: P̂i(BC)

we neglect Pi(f) since works as a normalizing term and it is not necessary for our

purposes.

Since a temporal badly concealed macroblock differs from a spatial one two

different posteriors, with their own likelihoods and priors, must be estimated for

temporal and spatial concealments:

• P̂i(BCT |fT ) ∝ P̂i(f|BCT ) · P̂i(BCT )

• P̂i(BCS|fS) ∝ P̂i(f|BCS) · P̂i(BCS)

also different set of features f must be identified for temporal (fT ) and spatial (fS)

concealments.

In the following sections we analyze how to estimate likelihoods and priors,

searching also for the best features f that discriminate between badly concealed

and not lost or correctly recovered macroblocks.
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4.3 Ground Truth

The performances of our estimation must be measured wrt a ground truth.

Since we are interested in searching for badly concealed blocks BC, map of lost

macroblocks (MLM) may be not a good ground truth for our tests, since it does

not take into account the concealment effectiveness.

Our ground truth Gt could be so created weighting the MLM wrt the map

of concealment effectiveness Ce, which measures the concealment capability in

recreating the ith macroblock with no visual impairments:

Gt i = Cei ·MLMi (4.9)

in particular Ce has high values for macroblock concealed with visual impair-

ments and low otherwise.

The concealment effectiveness map Ce is a function of the particular slicing

and adopted concealment algorithm Ce((Slicing), (Conc.Alg.)). Supposing to know

the real slicing pattern and the used concealment algorithm it is possible to search

for the real Ce. However in our scenario we cannot assume to know the slicing

pattern or the concealment and we have to estimate Ce starting from our mild

assumptions for temporal and spatial concealments.

Figure 4.12: Partitions used to compute MV P.
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For temporal concealment we decided to model CeT as follows:

Ĉei
T = Di

T ·MV PDi (4.10)

where:

• Di
T is the induced channel distortion of the ith macroblock due to temporal

concealment as described in equation 2.4

• MV PDi is the motion vector predictor difference and it is defined as the

difference between the motion vector predictor MV Pi and the motion vector

MV i of the ith macroblock of the noiseless sequence:

MV PDi = |MV Pi−MV i| (4.11)

notice that the MV P is defined as the median of the motion vectors for par-

titions A, B and C of Figure 4.12.

So the concealment effectiveness map CeT will have low values for temporal con-

cealed macroblocks M̃i
T (x,y) with no visual impairments. In particular the first

term Di accounts for cases in which a nearly perfect reconstruction is achieved.

On the other hand the MV PDi models cases in which concealment restores the ith

macroblock with no visual impairments but with a not negligible channel distor-

tion Di. This may happen when the reconstructed vector preserves the relation-

ship wrt its neighborhood but the whole lost slice suffers from a slight shift wrt

the original.

Since our ground truth must be a binary map, Ĉei
T must be thresholded. In

particular a binary version of Di
T and MV PDi must be defined:

BDi
T





1 if Di
T > T hD

0 if Di
T ≤ T hD

(4.12)
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BMV PDi





1 if MV PDi > T hMV PD

0 if MV PDi ≤ T hMV PD

(4.13)

where T hMV PD and T hD are respectively thresholds for MV PD and Di. It is now

possible to define a binary version of Ĉei
T :

BĈei
T = (BDi

T ) AND (BMV PDi) (4.14)

So the obtained binary version of concealment effectiveness map BĈei
T has values

equal to zero for reconstructed macroblocks with no visual impairments and zero

otherwise. In particular the two thresholds T hMV PD and T hD are experimentally

chosen looking for the visually best estimation of BĈei
T , setting both of them to

zero. So the first thresholded term select all macroblocks where the concealment

restoration works perfectly, and the second one all the macroblocks coded as skip.

All the process is depicted in Figure 4.13.

Figure 4.13: Starting form the left we have the map of lost macroblock, the esti-
mated concealment effectiveness map BĈei

T , and the obtained ground truth.

Also for spatial concealment a ground truth must be defined. However in

this case a spatial concealment effectiveness map Ĉei
S is not necessary, since from

results obtained in Section 4.1, we know that the number of cases in which spatial

concealment is able to achieve a reconstruction with no visual impairments is

negligible. So the adopted ground truth for spatial concealment is the map of lost

macroblock (MLM).
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4.4 Likelihood Estimation

In this section we focus on the estimate of likelihoods for temporal and spatial

concealments, starting from mild assumptions made in Section 1.2.

4.4.1 Temporal Likelihood Estimation

First of all we identify a feature fT j which is able to discriminate between tem-

porally badly concealed and not lost or correctly recovered macroblocks, starting

from the mild assumption made over the temporal concealment, that can be sum-

marized as follows:

• Temporally concealed macroblocks must have a predictor, in a previous ref-

erence frame, with prediction residuals’ energy near to zero.

First of all we define the following quantities:

• M̃i
T (x,y, t) is the temporally concealed BxB ith macroblock belonging to the

frame at time t.

• vi
x(t) and vi

y(t) are respectively x and y coordinates of the concealed motion

vector used to temporally predict the ith macroblock from a previous refer-

ence frame at time t−n.

• Mi
T (x− vi

x(t),y− vi
y(t), t − n) is the temporal prediction of the macroblock

M̃i
T (x,y, t)

Our mild assumption over temporal concealment can be so written as:

M̃i
T (x,y, t) = Mi

T (x− vi
x(t),y− vi

y(t), t−n) (4.15)

which means that the residuals’ energy MSE i
T computed between the temporally

concealed ith macroblock and its prediction at time t−n will be equal to zero:

MSE i
T (t) =

1
B2

B

∑
x=1

B

∑
y=1

(M̃i
T (x,y, t)−Mi

T (x− vi
x(t),y− vi

y(t), t−n))2 = 0 (4.16)
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So the temporal concealment simply restores a lost macroblock copying a block

from a previous reference frame at time t−n. Moreover we know from the stan-

dard that lost macroblocks have always dimension of 16x16 pixels which means

B = 16. Supposing so to compute temporal prediction residuals MSE i
T (t) for all

the macroblocks belonging to the frame at time t, the concealed macroblocks

M̃i
T (x,y, t) will have MSE i

T (t) = 0. Since temporal prediction residuals’ energy

MSE i
T (t) is a discriminant feature wrt badly concealed macroblocks and other

blocks, it can be used in our temporal likelihood estimation, setting the vector

of features fT = MSE i
T (t) with size 1x1. We can so write temporal likelihood

Pi(fT |BCT ) as:

Pi(MSE i
T |BCT ) (4.17)

that can be so modeled as an impulse centered in MSE i
T equal to zero.

All these considerations perfectly fit if real motion vectors vi
x(t) and vi

y(t) are

available and no deblocking filter is applied. Unfortunately in our scenario the

motion is estimated on the reconstructed video (v̂i
x(t) and v̂i

y(t)) and it is possible

that the predictor with the minimum residuals’ energy MSE i
T (t) will not be found.

