
POLITECNICO DI MILANO

FACOLTÀ DI INGEGNERIA

CORSO DI LAUREA IN INGEGNERIA INFORMATICA

TROJAN-FREE FPGA CIRCUITS USING
ECC-BASED FUNCTIONAL TRUST-CHECKING

Relatore: Prof. Marco Domenico SANTAMBROGIO

Tesi di Laurea di:
Marco MAGGIONI

Matricola n. 706986

ANNO ACCADEMICO 2009-2010

Dedicato alla mia famiglia

per il passato, il presente ed il futuro

La science est le tronc d’un baobab

qu’une seule personne ne peut embrasser

Proverbio, Togo

Sommario

Le Field Programmable Gate Array (FPGA) combinano la programmabilità di un

processore a prestazioni sempre più vicine a circuiti ASIC customizzati. Nell’

ultimo decennio, le FPGA hanno raggiunto un livello di costo e prestazione tale

da rappresentare una soluzione attraente per delicate applicazioni militari o com-

merciali caratterizzate da un basso volume di produzione [1]. Questo genera un

nuovo problema chiave relativo all’ attendibilità del circuito FPGA presente nel

campo operativo poichè il convenzionale processo di design è vulnerabile ad in-

serimenti di circuiti malevoli comunemente conosciuti come Hardware Trojan, i

quali possono, sotto specifiche condizioni, portare a cambiamenti funzionali e/o

fallimenti catastrofici per la delicata applicazione associata.

Al fine di ridurre il pericolo di alterazioni circuitali o inserimento di Trojan,

risulta necessaria l’introduzione dell’idea di trusted FPGA design secondo cui un

circuito deve svolgere solo la funzionalità per cui esso è stato originariamente

progettato, niente di più e niente di meno. Questa idea deve essere fatta rispettare

durante tutta la vita del circuito, dalla sua progettazione alla suo uso applicati-

vo. Intuitivamente, le FPGA sono intrinsecamente progettate per cambiare la loro

funzionalità e ovviamente questa malleabilità introduce delle vulnerabilità. L’in-

tegrazione on-chip di crittografia o altri sistemi di sicurezza può proteggere contro

copie non autorizzate del sottostante design circuitale ma risulta insufficiente per

immunizzarsi da inserimenti di circuiti malevoli. Inoltre, altre tecniche alternative

di sicurezza presenti in letteratura sono relativamente inefficienti poichè nessuna

di esse copre tutte le possibili vulnerabilità presenti nel ciclo di vita di un circuito

basato su FPGA.

iii

Da queste premesse deriva la necessità di una tecnica per il rilevamento di

Trojan più comprensiva in modo tale che copra tutto il ciclo di vita del circuito.

Da questa necessità scaturisce poi la principale motivazione per questo lavoro di

tesi. Un trust-checking esplicito per circuiti basati su FPGA può garantire con

probabilità molto alta che la funzionalità sia quella per cui i circuiti sono stati

originariamente progettati. Inoltre, la tecnica utilizzata deve essere basata sulla

funzionalità e deve operare on-chip in modo tale da poter rilevare ogni alterazione

intenzionale o inserimento di Trojan. Questa tesi si preoccupa quindi del proget-

to di trusted FPGA circuits adottando un meccanismo di trust-checking, un area

emergente di ricerca secondo DARPA [2].

Il contributo principale di questo lavoro di tesi è lo sviluppo di un tecnica di

trust-checking chiamata improved Fully Integrated Embedding (iFIE) in cui un

meccanismo di parità 2D ECC (basato sull’idee proposte in [3]) risulta placed-

and-routed accanto al circuito originale. L’obiettivo sottostante è di distribuire

un circuito FPGA monolitico che sia capace di auto-rilevare alterazioni o Trojan

senza l’uso di riconfigurazione dinamica parziale, una caratteristica che se usata

esclude la possibilità di bitstream encryption. Diversamente dalla tecnica origi-

nale introdotta in [3] dove la riconfigurazione dinamica parziale è necessaria, il

nostro approccio funzionale on-chip iFIE combina trust-checking e bitstream en-

cryption, una combinazione desiderabile in delicate applicazioni militari o com-

merciali. Possiamo poi ottenere un’ efficiente implementazione per l’architettura

iFIE di trust-checking grazie a:

• Una modifica dello schema strutturale di parità 2D ECC in modo tale da

evitare l’uso di alcuni componenti originariamente richiesti in [3].

• Una nuova struttura iFIE basata sull’idea di coni capace di ridurre l’ hard-

ware overhead associato con l’architettura di trust-checking.

• Un algoritmo euristico per la generazione e la selezione di coni in modo tale

da minimizzare l’hardware overhead.

• Un secondo algoritmo euristico per la generazione e la selezione di coni con

considerazioni riguardanti le prestazioni.

Un altro contributo di questo lavoro è una nuovo protocollo richiesta-risposta

di trust-checking che supera il protocollo base presentato in [3] in termini di pro-

babilità garantita. Viene quindi proposto uno schema di parità Reconfigurable

Error Correcting Code (RecECC) che cambia la sua composizione ad ogni ri-

chiesta, generando un numero astronomico di combinazioni e nascondendo la

struttura iFIE da occhi malevoli. Inoltre, questo nuovo protocollo non richiede

comunicazioni cifrate cosı̀ l’area usata per implementare le funzioni di encryp-

tion/decryption può venire tranquillamente riutilizzata per l’hardware overhead

associato all’architettura iFIE.

Questa tesi è composta da sei capitoli. Il Capitolo 1 fornisce un introduzio-

ne al problema dei circuiti attendibili, presentando una classificazione dettagliata

dei Trojans. Il problema viene poi contestualizzato alle FPGAs, introducendo

l’importante idea di trusted FPGA design. Inoltre, il capitolo riporta una detta-

gliata analisi delle tecniche di sicurezza per FPGA sottolineando la loro parziale

inefficienza contro alterazioni circuitali e Trojans.

Una dettagliata visione d’insieme sulla tecnica introdotta in [3] è proposta nel

Capitolo 2. La tecnica presentata consiste in un’applicazione strutturale di un

codice di parità all’array FPGA in modo tale da rilevare ogni cambio di funziona-

lità associato con alterazioni circuitali o iniezione di Trojans. Sono introdotti due

livelli di randomizzazione in modo tale da evitare semplici masking e attacchi ai

componenti di trust-checking. Uno studio analitico fornisce una valutazione teo-

rica sulla robustezza contro i masking. La rimanente parte del capitolo è quindi

dedicata alla presentazione delle modalità con cui è possibile integrare la tecnica

nel flusso convenzionale di progettazione EDA. Infine, sono presentati tre dif-

ferenti approcci per integrare i componenti di trust-checking nel circuito FPGA

originale. Il mio lavoro di tesi si focalizzerà sull’approccio FIE proponendo una

versione estesa e migliorata nota come iFIE.

Dunque, il Capitolo 3 è completamente dedicato all’approccio iFIE. Prima di

tutto, vengono introdotti alcuni stimolanti problemi di design relativi al mante-

nimento dell’hardware overhead e del performance overhead all’interno di limiti

accettabili. Vengono analizzate le varie sorgenti di overhead che rendono l’im-

plementazione FIE di base molto inefficiente. Poi viene presentata una prima

soluzione adottata dall’approccio iFIE in modo da ridurre drasticamente l’hard-

ware overhead relativo ai multiplexers. Successivamente, viene presentato un

altro miglioramento architetturale che permette di evitare l’uso di funzioni di

parità. Il capitolo continua introducendo la più importante innovazione relativa

all’approccio iFIE. Come vedremo, il meccanismo di trust-checking è applicato

a coni sottocircuitali in modo da evitare multiplexers sulle connessioni interne

ai coni. Ultimo ma non meno importante, viene introdotto un nuovo schema di

parità RecECC, confrontandolo poi in termini di vantaggi e robustezza con un

convenzionale schema di parità 2D ECC.

Il Capitolo 4 elabora ulteriormente le strutture a cono, discutendo alcuni ap-

procci euristici per la generazione e la selezione di coni con overhead minimiz-

zato. Prima di tutto, il problema è formalizzato in termini algoritmici come cone

covering. Viene quindi introdotta una metrica di benefit basata sui concetti di

covering e di cutting. Questa metrica viene poi utilizzata da un algoritmo di gene-

razione in modo tale da costruire “buoni” coni secondo la prospettiva di minimiz-

zazione dell’hardware overhead. Il capitolo continua proponendo un algoritmo di

cone covering che sceglie in base alla citata metrica di benefit. L’ultima parte del

capitolo introduce un approccio algoritmico alternativo che genera e sceglie i coni

tenendo conto sia dell’hardware overhead che del performance overhead.

Il Capitolo 5 fornisce una serie di risultati sperimentali che mostrano una

riduzione drastica nel contributo di hardware overhead relativo ai multiplexers.

Vengono inoltre proposte una simulazione di tipo behavioral ed una simulazione

di tipo post-P&R le quali hanno la funzione di validare l’idea di trust-checking

applicata ai coni. La prima parte del capitolo si preoccupa dei risultati relativi alle

tecniche architetturali ed algoritmiche di minimizzazione dell’overhead. Siccome

il nostro lavoro è, al meglio della nostra conoscenza, il primo di questo genere,

confronteremo i nostri algoritmi con alcune variazioni interne in modo da stabilire

se le metriche scelte sono vantaggiose o meno. La seconda parte del capitolo è

quindi dedicata alle simulazioni le quali verificano la capacità del meccanismo

ECC di rilevare ogni iniezione di Trojan o ogni alterazione malevola nella logica,

nei componenti sequenziali o nelle interconnessioni.

Il Capitolo 6 elenca infine gli obiettivi raggiunti in questo lavoro di tesi e

propone alcuni spunti per lavori futuri riguardanti l’architettura iFIE di trust-

checking.

Summary

Field Programmable Gate Arrays FPGAs combine the programmability of pro-

cessors with performance closer and closer to custom ASIC. In the last decade,

they have reached a sufficient level of cost and performance to represent an attrac-

tive solution for low-volume sensitive military or commercial application [1]. This

opens a new key issue related with the “trustworthiness” of the deployed FPGA

circuit since the conventional design process is vulnerable to malicious insertions

commonly referred as Hardware Trojan that could, under specific conditions, re-

sult in functional changes and/or catastrophic failure of the sensitive application.

In order to reduce the threat of tampering or Trojan injection, it is necessary

to introduce the idea of trusted FPGA design for which circuits must perform

only the functionality for which they were originally designed, no more and no

less. This idea needs to be enforced during all the circuit life, from its design

to its deployment on the application field. Intuitively, FPGAs are designed to

change their functionality so this malleability introduces uniques vulnerabilities.

The availability of on-chip security techniques such as cryptography can protect

the underlying design against unauthorized copy but are not sufficient to immu-

nize from malicious insertions. Moreover, other alternative security approaches

available in literature are relatively inefficient since none of them covers all the

possible vulnerabilities of the FPGA design/deployment.

From these premises it follows that we need a more comprehensive trojan de-

tection technique that covers all the circuit life. This need has provided the main

motivation of this thesis work. An explicit trust-checking for FPGA circuits can

guarantee with very high probability that the functionality is the one for which the

viii

circuit was originally designed, no more and no less. Moreover, the used tech-

nique must be functionality-based and must operate on-chip in order to detect any

intentional tampering or Trojan insertion. This thesis is thus concerned with the

design of trusted FPGA circuits adopting trust-checking mechanisms, an emerg-

ing area of research according to DARPA [2].

The main contribution of this thesis work is the developing of a trust-checking

technique called improved Fully Integrated Embedding (iFIE) where a 2D ECC

parity mechanism (based on the ideas proposed in [3]) is placed and routed along

with the original design. The underlying goal is to deploy a monolithic FPGA

circuit which is capable of self-detecting tampers or Trojans without using partial

dynamic reconfiguration, a feature which excludes bitstream encryption. Differ-

ently from the original technique introduced in [3] where partial dynamic recon-

figuration is required, our on-chip functional-based iFIE approach combines trust-

checking with bitstream encryption, an highly desirable combination for sensitive

military or commercial application. We can obtain an efficient iFIE trust-checking

logic implementation by the means of:

• A modification of the structural 2D ECC parity scheme in order to avoid the

use of some trust-checking components originally required in [3].

• An iFIE structure based on the idea of cones which reduces the hardware

overhead related with ECC-based functional trust-checking.

• An heuristic algorithm for generating and selecting cones in order to mini-

mize the hardware overhead related with trust-checking architecture.

• A second heuristic algorithm for generating and selecting cones according

to delay performance considerations.

Another contribution of this work is a novel challenge-response trust-checking

protocol which overperforms the basic protocol presented in [3] in terms of guar-

anteed probability. We propose a Reconfigurable Error Correcting Code (Re-

cECC) parity scheme that changes its composition at any challenge, generating an

astronomically large number of combinations and hiding the iFIE structure from

malicious eyes. Moreover, this novel protocol does not require ciphered commu-

nications so the released FPGA area used for encryption/decryption can be used

for the required hardware overhead.

This thesis is composed of six chapters. Chapter 1 provides an introduction

to the problem of circuit trustworthiness, presenting a detailed classification of

Hardware Trojans. The problem is then contextualized to FPGAs, introducing

the underlying idea of trusted FPGA design. Moreover, the chapter reports a de-

tailed analysis of the available FPGA security techniques highlighting their partial

ineffectiveness against tampering and Trojans.

A detailed technical overview of the ECC-based technique introduced in [3]

is proposed in Chapter 2. The presented technique consists of a structural appli-

cation of a parity code to the base FPGA array in order to detect any functionality

change associated with tampering or Trojan injections. Two level of random-

ization are introduced in order to avoid trivial masking and attacks to the trust-

checking components. An analytical study provides a theoretical evaluation of

robustness against masking. The remaining part of the chapter is then dedicated

to present the integration of the ECC-based technique with the conventional EDA

flow. At last, three different approaches for embedding the trust-checking compo-

nents are presented. Our thesis work will focus on the FIE approach devising its

extended and improved version known as iFIE.

Thus , Chapter 3 is completely dedicated to the iFIE approach. First of all,

we introduce some challenging design issues related with keeping the hardware

and the performance overheads within acceptable limits. We analyze the sources

of overheads which make the basic FIE implementation very inefficient. Then,

we present a first solution adopted by the iFIE approach in order to drastically de-

crease the hardware overhead related with multiplexers. Subsequently, we present

another architectural improvement that permits to avoid the use of parity func-

tions. The chapter continues introducing the most important innovation of the

iFIE approach. As we will see, the trust-checking mechanism is applied to more

coarse-grained cone subcircuits in order to avoid multiplexers on the internal con-

nections. Last but not least, a novel RecECC parity scheme is introduced, making

a comparison of its advantages and its robustness against the conventional 2D

ECC parity scheme.

Chapter 4 further elaborate on cones structures, discussing some heuristic

approaches for generating and selecting cones with minimized overheads. First

of all, the algorithmic problem is formalized as a cone covering. Then, a benefit

metric based on the concepts of covering and cutting is introduced. This metric

is then used by a cone generation algorithm in order to construct “good” cones

with the perspective of minimizing the hardware overhead. The chapter continues

proposing a cone covering algorithm for overhead minimization which selects

cones using the aforementioned metric. The last part of the chapter introduces an

alternative algorithmic approach that generates and selects cones taking account

of both hardware and performance overheads minimization.

Chapter 5 provides a set of experimental results in order to show a dras-

tic reduction in the multiplexer overhead contribution. Moreover, it proposes a

behavioral and a post-P&R simulations which validate the presented idea of trust-

checking based on cone structures. The first part of the chapter is concerned with

the results of proposed architectural and algorithmic overhead minimization tech-

niques. Since our work is, to the best of our knowledge, the first of its kind, we

compare our algorithms to some internal variations that establish that our cho-

sen metric is advantageous. The second part of the chapter is then dedicated to

simulations which test the capability of the ECC-based mechanism of detecting

any Trojan injection or any malicious modification such as logic, sequential or

interconnection tampering.

Finally, Chapter 6 summarizes the goals achieved in this thesis work, also

proposing some hints for future works concerning the iFIE trust-checking archi-

tecture.

