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Sommario 

 

 

 

Obiettivi 

 

L’analisi effettuata grazie all’elettroencefalografia (EEG) è una tecnica molto usata per 

studiare l’attività del sistema nervoso centrale (CNS). Fornisce informazioni legate 

all’attività cerebrale tramite misure elettriche sullo scalpo dei soggetti. Grazie all’EEG 

vengono studiati i trattamenti efficaci e la diagnosi del paziente per alcune patologie. Le 

informazioni che vengono ricavate sono principalmente legate all’analisi spettrale. Lo 

studio dell’EEG di un paziente dormiente è una branca della medicina molto importante 

proprio per le sue applicazioni cliniche. Il gold standard per la stadiazione del sonno sui 

pazienti è basato sull’analisi delle onde cerebrali descritto da Rechtschaffen e Kales. Il 

metodo più comune è la polisonnografia (PSG) che utilizza, oltre all’EEG, altri segnali 

fisiologici come l’elettromiogramma (EMG), elettro-oclugramma (EOG), respiro, 

saturazione di ossigeno nel sangue, elettrocardiogramma (ECG) e analisi visive. La PSG 

utilizza epoche di 30 secondi per studiare il sonno. Tale metodo è normalmente effettuato 

in strutture attrezzate e necessita di personale medico per il set up dei sensori, il 

monitoraggio e l’analisi. Sebbene l’analisi venga  effettuata sul computer, è necessario 

comunque uno specialista del sonno che stadi le epoche. Si può facilmente comprendere lo 

spreco di risorse sia in termini di costo che di tempo; se poi si aggiunge che l’EEG richiede 

l’installazione di molti elettrodi sullo scalpo, si può comprendere come il paziente possa 

non raggiungere una buona qualità del sonno, alterando spesso le diagnosi. Le variazioni 

nel Sistema Nervoso Autonomo (ANS) durante il passaggio veglia/sonno si riflettono su 

molti segnali facilmente acquisibili (frequenza cardiaca, pressione, ecc). Questa tesi 

utilizza il segnale di variabilità cardiaca (HRV) durante il sonno. Esso può essere acquisito 

in diversi modi, ed è per questo che molti risultati si contraddicono con altri. Infatti l’HRV 

è suscettibile al rumore rendendo difficili le applicazioni con tale tipo di segnale. Recenti 

studi hanno affiancato il respiro all’HRV dimostrando l’utilità del segnale 
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cardiorespiratorio per la discriminazione degli stadi del sonno. Il vantaggio di questo 

segnale consiste nella facilità di misura e grazie all’impiego di sensori integrati può essere 

acquisito anche da persone non esperte.  

Questa tesi ha l’obiettivo di creare non solo un algoritmo di detezione automatica del 

sonno, ma anche di valutare alcuni parametri clinici come la sleep efficiency, la percentuale 

di sonno REM rispetto al sonno totale (REM%TST), e la latenza del primo ciclo REM 

basandosi su parametri spettrali. 

Lo scopo è quindi sviluppare un algoritmo di machine-learning che partendo dal segnale 

HRV, dal respiro e dal movimento, riesca a identificare e apprendere le caratteristiche che 

distinguono le fasi del sonno, stadiando nuove registrazioni. 

 

 

Materiali e metodi 

 

I dati sono stati acquisiti da 11 adulti (età fra i 20 e i 54 anni) al centro del sonno Finnish 

Institute of Occupational Health (FIOH). Dopo una registrazione notturna di riferimento, 

ogni soggetto ha effettuato due registrazioni: una durante la notte, e una durante il giorno 

dopo aver trascorso la notte a lavorare. I segnali sono stati studiati usando lo standard R&K 

sui segnali EEG, EOG e EMG. La stadiazione è stata effettuata da medici specializzati. Gli 

intervalli RR (RRI) sono stati estrapolati dal segnale ECG tramite il software Somnologica. 

Inoltre il segnale BCG multicanale è stato acquisito tramite sensori interni a un materasso 

(bed sensor), basati su multielettrodi Emfit. Sono stati acquisiti sia l’Heart Beat Interval 

(HBI), circa l’88% del segnale, e sia il movimento dal bed sensor. La macrostruttura del 

sonno è stata fornita da un esperto medico per ogni soggetto secondo i criteri di R&K. 

 

Estrazione delle features 

La prima parte di questo lavoro si focalizza sul signal processing e sulla ricerca delle 

features che caratterizzano gli stadi del sonno, al fine di ottenere una detezione automatica 

delle epoche. Per ognuna delle 17 registrazioni, l’HRV e il respiro sono stati sincronizzati 

con il movimento e l’ipnogramma medico, e perciò sono state estratte le features per 

ognuno dei due segnali. La procedura consiste nel filtrare i due segnali in 3 bande: Very 

Low Frequencies (VLF), Low Frequencies (LF) e High Frequencies (HF), dopo aver 
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eliminato eventuali outlier dovuti ad artefatti da movimento con un filtro mediano. Le 

features sono quindi state normalizzate rispetto alla potenza totale (TP) e sono stati 

calcolati anche i loro rapporti (LF/VLF, LF/HF e HF/VLF). Infine è stata calcolata anche 

la cross-correlazione tra i due segnali nelle stesse bande; tale metodo è utile per valutare il 

grado di somiglianza dei due segnali in ogni singolo stadio. I valori sono stati mediati per 

ogni epoca, mentre invece sono state calcolate due features su intervalli di tempo più ampi, 

5 epoche (150 secondi), come la media e la deviazione standard. Le features scelte sono 

quelle che massimizzano le performance migliori usando il Discriminante Lineare (LD) o 

Quadratico (QD). 

Il segnale viene elaborato con un filtro Recursive Least Square (RLS) e con la 

decomposizione tramite Trasformata Wavelet Discreta (WDT). 

Non sono state prese in analisi le registrazioni di 5 pazienti a causa di anormalità presenti 

nel segnale, come una bassa variabilità cardiaca durante le fasi del sonno e la presenza di 

battiti ectopici. 

Questo lavoro vuole mostrare l’importanza dell’informazione che dà il respiro; a tal fine è 

stata calcolata la performance dei classificatori usando le features estratte solo da HRV, 

solo da respiro o da entrambi. 

 

Selezione delle features 

L’algoritmo di selezione delle features è importante per i sistemi di riconoscimento e 

classificazione; se si considera uno spazio di features a tante dimensioni, la performance 

del classificatore peggiorerà in termini sia di costo computazionale che di precisione. 

Quest’ultima può diminuire a causa della ridondanza delle features, ma anche perché 

poche features possono attenuare la dimensionalità, quando il training set è limitato, 

portando all’overtraining. Dall’altra parte, una riduzione del numero di features potrebbe 

portare a una perdita di discriminazione e perciò a una più bassa accuratezza di 

riconoscimento del sistema. Il criterio per la scelta del miglior subset di features è basato 

sul Kappa di Cohen e utilizza un algoritmo di selezione sequenziale forward su tutto lo 

spazio delle features. L’algoritmo inizialmente ha uno spazio vuoto e ad ogni iterazione 

viene scelta la feature che massimizza il Kappa index, aggiungendola al subset. Il calcolo 

del Kappa index è basato sul Discriminante Lineare o Quadratico. 

Le tre fasi del sonno sono state analizzate separatamente e perciò ognuna ha un suo subset 
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ottimo. 

 

Classificazione Automatica 

La stadiazione del sonno è stata effettuata utilizzando le features scelte precedentemente e 

la classificazione one-versus-all con differenti metodologie: 

 

• Discriminante Lineare (LD): la classificazione viene effettuata utilizzando una 

combinazione lineare di features scelte tramite l’algoritmo SFS, basato su LD. 

• Discriminante Quadratico (QD): separa i dati di due classi di oggetti o eventi con 

una superficie quadratica. Le features usate sono selezionate dall’algoritmo SFS, 

basato sul QD. 

• K-Nearest-Neighbor (KNN): riconosce pattern per la classificazione di oggetti 

basandosi sulle caratteristiche degli oggetti vicini a quello considerato. Le features 

sono selezionate tramite SFS, basato su LD. 

• Feed-Forward Neural Network (FFNN): per ogni classe, la rete fornisce una 

probabilità di appartenere o meno alla classe considerata. La rete è addestrata con le 

features scelte tramite SFS basato su LD. L’ottimizzazione della rete è stata 

effettuata facendo variare il numero di neuroni nello strato nascosto e 

inizializzando i pesi con valori diversi varie volte. 

 

Tutte le tecniche di machine-learning sono state implementate usando l’algoritmo Leave-

One-Out. In più sono state applicate alcuni espedienti per aumentare le performance del 

classificatore. È stato utilizzato un filtro mediano (di ordine ottimo calcolato 

iterativamente) per eliminare alcune brusche variazioni nell’ipnogramma. È stata 

classificata come WAKE l’epoca in cui era presente una forte attività motoria e, inoltre, se 

due movimenti sono presenti in un intervallo di tempo ravvicinato, l’intervallo intero viene 

classificato come fase WAKE. L’intervallo ottimo viene scelto sulla base della 

massimizzazione del Kappa index medio di tutti i pazienti. 
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Risultati 

 

I risultati sono stati ottenuti con le features estratte dal modello RLS e dalla 

decomposizione tramite WDT. Ognuno dei metodi di signal processing classifica le fasi 

del sonno con i propri parametri. 

 

Discriminante Lineare 

Il Discriminante Lineare è uno dei classificatori più semplici, con un basso costo 

computazionale. La tabella 1 mostra i valori medi di 17 registrazione ottenuti tramite 

analisi basata su RLS e WDT. La miglior classificazione è ottenuta grazie a RLS, 

raggiungendo un Kappa index di 0.54 e un’accuratezza del 76.39%. La classificazione è 

ottenuta con le features estratte dal modello RLS e ottiene risultati d’interesse anche nella 

stima di parametri clinici. L’analisi tramite WDT raggiunge al più gli stessi risultati del 

RLS; si può notare come il primo ciclo REM, e quindi la sua latenza, sia migliore della 

classificazione tramite RLS. 

 

LD classification 

 
Acc kappa SeAuto SeHyp 

REM%TST 

auto 

REM%TST 

hyp 

Lat 

Auto 

Lat 

Hyp 

RLS 
76.39 ± 

7.61 

0.54 ± 

0.10 

92.33 ± 

2.57 

85.21 ± 

7.25 
29.39 ± 15.50 23.42 ± 6.71 

87 ± 

49 

79 ± 

33 

Wavelet 
73.92 ± 

15.33 

0.51 ± 

0.17 

92.27 ± 

2.48 

85.21 ± 

7.25 
31.31 ± 22.25 23.42 ± 6.71 78±58 79±33 

Tabella 1. Media e deviazione standard tra l’accuratezza e indici di somiglianza per le fasi del sonno 

ottenute tramite RLS e WDT per LD. Acc sta per accuratezza totale, kappa per kappa index, Se è la sleep 

efficiency, REM%TST è la percentuale di Rem durante il Sonno Totale (TST), e Lat rappresenta la latenza, in 

minuti, del primo ciclo REM. “Auto” è il suffisso delle precedenti abbreviazioni ed indica i parametri 

ottenuti tramite detezione automatica, l’altro suffisso “hyp” è legato ai parametri estratti dall’ipnogramma 

medico. 

 

Discriminante Quadratico 

Il discriminante quadratico ha la migliore performance raggiunta rispetto ad ogni 

classificatore usando le features ottenute tramite RLS sulle 17 registrazioni scelte in 

precedenza. Raggiunge una classificazione di 0.55 per il kappa index e un’accuratezza del 
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76.80%. Questo classificatore identifica la latenza del primo ciclo REM con una buona 

precisione, indicando una qualità del sonno vicino alla predizione medica. La tabella 2 

mostra il confronto fra i due tipi di estrazione di features. Le wavelet stimano bene la sleep 

efficiency, ma non raggiungono buoni risultati con gli altri risultati. 

 

QD classification 

 
Acc kappa SeAuto SeHyp 

REM%TST 

auto 

REM%TST 

hyp 

Lat 

Auto 

Lat 

Hyp 

RLS 
76.81 ± 

7.51 

0.55 ± 

0.10 

90.25 ± 

4.67 

85.21 ± 

7.25 
30.02 ± 14.49 23.42 ± 6.71 

86 ± 

52 

79 ± 

33 

Wavelet 
69.27 ± 

12.64 

0.35 ± 

0.15 

91.65 ± 

3.25 

85.21 ± 

7.25 
19.36 ± 25.54 23.42 ± 6.71 

104±8

5 

79 ± 

33 

Tabella 2. Media e deviazione standard tra l’accuratezza e indici di somiglianza  

per le fasi del sonno ottenute tramite RLS e WDT perQD. 

 

K-Nearest-Neighbors 

Il parametro ottimo per questo classificatore è K=25 per le features estratte dal modello 

RLS, che porta a un Kappa index medio di 0.42 e un’accuratezza del 72%. Si può notare 

dalla tabella 3 come questo classificatore non abbia performance migliori di altri 

classificatori nella stadiazione del sonno, soprattutto nell’identificazione dei parametri 

clinici. La buona classificazione della sleep efficiency potrebbe essere considerata casuale 

basandosi su altri parametri. 

 

K-NN classification 

 
Acc kappa SeAuto SeHyp 

REM%TST 

auto 

REM%TST 

hyp 

Lat 

Auto 

Lat 

Hyp 

RLS 
71.95 ± 

7.47 

0.42 ± 

0.10 

78.77 ± 

10.06 

85.21 ± 

7.25 
6.80 ± 8.02 23.42 ± 6.71 

201±1

49 

79 ± 

33 

Wavelet 
64.75 ± 

9.30 

0.33 ± 

0.10 

64.55 ± 

14.63 

85.21 ± 

7.25 
0.75 ± 1.10 23.42 ± 6.71 

239±1

22 

79 ± 

33 

Tabella 3. Media e deviazione standard tra l’accuratezza e indici di somiglianza  

per le fasi del sonno ottenute tramite RLS e WDT per K-NN. 
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Feed-Forward Neural Network 

La tabella 4 mostra i risultati della Feed-Forward Neural Network (FFNN) basata sulla 

back-propagation. Si può notare come l’accuratezza e il Kappa index siano peggiori di 

quelli ottenuti con gli altri classificatori, ma anche che l’analisi ottenuta con le features 

estratte dal RLS presenta una buona predizione della sleep efficiency, e quella ottenuta con 

le features estratte dalle wavelet una buona stima del REM%TST e della latenza del primo 

ciclo REM. Questi risultati, in ogni caso, non risultano consistenti a causa di 

un’accuratezza e di un Kappa index troppo bassi. Guardando i singoli ipnogrammi predetti 

dalla rete neurale si nota che la FFNN non raggiunge una buona predizione. Infatti, molte 

volte vengono confusi gli stadi WAKE con quelli REM con entrambi i metodi di signal 

processing. 

 

FFNN classification 

 
Acc kappa SeAuto SeHyp 

REM%TST 

auto 

REM%TST 

hyp 

Lat 

Auto 

Lat 

Hyp 

RLS 
67.17 ± 

11.88 

0.39 ± 

0.13 

71.60 ± 

17.62 

85.21 ± 

7.25 
11.60 ± 14.14 23.42 ± 6.71 

200±1

41 

79 ± 

33 

Wavelet 
50.37 ± 

18.79 

0.24 ± 

0.13 

48.75 ± 

23.47 

85.21 ± 

7.25 
22.08 ± 28.31 23.42 ± 6.71 

87±12

2 

79 ± 

33 

Tabella 4. Media e deviazione standard tra l’accuratezza e indici di somiglianza  

per le fasi del sonno ottenute tramite RLS e WDT per FFNN. 

 

Conclusioni 

Le performance ottenute mostrano che gli ipnogrammi possono essere stimati in un modo 

sicuro usando i segnali derivanti dal bed sensor. LD e QD, combinato con l’estrazione di 

features tramite modello RLS, possono essere usati per implementare un sistema di 

classificazione automatica della macrostruttura del sonno da una serie temporale acquisita 

tramite bed sensor. Questi classificatori offrono una buona stima di alcuni indici della 

qualità del sonno come la sleep efficiency, la percentuale di REM durante il sonno totale, e 

la latenza del primo ciclo REM. I risultati ottenuti dimostrano che l’estrazione tramite RLS 

è migliore di quella ottenuta tramite decomposizione wavelet. Ci si aspetta risultati 

migliori di quelli ottenuti tramite K-NN e FFNN; ciò forse è dovuto a una selezione delle 

features basate su LD. Ricerche future possono indagare la possibilità di incrementi di 

performance di K-NN e FFNN con selezione delle features dedicate. 
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Questi risultati sono in linea con la letteratura. Redmond et al. [17] hanno presentato un 

algoritmo per la detezione automatica delle fasi del sonno dal segnale cardiorespiratorio. 

L’introduzione dell’attività del movimento, come feature per la stadiazione WAKE, 

incrementa le performance da k=0.47 dello studio di Redmond et al.  a k=0.54 di questo 

studio utilizzando LD. 
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Abstract 

 

 

 

Objectives 

 

Electroencephalogram analysis (EEG) is a very useful technique to investigate the activity 

of the central nervous system (CNS). It provides information related to the brain activity 

based on measurements of electrical recordings taken on the scalp of the subjects. 

Inference and studies about subject’s health and effective treatment of some diseases can 

be carried out analyzing the information obtained from the EEG. Processing of the 

recorded information mainly concern spectral analysis. Sleep EEG is a very important 

research branch of medicine, because of the clinical applications. The gold standard 

method for assessing sleep in humans is the analysis of brain wave patterns (EEG) first 

described by Rechtschaffen and Kales. The most common sleep analysis method is called 

polysomnography (PSG), which combines EEG recordings with different physiological 

signals like electromyography (EMG), electrooculography (EOG), respiratory effort, blood 

oxygen saturation, electrocardiograms (ECG) and video analysis. In PSG, 30-second 

epochs of the signals are used for decision making. The method is normally carried out in a 

controlled hospital environment and needs medical assistance for setting up sensors, 

monitoring and analysis. Although the analysis is typically computer-assisted, it still 

requires a sleep expert and is therefore expensive and time consuming. Furthermore, EEG 

recordings require many electrodes to be glued to the scalp, which makes it very 

cumbersome and uncomfortable. Changes in the Autonomic Nervous System (ANS) 

during sleep/wake transitions have been successfully identified as a reliable source of 

information. Changes in activity of the ANS are reflected in various physiological signals 

such as heart rate, blood pressure, skin conductance, etc. The main focus of current 

research is on fluctuations of heart rate variability (HRV) during sleep. However, the way 

of calculating the HRV is not uniform and therefore results contradict each other. Further, 

HRV measures are very susceptible to noise. A comfortable application of this technique is 
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therefore difficult. Recently, several studies have added respiratory signals to the HRV to 

show the feasibility of using cardiorespiratory signals for discriminating sleep stages. The 

advantage of cardiorespiratory signals is that they are easy to measure and the sensors can 

be applied by non-experienced users. 

This thesis aims to create an automatic method to detect sleep stages with the goal not only 

to provide a precise hypnogram, but also to evaluate some clinical parameters such as sleep 

efficiency, percentage of Total Sleep Time occupied by REM stages (REM%TST), and 

first REM cycle latency based on the cardiorespiratory spectral parameters. 

We attempt to develop a machine-learning tool that, starting from some HRV, respiratory 

and movement traces, can identify and learn from the data itself the distinctive features that 

characterize the sleep stages, and be then used as a universal tool to recognize the sleep 

stages in every new trace. 

 

 

Materials and methods 

 

Sleep recordings were performed on 11 adults (age 20-54 years) at the sleep laboratory of 

Finnish Institute of Occupational Health (FIOH). Each subject participated with two 

recordings and these were obtained after baseline night, once during daytime sleep after a 

night shift of work and once during nighttime sleep. Signals were scored using standard 

R&K criteria on EEG, EOG and EMG. The sleep scoring, based on standard 

polysomnographic recordings, was done by expert personnel. R-R intervals (RRI) were 

computed from the standard ECG signal with the Somnologica software. In addition, the 

multichannel BCG was recorded with the bed sensor using multiple Emfit electrodes. Both 

the heart beat interval (HBI), with coverage of 88%, and movement activity were extracted 

from the bed sensor signals. The macrostructure for each subject were scored by an expert 

based on Rechtschaffen and Kales’ rules.  

 

Feature extraction 

The first part of this work focused on processing the signal and searching for features that 

characterized sleep stages, to be used to develop the automatic detection algorithm. For 

each of the 17 recordings, the HRV and the respiratory signals has been synchronized with 
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the movement activity and the medical hypnogram, and afterwards the features have been 

computed for each of the two signals. The procedure consisted in filtering the HRV and the 

respiratory signal into three bands: Very Low Frequencies (VLF), Low Frequencies (LF) 

and High Frequencies (HF), after eliminating the outlier values through a optimal median 

filter. The features have then been normalized with their Total Power (TP) and also the 

inter-band ratios were used (LF/VLF, LF/HF and HF/VLF). It was also computed the dot-

product of HRV and respiratory spectral bands (cross-correlation); this is useful to evaluate 

their similarity related to sleep stages. The values have been averaged for each epoch, 

while other features with good information content in distinguishing sleep stages were 

computed on 5-epochs moving windows (150 seconds): mean and standard deviation. The 

best combination of features was chosen from which maximizes performances of Linear 

Discriminant (LD) classifier or Quadratic Discriminant (QD) classifier. 

This signal processing was performed by Recursive Least Square (RLS) model and by 

Wavelet Discrete Transform (WDT) decomposition. 

Five patients’ data have been eliminated from the analysis because of signal abnormalities, 

such as lower HRV during sleep stages and the presence of ectopic beats. 

This work is oriented in showing the importance of addicted information given by 

respiratory signal, thus we have evaluated classifiers performances with only HRV 

features, only respiratory features or both.  

 

Feature Selection 

Feature selection algorithms are important to recognition and classification systems 

because, if a feature space with a large dimension is used, the performance of the classifier 

will decrease with respect to execution time and to recognition rate. The recognition rate 

can decrease because of redundant features and of the fact that small number of features 

can alleviate the course of dimensionality when the training samples set is limited, leading 

to overtraining. On the other hand, a reduction in the number of features may lead to a loss 

in the discrimination power and thereby lower the accuracy of the recognition system. In 

order to determine the best feature subset for Cohen’s kappa index criterion, sequential 

forward feature selection algorithm (SFS) was applied to the complete feature space. The 

algorithm starts with a null feature set and, for each step, the best feature that maximizes 
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kappa index value is included with the current feature set. The kappa index computing 

method is based on the LD or on the QD classifier. 

The three sleep stages were analyzed separately, thus there were as many best features 

subset. 

 

Automatic Classification 

The automatic sleep staging was done exploiting the previously evaluated features and 

one-versus-all method with different methodologies: 

 

• Linear Discriminant (LD): achieves the discrimination by making a classification 

decision based on the value of a linear combination of features selected by SFS 

algorithm based on LD.  