Moreover with an active deblocking filter the concealed macroblocks may differ

from their predictors:

M̃i
T (x,y, t) 6= Mi

T (x− vi
x(t),y− vi

y(t), t−n) (4.18)

and the calculated MSE i
T may be different from zero as well. The likelihood dis-

tribution Pi(MSE i
T |BCT ) can not be so modeled as an impulse. Moreover is not

possible to find a general distribution model, since it depends from the particu-

lar used motion estimation and to the used deblocking filter. However, from our

experimental results, we can suppose that a good approximation of the distribu-

tion is an exponential function. As expected, adopting this function, for small

MSE i
T values we have high probabilities, while for big MSE i

T values we have low

probabilities. Roughly speaking it is more probable that a lost, and so also badly

concealed, macroblock will have a small MSE i
T value.
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Figure 4.14: On the left the corrupted video, with the lost slices in red, on the
right the estimated likelihood map

For each ith macroblock belonging to a P frame of the corrupted sequence

MSE i
T is calculated. The obtained values are so mapped to probabilities using

the following function:

P̂i(MSE i
T |BCT ) ∝ e

MSEi
T

αT L (4.19)

we so obtain an estimation of the ith macroblock temporal likelihood Pi(MSE i
T |BCT ).

As already said, since we do not know the real likelihood distribution we ex-

perimental chose the decay factor αT L. In Figure 4.14 is depicted the estimated

likelihood for a given corrupted frame.

We now test our estimated likelihood as a binary classifier, understanding

how much the chosen feature MSE i
T is able to discriminate between temporally

badly concealed macroblocks and correctly concealed or received ones wrt the

constructed ground truth. We so measure the separability capabilities of MSE i
T

wrt the two defined classes, badly concealed macroblocks (Positive Class) and

the correctly concealed and received macroblocks (Negative Class). To achieve

this task we use the Receiving Operating Characteristics (ROC) curves.

Figure 4.15 illustrates an example of two overlapping probability density func-

tions (PDF) describing the distribution of a feature in two classes. Suppose that

the blue curve on the right is the pdf of positive class, while the red one on the

left is the pdf of the negative class. We set a threshold T as a region boundary to

discriminate among the two classes: in particular for x < T we decide the class to
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Figure 4.15: Example of overlapping pdf’s of the same feature in two classes.

be negative, while for x ≥ T we decide the class to be positive. The shaded area

indicated by β is the probability of getting a true positive given the threshold T ,

while the shaded area marked by the letter α is the probability of deciding that

a feature value x is positive while it is actually negative (this is called false pos-

itive). Varying T over all the possible values of x, one obtains a plot of the true

positive rate versus the false positive rate. This kind of plot is known as Receiving

Operating Characteristic (ROC) curve. ROC curves have been widely used in pat-

tern recognition and classification to evaluate and visualize the performance of a

classifier. Used in the context of feature selection, ROC curves evaluate the power

of discrimination of a single feature between two classes when a simple decision

boundary (a threshold) is used as classifier. A more detailed discussion on ROC

curves in classification can be found in Fawcett (2004).

In Figures 4.16, 4.17, 4.18 are presented the ROCs of the estimated likelihood

P̂i(MSE i
T |BCT ) wrt our defined ground truth for Mobile Foreman and News se-

quences at different PLRS (1,5) over 15 realizations. It is possible to notice that

for News sequence the obtained areas under curve (AUCs) are near 0.56, which

means that our curves are near to the line of no-discrimination, the worst pos-

sible classification (a random guess). On the other hand the obtained AUCs for
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Figure 4.16: Temporal likelihood ROC curves for Mobile sequence at two different
PLRs, 1% on the left 5%, on the right, over 15 realizations
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Likelihood AUC 0.79
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Figure 4.17: Temporal likelihood ROC curves for Foreman sequence at two differ-
ent PLRs, 1% on the left 5%, on the right, over 15 realizations
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Figure 4.18: Temporal likelihood ROC curves for News sequence at two different
PLRs, 1% on the left 5%, on the right, over 15 realizations
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Figure 4.19: Macroblocks classified wrt their coding modes for three sequences.

Foreman and Mobile sequences have higher values above 0.80, it must be noticed

that the perfect classifier has an AUC equal to one.

For News sequence in particular, it is trivial to see that MSE i
T is not sufficient to

discriminate between badly concealed macroblocks and not lost or correctly con-

cealed ones, since their distributions are not sufficiently separable. This behavior

can be explained looking to the histogram in Figure 4.19 where macroblocks are

classified wrt their coding modes. It is possible to appreciate that for News se-

quence the percentage of skipped macroblocks (MSE i
T = 0) is substantially higher

wrt Mobile and Foreman. This means that all these macroblocks are tagged as pos-

itives even if they are negatives (False Positives), lowering the ROCs News curves

wrt Mobile and Foreman.

We can so conclude that particulary for static sequences like News the esti-

mated likelihood is not sufficient to achieve a class separation. The problem must

be so regularized introducing a prior able to lowering the weight of false positives

without changing the true ones.

4.4.2 Spatial Likelihood Estimation

As for temporal concealment we search for a feature f j to be useful in spatial

likelihood P̂i(fS|BCS) estimation starting from the mild assumption made upon

spatial concealment:

• Spatially concealed macroblocks are a combination of neighborhood with

prediction residuals’ energy near to zero.
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We now define the following quantities:

• M̃i
S(x,y, t) is the spatial concealed BxB ith macroblock belonging to the frame

at time t.

• Mi
REC(x,y, t) is the ith macroblock reconstructed by neighbor macroblocks

boundaries

Our mild assumption over spatial concealment can be so written as:

M̃i
S(x,y, t) = Mi

REC(x,y, t) (4.20)

which means that the residuals’ energy MSE i
S computed between the spatially

concealed ith macroblock and Mi
REC(x,y, t) will be equal to zero:

MSE i
S(t) =

1
B2

B

∑
x=1

B

∑
y=1

(M̃i
S(x,y, t)−Mi

REC(x,y, t))2 = 0 (4.21)

Mi
REC(x,y, t) depends from the adopted spatial concealment algorithm, but in

our scenario we do not know the concealment algorithm process. We so decide

to model Mi
REC(x,y, t) as a bilinear function described as follows:

M̂i
REC(x,y, t)= α

iW (Y +y)ai(x)+β
iW (17−X−x)bi(y)+γ

iW (17−Y−y)ci(x)+δ
iW (X +x)di(y)

(4.22)

where ai,bi,ci,di, are the boundaries of the neighbors of the ith macroblock used

to spatially reconstruct the macroblock (Figure 4.20), W (dist) is a function that

weights the pixel values wrt its distance from the pixel under reconstruction,

X and Y are the coordinates of the upper left pixel of the ith macrolbock and

αi,βi,γi,δi are the unknown coefficients of the ith macroblock. We moreover sup-

pose to know that W (dist) is expressed as follows:

W (x) =
x

x+ y+(17− x)+(17− y)
(4.23)

obviously it is always possible to redefine this particular functional form to fits

other assumptions.
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As already said αi,βi,γi,δi are unknown and we cannot directly compute for a

given macroblock its estimated spatial reconstruction M̂i
REC(x,y, t). We so decide

to search for αi,βi,γi,δi that minimize MSE i
S(t) in eq. 4.21, this problem can be

solved by least squares method.