Contents

1 Introduction 1
1.1 Hardware Trojans . 2

1.2 Trust issue in FPGA manufacturing 7

1.3 Trusted FPGA design . 12

1.4 Innovative contributions . 16

2 State of the Art 18
2.1 Overview on Error Correcting Codes 19

2.2 2D ECC parity scheme on FPGA 21

2.3 Randomization of parity groups 24

2.4 Tamper masking analysis . 26

2.5 Random parity polarities . 28

2.6 Trusted FPGA design flow . 30

2.7 Embedding of trust-checking components 33

2.7.1 Non Integrated Embedding 33

2.7.2 Partially Integrated Embedding 35

2.7.3 Fully Integrated Embedding 36

3 An improved Fully Integrated Embedding 39
3.1 Hardware and performance overheads 40

3.1.1 Test Pattern Generator 42

3.1.2 Output Response Analyzer 42

3.1.3 Parity functions . 45

3.1.4 Switching multiplexers 46

xii

3.2 Multiplexer sharing over common nets 47

3.3 Trust-checking without parity functions 51

3.4 Cone-based iFIE approach . 54

3.4.1 A more general CLB functional model 55

3.4.2 Cone structures . 57

3.4.3 Cone-based trusted FPGA design 62

3.5 Reconfigurable Error Correcting Code 66

4 Heuristics for cone generation and selection 73
4.1 A covering problem . 74

4.2 Metrics for cone generation . 80

4.3 Cone covering algorithm for overhead minimization 86

4.4 Performance-aware cone covering algorithm 89

5 Results ans simulations 95
5.1 Experimental setup . 96

5.2 Experimental results . 96

5.3 Validation simulations . 103

6 Conclusions 111

A List of Abbreviations 114

List of Figures

1.1 A Trojan model . 3

1.2 Trojan taxonomy . 4

1.3 FPGAs from various vendors . 7

1.4 FPGA structure . 8

1.5 FPGA manufacturing flow . 10

1.6 Trojan injection points . 12

2.1 2D ECC parity scheme . 19

2.2 2D ECC parity scheme applied to CLBs 23

2.3 Masking . 24

2.4 Randomized parity groups . 25

2.5 Trusted FPGA design flow . 32

2.6 Non Integrated Embedding . 34

2.7 Partially Integrated Embedding 36

2.8 Fully Integrated Embedding . 37

3.1 FIE structural overhead . 41

3.2 ORA unit implemented by k-LUTs 43

3.3 Benefit of sharing a common multiplexer 49

3.4 Conflict in the TPG assignment 50

3.5 iFIE structural overhead . 52

3.6 Arrangement of slices within a CLB 55

3.7 Functional model of slices . 56

3.8 Granularity versus Multiplexers 57

xiv

3.9 Loop cutting during trust-checking 59

3.10 Sequential cones . 61

3.11 iFIE trusted FPGA design flow 65

3.12 Replay attack . 66

3.13 RecECC architecture . 69

3.14 RecECC protocol . 70

4.1 Primary and secondary cone outputs 77

4.2 Partitioned fanouts for solving the multiplexer conflict 78

4.3 Cone sharing with fanout covering 79

4.4 Example of ∞-cone . 88

4.5 Different approaches for cone generation 90

5.1 Simulation schematic constructed with ISE 105

5.2 Tamper-free behavioral simulation 106

5.3 Behavioral simulation with tamper 106

5.4 Post-P&R simulation model . 108

5.5 Post-P&R trust-checking simulation 109

List of Tables

3.1 Multiplexer overhead . 47

3.2 Trust-checking phase duration 63

5.1 Multiplexer overhead of sharing over common nets 97

5.2 Trust-checking overhead with and without parity functions 98

5.3 Multiplexer overheads using different metrics (TPG 12-16 bit) . . 99

5.4 Multiplexer overheads using different metrics (TPG 20-24 bit) . . 99

5.5 Overall cone-based iFIE overhead (TPG 24 bit) 101

5.6 Covering algorithms with and without performance considerations 103

5.7 Behavioral simulation results in terms of PD and PFA 107

5.8 Post-P&R simulation results in terms of PD and PFA 109

xvi

List of Algorithms

1 Cone Generation algorithm . 85

2 Cone Covering algorithm . 87

3 Deep-cone generation algorithm 91

4 Performance-aware cone covering algorithm 93

xvii

Chapter 1

Introduction

Field Programmable Gate Arrays (FPGAs) combine the programmability of pro-

cessors with performance closer and closer to custom Application Specific Inte-

grated Circuits (ASICs). In the last decade, FPGA technology has gained pop-

ularity due to its cheapness in low to medium-volume production compared to

hardwired solutions and due to the added advantage of reconfigurability that al-

lows multiple application circuits to be mapped into the FPGA chip at different

times, as needed by the overall system. Moreover, modern FPGAs have reached a

sufficient level of performance to represent an attractive solution for low-volume

sensitive applications such as avionics, communications, military, industrial and

so on. This trend introduces a new key issue in the FPGA design flow related with

the “trustworthiness” of the deployed hardware, according to the intuitive notion

recently given by authors in [4].

This thesis work is mainly concerned with the design of trusted FPGA cir-

cuits. This problem is part of a more general trust issue in semiconductor Inte-

grated Circuits (ICs), a novel research area recently supported by DARPA [2].

The outsourcing of the manufacturing process to external foundries spread around

the world have made ICs vulnerable to malicious alterations that could, under

specific conditions, result in functional changes and/or catastrophic failure of the

sensitive application in which they are embedded. In section 1.1 we introduce a

general model for these malicious circuits commonly referred as Hardware Tro-

1

CHAPTER 1. INTRODUCTION

jans. Despite literature [5,6] tailors the presented Trojan model with IC layouts in

mind, we can easily transpose it to FPGA circuits, the matter our concern.

In order to avoid any tampering or Trojan injection, it is necessary to introduce

the idea of trusted design for which circuits must perform only the functionality

for which they were originally designed, no more and no less. FPGA design flow

depicts a different scenario compared to ASIC where tampering and Trojans are

directly injected in the silicon layout. FPGAs provide an important separation

between device manufacturing and application design for which the problem of

trusted FPGA design is restricted to a fixed array of configurable elements already

fabricated in silicon. In section 1.2 we discuss this separation by presenting the

entire manufacturing flow of a FPGA-based application.

The idea of trusted FPGA design needs to be enforced during all the circuit

life, from its design to its deployment on the application field. Intuitively, FPGAs

are designed to change their functionality so this malleability introduces uniques

vulnerabilities. In section 1.3 we show how most of the available FPGA security

techniques are not sufficient to immunize from malicious insertions. Thus, we

need a trojan detection technique that works on-chip and that is functionality-

based. This need has provided the main motivation of this thesis work.

At last, section 1.4 points out our innovative contributions in the design of

trusted FPGA circuits and trust-checking mechanisms capable of detecting any

intentional or unintentional tampering.

1.1 Hardware Trojans

A Trojan circuit is a malicious circuit alteration capable of performing unexpected

actions that can compromise the system application. The outsourcing of the IC

fabrication to “untrusted” fabrication facilities has made ICs vulnerable to this

new threat. An adversary can introduce a Trojan designed to disable/destroy an

important functionality, to degrade signal integrity or to covertly leak confiden-

tial information stored in the circuit memory. Moreover, every software security

mechanism used in a computing system relies on the underlying hardware and can

2

CHAPTER 1. INTRODUCTION

be easily bypassed by malicious tampers.

A description of a Trojan circuit is presented in [5]. The basic model is com-

posed by two major components that are the triggering logic monitor and the

payload activation logic. Intuitively, the triggering circuit describes when a Tro-

jan activates itself whereas the payload circuit describes how a Trojan carries its

destructive action. Figure 1.1 shows the aforementioned structure. A set of q-

external inputs (q-trigger) activates the payload at the proper event which occurs

only under very rare conditions in order to minimize detection. The payload ac-

tion is carried through a XOR-gate which basically inverts the logic value of a

legitimate wire connection when the Trojan is triggered.

Figure 1.1: A Trojan model

In order to evade during chip testing, a Trojan uses nodes with low controlla-

bility as q-trigger conditions and affects nodes with low observability as p-payload

effects. Moreover, a Trojan can be designed as a time bomb which activates after

a certain number of triggering. This behavior makes the Trojan detection harder

and can be obtained by adding a k-bit counter in the triggering logic monitor.

In general, Trojan circuits can have complex and clever behaviors. In [5] it

has been proposed a taxonomy based on the nature of their triggering and pay-

load mechanisms, as shown in Figure 1.2. The presented classification consid-

ers different activation modalities which are purely combinatorial (rare values)

or even sequential (k-bit delay and rare sequences). The activation event can be

synchronous or asynchronous depending by its timing. A malicious circuit can

3

CHAPTER 1. INTRODUCTION

Figure 1.2: Trojan taxonomy

be digital or analog based. An adversary can integrate an on-die sensor in the

silicon layout. This sensor works as a trigger mechanism activating the Trojan on

an external stimulus. For example, embedding a radio receiver we can virtually

activate a Trojan using a radio signal. The payload mechanism can also be analog

based. A Trojan can increase the toggling activity as well as insert a current leak-

age in order to drain the battery energy. Another destructive behavior consists of

increasing the signal delay or inserting bridging faults.

In this thesis work we only focus on digital triggering and payload. This repre-

sents a reasonable restriction since an adversary cannot freely integrate IC sensors

on the FPGA area. Moreover, analog Trojan detection is a difficult task since

we need to monitor different physical properties such as power, thermal emis-

sion or electromagnetic profiles. Thus, the aforementioned simplification restricts

the problem on a functional perspective which fits with the purposes of a recon-

figurable hardware architecture. However, the detection of tamper and Trojan

inclusions in IC still remains a difficult problem. A brute force approach involves

physical inspection and destructive reverse engineering of a chip. Unfortunately,

nanometer IC size and complexity make this process difficult, slow and especially

4

CHAPTER 1. INTRODUCTION

costly to be extensively applied on large scale. An adversary designs a Trojan

circuit to activate under very specific conditions, which makes it difficult to de-

tect using classical testing techniques. One might consider exhaustive testing by

applying 2n+m test vectors on the original circuit with n-inputs and m-flipflops as

assumed in [5]. It is easy to argue that this approach has exponential complexity

and so it is applicable only to small circuits. Even in this scenario, a Trojan de-

signed as a time bomb makes the detection problem undecidable since we need

2n+m+k test vectors but k is unknown (basically, we cannot certify a circuit as

Trojan-free since there is no k at which the detection algorithm stops itself). This

simple reasoning gives an intuitive hint on the underlying complexity of the de-

tection problem.

In [6] it has been provided a more detailed explanation about the inefficiency

of functional and (Automatic Test Pattern Generator) ATPG-based fault-detection

techniques. The main concern with testing is that we focus on verifying a pool

of known functionalities but we don’t deal with the unwanted ones. A malicious

opponent can easily craft a Trojan in order to evade the set of test vectors tailored

for verifying existing functionalities. Both [5, 6] also discuss about another ap-

proach known as side-channel analysis or Differential Power Analysis (DPA) [7].

Briefly, this technique analyzes a measured physical parameter, the so called side-

channels such as power, temperature and electromagnetic profile. A tampered IC

can be potentially detected by variation of these parameters during circuit activ-

ity. Unfortunately, in modern nano-scale ICs the amount of parameter variation

introduced by the fabrication process can be ±7.5% so side-channel analysis has

important limitation, especially when Trojan are small circuits.

A possible solution to the Trojan detection problem is finally proposed in [5].

The approach reasonably assumes that a Trojan is maliciously placed in order

to be driven by nodes with low controllability and in order to affect nodes with

low observability. For this reason, the presented technique constructs test vec-

tors that are able to stimulate these nodes. Simulation results show that such a

technique can be effective to detect most (but not all) small combinatorial Tro-

jans. Another possible solution based on graph coloring is proposed in [8]. The

5

CHAPTER 1. INTRODUCTION

presented technique deals with an abstract graph representation of the circuit and

embeds clique-like traps which make difficult to insert additional nodes (basically

a Trojan) without increasing the number of colors needed for solving the graph

coloring problem. Given a circuit graph, an increased number of colors respect

to a previously determined parameter corresponds to a malicious insertion. How-

ever, the presented technique represents a partial protection for the design flow.

In other words, we cannot have a trusted IC design since a malicious fabrication

foundry can take the protected design, insert a Trojan and produce malicious chips

without control of the original design owner. Other security mechanisms are pro-

posed in [9, 10]. The proposed techniques are more concerned with IC design

piracy (unauthorized copies) than Trojan detection. Digital Right Management

(DRM) of Intellectual Property (IP) cores is done using asymmetric cryptography

and combinatorial locks. More in detail, a foundry can activate a manufactured

IP core only with a key provided by the design owner. Every chip needs a dif-

ferent key since it embeds an different chip identifier computed using a Physical

Unclonable Function (PUF) [11].

The previous literature analysis shows how the trusted IC design issue rep-

resents an emerging area or research, with a concrete and underlying application

that motivates this thesis work. From now on, we focus on the strictly related

issue of trusted FPGA design. In both the cases, we need to assure that circuits

perform only the functionality for which they were originally designed, no more

and no less. However, there is a subtle difference between ASICs and FPGAs. In

the former case, Trojans are directly inserted in the silicon layout of the chip. In

the latter case, we have a fixed array reconfigurable elements already fabricated in

silicon and Trojans only affect the FPGA configuration which determines the im-

plemented circuit functionality. Since many low-volume critical applications are

mapped onto an FPGA, the trusted FPGA design research is well-motivated. The

presented problem can be solved by using a functional-based technique capable of

detecting any type of malicious injection in the FPGA circuit configuration, from

a tamper in the reconfigurable elements mapping the FPGA circuit to a Trojan

injected in the unused FPGA area.

6

CHAPTER 1. INTRODUCTION

1.2 Trust issue in FPGA manufacturing

Field Programmable Gate Array are semiconductor devices structured as a matrix

of Configurable Logic Blocks (CLBs) connected through a programmable net-

work. On its perimeter, an FPGA provides a set of pins known as Input Out-

put Blocks (IOBs) which are typically used to access I/O resources. The general

structure of a typical FPGA is shown in Figure 1.4. A CLB is the elementary

computational unit which is used to build combinatorial or sequential logic func-

tions, whose internal structure varies according to the specific technology. For

instance, Xilinx Virtex-4 family [12] implements a CLB using four similar slices

which can efficiently cooperate within the same logic block. Each slice can gen-

erate boolean functions by means of two Look-Up Tables (LUTs), two registers, a

carry chain and a multiplexer network. Communication among CLBs is guaran-

teed by the programmable interconnection network, which also provides routing

routes to reach the I/O pins. In addition, an FPGA chip can integrate one or more

microprocessors useful for implementing embedded systems.

Figure 1.3: FPGAs from various vendors

Both the configuration of a single CLB and the routing scheme can be com-

puted by automatic tools, which translate a high-level specification into an appro-

priate configuration code called bitstream, which specifies how each programmable

element of the device should be configured. The FPGA can be physically pro-

grammed by sending a bitstream thought a reconfiguration interface, which is able

7

CHAPTER 1. INTRODUCTION

to access the device configuration in both writing and reading mode. A bitstream

is employed to program the entire device area, and hence the entire logic on the

FPGA is interrupted and reconfigured during the process, even if part of it is left

unchanged.

Figure 1.4: FPGA structure

FPGA technology is highly attractive for implementing system applications

since represents a good trade-off between software flexibility and ASIC perfor-

mance. In the former case, we may take advantage of usability, upgradability,

portability and low development cost, having as down side moderate speed and

high power consumption. In the latter case, we may take advantage of low unit

price, high performance and lower power dissipation, having as down side higher

development cost and lack of flexibility with respect to application updates. Sum-

marizing, FPGA technology captures the best of both worlds since offers a suf-

ficient level of performance with the flexibility allowed by reconfiguration. As

consequence, the popularity of such technology has increased in the last few year,

especially for highly specific low-volume applications such as sensitive military

systems. According to an estimate in [13], 110000 different FPGA design project

are expected to begin in 2010.

8

CHAPTER 1. INTRODUCTION

FPGAs offer a different perspective in terms of “trustworthiness” if compared

with ASICs. An intuitive weakness of FPGAs is related with reconfigurability

which virtually permits to change their functionality at any time. On the other

side, ASICs are hard-wired so no Trojan can be inserted after their fabrication. De-

spite this negative aspect, we can identify an important separation between design

process and manufacturing flow. In [1] it has beed explained how this separation

dramatically simplifies the process of assuring the aforementioned trusted FPGA

design. Considering the traditional IC manufacturing flow, external foundries are

a serious concern since expose the design to attacks. For instance, an adversary

may exist in the mask-making company, the wafer fabrication, the packaging com-

pany or in any of the shipping facilities in between them. In FPGAs, the sensitive

IP is not loaded onto the device until after it has been manufactured and delivered,

making it harder for adversaries to target a specific application or user.

The FPGA manufacturing flow is shown in Figure 1.5. We have security con-

cern only during manufacture of the base FPGA array and during the deployment

of the fielded system. The physical FPGA device is manufactured using the tra-

ditional IC flow so it is exposed to the mentioned threats (non-secure manufactut-

ing). An adversary can still insert a Trojan in the CLBs array in order to affect

the final application that will be loaded as a bitstream. However, this kind of at-

tack is very ineffective since it is based on a small probability of success. In fact,

an adversary cannot directly attack the actual design so it tries to insert a Tro-

jan in a random position of the base FPGA array. For this reason there is only a

small possibility that a sensitive part of the application is placed on the tampered

CLB. Moreover, it is not possible to decide a-priori the application that will be

implemented on a certain manufactured FPGA device. In other word, there is a

even smaller probability that a Trojan will exactly meet the target for which it was

originally meant. In the most probable case, the tampered FPGA device will be

used in a non-critical application and then returned to the IC manufactured since

it exposes the Trojan as a malfunction. Any returned device is carefully inspected

for defects so deliberate tampering can be detected. The attacker can intuitively

increase the number of tampers in order to increase its low probability of success.

9

CHAPTER 1. INTRODUCTION

Figure 1.5: FPGA manufacturing flow

However this strategy has a drawback since a device with more Trojan has also

more probability of being caught as defective during testing. On the other side, a

design can further decrease the probability of success implementing critical parts

of the design with Triple Modular Redundancy (TMR) [14]. Since each part is

placed on a different CLB, there is a lower probability that two of the three mod-

ules are affected by a Trojan. At last, an adversary can craft a more-fruitful attack

to the FPGA’s security features used to protect the bitstream [15, 16]. As we will

see later in this chapter, these security features are used to protect the system in

the field. In this case, the only defense is a complete verification of these functions

during testing. This may sound difficult, but the verification task must cover only

a very small fraction of the overall design. Summarizing, the separation between

the generic FPGA device manufacturing and the application design assures with

a certain degree of confidence that no effective attack is possible during the base

FPGA array manufacturing.

The second step of the FPGA manufacturing flow is concerned with the de-

10

CHAPTER 1. INTRODUCTION

sign process. The depicted scenario is beneficial since the FPGA bitstream can

be developed and loaded in a secure design facility after the base array is manu-

factured and tested. Supposing an adequate level of protection for the secure site,

there is no way for a malicious adversary to insert Trojans or just steal the de-

sign, at least until the FPGA-based application is released into a possible hostile

environment (non-secure environment). Modern FPGAs include bitstream secu-

rity features suitable for protecting the fielded design. Since an Static Random

Access Memory (SRAM) FPGA’s bitstream is an electronic message, methods of

information security such as encryption can be applied to assure the integrity and

confidentiality of the bitstream. This represents an effective mechanism against

unauthorized copy of a design, theft of the design and reverse engineering. FPGA

devices may integrate a cryptographic protection based on hardwired algorithms

like Data Encryption Standard (DES), triple DES or Advanced Encryption Stan-

dard AES (usually, there are implemented by a dedicate on-chip decryptor and a

dedicated key storage memory). Moreover, after loading an encrypted bitstream

readback is disabled and every attempt of reading/writing the key will clear all

keys and configuration data. Roughly speaking, bitstream encryption is an ef-

fective technique for IP design integrity and confidentiality. We can assume that

the average adversary cannot overcome this protection. In fact, the only viable

attack requires to steal the encryption key stored in the FPGA. More in detail, it

is necessary to keep power to the key memory and to destructively probe the sili-

con layout by milling away many levels of metal. It is reasonable to assume that

this attack is beyond the capabilities of most adversaries. Bitstream encryption

mode introduces some restrictions related with reconfiguration. In fact, only sin-

gle full-chip configuration is permitted since partial and dynamic reconfiguration

are disallowed. This may represent a serious limitation for such application that

explicitly require to dynamically load IP cores during their running.