• Quadratic Discriminant (QD): separates measurements of two classes of objects or 

events by a quadric surface. Used features were selected by SFS algorithm based on 

QD. 

• K-Nearest-Neighbor (KNN): classifies objects based on closest training examples 

in the feature space. Features were selected by SFS algorithm based on LD. 

• Feed-Forward Neural Network (FFNN): for each state, the network provides the 

probability of being or not the state. The input neurons of the network are the 

features selected by SFS algorithm based on LD. The optimal networks have been 

chosen among those obtained with different numbers of hidden layer neurons, and 

with various restarts. 

 

All the machine-learning techniques have been implemented with the Leave-One-Out 

(LOO) technique. Some shrewdness has been applied in order to improve algorithm 

performances. A median filtering (with optimal order computed iteratively) was applied to 

the obtained hypnogram smoothing peaks. The presence of movement activity forces the 

classification to WAKE stage and when two moment events occur in a certain interval, all 

epochs between these are classified as WAKE stages. The research of optimal interval was 

performed maximizing mean kappa index value on each subject.  
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Results 

 

The results were obtained from two feature extractor based on RLS model and WDT 

decomposition. For each signal processing method, sleep stages were classified by their 

parameters extracted. 

 

Linear Discriminant 

The linear discriminant is one of easiest classifier and has low time complexity. Table 1 

shows the mean statistical values over the 17 recordings for RLS and wavelet analysis. The 

best classification is performed by RLS analysis with 0.54 of kappa index and 0.7639 for 

the accuracy. Classification performed with features extracted with RLS method achieves 

interesting results even in clinical parameters estimation. Wavelet analysis achieves almost 

the same results of RLS classification; one can notice that in this case Prediction of the first 

REM cycle latency is quite better than RLS classification. 

 

LD classification 
 

Acc kappa SeAuto SeHyp 
REM%TST 

auto 
REM%TST 

hyp 
Lat 

Auto 
Lat 
Hyp 

RLS 
76.39 ± 

7.61 
0.54 ± 
0.10 

92.33 ± 
2.57 

85.21 ± 
7.25 

29.39 ± 15.50 23.42 ± 6.71 
87 ± 
49 

79 ± 
33 

Wavelet 
73.92 ± 
15.33 

0.51 ± 
0.17 

92.27 ± 
2.48 

85.21 ± 
7.25 

31.31 ± 22.25 23.42 ± 6.71 78±58 79±33 

Table 1. Mean and standard deviation of accuracy and agreement measure for the sleep staging obtained by 

RLS and wavelet feature extraction methods for LD classifier. Acc means general accuracy, kappa is kappa 

index, Se is the sleep efficiency, REM%TST is the percentage of Total Sleep Time (TST) occupied by REM 

stages, and Lat represents the latency, in minutes, of the first REM cycle. “Auto” suffixed to one of the 

previous abbreviations means that the parameter is obtained by the automatic system, despite the suffix 

“hyp” relates parameters obtained from standard hypnogram. 

 

Quadratic Discriminant 

The quadratic discriminant has the best performance on each classifier using RLS based 

features, and the optimal values were obtained using all the 17 recordings chosen above. It 

allows for a mean classification kappa index value of 0.55 and accuracy of 0.7680. This 

method identifies first REM latency with a good precision, indicating a sleep quality close 

to medical prediction. Table 2 shows comparisons between the two feature extraction 
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methods. Wavelet method can provide a good estimation of sleep efficiency, but it’s worse 

than RLS classification as regards the other parameters. 

 

QD classification 
 

Acc kappa SeAuto SeHyp 
REM%TST 

auto 
REM%TST 

hyp 
Lat 

Auto 
Lat 
Hyp 

RLS 
76.81 ± 

7.51 
0.55 ± 
0.10 

90.25 ± 
4.67 

85.21 ± 
7.25 

30.02 ± 14.49 23.42 ± 6.71 
86 ± 
52 

79 ± 
33 

Wavelet 
69.27 ± 
12.64 

0.35 ± 
0.15 

91.65 ± 
3.25 

85.21 ± 
7.25 

19.36 ± 25.54 23.42 ± 6.71 
104±8

5 
79 ± 
33 

Table 2. Mean and standard deviation of accuracy and agreement measure for the sleep staging obtained by 

RLS and wavelet feature extraction methods for QD classifier. 

 

K-Nearest-Neighbors 

The optimal parameter for this classifier is K= 25 applied to features extracted with RLS 

method, leading to an average kappa index value of 0,42 and an average accuracy of  72%. 

It can be noticed from Table 3 how this classifier has not a better performance in 

identifying the sleep stages than other classifiers, especially in identifying clinical 

parameters. The good classification of sleep efficiency could be considered almost casual, 

basing on other parameters.  

 

K-NN classification 
 

Acc kappa SeAuto SeHyp 
REM%TST 

auto 
REM%TST 

hyp 
Lat 

Auto 
Lat 
Hyp 

RLS 
71.95 ± 

7.47 
0.42 ± 
0.10 

78.77 ± 
10.06 

85.21 ± 
7.25 

6.80 ± 8.02 23.42 ± 6.71 
201±1

49 
79 ± 
33 

Wavelet 
64.75 ± 

9.30 
0.33 ± 
0.10 

64.55 ± 
14.63 

85.21 ± 
7.25 

0.75 ± 1.10 23.42 ± 6.71 
239±1

22 
79 ± 
33 

Table 3. Mean and standard deviation of accuracy and agreement measure for the sleep staging obtained by 

RLS and wavelet feature extraction methods for K-NN classifier. 

 

Feed-Forward Neural Network 

Table 4 shows results of Feed-Forward Neural Network (FFNN) based on back-

propagation algorithm analysis. One can observe that accuracy and kappa index are worse 

than the ones obtained with the other classifiers, but also that analysis based on RLS 

features presents a good sleep efficiency prediction and that wavelet analysis returns good 

estimation of REM%TST and of first REM cycle latency. However these results are not 

consistent because of lower total accuracy and lower total kappa index. It is clear that 
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FFNN not perform good sleep staging by looking single predicted sleep profiles, they often 

confuse WAKE and REM stages with both signal processing methods. 

 

FFNN classification 
 

Acc kappa SeAuto SeHyp 
REM%TST 

auto 
REM%TST 

hyp 
Lat 

Auto 
Lat 
Hyp 

RLS 
67.17 ± 
11.88 

0.39 ± 
0.13 

71.60 ± 
17.62 

85.21 ± 
7.25 

11.60 ± 14.14 23.42 ± 6.71 
200±1

41 
79 ± 
33 

Wavelet 
50.37 ± 
18.79 

0.24 ± 
0.13 

48.75 ± 
23.47 

85.21 ± 
7.25 

22.08 ± 28.31 23.42 ± 6.71 
87±12

2 
79 ± 
33 

Table 4. Mean and standard deviation of accuracy and agreement measure for the sleep staging obtained by 

RLS and wavelet feature extraction methods for FFNN classifier. 

 

Concluding remarks 

The performances obtained show that sleep profile can be reached in a very reliable way 

using bed sensor signals. The LD or QD classifier, combined with a features extraction 

method based on RLS analysis, can be used to implement a simple automatic system to 

evaluating sleep macrostructure from time series acquired from bed sensor. These 

classifiers offer interesting possibility to evaluate sleep efficiency, REM%TST, and first 

REM cycle latency that are indexes of sleep quality. The obtained results can also 

demonstrate that a feature extraction method based on RLS model is more preferable than 

the method based on wavelet decomposition. We expected better results than the obtained 

ones in K-NN and FFNN analysis; this is caused perhaps by an LD-based feature selection. 

Future researches can explore the possibility of increment K-NN and FFNN performances 

by a dedicated feature selection. 

These results are in line with current literature. Redmond et. al [17] have presented an 

automatic algorithm to detect sleep profile from cardiorespiratory signals. The introduction 

of movement activity allowed an increment of performances from k=0.47 in Redmond et. 

al study to k=0.54 in this study using LD classifier. 
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Chapter 1 

Introduction 

 

 

uring the last years, the importance of sleep evaluation has increased due to a 

considerable number of pathologies that implies sleep disorders. Furthermore, 

the performance of many basic activities in the normal life such as 

memorization, learning, productivity and concentration, are closely connected to a good 

sleep quality [7] [78] [79] [80]. In addition to the sociological and physiological 

consequences produced by low sleep quality, the sleep evaluation is a time consuming task 

that has to be done by expert clinicians. This evaluation consists in defining different sleep 

stages through visual scoring of the polysomnography (PSG). PSG includes the recording 

of many signals such as electroencephalography (EEG), electromyography (EMG), 

electrocardiography (ECG), electrooculagram (EOG), pulse oximetry and respiration. With 

the PSG procedure it is possible to observe sleep efficiency, sleep quality [7] and sleep 

disorders [80]. Although the PSG is an accurate procedure, some inconveniences rise such 

as specific equipment, dedicated sleep centers and specialized and trained personnel. All 

these PSG requirements have generated underestimation of the sleep disorders and low 

accessibility for the general population. Thus, the development of unattended and portable 

monitoring systems could be of great help. However, until a few years ago, the sleep 

evaluation was available only in sleep centers; this situation was mainly generated by 

technological limitations. Nowadays, these limitations have been partially overcome with 

the introduction of new technologies that allow the acquisition of physiological signals 

with high precision in different environments [81] [82] [83][84]. In sleep medicine, the 

standard practice is to divide the sleep time in epochs with length of 30 seconds, and based 

on the EEG, EOG and EMG behavior each epoch can be scored as stage 1, 2, 3, 4 and 

REM (Rapid Eye Movement) and Wake. The representing plot of the tagged epochs is 

called hypnogram. Generally stages 1 to 4 are merged in one stage named NREM (Non 

D 
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REM). The intrinsic dynamic of NREM-REM-Wake stages (here macrostructure) carries 

valuable information about sleep quality since this is highly modified during sleep 

disorders. Thus, a system able to evaluate this structure over sleep time from signals of 

simple measurement can contribute to fast and accurate sleep screening. ECG can be 

recorded at home more efficiently than most of the PSG signals. ECG has been applied for 

sleep modelling in many studies by calculating firstly the heart rate variability (HRV) out 

of R-R intervals (ECG RRI), and then analyzing the different spectral components of HRV 

[85] [44] [88]. HRV also gives information about the cardiovascular and respiratory 

functions during sleep [85] [44]. These interesting characteristics of HRV can be analysed 

with automatic procedures [17] and thus the HRV analysis can constitute the basis for 

sleep evaluation at home. New non-invasive systems and procedures to study the 

cardiorespiratory behavior during sleep have been published [18] [86]. 

Ballistocardiographic (BCG) signal can be recorded unobtrusively through a pressure 

sensitive sensor integrated into the bed mattress, and sleep analysis can be done e.g. with 

one-channel SCSB method by Alihanka et.al., which is based on the extracted body 

movements, respiration and heart beat signals [87]. Accuracy of the extraction of the heart 

beat interval (HBI) from BCG signals can be improved by using multichannel bed sensor 

and spectral averaging [81], which enables us to make HRV based sleep modeling with a 

bed sensor, using similar algorithms as in the previous studies with the standard ECG 

recordings [86]. A non-contact bed sensor is easy to use, as it does not require placement 

of sensors on the subjects body, and it enables sleep monitoring also at home. In addition 

to the analysis of the HRV obtained from the HBI, the bed sensor can also measure 

information related to body movements and respiration [81].  

This thesis describes a system to automatically recognize the sleep macrostructure from 

HBI, respiratory and body movement signals. The sleep stages are automatically detected 

using a time varying autoregressive model and wavelet decomposition as feature extractor, 

and several classifiers such as Linear and Quadratic Discriminant, feed-forward Artifical 

Neural Network and K-Nearest-Neighobor. Firstly, this study compares the feature 

extraction based on autoregressive model and discrete wavelet decomposition and 

secondly, the automatic sleep classification is compared with the expert visual sleep 

scoring of PSG recordings for each classifier and for each feature extractor. 

This thesis work is divided in six chapters, including the current introduction. 
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The Second Chapter illustrates the main physiological aspects connected with sleep: the 

significative importance of HRV during sleep time and the macrostructure of sleep are 

described in order to introduce the new approach to sleep classification. 

The Third Chapter contains a general explanation of the mathematical techniques applied 

both in the data analysis procedure and in the development of the automatic classification: 

features extractor based on RLS method and wavelet coefficients, statistical analysis, data 

processing techniques and the methods used for the classification as Linear and Quadratic 

Discriminant, K-Nearest-Neighbor and feed-forward Neural Network. 

The Fourth Chapter contains the first experimental part: the parameters used for features 

extraction (model order and forgetting factor for RLS model, mother wavelet and level 

decomposition for wavelet method), the choice of features selection algorithm and data 

processing. 

The Fifth Chapter contains the second experimental part reporting its results and the 

respective comments obtained applying the methods described above. 

The Sixth and final chapter provides a conclusive analysis, underlying the best 

performance obtained and comparing it with the techniques used. 
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Chapter 2 

Sleep 

 

"O Sleep, rest of all things,  

mildest of the gods, balm of the soul..." 

 Ovid 

 

 

leep is defined as a state of unconsciousness from which a person can be aroused. 

In this state, the brain is relatively more responsive to internal stimuli than 

external stimuli. Sleep should be distinguished from coma since coma is an 

unconscious state from which a person cannot be aroused. Sleep is essential for the normal 

and healthy functioning of the human body. It is a complicated physiological phenomenon 

that scientists do not fully understand. 

Historically, sleep was thought to be a passive state. However, sleep is now known to be a 

dynamic process, and our brains are active during sleep. Sleep affects our physical and 

mental health, and is essential for the normal functioning of all the systems of our body, 

including the immune system. The effect of sleep on the immune system affects one’s 

ability to fight disease and endure sickness. 

States of brain activity during sleep and wakefulness result from different activating and 

inhibiting forces that are generated within the brain. Neurotransmitters (chemicals involved 

in nerve signaling) control whether one is asleep or awake by acting on nerve cells 

(neurons) in different parts of the brain. Neurons located in the brainstem actively produce 

sleep by inhibiting other parts of the brain that keep a person awake. 

Animal studies have shown that sleep is necessary for survival. For example,  the normal 

life of rats spans for 2-3 years. However, rats deprived of sleep live for only about 3 weeks 

develop abnormally low body temperatures and sores on their tails and paws. The sores are 

probably produced  by impairment of the rats’ immune system. 

S 
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In humans, the metabolic activity of the brain decreases significantly after 24 hours of 

sustained wakefulness. Sleep deprivation results in a decrease in body temperature, a decrease 

in immune system function as measured by white blood cell count, and a decrease in the 

release of growth hormone. Sleep deprivation can also cause increased heart rate variability. 

For our nervous systems to work properly, sleep is needed. Sleep deprivation makes a person 

drowsy and unable to concentrate the next day. It also leads to impairment of memory and 

physical performance and reduced ability to carry out mathematical calculations. If sleep 

deprivation continues, hallucinations and mood swings may develop. 

Release of growth hormone in children and young adults takes place during deep sleep. Most 

cells of the body show increased production and reduced breakdown of proteins during deep 

sleep. Sleep helps humans maintain optimal emotional and social functioning while we are 

awake by giving rest during sleep to the parts of the brain that control emotions and social 

relations [1]. 

 

 

2.1 Outline of physiology 

 

Due to the close link between heart rhythm and nervous system, this chapter gives an 

introduction to physiology of the heart. Then, the following concepts will be analyzed: 

 

 1. Nervous System: S.N. Central and S.N. Peripheral 

 2. Autonomic Nervous System (ANS); 

 3. Sleep-wake cycle or circadian cycle; 

 4. The macrostructure of sleep. 

 

 

2.1.1 Nervous System 

 

The nervous system is defined by the presence of a special type of cell, the neuron. Neurons 

are distinctive in a number of ways, but their most fundamental property is that they 

communicate with other cells via synapses, which are membrane-to-membrane junctions 

containing molecular machinery that allows rapid transmission of signals, either electrical or 

chemical [3]. 

The nervous system is divided into the central nervous system (CNS) and the peripheral 
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nervous system (PNS) (Figure 2.1 [2]).  

Figure 2.1: Nervous System Division 

 

The central nervous system (CNS) is the part of the nervous system that functions to 

coordinate the activity of all parts of the body. The central nervous system is enclosed in the 

meninges. It contains the majority of the nervous system and consists of the brain and the 

spinal cord.. The CNS is responsible for the integration, analysis and coordination of sensory 

information and motor commands. CNS is also home to the most important functions such as 

intelligence, memory, learning and emotions. Unlike the peripheral nervous system, the CNS 

is not only able to collect and transmit information, but also for integration [1].  

There are two types of cells in the peripheral nervous system. These cells carry information to 

(sensory nervous cells) and from (motor nervous cells) the central nervous system (CNS). 

Cells of the sensory nervous system send information to the CNS from internal organs or from 

external stimuli. Motor nervous system cells carry information from the CNS to organs, 

muscles, and glands. The motor nervous system is divided into the somatic nervous system 

and the autonomic nervous system. The somatic nervous system controls skeletal muscle as 

well as external sensory organs such as the skin. This system is said to be voluntary because 

the responses can be controlled consciously. Reflex reactions of skeletal muscle however are 

an exception. These are involuntary reactions to external stimuli [4].  

On the other hand, the autonomic nervous system controls involuntary muscles, such as 

smooth and cardiac muscle. This system is also called the involuntary nervous system. The 

autonomic nervous system can further be divided into the parasympathetic and sympathetic 

divisions. Figure 2.2 illustrates this division.  

Nervous System 

Central nervous 
System  

Peripheral Nervous System 

Somatic Nervous System Autonomic Nervous System 
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Figure 2.2: Autonomic Nervous System Division 

 

The sympathetic nervous system is frequently referred to as the adrenergic  nervous system. 

Because of its transmitter epinephrine, which is more commonly known by its trade name 

"Adrenalin", it prepares the body for stress situations. Stimulation of the adrenergic nervous 

system has the general effect of expending energy. The nerves of the sympathetic division 

often have an opposite effect when they are located within the same organs as 

parasympathetic nerves. Nerves of the sympathetic division speed up heart rate, dilate pupils, 

and relax the bladder. The sympathetic system is also involved in the flight or fight response. 

This is a response to potential danger that results in accelerated heart rate and an increase in 

metabolic rate. 

The parasympathetic nervous system is usually referred to as the cholinergic nervous system. 

The cholinergic nervous system is responsible for bringing the body back to normal after the 

fight or flight response. The effects of the cholinergic nervous system are generally the 

opposite of those produced by the adrenergic nervous system such as inhibiting heart rate, 

constricting pupils, and contracting the bladder [4]. 

The peripheral nervous system is divided into the following sections: 

 

• Sensory Nervous System - sends information to the CNS from internal organs or from 

external stimuli. 

• Motor Nervous System - carries information from the CNS to organs, muscles, and 

glands. 

◦ Somatic Nervous System - controls skeletal muscle as well as external sensory 

organs. 

◦ Autonomic Nervous System - controls involuntary muscles, such as smooth and 

cardiac muscle. 

▪ Sympathetic - controls activities that increase energy expenditures. 

Autonomic 
Nervous System 

Sympathetic  
(Adrenergic) Nervous System 

Parasympathetic (Cholinergic) 
Nervous System 
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▪ Parasympathetic - controls activities that conserve energy expenditures. 

 

 

2.1.2 Circadian Rhythm 

 

Biological variations that occur in the course of 24 hours are called circadian rhythms. 

Circadian rhythms are controlled by the body’s biological clock. Many bodily functions 

follow the biologic clock, but sleep and wakefulness comprise the most important circadian 

rhythm. Circadian sleep rhythm is one of the several body rhythms modulated by the 

hypothalamus.  

Light directly affects the circadian sleep rhythm. Light is called a zeitgeber, a German word 

meaning time-giver, because it sets the biological clock. A practical purpose has been 

proposed for the circadian rhythm, using the analogy of the brain being somewhat like a 

battery charging during sleep and discharging during wakefulness [1]. 

Body temperature cycles are also under control of the hypothalamus. An increase in body 

temperature is seen during the course of the day and a decrease is observed during the night. 

The temperature peaks and troughs are thought to mirror the sleep rhythm. People who are 

alert late in the evening have body temperature peaks late in the evening, while those who 

find themselves most alert early in the morning have body temperature peaks early in the 

evening. 

Melatonin, a chemical produced by the pineal gland in the brain, has been implicated as a 

modulator of light entrainment. It is secreted maximally during the night. Prolactin, 

testosterone, and growth hormone also demonstrate circadian rhythms, with maximal 

secretion during the night. 

Circadian rhythms can be affected to a certain degree by almost any kind of external stimulus, 

for example, the beeping of the alarm clock or the timing of meals. When we cross time 

zones, our circadian rhythms get disrupted leading to jet lag. It usually takes several days for 

our body rhythms to adjust to the new time. 

Symptoms similar to those seen in people with jet lag are common in people who work during 

nights or work in shifts. Because these people’s wake time conflicts with powerful sleep-

regulating cues like sunlight, they often become uncontrollably drowsy during work or may 

have difficulty falling asleep during their off time. Their biological clock wants to do one 

thing, while they are doing something entirely different. People working in shifts have an 

increased risk of heart, gastrointestinal, emotional, and mental problems. All these problems 
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may be related to the disruption of the circadian sleep rhythm [5]. 

 

 

2.1.3 Sleep Macrostructure 

 

As mentioned earlier, sleep is a dynamic process. There are distinct states that alternate in 

cycles and reflect differing levels of neuronal activity. Each state is characterized by a 

different type of brain wave activity. Usually the sleep stages are classified in five stages: 1, 2, 

3, 4 and REM (rapid eye movement) sleep. These stages progress cyclically from 1 through 

REM then begin again with stage 1. A complete sleep cycle takes an average of 90 to 110 

minutes. The first sleep cycles each night have relatively short REM sleeps and long periods 

of deep sleep but later in the night, REM periods lengthen and deep sleep time decreases 

(Figure 2.3). 

 

 
Figure 2.3: Hypnogram with EEG waveforms corresponding to sleep stages. 

 

Sleep stages are divided in five stages: 

 

1. Stage I is the beginning of the sleep cycle, and is a relatively light stage of sleep. 

Stage I can be considered a transition period between wakefulness and sleep. In Stage 

I, the brain produces high amplitude theta waves, which are very slow brain waves. 

This period of sleep lasts only a brief time (around 5-10 minutes), and if you awaken 

someone in the stage, they might report that they weren't really asleep. 

2. Stage II is the second stage of sleep and lasts for approximately 20 minutes. The brain 
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begins to produce bursts of rapid, rhythmic brain wave activity known as sleep 

spindles. Body temperature starts to decrease and heart rate begins to slow [1]. 

3. Stage III is a transitional period between light sleep and a very deep sleep. In this 

stage, extremely slow brain waves called delta waves (Figure 2.4) begin to appear. 

They are interspersed with smaller, faster waves.  