Our ovedetermined system can be defined for the ith macroblock belonging to

a frame at time t as:

M̃i
S(x,y, t)= α

iW (Y +y)ai(x)+β
iW (17−X−x)bi(y)+γ

iW (17−Y−y)ci(x)+δ
iW (X +x)di(y)

(4.24)

with 1 6 x 6 16 and 1 6 y 6 16. Rewriting the system in matrix form we obtain:

mb = A ·φ (4.25)

where mb, A, φ are matrices defined as:

M̃i
S(x,y, t) =




M̃i
S(1,1, t)

M̃i
S(1,2, t)

.

.

.

M̃i
S(16,16, t)




[256x1] (4.26)

A =




W (1+Y )ai(1) W (16−X−1)bi(1) W (16−Y −1)ci(1) W (x)di(1+X)

W (2+Y )ai(1) W (16−X−1)bi(2) W (16−Y −2)ci(1) W (1)di(2+X)

. . . .

. . . .

. . . .

W (16+Y )ai(16) W (17−X−16)bi(y) W (17−Y −16)ci(16) W (16)di(16+X)




[256x4]

(4.27)
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φ =




αi

βi

γi

δi




[4x1] (4.28)

thanks to the pseudoinverse we can so finally calculate φ that minimizes MSE i
S(t):

φ = (AT ·A)−1 ·A ·mb (4.29)

With the obtained φ we can so finally calculate M̂i
REC(x,y, t).

Figure 4.20: Spatial reconstruction M̂i
REC(x,y, t) of the ith macroblock.

Since spatial prediction residuals’ energy MSE i
S(t) is a discriminant feature wrt

spatial badly concealed macroblocks, it can be so used in our spatial likelihood

estimation, setting the vector of features fS = MSE i
S(t) with size 1x1. We can so

write spatial likelihood Pi(fS|BCS) as:

Pi(MSE i
S|BCS) (4.30)

that can be so modeled as an impulse centered in MSE i
S equal to zero.

However since we do not know the real Mi
REC(x,y, t), our estimation M̂i

REC(x,y, t)

may lead to a MSE i
S(t) which is different from zero so also in this case we decide to

model Pi(MSE i
S|BCS) distribution with an exponential function; high probabilities
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value are so linked to low MSE i
S values.

We so map the chosen feature MSE i
S to obtain an estimate of the spatial likeli-

hood Pi(MSE i
S|BCS):

P̂i(MSE i
S|BCS) ∝ e

MSEi
S

αLS (4.31)

In Figure 4.21 is represented the estimated likelihood for a chosen corrupted I

frame.

Figure 4.21: On the left the corrupted video, with lost slices in red, on the right
the estimated likelihood map

In Figures 4.22, 4.23, 4.24 are presented the ROCs of the estimated spatial like-

lihood P̂i(MSE i
S|BCS) wrt our defined spatial ground truth for Mobile Foreman and

News sequences at different PLRS (1,5) over 15 realizations. In general the ob-

tained AUCs are above 0.80, and in particular AUCs related to Mobile achieve a

nearly perfect classification, since its content has a texture that is not spatial pre-

dictable and it is more difficult that false positives arise. On the other hand for

News sequence there is an high number of false positives. This is possible since

some areas of the sequence are flat and so spatially predictable, giving birth to

false positives.

Also in this case the introduction of a prior may help in reaching higher AUCs,

working as confidence wrt our estimate, lowering false positives weight.
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Figure 4.22: Spatial likelihood ROC curves for Mobile sequence at two different
PLRs, 1% on the left 5%, on the right, over 15 realizations
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Figure 4.23: Spatial likelihood ROC curves for Foreman sequence at two different
PLRs, 1% on the left 5%, on the right, over 15 realizations
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Figure 4.24: Spatial likelihood ROC curves for News sequence at two different
PLRs, 1% on the left 5%, on the right, over 15 realizations
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4.5 Prior Estimation

As seen till now classifications achieved with likelihoods are not always suf-

ficient. In fact we have not an a priori knowledge that features MSE i
S and MSE i

T

used to classify between correctly and badly concealed blocks are not also linked

to some intrinsic characteristics of the video. For example MSE i
S false positives

are not lost macroblocks that are easily spatially predictable due to their own

content. Also for MSE i
T the same consideration holds. In this case false positives

are not lost macroblocks that are temporally predicated with a low residuals’ en-

ergy (e.g. skip coded macroblocks). We want so to create a map which is able

to filter out estimated likelihood P̂i(MSE i
T orS|BC) false positives due to intrinsic

characteristics of the sequence under consideration.

Prior probability Pi(BC), calculated over the noiseless frame, gives the proba-

bility for the ith macroblock to be badly concealed. Pi(BC) satisfies the previous

constrain, in general in fact estimated likelihoods P̂i(MSE i
T |S|BC) false positives

have a low Pi(BC) values since their content is intrinsically easily predictable and

so easily concealable. On the contrary estimated likelihoods P̂i(MSE i
T |S|BC) true

positives will have high values of priors Pi(BC) since their content is not easily

predictable and so not easily concealable. Roughly speaking confidence weights

how much the likelihoods features MSE i
S, MSE i

T values are linked to a badly con-

cealment or to a content property.

Obviously in our scenario the noiseless frame is unavailable. We so decide to

compute the likelihood estimate P̂i(BC) using the previous motion compensated

P frame. We will see that this approximation is not always correct, due to the dif-

ferences between current and motion compensated previous frame. We however

chose to use it since it is the one that fits better our mild assumptions.

4.5.1 Temporal Prior Estimation

P̂i(BCT ) models the probability that the temporal concealment is not able to per-

form a restoration without visual impairments. From our mild assumptions we

know that temporal concealment simply copies a macroblock from a previous
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reference frame trying to preserve the motion field around it.

We choose to model the temporal prior P̂i(BCT ) using the MV PDi(t−1) of the

previous motion compensated P frame, which is the difference between the mo-

tion vector predictor and the motion vector under exam, as defined in equation

4.11. This feature is able to discriminate between zones that are restorable with

no visual impairments from zones where the concealment is not able to achieve

these performances. The MVPD is in fact a measure of the predictability of the

motion vector under exam wrt its neighbor motion vectors, typically a temporal

concealment works better in these zones since is able to restore the macroblocks

looking at the neighbors.