The idea of trusted FPGA design requires that the deployed FPGA circuits per-

form only the functionalities for which they were originally designed, no more and

no less. We have seen how base FPGA array fabrication and design in a secure

facility can prevent Trojan insertions. Despite bitstream encryption is effective

11

CHAPTER 1. INTRODUCTION

against unauthorized copy of a design, it is not sufficient to prevent Tamper inser-

tions in the field using remote attacks capable of modifying bitstream bits. More-

over, a secure design facility represents a strong assumption especially for current

system integration approaches based on Commercial Off-The-Shelf (COTS) de-

vices to save and money. For these reasons, the separation approach proposed

in [1] is not sufficient to completely obtain a trusted FPGA design. Thus, we re-

quire a deeper analysis of the design/deployment flow in order to point out all the

vulnerabilities where tampers and Trojans can be injected.

1.3 Trusted FPGA design

The problem of assuring a trusted FPGA design cannot be transformed into a

generic security problem in embedded systems [17] solvable with cryptography.

As we have seen, we need a technique capable of detecting tampers and Trojan

insertions during the entire FPGA-based application life cycle, from its design to

its deployment in the field. Before analyzing some ideas and proposing our tech-

nique, we need to clarify the scenarios in which a malicious tamper can happen.

We focus our attention only on the FPGA design/deployment flow since we as-

sume with a certain degree of confidence that the base FPGA array is trusted. In

any case, the technique proposed in this thesis is capable of detecting any func-

tional modification, even caused by a base CLB tampering.

Figure 1.6: Trojan injection points

Figure 1.6 shows four vulnerabilities that affect the FPGA design/deployment

12

CHAPTER 1. INTRODUCTION

flow. During the entire Electronic Design Automation (EDA) flow, a high-level

specification of the circuit which is assumed Trojan-free goes through logic syn-

thesis, technology mapping, placing and routing phases. An output bitstream will

represent the original circuit ready to be loaded on the FPGA device. In any of

the presented step, a malicious adversary can inject Trojans by means of tam-

pered EDA tools. Since most of the time these tools are developed outside a

company or an organization, the hypothesis of a secure design facility assumed

in [1] becomes weak. Another vulnerability is concerned with integration where

different IP cores, often obtained from third parties, are cobbled together in order

to compose the overall FPGA system. These cores can be subverted by tampering

the tools or by tampering the cores themselves. The integration can also happen

at Printed Circuit Board (PCB) level where COTS chips provide latest suitable

technologies with lowest cost. Again, the hypothesis of a secure design facility

seems weak in this scenario where different companies and organization need to

collaborate. Device programming represents the loading of a bitstream onto the

FPGA device. This phase is vulnerable to Trojan insertions since an adversary

can tamper the bitstream tools or the loading device in order to modify the de-

signed circuit functionality. At last, the fielded FPGA device can be affected by

remote attacks which modify the bitstream (and so the circuit functionality), even

in case of bitstream encryption and disabled reconfiguration. For SRAM FPGA

devices, single configuration bits are stored as electronic charges. Using high-

energy ElectroMagnetic Pulses (EMPs) is possible to flip the bit status without

using traditional reconfiguration interfaces in order to inject tampers or Trojans.

The trustworthiness of all the EDA tools involved in the complex FPGA de-

sign flow is not a trivial issue. Industry already deals with this problem in op-

erating system. security kernels, applications and compilers. In [18] it has been

proposed an holistic approach in order to build a custom set of trusted tools for

security-critical hardware as a subset of the commercial tool chain’s optimization

functions. This approach can prevent tampers with the tools used to translate the

design to the FPGA bitstream but not with the design itself since a Trojan can be

added in the high level circuit specification or even in the bitstream. Trusted FPGA

13

CHAPTER 1. INTRODUCTION

design can be guaranteed only by immunizing the entire design and deployment

flow from the aforementioned vulnerabilities.

In [1] it has been proposed a Layout-Versus-Schematic (LVS) comparison be-

tween two netlists, one extracted from the initial untampered design and another

extracted from the deployed bitstream. This technique can potentially highlight

any difference introduced by a tamper or a Trojan and it is effective only for vul-

nerabilities inserted before device programming. We can extend its range to the

remaining vulnerabilities by reading back the deployed bitstream from the FPGA

device and by applying the LVS comparison. However, this technique does not

seem applicable for some reasons. First of all, readback mode may be disabled

for protecting IP confidentiality. In another case, the programming device may be

tampered in order to remove the Trojan during readback, cheating the LVS com-

parison. At last, this technique is an off-chip approach so it is not effective for a

fielded FPGA design.

Fault-tolerant techniques of configuration memory cannot solve the trusted

FPGA design problem since they do not assume malicious opponent. In fact, the

knowledge of the underlying mechanism can be exploited to craft the circuit func-

tionality with-out raising alarms. Consider, for example, the TMR technique used

in [19]. A circuit is replicated and its output is compared with backup copies out-

puts. In this scenario, a malicious attacker can apply a smart attack in which the

same tamper is inserted in every copy or in which the output checker is crafted in

order to not raise alarms. In [19] it has also been proposed configuration scrub-

bing, a technique in which the configuration is continuously reloaded in order to

repair disrupted bits. Scrubbing can virtually delete any tamper or Trojan injected

by remote attacks. However, the technique is ineffective against pre-configuration

tampering. In [20] it has been presented another approach concerned with fault-

tolerance of configuration memory that can deal with a limited number of errors.

The proposed technique includes a duplicate-and-compare implementation of the

design and uses partial reconfiguration in order to reload the detected erroneous

memory frames. Again, the technique is ineffective against pre-configuration tam-

pering as any other fault-tolerant approach.

14

CHAPTER 1. INTRODUCTION

Another possible trust-design approach is signature computation and checking

of the bitstream. In this approach, a signature S of the bitstream is computed on

the Trojan-free FPGA bitstream. During system integration or just before device

programming, an off-chip integrity computation checks if current signature Ŝ is

equal to the expected one, detecting possible tampers or Trojans in the bitstream.

As mentioned, this is an off-chip checking approach, and thus it cannot protect

against tampers introduced by the device programming unit or by remote attacks

on the field. Authors in [21] introduce a reconfigurable trustworthy computing

platform based on asymmetric encryption. The proposed architecture offers a set

of trusted reconfigurable modules used for security functions such as symmetric

encryption or hashing. A Bitstream Trust Engine (BTE) is capable of decrypting

and verifying the authenticity and integrity of loaded bitstreams. However, the

proposed technique explicitly excludes non-invasive tampering so it is still virtu-

ally vulnerable to remote attacks on the field. Regarding device programming,

a Secure Update Mechanism (SUM) hardware architecture is presented in [22].

This mechanism is available for remote updating of FPGA-based systems. SUM

encrypts the bitstream during the upload phase and verifies its signature in order

to prevent man-in-the-middle attacks where an adversary replaces a configuration

update by one of his choice or performs a downgrade in order to exploit previous

system flaws. Again, this mechanism does not address remote attacks meant as

modification of the bitstream on the field.

In conclusion, all the above alternative approaches to the trusted FPGA design

are relatively inefficient since none of them covers all the aforementioned vulner-

abilities of the FPGA design/deployment flow where tampers and Trojans can be

inserted. Thus, it is necessary to employ an explicit trust-checking technique for

FPGA circuit that guarantees with very high probability that the functionality is

the one for which the circuit was originally designed, no more and no less. This

trust-checking technique must be functionality-based and must operate on-chip in

order to cover all the possible vulnerabilities. In fact, we can virtually catch any

tamper or Trojan insertion by comparing the functionality currently implemented

on-chip with the functionality of the original untampered design. A background

15

CHAPTER 1. INTRODUCTION

idea of trust-checking is introduced in [3]. We will provide a detailed explana-

tion of the proposed ECC-based trust-checking technique in Chapter 2. In this

thesis work we propose a significative extension of the ideas and methodology

proposed in [3] in order to provide an efficient Placed-and-Routed (P&R) imple-

mentation and a novel challenge-response trust-checking protocol with an astro-

nomically smaller tamper/Trojan insertion probability. Moreover, to the best of

our knowledge there is no other available literature regarding the trusted FPGA

design problem.

1.4 Innovative contributions

This thesis work is concerned with the design of trusted FPGA circuits and trust-

checking mechanisms capable of detecting any intentional tampering or Trojan

insertion at any point of the FPGA design/deployment flow, an emerging area of

research according to DARPA [2]. The main contribution of this work is the devel-

oping of a trust-checking technique called improved Fully Integrated Embedding

(iFIE) where a 2D ECC parity mechanism (based on the ideas proposed by [3]) is

placed and routed along with the original design. The underlying goal is to deploy

a monolithic FPGA circuit which is capable of self-detecting tampers or Trojans

without using partial dynamic reconfiguration, a feature which excludes bitstream

encryption. Differently from the original technique introduced in [3] where partial

dynamic reconfiguration is required, our on-chip functional-based iFIE approach

combines trust-checking with bitstream encryption, an highly desirable combina-

tion for sensitive military or commercial application. We can obtain an efficient

iFIE trust-checking logic implementation by the means of:

• A modification of the structural 2D ECC parity scheme in order to avoid the

use of some trust-checking components originally required in [3].

• An iFIE structure based on the idea of cones which reduces the hardware

overhead related with ECC-based functional trust-checking.

16

CHAPTER 1. INTRODUCTION

• An heuristic algorithm for generating and selecting cones in order to mini-

mize the hardware overhead related with trust-checking architecture.

• A second heuristic algorithm for generating and selecting cones according

to delay performance considerations.

Another contribution of this work is a novel challenge-response trust-checking

protocol which overperforms the basic protocol presented in [3] in terms of guar-

anteed probability. We propose a Reconfigurable Error Correcting Code (Re-

cECC) parity scheme that changes its composition at any challenge, generating an

astronomically large number of combinations and hiding the iFIE structure from

malicious eyes. Moreover, this novel protocol does not require ciphered commu-

nications so the released FPGA area used for encryption/decryption can be used

for the required hardware overhead.

17

Chapter 2

State of the Art

In this chapter we give a technical overview of the novel ECC-based technique

introduced in [3] and capable of detecting tampering of a FPGA circuit with very

high probability. The rationale behind presented technique is a structural appli-

cation of a parity code to the base FPGA array in order to detect any function-

ality change associated with tampering or Trojan injections. A genuine FPGA

circuit will be distinguished by the correct parity output during the so-called trust-

checking phase. As mentioned, to the best of out knowledge [3] represents the

only work explicitly concerned with the trusted FPGA design problem so we con-

sider the introduced ideas as the state-of-the-art in this particular field.

The chapter is organized in the following way. Section 2.1 introduces the basic

notion of Error Correcting Codes (ECCs) presenting a simple two-Dimensional

(2D) parity scheme which represents the theoretical foundation for the trust-checking

mechanism in [3]. Section 2.2 presents the trust-checking technique itself which

is basically a structural 2D ECC parity scheme implemented by means of avail-

able reconfigurable logic. A first randomization level is introduced in section 2.3

in order to avoid a trivial masking implementable by knowing the underlying 2D

scheme. An analytical study of robustness against masking is then provided in

section 2.4. A second randomization level is introduced in section 2.5 in order

to protect the trust-checking units from malicious tampering. Section 2.6 intro-

duces a new FPGA design flow in which conventional EDA phases are mixed

18

CHAPTER 2. STATE OF THE ART

with trusted FPGA design phases in order to enforce the presented randomized

2D ECC parity scheme. Finally, section 2.7 presents three different approaches

for embedding the trust-checking components into the FPGA circuit since an on-

chip implementation is a necessary requirement for addressing all the design vul-

nerabilities.

2.1 Overview on Error Correcting Codes

Coding techniques are greatly used in binary data transmissions to detect and

eventually correct errors caused by noise or other impairments. Error correcting

codes are based on using a redundancy check composed by extra data added to the

initial information in order to achieve the error detection goal. One of the most

classical ECCs is based on a 2D parity scheme [25]. This technique arranges the

binary information as a bit matrix. For instance, Figure 2.1 shows two bytes (16

bits) arranged as a 4×4 bit matrix.

Figure 2.1: 2D ECC parity scheme

We compose the so-called Parity Groups (PGs) by aggregating bits in a row-wise

and column-wise fashion. Each PG has a cardinality which depends by the con-

sidered matrix size. Suppose that a PG group is composed by k bits, x0, . . . ,xk−1.

We associate to it a so-called even parity bit c calculated as

c = x0⊕ x1...⊕ xk−1 = XORk−1
i=0 xi

19

CHAPTER 2. STATE OF THE ART

Alternatively, we can use the opposite XNOR operator (odd parity) with identical

properties in terms of error detection.

A parity bit c is capable of detecting an odd number of errors in a transmitted

PG. More in detail, the receiver can compute the parity cr of the received PG

xr
0, . . . ,x

r
k−1 and then check if it corresponds to expected parity bit c which is part

of the transmitted message. This binary comparison is implemented by means of

a XOR operation.

c⊕ cr =

{
0 no error or even errors

1 odd errors

According to the logic table, a XOR between two identical logic values will

always generate a zero value (or an even parity, using another terminology). For

this reason, we expect c⊕ cr to be even in case of an error-free PG. However, this

simple ECC cannot detect a flipping between two bits (or in general an even num-

ber of errors) inside a single PG since xi⊕x j = x̄i⊕ x̄ j where xi,x j are two arbitrary

bits inside the PG. This phenomenon is called error masking. Moreover, a parity

bit c can detect a single error inside a PG but doesn’t have enough information in

order to identify (and correct) the exact position where the error occurred.

Using a 2D scheme, it is possible to improve the code reliability. Referring

again to Figure 2.1, each row PG overlaps with all the column PGs (one for each

bit) and vice versa each column PG overlaps with all the row PGs. This sce-

nario gives an added property to the ECC parity. When a single bit is flipped, the

correspondent row PG and the correspondent column PG detect an error. These si-

multaneous detections permit to identify the error position and apply a correction,

avoiding an expensive data retransmission. Moreover, the masking phenomenon

becomes harder since one or more errors remain undetected if and only if they

cause an even number of flipping in all the PGs. The simplest combination which

respects the above condition is a set of four errors intentionally placed in a 2×2

submatrix. In general, this combination is very unlikely in data transmission so

the 2D ECC parity is generally consider reliable.

20

CHAPTER 2. STATE OF THE ART

2.2 2D ECC parity scheme on FPGA

An FPGA circuit is implemented by means of a reconfigurable matrix composed

by several CLBs and an interconnection network. In other words, we have a fixed

IC layout (FPGA device) whereas the current circuit functionality depends by the

loaded application bitstream. In order to detect tampering or Trojan insertions,

we need to apply a functionality-based checking which verifies the configuration

of each CLB. Moreover, trust-checking must be apply on-chip in order to address

all the vulnerabilities highlighted in section 1.3. The technique presented in [3]

doesn’t explicitly deal with routing checking. Despite this weakness, it seems hard

to introduce a malicious Trojan without modifying functionality of some CLBs.

More likely, a routing modification can simply be detected by using classical test-

ing. As partial solution, a sketch of routing checking is given by the future work

section of [3].

Before continuing with our overview, we need to clarify the notions of tamper-

ing and Trojan insertion in a FPGA circuit. A tampering consists of a modification

of a CLB configuration such as the function implemented by a LUT. A Trojan in-

sertion is concerned with using an empty CLB to implement an hidden malicious

functionality. However, there is a subtle distinction between the two notions since

a Trojan can even be placed by tampering a configured CLB.

The core idea of functional trust-checking is concerned with applying the pre-

sented 2D ECC parity scheme to the CLB logic outputs. This arrangement is quite

straightforward since FPGAs are logically organized in a matrix architecture, so

we can identify a direct mapping between CLB outputs and bit matrix used in the

presented ECC scheme. For the sake of simplicity, we can assume each CLB as a

single output function driven by u inputs. We can exhaustively test this function

by inputting all the 2u different input combination, assuming that u is reasonably

smaller. Considering the entire FPGA, we can feed all the CLBs with the same in-

put combination and obtain the equivalent bit matrix composed by CLB outputs.

At last, we can impose the 2D ECC parity scheme in order to assure that each

CLB has the expected output given a certain input. By repeating this procedure

over 2u combinations, we can check the entire functionality of each CLB in the

21

CHAPTER 2. STATE OF THE ART

base array. In other words, we can verify that a FPGA circuit is tamper-free and

also Trojan-free.

The proposed 2D ECC parity scheme is embedded into a structural implemen-

tation. PGs are still selected in a row-wise and column-wise fashion as previously

done for the basic ECC technique. An additional hardware unit called Test Pat-

tern Generator (TPG) generates the exhaustive sequence of inputs also known

as Test Vectors (TVs). TPG is connected to each CLB in a PG in order to per-

form an exhaustive checking over each functional output. Moreover, the parity

bit c related with a PG is not stored as redundant information but is structurally

mapped to the FPGA by means of an arbitrary parity function. More specifically,

for each PG we require 2u parity bits, one for each possible input combinations.

This parity sequence is generated by using an additional CLB connected to the

TPG and opportunely configured in order to implement the so-called parity func-

tion. In other words, a PG is completed with a CLB capable of calculating its

parity bit c for each input combination. At last, another hardware unit called Out-

put Response Analyzer (ORA) completes the presented trust-checking schema.