4. In stage IV, delta waves are the primary waves recorded from the brain. These two 

stages are distinguished from each other only by the percentage of delta activity. 

Together they represent up to 20% of total sleep time. Stages III and IV are called 

deep sleep, during which all eye and muscle movement ceases. It is difficult to wake 

up someone during these two stages. If someone is awakened during deep sleep, he 

does not adjust immediately and often feels groggy and disoriented for several minutes 

after waking up. Some children experience bedwetting, night terrors, or sleepwalking 

during deep sleep [6]. 

5. Most dreaming occurs during the fifth stage of sleep, known as rapid eye movement 

(REM) sleep. REM sleep is characterized by eye movement, increased respiration rate, 

increased brain activity. REM sleep is also referred to as paradoxical sleep because 

while the brain and other body systems become more active muscles become more 

relaxed. REM sleep represents 20-25% of the total sleep time. REM sleep follows 

NREM sleep and occurs 4-5 times during a normal 8- to 9-hour sleep period. The first 

REM period of the night may be less than 10 minutes in duration, while the last may 

exceed 60 minutes. In a normal night’s sleep, bouts of REM occur every 90 minutes. 

 

When the person is extremely sleepy, the duration of each period of REM sleep is very short 

or it may even be absent. REM sleep is usually associated with dreaming. Dreaming occurs 

due because of increased brain activity, but voluntary muscles become paralyzed. The 

electrical activity recorded in the brain during REM sleep is similar to that which is recorded 

during wakefulness. 

Infants spend almost 50% of their time in REM sleep. Adults spend nearly half of sleep time 

in stage 2, about 20% in REM and the other 30% is divided between the other three stages. 

Older adults spend progressively less time in REM sleep (Figure 2.5). 
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Figure 2.5: Typical hypnograms for children, young adults, and elderly 

 

As sleep research is still a relatively young field, scientists did not discover REM sleep until 

1953 when new machines were developed to monitor brain activity. Before this discovery it 

was believed that most brain activity ceased during sleep. Since then, scientists have also 

disproved the idea that deprivation of REM sleep can lead to insanity and have found that lack 

of REM sleep can alleviate clinical depression although they do not know why. Recent 

theories link REM sleep to learning and memory. 

 

Stage Frequency (Hz) Amplitude (microVolts) Waveform type 

Awake 15 – 50  <50  

pre-sleep 8 – 12  50 alpha rhythm 

1 4 – 8  50 – 100  theta 

2 4 – 15  50 – 150  spindle waves 

3 2 – 4  100 – 150  spindle waves and slow waves 

4 0.5 – 2  100 – 200  slow waves and delta waves 

REM 15-30 <50  

Table 2.1: Summary of waves in the stages 
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2.2 Polysomnography 
 

Polysomnography is a comprehensive recording of the biophysiological changes that occur 

during sleep such as (EEG), eye movements (EOG), muscle activity orthoskeletal, muscle 

activation (EMG) and heart rhythm (ECG) (Figure 2.4). 

 

• The electroencephalogram (EEG) generally uses six "exploring" electrodes and two 

"reference" electrodes, unless a seizure disorder is suspected, in which case more 

electrodes will be applied to document the appearance of seizure activity. The 

exploring electrodes are usually attached to the scalp near the frontal, central (top) and 

occipital (back) portions of the brain via a paste that will conduct electrical signals 

originating from the neurons of the cortex. 

• The electrooculogram (EOG) uses two electrodes; one that is placed 1 cm above the 

outer canthus of the right eye and one that is placed 1 cm below the outer canthus of 

the left eye. These electrodes pick up the activity of the eyes in virtue of the 

electropotential difference between the cornea and the retina (the cornea is positively 

charged relative to the retina). This determines when REM sleep occurs, of which 

rapid eye movements are characteristic, and also essentially aids in determining when 

sleep occurs [8]. 

• The electromyogram (EMG) typically uses four electrodes to measure muscle tension 

in the body as well as to monitor for an excessive amount of leg movements during 

sleep (which may be indicative of Periodic Limb Movement Disorder, PLMD). Two 

leads are placed on the chin with one above the jaw line and one below. This, like the 

EOG, helps determine when sleep occurs as well as REM sleep. Sleep generally 

includes relaxation and so a marked decrease in muscle tension occurs. A further 

decrease in skeletal muscle tension occurs in REM sleep. A person becomes partially 

paralyzed to make acting out of dreams impossible, although people that do not have 

this paralysis can suffer from REM Behavior Disorder. Finally, two more leads are 

placed on the anterior tibialis of each leg to measure leg movements. 
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Figure 2.6: Recording of the biophysiological changes that occur during  

sleep such as (EEG), eye movements (EOG), muscle activity orskeletal, 

 muscle activation (EMG) and heart rhythm (ECG) 

 

• Though a typical electrocardiogram (ECG or EKG) would use ten electrodes, only 

two or three are used for a polysomnogram. They can either be placed under the collar 

bone on each side of the chest, or one under the collar bone and the other six inches 

above the waist on either side of the body. These electrodes measure the electrical 

activity of the heart as it contracts and expands, recording such features as the "P" 

wave, "QRS" complex, and "T" wave. These can be analyzed for any abnormalities 

that might be indicative of an underlying heart pathology. 

 

Thanks to these contemporaneous records and to other sensors, which provide related to the 

chest, abdomen and fingers (for respiration and oxygen saturation) (Figure 2.7), doctors give 

their clinic assessment of the subject's hypnogram according to the classical method of 

staging sleep [7]. It is observed easily as a person subjected to this type of analysis for an 

entire night has to stand in conditions far from optimal. Therefore, efforts to evaluate in a 

simple way the sleep quality could be of benefit for the general population. 



CHAPTER 2. SLEEP                                                                                                                17 

 
Figure 2.7: Recordings which provide to sleep staging 

 

 

2.3 The electrocardiogram 
 

The electrocardiogram (ECG) is a diagnostic tool that measures and records the electrical 

activity of the heart. Interpretation of ECG allows diagnosis of a wide range of heart 

conditions. These conditions can vary from minor to life threatening. 

The term electrocardiogram was introduced by Willem Einthoven in 1893 at a meeting of the 

Dutch Medical Society. In 1924, Einthoven received the Nobel Prize for his life's work in 

developing the ECG. 
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Figure 2.8: Electrocardiogram 

 
The heart normally beats between 60 and 100 times per minute, with many normal variations. 

For example, athletes at rest have slower heart rates than most people. This rate is set by a 

small collection of specialized heart cells called the sinoatrial (SA) or sinus node. Located in 

the right atrium, the sinus node is the heart's "natural pacemaker". The ECG records the 

electrical activity that results when the heart muscle cells in the atria and ventricles contract 

(Figure 2.8). The  regular pattern of the ECG can be divided into five parts: 

 
• the P wave is caused by the contraction of the atria (atrial systole), which provides 

indications of the time taken by the impulse to propagate to both atria (can be used 

precisely for the diagnosis of atrial disease); 

• the PQ isoelectric waveless segment indicates the passage of the impulse from the 

atria to the ventricles; 

• QRS complex is formed by the short and negative wave Q, the high and narrow R 

wave and small S wave, which was also negative. The complex indicates ventricular 

systole with the arrival of the impulse to the ventricles (Q wave) and their extension to 

the whole tissue (R and S); 

• the long ST interval following the QRS complex and including the T wave can detect 

ischemic problems. It represents the period during which the ventricles contract and 

then (with the T wave) back to sleep. 
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2.4 Heart Rate Variability 
 

Heart rate variability (HRV) describes the variations between consecutive heartbeats. The 

rhythm of the heart is controlled by the sinoatrial (SA) node, which is modulated by both the 

sympathetic and parasympathetic branches of the autonomic nervous system. Sympathetic 

activity tends to increase heart rate (HR↑) and its response is slow (few seconds). 

Parasympathetic activity, on the other hand, tends to decrease heart rate (HR↓) and mediates 

faster (0.2–0.6 seconds). In addition to central control, there are some feedback mechanisms 

that can provide quick reflexes. This reflex is based on baroreceptors which are located on the 

walls of some large vessels and can sense the stretching of vessel walls caused by pressure 

increase. Both sympathetic and parasympathetic activity are influenced by baroreceptor 

stimulation trough a specific baroreflex arc (Figure 2.9). The changes recorded in the HRV 

signal are determined by mechanical, neuronal, humoral and thermal modifications [9].  

 

 
Figure 2.9. The four baroreflex pathways (redrawn from [49]). Variation in venous volume (_Vv),  

left ventricular contractility (VC), sympathetic and parasympathetic (vagal) control of heart rate (HR),  

stroke volume (Vs), cardiac output (CO), total peripheral resistance (TPR), and arterial blood pressure (BPa). 

 

The mathematical transformation (Fast Fourier Transform) of HRV data into power spectral 

density (PSD) is used to discriminate and quantify sympathetic and parasympathetic activity 

and total autonomic nervous system activity. Power spectral analysis reduces the HRV signal 

into its constituent frequency components and quantifies the relative power of these 

components [11]. The continuous modulation of the sympathetic and parasympathetic 

innervations results in variations in heart rate.  

The power spectrum is divided into three main frequency ranges: 
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• the very low frequency range (VLF) (0.0033 to 0.04 Hz), representing slower changes 

in heart rate, is an index of sympathetic activity; 

• the low frequency range (LF) (0.04 to 0.15) is also often referred to as the 

baroreceptor band, because it reflects the blood pressure feedback signals sent from 

the heart back to the brain, which also affect the HRV waveform. The LF band is more 

complex, as it can reflect a mixture of sympathetic and parasympathetic activity; 

• the high frequency range (HF) (0.15 to 0.4 Hz), representing quicker changes in heart 

rate, is primarily due to parasympathetic activity; 

Figure 2.10: Power spectral density of HRV signal during some phases of sleep. 

 

In Stages III and IV (slow-wave sleep), it is observed an increase in the HF peak, so sleep is 

synchronized, so ratio LF / HF more decreases. During REM, as well as having an increase of 

LF / HF, there is a more wide distribution of peak HF, due to irregular breathing. In HRV 

spectral analysis through the entire night, in the latter stages REM, sympathetic activation 

reaches values higher than the state of wakefulness and frequencies which are centered around 

the LF and HF peaks are lowered [10] [12]. These considerations led to the idea of being able 

to use the HRV signal for classify the different stages of sleep (Figure 2.10). 

Even though HRV has been studied extensively during the last decades within which 

numerous research articles have been published, the practical use of HRV have reached 
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general consensus only in two clinical applications [44]. That is, it can be used as a predictor 

of risk after myocardial infarction [47, 48] and as an early warning sign of diabetic 

neuropathy [45,46]. In addition, HRV has been found to correlate with, e.g., age, mental and 

physical stress, and attention, see e.g., a review in [42]. 

The starting point for HRV analysis is the ECG recording from which the HRV time series 

can be extracted. In the formulation of the HRV time series, a fundamental issue is the 

determination of heartbeat rate. 

 

 

2.4.1 Heart beat period and QRS detection 

 

The aim in HRV analysis is to examine the sinus rhythm modulated by the autonomic nervous 

system. Therefore, one should technically detect the occurrence times of the SA-node action 

potentials. This is, however, practically impossible and, thus, the fiducial points for the heart 

beat is usually determined from the ECG recording. The nearest observable activity in the 

ECG compared to SA-node firing is the P-wave resulting from atrial depolarization (Figure 

2.11) and, thus, the heart beat period is generally defined as the time difference between two 

successive P-waves. The signal-to-noise ratio of the P-wave is, however, clearly lower than 

that of the strong QRS complex which results primarily from ventricular depolarization. 

Therefore, the heart beat period is commonly evaluated as the time difference between the 

easily detectable QRS complexes. 

A typical QRS detector consists of a pre-processing part followed by a decision rule. Several 

different QRS detectors have been proposed within last decades [50, 51, 52, 53, 54]. For an 

easy to read review of these methods, see [55]. The pre-processing of the ECG usually 

includes at least bandpass filtering to reduce power line noise, baseline wander, muscle noise, 

and other interference components. The bandpass can be set to approximately 5–30 Hz which 

covers most of the frequency content of QRS complex [51]. In addition, pre-processing can 

include differentiation and/or squaring of the samples. After pre-processing, the decision rules 

are applied to determine whether or not a QRS complex has occurred. The decision rule 

usually includes an amplitude threshold which is adjusted adaptively as the detection 

progresses. In addition, the average heart beat period is often used in the decision. The 

fiducial point is generally selected to be the R-wave and the corresponding time instants are 

given as the output of the detector. 
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Figure 2.11: Electrophysiology of the heart (redrawn from [68]). The different waveforms 

 for each of the specialized cells found in the heart are shown. The latency  

shown approximates that normally found in the healthy heart. 

 

The accuracy of the R-wave occurrence time estimates is often required to be 1–2 ms and, 

thus, the sampling frequency of the ECG should be at least 500–1000 Hz [44]. If the sampling 

frequency of the ECG is less than 500 Hz, the errors in R-wave occurrence times can cause 

critical distortion to HRV analysis results, especially to spectrum estimates [56]. The 

distortion of the spectrum is even bigger if the overall variability in heart rate is small [57]. 

The estimation accuracy can however be improved by interpolating the QRS complex (for 

example by using a cubic spline interpolation [58] or some model based approach [59]). It 

should be, however, noted that when the SA-node impulses are of interest there is an 

unavoidable estimation error of approximately 3 ms due to fluctuations in the AV-nodal 

conduction time [60]. 

 

 

2.4.2 Derivation of HRV time series 

 

After the QRS complex occurrence times have been estimated, the HRV time series can be 

derived. The inter-beat intervals or RR intervals are obtained as differences between 

successive R-wave occurrence times. That is, the nth RR interval is obtained as the difference 
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between the R-wave occurrence times RRn = tn −tn−1. In some context, normal-to-normal 

(NN) may also be used when referring to these intervals indicating strictly intervals between 

successive QRS complexes resulting from SA-node depolarization [44]. In practice, the NN 

and RR intervals appear to be the same and, thus, the term RR is preferred here. The time 

series constructed from all available RR intervals is, clearly, not equidistantly sampled, but 

has to be presented as a function of time, i.e. as values (tn, RRn). This fact has to be taken into 

account before frequency-domain analysis. In general, three different approaches have been 

used to get around this issue [44]. The simplest approach that has been adopted in, e.g., [61] is 

to assume equidistant sampling and calculate the spectrum directly from the RR interval 

tachogram (RR intervals as a function of beat number), see the first panel of Figure 2.12.  

 

 
Figure 2.12: Derivation of two HRV signals from ECG: the interval tachogram  

(middle panel) and interpolated RR interval series (bottom panel). 

 

This assumption can, however, cause distortion into the spectrum [62]. This distortion 

becomes substantial when the variability is large in comparison with the mean level. 

Furthermore, the spectrum can not be considered to be a function of frequency but rather of 

cycles per beat [63]. Another common approach, adopted in this software, is to use 

interpolation methods for converting the non-equidistantly sampled RR interval time series 

(also called the interval function) to equidistantly sampled [44], see the bottom panel of 

Figure 2.12. One choice for the interpolation method is the cubic spline or linear interpolation 
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[62]. After interpolation, regular spectrum estimation methods can be applied. The third 

general approach called the spectrum of counts considers a series of impulses (delta functions 

positioned at beat occurrence times) [64]. This approach relies on the generally accepted 

integral pulse frequency modulator (IPFM) which aims to model the neural modulation of the 

SA-node [60]. According to this model, the modulating signal is integrated until a reference 

level is achieved after which an impulse is emitted and the integrator is set to zero. The 

spectrum of the series of events can be calculated, e.g., by first lowpass filtering the event 

series and then calculating the spectrum of the resulting signal [63]. 

 

 

2.4.3 Pre-processing of HRV time series 

 

Any artefact in the RR interval time series may generate problems in the analysis of these 

signals. The artefacts within HRV signals can be divided into technical and physiological 

artefacts. The technical artefacts can include missing or additional QRS complex detections 

and errors in R-wave occurrence times. These artefacts may be due to measurement system or 

the computational algorithm. The physiological artefacts, on the other hand, include ectopic 

beats and arrhythmic events. In order to avoid the interference of such artefacts, the ECG 

recording and the corresponding event series should always be manually checked for artefacts 

and only artefact-free sections should be included in the analysis [44]. Alternatively, if the 

amount of artefact-free data is insufficient, proper interpolation methods can be used to 

reduce these artefacts, see, e.g., [65, 66, 67]. 

Another common feature that can alter the analysis significantly is the slow linear or more 

complex trends within the analyzed time series. Such slow non-stationarities are characteristic 

for HRV signals and should be considered before the analysis. The origins of non-

stationarities in HRV are discussed, e.g., in [42]. 

 

 

2.5 Automatic classification of sleep stages 
 

The computer support can be very useful in the case of sleep medicine and particularly in its 

automatic assessment. The present  research follows this direction. Sleep classification needs 

a massive amount of data due to registration of different signals along an entire night. It needs 

to be made in sleep centers with a specialized team of doctors and a group of technical 
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experts. Major obstacle to diagnosis in the field of sleep is represented by sleep centers 

because they are a very few and procedures for sleep evaluation are very expensive. Thus, 

there are large waiting lists and this could generate some negligence in estimating of major 

sleep disorders. It was thought to introduce into the sleep study mathematical models and 

computer resources, thanks to their continued development and their ability to manage these 

data. In particular, Decision Support Systems (DSS) are useful to reduce substantially the 

work of experts. This research moves into two main directions: on the one hand, sleep stages 

are classified by the signals usually used by doctors in scoring (especially using the EEG), on 

the other hand we will try to automatically mimic the medical score using only the HRV.  

In the first view, there is the work of Prince et al. (1989) [13]. He develops a model for the 

automatic classification of the sleep stages combining the information given by different 

signals, in other words human knowledge and mathematical structure. Typical signals (EEG / 

EOG / EMG) were used, which once processed (discredited) were the inputs  of an automatic 

classifier. With his work, Prince has tried to classify automatically the five stages of sleep, but 

he didn't achieve optimal performance. Other important works are those of Agarwal and 

Gotman in 2001 (using clusters) [16], Pore in 2006 (Independent Component Analysis) [14] 

and Flexer in 2005 (study by HMM using only EEG signal) [15].  

The second area of research is about Heart Rate Variability. As mentioned, this signal is close 

physiological sleep and it is also very robust against noise and simple purchase. These 

features make it particularly suitable for the development of DSS and easily acquiring in 

house, thus eliminating the problems of cost and time for display (Figure 2.13). Important 

works in this field are those of Redmond in 2007 which tried to classify the three major 

phases of sleep (WAKE, REM, NREM) through the use of cardiac and respiratory signals. 

The stages were calculated using a linear classifier [17]. 

 

 
Figure 2.13: ECG signal detection and its transfer to PC. 
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Other attempts have been made previously by Watanabe in 2004 [18] and more recently by 

Lewicki (only for two sleep stages) [20]. In the same field of research there is also work of 

Politecnico di Milano by using HMM (REM-NREM classification) [19]. 
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Chapter 3 

Mathematical Methods 

 

“Whether you can observe a thing or not depends  

on the theory which you use. It is the theory which  

decides what can be observed.” 

A. Einstein 

 

 

his chapter presents the mathematical approaches used to develop this work. The 

spectral heart rate variability estimation and the statistical analysis during signal 

processing are presented; afterwards it will follow a general description of some 

classification and validation techniques used. 

 

 

3.1 Spectral estimation of the HRV 
 

It was explained as a heart rate variability signal has non-random fluctuations. These 

fluctuations, around its mean value, represent the sympathetic and vagal balance and are 

deeply linked to the physiology of sleep. The common used tool  is the frequency domain 

analysis of series extracted from the HRV signal (VLF, LF, HF), which will form the basis 

for the classification of sleep [23]. The classic analysis is usually carried out by Fourier 

transform (FFT). It also require a wide temporal window (5 minutes) in order to catch the 

low frequency bands (such as VLF) while the temporal band considered in this work 

corresponds to 30 seconds. Fortunately, the Wiener–Khinchin theorem provides a simple 

alternative. The power spectral density (PSD) is the Fourier transform of the 

autocorrelation function, R(τ), of the signal if the signal can be treated as a wide-sense 

stationary random process [21]. 

T
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Depending on what is known about the signal, estimation techniques can involve 

parametric or non-parametric approaches, and may be based on time-domain or frequency-

domain analysis. In parametric approaches, the task is to estimate the parameters of the 

model that describes the stochastic process. For example, a common parametric technique 

involves fitting the observations by an autoregressive model. By contrast, non-parametric 

approaches explicitly estimate the covariance or the spectrum of the process without 

assuming that the process has any particular structure. A common non-parametric 

technique is the periodogram [22]. Spectral density is a function of frequency, not a 

function of time. Sometimes it is useful estimate PSD across the time, then techniques such 

as the short-time Fourier transform and wavelets, are commonly used. The present study 

analyze the application of  parametric (RLS) and non parametric approach (Wavelet) as 

feature extractors for sleep analysis based on HRV signal. 

 

 

3.1.1 Spectral estimation of non-stationary signals 

 

Analysis of HRV data has traditionally been performed in the time domain. Unfortunately, 

time analysis often fails to detect the presence of certain rhythms and subtle changes which 

may be crucial in many applications. This fact has motivated the use of frequency domain 

techniques for analysis. However, as the HRV can be described as a non-stationary random 

signal with additive stationary random noise and since only one realization of data is 

available, accurate time-varying spectral estimates can be extremely difficult to obtain. 

There are many approaches to estimating the time-varying spectra of a non-stationary 

random signal. For a random signal the expected value of a time-frequency distribution 

(TFD) is known as the time-frequency spectra (TFS) [25] or evolutive spectra [26]. If 

multiple realizations of the signal are available, one can form an estimate of the time-

varying spectrum by averaging over a set of TFDs. Where each TFD in the set is formed 

from a separate realization. When a random signal is neither stationary or at the very least 

quasi-stationary, ergodicity cannot be assumed, and thus the ensemble average cannot be 

replaced by the time average. Any time averaging, even over short periods, will smooth the 

time-varying characteristics of the signal. Thus, when only one realization of the signal is 

available, as is the case for HRV data, the TFD of a single realization must be used, 
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followed by a smoothing chosen to be a compromise between the two requirements of 

obtaining an accurate spectral estimate and preserving the time-varying information. In 

addition to the single realization problem, most time-varying spectral estimation techniques 

have no direct means for discriminating between the wanted signal and unwanted noise. 

Thus the resulting spectral estimate will contain the characteristics of the noise. Parametric 

methods are an exception to this since they can separate signal and noise structures, 

allowing for better spectral estimates [27]. 

In this discuss two known methods for estimating the time-varying spectra of a non-

stationary signal are used. One of the methods is based on modelling the signal as a time-

varying autoregressive process and using a recursive filter (RLS). The other approach uses 

the Wavelet Transform which provides a unified framework for a number of methods, 

which have been developed independently for various signal processing applications [24]. 