We can so define the MVPD for the ith macroblock calculated over the previous

motion compensated P frame at time t−1:

MV PDi(t−1) = |MV P(x− vx,y− vy, t−1)−MV (x− vx,y− vy, t−1)| (4.32)

where vx and vy are the motion vectors related to the ith macroblock belonging to

the frame at time t, and x and y are the coordinates of the upper left pixel of the

same block.

It must be noticed that it may happen that the predictor described by vx and

vy is a composition of pixels belonging to more than one macroblock (max 4) of

the frame at time t − 1. This means that our predictor can have more than one

MVP and MV. Among all the possible MPVs and MVs we decided to chose the

ones which belong to the macroblock at time t−1 that shares the biggest number

of pixels with our predictor.

We can so finally define the estimated temporal concealment prior as follows:

P̂i(BCT ) ∝ 1− e
MV PDi(t−1)

αPT (4.33)

as for likelihood we map the MVPD calculated over the motion compensated

frame at time t−1 between 0 and 1 to obtain a probability map. We can so finally
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state that P̂i(BCT |MSE i
T ) can be calculated as:

P̂i(BCT |MSE i
T ) ∝ (1− e

MV PDi(t−1)
αPT ) · e

MSEi
T

αLT ; (4.34)

In Figure 4.25 are represented the obtained posterior probability map for a given

corrupted frame.

Figure 4.25: Starting form the left the corrupted video the likelihood map and the
posterior map

Differently from likelihood ROC shape and AUC depends from the chosen

αPT , αLT , the two decay factors. In fact different mapping leads to a different re-

lationship between the assigned probabilities of each macroblock. In Figure 4.26

are reported the surfaces of AUCs wrt the two decay factors for two sequences

(Foreman, News). It is possible to notice that the AUC strictly depends from αLT

and αPT . We search for the αPT , αLT which maximize the related ROC’s AUC.

However we noticed that the obtained decay values are quite sequence indepen-
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Figure 4.26: AUC surfaces for Foreman, News sequences at PLR 5%
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dent, we so decide to set up αPT = 0.5, αLT = 0.05 for all the three videos.

In Figures 4.27, 4.28, 4.29 is possible to appreciate the ROC curves obtained

using P̂i(BCT |MSE i
T ) as classification feature with the same dataset used in Section

4.4. For News sequence the new feature obtains better results wrt the likelihood

used in Section 4.4. On the contrary for Mobile and Foreman the AUCs obtained

with the likelihood P̂i(MSE i
T |BCT ) are greater.

Since the prior Pi(BCT ) is estimated over the motion compensated previous P

frame motion vectors, it is trivial to understand that for high motion sequences,

like Foreman and Mobile, this estimate is not sufficiently precise. In fact the mo-

tion vectors change fast from frame to frame, and previous motion compensated

motion vectors MV (x−vx,y−vy, t−1) can substantially differ from the ones of the

noiseless frame at time t.

The adopted solution is to neglect the prior for sequence whose general mo-

tion differs too much from frame to frame. The total motion difference (TMD) is

calculated for each frame as follows:

T MD(t) =
N

∑
x=1

M

∑
y=1
|MV (x,y, t)−MV (x,y, t−1)| (4.35)

where MV (x,y, t) is the motion vector of the macroblock at the x,y position be-

longing to the frame at time t, while MV (x,y, t − 1) is the motion vectors of the

co-located macroblock belonging to the frame at time t− 1. In Figure 4.30 is de-

picted T MD function wrt time for two different sequences. It is possible to notice

that Foreman T MD values are in general greater wrt News ones. This consideration

suggests that a thresholded T MD value may be used as a switch for prior usage.

In particular choosing a certain threshold thT MD, if T MD 6 thT MD, the prior will

be used. Otherwise if T MD > thT MD, the prior map will be neglected.

So the algorithm for Pi(BCT |MSE i
T ) estimation can be summarized as follows:

1: for each macroblock ith do

2: if T MDi < thT MD then

3: P̂i(BCT |MSE i
T ) ∝ P̂i(MSE i

T |BCT ) · P̂i(BCT )
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Figure 4.27: Temporal likelihood and prior ROC curves for Mobile sequence at
two different PLRs, 1% on the left 5%, on the right, over 15 realizations
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Figure 4.28: Temporal likelihood and prior ROC curves for Foreman sequence at
two different PLRs, 1% on the left 5%, on the right, over 15 realizations
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Figure 4.29: Temporal likelihood and prior ROC curves for News sequence at two
different PLRs, 1% on the left 5%, on the right, over 15 realizations
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Figure 4.30: T MD for each frame of Foreman and News sequences.

4: else

5: P̂i(BCT |MSE i
T ) ∝ P̂i(MSE i

T |BCT )

6: end if

7: end for

4.5.2 Spatial Prior Estimation

As for temporal prior, P̂i(BCS) models the probability that the spatial conceal-

ment is not able to perform a restoration without visual impairments, an index of

spatial concealment effectiveness.

We choose to model the spatial prior P̂i(BCS) using the MSE i
S(t−1) which is the

MSE i
S computed over the previous motion compensated P frame. This feature is

able to discriminate between zones that are spatially restorable with no visual im-

pairments from zones where the spatial concealment is not able to achieve these

performances. In fact false positives macroblock, wrt the estimated likelihood

P̂i(MSE i
S|BCS), will have low values of MSE i

S(t−1) since their spatial predictabil-

ity depends from a content property.

We can so finally define the estimated spatial concealment prior as:

P̂i(BCS) ∝ 1− e
MSEi

S(t−1)
αPS (4.36)
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and the posterior P̂i(BCS|MSE i
S) can be computed as:

P̂i(BCS|MSE i
S) ∝ (1− e

MSEi
S(t−1)

αPS ) · e
MSEi

T
αLS (4.37)

In Figure 4.31 is represented the obtained posterior probability map for a given

corrupted frame.

As done for temporal prior we select αPS, αLS which maximize the related

ROC’s AUC. In Figure 4.32 are depicted the corresponding surfaces. In this case

we set αPS = 0.9, αLS = 0.1 for all the three sequences.

ROC curves obtained using prior P̂i(BCS|MSE i
S) are reported in Figures 4.34,

4.35, 4.36. The obtained AUCs are always bigger than the ones obtained using

only the likelihood, achieving our objective. However it is possible to notice that

the ROC curves obtained with posterior P̂i(BCS|MSE i
S) are not always above the

curves obtained by likelihood P̂i(MSE i
S|BCS).

This behavior is caused by the particular concealment algorithm. The confi-

dence is in fact computed over a dataset that is an estimate of the noiseless frame.