ORA implements an associative XOR function (even parity) between PG outputs

and the CLB parity function output in order to detect an odd number of tampers

(or bit flipping) for any TV. According to the ECC properties, any result differ-

ent from even parity (zero value) is interpreted as an intentional modification (the

technique also covers unintentional modification). Moreover, all the presented

trust-checking units can easily be implemented onto the FPGA device using the

unused area, giving to the FPGA circuit self-checking capabilities.

Figure 2.2 summarizes the described 2D ECC parity scheme applied for trust-

checking purposes. Suppose that gray CLBs contain the application circuit. The

TPG unit exhaustively stimulates the highlighted PG including its parity function

(blue CLB) whereas the ORA unit calculates the parity, producing a set of ordered

parity values called Parity Vector (PV). Considering an even parity calculation

(obtained using XOR function), the trust-checking structure recognizes a func-

tional modification if the ORA doesn’t produce a zero vector PV = [0,0, . . . ,0].

In the opposite case, the considered PG is tamper-free with very high probability.

22

CHAPTER 2. STATE OF THE ART

Figure 2.2: 2D ECC parity scheme applied to CLBs

Moreover, the trust-checking needs to be extended to all the PGs in order to cover

the entire FPGA circuit assuring trustworthiness with very high probability. Sum-

marizing, the result of a trust-checking phase is a PV which must be observed by

outside in order to decide between a success or a fail.

Referring again to Figure 2.2, we consider a single PG at time. The presented

trust-checking technique can also be applied in parallel in order to verify multiple

PGs at time. A single TPG can be connected to additional CLBs in different PGs

by means of additional routing routes. Supposing we have k PGs, we forcedly

require k separate ORAs in order to produce k different PV. Depending by the

available FPGA resources and by the ORA overhead, we can potentially check

the entire FPGA circuit in an unique trust-checking phase.

At last, we point out that the presented 2D ECC parity technique can also

prevent Trojan insertions into the unused FPGA area. We can extend the ECC

detection capability by mapping PGs over the entire FPGA, forcing the unused

CLBs to implement a zero function. With this technical solution, whatever logic

insertion will be easily detected since a Trojan represents a functional modification

of a zero function.

23

CHAPTER 2. STATE OF THE ART

2.3 Randomization of parity groups

The utilization scenario for the original 2D ECC parity scheme is concerned with

bit flipping due to casual occurring faults. Thus, PGs selected in a row-wise and

column-wise fashion are sufficient to assure reliability. Assuming a malicious op-

ponent, this selection strategy cannot anymore be considered robust. With an in-

tentional placement of four tampers onto a 2×2 submatrix, the presented scheme

fails detection since a masking phenomenon occurs.

Figure 2.3: Masking

Figure 2.3 shows an example of this naive masking scenario. As we can see,

the trust-checking of the first row has success despite the PG is tampered. The

same false negative happens the remaining three tampered PGs, leading to a mask-

ing phenomenon.

The way around to this drawback involves the use of a randomized PG map-

ping in order that no adversary can know or easily guess what is the exact place-

ment of the PGs and, consequently, of a 2×2 matrix which causes masking. Given

a m×n matrix composed by CLBs, we define a random mapping r as one-to-one

mapping r : H×V → H×V between two sets composed as cartesian product of

24

CHAPTER 2. STATE OF THE ART

H = {0, . . . ,m− 1} rows and V = {0, . . . ,n− 1} columns. The randomized PGs

are constructed considering row and column PGs and substituting all their ele-

ments with the correspondent random mapping r. For instance, consider a row

i with PG composed by [CLB{i,0},CLB{i,1}, . . . ,CLB{i,n−1}]. The correspondent

randomized PG is [CLB{r(i,0)},CLB{r(i,1)}, . . . ,CLB{r(i,n−1)}] where each element

is obtained using random mapping r.

Figure 2.4: Randomized parity groups

Figure 2.4 shows as previous masking is no more effective. In fact, there is

a randomized PG (first row) composed by [CLB{0,0},CLB{0,1},CLB{1,2}]. Since

the tamper is unique (CLB{0,1}), the ORA unit can detect it producing a non-zero

PV. In this example, randomization doesn’t involve CLBs implementing parity

functions. This solution is not robust since it exposes details about the random

mapping. More in detail, a malicious adversary can reverse engineering the map-

ping r by inserting an unique tamper in a CLB and observing what parity functions

are involved in the error detection. For instance, if we insert a tamper in CLB{0,2}
then we can observe a detection with PG involving parity functions CLB{1,3} and

CLB{3,2}. We can deduce a correspondence with row 1 and column 2 (in other

words, r(1,2) = {0,2}). A simple way around to this drawback involves the shuf-

25

CHAPTER 2. STATE OF THE ART

fling of the parity functions placement. We can extend the random mapping in

order to include not only the PGs but also the parity functions. Subsequently,

we need to replace each CLB according to the random mapping r disrupting the

optimal FPGA circuit placement calculated during P&R phase.

We can analytically determine what it is the robustness of the presented ran-

dom mapping technique. Intuitively, it is virtually impossible for an adversary to

determine the randomized embedding since he needs to exhaustively analyze an

huge set of combinations. Moreover, we can decide to map our random function r

using a different domain H ′×V ′ of cardinality m′×n′ (this represents a different

2D ECC parity scheme) where m′n′ ≥ mn (in order to cover all the original base

FPGA array). For this reason it is necessary to explore all the possible subsets of

CLB, verifying that a CLB is the parity function of the others. This means a time

complexity of O(2mn) so reverse engineering is virtually impossible considering

the current FPGA devices size. Taking as reference architecture the Xilinx Virtex

4 [12], we have a CLB array of size 64× 24 that corresponds to 21536 possible

subsets of CLBs.

2.4 Tamper masking analysis

We have previously depicted a masking scenario for which four errors/tampers

inserted in 2× 2 submatrix remain undetected by the 2D ECC parity scheme.

We can generalize the definition of masking by referring to all the set of similar

cases in which multiple bit errors are not detected. Considering a parity group

PG composed by CLBs, its parity is calculated and verified over an entire set of

test vectors TVs producing an unique parity vector PV. We denote this computa-

tion as XORt−1
i=0 fi, where f0, f1, . . . , ft−1 are t output functions composing the PG.

Suppose now to insert tampered functions f̂0, f̂1, . . . , f̂t−1 inside the PG. We can

define the masking as

XORt−1
i=0 fi = XORt−1

i=0 f̂i

meaning that both the original and the tampered PVs correspond.

As we can imagine, it is not trivial to tamper a function in order to produce

26

CHAPTER 2. STATE OF THE ART

a masking (it is necessary to consider all the input combinations). Intuitively, we

can restrict our search space only to certain tamper insertion patterns that may be

advantageous for masking goal. Two possible approaches are :

• After we have discovered a set with even cardinality s of equivalent func-

tions f0, . . . , fs−1 inside the PG, we substitute them with copies of a new

tampered functions f̂ , remembering that a⊕a= 0. Thus we obtain XORs−1
i=0 fi =

XORs−1
i=0 f̂ = 0.

• We simply substitute an even number s of output functions inside the PG

with their inverses, according with boolean property a⊕b = ā⊕ b̄.

This latter masking pattern suggests a simple approach to mystify the ECC

parity by just complementing the entire set of CLB outputs. This works only with

the assumption of a PG composed by even elements since ECC parity is capable

of detecting odd errors (according with boolean property a⊕ b⊕ c 6= ā⊕ b̄⊕ c̄).

This simple approach can be circumvented by embedding a m′×n′ 2D ECC parity

scheme with at least one odd dimension. It might be argued that an adversary can

still arbitrarily insert an even number of complemented functions or substitute

an even number of equivalent functions for each intersecting PG. However, the

randomized 2D ECC parity scheme makes this task very difficult since each PG

intersects each other in complex ways and the adversary has no knowledge of the

embedded random mapping.

Consider now a scenario in which two generic tampers are inserted in two

different functions f1 and f2 inside the same PG. It is reasonable to assume that it

is extremely difficult to arbitrarily tamper f̂1 and f̂2 in order that f̂1(I)⊕ f̂2(I) =

f1(Ir)⊕ f2(Ir) for each input vector I, at least without using the previous tampering

patterns. Thus, it appears the only viable way to induce masking is to randomly

insert an even number of the aforementioned two types of tampers, hoping to

guess a valid masking placement.

It is clear how an even number of tampers is a necessary condition for mask-

ing. A sufficient condition is instead represented by an even number (also includ-

ing the case of zero) of tampers inserted in each PG. From this consideration, we

27

CHAPTER 2. STATE OF THE ART

can roughly quantify which is the probability of masking using a random inser-

tion strategy. According to what previously seen, it might be argued that four is

the exact number of tampers for which we have more probability of masking. In-

tuitively, any number different from a multiple of four means a certain detection

(so zero probability of masking) whereas any multiple of fours leads to a lower

probability since it involves a greater number of random insertions

We denote the probability of masking as pmask. In simple words, we need to

calculate the probability that four tampers are placed in a 2× 2 submatrix which

corresponds to
(m

2

)
×
(n

2

)
/
(mn

4

)
= O((m2n2)/(mn)4) = O(1

(mn)2), where the nu-

merator represents the exact number of 2×2 submatrix over the all possible ways

in which four tampers can be randomly distributed all over the base FPGA array.

Referring again to the Xilinx Virtex 4 architecture [12], each CLB may have t

used outputs (more than a single output considered in our explanation for the sake

of simplicity) on which we apply a 2D ECC parity scheme. We choose a square
√

tmn×
√

tmn mapping in order to minimize the pmask. Thus we obtain

pmask =

(√
tmn
2

)2

/

(
tmn

4

)
.

Considering that each CLB has 28 outputs and assuming roughly 70% of the out-

put are used (t ≈ 20), a 160× 160 scheme is mapped to the outputs and pmask ≈
1.8×10−8. This conclusively shows how a randomized 2D ECC parity schema is

robust against tamper/Trojan insertions.

2.5 Random parity polarities

We have just seen as a randomized 2D ECC parity schema is capable of protecting

against tampers inserted in the PGs as well as any malicious alteration of the parity

functions. Despite this property, there is still a weak chain link in the overall trust-

checking technique regarding the surrounding trust-checking hardware circuits.

Suppose that an adversary has knowledge of the design placement (in particular

of the ORA or the TPG). In this scenario, he can easily address his attack to these

trust-checking circuits, breaking the entire technique reliability. There are two

28

CHAPTER 2. STATE OF THE ART

simple ways in which an attack can be implemented. The first one targets the

TPG unit in order to skip a certain test vector I which stimulates and exposes

the inserted tamper to the 2D ECC parity schema. The second one is concerned

with the ORA unit in order to reconfigure its functional output as a zero function

and produce an immutable zero vector which hides each tampering. As we can

observe, the trust-checking technique fails in both the cases.

The way around to the previous attacks consists of randomly changing the po-

larity (even or odd) of the parity function used to calculate the expected parity vec-

tor. Until now, we have exclusively used an even parity function which produces

a zero parity vector PV = [0,0, . . . ,0] as ORA output supposing a tamper-free

FPGA circuit. We shuffle the expected PV by assigning a random parity function

to each different test vector Ii in the exhaustive TVs sequence S = [I0, I1, . . . , I2n−1]

where n is the number of bits in a TV . For instance, an arbitrary assignment can

correspond to an expected PV similar to PV = (1,0,0,1 . . . ,0,1). This second

level of randomization doesn’t imply additional overhead since the random parity

function simply substitutes the even parity function. Consider an arbitrary parity

group PGi composed by t outputs. We describe the random polarity assignment

related with PGi using a function Peven that is true for those TVs chosen to have

even parity and false otherwise. Moreover, we require both the even-parity func-

tion Oeven (XORt−1
i=0 fi) and the odd-parity function Oodd (XNORt−1

i=0 fi). Finally,

the random parity function Orandom is expressed as

Orandom = PevenOeven +PevenOodd

This multiplexed expression permits to obtain a random PV rather than a zero

vector. The remaining trust-checking hardware remains unchanged. The ORA

still calculates an even parity but the inclusion of the presented random parity

function generates an expected PV with random polarities.

We can proof that this technique is effective against both TPG and ORA tam-

per insertions, resulting in a negligible masking probability. We define pt pg−clb
mask as

the probability that a tampered TPG can hide a tamper inserted in the CLB array.

As mentioned, this attack requires a tampered TPG which produces a modified

TVs sequence S′ in order to skip TVs which stimulates CLB tampers. Using a

29

CHAPTER 2. STATE OF THE ART

random approach, the probability of guessing the correct parity (odd or even) for

an arbitrary TV is obviously 1/2. Suppose that sequence S′ differs from the orig-

inal S for a certain number d of TVs. Given a parity group PGi, we have 1
2d as

probability that d changes will be undetected by the ORA. Moreover, the tam-

pered TPG will stimulate all the parity groups {PG0,PG1, . . . ,PGg−1} in the 2D

ECC parity scheme so we can assume that masking probability is

pt pg−clb
mask =

g−1

∏
i=0

pt pg−clb
mask (PGi) =

1
2g·d ≤

1
2g .

Considering again the Xilinx Virtex 4 architecture [12], we have a 64× 24 CLB

array that implies pt pg−clb
mask ≤ 1

288 , an astronomical minuscule value.

Suppose now to replace the ORA (even parity calculation) with an arbitrary

function in order to produce the correct PV and hide a CLB tamper insertion. We

define this masking probability as pora−clb
mask (PGi). A CLB tamper can be masked

only if we guess the right random polarity (even or odd) associated with one

or more particular TVs that normally lead to tamper detection during the trust-

checking. Moreover, the tampered ORA still need to verify the remaining TVs.

During this checking, it should behave as normal, not producing erroneous re-

sults (interpretable as tamper detection). From these considerations, a differential

equation arises and its solution is extended in order to consider all the PGs

pora−clb
mask (PGi)≤

1
2g·2n

where n is the number of TPG bits and g is the number of PG. Again, we obtain a

negligible probability for the Xilinx Virtex 4 architecture.

2.6 Trusted FPGA design flow

The conventional FPGA design flow needs to be redefined in order to protect the

FPGA circuit with the presented randomized 2D ECC parity technique and in

order to finally implement a trusted FPGA design flow. Some underlying assump-

tions are necessary. First of all, we assume that the base FPGA array is trusted

thanks to the aforementioned separation principle. We assume to have a genuine

30

CHAPTER 2. STATE OF THE ART

circuit description expressed using an Hardware Description Language (HDL)

such as VHDL [26] or Verilog [27]. Moreover, we assume that every EDA tools

involved in the trusted FPGA design flow is specifically designed for security-

critical hardware as suggested in [18]. This assumption is necessary since flawed

tools at early design stages can introduce tampers or Trojans before the presented

ECC-based technique is applied. Since the trust-checking mechanism is based on

a comparison with an expected PV representing the genuine circuit functionality,

we require that conventional EDA steps (logic synthesis, technology mapping,

placing and routing) produce an early genuine FPGA design on which we can

subsequently add trust-checking structures. In other words, this assumption fixes

a trusted functionality comparison that can be used in order to detect tampering or

Trojan injections during system integration, during device programming or during

FPGA circuit operation on the field.

Figure 2.5 presents a trusted FPGA design flow as an enrichment of the con-

ventional FPGA design flow. We can observe three distinct macro steps. In the

first one, security-critical EDA tools take an high level design and synthesize an

FPGA circuit composed by CLBs and routing routes. This step is necessary since

the presented randomized 2D ECC parity technique is specifically tailored for

FPGA circuits. The integration of trust-checking structures is done by a second

step named trusted FPGA design phase. We begin with random mapping of the

PGs over the functional outputs of the reconfigurable elements. In [3] slices are

considered as basic configurable blocks since each CLB is a composition of them.

In any case, it is preferable to consider a more general approach based on generic

configurable functional outputs in order to easily adapt the technique to any FPGA

architecture. Moreover, unused FPGA area is configured as zero-functions and

included in the PGs in order to prevent Trojan injections. After random PG map-

ping, we introduce a second level of randomization by calculating a random parity

function for each PG. These functions along with the other trust-checking struc-

tures (TPG and ORA) are then synthesized using available reconfigurable area.

Finally, the trust-checking mechanism is embedded in the original FPGA circuit

according to different approaches highlighted in section 2.7.

31

CHAPTER 2. STATE OF THE ART

Figure 2.5: Trusted FPGA design flow

At last, we have a third phase in which the FPGA circuit is deployed in an

unsecure application field. Assuming that trust-checking structure are correctly

integrated, the deployed FPGA circuit has the on-chip capability of self-checking

its functionality in order to detect any tampering or Trojan injection with very high

probability according to the analytical results previously shown. A trust-checking

phase is periodically triggered from an external user which is then responsible

of comparing the expected PVs (one for each PG) with the PVs produced by the

trust-checking hardware and representing the functionality currently implemented

by the FPGA circuit. We assume that the expected PVs are calculated as random

32

CHAPTER 2. STATE OF THE ART

polarities during the trusted FPGA design phase and secretly stored by the user

along with the PGs mapping. Moreover, we assume a secure channel with strong

cryptography used to communicate the produced PVs. According to these as-

sumptions, an adversary doesn’t know the expected PVs and cannot embed them

in a fake circuit with different functionality. In other words, only a genuine FPGA

circuit can produce the expected PVs.

The trusted FPGA circuit is deployed as a monolithic bitstream containing

both the original FPGA circuit and the trust-checking components (parity func-

tions, ORA and TPG). This bitstream can easily be used in order to provide a

safe system integration. In this scenario, we may have multiple FPGA devices

and multiple bitstreams which are dynamically loaded on them. On each of these

bitstreams we can trigger an independent trust-checking phase in order to detect

any tampering or Trojan injection in the correspondent system component.

2.7 Embedding of trust-checking components

Before application deployment, we need to embed the trust-checking components

in the original FPGA circuit in order to implement the presented randomized 2D

ECC parity technique. Trust-checking hardware overhead has the advantage of

covering some of the unused CLBs, the sames that require to be configured as

zero-functions and included in the PGs in order to avoid Trojan insertions. For

this reason, FPGA resources may represent a constraint on the applicability of

the technique only in case of small FPGA devices or large trusted FPGA circuits.