 

 

3.1.2 Autoregressive models 

 

The parametric model input, which in general is a white noise, is related output from the 

following equation [23]: 
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The transfer function is given by 
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zH = , where B(z) represents the z-transform of 

moving average filter (MA) and A(z) represents autoregressive part (AR). It is an ARMA 

model or a linear model with terms of moving average and autoregressive terms. There are 

particular models deriving by the ARMA model, considering only the autoregressive (AR 

models) or the moving average (model MA). AR model is widely used because it 

represents an alternative to the Fourier transform and has computationally advantages. 

The basic idea behind autoregressive models is that, for certain type of processes, the 

current value of the variable can be expressed in terms of a combination of a finite number 

of terms of the past. There is "memory" or feedback and therefore the system can generate 
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internal dynamics. 
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where ak are autoregression coefficients, x is the series under investigation, and N is the 

order (length) of the filter which is generally very much less than the length of the series. 

The noise term or residue, epsilon in the above, is almost always assumed to be Gaussian 

white noise.  Verbally, the current term of the series can be estimated by a linear weighted 

sum of previous terms in the series. The weights are the autoregression coefficients. The 

problem in AR analysis is to derive the "best" values for ak given a series xn . The majority 

of methods assume the series is linear and stationary. By convention the series is assumed 

to be zero mean, if not this is simply another term a0 in front of the summation in the 

equation above (3.1). Obtaining the AR coefficients in the stationary-case, usually it 

minimizes: 

 

∑
=

=
N

t

te
N

J
1

2 ])([
1

 (3.3) 

 

where e(t) represents the prediction error ytyte ˆ)()( −= .  

When there is a new sample you must obtain a new model adapted to the new data and 

therefore all calculations must be re-initialising. One way to approach is to use a recursive 

algorithm: it calculates the prediction error for each new sample, based on this, update the 

vector of model parameters )(tϑ  in accordance with the following expression: 

 

)](ˆ)()[()1()( tytytGtt −+−= ϑϑ  (3.4) 

 

The terms of prediction error have equal weight in the case of stationary signals. In the case 

of transient signals, however, is appropriate to update them to match the new data gradually 

observed, giving more weight samples more recent and less weight to the previous ones 

(Figure 3.1) [29].  
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Figure 3.1: RLS model used for the analysis of data from the signal 

HRV. At the top you look at the temporal window used for the analysis of samples.  

 

Now it minimizes: 

 

∑
=

−=
N

t

tN te
N

J
1

2 ])([
1 ω  (3.5) 

 

The term ω represents the forgetting factor (Figure 3.2) that allows to obtain a sequence of 

error weighting window, upgrading significantly to new data and less to the old. When the 

value of this factor equals 1, the window is rectangular and then it is equivalent to 

stationarity-case; when ω<1 the window is more small and therefore the number of error 

terms that contribute to H model becomes:
ω−1

1
. The choice of ω is crucial for the 

estimation of the model, in fact while a too low ω could estimate significantly noise; ω 

high values make the algorithm unstable and unable to catch signal variability. In this work 

as parametric model it uses a recursive least square (RLS Figure 3.1 [28]). Following the 

HRV signal, the better choice of this parameter is 0.985, after some trials. 

 

 
Figure 3.2: Forgetting factor and its windowing 
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The RLS model uses 8 parameters following HRV data; so there are a parametric vector θ 

and an observation vector φ with the same dimension, as defined: 

 

)]8()...2()1([)( −−−= tstststϕ  (3.6) 

 

where 

 

)1(975.0)(975.0)1(95.0)( −−+−= txtxtsts  (3.7) 

 

and x(t) is model input, HRV signal, filtering through high-pass filter obtaining s(t). Input 

signal is filtered step-by-step and parameter vector is updated at each step calculating 

prediction error: 
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The parameter vector updates as: 
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The updating factor K is derived by regularized covariance matrix: 
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through the relationship: 
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The RLS initialising is: 
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So each time point has optimal parametric vector, minimizing prediction error variance. 

The signal variance is estimated recursively: 
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Spectral estimation is computed in each time as autoregressive model by parametric vector 

)(tϑ  and )(2 tσ : 
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where: 

• fsample  is sampling frequency of HRV signal, x(t) 

• θn(t) is nth parameter of vector θ(t) 

• f  is normalized frequency between 0 and 1. 

 

In this way, it was calculated the power in different frequency bands (VLF, LF, HF) and 

total power (TP). These bands are normalized to the total power, avoiding inter- and intra- 

subjective variability. 

 

 

3.1.3 Wavelet Analysis 

 

The fundamental idea behind wavelets is to analyse according to scale. The wavelet 

analysis procedure is to adopt a wavelet prototype function called an analysing wavelet or 

mother wavelet. Any signal can then be represented by translated and scaled versions of the 
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mother wavelet. Wavelet analysis is capable of revealing aspects of data that other signal 

analysis techniques such as Fourier analysis miss aspects like trends, breakdown points, 

discontinuities in higher derivatives, and self- similarity. Furthermore, because it affords a 

different view of data than those presented by traditional techniques, it can compress or de-

noise a signal without appreciable degradation [30]. 

 

 

3.1.3.1 Wavelet vs. Fourier Analysis 

 

In the well-known Fourier analysis, a signal is broken down into constituent sinusoids of 

different frequencies. These sines and cosines (essentially complex exponentials) are the 

basis functions and the elements  of Fourier synthesis. Taking the Fourier transform of a 

signal can be viewed as a rotation in the function space of the signal from the time domain 

to the frequency domain. Similarly, the wavelet transform can be viewed as transforming 

the signal from the time domain to the wavelet domain. This new domain contains more 

complicated basis functions called wavelets, mother wavelets or analysing wavelets.  

Mathematically, the process of Fourier analysis is represented by the Fourier transform: 
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which is the sum over all time of the signal f(t) multiplied by a complex exponential. The 

results of the transform are the Fourier coefficients F(ω), which when multiplied by a 

sinusoid of frequency ω, yield the constituent sinusoidal components of the original signal.  

A wavelet prototype function at a scale s and a spatial displacement u is defined as: 
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Replacing the complex exponential in (3.12) with this function yields the continuous 

wavelet transform (CWT): 
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which is the sum over all time of the signal multiplied by scaled and shifted versions of the 

wavelet function ψ. The results of the CWT are many wavelet coefficients C, which are a 

function of scale and position. Multiplying each coefficient by the appropriately scaled and 

shifted wavelet yields the constituent wavelets of the original signal. The basis functions in 

both Fourier and wavelet analysis are localised in frequency making mathematical tools 

such as power spectra (power in a frequency interval) useful at picking out frequencies and 

calculating power distributions. The most important difference between these two kinds of 

transforms is that individual wavelet functions are localised in space. In contrast Fourier 

sine and cosine functions are non-local and are active for all time t. This localisation 

feature, along with wavelets localisation of frequency, makes many functions and operators 

using wavelets sparse when transformed into the wavelet domain. This sparseness, in turn 

results in a number of useful applications such as data compression, detecting features in 

images and de-noising signals. 

 

 

3.1.3.2 Time-Frequency Resolution 

 

A major draw back of Fourier analysis is that in transforming to the frequency domain, the 

time domain information is lost. When looking at the Fourier transform of a signal, it is 

impossible to tell when a particular event took place. In an effort to correct this deficiency, 

Dennis Gabor (1946) adapted the Fourier transform to analyse only a small section of the 

signal at a time a technique called windowing the signal [31]. Gabor’s adaptation, called 

the Windowed Fourier Transform (WFT) gives information about signals simultaneously in 

the time domain and in the frequency domain. To illustrate the time-frequency resolution 

differences between the Fourier transform and the wavelet transform consider the 

following figures.  

The figure 3.3 shows a windowed Fourier transform, where the window is simply a square 

wave. The square wave window truncates the sine or cosine function to fit a window of a 

particular width. Because a single window is used for all frequencies in the WFT, the 
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resolution of the analysis is the same at all locations in the time frequency plane. 

 

 
Figure 3.3: Resolution Windowed Fourier Transform 

 

An advantage of wavelet transforms is that the windows vary. Wavelet analysis allows the 

use of long time intervals where we want more precise low-frequency information, and 

shorter regions where we want high-frequency information. A way to achieve this is to 

have short high-frequency basis functions and long low-frequency ones. 

 

 
Figure 3.4:Wavelets Resolution 

 

The figure 3.4 shows a time-scale view for wavelet analysis rather than a time frequency 
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region. Scale is inversely related to frequency. A low-scale compressed wavelet with 

rapidly changing details corresponds to a high frequency. A high-scale stretched wavelet 

that is slowly changing has a low frequency. 

 

 

3.1.3.3 Examples of Wavelets 

 

The figure below illustrates four different types of wavelet basis functions. 

 
Figure 3.5: Different wavelet families 

 

The different families make trade-offs between how compactly the basis functions are 

localised in space and how smooth they are. Within each family of wavelets (such as the 

Daubechies family) are wavelet subclasses distinguished by the number of filter 

coefficients and the level of iteration. Wavelets are most often classified within a family by 

the number of vanishing moments. This is an extra set of mathematical relationships for the 

coefficients that must be satisfied. The extent of compactness of signals depends on the 

number of vanishing moments of the wavelet function used. 
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3.1.3.4 The Discrete Wavelet Transform 

 

The Discrete Wavelet Transform (DWT) involves choosing scales and positions based on 

powers of two so-called dyadic scales and positions. The mother wavelet is rescaled or 

dilated by powers of two and translated by integers. Specifically, a function 

)()( 2 RLtf ∈  (defines space of square integrable functions) can be represented as: 

 

∑∑ ∑
=

∞

−∞=

∞

−∞=

−− −Φ+−=
L

j k k

Lj ktkLaktkjdtf
1

)2(),()2(),()( ψ  (3.18) 

 

The function ψ(t) is known as the mother wavelet, while φ(t) is known as the scaling 

function. The set of functions { }ZLkjLjkjkt jjLL ∈≤−−Φ −−−− ,,|)2(2),2(2 ψ   , 

where Z is the set of integers, is an orthonormal basis for L2(R). 

The numbers a(L, k) are known as the approximation coefficients at scale L, while d(j,k) 

are known as the detail coefficients at scale j. The approximation and detail coefficients 

can be expressed as: 

 

∫

∫
∞

∞−

−

∞

∞−

−

−=

−Φ=

dtkttfkjd

dtkttfkLa

j

j

L

L

)2()(
2

1
),(

)2()(
2

1
),(

ψ
                (3.19)

 

 

 

To provide some understanding of the above coefficients consider a projection fl(t) of the 

function f(t) that provides the best approximation (in the sense of minimum error energy) 

to f(t) at a scale l. This projection can be constructed from the coefficients a(L,k), using the 

equation: 

 

)2(),()( ktkjatf l

k
l −= −

∞

−∞=
∑ ψ  (3.20) 

 

As the scale l decreases, the approximation becomes finer, converging to f(t) as l → 0. The 

difference between the approximation at scale l + 1 and that at l, fl+1(t) - fl(t), is 

a) 
 
 
b) 



CHAPTHER 3. MATHEMATICAL METHODS                                                                   39 

  

completely described by the coefficients d(j, k) using the equation: 
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Using these relations, given a(L, k) and {d(j, k) | j ≤ L}, it is clear that we can build the 

approximation at any scale. Hence, the wavelet transform breaks the signal up into a coarse 

approximation fL(t) (given a(L, k)) and a number of layers of detail {fj+1(t)-fj(t)| j< L} 

(given by {d(j, k) | j ≤ L}). As each layer of detail is added, the approximation at the next 

finer scale is achieved. 

 

 

3.1.3.5 Vanishing Moments 

 

The number of vanishing moments of a wavelet indicates the smoothness of the wavelet 

function as well as the flatness of the frequency response of the wavelet filters (filters used 

to compute the DWT) [33].  

Typically a wavelet with p vanishing moments satisfies the following equation [32]: 
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or equivalently, 

 

1,...,00)()1( −==−∑ pmkck
j

mk  (3.23) 

 

For the representation of smooth signals, a higher number of vanishing moments leads to a 

faster decay rate of wavelet coefficients. Thus, wavelets with a high number of vanishing 

moments lead to a more compact signal representation and are hence useful in coding 

applications. However, in general, the length of the filters increases with the number of 

vanishing moments and the complexity of computing the DWT coefficients increases with 
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the size of the wavelet filters. 

 

 

3.1.3.6 Subband Coding 

 

The Discrete Wavelet Transform (DWT) coefficients can be computed by using Mallat's 

Fast Wavelet Transform algorithm. This algorithm is sometimes referred to as the two-

channel sub-band coder and involves filtering the input signal based on the wavelet 

function used. To explain the implementation of the Fast Wavelet Transform algorithm 

consider the following equations: 
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The first equation is known as the twin-scale relation (or the dilation equation) and defines 

the scaling function φ. The next equation expresses the wavelet ψ in terms of the scaling 

function φ. The third equation is the condition required for the wavelet to be orthogonal to 

the scaling function and its translates. 

The coefficients c(k) or {c0, .., c2N-1} in the above equations represent the impulse response 

coefficients for a low pass filter of length 2N, with a sum of 1 and a norm of
2

1
. The high 

pass filter is obtained from the low pass filter using the relationship )1()1( kcg k
k −−= , 

where k varies over the range (1-(2N-1)) to 1. 

Equation 3.19a shows that the scaling function is essentially a low pass filter and is used to 

define the approximations. The wavelet function defined by equation 3.19b is a high pass 

filter and defines the details. Starting with a discrete input signal vector s, the first stage of 

the FWT algorithm decomposes the signal into two sets of coefficients. These are the 

approximation coefficients cA1 (low frequency information) and the detail coefficients 

cD1 (high frequency information), as shown in the figure below. 
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Figure 3.6: Filtering operation of the DWT 

 

The coefficient vectors are obtained by convolving s with the low-pass filter Lo_D for 

approximation and with the high-pass filter Hi_D for details. This filtering operation is 

then followed by dyadic decimation or down sampling by a factor of 2. 

Mathematically the two-channel filtering of the discrete signal s is represented by the 

expressions: 

 

∑∑ −− ==
k

kik
k
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These equations implement a convolution plus down sampling by a factor 2 and give the 

forward fast wavelet transform. If the length of each filter is equal to 2N and the length of 

the original signal s is equal to n, then the corresponding lengths of the coefficients cA1 

and cD1 are given by the formula: 

 

N
in

floor +






 −
2

 (3.28) 

 

This shows that the total length of the wavelet coefficients is always slightly greater than 

the length of the original signal due to the filtering process used. 
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3.1.3.7 Multilevel Decomposition 

 

The decomposition process can be iterated, with successive approximations being 

decomposed in turn, so that one signal is broken down into many lower resolution 

components. This is called the wavelet decomposition tree.  

 

 
Figure 3.7: Decomposition of DWT coefficients 

 

The wavelet decomposition of the signal s analysed at level j has the following structure 

[cAj, cDj, ..., cD1]. Looking at a signals wavelet decomposition tree can reveal valuable 

information. The diagram below shows the wavelet decomposition to level 3 of a sample 

signal S [31]. 

 

 

 

 

 

 

 

 

 

Figure 3.8: Level 3 Decomposition of Sample Signal S [34] 
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Since the analysis process is iterative, in theory it can be continued indefinitely. In reality, 

the decomposition can only proceed until the vector consists of a single sample. Normally, 

however there is little or no advantage gained in decomposing a signal beyond a certain 

level. The selection of the optimal decomposition level in the hierarchy depends on the 

nature of the signal being analysed or some other suitable criterion, such as the low-pass 

filter cut-off [34]. 

 

 

3.1.3.8 Signal Reconstruction 

 

The original signal can be reconstructed or synthesised using the inverse discrete wavelet 

transform (IDWT). The synthesis starts with the approximation and detail coefficients cAj 

and cDj, and then reconstructs cAj-1 by up sampling and filtering with the reconstruction 

filters. 

 

 
Figure 3.9: Wavelets Reconstruction 

 

The reconstruction filters are designed in such a way to cancel out the effects of aliasing 

introduced in the wavelet decomposition phase. The reconstruction filters (Lo_R and 

Hi_R) together with the low and high pass decomposition filters, forms a system known as 

quadrature mirror filters (QMF). 

For a multilevel analysis, the reconstruction process can itself be iterated producing 

successive approximations at finer resolutions and finally synthesising the original signal 

[34]. 
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3.2 Statistical Analysis 
 

It is important verifying statistical significance in extracted features by HRV signal 

distinguishing significative changes in data. The use of the word significance in statistics is 

different from the standard one, which suggests that something is important or meaningful. 

The amount of evidence required to accept that an event is unlikely to have arisen by 

chance is known as the significance level or critical p-value, which is the probability 

conditional on the null hypothesis of the observed data or more extreme data. If the 

obtained p-value is small then it can be said either the null hypothesis is false or an unusual 

event has occurred. It is worth stressing that p-values do not have any repeat sampling 

interpretation. The significance level is usually denoted by the Greek symbol, α (alpha). In 

this work level of significance is set to 5% (0.05) [36]. 

 

 

3.2.1 T-Test 

 

The t-test assesses whether the means of two groups are statistically different from each 

other. This analysis is appropriate whenever you want to compare the means of two groups, 

and especially appropriate as the analysis for the posttest-only two-group randomized 

experimental design.  

 

 
Figure 3.10: Idealized distributions for treated and comparison group posttest values.  

 

Figure 3.10 shows the distributions for the treated (blue) and control (green) groups in a 
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study. Actually, the figure shows the idealized distribution. The real distribution would 

usually be with a histogram or bar graph. The figure indicates where the control and 

treatment group means are located. Considering the three situations shown in figure 3.11, 

the first thing to notice about the three situations is that the difference between the means is 

the same in all three, but the three situations don't look the same. The first example shows 

a case with moderate variability of scores within each group. The second situation shows 

the high variability case. The third shows the case with low variability.  

 

 
Figure 3.11: Three scenarios for differences between means.  

 

The two groups appear most different or distinct in the bottom or low-variability case 

because there is relatively little overlap between the two bell-shaped curves. In the high 

variability case, the group difference appears least striking because the two bell-shaped 

distributions overlap so much (Figure 3.11). The formula for the t-test is: 

 

( )Ct

CT

XXSE

XX
t

−
−=  (3.29) 

 

where the top part of the formula is the difference between the means and the bottom part 

is called the standard error of the difference. To compute it, the variance for each group is 
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divided it by the number of people in that group. These two values are added and then are 

squared root in this way: 

 

( )
C

C

T

T
CT nn

XXSE
varvar +=−  (3.30) 

 

The t-value will be positive if the first mean is larger than the second and negative if it is 

smaller. Once computing the t-value is compared with a table of significance to test 

whether the ratio is large enough to say that the difference between the groups is not likely 

to have been a chance finding with alpha level set at 5%. In the t-test, the degrees of 

freedom are the sum of the persons in both groups minus 2.  

Given the alpha level, the degrees of freedom, and the t-value, the t-value is looked in a 

standard table of significance to determine whether the t-value is large enough to be 

significant. 

 

 

3.2.2 Multivariate analysis of variance (MANOVA) 

 

The purpose of a ttest is to assess the likelihood that the means for two groups are sampled 

from the same sampling distribution of means. The purpose of an ANOVA is to test 

whether the means for two or more groups are taken from the same sampling distribution. 

The purpose of MANOVA is to test whether the vectors of means for the two or more 

groups are sampled from the same sampling distribution. It gives a measure of the overall 

likelihood of picking two or more random vectors of means out of the same hat. MANOVA 

is used to explore how independent variables influence some patterning of response on the 

dependent variables. Here, one literally uses an analogue of contrast codes on the 

dependent variables to test hypotheses about how the independent variables differentially 

predict the dependent variables [38]. 
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3.2.3 Kruskal-Wallis Test 

 

The Kruskal–Wallis test  is a non-parametric method for testing equality of population 

medians among groups. It is identical to a one-way analysis of variance with the data 

replaced by their ranks.  

Since it is a non-parametric method, the Kruskal–Wallis test does not assume a normal 

population, unlike the analogous one-way analysis of variance. However, the test does 

assume an identically-shaped and scaled distribution for each group, except for any 

difference in medians. The method is to rank all data from all groups together from 1 to N, 

ignoring group membership, and to assign any tied values the average of the ranks they 

would have received had they not been tied. The test statistic is given by:  
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where: 

• ni is the number of observations in group i  

• rij  is the rank (among all observations) of observation j from group i  

• N is the total number of observations across all groups  

the p-value is approximated by( )Kg ≥−
2

1Pr χ . If some ni's are small, the probability 

distribution of K can be quite different from this chi-square distribution. If a table of the 

chi-square probability distribution is available, the critical value of chi-square,2 1: −gαχ , can 

be found by entering the table at g−1 degrees of freedom and looking under the desired 

significance or alpha level. The null hypothesis of equal population medians would then be 

rejected if 2
1: −≥ gK αχ . Appropriate multiple comparisons would then be performed on the 

group medians [37]. 
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3.3 Data Processing 
 

Data transformation refers to the mathematical application that is, each data point zi is 

replaced with the transformed value yi=f(zi), where f is a function. Transforms are usually 

applied so that the data appear to more closely meet the assumptions of a statistical 

inference procedure that is to be applied, or to improve the interpretability or appearance of 

graphs. The function that is used to transform the data is invertible, and generally is 

continuous. The reciprocal and some power transformations can be meaningfully applied 

to data that include both positive and negative values. However when both negative and 

positive values are observed, it is more common to begin by adding a constant to all 

values, producing a set of non-negative data to which any power transform can be applied. 

Classifying data through Neural Network and linear/quadratic discriminant, it is useful to 

transform a data set to resemble a normal distribution through one of the power 

transformations. To assess whether normality has been achieved, a graphical approach is 

usually more informative than a formal statistical test.  

 

 

3.3.1 Logarithmic Transformation 

 

A logarithmic transformation may be useful when the mean is proportional to the standard 

deviation. Under such circumstances the logarithmic transformation can be effective in 

normalizing distributions that have a moderate positive skew. Since a logarithmic 

transformation makes a more extreme adjustment than a square-root transformation, it can 

be employed to normalize distributions which have a more severe positive skew. On a 

logarithmic scale, the distance between adjacent points on the scale will be less than the 

distance between the corresponding points on the original scale of measurement. As is the 

case with the square-root transformation, the logarithmic transformation is often useful for 

normalizing a dependent variable that is a measure of response time. 

The logarithmic transformation is obtained through use of the equation ( )XX ln
~ = . Since a 

logarithm cannot be computed for the value zero, when one or more zeros or positive 

numbers close to zero are present in a set of data, the following equation is employed: 
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( )1ln
~ += XX . Since a logarithm cannot be computed for a negative number, a constant 

(the value of which is a positive number which is minimally greater than one unit above 

the absolute value of the lowest negative number) can be added to all of the values in a set 

of data, to insure that each value will be a positive number [41]. 