In particular we suppose to compute the spatial concealment effectiveness over

a particular macroblock when all its neighbors are correctly received. This con-

sideration does not hold in our case, since the concealment also uses already re-

stored blocks during the recovering process. In particular it may happen that

a macroblock with low P̂i(BCS), will be reconstructed with visual impairments

since the used boundaries belong to already badly concealed macroblocks. So

false negatives number grows up lowering true positives rate for curves obtained

Figure 4.31: Starting form the left the corrupted video the likelihood map and the
posterior map
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Figure 4.32: AUC surfaces for Foreman, News sequences at PLR 5%
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Figure 4.33: Cumulative distribution for the L1 norm of the difference between
motion vectors belonging to the noiseless and corrupted frame.

with P̂i(BCS|MSE i
S).

This problem can obviously only be solved knowing the slice structure and

the concealment process, but in our scenario these assumptions can not be made.

It must be noticed that the same considerations can also be made upon tem-

poral prior estimation. In particular for temporal concealment it may happen

that a lost macroblock may be restored using motion vectors belonging to badly

concealed blocks. We can so easily argue that wrong temporal confidence estima-

tions are due to the difference of motion vectors used by concealment process and

the one of the prediction of the noiseless frame used to compute the confidence

Pi(BCT ). In fact from the cumulative distribution function in Figure 4.33, which

is computed for the L1 norm of the difference between motion vectors belonging
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Figure 4.34: Spatial likelihood and prior ROC curves for Mobile sequence at two
different PLRs, 1% on the left 5%, on the right, over 15 realizations
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Figure 4.35: Spatial likelihood and prior ROC curves for Foreman sequence at two
different PLRs, 1% on the left 5%, on the right, over 15 realizations
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Figure 4.36: Spatial likelihood and prior ROC curves for News sequence at two
different PLRs, 1% on the left 5%, on the right, over 15 realizations
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to the noiseless and corrupted frame over lost slices, it is possible to notice that

an high percentage of vectors have a difference higher than 4 pixels.

4.6 Markov Fields

Till now we did not take into account spatial relationship between lost mac-

roblocks. In fact knowing the particular slice structure it is possible to deduce

also the particular topology of map of lost macroblocks, that may help during its

estimation.

Unfortunately we do not have this a priori knowledge in our scenario, but we

can however argue that there is a spatial relationship between lost macroblocks,

since we know that they are packetized into slices. This spatial relationship can

be modeled using a Markov Random Field.

Markov Random Fields (MRF) are probabilistic undirected graphical models

that help in the analysis of probability distributions. In particular they provide

a simple way to visualize the structure of a probabilistic model including the

conditional dependence between variables. A graph comprises nodes and links.

Each node represents a random variable (or a group of random variables), while

the link express the probabilistic relationship between them. Roughly speaking

this models are able to capture the causal process by which the observed data are

generated.

In Figure 4.37 is depicted the adopted undirect graphical model (MRF) repre-

senting a corrupted frame, in which each node xi is a boolean variable denoting

the state of the ith macroblock to be restored with or without visual impairments,

and yi denotes the corresponding estimated P̂i(BC|MSE i
T |S). Note that to distin-

guish between observed and hidden variables the nodes are shaded or empty.

It is trivial to understand that in this model we suppose that the state of a

macroblock is linked to the ones of its four neighbors. But this assumption can

be changed creating the lattice that performs better wrt unknown slicing struc-

ture. We want so to solve the defined MRF searching the maximum a posteriori

for P̂i(BC,Neighborhood|MSE i
T |S) where a new spatial prior was inserted thanks
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Figure 4.37: The undirect graph used to model the estimated map of badly con-
cealed macroblock.

to Markov field. It was demonstrated by Boykov et al. (1998) and Greig et al.

(1989) that this maximization problem can also be solved by Min-Cut/Max-Flow

graph cut technique for a particular class of functions. We so redefine our frame

model as the two terminal graph addressed by Boykov et al. (1998) and Greig

et al. (1989), in particular we decided to model our problem as already done for

image segmentation in Boykov and Funka-Lea (2006), since it can be similarly

described.

In general a graph G = 〈V,E〉 is composed by a set of nodes V and a set of links

or edges E. In our specific case the nodes are the macroblocks. The graph contains

also two additional special nodes called terminals which correspond to the two

labels that can be assigned to our macroblocks (Badly Concealed and Correctly

received or concealed). These two terminals are usually called source, s and sink,

t.

We are so interested in minimize the energy function associated to the new

defined graph depicted in Figure 4.38:

E(L) = ∑
p∈P

Dp(Lp)+ ∑
(p,q)∈N

Vp,q(Lp,Lq) (4.38)

where L = Lp|p ∈ P is the labeling for each macroblock of our frame P, Dp(.) is a
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Figure 4.38: The adopted directed capacitated graph. Edge costs are reflected by
their thickness.

data penalty function, Vp,q is an interaction potential and N is a set of all pairs of

neighboring macroblocks.

There are so two types of edges in a graph: n-links and t-links. N-links connect

a pair of neighbor macroblocks and their costs are derived from the macroblocks

interaction term Vp,q in 4.38, which represents a penalty for discontinuity between

the blocks. On the other hand t-links connect macroblocks with terminals (labels).

In this case their costs are associated to a penalty for assigning the macroblock to

the corresponding label. This cost is derived from the Dp term in 4.38.

In particular in our scenario n-links weights are computed as follows:

N− links(p,q) = |P̂p(BC|MSE i
T |S)− P̂q(BC|MSE i

T |S)| (4.39)

where p and q are two adjacent macroblocks. On the other hand t-links weights

are computed as:

T − links(p,L) = |L− P̂p(BC|MSE p
T |S)| (4.40)

where the pth macroblock is connected to the Lth label, in our case to the sink (L = 0

correctly concealed or received macroblocks) or source (L = 1 badly concealed
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macroblocks)

To solve E(L) minimization problem we use a Min-Cut/Max-Flow algorithm.

In particular s/t cut C on a graph with two terminals is a partitioning of the nodes

in the graph into two disjoint subsets S and T such that the source s is in S and

the sink t is in T .

In combinatorial optimization the cost of a cut C = (S,T ) is defined as the sum

of the costs of boundary edges (p,q) where p ∈ S and q ∈ T . The minimum cut

problem on a graph is to find a cut that has the minimum cost among all cuts. One

of the fundamental results in combinatorial optimization is that the minimum s/t

cut problem can be solved by finding the maximum flow from the source s to the

sink t. Loosely speaking, maximum flow is the maximum amount of water that

can be sent from the source to the sink by interpreting graph edges as directed

pipes with capacities equal to edge weights. The theorem of Ford and Fulkerson

states that a maximum flow from s to t saturates a set of edges in the graph di-

viding the nodes into two disjoint parts S,T corresponding to a minimum cut. To

solve this minimization problem we use the algorithm presented by Boykov and

Kolmogorov (2001).

Summarizing, for each frame the posterior probability is estimated P̂p(BC|MSE p
T |S),

and the n-link and t-link are computed as described in 4.39 and 4.40. Kolmogorov

and Boykov’s Min-Cut/Max-Flow algorithm is then ran over the constructed

graph obtaining a classification for each macroblock.