However, dynamic and partial reconfigurability can overcome this constraint by

loading trust-checking components only when needed. Thus, we can identify

three different embedding approaches that expands the applicability of the trust-

checking technique by making use of the available FPGA device features.

2.7.1 Non Integrated Embedding

This approach known as Non Integrated Embedding (NIE) implies that no trust-

checking component is statically integrated on the device. In fact, only the original

33

CHAPTER 2. STATE OF THE ART

circuit is placed and routed onto the FPGA device whereas the parity functions,

the ORA unit and the TPG unit are dynamically configured only when a trust-

checking phase is needed. Depending by the available area, it is possible to verify

one PG at a time or multiple PGs simultaneously, speeding up the entire trust-

checking phase. In that case, we can share the TPG unit between all the PGs

whereas we need a separate parity function and ORA unit for each PG. More-

over, the FIE approach permits to reconfigure part of the original FPGA circuit

(the other PGs not under trust-checking) without requiring additional free CLBs

outside the FPGA circuit.

(a) FPGA circuit (b) Trust-checking phase

Figure 2.6: Non Integrated Embedding

Figure 2.6 depicts the NIE scenario during trust-checking phase. A partial dy-

namic reconfiguration permits to instantiate the trust-checking components nec-

essary to verify a single PG. Reconfiguring used CLBs we can virtually apply

the randomized 2D ECC parity technique to any FPGA device sufficiently large

to contain the original circuit. The only regard is to consider one or few PGs at

a time until all the FPGA is covered and to restore the original circuit when the

trust-checking phase ends.

34

CHAPTER 2. STATE OF THE ART

The great advantage of the FIE approach is that no area overhead is required

during the normal circuit working. In other words, there are no timing delays

since the trust-checking components are instantiate only when needed. Moreover,

the routing of the trust-checking is not statically embedded in the FPGA circuit

so an adversary have no possibility to steal the design and reverse engineering the

PGs composition. On the other hand, the NIE approach requires partial dynamic

reconfiguration, a feature that does not come for free since it is not offered by all

the FPGA families. When available, reconfigurability requires to disable bitstream

encryption opening a possible attack window related to active reading/writing of

the FPGA device. At last, the FIE approach slows down the trust-checking phase

since the added reconfiguration phase is intrinsically slow.

2.7.2 Partially Integrated Embedding

This approach known as Partially Integrated Embedding (PIE) is similar to the

NIE approach but supposes an FPGA device capable of reconfiguring just the

routing. The trust-checking components are synthesized and statically placed into

the unused CLBs along with the FPGA circuit. More in detail, it is necessary to

place all the parity functions, a TPG unit and a certain number of ORA units which

determines the number of PGs on which we can simultaneously apply the trust-

checking. In the normal working scenario, the programmable interconnection

network implements the original circuit whereas trust-checking components are

disconnected. When a trust-checking phase is requested, the connections around

one or more PGs are rerouted in order to implement the parity scheme. This

rerouting procedure is then iterated until all the PGs are checked for tampering.

Figure 2.7 depicts the PIE scenario. In Figure 2.7a, we see the FPGA circuit

along with trust-checking components placed but not routed on the right column

(for the sake of simplicity, we just consider the components necessary for check-

ing a single PG). The trust-checking phase is shown in Figure 2.7b. A routing

reconfiguration connects the TPG unit to the entire PG along with the correspon-

dent random parity function. Moreover, the ORA units calculates parities in order

to produce a PV and detect possible tampering in the current PG.

35

CHAPTER 2. STATE OF THE ART

(a) FPGA circuit (b) Trust-checking phase

Figure 2.7: Partially Integrated Embedding

The PIE approach shares some strengths and weaknesses with the NIE ap-

proach. However, it is only implementable with an FPGA device sufficiently large

to contain the original circuit along with the trust-checking components (as men-

tioned, they are statically placed). Moreover, the PIE approach offers a speed ad-

vantage compared to the NIE approach since reconfiguration only involves rerout-

ing and not CLB functionalities.

2.7.3 Fully Integrated Embedding

This approach known as Fully Integrated Embedding (FIE) embeds all the trust-

checking components along with the original FPGA design. Considering the

previous approaches, the switching between normal circuit working and trust-

checking phase is done using routing reconfiguration. In the FIE scenario, the

trusted FPGA circuit is fully placed and routed so we implement a structural

switching by the means of multiplexers. More in detail, each CLB input has a

2:1 multiplexer in order to disconnect the original circuit network and connect

the TPG. As the other trust-checking components, this 2:1 multiplexer is imple-

mented by means of the available FPGA area. On the other side, each CLB output

36

CHAPTER 2. STATE OF THE ART

has two additional fanouts in order to be connect to two ORA units corresponding

to its row PG and its column PG. The FIE approach offers hardware parallelism

to the trust-checking phase by the means of multiple placed and routed ORAs.

The alternative solution multiplexes one or few ORAs between all the PGs. How-

ever, this solution involves the use of large multiplexers so its hardware overhead

is comparable with the completely parallel solution, which is obviously better in

terms of speed.

Figure 2.8: Fully Integrated Embedding

Figure 2.8 shows a simplified FIE scenario where some CLBs implement mul-

tiplexers for switching between normal circuit working and trust-checking phase

(for the sake of simplicity, Figure 2.8 just shows the TPG connections). Moreover,

all the trusted components are already placed and routed on the FPGA device in

order to avoid reconfiguration.

The FIE approach has a considerable area overhead due to multiple ORAs and

to switching multiplexers. Moreover, there is an added timing delay since mul-

tiplexers are interposed in the circuit critical path composed by CLBs. Another

drawback is related with the embedding of PGs routing that can potentially be

37

CHAPTER 2. STATE OF THE ART

reversed, leading to a security issue for the entire ECC-based technique. How-

ever, the FIE approach has the main advantage of not requiring reconfiguration,

thus permitting implementation of the randomized 2D ECC parity technique over

a larger set of FPGA families. Reconfiguration is slow so the FIE approach has

an averagely faster trust-checking time, also thank to multiple ORA units. In ad-

dition, it is still possible to use bitstream encryption in order to avoid active read-

ing/writing of the FPGA device. Remote attacks can be undetected in the NIE

approach since the on-chip configuration bits may be overwritten during trust-

checking, similarly to scrubbing technique in [19]. This does not happen in the

FIE approach where detection may alert the system integrator in order to adopt

additional countermeasures such as shielding the system. Least but not least, the

FIE approach allows very easy trust-checking since the trusted FPGA circuit is de-

ployed as monolithic application and the user simply provides a triggering signal,

thereby avoiding the more onerous multi-reconfiguration trust-checking process

of the other approaches.

In this thesis we explicitly consider the FIE approach since it is the only one

that can be combined with bitstream encryption offering a superior level of pro-

tection and assuring a trusted FPGA design. There are several challenging de-

sign issues for the FIE approach, including keeping hardware and performance

overheads within acceptable limits or hiding PGs compositions. These issues are

tackled in the next chapters proposing structural and methodological innovations

that improve the ideas originally proposed in [3].

38

Chapter 3

An improved Fully Integrated
Embedding

The FIE approach represents the best solution from the perspective of trusted

FPGA design since it is the only embedding approach that can combine the effec-

tiveness of the randomized 2D ECC parity technique with the protection assured

by bitstream encryption. In fact, no sensitive military or commercial FPGA-based

applications is deployed without encryption, at least for protecting the underlying

IPs related with the circuit design. By the way, the basic FIE structure proposed

in [3] is still slightly raw for being efficiently implemented on a realistic FPGA

device. There are several challenging design issues, including keeping hardware

and performance overheads within acceptable limits. The heaviest contribution

to these overheads come from switching multiplexers which have an expensive

k-LUT implementation. Moreover, the circuit critical path doubles its length

due interposed multiplexers. Aims of this chapter is to address these problems

by proposing an improved Fully Integrated Embedding (iFIE) approach based on

structural and methodological innovations. Another worrying issue of the FIE ap-

proach is related with the monolithic trusted FPGA circuit deployed on the field.

In fact, it still embeds all the secret information on which the randomized 2D ECC

parity technique relies. Despite reconfiguration, the NIE and PIE approaches do

not offer a greater advantage since PGs composition can be inferred from routing

39

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

reconfiguration, an information which is stored as unencrypted bitstream in the

FPGA device memory. We propose a Reconfigurable Error Correcting Code (Re-

cECC) parity scheme capable of changing its composition at any trust-checking

phase, implying no static embedding in the deployed FPGA circuit. This novel

parity scheme is also robust against any kind of reply attacks involving PV theft.

The chapter is organized in the following way. Section 3.1 analyzes all the

sources of hardware and performance overheads which make the basic FIE im-

plementation very inefficient. Section 3.2 presents a first solution adopted by the

iFIE approach in order to drastically decrease the hardware overhead related with

multiplexers. In section 3.3 we introduce a slight modification of the structural 2D

ECC parity technique in order to avoid the use of parity functions and the conse-

quential hardware overhead. Section 3.4 presents the most important innovation

of the iFIE approach. Instead of considering single reconfigurable elements, we

apply functional trust-checking to more coarse-grained cone subcircuits in order

to avoid multiplexers on the internal connections. For this reason, a new cone

generation step is added in the trusted FPGA design flow. Finally, section 3.5

introduces the novel RecECC parity scheme and analyzes its advantages and ro-

bustness compared to the conventional 2D ECC parity scheme.

3.1 Hardware and performance overheads

The FIE approach cannot make use of reconfiguration so it implements the switch-

ing between normal circuit working and trust-checking phase by the means of 2:1

multiplexers. These hardware components, along with the other expected trust-

checking units, should be synthesized, placed and routed using the available re-

configurable FPGA area. Looking at the practical result, a single PG composed

by some CLBs will need several times its area for implementing the related trust-

checking mechanism, leading to a tremendous problem in terms of hardware over-

head. In other words, the basic FIE approach is not usable in practice since it is

inconceivable for the circuit complexity to be restricted to only a small fraction of

the available FPGA device area.

40

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

Figure 3.1: FIE structural overhead

Figure 3.1 gives us a rough idea of the overhead related with the FIE trust-

checking of a PG. For the sake of simplicity, we assume a very simple FPGA

architecture with 2-input CLBs capable of implementing any sequential or combi-

natorial trust-checking component (obviously, a 2:1 multiplexer should require an

additional input for selection). In the presented example, the trust-checking logic

needs so much as four times the CLBs composing the PG. Moreover, it might

be argued that the multiplexers represent the heaviest contribution due their ex-

pensive k-LUT implementation whereas other components can take benefit from

sharing. Differently from what happens in other approaches based on reconfig-

uration, the FIE structure also affects the circuit delay in its normal working. In

fact, the circuit critical path may traverse additional CLBs or some CLBs may

have additional output capacitance due to an increased fanout. In this section we

propose a detailed analysis regarding both hardware and performance overheads

introduced by the different trust-checking components.

41

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

3.1.1 Test Pattern Generator

The TPG unit is used for producing an exhaustive sequence of TVs in order to

verify the functionality of reconfigurable elements. In other words, the TPG is

composed by p lines and generates binary numbers from 0 to 2p− 1. For this

reason, its implementation simply consists of a sequential p-bit counter which

occupies a proportional number of CLBs. This hardware overhead may become

neglegible when an unique TPG is shared between all the PGs. Intuitively, during

a trust-checking phase we need that all the functional outputs inside a PG are

stimulated with the same PV. Considering two different row parity groups PGx

and PGy, there is a logic independency between the two trust-checkings. In other

words, we can stimulate PGx and PGy with different exhaustive TVs sequences

Sx and Sy. It might be argued that there is no counter-indication if we use the

same TVs sequence S for both the PGs. For this reason, we can simultaneously

connect an unique TPG unit to all the row PGs. Consequently, the overlapping

column PGs will be stimulated with the same TV sequence S. Again, there is no

counter-indication since the column PGs are logically independent. This finally

proves that it is possible to share an unique TPG between all the PGs.

The TPG unit does not introduce any performance overhead since it is nor-

mally disconnected from the original circuit by the means of multiplexers. On

the other hand, the TPG placement can produce a less optimized FPGA layout

compared to the scenario with only the original circuit. Moreover, the routing of

p lines from an unique TPG to every CLB may congest the programmable inter-

connection network. This scenario can be prevented by using multiple TPGs dis-

tributed over the entire FPGA layout. Their placement can follow an H-tree [28]

which is commonly used in Very Large Scale Integration (VLSI) design as a clock

distribution network and assures an uniform covering of the entire layout.

3.1.2 Output Response Analyzer

The ORA unit is used for calculating the even parity considering t functional

outputs f0, f1, . . . , ft−1 inside a PG and the correspondent random parity function

42

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

ft = Orandom. This calculation is done according to the formula

XNORt
i=0 fi

and produces the PV during the trust-checking phase. An even parity function is

essentially a combinatorial logic function of (t+1) variables easily implementable

by using k-LUTs. Depending by the FPGA architecture, each CLB contains one

or more of these programmable logic functions. Composing enough k-LUTs, we

can obtain an arbitrary (t+1)-input function such as the even parity function. The

hardware overhead in terms of k-LUTs can be calculated as

ORAovhd =

⌈
t

k−1

⌉
(LUT s)

This calculation has a simple derivation. Consider a single k-LUT implementing a

k-input function. In order to implement a larger function, we need another k-LUT

that will be connected to one of the available k inputs. This addition increases

the number of available inputs by k− 1 since k inputs are added but one is con-

sumed. From this reasoning, we can infer the aforementioned formula. Moreover,

the k-LUT circuit should be composed using a hierarchical structure in order to

minimize the ORA latency measured in traversed k-LUTs.

Figure 3.2: ORA unit implemented by k-LUTs

Figure 3.2 shows an example of ORA unit considering 2-LUTs and a PG with

43

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

t = 7. As we can see from the picture, the hardware overhead corresponds to

ORAovhd = d7/1e = 7. Moreover, we can calculate the ORA latency in terms of

k-LUTs as

ORAlatency =
⌈

logk(t +1)
⌉
(LUT s)

which corresponds to ORAlatency = 3 for the considered example. Obviously, this

latency does not affect the normal circuit working but only the trust-checking

phase where the logic signal traverses the ORA unit in order to produce the PV.

Each PG needs an ORA unit in order to perform the trust-checking. As men-

tioned, the best solution consists of a parallel implementation where multiple ded-

icate ORAs (one for each PG) are used. An alternative solution involves one or

few ORAs which are serially multiplexed between the PGs. We can show that the

parallel solution has a better hardware overhead. According to a k-LUT imple-

mentation, the total ORA overhead is proportional to

ORAsovhd ∝ g · t

where g is the number of PGs and t is the number of functional outputs inside a

PG. Regarding the serial solution, suppose to use an unique large multiplexer for

switching t lines between g different PGs. In other words, we have a t combina-

torial functions with hardware overhead proportional to

LargeMUXovhd ∝ (g+ log2 g) · t

where the logarithmic term is due to the selection inputs. Moreover, we need to

consider a shared ORA unit connected to the multiplexer outputs. These consid-

erations leads to the following disequation

g · t ≤ (g+ log2 g) · t + t

which proves that the parallel solution is generally better in terms of hardware

overhead. There are other reasons for which we prefer a parallel implementation.

First of all, it is possible to speed up the entire trust-checking phase thanks to

the hardware parallelism. Moreover, the serial architecture has a longer critical

path since the logic signal should traverse an additional large multiplexer. At last,

44

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

dedicate ORAs can easily fit a 2D ECC parity scheme with m 6= n whereas the

serial implementation has an intrinsic waste since half of the PGs will necessarily

use a shared ORA unit which is larger than necessary. For instance, in a CLB

array of size 64×24 the column parity is calculated using a 65-input shared ORA

whereas a 25-input ORA is sufficient.

Multiple ORAs introduce a marginal performance overhead in the original

FPGA circuit. More in detail, each functional output drives two additional fanout

corresponding to the parity calculation for a row PG and for a column PG. Again,

the ORA placement can produce a less optimized FPGA layout compared to the

scenario with only the original circuit. In order to produce and simultaneously

communicate multiple PVs, we need a certain number of available IOBs on the

FPGA device. If this is not possible, we can share a smaller number of IOBs by

using a memory buffer.

3.1.3 Parity functions

A random parity function Orandom is necessary for each PG in order to complete

the trust-checking architecture. We have seen that any combinatorial logic func-

tion can be implemented by the means of k-LUTs. A random parity function has

an input size of p variables where p represents the size in bits of the TVs which

exhaustively stimulate the functional outputs inside the PG. For this reason, we

can calculate the hardware overhead in terms of k-LUTs as

Parityovhd =

⌈
p−1
k−1

⌉
(LUT s)

This quantity needs to be multiplied by g in order to estimate the total hardware

overhead related with random parity functions.

The previous calculation assumes homogenous reconfigurable elements in terms

of active inputs. In the common scenario, a CLB can be configured in different

ways and each of them corresponds to different number of active inputs. For in-

stance, suppose that an FPGA circuit has half of its CLBs configured as 8-bit

functions and half configured as 16-bit functions. It might be argued that it is

possible to compose a PG with only 8-bit functions. Moreover, we can reduce

45

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

the hardware overhead for this PG by using an 8-bit random parity function. Ac-

cording to this reasoning, in [3] it has been suggested to partition the functional

outputs in terms of their complexity and to apply different 2D ECC parity scheme

in order to reduce the hardware overhead associated with parity functions. For in-

stance, in the given example we have a bipartition of 8-bit functional outputs and

16-bit functional outputs. We apply a first 2D ECC parity scheme where we only

consider 8-bit PGs. The TPG unit will stimulate these functional outputs with 8-

bit TVs (we connect 8 out of 16 available lines). A second 2D ECC parity scheme

is then applied to 16-bit PGs. Depending by the distribution of reconfigurable

elements into different functional classes, this approach may reduce the hardware

overhead. On the other hand, this functional classification decreases the mask-

ing probability as shown in [3]. In fact, we have an added constraint for which

four tampers must be contained in the same functional class in order to generate a

masking scenario.