The logarithm function tends to squeeze together the larger values in data set and stretches 

out the smaller values. This squeezing and stretching can correct one or more of the 

following problems with data: 

 

1. Skewed data  

2. Outliers  

3. Unequal variation  

 

Not all data sets will suffer from these problems. Even if they do, the log transformation is 

not guaranteed to solve these problems. If data are skewed to the right, a log 

transformation can sometimes produce a data set that is closer to symmetric. 

 

 
Figure 3.12: Skewed right distribution: the left tail (the smaller values) is 

 tightly packed together and the right tail (the larger values) is widely spread apart.  

 

The logarithm will squeeze the right tail of the distribution and stretch the left tail, which 

produces a greater degree of symmetry. If the data are symmetric or skewed to the left, a 

log transformation could actually make things worse. Also, a log transformation is unlikely 

to be effective if the data has a narrow range (if the largest value is not more than three 

times bigger than the smallest value) [39]. 
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Figure 3.13: Untransformed data shows quite a bit of skewness, while the log 

 transformed data, not perfectly symmetric, does tend to have a better balance 

 between the lower half and the upper half of the distribution.  

 

If data has outliers on the high end, a log transformation can sometimes help. The 

squeezing of large values might pull that outlier back in closer to the rest of the data. If 

data has outliers on the low end, the log transformation might actually make the outlier 

worse, since it stretches small values.  

 

 
Figure 3.14: The original data has two outliers which are almost 7 standard deviations  

above the mean. The log transformed data are not perfect, and perhaps there is now an outlier  

on the low end. The influence of outliers is much less extreme with the log transformed data.  

 

If data has unequal variation, then the some of tests and confidence intervals may be 

invalid. A log transformation can help with certain types of unequal variation. A common 

pattern of unequal variation is when the groups with the large means also tend to have 

large standard deviations. The log transformation will squeeze the groups with the larger 

standard deviations more than it will squeeze the groups with the smaller standard 

deviations (Figure 3.15). The log transformation is especially effective when the size of a 

group's standard deviation is directly proportional to the size of its mean. 
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Figure 3.15: The patients with no functional alleles are further from the lower bound and  

thus have much more room to vary. After a log transformation, the standard deviations are much closer.  

 

A log transformation can sometimes simplify statistical models. Some statistical models 

are multiplicative: factors influence your outcome measure through multiplication rather 

than addition. These multiplicative models are easier to work with after a log 

transformation [40]. 

 

 

3.3.2 Square-root Transformation 

 

A square-root transformation may be useful when the mean is proportional to the variance. 

Under such circumstances the square-root transformation can be effective in normalizing 

distributions that have a moderate positive skew, as well as making the treatment variances 

more homogeneous. This is the case since a square-root scale will reduce the magnitude of 

difference between the two tails of positively skewed distribution by pulling the right side 

of the distribution in toward the middle. Consequently a square-root transformation may be 

able normalize a set of reaction time data. In such a case the square-root transformation can 

reduce skewness and stabilizes distributional variance. Data taken from a Poisson 

distribution are sometimes effectively normalized with a square-root transformation. In 

Poisson distributed data, the mean and variance are proportional. 

The square-root transformation is obtained through use the equation XY = , where X is 

the original score and Y represents the transformed score [41]. 
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3.4 Machine Learning 
 

The purpose of this work is classifying sleep stages in 3 states: WAKE, REM, NREM. 

Classifiers are feed by the data collected (HRV signal) and obtaining outputs 

(hypnograms). There are several methods in machine learning theory, which are used in 

this work, as Neural Network, Linear/Quadratic Discriminant and K-Nearest-Neighbour. 

Sleep stages are classified by different features, which are extracted by a parametric (RLS 

algorithm) and wavelet based method (see Chapter 3.1.2 and 3.1.3). Features are selected 

by sequential forward selection (SFS) algorithm based on Linear Discriminant maximizing 

Cohen’s Kappa index. Understanding these methods needs a general introduction to these 

techniques. 

 

 

3.4.1 Linear/Quadratic Discriminant Analysis 

 

Discriminant analysis is a statistical technique to classify objects into mutually exclusive 

and exhaustive groups based on a set of measurable object's features. Term discriminant 

analysis comes with many different names for difference field of study. If the number of 

classes is more than two, it is also sometimes called Multiple Discriminant Analysis 

(MDA). The purpose of Discriminant Analysis, used in this work, is to classify epochs into 

one of sleep stages (WAKE, NREM, REM) based on a set of features that describe the 

stages (e.g. SDNN, HF/TP, LF/TP, pole module HF. movements, etc.). In general, it assigns 

an epoch to one of a number of predetermined sleep stages based on features 

characteristics on the epoch. Thus, in discriminant analysis, the dependent variable (Y) is 

sleep stage and the independent variable (X) is the epoch features that might describe the 

group. Discriminant assumes that the groups are linearly separable. Linearly separable 

suggests that the groups can be separated by a linear combination of features that describe 

the objects. If only two features, the separators between objects group will become lines. If 

the features are three, the separator is a plane and the number of features (i.e. independent 

variables) is more than 3, the separators become a hyper-plane.  

Using classification criterion to minimize total error of classification (TEC), the 
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proportion of object that misclassifies, must be small as possible. TEC should be thought 

as the probability that the rule under consideration will misclassify an object. The 

classification rule is to assign an object to the group with highest conditional probability. 

This is called Bayes Rule. This rule also minimizes the TEC. Having K groups, the Bayes' 

rule is to assign the object to group i where: 

 

( ) ( ) ijxjPxiP ≠∀> ,||  (3.32) 

 

It is important to know the probability )( xiP  that an object is belong to group i, given a 

set of measurement x. In practice however, the quantity of )( xiP is difficult to obtain, but it 

gets )( ixP , that is the probability of getting a particular set of measurement x given that the 

object comes from group i. There is a relationship between the two conditional 

probabilities that well known as Bayes Theorem: 
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where )(iP  is the prior probability of the group i known without making any 

measurement. In practice we can assume the prior probability is equal for all groups or 

based on the number of sample in each group. In practice, however, to use the Bayes rule 

directly is unpractical because to obtain )( ixP need so much data to get the relative 

frequencies of each groups for each measurement. It is more practical to assume the 

distribution and get the probability theoretically. Assuming that each group has 

multivariate-normal distribution (Figure 3.16), described as: 
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and the denominator is the same for each class, it is possible ignoring it and making the log 

of the numerator, so the quadratic discriminant function is : 
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Figure 3.16: The top panel shows the Gaussian distributions that are shifted versions of each other.  

The bottom panel shows classification boundary obtained by LDA 

 

If it further assumes that the covariance matrices, Ci are equal for each class, then more 

terms cancel out and linear discriminant function is derived as: 
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where: 

• µi is vector mean of group i 

• Ci is covariance marix of group i 

• xi is measurement of group i 

 

Classification is then performed with these discriminant functions using the following 

decision rule: 

 

( ) ( )( )ifxxG iimaxarg=  (3.37) 

 

In other words, select the class, i, with the highest score for each observation. The second 

term ( T
iiC µµ 1− ) is actually called as Mahalanobis Distance, which is distance to measure 

dissimilarity between several groups. 

 

 
Figure 3.17: The left plot shows samples from two classes along with the histograms 

Resulting from projection onto the line joining the class means (overlap in the projected space). 

The right plot shows the corresponding projection based on Mahalanobis distance (better separation). 

 

 

3.4.2 Neural Network 

 

In subparagraph 3.4.1 models for regression and classification, that comprised linear 

combinations of fixed basis functions, are described. These models have useful analytical 
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and computational properties but that their practical applicability was limited by the curse 

of dimensionality. In order to apply such models to largescale problems, it is necessary to 

adapt the basis functions to the data, in other words to use parametric forms for the basis 

functions in which the parameter values are adapted during training. The most successful 

model of this type in the context of pattern recognition is the feed-forward neural network, 

also known as the multilayer perceptron, discussed in this chapter. In fact, ‘multilayer 

perceptron’ is really a misnomer, because the model comprises multiple layers of logistic 

regression models (with continuous nonlinearities) rather than multiple perceptrons (with 

discontinuous nonlinearities). For many applications, the resulting model can be 

significantly more compact, and hence faster to evaluate, than a support vector machine 

having the same generalization performance. The price to be paid for this compactness, as 

with the relevance vector machine, is that the likelihood function, which forms the basis 

for network training, is no longer a convex function of the model parameters. In practice, 

however, it is often worth investing substantial computational resources during the training 

phase in order to obtain a compact model that is fast at processing new data ([69], [70], 

[71]).  

 

 

3.4.2.1 Feed-forward Network Functions 

 

Neural networks use basis functions that follow the same form as: 
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so that each basis function is itself a nonlinear function of a linear combination of the 

inputs, where the coefficients in the linear combination are adaptive parameters. This leads 

to the basic neural network model, which can be described a series of functional 

transformations. First, M linear combinations of the input variables x1, . . . , xD in the form 

are constructed as: 
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where the subscript i indexes units on the input layer, j for the hidden; wji denotes the 

input-to-hidden layer weights at the hidden unit j. Each hidden unit emits an output that is 

a nonlinear function of its activation, f (net): 

 

( )( )jnetfy j =  (3.40) 

 

Each output unit similarly computes its net activation based on the hidden unit signals as: 
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where the subscript k indexes units in the output layer and nH denotes the number of hidden 

units. The bias unit  is treated as equivalent to one of the hidden units whose output is 

always y0 = 1. Each output unit then computes the nonlinear function of its net, emitting 

 

( )kk netfz =  (3.42a) 

 

Because binary outputs are in this work, hidden and output activation function is been 

choosen as sigmoid: 
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 (3.42b) 

 

For classification, it defines c output units, one for each of the categories, and the signal 

from each output unit is the discriminant function zk: 
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Figure 3.18: Whereas a two-layer network classifier can only implement a linear  

decision boundary, given an adequate number of hidden units,  

networks can implement arbitrary decision boundaries. 

 

The neural network model comprises two stages of processing, each of which resembles 

the perceptron model, and for this reason the neural network is also known as the 

multilayer perceptron, or MLP. A key difference compared to the perceptron, however, is 

that the neural network uses continuous sigmoidal nonlinearities in the hidden units, 

whereas the perceptron uses step-function nonlinearities. This means that the neural 

network function is differentiable with respect to the network parameters, and this property 

will play a central role in network training [75]. 
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3.4.2.2 Network Training 

 

The basic approach in learning is to start with an untrained network, present an input 

training pattern and determine the output. The error or criterion function is some scalar 

function of the weights that is minimized when the network outputs match the desired 

outputs. The weights are adjusted to reduce this measure of error. 

 

( ) ( ) ( )∑
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 (3.44) 

 

where T and Z are target and the network output vectors of length c; w represents all the 

weigths in the network. The backpropagation learning rule is based in gradient descent. 

The weights are initialized with random values, and are changed in a direction that will 

reduce the error: 

 

w

J
w

∂
∂−=∆ η  (3.45) 

 

where η is the learning rate. 

This iterative algorithm takes a weigth vector at iteration m and updates it as: 

 

( ) ( ) ( )mwmWmw ∆+=+1  (3.46) 

 

Because the error is not explicitly dependent upon wjk, defining the sensitivity of unit k as: 

 

k
k net

J

∂
∂−≡δ  (3.47) 

 

which describes how the overall error changes with the unit’s activation. In the output 

layer, the sensitivity for an output unit is defined as: 

 

( ) ( )kkkk netfzt '−=δ  (3.48) 
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and for a hidden unit as: 
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The sensitivity at a hidden unit is simply the sum of the individual sensitivities at the 

output units weighted by the hidden-to-output weights wjk, all multiplied by f’ (netj ). Thus 

the learning rule for the input-to-hidden weights is: 
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Equations 3.48 & 3.50, give the backpropagation algorithm, so-called because during 

training an error (actually, the sensitivities δk) is propagated from the output layer back to 

the hidden layer in order to perform the learning of the input-to-hidden weights by 

Equation 3.50. At base then, backpropagation is “just” gradient descent in layered models 

where the chain rule through continuous functions allows the computation of derivatives of 

the criterion function with respect to all model parameters (i.e., weights). 

One of the problems that occur during neural network training is called overfitting. The 

error on the training set is driven to a very small value, but when new data is presented to 

the network the error is large. The network has memorized the training examples, but it has 

not learned to generalize to new situations [76]. 

 

 

3.4.2.3 Levenberg-Marquardt 

 

Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was designed to 

approach second-order training speed without having to compute the Hessian matrix. 

When the performance function has the form of a sum of squares (as is typical in training 

feedforward networks), then the Hessian matrix can be approximated as 

 

JJH T= (3.51) 
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and the gradient can be computed as 

 

eJg T= (3.52) 

 

where J is the Jacobian matrix that contains first derivatives of the network errors with 

respect to the weights and biases, and e is a vector of network errors. The Jacobian matrix 

can be computed through a standard backpropagation technique [72] that is much less 

complex than computing the Hessian matrix. The Levenberg-Marquardt algorithm uses 

this approximation to the Hessian matrix in the following Newton-like update: 

 

eJIJJxx TT
kk

1
1 ][ −

+ +−= µ (3.53) 

 

When the scalar µ is zero, this is just Newton’s method, using the approximate Hessian 

matrix. When µ is large, this becomes gradient descent with a small step size. Newton’s 

method is faster and more accurate near an error minimum, so the aim is to shift toward 

Newton’s method as quickly as possible. Thus, µ is decreased after each successful step 

(reduction in performance function) and is increased only when a tentative step would 

increase the performance function. In this way, the performance function is always reduced 

at each iteration of the algorithm [75]. 

 

 

3.4.2.4 Early Stopping 

 

The default method for improving generalization is called early stopping. In this technique 

the available data is divided into three subsets. The first subset is the training set, which is 

used for computing the gradient and updating the network weights and biases. The second 

subset is the validation set. The error on the validation set is monitored during the training 

process. The validation error normally decreases during the initial phase of training, as 

does the training set error. However, when the network begins to overfit the data, the error 

on the validation set typically begins to rise (Figure 3.19). When the validation error 
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increases for a specified number of iterations, the training is stopped, and the weights and 

biases at the minimum of the validation error are returned [73].  

 

 
Figure 3.19: The validation error and the test error per pattern are virtually always 

higher than the training error. Training is stopped at the minimum of the validation set. 

 

The test set error is not used during training, but it is used to compare different models. It 

is also useful to plot the test set error during the training process. If the error in the test set 

reaches a minimum at a significantly different iteration number than the validation set 

error, this might indicate a poor division of the data set [75].  

 

3.4.2.5 Number of hidden units 

 

While the number of input units and output units are dictated by the dimensionality of the 

input vectors (features) and the number of categories (sleep stages), respectively, the 

number of hidden units is not simply related to such obvious properties of the classification 

problem. The number of hidden units, nH, governs the complexity of the decision 

boundary. If the patterns are well separated or linearly separable, then few hidden units are 

needed; conversely, if the patterns are drawn from complicated densities that are highly 

interspersed, then more hiddens are needed. Thus without further information there is no 
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foolproof method for setting the number of hidden units before training. Figure 3.20 shows 

the training and test error on a three-sleep stages classification problem for networks that 

differ solely in their number of hidden units. For large nH, the training error can become 

small because such networks have high expressive power and become tuned to the 

particular training data. At the other extreme of too few hidden units, the net does not have 

enough free parameters to fit the training data well, and again the test error is high. We 

seek some intermediate number of hidden units that will give low test error [76]. 

 
Figure 3.20. Training and test classification error respect to the number of hidden layer neurons. 

 

 

 

 

3.4.2.6 Error surfaces 

 

Since backpropagation is based on gradient descent in a criterion function, it is useful 

studying the function J(w). Of course, such an error surface depends upon the training and 

classification task; nevertheless there are some general properties of error surfaces that 

seem to hold over a broad range of real-world pattern recognition problems. If many local 

minima plague the error landscape, then it is unlikely that the network will find the global 

minimum. Many times it is useful starting with difference random weight to start training 

in different points and looking for global minima. 
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Figure 3.21: Geometrical view of the error function E(w) as a surface sitting over weight space.  

Point wA is  a local minimum and wB is the global minimum. At any point wC,  

the local gradient of the error surface is given by the vector E∇ . 

 

 

3.4.3 K-Nearest-Neighbor 
 

K-Nearest-Neighbor (k-NN) method assumes all instances correspond to points in the n-

dimensional space. The nearest neighbors of an instance are defined in terms of the 

standard Euclidean distance. The problem of classification is modelling a discrete-valued 

target function F: ℜn → V, where V is the finite set {v1,...vs}. 

 
Figure 3.22: K-Nearest Neighbor method. In the left panel, the new instance xq is classified to “+” or “–“. 

 In the right panel, Voronoi diagram is represented 
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In Figure 3.22, instance are points in 2-dimensional space, the number of classes s = 2, so 

the output is boolean (denoted as “+” or ”–“). New instance xq (called also a query point) is 

classified with respect to proximity of nearest training instances. A 1-NN method, which 

uses only 1 training instance (the closest to the query), and xq will be classified to “+” 

(since the nearest training instance belongs to class “+”). A 5-NN method accepts 5 

training instances and with xq will be classified to “–“ (since among 5 instances there are 2 

“+” and 3 “–“).The essence of the K-NN algorithm is to classify a new xq  finding the most 

common value of the nearest training instances. The right panel of figure 3.22 shows the 

Voronoi diagram, a decision surface induced by the 1-NN algorithm for a typical set of 

training instances. The convex polygon surrounding each training instance indicates the 

region of instance space closest to that point. 

An arbitrary instance x is defined as {a1(x) ... an(x)}, where ar(x) denotes the value of the  

r-th attribute of instance x. The distance between two instances xi and xj is defined as: 

 

( ) ( ) ( )22, jrirji xaxaxxd −=  (3.54) 

 

One attractive aspect of the nearest-neighbour decision rule is that it is often possible to 

reduce the size of the training set S without changing the decision boundary, considering 

the Voronoi diagram of S. A refinement of the K-NN classification algorithm is to weigh 

the contribution of each of the K neighbors according to their distance to the query point 

xq, giving greater weight wi to closer neighbors. This can be accomplished by replacing the 

final line in the algorithm  by: 
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where the weight is: 
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(in case xq exactly matches one of xi, so that the denominator becomes zero, we assign 

F(xq) to be f(xi) in this case. For the version of K-NN for real-valued output the final line of 

the algorithm will be: 
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If weighting is used, it makes sense to use all training examples, not just K – the algorithm 

then becomes a global one, since all training instances are used. The only disadvantage is 

that the algorithm will run more slowly [75].  

 

 

3.5 Statistical performances 
 

As a measure of system performance, accuracy and Cohen’s Kappa Coefficient have been 

used which are measure of interrater agreement, where the two raters are the expert sleep 

technician (who scored the polysomnograph recordings) and the automated sleep staging 

system. Accuracy is the proportion of true results (both true positive and true negative) in 

the population [81]. Table 3.1 shows confusion matrix for calculating accuracy and 

Cohen’s Kappa Coefficient for 2 classes: 

 

Gold Standard  

True False 

Positive True Positive False Positive 
Test outcome 

Negative False Negative True Negative 

Table 3.1: Confusion Matrix 

 

where: 

FNFPTNTP

TNTP
Accuracy

+++
+=  (3.58) 
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Cohen's kappa measures the agreement between two raters who each classify N items 

into C mutually exclusive classes. 
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where p0 is the relative observed agreement among raters, and pe is the hypothetical 

probability of chance agreement, using the observed data to calculate the probabilities of 

each observer randomly saying each category. If the raters are in complete agreement then 

κ = 1. If there is no agreement among the raters (other than what would be expected by 

chance) then κ ≤ 0 [82]. 

The need for such a measure is evident when we consider the relative proportions of the 

sleep stages (WAKE, NREM, REM) whose ratios are approximately 25% for WAKE, 65% 

for NREM, 10% for REM. Therefore, with complete ignorance all stages could be scored 

as NREM and achieve 65% accuracy, which may appear to be quite a reasonable 

performance. However, in this instance k=0, which is a better measure of performance. 
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Chapter 4 

Methodology of Protocol 

 

“If a man will begin with certainties, he shall 

end in doubts; but if he will be content to begin 

with doubts he shall end in certainties.” 

Francis Bacon 

 

 

leep recordings were performed on 11 adults (age 20-54 years) at the sleep 

laboratory of Finnish Institute of Occupational Health (FIOH). Each subject 

participated with two recordings and these were obtained after baseline night, once 

during daytime sleep after a night shift of work and once during nighttime sleep. Signals 

were scored using standard R&K criteria on EEG, EOG and EMG. The sleep scoring, 

based on standard polysomnographic recordings, was done by expert personnel. R-R 

intervals (RRI) were computed from the standard ECG signal with the Somnologica 

software. In addition, the multichannel BCG was recorded with the bed sensor using 

multiple Emfit electrodes. Both the heart beat interval (HBI), with coverage of 88%, and 

movement activity were extracted from the bed sensor signals. 

FIOH provided: 

� Heart beat intervals sampled at 10 Hz 

� Respiration signal sampled at 10 Hz 

� Movement activity  sampled at 10 Hz 

� Polysomnographic recordings sampled at 1 Hz 

The sleep time was divided in epochs of 30 seconds each. In sleep medicine, a single epoch 

can be scored as stage 1, 2, 3, 4, REM and Wake. The resulting data were coded as 

follows: 

� 0 no scoring 

� -1 movement time 

S 
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� -2 WAKE 

� -3 REM 

� -4 Stage 1 

� -5 Stage 2 

� -6 Stage 3 

� -7 Stage 4 

 

 

Figure 4.1: The figure shows sleep stage coding performed by FIOH on the top 

and particular the coding used in this work in the bottom. 

 

In this work, the stages from 1 to 4 were merged in one stage named NREM (Non REM) 

and stages with the code 0 (no scoring, corresponding to light on and subject out of the 

bed) and the code -1 (movement time, subject sat on the bed side), were deleted. So, the 

sleep hypnogram was re-coded (Figure 4.1) as: 

� 1 as WAKE stage 

� 2 as NREM stage 

� 3 as REM stage 
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4.1 Data pre-processing 
 

The heart beat intervals, the movement activity and the respiration signals were pre-

processed and synchronized with sleep scoring through signal time. According to the bed 

sensor acquisition, there are some outlier data. Particularly, RR and respiration signals 

were filtered by ten-degree and sixty-degree median filter respectively. Figure 4.1 shows 

an example of RR and respiratory signal filtered with a median filter. 

 

 

Figure 4.2: HBI and breathing signals of first patient. a), b) effect of 10-degree median filter on HBI. 

 c), d) respiratory outlier data were deleted by 60-degree median filter. 

a) 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
c) 
 
 
 
 
 
 
 
d) 
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4.2 Features extraction with RLS method 
 

Since HBI as well as RRI become nonstationary for the long-term sleep recording, two 

time-frequency methods, such as the recursive least square filter (RLS) and the wavelet, 

result to be the best choices in order to evaluate power spectral density (PSD). This chapter 

analyzes only the RLS method. According Juha M. Kortelainen et al. [74], the respiration 

and the RR signals were filtered by high-pass filter, and a forgetting factor that gives more 

weight to the most recent samples was used. The heart rate variability (HRV) and the 

respiratory spectrum were computed starting from the obtained autoregressive parameters 

on a beat-by-beat basis.  