Our Source models macroblock concealed with visual impairments, on the

other hand Sink models received macroblocks and correctly concealed ones. We

label the first class with one (Positive) and the second one with zero (Negative).

As seen till now our a posterior probability estimations P̂i(BC|MSE p
T |S) are cre-

ated using an exponential mapping function whose decay depends from the par-

ticular chosen αP and αL. It is clear that changing these parameters is possible to

obtain a different estimation of the posterior probability, and specifically different

weights for t-links and n-links.

In Figure 4.39 are reported the T PR and FPR for the map obtained using Min-

Cut/Max-Flow algorithm wrt different likelihood’s αL and prior’s αP. From these
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Figure 4.39: Starting form the left the corrupted video the likelihood map and the
posterior map

surfaces we can so choose the αP and αL to obtain the desired ratio between T PR

and FPR. In particular for spatial concealment we chose αLS = 0.4 and αPS = 0.001

for all the three sequences. On the other hand for temporal concealment we set

αLT = 0.3 for Foreman and Mobile sequences, while for static sequence like News

αLT = 1 and αPT = 0.02.

In Figure 4.46 it is possible to appreciate the results obtained by Min-Cut/Max-

Flow algorithm in estimating the map of lost macroblocks . The Max-Flow/Min-

Cut obtained T PRs and FPRs for the different sequences are shown in Figures

4.40,4.41,4.42,4.43,4.44 and 4.45 together with the ROCs previously obtained for I

and P frames using likelihood and posterior. It is possible to notice that estima-

tions obtained with Min-Cut/Max-Flow have always a T PR, FPR ratio higher wrt

the one achieved by prior and posterior at the same FPR. However for temporal

concealment in News sequence the obtained results are comparable to the ones

obtained with posterior. However it must be noticed that the ROC curves does

not take into account the specific weight of the recognized true positives in terms

of channel induced distortion Di. It may so happen that even if we have the same

T PR, FPR ratio the true positives recognized by the Min-Cut/Max-Flow algo-

rithm may be different from the ones found by likelihood or prior and in partic-
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Figure 4.40: Temporal likelihood and prior ROC curves with TPR and FPR ob-
tained by Min-Cut/Max-Flow algorithm for Mobile sequence
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Figure 4.41: Temporal likelihood and prior ROC curves with TPR and FPR ob-
tained by Min-Cut/Max-Flow algorithm for Foreman sequence
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Figure 4.42: Temporal likelihood and prior ROC curves with TPR and FPR ob-
tained by Min-Cut/Max-Flow algorithm for News sequence



4.6 Markov Fields 77

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P
os

it
iv

e
R

at
e

Mobile PLR 1% I Frames

 

 

Likelihood AUC=0.99
Likelihood + Prior AUC=0.99
MRF

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P
os

it
iv

e
R

at
e

Mobile PLR 5% I Frames

 

 

Likelihood AUC=0.99
Likelihood + Prior AUC=0.99
MRF

Figure 4.43: Spatial likelihood and prior ROC curves with TPR and FPR obtained
by Min-Cut/Max-Flow algorithm for Mobile sequence
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Figure 4.44: Spatial likelihood and prior ROC curves with TPR and FPR obtained
by Min-Cut/Max-Flow algorithm for Foreman sequence
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Figure 4.45: Spatial likelihood and prior ROC curves with TPR and FPR obtained
by Min-Cut/Max-Flow algorithm for News sequence
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Figure 4.46: Starting form the left the corrupted video the likelihood map and the
posterior map

ular the ones recognized by Min-Cut/Max-Flow algorithm may have higher Di.

This means that with Min-Cut/Max-Flow algorithm we are able to achieve better

channel distortion estimation. These considerations are confirmed by results in

Section 5.2.

4.7 System Overview

In this chapter we described a method to estimate the map of lost badly con-

cealed macroblocks able to feed NORM. For each I and P frames the likelihoods

Pi(MSE i
S)|BCS) and Pi(MSE i

T |BCT ) are estimated at macroblock level as described

in Section 4.4. Then, using the motion compensated previous P frame, the priors

Pi(BCS) and Pi(BCT ) are estimated as in Section 4.5. With the estimated priors

and likelihoods we are able to compute the posterior probabilities Pi(BCS|MSE i
S)

and Pi(BCT |MSE i
T ), useful to define the undirected graph of Section 4.6, which

takes into account the spatial relationship between lost macroblocks. Solving the

defined graph with the Min-Cut/Max-Flow algorithm described in Boykov and

Kolmogorov (2001) we finally obtain the estimated map of lost badly concealed

macroblocks. An overview of the system is depicted in Figure 4.47.
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CHAPTER 5

EXPERIMENTAL RESULTS AND

COMPARISON

This chapter is dedicated to the analysis of NR-P NORM performances. NR-P

NORM algorithm is obtained feeding NORM with the estimated bitstream in-

put described in Chapter 3, and the estimated map of lost macroblocks obtained

in Chapter 4. In particular we are interested in evaluating NR-P NORM perfor-

mances using three different map of lost macroblocks (MLM) estimations:

• MLM estimated as the estimated thresholded likelihoods P̂i(MSE i
S|BCS) and

P̂i(MSE i
T |BCT ). The obtained NR-P method is called NR-PL NORM

• MLM estimated as the estimated thresholded posteriors P̂i(BCS|MSE i
S) and

P̂i(BCT |MSE i
T ). The obtained NR-P method is called NR-PP NORM

• MLM estimated as the output of Min-Cut/Max-Flow algorithm. The ob-

tained NR-P method is called NR-PMRF NORM

We then carried out several experiments on real video sequences simulating the

error prone channel and running the described NR-P NORM methods to esti-

mate the induced channel distortion. In the next section we will present the test

dataset, and in the following one the obtained estimated channel distortions with

our three NR-P methods.
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5.1 Source Coding Conditions

We consider a typical scenario in video coding applications, the internet pro-

tocol television (IPTV). H.264/AVC reference software (version JM12.3 (JVT) has

been used with main profile. Three CIF video sequences, Mobile, Foreman, News

have been coded at 256 kbps and 30 fps with a fixed quantization parameter for

I and P slices (QP = 36). The number of reference frames used during prediction

is fixed to 5 and rate distortion optimization (RDO) is enabled. Finally the used

motion estimation algorithm for inter prediction is the simplified UMHexagon

Search.

Each coded frame is partitioned into slices, where each slice contains a hor-

izontal row of macroblocks. Each coded slice is then packetized according to

the real-time transfer protocol (RTP) specifications Wenger (2003). The simulated

error-prone channel drops coded packets according to a packet loss rate (PLR)

in the range [0.1 10]. The error patterns have been generated using a two-state

Gilbert’s model Gilbert et al. (1960) with average burst length of three packets.