The random parity functions do not directly introduce any performance over-

head in the original circuit since they are only connected with other trust-checking

components. By the way, the parity functions placement may produce a less opti-

mized FPGA layout compared to the scenario with only the original circuit.

3.1.4 Switching multiplexers

The switching multiplexers represent the most penalizing factor in terms of hard-

ware overhead. There are two underlying reasons for their heavy contribution.

The first reason is related with the k-LUT implementation of the switching mul-

tiplexers. As we have seen, a k-LUT is designed to implement an arbitrary k-bit

function and it can obviously be used for a 2:1 multiplexer supposing that k ≥ 3

(usually k ≈ 4,5). Considering that each CLB has a limited number of k-LUTs, a

multiplexer is expensive in terms of FPGA reconfigurable logic (much more than

ASICs). The second reason for an heavy multiplexer overhead is concerned with

the FIE structure which requires a 2:1 multiplexer in front of each functional input.

Considering a simple k-LUT function, we need so much as k additional 2:1 multi-

plexers in order to switch from normal circuit working and trust-checking phase.

46

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

Referring to the Xilinx Virtex 4 architecture [12], a typical circuit is composed by

slices containing two 4-LUTs and using an average of k≈ 7 active inputs. In order

to implement the FIE structure, we require three and a half slices which directly

leads to an unacceptable hardware overhead of 350%. This simple reasoning can

be validated by analyzing some circuits taken from ITC99 benchmarks [29].

Benchmark Circuit Size (slices) Multiplexer Overhead

b11 Scramble string 75 373.33%

b12 Guess a sequence 220 340.91%

b14 Viper processor 1275 358.98%

b15 80386 processor 1349 345.14%

b17 Three copies of b15 4106 344.40%

b20 Two copies of b14 2384 367.37%

Table 3.1: Multiplexer overhead

Table 3.1 shows how the average multiplexer hardware overhead is close to

the predicted one. For this reason, the basic FIE approach is limited to small

circuits which fit on a portion of the FPGA device. Another drawback of switching

multiplexers is concerned with the performance overhead. Each CLBs has a set

of multiplexers on its inputs so each circuit path lenght, included the critical ones,

is virtually doubled. In other words, we have have a performance overhead of

100%. Summarizing, the multiplexer overhead represents the most penalizing

contribution on which the proposed iFIE approach will focus the optimizations

3.2 Multiplexer sharing over common nets

The basic FIE approach counts for a 2:1 multiplexer placed in front of each func-

tional input leading to an huge hardware overhead. The iFIE approach introduces

a structural improvement in order to reduce the number of required multiplexers.

This optimization is based on some considerations about the assignment of the

TPG lines. Consider a functional outputs f inside a PG. The goal of the trust-

47

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

checking phase is to exhaustively verify all the 2p−1 truth table combinations of

f by the means of a structural 2D ECC parity scheme. It might be argued that

these truth table combinations can be verified in an arbitrary order. The TPG units

generates a TVs sequence from 0 to 2p−1. However, the current truth table com-

bination stimulated by the TPG depends by the assignment between TPG lines

and functional inputs [i0, i1, . . . , ip−1] for f . In other words, there exists t! possible

permutations and each of them corresponds to a different order in which the TVs

sequence exhaustively stimulates the truth table. Each permutation is logically

equivalent from the point of view of the trust-checking despite it may correspond

to a different sequence of logic values produced by f . Considering an entire PG

composed by t functional outputs, we have (p!)t possible TPG assignments and

thus (p!)t possible parity functions Oeven and Oodd . However, when the connec-

tions from the TPG to the functional inputs are permanently routed we end up with

precise parity functions Oeven and Oodd . These are then embedded in a random

parity function Orandom in order to implement the trust-checking mechanism.

Given two functional outputs fi and f j, it might be argued that any TPG lines

assignment is acceptable. Suppose that a functional input ii for fi and a functional

input i j for f j lie on the same net n. In other words, in the original FPGA circuit a

third functional output fk has ii and i j in its fanout by the means of a shared net n.

As we have seen, we can assign the same TPG line to ii and i j. This choice may be

beneficial in terms of multiplexer hardware overhead. According to the FIE struc-

ture, we should place a multiplexer in front of ii and a multiplexer in front of i j.

Since the two functional inputs ii and i j are driven by the same TPG line and since

both the outputs fi and f j are simultaneously verified during the trust-checking

phase, we can also share an unique multiplexer by placing it upstream on the net

n. Generalizing, we can share a multiplexer over any common net by substituting

the multiplexers placed in front of any functional input with an unique multiplexer

placed upstream on the net. An example of multiplexer sharing is shown by Fig-

ure 3.3. For the sake of simplicity, we consider CLB functional outputs with an

unique input.

48

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

(a) Input multiplexers (b) Net multiplexer

Figure 3.3: Benefit of sharing a common multiplexer

As we can see, f0, f1, f2 and f3 are driven by the functional output fk so

they have an input net in common. By placing upstream on the net a shared

multiplexer, we can reduce the hardware overhead by 75% (three multiplexers).

Referring to the Xilinx Virtex 4 architecture [12], a typical circuit have nets with

approximately an average fanout of 3.8. Applying the net multiplexer sharing, the

iFIE approach can reduce the multiplexers to (1/3.8)≈ 26%. In other words, the

hardware overhead drastically decreases from 350% to 91%. On the other hand,

there are no improvements concerning the performance overhead since the same

number of multiplexers is placed on every path, including the critical ones.

Suppose now that two functional inputs ii and i j for the same output f share

an input net n. Apparently this scenario may cause problem to the net multiplexer

technique since the two inputs are short-circuited to the same TPG line reducing

the range of input combinations. In other words, we are not anymore able to ex-

haustively verify the configuration of output f since we skip all the combinations

where ii 6= i j. However, this does not represent an issue from a functional point

of view. More in detail, the short-circuit between ii and i j is originally embedded

in the FPGA circuit network so no input combination can have ii 6= i j. A configu-

ration tamper for input combinations where ii 6= i j is not reachable in any case so

49

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

there is no effective functional modification in the FPGA circuit.

Sharing a TPG line between functional inputs introduces some constraints for

the overall TPG routing. Consider a set of distinct functional inputs [i0, i1, . . . , ip−1]

for an output f . In order to exhaustively stimulate f , we need a biunivocal map-

ping between p inputs and p TPG lines. It might be argued that we can easily

choose any biunivocal assignment for those inputs which are not included in a

shared net fanout. However, the remaining inputs have an added constraint for

which inputs in the same net fanout must share the same TPG line assignment.

This added constraint may lead to an unfeasible biunivocal TPG assignment, at

least using only p lines. An example of this scenario is shown by Figure 3.4.

Figure 3.4: Conflict in the TPG assignment

As we can see, there is a conflict in the TPG line assignment regarding the last

multiplexer. In fact, we cannot assign neither line 0 nor line 1 since both are not

a biunivocal assignment for f2 and f1. This conflict can only be solved by in-

creasing the TPG size. In other words, we insert an additional line 2 that will be

connected to the last multiplexer in order to solve the assignment conflict.

We can generalize the TPG assignment problem in terms of graph coloring

problem. We construct a graph where each node represents a net in the FPGA

circuit. We add an edge for each pair of inputs inside the same functional out-

put in order to represent the biunivocal constraint. Moreover, we add an edge for

each pair of inputs inside the same shared net in order to represent the sharing

50

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

constraint. Coloring this graph, we obtain a solution for the initial TPG assign-

ment problem since each distinct color represents a distinct TPG line. It might be

argued that the coloring solution requires at least p colors since each functional

output has p inputs. In case of more colors, we only require a larger TPG units de-

spite this increases the hardware overhead and the duration of the trust-checking

phase.

3.3 Trust-checking without parity functions

The basic FIE approach proposes a structural 2D ECC parity scheme where each

parity group calculates its current parity. This value is then compared with the

expected parity value produced by a random parity function in order to produce

zero (even polarity) or one (odd polarity) in the output PV. Finally, we can detect

tampering or Trojan insertions by an off-chip comparison with the expected PV.

Intuitively, there is an intrinsic inefficiency in this approach since two similar

comparisons are performed at different stages.

The iFIE approach introduces an architectural improvement for which we sub-

stitute the off-chip polarity comparison with a parity comparison. In this way it is

not necessary to embed random parity functions in the trusted FPGA circuit. We

modify the trust-checking mechanism in order that the sequence of even parities

for a PG is contained by the correspondent PV. Thus, we perform an off-chip com-

parison with the expected PV representing the genuine parity sequence. In other

words, each parity function is fully described by an off-chip expected PV obtained

by algebraic manipulations or by simulation so there is no reason for a parity func-

tion to be implemented inside the trusted FPGA circuit. It might be argued that

this iFIE approach has robustness similar to random polarities. Assuming arbi-

trary CLB functions and random PGs, the expected PV can be considered as a

pseudorandom binary vector similar to a random polarity vector. For instance, PV

will be a vector of all 0’s (thus becoming equivalent to a non randomized scheme)

with very low probability. This is sufficient for saying that the trust-checking

mechanism remains robust against TPG and ORA tampering.

51

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

Figure 3.5: iFIE structural overhead

Figure 3.5 shows the immediate benefit in term of hardware overhead of the

iFIE structure which does not use embedded parity functions. More in detail, each

removed parity function corresponds to a saving of
⌈

p−1
k−1

⌉
k-LUTs where p is the

number of TPG lines. The total overhead benefit is then obtained by considering

all the PGs. Moreover, each ORA unit needs one less input so even their hardware

overhead slightly decreases to

ORAovhd =

⌈
t−1
k−1

⌉
(LUT s)

where t is the number of functional outputs in a PGs.

Without parity functions it is easier to apply the ECC-based technique since

we can avoid the functional classification outlined in section 3.1. Given n func-

tional outputs, we construct a squared 2D ECC parity scheme with size
√

n×
√

n.

We can analytically show that a squared scheme minimizes the mask probability

pmask. Suppose to have a parameter a that determines a 2D scheme of size a× n
a

over n functional outputs. According to section 2.4, we can calculate the masking

52

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

probability as

pmask =

(a
2

)
·
(n/a

2

)(n
4

) =
a(a−1)

2 · (n/a)(n/a−1)
2(n

4

) =
n

4
(n

4

)[(a−1)(n/a−1)
]

In order to calculate the pmask minimum, we consider the derivative

d pmask

da
=

n
4
(n

4

)[(n/a−1)(a−1)(n/a2)
]
=

n
4
(n

4

)[an−a2−an+n
a2

]
Setting d pmask/da = 0, we obtain a =

√
n. This proves that a squared 2D ECC

parity scheme of size
√

n×
√

n minimizes the masking probability pmask. The

iFIE approach will always use a squared mapping in conjunction with PGs ran-

domization. We can estimate the total hardware overhead associated with the

ORA units. It might be argued that given a
√

n×
√

n scheme the PG size in terms

of functional outputs is t =
√

n whereas the number of PGs is g = 2
√

n. Substi-

tuting these parameters in the formula proposed in section 3.1, we obtain the total

hardware overhead as

ORAsovhd = g
⌈

t−1
k−1

⌉
= 2
√

n
⌈√

n−1
k−1

⌉
(LUT s)

This shows a linear dependency O(n) between circuits size n in terms of func-

tional outputs and the total hardware overhead related with the ORAs units. In a

real implementation of the iFIE approach we have a slightly large hardware over-

head since the unused CLBs and their functional outputs are included in the 2D

ECC parity scheme in order to avoid Trojan insertions. It might be argued that

this inclusion increases the scheme size as well as the ORA overhead. On the

other hand, these outputs configured as zero functions do not require multiplexer

overhead since they are not involved with the switching between normal circuit

working and trust-checking phase. At last, we should say that hardware overhead

increasing related with unused CLBs can be considered negligible since it intrin-

sically helps to cover those unused functional outputs otherwise target for Trojan

injection.

53

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

3.4 Cone-based iFIE approach

We have seen that the switching multiplexers have the heaviest contribution in the

hardware overhead associated with the basic FIE approach. The iFIE approach

introduces the idea of net multiplexer sharing which approximatively reduces the

overhead to 91%. However, this result is still not very reasonable since there is

substantial room for improvement. For this reason, we propose a novel efficient

iFIE structure to realize an ECC-based functional trust-checking architecture that

considers more coarse-grained functionalities than simple CLB outputs. The intu-

itive rationale is to compose CLBs and avoid multiplexers on internal connections

since the switching between normal circuit working and trust-checking phase is

already done at the upstream inputs. This idea may be beneficial not only for

the hardware but even for the performance overhead since less multiplexers are

interposed on the circuit paths.

It might be argued that an exhaustive verification applied to a large function

f can be as effective (in terms of trust-checking) as verifying the several fine-

grained subfunctions from which f is composed. Suppose that there is a tamper

in a subfunction fi. This tamper may or may not be detected from an exhaus-

tive trust-checking over f . While the first scenario is desirable, the second one

seems to be problematic. However, if the truth table for the overall function f

is unchanged and no functional modification is detected by the exhaustive trust-

checking then we can simply ignore that tamper. In other words, the modification

in the subfunction fi produces some changes in the intermediate logic values but

these are not propagated to the functional output f . For instance, suppose to have

a logic function f = (f1 · f̄1) + f2 = f2. We can insert a temper in f1 but the

overall logic function remains f = (f̂1 · ¯̂f1) + f2 = f2. A successful functional

trust-checking at a certain granularity level is sufficient for assuring with very

high probability that no modification affects the higher level functionalities. This

underlying property permits to consider larger functionality in our iFIE approach

without loosing the capability of providing a trusted FPGA circuit. On the other

hand, a failed trust-checking phase is a necessary but not sufficient condition for

having a functional modification in the overall circuit. For the sake of security, we

54

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

consider any circuit which does not pass a trust-checking phase as not trustworthy

since a tampering (successful or not) has occurred. In this scenario, a fine-grained

approach can be useful for detecting a wider set of attempted attacks. This advan-

tage is heavily counterbalanced by a large hardware overhead associated with the

switching multiplexers. For this reason, the iFIE approach reasonably chooses to

use more coarse-grained functionalities.

3.4.1 A more general CLB functional model

CLBs are the reconfigurable hardware units used to build combinatorial or se-

quential logic functions. In some FPGA architectures, a CLB can further be de-

composed in more elementary units known as slices containing LUTs, registers,

carry chains or large multiplexers. Figure 3.6 shows an example referring to the

Xilinx Virtex 4 [12] architecture where a CLB is composed by four slices and two

of them can even be used to implement a distributed RAM or a shift register.

Figure 3.6: Arrangement of slices within a CLB

Intuitively, a slice can be modeled as a set of inputs i0, i1, . . . , iα−1 and a set of

functional outputs f0, f1, . . . , fβ−1. Depending on the slice configuration, each

output implements a certain function of a certain subset of inputs. Usually a

55

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

dependency can be described in terms of k-LUTs so it is sufficiently general in

order to model predetermined functions such as a carry chain or a multiplexer.

Moreover, a functional output f can be sequential when the correspondent output

flip-flop is configured as active.

This functional model generalizes the idea of slice in order to avoid depen-

dency on any specific FPGA architecture. Moreover, it depicts a very intuitive

way for composing large functionalities as needed by the iFIE approach. Given

a functional output f , we can consider another functional output fi which is con-

nected to one of its inputs by the means of a net. Thus, we can compose a large

functionality still corresponding to output f but having as inputs the union of both

f and fi input sets. An example of composition is presented by Figure 3.7.

(a) Slice composition (b) Functional graph

Figure 3.7: Functional model of slices

We can describe every FPGA circuit in terms of basic functional elements or

technology-mapped slices. In Figure 4.3a it is presented a simple circuit com-

posed by two slices where functional output f0 has i0 and i1 as inputs and func-

tional output f1 has i2 and i3 as inputs. According to the circuit connections, we

can compose a larger functionality f0 depicted by the functional graph in Figure

4.3b. As we can see, each node in the graph corresponds to a net (input or out-

put) in the circuit whereas each edge represents a functional dependency between

two of these nets by the means of a conveniently configured slice. Moreover,

the dashed nodes represent the input nets for the overall functional output f . It

56

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

might be argued that f0 and f1 may even belong to the same slice assuming slice

with multiple functional outputs (for instance, multiple k-LUTs). However, the

presented functional model is sufficiently general in order to deal with complex

scenarios since each functional output f is independently considered along with

its inputs and connections with other functional outputs in the circuit. At last, the

randomized 2D ECC parity scheme can trivially be applied to this model since we

basically focus on a set of functional outputs.

3.4.2 Cone structures

The concept of functionality trust-checking is substantially independent form the

granularity at which we decide to implement it. Considering a large combinatorial

circuit, we can directly apply the trust-checking to its Primary Outputs (PO) plac-

ing switching multiplexers on the circuit Primary Inputs (PI). Alternatively, we

can consider slice-grained functional outputs. However, this scenario is very ex-

pensive in terms of hardware overhead since each interconnection virtually needs

a switching multiplexer. This intuitive idea is further depicted by Figure 3.8.

(a) Slice-grained (b) Grained-grained

Figure 3.8: Granularity versus Multiplexers

57

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

As we can see, we can adopt a slice-grained approach by considering three sepa-

rate functional output (Figure 3.8a). However, a coarse-grained approach (Figure

3.8b) is preferable since it only uses four switching multiplexers instead of six.

According to these considerations, we introduce a novel iFIE architecture

where coarse-grained functionalities are constructed on the raw idea of cone struc-

tures. A cone is basically a functional tree associated with a slice output f that

describes its dependency from other intermediate functional output selected ac-

cording to the circuit interconnections. Looking again to Figure 3.8b, we can

perceive a cone structure where a set of inputs merges into in an unique output f

passing through some intermediate functions. When an intermediate net has its

entire fanout within the cone we don’t need a multiplexer on it. In other words,

the switching multiplexers are only placed on the cone input set according to the

described dependencies. Cone structures are well-known for their application in

many EDA problems ranging from FPGA technology mapping [30, 31] to circuit

partitioning [32] and packaging [33]. In this thesis work we use the cone idea

in order to minimize hardware and performance overheads related with the ECC-

based iFIE trust-checking architecture.