A forgetting factor of 0.985 was used for all sleep recordings, while an eight and three 

order model were used for HRV and respiratory signals, respectively. 

 

 
Figure 4.3a:  PSD computed by RLS for HBI signal of 1st subject 

 

 

WAKE 

NREM 

REM 
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Figure 4.3b: Respiratory PSD computed by RLS for 1st subject 

 

Using the time variant HRV and respiratory spectrum the following beat-by-beat features 

were obtained: 

� Mean on 150 seconds of RR values 

� Standard Deviation on 150 seconds of RR values 

� Very low frequency power - VLF (0.003 Hz - 0.02 Hz) 

� Low frequency power - LF (0.02 Hz - 0.15 Hz) 

� High frequency power - HF (0.15 Hz - 0.5 Hz) 

� HF and VLF power ratio 

� LF and VLF power ratio 

� LF and HF power ratio 

� Cross-spectrum module of HRV and respiratory signals in the same bands 

LF and HF indices are related to the sympathovagal balance and present characteristic 

values at the different sleep stages [11]. However, these sympathovagal values may be 

different among subjects due to the biovariability. This inter-subject variability has to be 

eliminated in order to obtain values that can be comparable between subjects and to enable 

WAKE 

NREM 

REM 
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the sleep stage classification. This normalization process eliminates some inconsistencies 

and assures that the noise produced by the bio-diversity of subjects is reduced or damped. 

The HRV spectral parameters (HF, LF, and VLF) were normalized beat-by-beat as the 

percentage power with respect to the total power (TP).  

These features were divided into epochs of 30 seconds. Each epoch contains the mean 

value of every single feature. Figure 4.4 and equation 4.1 illustrate how the mean and the 

standard deviation, for each epoch, were obtained by averaging 150 seconds (from -60 to 

60 seconds respect to the central epoch). For each recording, due to the RLS parameters  

(forgetting factor and model order), the model reaches stability after 80 beats, the first 

three epochs were deleted as well as the last three epochs were also deleted due to the 

noise.. 
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Figure 4.4: A moving window on 150 sec was applied to signals to computing mean  

and standard deviation, assigning values obtained to central epoch.  
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4.3 Features extraction from wavelet coefficients 
 

In this chapter, a description the wavelet to HRV is presented. First, the wavelet family has 

to be chosen. In this work, the Daubechies (figure 4.5 presents 4-order Daubchies mother 

wavelet) is used in order to compute a 6-level decomposition.  

 

Figure 4.5: Four order Daubechies mother wavelet. 

 

Due to the 1 Hz sampling frequency and a limited range of power (0.003 Hz- 0.5 Hz), a 4 

order wavelet with an associated pseudo-frequency has to be used, as shown in the 

following table 4.1: 

Level Scale Frequency (Hz) 

1 2 0,3571 

2 4 0,1786 

3 8 0,0893 

4 16 0,0446 

5 32 0,0223 

6 64 0,0112 

Table 4.1: Pseudo-frequency associated to  

each level decomposition 
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The first level is not considered in order to de-noise signal, as the low-pass filter used in 

RLS. The scalogram computed is shown in Figure 4.6. 

Figure 4.6: Scalogram computed of 1st subject with Daubechies family wavelet of 4 order for both signals. 

Levels are only used from 2 to 6.The hypnogram relates scalograms with sleep stages 

 

The result consists of 29 beat-by-beat features obtained by mixing the calculated time 

variant HRV and the respiratory details: 

� Mean on 150 seconds of RR values 

� Standard Deviation on 150 seconds of RR values 

� Detail 1, 2, 3, 4 power 

� Detail 1 and detail 2 ratio 
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� Detail 1 and detail 3 ratio  

� Detail 1 and detail 4 ratio 

� Detail 2 and detail 3 ratio  

� Detail 2 and detail 4 ratio  

� Detail 3 and detail 4 ratio  

� Cross-spectrum module of HRV and respiratory signals in the same detail 

These features were divided into epochs of 30 seconds. Each epoch contains the mean 

value of every single feature. Details were normalized beat-by-beat as the percentage 

power with respect to the sum of each detail eliminating inter-subject variability. Obtained 

values are comparable between subjects and to enable the sleep stage classification.  

 

 

4.4 Sequential Feature Selection Algorithms 
 

The sequential feature selection (SFS) algorithms search in a sequential deterministic 

manner for the sub-optimal best feature subset . SFS starts from an empty feature set, and 

in each iteration generates new subsets by adding a feature selected by some evaluation 

function, in the present work the Cohen’s kappa index (for details see Chapter 3.5) 

between expert scoring and the automatic one. It evaluates each subset using leave-one-out 

(LOO), and in each iteration, selects the subset having the highest mean kappa index value 

on every patient. It continues until mean kappa index values are computed for each adding 

feature. The kappa index computing method is based on the linear (LD) or the quadratic 

(QD) discriminant classifier. The first step is repeated iteratively adding a new feature each 

time; then the new features are the one which maximizes the kappa index value when 

combined with the other features chosen in the previous steps. Each step gives the sub-

optimal combination of features with different length (from 1 to the number of features). 

When all the possible combinations are computed, the algorithm itself selects the one 

which has the highest kappa index value.  

Pseudo-code for the sequential forward algorithm is given bellow: 
 

1. Initialize the feature subset 

F0={∅};   F evaluation =0; j=1; 
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2. Add one feature f at time for all features 

F evaluation= F evaluation +f ; 

3. For all subjects s compute kappa index (LOO method) 

4. Mean kappa index on subjects 

 kappa index(j,s)=mean(kappa index,2); 

5. Add a feature based on performance of mean kappa index results 

 )]([maxarg xFJx j
Fx j

+=
∉

+  

 j=j+1; 

6. Update the feature subset 

 xFF jj +=+1   

 If  j=length size of features then 

   END 

 Else 

   go to step 2 

7. Choose the feature subset length maximing mean kappa index 

 

 

This algorithm is repeated for each sleep stage (WAKE, REM, NREM) considering only 

RR extracted features, only respiratory ones or both. 

The following figures (from Figure 4.7 to Figure 4.18) show mean kappa index value 

evolution for all sleep stages with both classifiers used, LD and QD. 
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Figure 4.7: Kappa index value based on sub-optimal combination length of features extracted by RLS  

on RR values using a linear discriminant classifier 

 

 

Figure 4.8: Kappa index value based on sub-optimal combination length of features extracted by RLS  

on respiratory values using a linear discriminant classifier 
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Figure 4.9: Kappa index value based on sub-optimal combination length of features extracted by RLS  

on RR and respiratory values using a linear discriminant classifier 

 

 

Figure 4.10: Kappa index value based on sub-optimal combination length of features extracted 

 by RLS on RR values using a quadratic discriminant classifier 
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Figure 4.11: Kappa index value based on sub-optimal combination length of features extracted by RLS  

on respiratory values using a quadratic discriminant classifier 

 

 

Figure 4.12: Kappa index value based on sub-optimal combination length of features extracted by RLS  

on RR and respiratory values using a quadratic discriminant classifier 



CHAPTER 4. METHODOLOGY OF PROTOCOL                                                            81 

 

 

Figure 4.13: Kappa index value based on sub-optimal combination length of features extracted by wavelet  

on RR values using a linear discriminant classifier 

 

 

Figure 4.14: Kappa index value based on sub-optimal combination length of features extracted  

by wavelet on respiratory values using a linear discriminant classifier 
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Figure 4.15: Kappa index value based on sub-optimal combination length of features extracted by wavelet  

on RR and respiratory values using a linear discriminant classifier 

 

 
Figure 4.16: Kappa index value based on sub-optimal combination length of features extracted by wavelet  

on RR  values using a quadratic discriminant classifier 
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Figure 4.17: Kappa index value based on sub-optimal combination length of features extracted by wavelet  

on respiratory values using a quadratic discriminant classifier 

 

 
Figure 4.18: Kappa index value based on sub-optimal combination length of features extracted by wavelet  

on RR and respiratory values using a quadratic discriminant classifier 

 

As one can notice, the LD and QD classifier have same performances using RR and 

respiratory features extracted from RLS parameters. The best kappa index is in NREM 
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stage. One important difference between these methods is the number of features, while 

QD has used 15 features derived from HRV and respiratory signals, LD has used only 8 

features, which implies advantage as a reduced computational. Thus, features selected from 

LD are used in other classifiers. NREM has the best mean kappa index value and REM 

better than WAKE in each extraction method. 

 

4.5 Feature classification and sleep stages extraction 
 

The sleep stages were classified using a one-versus-all method with different types of 

classification: linear (LD) and quadratic (QD) classifier, K-Nearest-Neighbour (KNN) and 

back-propagation neural network (BPNN) method. Each indexed method uses the features 

selected with the sequential features selection algorithm. The three-state classification is 

based on two bi-state classifications: NREM versus all (REM and WAKE stages) detecting 

epochs with NREM stage; REM versus WAKE discriminating REM epochs and WAKE 

stages when epochs are not classified. As there are more NREM sleep epochs than WAKE 

and REM, the NREM classification has a better mean kappa index value as shown in 

figures from 4.7 to 4.18 (see sub-paragraph 4.4). 

Figure 4.19 represents the feature selection algorithm: 

 

 
Figure 4.19: Feature selection process 



CHAPTER 4. METHODOLOGY OF PROTOCOL                                                            85 

 

The following tables show features extracted from RLS (Table 4.2) and wavelet (Table 

4.3) coefficients. 

 

Features # Feature name Deriving signals 

1 Mean RR 

2 Standard deviation RR 

3 HF/VLF RR 

4 LF/HF RR 

5 LF/VLF RR 

6 HF/TP RR 

7 LF/TP RR 

8 VLF/TP RR 

9 HF/VLF Respiratory 

10 LF/HF Respiratory 

11 LF/VLF Respiratory 

12 HF/TP Respiratory 

13 LF/TP Respiratory 

14 VLF/TP Respiratory 

15 Cross-spectrum module of HF RR and Respiratory 

16 Cross-spectrum module of LF RR and Respiratory 

17 Cross-spectrum module of VLF RR and Respiratory 

Table 4.2: Table shows features extracted from RLS 

 

Features # Feature name Deriving signals 

1 Mean RR 

2 Standard deviation RR 

3 Detail 1 and 2 ratio RR 

4 Detail 1 and 3 ratio RR 

5 Detail 2 and 3 ratio RR 

6 Detail 1 and 4 ratio RR 

7 Detail 2 and 4 ratio RR 

8 Detail 3 and 4 ratio RR 
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9 Detail 1 and total power ratio RR 

10 Detail 2 and total power ratio RR 

11 Detail 3 and total power ratio RR 

12 Detail 4 and total power ratio RR 

13 Detail 5 and total power ratio RR 

14 Detail 1 and 2 ratio RR 

15 Detail 1 and 3 ratio Respiratory 

16 Detail 2 and 3 ratio Respiratory 

17 Detail 1 and 4 ratio Respiratory 

18 Detail 2 and 4 ratio Respiratory 

19 Detail 3 and 4 ratio Respiratory 

20 Detail 1 and total power ratio Respiratory 

21 Detail 2 and total power ratio Respiratory 

22 Detail 3 and total power ratio Respiratory 

23 Detail 4 and total power ratio Respiratory 

24 Detail 5 and total power ratio Respiratory 

25 Cross-spectrum module of detail 1 RR and Respiratory 

26 Cross-spectrum module of detail 2 RR and Respiratory 

27 Cross-spectrum module of detail 3 RR and Respiratory 

28 Cross-spectrum module of detail 4 RR and Respiratory 

29 Cross-spectrum module of detail 5 RR and Respiratory 

Table 4.3: Table shows features extracted from wavelet coefficients 

 

 

4.6 Data post-processing 
 

In some recordings the classification has shown a short REM cycle in the first sleep stages. 

This event is peculiar of the narcolepsy disease, but usually it lasts about five to ten 

minutes. However the first 5 minutes of all recordings were imposed as WAKE state since 

our subjects were do not suffer of narcolepsy. Hypnograms were filtered using a median 

filter of different degree according to extracting method and deriving signals. The order of 
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the filter is selected iteratively, starting search from 1 to 29 order. The best order 

maximizes mean kappa index for each signal was selected. The following figures show the 

difference between LD with optimal median filter and LD without filtering, with R&K 

scoring using RLS model based extraction. Kappa index is considerably improved by 

including also the movement activity signal after classification. In fact, detection of 

WAKE periods from movement activity is well accepted in clinics, where actigraphy is 

already a standard for insomnia diagnosis. A threshold method is used to discard the 

movement. Dots indicate presence of motion, thus sleep stage is forced to WAKE. When 

two moment events occur in a certain interval, all epochs between these are forced as 

WAKE stages. The research of optimal interval was performed maximizing mean kappa 

index value on each subject. 

 
Figure 4.20: Different hypnogram estimation of 1st subject. Input signal derives from RR and respiratory  

signal and the features are extracted with RLS method. The upper plot shows  clinical estimation of 

hypnogram with R&K methods. Following plots show hypnogram estimation with LD (bottom) and 

estimation with optimal median filter (center). 

LD and QD analysis method assumes that the independent variables are normally 

distributed. Thus data should be transformed with most common transformation such as 
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logarithmic, inversion or nth root. Skewness index was used to identify distribution as 

normal.  

Table 4.4 and 4.5 show skewness index before and after conversion for feature extracted 

with RLS model (Table 4.4 and Figure 4.21) and wavelet decomposition (Table 4.5 and 

Figure 4.22). A normal distribution has skewness index within -1 and 1. 

 

Features # Skewness before 

transformation 

Skewness after 

transformation 

Transformation 

1 0,382196 0,382196 Null 

2 2,726889 0,096494 Logarithmic 

3 3,391665 0,036104 Logarithmic 

4 109,0008 0,2029 Logarithmic 

5 78,38157 -0,02445 Logarithmic 

6 0,344079 0,344079 Null 

7 2,062712 0,41935 4th root 

8 0,101176 0,101176 Logarithmic 

9 2,151176 0,018451 7th root 

10 3,968338 0,36301 7th root 

11 -0,1045 -0,91957 Square root 

12 -3,15114 0,454705 
Inversion, logarithmic 

and 7th root 

13 2,032447 -0,08484 Logarithmic 

14 6,419296 -0,68712 
Inversion, logarithmic 

and square root 

15 24,69152 -0,28307 Logarithmic 

16 97,24565 -0,0917 Logarithmic 

17 44,18209 0,199587 Logarithmic 

Table 4.4: Skewness values of features extracted with RLS  

method  before and after transformation 
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Figure 4.21: Feature distribution are shown in the figures. In the left plot the nth feature  

 is not transformed yet, while in the right plot transformation indicated in the  

table 4.4  is applied to nth  feature. Feature are extracted with RLS method. 

 

 

 

Features # Skewness before 

transformation 

Skewness after 

transformation 

Transformation  

1 0,382196 0,382196 Null 

2 2,726889 0,562877 4th root 

3 125,7921 0,921831 Logarithmic 

4 80,20789 0,638057 Logarithmic 

5 95,7869 0,736925 Logarithmic 

6 93,71481 0,535374 Logarithmic 

7 126,1652 0,563087 Logarithmic 

8 123,2962 0,554732 Logarithmic 

9 0,821327 0,029892 Square root 

10 0,865779 0,007194 Square root 

11 0,927653 0,094504 Square root 

12 1,091669 0,184975 Square root 

13 1,620486 0,142272 3rd root 

14 61,19146 0,426772 Logarithmic 

15 67,12076 0,272391 Logarithmic 

16 105,2897 0,77544 Logarithmic 
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17 127,0216 0,290263 Logarithmic 

18 123,4787 0,650316 Logarithmic 

19 120,9149 0,588723 Logarithmic 

20 -0,38916 -0,38916 Null 

21 1,20698 0,182862 Square root 

22 2,0282 0,248606 3rd root 

23 3,076858 -0,69456 Logarithmic 

24 4,706542 -0,59544 Logarithmic 

25 0,923615 0,079794 Square root 

26 2,179225 0,024851 4th root 

27 3,493947 -0,71423 Logarithmic 

28 4,903038 -0,57876 Logarithmic 

29 8,589227 -0,51141 Logarithmic 

Table 4.5: Skewness values of features extracted with wavelet  

decomposition  before and after transformation 
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Figure 4.22: Feature distribution are shown in the figures. In the left plot the feature nth  

 is not transformed yet, while in the right plot transformation indicated in the  

table 4.5  is applied to  feature nth. Feature are extracted with wavelet coefficients. 
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Chapter 5 

Results 

 

“There are two possible outcomes: if the result 

confirms the hypothesis, then you've made a 

measurement. If the result is contrary to the 

hypothesis, then you've made a discovery.” 

Enrico Fermi  

 

 

n this chapter, results of previously described methods (Linear Discriminant, 

Quadratic Discriminant, K-Nearest-Neighbor and Neural Network) are listed. We use 

three different type of signals for each method: RR; respiratory; RR and respiratory 

together. We defined that the presence of movement activity classifies stages as WAKE. 

The analysis was computed by classifying the final sleep profile: with movement activity, 

without movement activity or with movement activity and optimal median filter. The best 

computing method is chosen by a comparison between all these different cases (different 

combination of signal nature – HRV, Respiration and movement - and their combination) 

for each classifier.  

An additional procedure for wake stage was done as follows: when two movement events 

occur in a certain interval, all epochs between these are forced as WAKE stages. Median 

filter order and movement-wake interval were chosen iteratively by maximizing mean 

Kappa index value on every subject afterwards, the mean median filter order and 

movement-wake interval were used for all the subjects.  

Recording 6, 7, 17, 18 and 21 are not used because they presented a reduced heart rate 

variability and altered mean heart frequency as shown in the figure 5.1. 

 

I 
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Figure 5.1: Recording 6 and 7 have altered mean heart frequency, while  

recording 17, 18 and 21 presents also reduced heart variability.  

 

The algorithms have been developed using MATLAB 7.4. The experiments were run on a 

3.00GHz Intel® Pentium IV processor with 2048MB of RAM under Windows XP. The 

recognition procedure is performed off-line on data stored on the computer’s hard disk. 

The performance of the automated recognition system is determined by measuring 

accuracy and Cohen’s Kappa Coefficient (k). k is a measure of inter-rate agreement, where 

the two rates are the expert sleep technician (who scored the polysomnography recordings) 

and the automated sleep staging system (it can be vary from k=1 for perfect agreement to 

k=0 for a performance no better than chance). 

 

 

5.1 Linear Discriminant 
 

Linear Discriminant was used to select features (see Chapter 4.4) and to classify sleep 

stages. In this chapter classification with LD is described. It was selected the optimal 
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WAKE interval and median filter degree selecting iteratively starting from 1 to 10 and 

from 1 to 29, respectively, as maximizing mean kappa index value, as shown in figures 

from 5.2 to 5.7, which showing mean kappa index. 

 

 

 
Figure 5.2: Median filter degree and optimal distances  based on mean kappa index for 

 each subject computing with LD and using RR features extracted with RLS method. 

Median filter order=25 and distance=8  maximize mean kappa index value. 
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Figure 5.3: Median filter degree and optimal distances  based on mean kappa index for 

 each subject computing with LD and using respiratory features extracted with RLS method 

Median filter order=25 and distance=8  maximize mean kappa index value. 

 

 

 
Figure 5.4: Median filter degree and optimal distances  based on mean kappa index for 

 each subject computing with LD and using RR and respiratory features extracted with RLS method. 

Median filter order=23 and distance=10  maximize mean kappa index value. 



CHAPTER 5. RESULTS                                                                                                     108 

 

Figure 5.5: Median filter degree and optimal distances  based on mean kappa index for 

 each subject computing with LD and using RR  features extracted with wavelet method. 

Median filter order=23 and distance=10  maximize mean kappa index value. 

 

 

 

 

Figure 5.6: Median filter degree and optimal distances  based on mean kappa index for 

 each subject computing with LD and using respiratory features extracted with wavelet method. 

Median filter order=27 and distance=8  maximize mean kappa index value. 
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Figure 5.7: Median filter degree and optimal distances  based on mean kappa index for 

 each subject computing with LD and using RR and respiratory features extracted with wavelet method 

Median filter order=23 and distance=10  maximize mean kappa index value. 

 

The following table (Table 5.1) summarizes results of degree and feature selection with LD 

and QD classifier. One can note as the first features selected from both classifiers are more 

statistically significant than last. Feature numbers correspond to features illustrated in 

subparagraph 4.5.  

 

Signal used Feature 

extraction 

method 

Feature 

selection 

method 

Feature selected for each sleep 

stages 

Median 

Filter 

Degree 

   WAKE NREM REM  

Only RR RLS LD 3,2,7,1 3,2,7,1 3,1,2 25 

Only RR RLS QD 3,2,5,4 3,2 3,7,1,8,4 25 

Only RR Wavelet LD 9,10,11,2,

1,3 

9,13,1,10 9,13,12,11,2,

1 

27 

Only RR Wavelet QD 9,10,2,11,

5,3 

9,13,10,11 9,13,12,2,11,

8 

27 

Only RLS LD 12,14 9,13,11 9,13,11 23 
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Respiratory 

Only 

Respiratory 

RLS QD 10 14,13,11,9,

12 

14,10,11,12,

13,9 

9 

Only 

Respiratory 

Wavelet LD 20 20,21,24,1

4,19 

21,24,22,19 23 

Only 

Respiratory 

Wavelet QD 20 20,21,24,1

6,14,23 

21,24,22,19 19 

RR and 

Respiratory 

RLS LD 14,5,9,2 5,15,3,2,9,

13,1 

5,15,3,2,1,6 25 

RR and 

Respiratory 

RLS QD 10,5,11,2 3,9,2,7,15,

17,6,10,5,

1 

3,10,11,7,2,1

2,8,4,14 

27 

RR and 

Respiratory 

Wavelet LD 20,9,10, 

11,1,2,26 

25,13,1,16 25,13,28,26,

11,1,8 

29 

RR and 

Respiratory 

Wavelet QD 20,1,2,26,
29,27,19, 
7,11,12,5,
13,14, 
18,16,3, 
10,15,21 

25,13,11, 
10,24,19, 
2,9,22,29, 
12 

25,13,21,12,
11,24 

25 

Table 5.1: Results of feature selection. Numbers of features correspond to the same indicated in chapter 4.5. 

Optimal order of median filter was computed as the order maximizing mean kappa index value for both 

extracting methods and for each combination. Selection criterion is based on  

both linear and quadratic discriminant analysis. 

 

The following tables (table 5.2) show results obtained with LD for each subject. 