We simulated the transmission of the test sequences over 15 channel realizations

for each considered PLR value [0.1 0.4 1 3 5 10]. This dataset was already used in

Section 3.1 to analyze the impact of motion vector estimation.

The three chosen sequences have different types of contents. In particular

Mobile is a sequence with high motion wrt News. On the other hand Foreman

is a mixture of high motion frames followed by a static scene. Since our NR-P

methods are dependent from the particular video contents this dataset permits to

analyze the behavior of our system in these different contexts.
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5.2 Experimental Result and Discussion

In order to evaluate the accuracy of our NR-P methods we measured the Pear-

son’s correlation coefficients between the estimated and real MSE distortions.

Two granularity levels are taken into account frame and sequence (Seq.). Finally

also the NR-P/NR-B NORM results are presented as an upper bound for our

estimations. From tabs. 5.1, 5.2 and 5.3 it is possible to appreciate that the NR-

P/NR-B NORM approach is clearly the one that performs better, because it has

access to the original motion vectors and prediction residuals and, specifically, to

the true map of channel errors.

As expected the NR-PP method achieves higher correlation coefficients wrt

the NR-PL one, in particular for News sequence. It must be remembered that the

NR-PP method takes advantage of the confidence map that is able to lower the

number of false positives. This is particulary evident looking at the scatter plots at

frame level depicted in Figure 5.3. It is possible to appreciate how the estimations

obtained by NR-PP are nearer to the 45◦ line, in particular at low PLR (0.1% 0.4%),

wrt the ones obtained by NR-PL.

However, as stated in Section 4.5, for high motion sequences like Mobile and

Foreman the confidence map is not used in P frames due to its poorer results. It

is so trivial to understand that are static sequences like News the ones that take

greater advantages from NR-PP method. Moreover as shown in Figures 4.34, 4.35,

4.36 the impact of confidence usage in I frames, is greater for static sequences.

Also in this case, these considerations are confirmed by scatter plots at frame

level presented in Figures 5.2, 5.1. It is in fact possible to see that results obtained

by NR-PL and NR-PP are comparable for high motion sequences like Mobile and

Foreman.

The NR-PMRF method archives higher correlation coefficient wrt NR-PP and

NR-PL methods (tabs. 5.1, 5.2 and 5.3). In particular from scatter plots in Figures

5.4, 5.5, 5.6 it is possible to appreciate that the obtained dispersions,with NR-PMRF

method, are much more concentrated around the 45◦ line.
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However it must be noticed that for Foreman sequence, the correlation coef-

ficients obtained at frame level by the NR-PMRF method are lower wrt the ones

obtained by the other two NR-P methods. This behavior is due to a to wrong

estimation of the spatial prior during changes of scene, in fact it must be remem-

bered that spatial priors are computed over the previous motion compensated P

frame. When a change of scene occurs, the previous frame is no more a good

predictor of the noiseless frame at time t and false positives may arise in the es-

timated map of lost macroblocks. Since the MRF takes advantage from spatial

relationship between adjacent blocks, it may happen that false positives induce a

wrong relationship wrt their neighbors, creating a wrong MLM estimation.

Finally it is possible to appreciate from scatter plots at sequence level in Figure

5.7 that all the three proposed methods achieve high correlation coefficients (al-

ways above 0.96) at Seq. level. However the dispersions related to the NR-PMRF

method are nearer to the 45◦ line, which means that this method achieves a more

precise estimation of the real channel induced distortion.
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NR-PL NR-PP NR-PMRF NORM
PLR [%] Frm Seq Frm Seq Frm Seq Frm Seq
0.1 0.84 0.99 0.84 0.99 0.86 0.98 0.99 0.99
0.4 0.81 0.98 0.81 0.98 0.84 0.98 0.98 0.98
1 0.82 0.94 0.82 0.94 0.93 0.98 0.98 0.98
3 0.95 0.96 0.95 0.96 0.95 0.97 0.99 0.99
5 0.92 0.92 0.92 0.92 0.94 0.95 0.99 0.99
10 0.87 0.87 0.87 0.87 0.89 0.87 0.97 0.98
Tot 0.94 0.98 0.94 0.98 0.94 0.98 0.99 0.99

Table 5.1: Correlation coefficients with different NR-P and NR-P/B methods wrt
real distortion for Mobile sequence

NR-PL NR-PP NR-PMRF NORM
PLR [%] Frm Seq Frm Seq Frm Seq Frm Seq
0.1 0.67 0.96 0.67 0.96 0.57 0.98 0.98 0.98
0.4 0.66 0.75 0.66 0.76 0.57 0.78 0.94 0.96
1 0.87 0.91 0.87 0.91 0.86 0.96 0.96 0.96
3 0.86 0.87 0.87 0.88 0.84 0.87 0.96 0.97
5 0.88 0.92 0.89 0.92 0.87 0.92 0.96 0.97
10 0.84 0.91 0.83 0.92 0.85 0.94 0.93 0.93
Tot 0.88 0.98 0.88 0.98 0.88 0.98 0.96 0.99

Table 5.2: Correlation coefficients with different NR-P and NR-P/B methods wrt
real distortion for Foreman sequence

NR-PL NR-PP NR-PMRF NORM
PLR [%] Frm Seq Frm Seq Frm Seq Frm Seq
0.1 0.51 0.98 0.98 0.99 0.97 0.99 0.99 0.99
0.4 0.67 0.88 0.87 0.93 0.83 0.95 0.98 0.98
1 0.87 0.92 0.90 0.94 0.91 0.97 0.99 0.99
3 0.72 0.89 0.79 0.92 0.92 0.95 0.98 0.99
5 0.70 0.76 0.80 0.81 0.89 0.91 0.96 0.96
10 0.66 0.90 0.74 0.91 0.88 0.93 0.97 0.98
Tot 0.71 0.96 0.80 0.97 0.91 0.98 0.98 0.99

Table 5.3: Correlation coefficients with different NR-P and NR-P/B methods wrt
real distortion for News sequence



5.2 Experimental Result and Discussion 85

Figure 5.1: NR-PP and NR-PL scatter plots at frame level for Mobile sequence at
different PLRs
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Figure 5.2: NR-PP and NR-PL scatter plots at frame level for Foreman at different
PLRs
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Figure 5.3: NR-PP and NR-PL scatter plots at frame level for News at different
PLRs
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Figure 5.4: NR-PMRF scatter plots at frame level for Mobile at different PLRs
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Figure 5.5: NR-PMRF scatter plots at frame level for Foreman at different PLRs
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Figure 5.6: NR-PMRF scatter plots at frame level for News at different PLRs
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Figure 5.7: Scatter plots at sequence level for all the sequences under exam



CHAPTER 6

CONCLUSIONS

In this chapter we summarize the presented work, briefly describing the different

steps to reach the NR-P video quality monitoring. Finally we discuss some future

works on the theme of no reference pixel based video quality monitoring.