A cone structure should be able to be exhaustively verified during a trust-

checking phase in order to implement a randomized 2D ECC parity scheme. Sup-

pose to have a combinatorial circuit. For each functional output f (also known

as cone seed), we can construct a cone rooted in f . According to the functional

model, we can expand the initial cone by including a functional output connected

to one of its current inputs. This expansion guarantees that the associated func-

tional graph is a Direct Acyclic Graph (DAG) where given the set of cone inputs

we can exhaustively verify the functional output f . Consider now a sequential

circuit in which one or more functional outputs have their flip-flops activated. In

this scenario, the proposed expansion policy does not guarantee to obtain a DAG

since we may have a closed loop over the sequential component. For this reason,

we should compose a cone in order to enforce the DAG condition on its functional

graph. It might be argued that a switching multiplexer provides a separation dur-

ing the trust-checking. More in detail, the cone inputs are connected to the TPG

58

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

lines so every circuit loop passing through a switching multiplexer is cut. In order

to represent this property and maintain a DAG structure in the functional graph,

we duplicate the node representing the functional output that causes the loop.

This copy is then used to represent an input placeholder for the TPG unit during

the trust-checking. Figure 3.9 shows an example of this technique.

(a) Cone (b) Functional graph

Figure 3.9: Loop cutting during trust-checking

As we can see, we have a circuit with a loop involving fq and f . However, we

can still construct a cone since the path from functional output f to the correspon-

dent cone input is cut during the trust-checking phase. An hypothetical functional

graph should include an edge from node f to node fq but the logical separation

permits to duplicate node f which is then added as cone input. This cutting strat-

egy must be applied in order to preserve the DAG structure of the functional graph

associated with the cone. Every time we expand a cone using a new functional

output, we check the loop condition. If the logical separation between an output

fanout and the correspondent input multiplexer can maintain the DAG structure

we accept the expansion otherwise we simply avoid that possible cone.

The presented DAG structure is necessary but not sufficient in order to verify

a cone containing sequential elements. Our goal is to virtually emulate a com-

59

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

binatorial stimulus of the functional truth table. In other words, for each TV

applied to the cone inputs we want to obtain the correspondent logic output which

is subsequently embedded in a parity calculation. This goal requires a correct

synchronization within the single clock cycle. A flip-flop can be considered as a

buffer which stores an intermediate logic value fin into the functional output fq.

Obviously, fin should be stable at the flip-flop input before the clock edge in order

to load the current fq and then propagate to the cone functional output f . Sup-

posing that the TPG unit is able to provide a TV during the opposite clock edge

respect to the flip-flop triggering and that the propagation delays to fin are suffi-

ciently small, we can calculate the cone functional output f within a single clock

cycle. It might be argued that this consideration is valid only if there is no path

with more than one flip-flop within the cone. More generally, we can assume that

a pseudo-combinatorial testing requires one clock cycle for the TV generation and

several clock cycles for the buffering depending by the longest sequential path in

terms of flip-flops within the cone.

The presented technique permits to verify the combinatorial functionality of

the cone. However, it is not effective against flip-flop insertion (activation) or

deletion (deactivation) within the cone. For this reason, we add an additional cone

constraint for which each path should have at most one flip-flop. Moreover, we

include the set and reset signals of each flip-flop in the set of the cone inputs that

are exhaustively verified. Suppose that a flip-flop is inserted in a sequential path.

It might be argued that this insertion add one delay cycle in the signal propagation

disrupting the output value for some TVs which should be processed in two clock

cycles (including TV generation). Similarly, if we delete a flip-flop basically we

have an intermediate fq which is not directly controlled by a set or reset signal.

During trust-checking, we certainly incur in an input combination for which fq

has an arbitrary value instead of being set (or reset). Regarding the addition of

a flip-flop on a combinatorial cone path, we need an additional control signal for

which is possible to disable all the flip-flop in the FPGA device. A disabled fq

with a fixed arbitrary value certainly disrupts some output values in the exhaustive

trust-checking which are subsequently detected by the randomized 2D ECC parity

60

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

scheme.

(a) Forbidden sequential path (b) Accepted sequential path

Figure 3.10: Sequential cones

Figure 3.10a shows an example of incorrect cone where there exists a sequential

path traversing two flip-flops (slice 2 and slice 0). Potentially, we can insert a

flip-flop in slice 1 without detection during the trust-checking phase. On the other

hand, Figure 3.10b shows a correct cone where an unique sequential path has a

single flip-flop (slice 2). As we mentioned, this scenario permits to detect every

type of flip-flop insertion or deletion within the cone. Summarizing, during cone

expansion we must enforce the presented sequential path constraint along with

the other DAG constraint in order to provide an exhaustively testable structure. In

other words, if an expansion creates a forbidden sequential path as Figure 3.10a

then we discard that possibility selecting other alternatives (for instance, we limit

our cone to slice 0 and slice 1).

At last, the presented cone-based iFIE approach offers a partial protection

against interconnection tampering. More in detail, the cone functionality also

depends by its internal interconnections. For this reason, we are able of detecting

any routing tamper within the cone during trust-checking, an added capability

compared to a fine-grained approach as the basic FIE.

61

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

3.4.3 Cone-based trusted FPGA design

A coarse-grained approach introduces certain advantages in terms of hardware

and performance overheads. In this novel scenario, the random PGs are directly

composed by considering cone functional outputs. We have discussed about the

rationale behind the cone idea and the constraints necessary for assuring cone

testability. Here, we propose a detailed analysis of the cone circuit design.

An important design issue is related with finding an optimal cone size. In-

tuitively, a large cone has the advantage of having a large number of intercon-

nections which do not need switching multiplexers. Just to clarify, suppose to

have a combinatorial circuit with single fanout nets and a single output f . In this

simplified case, there exists a cone that covers the entire circuit in order that all

the internal connections do not need switching multiplexers. We only require a

mandatory set of multiplexers on the primary inputs in order to connect the TPG

unit. It is straightforward to prove that this scenario is optimal in terms of hard-

ware overheads. Suppose that the combinatorial circuit has p primary inputs and

consider a solution composed by c cones. In addition to the p switching mul-

tiplexer on the primary inputs, this solution has c− 1 intermediate multiplexer

placed at the cone outputs in order to implement the separation between cones

during trust-checking. It might be argued that

p≤ p+ c−1

so the solution with an unique cone is optimal in terms of multiplexer overhead.

Another advantage of large cones is related with ORA overhead. Intuitively,

coarse-grained functionalities decrease the number of functional outputs to ver-

ify by the means of the trust-checking components. Supposing that the initial

circuit has n functional outputs and that each cone covers an average of l outputs,

we should apply the ECC-based technique to n/l functional output reducing the

2D scheme size to
√

n/l×
√

n/l. According to the previous considerations about

trust-checking without parity functions, the total ORA overhead is calculated as

ORAsovhd = 2
√

n/l

⌈√
n/l−1
k−1

⌉
(LUT s)

62

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

In others words, the trust-checking hardware overhead scales down by a factor l

representing the cone size.

On the other hand, large cones also have drawbacks. First of all, decreas-

ing the number of functional outputs in the 2D ECC parity scheme increases the

masking probability pmask. We have seen that pmask has a magnitude in the or-

der of O(1/n2) where n is the number of functional outputs. Referring to cones

with average size l, we have a quadratic scale-up factor that increases the mask-

ing probability to O(l2/n2). Intuitively, if l� n then pmask is sufficiently small.

Another important drawback is concerned with the TPG unit. Intuitively, large

cones have a lot of inputs and consequently a large TPG unit is required in order

to exhaustively verify all the input combinations. More in detail, the largest cone

in the circuit determines a lower bound on the number of necessary TPG lines (we

have seen that the actual TPG size is decided after graph coloring). An unique

TPG unit can be shared between all the PGs so its hardware overhead has a little

overall impact. On the other hand, the number of TPG lines affects the routing

and the trust-checking duration. Regarding the routing, an higher number of T PG

lines may saturate the programmable interconnection network used to implement

the trusted FPGA circuit. Regarding the trust-checking duration, generating all

the possible combinations requires an exponential O(2p) amount of time where p

is the TPG size in bits. Supposing that an FPGA device has a clock of 200MHz,

we can estimate the trust-checking phase duration for different p sizes as reported

here in Table 3.2.

TPG size Trust-Checking Duration

16 655 µs

20 10.5 ms

24 167 ms

28 2.68 s

32 42.9 s

Table 3.2: Trust-checking phase duration

63

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

Depending by the real-time application constraints, an FPGA circuit can suspend

its normal working for a limited amount of time. It seems reasonable to consider

an upper bound comparable with partial dynamic reconfiguration times in order

to maintain the speed advantage of the iFIE approach over the NIE approach. An

investigation on runtime partial reconfiguration in [34] reports an average times

on the millisecond scale. For this reason, we should not consider a TPG unit larger

than 24 bits. At last, the ECC-based trust-checking mechanism requires to store

an expected PV for each PGs in order to perform an off-chip comparison with the

PV produced by the trusted FPGA circuit. Considering 24 bits as maximum TPG

size, the expected PVs only require 64 KBytes for each of the 2
√

n/l PGs.

As we have seen, there are different design issues related with the cone size

in terms of inputs and in terms of covered interconnections. Moreover, we have

two constraints related with the DAG structure and the sequential paths which

practically limit the cone size. In this complex scenario, it might be argued that it

is not possible to provide an analytically optimal trade-off between all the afore-

mentioned design parameters. A reasonable approach consists of introducing a

maximum cone size in terms of inputs (or TPG size) and constructing the biggest

possible cone in terms of covered interconnections, always respecting the remain-

ing constraints. Heuristic approaches for cone generation and selection will be

presented in chapter 4.

The cone-based iFIE approach introduces some modifications into the trusted

FPGA design flow. Differently from what was proposed in [3], the conventional

EDA flow is not completed with placing and routing but rather we stop with a

technology mapped FPGA circuit. In fact, these final design phases are post-

poned after the embedding of the trust-checking components in order to provide

a monolithic trusted FPGA circuit. Moreover, the first step of the trusted FPGA

design phase consists of generating and selecting the cones in order to minimize

hardware and performance overheads. The identified functional outputs are then

used to compose random PGs. As mentioned, the iFIE approach does not provide

a structural implementation for the parity functions since the parity comparison

is done off-chip. For this reason, the parity function truth tables are stored as ex-

64

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

pected PVs. All the mentioned modifications are summarized in the trusted FPGA

design flow presented by Figure 3.11. As we can notice, the deployment phase

remains almost unchanged. More precisely, we still perform a “blind” comparison

between a PV produced by the trusted FPGA circuit and an expected PV stored

off-chip. However, this comparison is no more focused on random polarities but

rather on pseudo-random parity sequences determined by the cone functionalities

and by the PGs compositions.

Figure 3.11: iFIE trusted FPGA design flow

65

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

3.5 Reconfigurable Error Correcting Code

The presented iFIE approach provides a more efficient implementation of the

ECC-based trust-checking mechanism. However, it still inherits some intrinsic

drawbacks of the basic FIE approach. First of all, the trusted FPGA circuit stati-

cally embeds both the cones composition and the random PGs mapping. Despite

bitstream encryption, a malicious adversary with a sufficient level of resources

can destructively inspect the FPGA device and stole the encryption key. Thus,

he can still reverse-engineering the circuit routing in order to discover the gen-

uine expected PVs. Another underlying drawback of statical embedding is con-

cerned with the necessity of a secure channel between the FPGA circuit and the

user in order to complete the trust-checking. It might be argued that this secure

channel can still be bypassed through reverse-engineering in order to disclose the

expected PVs. These considerations highlight a vulnerability to reply attacks for

the ECC-based trust-checking mechanism . Suppose that the adversary knows the

expected PVs. A malicious FPGA circuit can circumvent the ECC-based trust-

checking mechanism by configuring part of the FPGA device as combinatorial

circuits capable of producing genuine PVs. In other words, we maliciously im-

plement the correct parity functions in order to produce the expected output for a

trust-checking phase. A visual example of replay attack is given by Figure 3.12.

Figure 3.12: Replay attack

66

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

As we can see, part of the device is occupied by an FPGA circuit compromised

by a Trojan whereas the other is used for implementing the parity functions (alter-

natively, we can implement an unit which reads the expected PVs from an external

memory). It might be argued that any circuit capable of producing genuine PVs

is consider “trustworthy”. For this reason, the ECC-based trust-checking mecha-

nism fails against reply attacks. Using random polarities cannot resolve the prob-

lem since we can still embed PVs corresponding to random polarity vectors. We

may assume that encryption alone is sufficient for both bitstream protection and

channel transmission. However, an adversary can still eavesdrop the encrypted

channel. It might be argued that an encrypted message can be captured and reused

later for further deceptive trust-checking, at least with an encryption protocol that

does not use random keys. In other words, a replay attack can directly embed the

encrypted message in the FPGA circuit since this is always the same. As men-

tioned, a more complex encryption protocol can partially solve the replay attack

issue. However, it is still virtually possible to eavesdrop the expected PVs on the

communication line between the trusted FPGA circuit and the encryption unit,

especially in a PCB system where different chips are used. At last, it might be

argued that the added hardware overhead is not an issue for replay attacks. In fact,

we can eliminate all the ORA units and substitute the released FPGA area with the

needed parity functions since these latter have a comparable hardware overhead

estimable as

Replayovhd = 2
√

n/l
⌈

p−1
k−1

⌉
(LUT s)

where n is the number of functional outputs, l is the average cone size and p is the

TPG size.

According to the previous analysis, replay attacks are successful because the

routing of cones and random PGs is intrinsically embedded in the trusted FPGA

circuit. We propose a novel challenge-response trust-checking protocol known

as Reconfigurable Error Correcting Code (RecECC) which immunizes the sys-

tem from replay attack and also offers astronomically small masking probability

pmask. The underlying idea is concerned with not embedding any fixed PG routing

but rather using a different random PGs composition at each trust-checking phase.

67

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

This idea has the clear advantage of being robust against the reverse-engineering

of routing. In fact, an adversary can only retrieve the cones composition which is

not sufficient to disclose the PVs. On the other hand, a variable PGs composition

make useless the embedding of a fixed set of parity functions. In fact, a reply

attack always produces the same PVs whereas the RecECC technique continu-

ously changes PVs at each trust-checking phase. Moreover, since the number of

possible PGs mappings is astronomically large there is no way of embedding all

the possible PVs. For these reasons, we can assume that the RecECC technique

immunizes the trusted FPGA circuit from reply attacks.

The RecECC technique can be integrated in the iFIE trust-checking by the

means of a structural modification of the ORA unit. Considering a logic value

involved in a parity calculation, we can exclude it by using a masking AND gate.

More in detail, given t functional outputs f0, f1, · · · , ft−1 we mask a functional

output fi from a parity calculation by connecting fi to an AND gate. It is easy to

prove that

XOR j 6=i
[

f j
]
+ fi ·1 = XORt−1

j=0
[

f j
]

and that

XOR j 6=i
[

f j
]
+ fi ·0 = XOR j 6=i

[
f j
]

In other words, when the masking is disabled (logic value one) the parity calcu-

lation includes all the functional outputs whereas when the masking is enabled

(logic value zero) fi is excluded. Extending this reasoning to all the n functional

outputs, the RecECC technique introduces a masking array composed by n AND

gates, one for each functional output. Moreover, a n-bit shift register is used to

store the masking configurations for all the n AND gates. At last, a large ORA

unit with n inputs calculates the parity functions over all the masking gate out-

puts. Loading a bit sequence in the shift register can virtually create an arbitrary

PG composed by the enabled functional outputs (logic value one). Thus, we can

obtain the correspondent PV by exhaustively testing all the input combinations

through the large ORA unit. During this trust-checking phase, the iFIE architec-

ture stimulates all the available functional outputs thanks to the provided hardware

parallelism. However, only the not masked outputs (in other words, the PG) will

68

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

contribute in the PV calculation. The proposed RecECC architecture is shown by

Figure 3.13.

Figure 3.13: RecECC architecture

As we can see, the shift register bits correspond to a masking configuration

for the AND array in order to decide the PG composition in terms of functional

outputs. The RecECC technique permits to configure an arbitrary PG and to cal-

culate its parity. This feature is then exploited in order to apply a 2D ECC parity

scheme with variable mapping. We introduce a request-response trust-checking

protocol for which the user loads a bit sequence for a specific PG in the shift reg-

ister and then obtains the correspondent PV. Supposing to have an unique large

ORA unit, this procedure is serially repeated until all the PGs are verified. It

might be argued that each trust-checking phase can have a different PG mapping

depending by the loaded bit sequences. For this reason, the RecECC technique is

immune to replay attacks. The off-chip PVs comparison is slightly more complex

than the case of fixed PGs mapping where we simply store the expected PVs. In

fact, this approach is not feasible in case of reconfigurable PGs since we have an

astronomically large number of possible mappings (and consequently PVs). For

this reason, we should calculate the PV at run-time by the means of a simulation.

More in detail, we have a description for all the functional outputs (cones) so we

69

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

can dynamically compose a PG and calculate its expected PV in order to perform

an off-chip comparison with the response PV provided by the trusted FPGA de-

vice. The proposed RecECC request-response protocol is shown by Figure 3.14.

Figure 3.14: RecECC protocol

Alternatively, we can still store a considerable number of precomputed PGs map-

pings (for instance 100). During the trust-checking, we limit the possible requests

to these mapping and we simply perform a comparison with the produced PVs.

This approach can avoid reply attacks provided that the amount of different PGs

mapping is sufficiently large in order that no FPGA device can implement all the

different possibilities.

The hardware overhead associated with the RecECC technique is surprisingly

comparable with a fixed mapping scenario. Considering cone-based functional-

ities, we have a total of n/l functional outputs where n is the number of slice-

grained functional outputs of the original FPGA circuit and l is the average size of

a cone. Moreover, we have n/l additional bits related a the masking shift register.