Combination of RR and respiratory features improves the performance of algorithm and it 

maximizes mean kappa index value when optimal median filter was applied (order=25 for 

RLS model and order=23 for wavelet decomposition) after imposing the epochs between 2 

movement events, that occur in a certain interval (interval=8 epochs for RLS model and for 

wavelet decomposition), as WAKE stages. Accuracy and kappa index are used in order to 

compare results. Table 5.2a and 5.2d show single-stage accuracy and kappa index, 3-state 

accuracy and kappa index after merging for feature extracted with RLS and wavelet 

method respectively. Table 5.2b and 5.2e illustrates 2 state accuracy, considering one class 
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against all for each class after merging and table 5.2c and 5.2f compare medical and 

estimated sleep efficiency for both methods.  

 

WAKE NREM REM TOTAL 
RLS based features: 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

         
RR 0,666 0,172 0,739 0,429 0,723 0,312 0,651 0,343 
Respiratory 0,607 0,168 0,648 0,319 0,621 0,205 0,562 0,249 
RR + Respiratory 0,656 0,210 0,765 0,494 0,744 0,357 0,675 0,387 
RR + movement 0,675 0,225 0,747 0,454 0,745 0,341 0,675 0,398 
Respiratory + movement 0,615 0,207 0,656 0,338 0,647 0,232 0,589 0,303 
RR + Respiratory + 
movement 

0,662 0,243 0,771 0,514 0,768 0,389 0,699 0,440 

RR + movement + 
smooth 

0,667 0,119 0,760 0,468 0,800 0,441 0,745 0,504 

Respiratory + movement 
+ smooth 

0,594 0,129 0,652 0,335 0,667 0,268 0,626 0,354 

RR + Respiratory + 
movement + smooth 

0,649 0,139 0,778 0,521 0,819 0,483 0,764 0,536 

Table 5.2a: Single state and 3-state accuracy are presented. The last column on the right shows  

mean kappa index value after merging. The best result is with RR and respiratory RLS based  

 feature combination applying optimal median filter (order=23). 

 
 

WAKE vs 
NREM+REM 

NREM vs 
WAKE+REM 

REM vs 
WAKE+NREM RLS based features: 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

      
RR 0,828 0,127 0,745 0,446 0,730 0,318 
Respiratory 0,841 0,135 0,649 0,322 0,635 0,222 
RR + Respiratory 0,829 0,118 0,769 0,505 0,752 0,368 
RR + movement 0,850 0,330 0,752 0,466 0,749 0,344 
Respiratory + movement 0,863 0,363 0,656 0,341 0,657 0,245 
RR + Respiratory + 
movement 

0,851 0,323 0,775 0,522 0,773 0,396 

RR + movement + smooth 0,888 0,483 0,797 0,541 0,804 0,450 
Respiratory + movement + 
smooth 

0,886 0,486 0,670 0,356 0,697 0,298 

RR + Respiratory + 
movement + smooth 

0,890 0,492 0,809 0,572 0,829 0,503 

Table 5.2b: 2 states accuracy and kappa index for each class against all after merging. 

 Features are extracted with RLS method. 
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Sleep efficiency REM during TST 1st REM Latency 
RLS based features: 

R&K Automatic R&K Automatic R&K Automatic 
       
RR 0,852 0,935 0,201 0,350 86,441 22,088 
Respiratory 0,852 0,954 0,201 0,436 86,441 13,824 
RR + Respiratory 0,852 0,941 0,201 0,351 86,441 18,118 
RR + movement 0,852 0,901 0,201 0,327 86,441 22,176 
Respiratory + 
movement 

0,852 0,919 0,201 0,410 86,441 14,000 

RR + Respiratory + 
movement 

0,852 0,907 0,201 0,326 86,441 18,206 

RR + movement + 
smooth 

0,852 0,921 0,201 0,278 86,441 85,706 

Respiratory + 
movement + smooth 

0,852 0,913 0,201 0,373 86,441 63,853 

RR + Respiratory + 
movement + smooth 

0,852 0,923 0,201 0,272 86,441 93,294 

Table 5.2c: Medical and automatic sleep efficiency comparing. 

 
 
 
 
 
 
 
 

WAKE NREM REM TOTALE 
Wavelet based features: 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

         
RR 0,698 0,217 0,714 0,382 0,672 0,252 0,625 0,304 
Respiratory 0,648 0,193 0,632 0,239 0,603 0,177 0,556 0,209 
RR + Respiratory 0,694 0,235 0,717 0,396 0,674 0,267 0,626 0,317 
RR + movement 0,699 0,225 0,717 0,389 0,696 0,281 0,646 0,348 
Respiratory + movement 0,649 0,195 0,634 0,244 0,620 0,193 0,571 0,240 
RR + Respiratory + 
movement 

0,695 0,239 0,719 0,403 0,701 0,298 0,647 0,361 

RR + movement + 
smooth 

0,706 0,091 0,763 0,470 0,760 0,406 0,728 0,477 

Respiratory + movement 
+ smooth 

0,642 0,098 0,650 0,266 0,659 0,290 0,648 0,330 

RR + Respiratory + 
movement + smooth 

0,688 0,101 0,756 0,469 0,775 0,447 0,739 0,512 

Table 5.2d: Single state and 3-state accuracy are presented. The last column on the right shows  

mean kappa index value after merging. The best result is with RR wavelet based  

 feature combination applying optimal median filter (order=25). 
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WAKE vs 
NREM+REM 

NREM vs 
WAKE+REM 

REM vs 
WAKE+NREM Wavelet based features: 

Accuracy 
Kappa 
index Accuracy 

Kappa 
index Accuracy 

Kappa 
index 

      
RR 0,834 0,169 0,719 0,395 0,697 0,255 
Respiratory 0,824 0,216 0,635 0,249 0,653 0,156 
RR + Respiratory 0,829 0,159 0,722 0,409 0,701 0,278 
RR + movement 0,852 0,337 0,721 0,400 0,719 0,283 
Respiratory + movement 0,837 0,322 0,637 0,254 0,668 0,172 
RR + Respiratory + 
movement 

0,847 0,325 0,724 0,414 0,724 0,307 

RR + movement + smooth 0,890 0,487 0,782 0,505 0,785 0,409 
Respiratory + movement + 
smooth 

0,884 0,484 0,690 0,322 0,721 0,232 

RR + Respiratory + 
movement + smooth 

0,889 0,484 0,790 0,537 0,799 0,471 

Table 5.2e: Bi-state accuracy and kappa index, using as classes WAKE against all and NREM against all. 

Medical sleep efficiency is compared to estimated one. Features are extracted from wavelet coefficients. 

 
 
 
 
 

Sleep efficiency REM during TST 1st REM Latency 
Wavelet based features: 

R&K Automatic R&K Automatic R&K Automatic 
       
RR 0,852 0,931 0,201 0,352 86,441 14,147 
Respiratory 0,852 0,898 0,201 0,357 86,441 9,265 
RR + Respiratory 0,852 0,927 0,201 0,366 86,441 12,294 
RR + movement 0,852 0,903 0,201 0,326 86,441 14,588 
Respiratory + 
movement 

0,852 0,878 0,201 0,340 86,441 9,412 

RR + Respiratory + 
movement 

0,852 0,897 0,201 0,339 86,441 14,382 

RR + movement + 
smooth 

0,852 0,923 0,201 0,279 86,441 74,647 

Respiratory + 
movement + smooth 

0,852 0,909 0,201 0,284 86,441 102,912 

RR + Respiratory + 
movement + smooth 

0,852 0,923 0,201 0,291 86,441 83,824 

Table 5.2f: Medical and automatic sleep efficiency comparing. 
 

Figure 5.8 shows an example of automatic sleep staging using RR and Respiratory features 

extracted from RLS model (middle box) parameters and wavelet coefficients (bottom box) 

in according to R&K methods (upper box). 
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Figure 5.8: The upper plot shows medical hypnogram according to R&K method. In the middle plot, an 

example of automatic hypnogram using RLS and wavelet (below) based LD  feature selection. 

 

 

5.2 Quadratic Discriminant 
 

Results obtained with the quadratic discriminant classifier are shown in tables 5.3a/b/c 

(analysis on features obtained with RLS model) and in tables 5.3d/e/f (analysis on features 

obtained with Wavelet decomposition). Used features are chosen by QD analysis. The 
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following figures represent the grid search of optimal median filter order from 1 to 29 and 

optimal distances between 2 movement events (interval=8 epochs for RLS model and for 

wavelet decomposition). The best couple maximizes curve determined as mean kappa 

index value on each subject. 

 

 

 

 

Figure 5.9: : Median filter degree and optimal distances  based on mean kappa index for 

 each subject computing with QD and using RR  features extracted with RLS method. 

Median filter order=23 and distance=8  maximize mean kappa index value. 
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Figure 5.10: Median filter degree and optimal distances  based on mean kappa index for 

 each subject computing with QD and using respiratory features extracted with RLS method. 

Median filter order=27 and distance=10  maximize mean kappa index value. 

 

 

 
Figure 5.11: Median filter degree and optimal distances  based on mean kappa index for 

 each subject computing with QD and using RR and respiratory features extracted with RLS method. 

Median filter order=27 and distance=8  maximize mean kappa index value. 
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Figure 5.12: Median filter degree and optimal distances  based on mean kappa index for 

 each subject computing with QD using RR  features extracted with wavelet method. 

Median filter order=27 and distance=8  maximize mean kappa index value. 

 

 

 
Figure 5.13 Median filter degree and optimal distances  based on mean kappa index for 

 each subject computing with QD using respiratory features extracted with wavelet method. 

Median filter order=19 and distance=10  maximize mean kappa index value. 
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Figure 5.14 Median filter degree and optimal distances  based on mean kappa index for 

 each subject computing with QD using RR and respiratory features extracted with wavelet method. 

Median filter order=19 and distance=8  maximize mean kappa index value. 

 
 

WAKE NREM REM TOTAL 
RLS based features: 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

         
RR 0,624 0,149 0,724 0,397 0,694 0,282 0,635 0,321 
Respiratory 0,634 0,169 0,631 0,315 0,576 0,221 0,543 0,257 
RR + Respiratory 0,695 0,239 0,763 0,493 0,743 0,365 0,675 0,395 
RR + movement 0,632 0,201 0,732 0,423 0,716 0,309 0,660 0,378 
Respiratory + movement 0,642 0,215 0,637 0,330 0,604 0,247 0,568 0,306 
RR + Respiratory + 
movement 

0,703 0,291 0,769 0,510 0,765 0,395 0,697 0,445 

RR + movement + 
smooth 

0,624 0,102 0,741 0,427 0,742 0,359 0,706 0,458 

Respiratory + movement 
+ smooth 

0,617 0,107 0,629 0,325 0,609 0,285 0,590 0,349 

RR + Respiratory + 
movement + smooth 

0,687 0,150 0,776 0,521 0,820 0,495 0,768 0,550 

Table 5.3a: Single state and 3-state accuracy are presented. The last column on the right shows  

mean kappa index value after merging. The best result is with RR and respiratory RLS based  

 feature combination applying optimal median filter (order=25). 
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WAKE vs 
NREM+REM 

NREM vs 
WAKE+REM 

REM vs 
WAKE+NREM RLS based features: 

Accuracy 
Kappa 
index Accuracy 

Kappa 
index Accuracy 

Kappa 
index 

      
RR 0,837 0,138 0,730 0,415 0,704 0,292 
Respiratory 0,851 0,175 0,632 0,318 0,603 0,239 
RR + Respiratory 0,823 0,148 0,766 0,502 0,760 0,382 
RR + movement 0,859 0,354 0,737 0,436 0,723 0,316 
Respiratory + movement 0,872 0,405 0,638 0,332 0,627 0,262 
RR + Respiratory + 
movement 

0,844 0,340 0,772 0,518 0,779 0,409 

RR + movement + smooth 0,888 0,480 0,768 0,490 0,757 0,383 
Respiratory + movement + 
smooth 

0,876 0,467 0,643 0,352 0,660 0,316 

RR + Respiratory + 
movement + smooth 

0,886 0,495 0,813 0,584 0,837 0,517 

Table 5.3b: 2 states accuracy and kappa index for each class against all after merging. 

 Features are extracted with RLS method. 

 
 
 
 
 
 
 

Sleep efficiency REM during TST 1st REM Latency 
RLS based features: 

R&K Automatic R&K Automatic R&K Automatic 
       
RR 0,852 0,948 0,201 0,378 86,441 24,676 
Respiratory 0,852 0,959 0,201 0,499 86,441 10,265 
RR + Respiratory 0,852 0,914 0,201 0,346 86,441 19,059 
RR + movement 0,852 0,913 0,201 0,354 86,441 26,029 
Respiratory + 
movement 

0,852 0,924 0,201 0,472 86,441 11,441 

RR + Respiratory + 
movement 

0,852 0,881 0,201 0,322 86,441 19,147 

RR + movement + 
smooth 

0,852 0,921 0,201 0,322 86,441 76,559 

Respiratory + 
movement + smooth 

0,852 0,900 0,201 0,439 86,441 57,853 

RR + Respiratory + 
movement + smooth 

0,852 0,903 0,201 0,269 86,441 92,324 

Table 5.3c: Medical and automatic sleep efficiency comparing. 
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WAKE NREM REM TOTALE 
Wavelet based features: 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

         
RR 0,714 0,227 0,713 0,375 0,665 0,250 0,627 0,305 
Respiratory 0,704 0,218 0,642 0,250 0,585 0,168 0,569 0,218 
RR + Respiratory 0,676 0,160 0,687 0,305 0,628 0,152 0,600 0,233 
RR + movement 0,715 0,237 0,715 0,382 0,690 0,279 0,647 0,347 
Respiratory + movement 0,705 0,223 0,644 0,257 0,603 0,185 0,585 0,251 
RR + Respiratory + 
movement 

0,681 0,189 0,689 0,309 0,656 0,183 0,623 0,282 

RR + movement + 
smooth 

0,724 0,064 0,758 0,448 0,733 0,373 0,720 0,462 

Respiratory + movement 
+ smooth 

0,694 0,074 0,657 0,272 0,638 0,277 0,648 0,333 

RR + Respiratory + 
movement + smooth 

0,725 0,160 0,695 0,285 0,719 0,254 0,693 0,347 

Table 5.3d: Single state and 3-state accuracy are presented. The last column on the right shows  

mean kappa index value after merging. The best result is with RR and respiratory wavelet based  

 feature combination applying optimal median filter (order=23). 

 
 
 
 
 

WAKE vs 
NREM+REM 

NREM vs 
WAKE+REM 

REM vs 
WAKE+NREM Wavelet based features: 

Accuracy 
Kappa 
index Accuracy 

Kappa 
index Accuracy 

Kappa 
index 

      
RR 0,837 0,175 0,718 0,389 0,699 0,258 
Respiratory 0,836 0,221 0,645 0,261 0,657 0,164 
RR + Respiratory 0,812 0,144 0,693 0,320 0,696 0,160 
RR + movement 0,854 0,341 0,720 0,393 0,721 0,286 
Respiratory + movement 0,850 0,341 0,647 0,266 0,673 0,182 
RR + Respiratory + 
movement 

0,832 0,317 0,693 0,322 0,721 0,194 

RR + movement + smooth 0,889 0,482 0,772 0,483 0,779 0,395 
Respiratory + movement + 
smooth 

0,884 0,481 0,690 0,323 0,723 0,248 

RR + Respiratory + 
movement + smooth 

0,884 0,471 0,730 0,349 0,772 0,231 

Table 5.3e: Bi-state accuracy and kappa index, using as classes WAKE against all and NREM against all. 

Medical sleep efficiency is compared to estimated. Features are extracted from wavelet coefficients. 
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Sleep efficiency REM during TST 1st REM Latency 
Wavelet based features: 

R&K Automatic R&K Automatic R&K Automatic 
       
RR 0,852 0,934 0,201 0,352 86,441 17,147 
Respiratory 0,852 0,917 0,201 0,355 86,441 8,588 
RR + Respiratory 0,852 0,902 0,201 0,286 86,441 15,735 
RR + movement 0,852 0,905 0,201 0,326 86,441 17,647 
Respiratory + 
movement 

0,852 0,896 0,201 0,337 86,441 9,000 

RR + Respiratory + 
movement 

0,852 0,871 0,201 0,257 86,441 16,559 

RR + movement + 
smooth 

0,852 0,922 0,201 0,280 86,441 74,765 

Respiratory + 
movement + smooth 

0,852 0,910 0,201 0,287 86,441 104,353 

RR + Respiratory + 
movement + smooth 

0,852 0,917 0,201 0,178 86,441 110,265 

Table 5.3f: Medical and automatic sleep efficiency comparing. 
 

 

 

Combination of RR and respiratory features improves the performance of RLS algorithm 

and it maximizes mean kappa index value when optimal median filter was applied 

(order=23); while the features extracted by only RR signals extracted by wavelet 

coefficients improves the performance of classification, applying optimal median filter 

(order=25). Accuracy and kappa index are used in order to compare results. Table 5.3a and 

5.3d show single-stage accuracy and kappa index, 3-state accuracy and kappa index after 

merging for feature extracted with RLS and wavelet method respectively. Table 5.3b and 

5.3e illustrates 2 state accuracy, considering one class against all for each class after 

merging and table 5.3c and 5.3f compare medical and estimated sleep efficiency for both 

methods. Figure 5.15 shows an example of automatic sleep staging using RR and 

Respiratory features extracted from RLS model (middle box) parameters and wavelet 

coefficients (bottom box) in according to R&K methods (upper box). 
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Figure 5.15: The upper plot shows medical hypnogram according to R&K method. In the middle plot, an 

example of automatic hypnogram using RLS and wavelet (below) based QD  feature selection. 

 

 

5.3 K-Nearest-Neighbor 
 

K-Nearest-Neigbor uses features selected with LD analysis.  A search of the optimal K was 

done using odd values of K = 1–29 in data sets with one class against all for each sleep 

stage. Figure 5.16 shows the best combination of K and median filter order applied to the 
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automatic sleep staging for every features extracted with both methods (RLS model and 

wavelet decomposition). The best result maximizes curve determined as mean kappa index 

value for all  subject. K-NN research the distance between 2 movements events to 

Movement activity and median filter using  were compared each one. It was selected the 

optimal distances between 2 movement events and median filter degree selecting 

iteratively starting from 1 to 10 and from 1 to 29, respectively, as maximizing mean kappa 

index value, as shown in figures from 5.16 to 5.21, which showing mean kappa index. 

 

 

 

 
Figure 5.16: Grid search of optimal parameters for K-NN classifier on RR features extracted  

with RLS method analysis. K=25 and order=15 maximize mean kappa index value with WAKE interval=10. 
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Figure 5.17: Grid search of optimal parameters for K-NN classifier on respiratory features extracted  

with RLS method analysis. K=1 and order=15 maximize mean kappa index value with WAKE interval=9. 

 

 

 

 
Figure 5.18: Grid search of optimal parameters for K-NN classifier on RR and respiratory features extracted 

with RLS  method analysis. K=25 and order=15 maximize mean kappa index value with WAKE interval=10. 
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Figure 5.19: Grid search of optimal parameters for K-NN classifier on RR features extracted with wavelet 

method analysis. K=15 and order=5 maximize mean kappa index value with WAKE interval=9. 

 

 

 

 
Figure 5.20: Grid search of optimal parameters for K-NN classifier on respiratory features extracted  

with wavelet method analysis. K=3 and order=7 maximize mean kappa index value with WAKE interval=9. 

 



CHAPTER 5. RESULTS                                                                                                     126 

 
Figure 5.21: Grid search of optimal parameters for K-NN classifier on RR and respiratory features extracted 

with wavelet method analysis. K=25 and order=3 maximize mean kappa index value with WAKE interval=9. 

 

 

Results obtained are shown in tables 5.4a/b/c (analysis on features obtained with RLS 

model) and in tables 5.4d/e/f (analysis on features obtained with Wavelet decomposition). 

Due to a mean kappa index value of WAKE better than REM for features extracted from 

wavelet coefficients, 3-state merging is based on two bi-state classifications: NREM versus 

all (REM and WAKE stages) detecting epochs with NREM stage; WAKE versus REM 

discriminating WAKE epochs and REM stages when epochs are not classified; while for 

features extracted from RLS method the classification is the same explained in chapter 4.5. 

The best result is obtained with RR and respiratory features extracted by RLS model, using 

movement for WAKE stages identification, K=25 and best median filter order=15 and with 

RR features extracted by wavelet coefficients, with movement identification, K=15 and 

median filter order =5, as shown in the previous figures. Figure 5.22 shows an example of 

automatic sleep staging using RR and Respiratory features extracted from RLS model 

(middle box) parameters and wavelet coefficients (bottom box) in according to R&K 

methods (upper box). 
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WAKE NREM REM TOTAL 
RLS based features: 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

         
RR 0,849 0,025 0,736 0,387 0,788 0,138 0,641 0,279 
Respiratory 0,759 0,057 0,611 0,163 0,714 0,125 0,546 0,145 
RR + Respiratory 0,843 0,054 0,762 0,451 0,803 0,226 0,670 0,338 
RR + movement 0,875 0,351 0,747 0,424 0,794 0,148 0,655 0,322 
Respiratory + movement 0,780 0,224 0,627 0,208 0,723 0,135 0,567 0,201 
RR + Respiratory + 
movement 

0,867 0,338 0,774 0,485 0,809 0,237 0,685 0,379 

RR + movement + 
smooth 

0,853 0,020 0,757 0,433 0,817 0,154 0,693 0,372 

Respiratory + movement 
+ smooth 

0,845 0,121 0,685 0,304 0,806 0,147 0,696 0,316 

RR + Respiratory + 
movement + smooth 

0,850 0,034 0,789 0,506 0,832 0,241 0,720 0,420 

Table 5.4a: Single state and 3-state accuracy are presented. The last column on the right shows  

mean kappa index value after merging. The best result is with RR and respiratory RLS based  

 feature combination applying optimal median filter (order=15). 

 
 
 
 
 
 
 

WAKE vs 
NREM+REM 

NREM vs 
WAKE+REM 

REM vs 
WAKE+NREM RLS based features: 

Accuracy 
Kappa 
index Accuracy 

Kappa 
index Accuracy 

Kappa 
index 

      
RR 0,748 0,192 0,743 0,407 0,790 0,141 
Respiratory 0,760 0,107 0,615 0,174 0,718 0,131 
RR + Respiratory 0,768 0,217 0,768 0,468 0,805 0,229 
RR + movement 0,762 0,279 0,752 0,438 0,796 0,150 
Respiratory + movement 0,778 0,245 0,630 0,217 0,726 0,140 
RR + Respiratory + 
movement 

0,782 0,305 0,778 0,497 0,811 0,240 

RR + movement + smooth 0,785 0,347 0,784 0,495 0,818 0,154 
Respiratory + movement + 
smooth 

0,865 0,467 0,720 0,316 0,807 0,159 

RR + Respiratory + 
movement + smooth 

0,805 0,374 0,800 0,531 0,834 0,238 

Table 5.4b: 2 states accuracy and kappa index for each class against all after merging. 