6.1 NR-P Video Quality Monitoring

In this section we will briefly review the created system composed by all the

parts described in the previous chapters. The main objective of our work is to

create a NR-P version of NORM. To achieve this objective several bitstream infor-

mation must be estimated:

• Motion Vectors

• Residuals

• Structure of the Group Of Pictures (GOP)

• Map of Lost Macroblocks (MLM)

Motion vectors and residuals are computed performing a motion block estima-

tion algorithm over the corrupted decoded video. GOP structure is estimated

using a QP estimator for B frames, while I frames are recognized as frames with

an high number of macroblocks having a temporal prediction residuals’ energy

greater of a given threshold.
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Map of lost macroblocks points out, for each frame, which macroblocks have

been lost during transmission. This information is crucial for our objective since

its impact over the final estimated distortion is greater wrt other NORM inputs

estimations. We so decide to focus our attention over this particular problem.

Since it may happen that the concealment algorithms are able to perfectly re-

store lost macroblocks, the MLM estimation problem is ill posed. Our new ob-

jective is so to recognize temporally and spatially badly concealed macroblocks

without knowing the particular adopted concealment algorithm. Steps for map

of badly concealed macroblock estimation can be summarized as follows:

• Likelihoods Pi(MSE i
S|BCS) and Pi(MSE i

T |BCT ) are estimated for each ith mac-

roblock:

– MSE i
S is the residuals’ energy computed between the spatially con-

cealed ith macroblock and ith macroblock reconstructed by neighbor

macroblocks boundaries.

– MSE i
T is the residuals’ energy computed between the temporally con-

cealed ith macroblock and the temporal prediction of the ith macroblock.

• Priors Pi(BCS) and Pi(BCT ) are computed over the previous motion com-

pensated P frame:

– Pi(BCS) is estimated thanks to the MSE i
S computed over the previous

motion compensated P frame.

– Pi(BCT ) is estimated thanks to the MV PD computed over the previous

motion compensated P frame.

• Posteriors are then computed as the product between priors and likelihoods,

but for sequences with a complex motion Pi(BCT ) is neglected.

• T-links and n-links are then calculated from the obtained posteriors (eqs.

4.39, 4.40). The Min-Cut/Max-Flow algorithm is then ran over the chosen

graph model to exploit the spatial relationship of lost macroblocks.
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• The output of the algorithm is the estimated map of badly concealed mac-

roblocks.

The different estimated data are used to feed NORM algorithm creating a no ref-

erence pixel based (NR-P) video quality monitoring. An overview of the final

system is presented in Figure 6.1.

6.2 Conclusion and Future Developments

The presented work tries to solve the no reference pixel based video qual-

ity monitoring problem. We were interested in estimating the channel induced

distortion using only the reconstructed video at the decoder side. To reach this

objective we decided to use NORM, which is a no reference hybrid algorithm for

channel distortion estimation. NORM is a NR-B/NR-P method that uses both

bitstream and coded video information. In our target scenario the bitstream is

unavailable and we decided to estimate NORM bitstream inputs in order to cre-

ate an NR-P version of the same algorithm. This objective was reached estimating

NORM bitstream inputs. In particular we focused our attention over the map of

lost macroblocks estimation problem. Starting from mild assumptions, valid for

a large class of concealment algorithms, we found features able to recognize lost

macroblocks, using also a confidence to clean the obtained map from false posi-

tives. Finally we used a Max-Flow/Min-Cut algorithm to exploit spatial relation-

ship between lost blocks, reaching the final classification. The NORM algorithm

is then ran using the estimated bitstream information, obtaining a no reference

pixel-based video quality monitoring.

Future works will be dedicated to search for new confidence features to obtain

better channel distortion estimations at macroblock level for P frames, trying to

use information related to side match distortion. Moreover different lattices for

MRF will be defined, trying also to estimate the slices structure from the topology

of map of lost macroblocks.
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Estratto in italiano

L’utilizzo di reti IP per la trasmissione di contenuti multimediali è ormai una

realtà consolidata. Solitamente le reti utilizzate forniscono un servizio best effort,

vale a dire che non vi è sicurezza riguardo la ricezione dei contenuti inviati. In tali

circostanze l’utente e il fornitore dei servizi potrebbero essere interessati a stipu-

lare un contratto di tipo SLA (service level agreement) che fissi la qualità del video

percepita a lato utente. Pertanto è di estrema importanza avere una misura della

qualità del video ricostruito dal decoder. Solitamente i contenuti video vengono

compressi da un encoder prima dell’invio al decoder che attua la ricostruzione,

il video così ricevuto può contenere due tipi differenti di distorsione, di quan-

tizzazione e di canale. La distorsione di quantizzazione è dovuta alla codifica

lossy applicata al video, mentre l’errore di canale è imputabile a perdite di canale

avvenute durante la trasmissione. Generalmente il decoder cerca di ricostruire

i macroblocchi persi tramite un algoritmo di concealment. Tali algoritmi utiliz-

zano le informazioni correttamente ricevute o già recuperate per produrre una

versione ricostruita del macroblocco perso. Tuttavia la ricostruzione non sempre

raggiunge gli standard qualitativi adeguati e la distorsione di canale sarà quindi

percepibile a livello visivo.

Il nostro obiettivo principale è la stima della distorsione di canale lato de-

coder utilizzando solo le informazioni presenti nel video ricostruito, ovvero un

metodo no reference pixel based (NR-P). Solitamente gli algoritmi presenti in let-

teratura utilizzano anche il contenuto del bitstream (vettori di moto, residui di

predizione,etc...), purtroppo non sempre questo approccio è applicabile poiché il

bitstream potrebbe essere criptato o ottenuto da decoder di terze parti. In tali casi

sono disponibili solo i valori dei pixel del video ricostruito.



L’obiettivo finale è stato raggiunto creando una versione NR-P di NORM (No-

Reference video quality Monitoring); un algoritmo in grado di stimare la distor-

sione di canale lato decoder utilizzando informazioni provenienti dal video de-

codificato e dal bitstream. I parametri provenienti dal bitstream sono stati stimati

dal video codificato con particolare attenzione per la mappa dei macroblocchi

persi. Partendo da assunzioni valide per la gran parte degli algoritmi di con-

cealment si è cercato di riconoscere i macroblocchi mal ricostruiti a livello visivo.

Ogni frame è stato esaminato ricercando i macroblocchi mal ricostruiti attraverso

l’energia dei residui di predizione, a cui è stata in seguito applicata una confi-

denza in grado di evitare falsi positivi. Infine la relazione spaziale tra macrobloc-

chi persi è stata modellizzata tramite Markov random fields.

Le differenti stime degli input provenienti dal bitstream sono state poi utiliz-

zate per l’esecuzione dell’algoritmo NR-P NORM. Le distorsioni di canale stimate

sono ben correlate (coefficiente di correlazione lineare maggiore di 0.9) rispetto

alla distorsione reale di canale calcolata a livello di frame e sequenza.
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