 Features are extracted with RLS method. 
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Sleep efficiency REM during TST 1st REM Latency 
RLS based features: 

R&K Automatic R&K Automatic R&K Automatic 
       
RR 0,852 0,773 0,201 0,092 86,441 34,912 
Respiratory 0,852 0,831 0,201 0,205 86,441 9,176 
RR + Respiratory 0,852 0,798 0,201 0,109 86,441 30,794 
RR + movement 0,852 0,750 0,201 0,085 86,441 34,971 
Respiratory + 
movement 

0,852 0,801 0,201 0,195 86,441 9,206 

RR + Respiratory + 
movement 

0,852 0,776 0,201 0,102 86,441 30,941 

RR + movement + 
smooth 

0,852 0,759 0,201 0,046 86,441 231,971 

Respiratory + 
movement + smooth 

0,852 0,877 0,201 0,058 86,441 155,735 

RR + Respiratory + 
movement + smooth 

0,852 0,788 0,201 0,056 86,441 207,824 

Table 5.4c: Medical and automatic sleep efficiency comparing. 

 
 
 
 
 
 
 
 

WAKE NREM REM TOTALE 
Wavelet based features: 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

         
RR 0,854 0,141 0,721 0,345 0,783 0,129 0,641 0,266 
Respiratory 0,826 0,134 0,633 0,158 0,736 0,064 0,571 0,140 
RR + Respiratory 0,858 0,175 0,736 0,376 0,792 0,091 0,647 0,275 
RR + movement 0,872 0,351 0,726 0,361 0,785 0,132 0,646 0,284 
Respiratory + movement 0,841 0,283 0,642 0,186 0,741 0,069 0,581 0,171 
RR + Respiratory + 
movement 

0,873 0,356 0,741 0,390 0,795 0,096 0,653 0,292 

RR + movement + 
smooth 

0,861 0,155 0,750 0,400 0,804 0,098 0,678 0,338 

Respiratory + movement 
+ smooth 

0,858 0,141 0,684 0,224 0,799 0,036 0,655 0,240 

RR + Respiratory + 
movement + smooth 

0,869 0,265 0,754 0,410 0,802 0,060 0,647 0,328 

Table 5.4d: Single state and 3-state accuracy are presented. The last column on the right shows  

mean kappa index value after merging. The best result is with RR wavelet based  

 feature combination applying optimal median filter (order=25). 

 



CHAPTER 5. RESULTS                                                                                                     129 

WAKE vs 
NREM+REM 

NREM vs 
WAKE+REM 

REM vs 
WAKE+NREM Wavelet based features: 

Accuracy 
Kappa 
index Accuracy 

Kappa 
index Accuracy 

Kappa 
index 

      
RR 0,764 0,238 0,728 0,366 0,789 0,127 
Respiratory 0,727 0,162 0,639 0,176 0,777 0,044 
RR + Respiratory 0,757 0,253 0,743 0,395 0,795 0,086 
RR + movement 0,769 0,274 0,732 0,378 0,792 0,131 
Respiratory + movement 0,735 0,216 0,647 0,201 0,781 0,049 
RR + Respiratory + 
movement 

0,762 0,285 0,746 0,407 0,798 0,090 

RR + movement + smooth 0,780 0,352 0,772 0,461 0,804 0,077 
Respiratory + movement + 
smooth 

0,805 0,355 0,706 0,279 0,800 0,011 

RR + Respiratory + 
movement + smooth 

0,718 0,297 0,778 0,500 0,799 0,013 

Table 5.4e: Bi-state accuracy and kappa index, using as classes WAKE against all and NREM against all. 

Medical sleep efficiency is compared to estimated. Features are extracted from wavelet coefficients. 

 
 
 
 

Sleep efficiency REM during TST 1st REM Latency 
Wavelet based features: 

R&K Automatic R&K Automatic R&K Automatic 
       
RR 0,852 0,775 0,201 0,071 86,441 31,559 
Respiratory 0,852 0,751 0,201 0,056 86,441 28,324 
RR + Respiratory 0,852 0,750 0,201 0,040 86,441 42,647 
RR + movement 0,852 0,765 0,201 0,068 86,441 38,853 
Respiratory + 
movement 

0,852 0,736 0,201 0,052 86,441 28,382 

RR + Respiratory + 
movement 

0,852 0,741 0,201 0,038 86,441 42,676 

RR + movement + 
smooth 

0,852 0,736 0,201 0,019 86,441 190,000 

Respiratory + 
movement + smooth 

0,852 0,798 0,201 0,002 86,441 291,912 

RR + Respiratory + 
movement + smooth 

0,852 0,646 0,201 0,004 86,441 246,765 

Table 5.4f: Medical and automatic sleep efficiency comparing 

 

 

 



CHAPTER 5. RESULTS                                                                                                     130 

 
Figure 5.22: The upper plot shows medical hypnogram according to R&K method. In the middle plot, an 

example of automatic hypnogram using RLS and wavelet (below) based LD  feature selection. 

 

 

5.4 Neural Network 
 

The architecture of Feed-Forward Neural Network was formed in three layers: input layer, 

hidden layer, and output layer. First layer had a number of neurons as features subset size 

and the output layer had two neurons selecting class. In order to the network to learn the 

desired mapping (neurons number of hidden layer) and at the same time avoid overfitting, 
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(neuron weights), early stopping and Leave One Out technique were used. Training 

function was implemented with the Levenberg-Marquardt back-propagation algorithm, 

updating network weights. Training occurs 15 times by starting with a random set of 

weights to avoid local minima. It was studied three different architectures for each sleep 

stages, three for only HRV features, three for only respiratory features and three for both. 

The best neurons number of hidden layer was computed considering the number of hidden 

layer’s neurons which maximizes mean performances over all recordings. To avoid 

misclassification, three classes are shrewdly been balanced. 

 

 

 
Figure 5.23: Median filter degree and optimal distances  based on mean kappa index for 

 each subject computing with FFNN and using RR features extracted with RLS method. 

Median filter order=25 and distance=9 maximize mean kappa index value. 

 

 

 



CHAPTER 5. RESULTS                                                                                                     132 

 
Figure 5.24: Median filter degree and optimal distances  based on mean kappa index for 

 each subject computing with FFNN and using respiratory features extracted with RLS method. 

Median filter order=29 and distance=6 maximize mean kappa index value. 

 

 

 
Figure 5.25: Median filter degree and optimal distances  based on mean kappa index for 

 each subject computing with FFNN and using RR and respiratory features extracted with RLS method. 

Median filter order=13 and distance=10  maximize mean kappa index value. 
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Figure 5.26: Median filter degree and optimal distances  based on mean kappa index for 

 each subject computing with FFNN and using RR features extracted with wavelet method. 

Median filter order=19 and distance=9  maximize mean kappa index value. 

 

 

 
Figure 5.27: Median filter degree and optimal distances  based on mean kappa index for 

 each subject computing with FFNN and using respiratory features extracted with wavelet method. 

Median filter order=29 and distance=8 maximize mean kappa index value. 
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Figure 5.28: Median filter degree and optimal distances  based on mean kappa index for 

 each subject computing with FFNN and using RR and respiratory features extracted with wavelet method. 

Median filter order=25 and distance=10 maximize mean kappa index value. 

 

 

 

WAKE NREM REM TOTAL 
RLS based features: 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

         
RR 0,833 0,075 0,689 0,384 0,757 0,222 0,551 0,271 
Respiratory 0,831 0,116 0,573 0,260 0,751 0,202 0,444 0,209 
RR + Respiratory 0,806 0,147 0,731 0,424 0,793 0,260 0,626 0,325 
RR + movement 0,858 0,353 0,694 0,398 0,768 0,237 0,564 0,298 
Respiratory + movement 0,853 0,357 0,577 0,268 0,761 0,214 0,455 0,228 
RR + Respiratory + 
movement 

0,825 0,338 0,738 0,444 0,802 0,274 0,639 0,356 

RR + movement + 
smooth 

0,845 0,037 0,710 0,428 0,799 0,260 0,613 0,357 

Respiratory + movement 
+ smooth 

0,837 0,043 0,564 0,259 0,787 0,226 0,479 0,255 

RR + Respiratory + 
movement + smooth 

0,819 0,129 0,747 0,458 0,826 0,288 0,674 0,406 

Table 5.5a: Single state and 3-state accuracy are presented. The last column on the right shows  

mean kappa index value after merging. The best result is with RR and respiratory RLS based  

 feature combination applying optimal median filter (order=15). 
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WAKE vs 
NREM+REM 

NREM vs 
WAKE+REM 

REM vs 
WAKE+NREM RLS based features: 

Accuracy 
Kappa 
index Accuracy 

Kappa 
index Accuracy 

Kappa 
index 

     
RR 0,643 0,112 0,693 0,395 0,765 0,234 
Respiratory 0,560 0,119 0,574 0,262 0,755 0,208 
RR + Respiratory 0,720 0,198 0,735 0,436 0,797 0,260 
RR + movement 0,655 0,178 0,697 0,407 0,775 0,247 
Respiratory + movement 0,570 0,164 0,577 0,270 0,764 0,220 
RR + Respiratory + 
movement 

0,732 0,272 0,742 0,455 0,805 0,273 

RR + movement + smooth 0,685 0,258 0,732 0,458 0,809 0,274 
Respiratory + movement + 
smooth 

0,577 0,205 0,591 0,293 0,789 0,225 

RR + Respiratory + 
movement + smooth 

0,753 0,352 0,762 0,489 0,833 0,294 

Table 5.5b: 2 states accuracy and kappa index for each class against all after merging. 

 Features are extracted with RLS method. 

 
 
 
 
 
 
 

Sleep efficiency REM during TST 1st REM Latency 
RLS based features: 

R&K Automatic R&K Automatic R&K Automatic 
       
RR 0,852 0,654 0,234 0,293 79,618 32,029 
Respiratory 0,852 0,509 0,234 0,428 79,618 31,765 
RR + Respiratory 0,852 0,726 0,234 0,216 79,618 39,853 
RR + movement 0,852 0,634 0,234 0,284 79,618 33,353 
Respiratory + 
movement 

0,852 0,494 0,234 0,422 79,618 31,147 

RR + Respiratory + 
movement 

0,852 0,706 0,234 0,209 79,618 39,941 

RR + movement + 
smooth 

0,852 0,647 0,234 0,195 79,618 183,471 

Respiratory + 
movement + smooth 

0,852 0,494 0,234 0,354 79,618 147,059 

RR + Respiratory + 
movement + smooth 

0,852 0,700 0,234 0,144 79,618 152,882 

Table 5.5c: Medical and automatic sleep efficiency comparing. 
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WAKE NREM REM TOTALE 

Wavelet based features: 
Accuracy 

Kappa 
index 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

Accuracy 
Kappa 
index 

         
RR 0,845 0,195 0,690 0,349 0,772 0,205 0,580 0,270 
Respiratory 0,855 0,173 0,557 0,207 0,763 0,095 0,400 0,140 
RR + Respiratory 0,848 0,263 0,671 0,337 0,755 0,222 0,556 0,260 
RR + movement 0,859 0,342 0,691 0,355 0,778 0,213 0,586 0,282 
Respiratory + movement 0,870 0,352 0,558 0,207 0,767 0,102 0,404 0,147 
RR + Respiratory + 
movement 

0,855 0,343 0,672 0,341 0,760 0,228 0,560 0,270 

RR + movement + 
smooth 

0,853 0,045 0,714 0,387 0,808 0,173 0,649 0,331 

Respiratory + movement 
+ smooth 

0,852 -0,001 0,549 0,228 0,805 0,066 0,413 0,180 

RR + Respiratory + 
movement + smooth 

0,846 0,018 0,672 0,331 0,818 0,249 0,654 0,339 

Table 5.5d: Single state and 3-state accuracy are presented. The last column on the right shows  

mean kappa index value after merging. The best result is with RR wavelet based  

 feature combination applying optimal median filter (order=25). 

 
 
 
 
 

WAKE vs 
NREM+REM 

NREM vs 
WAKE+REM 

REM vs 
WAKE+NREM Wavelet based features: 

Accuracy 
Kappa 
index Accuracy 

Kappa 
index Accuracy 

Kappa 
index 

      
RR 0,692 0,195 0,694 0,363 0,775 0,205 
Respiratory 0,477 0,084 0,558 0,210 0,764 0,098 
RR + Respiratory 0,678 0,163 0,675 0,348 0,758 0,225 
RR + movement 0,697 0,223 0,696 0,367 0,780 0,213 
Respiratory + movement 0,481 0,097 0,559 0,210 0,768 0,104 
RR + Respiratory + 
movement 

0,682 0,186 0,676 0,351 0,763 0,232 

RR + movement + smooth 0,748 0,329 0,738 0,411 0,812 0,181 
Respiratory + movement + 
smooth 

0,433 0,125 0,588 0,279 0,805 0,065 

RR + Respiratory + 
movement + smooth 

0,747 0,307 0,739 0,412 0,821 0,249 

Table 5.5e: Bi-state accuracy and kappa index, using as classes WAKE against all and NREM against all. 

Medical sleep efficiency is compared to estimated. Features are extracted from wavelet coefficients. 
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Sleep efficiency REM during TST 1st REM Latency 
Wavelet based features: 

R&K Automatic R&K Automatic R&K Automatic 
       
RR 0,852 0,677 0,234 0,240 79,618 16,324 
Respiratory 0,852 0,418 0,234 0,276 79,618 28,529 
RR + Respiratory 0,852 0,676 0,234 0,317 79,618 19,588 
RR + movement 0,852 0,668 0,234 0,233 79,618 16,676 
Respiratory + 
movement 

0,852 0,413 0,234 0,269 79,618 30,441 

RR + Respiratory + 
movement 

0,852 0,667 0,234 0,312 79,618 19,971 

RR + movement + 
smooth 

0,852 0,698 0,234 0,106 79,618 159,412 

Respiratory + 
movement + smooth 

0,852 0,328 0,234 0,067 79,618 311,676 

RR + Respiratory + 
movement + smooth 

0,852 0,723 0,234 0,130 79,618 176,735 

Table 5.5f: Medical and automatic sleep efficiency comparing 

 

 

Results obtained with RLS feature extractor are shown in tables 5.5a/b/c, while results 

obtained with wavelet decomposition are shown in tables 5.5d/e/f. The best classification is 

obtained using movement for WAKE stages identification with RR and respiratory features 

extracted from RLS model (WAKE interval=10 and best median filter order=13) and 

wavelet coefficients (WAKE interval=10 and median filter order =25), as shown in the 

previous figures. Figure 5.29 shows an example of automatic sleep staging using RR and 

Respiratory features extracted from RLS model (middle box) parameters and wavelet 

coefficients (bottom box) in according to R&K methods (upper box). 
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Figure 5.29: The upper plot shows medical hypnogram according to R&K method. In the middle plot, an 

example of automatic hypnogram using RLS and wavelet (below) based LD  feature selection. 
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Chapter 6 

Discussion and Conclusions 

 

“Very little can be said about sleep 

that has not been said already” 

Nathaniel K.  

 

 

he aim of this study was the research an automatic algorithm capable of 

distinguishing the sleep stages from the HRV and respiratory signals. In order to 

accomplish this task, a detailed analysis of the HRV signal was performed, 

identifying the most informative features related to the sleep stages. Such features not only 

allowed us to implement an automatic detection algorithm, but they could lead to a better 

understanding of the physiological phenomena underlying the sleep process. The algorithm 

performances were evaluated using the agreement between expert score and the automatic 

algorithms and the following clinical measures were calculated: sleep efficiency, REM 

during Total Sleep Time (TST) and the first REM cycle latency. 

 

Several studies have implemented similar algorithms with different techniques in the past: 

 

• Karlen et al. [77] implemented a method for the online classification of sleep/wake 

staes based on cardiorespiratory signals produced by wearable sensors. The method 

uses a Fast Fourier Transform as the main feature extraction tool and a feed-

forward Artificial Neural Network as a classifier. When the method is applied to 

data collected from a single young male adult, the system can correctly classify on 

average 95.4% of unseen data from the same user. When the method is applied to 

classify data from multiple users with the same age and gender, its accuracy is 

reduced to 85.3%. The proposed method produces a more balanced correct 

classification of sleep and wake periods than actigraphy. Additionally, by adjusting 

T
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the classification threshold of the neural classifier,  they obtained 86.7% of correct 

classification. 

• M.O Mendez et al. [74] used an algorithm to evaluate the sleep macrostructure 

based on heart rate fluctuations from ECG signal. The algorithm evaluates the sleep 

quality out of sleep centers. They used a time-variant autoregressive model as 

feature extractor and a hidden Markov model as classifier. Characteristics coming 

from the joint probability of HRV features were used to fed the HMM. Automatic 

sleep classification is compared to hypnogram given by experts, reaching a total 

accuracy of 78.21±6.44% and a kappa index of 0.41±.1085 using two features and 

a total accuracy of 79.43±8.83% and kappa index of 0.42±.1493 using three 

features. 

• Rajeev Agarwal et al. [78] presented a computer-assisted sleep staging method. 

The method uses the principles of segmentation and self-organization (clustering) 

based on primitive sleep-related features to find the pseudo natural stages present in 

the record. Sample epochs of these natural stages are presented to the user, who can 

classify them according to the R&K or any other standard. The method then learns 

from these samples to complete the classification. Results showed an overall 

concurrence of 80.6% with manual scoring of 20-s epochs according to R&K 

standard. The greatest amount of errors occurred in the identification of the highly 

transitional Stage 1, 54% of which was misclassified into neighboring stages 2 or 

Wake. 

• Redmond et al. [17] recently investigated the possibility of obtaining simplified 

Sleep-Wake-REM sleep stage Information from subjects being assessed for 

Obstructive Sleep Apnea Syndrome (OSAS), using only electrocardiogram and 

respiration signals. Their study examined a database of 31 male subjects 

(Age=42.0±7.4 years) with PSG recording, electrocardiogram signal and an 

inductance plethysmogram estimate of respiratory. They compare the performances 

of both linear and quadratic discriminant classifiers in labelling 30-second epochs. 

The best performance obtained was achieved by a linear discriminant classifier 

model using a time-dependent a priori probability. With a 3-class (W, N, R) system 

the classification achieved an agreement of kappa index of 0.45 and of 0.57 when a 
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simplified 2-class (W, S/R) system is considered. This corresponds to an epoch 

sleep-wake classification accuracy of 89%. 

 

The peculiarity of our study, with respect to those reported above, is that we used signals 

(HRV, breath and movement) recorded by a smart bed, with approximately six hours of 

sleep during daytime sleep after a night shift of work and during night time sleep. Our 

method was supervisioned by the hypnogram provided by the clinicians. Furthermore, two 

different approaches for feature extraction were used and compared: Autoregressive 

modeling RLS and wavelet. Our main observation are: a)the combination of HRV and 

respiratory features extracted with RLS method have the best concordance with medical 

scoring, b) from the obtained feature set, the best performing feature subset was performed 

using a Linear Discriminant Classifier and c) Movement activity was used to stage epochs 

as WAKE, improving classification performances. 

 

 The best performance classification obtained for each of these methods, it is reported in 

table 6.1.  

 

 

Feature extracted by RLS method  
Acc kappa SeAuto SeHyp REM%TST 

auto 
REM%TST 

hyp 
Lat 

Auto 
Lat 
Hyp 

LD 76.39 ± 
7.61 

0.54 ± 
0.10 

92.33 ± 
2.57 

85.21 ± 
7.25 

29.39 ± 15.50 23.42 ± 6.71 87 ± 49 79 ± 33 

QD 76.81 ± 
7.51 

0.55 ± 
0.10 

90.25 ± 
4.67 

85.21 ± 
7.25 

30.02 ± 14.49 23.42 ± 6.71 86 ± 52 79 ± 33 

K-NN 71.95 ± 
7.47 

0.42 ± 
0.10 

78.77 ± 
10.06 

85.21 ± 
7.25 

6.80 ± 8.02 23.42 ± 6.71 201±149 79 ± 33 

FFNN 67.17 ± 
11.88 

0.39 ± 
0.13 

71.60 ± 
17.62 

85.21 ± 
7.25 

11.60 ± 14.14 23.42 ± 6.71 200±141 79 ± 33 
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Feature extracted by Discrete Wavelet Transform  
Acc kappa SeAuto SeHyp REM%TST 

auto 
REM%TST 

hyp 
Lat 

Auto 
Lat 
Hyp 

LD 73.92 ± 
15.33 

0.51 ± 
0.17 

92.27 ± 
2.48 

85.21 
± 7.25 

31.31 ± 22.25 23.42 ± 6.71 78±58 79 ± 33 

QD 69.27 ± 
12.64 

0.35 ± 
0.15 

91.65 ± 
3.25 

85.21 
± 7.25 

19.36 ± 25.54 23.42 ± 6.71 104±85 79 ± 33 

K-NN 64.75 ± 
9.30 

0.33 ± 
0.10 

64.55 ± 
14.63 

85.21 
± 7.25 

0.75 ± 1.10 23.42 ± 6.71 239±122 79 ± 33 

FFNN 50.37 ± 
18.79 

0.24 ± 
0.13 

48.75 ± 
23.47 

85.21 
± 7.25 

22.08 ± 28.31 23.42 ± 6.71 87±122 79 ± 33 

Table 6.1. Mean and standard deviation of accuracy and agreement measure for the sleep staging obtained 

by the four classifiers with the two feature extraction methods. Acc means general accuracy, kappa is kappa 

index, Se is the sleep efficiency, REM%TST is the percentage of Total Sleep Time (TST) occupied by REM 

stages, and Lat represents the latency, in minutes, of the first REM cycle. “Auto” suffixed to one of the 

previous abbreviations means that the parameter is obtained by the automatic system, despite  

the suffix “hyp” relates parameters obtained from standard hypnogram. 

 

LD and QD are optimized with sequential forward feature selection. QD achieved a better 

performance with features extracted from RLS model, while it decreased with wavelet 

based feature extraction. LD maintained same performance for both feature extractor 

methods used. One important difference between these methods is the number of features, 

while QD has used 15 features derived from HRV and respiratory signals, LD has used 

only 8 features, which implies advantage from the computational cost.  

The results show that Feed-Forward Neural Network and K-Nearest-Neighbor not reached 

good performances probably due to optimization on linear discrimant, features selection 

and choice of initial stage number as WAKE.  

During this work a SVM classifier was trained on the training set with a search grid 

technique to optimize parameters. The high computational complexity and the common 

kernel (polynomial and Gaussian) did not provide good results. The next step forward for 

this research would be implementation of precomputed kernel on training data.  

Both the linear discriminant and quadratic discriminant show good mean kappa index 

values on each subject and recognition of first REM latency, while the Neural Network 

leads to a better REM recognition but to a slightly lower mean kappa index value. The 

neural network architecture used in this study was formed by one hidden layer and two 

neurons in the output layer. K-Nearest-Neighbor leads to good accuracy but to a lower 

kappa index. It could be interesting to change neural architecture, for example adding more 

hidden layers, and to use neural network or K-NN as classifier in features selecting. 
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