We can consider the AND array and the ORA unit as an unique large combina-

torial function with 2n/l inputs. According to k-LUT implementation, we can

calculate the hardware overhead of the RecECC technique as

RecECCovhd =

⌈
2(n/l)−1

k−1

⌉
(LUT s)

which is totally comparable with the overall ORA overhead calculated in section

70

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

3.4 for the cone-based iFIE approach

ORAsovhd = 2
√

n/l

⌈√
n/l−1
k−1

⌉
(LUT s)

As we can see, both are proportional to 2n/l. Intuitively, the RecECC technique

should have more hardware overhead due to its architectural complexity. How-

ever, we should consider that the RecECC trust-checking phase uses a serial ap-

proach for which the PGs are verified one at a time (this slows down the trust-

checking by a factor 2n/l). In other words, these considerations compensate with

one another so we approximately have the same hardware overhead initially asso-

ciated with the trust-checking units. On the other hand, the RecECC architecture

requires an additional (n/l)-bit shift register. However, the RecECC technique

has the added advantage of not requiring any encryption neither for request nor

for response. In other words, the released FPGA area can be used to implement

the shift register. From another perspective, we can consider the same RecECC

technique as an hashing code for which an input sequence (the PG composition)

of n/l bits is processed in order to produce another output sequence (the produced

PV) of 2p bits. It might be argued that the RecECC architecture is very flexible.

In fact, we can modify the ORA unit in order to implement an arbitrary hashing

code over the entire set of functional outputs. Moreover, the shift register may

still be used as random padding in order to avoid reply attacks.

In addition to protection against reply attacks, the RecECC technique offers

an astronomically small masking probability pmask. Considering a 2D ECC parity

scheme of size
√

n/l×
√

n/l, we have

(n/l)!
(
√

n/l)! · (
√

n/l)!
=

(n/l)![
(
√

n/l)!
]2

possible combinations where (n/l)! represents all the possible random mappings

whereas (
√

n/l)! represents the row and the column permutations between ran-

dom mappings that generates the same PGs. Thus, the masking probability pmask

achieved in [3] is scaled down by a large factor corresponding to these possible

combinations. We can further expand the capability of the RecECC technique by

71

CHAPTER 3. AN IMPROVED FULLY INTEGRATED EMBEDDING

composing PGs with arbitrary 2D schemes. In other words, we have
√

n/l dif-

ferent possible scheme sizes for which the total number of possible combinations

approximately increases to
√

n/l

∑
i=0

(n/l)!
i! ·
[
(n/l)− i

]
!

We have mentioned that the cone-based iFIE approach increases the masking

probability by a factor l2 since it reduces the number of available functional out-

puts to n/l. However, the RecECC technique is capable of overcompensating this

increasing by scaling down pmask by a large factor determined by the aforemen-

tioned possible combinations.

72

Chapter 4

Heuristics for cone generation and
selection

The iFIE approach improves the original trust-checking mechanism originally

proposed in [3]. The underlying optimization focuses in particular on the heavy

hardware and performance overheads associated with multiplexers and is based

on a novel trust-checking architecture that considers more coarse-grained func-

tionalities known as cones. In the previous chapter we presented the general idea

of cones and the associated constraints necessary for applying the randomized

2D ECC parity scheme. This chapter further elaborates on cone structures, dis-

cussing some heuristic approaches for generating and selecting cones with mini-

mized overheads.

The chapter is organized in the following way. Section 4.1 formalizes the

problem of generating and selecting cones as a covering problem concerned with

the functional outputs of the FPGA circuit. Section 4.2 proposes a benefit metric

based on covering and cutting, two concepts related with the amount of fanouts

that lie within the cone and the cost of placing a multiplexers in front of cone

inputs. This metric is then used for generating “good” cones with the perspec-

tive of minimizing the hardware overhead. Section 4.3 proposes a cone covering

algorithm for overhead minimization which selects between cones generated ac-

cording to the aforementioned benefit metric. At last, section 4.4 concludes the

73

CHAPTER 4. HEURISTICS FOR CONE GENERATION AND SELECTION

chapter by introducing an alternative approach to generate and select cones which

takes account of both hardware and performance overheads minimization.

4.1 A covering problem

The goal of a trust-checking phase is to verify the functionality of the entire FPGA

circuit in order to detect tampering or Trojan injections. This obviously involves

a functional verification for all the slice-grained functional outputs. Omitting

some of these outputs basically corresponds to an incorrect application of the

ECC-based mechanism. For this reason, we always require a capillary functional

verification even when we deal with more coarse grained functionalities as cone

structures. Intuitively, we can introduce a raw concept of covering referring to a

functional verification for a cone c which is also sufficient for checking a slice-

grained functional output f . In other words, we say that c covers f if we can check

function f by testing cone c. Moreover, a correct application of the ECC-based

mechanism requires that all the slice-grained functional outputs are covered, a

condition also known a complete covering.

The proposed scenario perfectly fits with the well-known computer science

covering problem. Referring to its classic formulation, we have a set A of n el-

ements {a0,a1, . . . ,an−1} and a collection of k subsets B0,B1, . . . ,Bk−1 ⊆ A with

associated cost c(Bi). The covering problem solution S consists of a composi-

tion of the available subsets in order to provide a complete covering of the set

A =
⋃

Bi∈S Bi and in order to minimize the total cost ∑Bi∈S c(Bi) associated with

the solution. Transposing the covering problem to an FPGA circuit, we have a set

F composed by all the slice-grained functional outputs and a collection of cones

each of which covers a subset of F . In this scenario, the covering solution is a set

of cones Csol that covers all the set F of slice-grained functionalities with a min-

imized hardware overhead. It might be argued that this problem is intrinsically

difficult since the original covering problem is in the class of NP-complete prob-

lems [35, 36]. Moreover, we don’t have an initial collection of cones as required

by the covering problem formulation. For this reason, we requires an additional

74

CHAPTER 4. HEURISTICS FOR CONE GENERATION AND SELECTION

cone generation phase which creates a collection of candidate cones Ggen from the

initial set F of slice-grained functional outputs. This further expands the problem

search space. For the sake of simplicity, consider a purely combinatorial circuit

with single fanout output nets and implemented with 2-LUTs. Moreover, suppose

to impose a constraint p related with the maximum cone input size. Each cone

is approximately a binary tree with p elements. Given a functional output f ∈ F ,

we can root
(2p

p

)
/(p+1) different cones (combinations of possible binary trees).

Taking into account of all the n functional outputs, we can generate a collection

Cgen of cardinality

|Cgen|=
(2p

p

)
·n

p+1
Considering a brute force approach for the covering problem, we have an expo-

nential time complexity O(2|Cgen|) where the exponential term
(2p

p

)
contributes to

an huge number of possible combinations. However, the presented analysis only

represents an upper bound. Considering a generic FPGA circuit, we have addi-

tional generation constraints related with the DAG structure of the cone and with

its internal sequential paths. For this reason, we end up with a reduced search

space.

We have introduced an intuitive definition of covering. However, it is nec-

essary to clarify the conditions for which we can verify a function f by a trust-

checking on a cone c. Considering the functional graph associated with the cone

(see section 3.4), any slice-grained output f corresponds to a circuit net n neces-

sary for propagating the logic output value to another slice or to a primary output.

For the sake of clarity, there is a biunivocal mapping between functional outputs

and nets so we can interchangeably use the two terms. Given a cone c, its func-

tional graph identifies a set of nets with different roles. First of all, we have an

unique root/seed net on which the cone is constructed according to the metric

that will be presented in section 4.2. A root net represents the primary output of

cone c. During trust-checking, the cone functionality is verified by propagating

an exhaustive TVs sequence from the cone inputs to this primary output. For this

reason, the slice-grained function f correspondent to the root net is intrinsically

covered by cone c .

75

CHAPTER 4. HEURISTICS FOR CONE GENERATION AND SELECTION

The functional graph also contains a set of input nets on which the cone func-

tionality depends. The switching multiplexers in the trusted FPGA circuit are

placed on the input nets in order to exhaustively verify the cone functionality. De-

spite input nets are included in the functional graph, the associated slice-grained

function are not covered by the cone c. More in detail, an input net may corre-

spond to a circuit primary input or to another functional outputs. In the former

case there is no meaning for functional verification whereas in the latter case the

functional output is obviously covered by another cone.

At last, we can identify a third type of nets associated with intermediate nodes

of the functional graph. During trust-checking, these internal nets provides a prop-

agation path towards the primary output by at least one of their fanouts. More-

over, the associated slice-grained functional output fi contributes to the overall

cone functionality. Given an internal net, it might be argued that if all its fanouts

lie within the cone c then the associated function fi is covered by cone c. In other

words, fi expresses its functionality only through the cone primary output and no

other part of the circuit is influenced. For this reason, a functional trust-checking

on the primary output is sufficient in order to detect effective tampering.

The scenario is different when an internal net has some fanouts outside the

cone. In that case, fi directly expresses its functionality by the means of connec-

tions to primary outputs or to other slices. For this reason, a functional modifi-

cation in fi may lead to a functional modification for the overall FPGA circuit.

Thus, it is necessary to consider an internal net with exposed fanouts as a sec-

ondary output for the cone c. For a logical point of view, this output identifies a

subcone ci with primary input fi and depending by a certain subset of cone in-

puts. Moreover, cone ci can be stimulated by applying a TVs sequence on cone c

since they share the same input nets (and consequently the same TPG line). For

this reason, the functional output fi can easily be included in the 2D ECC parity

scheme without contraindications. The logical separation between primary and

secondary cone outputs is shown in Figure 4.1. We can identify a secondary cone

output fi related with an internal net with two fanouts (only one lies in the cone).

This secondary output also corresponds to a subcone with input subset {i1, i2}.

76

CHAPTER 4. HEURISTICS FOR CONE GENERATION AND SELECTION

During trust checking, an exhaustive TVs sequence is applied to the cone inputs

thus all the possible combination of {i1, i2} are stimulated (more than once, since

they represents a bit subset of the original TVs).

(a) Slice composition (b) Functional graph

Figure 4.1: Primary and secondary cone outputs

The presented relationship between cone and subcone represents the first ex-

ample of cone overlapping. Intuitively, two cones are overlapping if they cover the

same slice-grained functional output f . However, the overlapping should respect a

constraint in order to be compatible with the trust-checking phase. More in detail,

an input net for a cone c1 cannot be an internal net for another cone c2. The moti-

vation for this constraint is related with the placement of a switching multiplexer

on the input net. During trust-checking, this multiplexer basically disconnects the

net from its original functional output and then connects it to a TPG line. In other

words, we disrupt the cone c2 functionality by cutting some internal paths towards

the cone primary output. We can avoid this problem by modifying the net sharing

technique introduced in section 3.2. More in detail, we can partition the fanouts

between the ones related with internal nets and the ones related with inputs nets.

The multiplexer is then placed in order to be bypassed by the fanouts in the first

group. In other words, the internal fanouts have a permanent connection which

is not switched during the trust-checking phase. This technique for solving the

multiplexer conflict is shown by Figure 4.2.

77

CHAPTER 4. HEURISTICS FOR CONE GENERATION AND SELECTION

Figure 4.2: Partitioned fanouts for solving the multiplexer conflict

As we can see, the internal fanouts connected to f0 and f1 bypass the switching

multiplexer so they preserves the structure of the cones in which fk is an internal

net. On the other hand, the input fanouts connected to f2 and f3 can still be driven

by a TPG line during the trust-checking.

The presented technique based on a fanout partitioning solves the overlapping

problem. However, we adopt a simpler solution based on a trivial consideration

that will be still useful during covering. More in detail, when a net is internal

for some cones and input for some others, the correspondent multiplexer must be

placed anyway. The fanout partitioning technique is not able to reduce the hard-

ware overhead. On the other hand, we can split a cone c rooted in f by consid-

ering the intermediate net fi where a multiplexer is already placed and obtaining

two cones. The first one is rooted in fi and composed by all the functional paths

from the inputs of cone c to the net fi. The other one is still rooted in f and com-

posed by all the paths which do not traverse fi plus the subpaths from fi (which

becomes an input net) to f . It might be argued that the total hardware overhead

of the two cones is equivalent to the original scenario. In fact, the number of mul-

tiplexers remains the same since the new input net fi has a multiplexer already

placed on it. Moreover, the number of functional outputs does not change since

the primary output of the cone rooted on fi basically replaces a secondary output

of the original cone c. Summarizing, when we have two overlapping cones that do

78

CHAPTER 4. HEURISTICS FOR CONE GENERATION AND SELECTION

not respect the aforementioned constraint we simply apply the splitting procedure

obtaining three valid cones with an equivalent total hardware overhead.

Considering the aforementioned constraint, the only possible overlapping be-

tween cones requires the complete sharing of a common subcone ci in order that

no input net overlaps with an internal net. Under certain conditions, we can re-

move the secondary outputs associated with subcone ci and the possible mul-

tiplexer overhead. Given a internal net fi, if all its fanouts lie under a set of

shared cones then there is no need for a switching multiplexer since during trust-

checking we only have internal propagation paths that traverse fi. Moreover, the

functional output fi is not exposed so we can verify its functionality by applying

trust-checking on the cones in which it is included. On the other hand, we can

have a fanout that includes some connections to circuit primary outputs. In that

case, we can still avoid the use of a multiplexer if all the fanout concerned with

slice connections lie under a set of shared cones. However, we require to include

fi in the 2D ECC parity scheme since it has an exposed functionality. An example

of sharing with fanout covering is presented by Figure 4.3.

(a) Slice composition (b) Functional graph

Figure 4.3: Cone sharing with fanout covering

As we can see, we have two cones rooted in f0 and f1. They share a common

subcone rooted in f2. Regarding the functional output f2, it has two fanouts and

both of them are included in a cone. Since there are not additional fanouts con-

79

CHAPTER 4. HEURISTICS FOR CONE GENERATION AND SELECTION

nected to some slices, we do not require a multiplexer. The functionality of net

f2 is exposed considering a cone by itself but it is totally covered considering the

overlapping. For this reason, we can avoid to include f2 in the 2D ECC parity

scheme. It might be argued that sharing is a good minimization approach in order

to cover those interconnections which are not possible to cover within a single

cone.

4.2 Metrics for cone generation

In the previous section, we have got an intuitive sense about the approaches for

constructing cones tailored for the final hardware minimization goal. A first idea

concerns covering all the fanouts of an internal net using a single cone or even

a composition of overlapping cones. The rationale behind this idea is to avoid

the use of a multiplexer on fanouts completely covered. A second idea is instead

related to the reuse of multiplexers already placed by the means of input sharing

among cones. It might be argued that these two ideas are correlated since cones

with shared inputs are easily inclined to cover the same nets and vice versa.

We need to devise a metric capable of capturing the two key ideas mentioned

above. We propose a formalization of those concepts broken in two main parts,

the covering metric and the cutting cost. Given a net ni and cone c, we define the

covering ratio as

cov ratio(ni,c) =
|cov(ni,c)|
f anout(ni)

where cov(ni,c) is the subset of fanouts of net ni that are internal interconnections

for cone c (or covered by c) and f anout(ni) is simply the fanout of net ni. In other

words, cov ratio(ni,c) represents a quantitative measure of the degree of fanout

covering of net ni. It is easy see that cov ratio(ni,c) = 1 implies that there is no

need for a multiplexer on net ni since there is no exposed functionality and the

relative trust-checking is done through the cone. We can extend this evaluation to

the entire set of internal nets of cone c introducing the covering metric

cov(c) =
∑ni∈Int(c) cov ratio(ni,c)

|Int(c)|

80

CHAPTER 4. HEURISTICS FOR CONE GENERATION AND SELECTION

where Int(c) is the set of all the internal nets of cone c. This formula calculates a

average covering within cone c, taking account of the various internal nets in an

equal manner.

The presented metric just considers a single cone so it does not incorporate

the concept of shared fanout covering. We need a further improvement that ac-

counts for overlapping between selected cones. More specifically, the covering

ratio depends not only on the cone c but also by the cones in a (partial) solution

Csol because all of them contribute to the covering of the ni’s fanouts. For this

reason, we generalize the covering ratio as

cov ratio(ni,c,Csol) =
|cov(ni,c)∪ cov(ni,Csol)|

f anout(ni)

where cov(ni,Csol) is the subset of fanouts of net ni covered by cones in solution

Csol . It might be argued that this generalized covering ratio will be integrated in

a covering algorithm in order to consider a set of cones already selected to be in

the solution Csol . Thus, we also propose a new formulation for the generalized

covering metric

cov(c,Csol) =
∑ni∈Int(c) cov ratio(ni,c,Csol)

|Int(c)|

The second concept that we need to formalize is concerned with the cutting

cost of a cone. We use the term “cut” to refer to the cone inputs. Intuitively,

when we select a cone to be in the solution Csol we basically introduce a set of

multiplexers in front of the cone inputs depicting a separation (or a cut) which is

then used during trust-checking. Given an input net ni of cone c, we can define its

cut cost as

cut cost(ni) =

 1
f anout(ni)

ni is partially covered

0 ni is a primary input

Essentially, this metric is related to the potential avoidability of placing a mul-

tiplexer on net ni. Intuitively, a net with small fanout will be covered with high

probability; so its cut cost should be high since cutting it and placing a multiplexer

on it obviates the high likelihood event of the net being completely covered, and

81

CHAPTER 4. HEURISTICS FOR CONE GENERATION AND SELECTION

thus not needing a multiplexer. Moreover, the iFIE architecture always imposes

multiplexers on the circuit’s primary inputs and so there is no cost associated with

these cuts. Similarly to what done for the covering ratio, we can extend this mea-

sure over the entire set of input nets of cone c. For this reason, we define the

cutting cost of a cone as

cut cost(c) =
∑ni∈Inp(c) cut cost(ni)

|Inp(c)|

where Inp(c) is the set of inputs nets of cone c. In this case too, we need a further

improvement that accounts for overlapping cones. More specifically, the cones in

solution Csol introduce some cuts and some covered fanouts that change the cut

cost as follows

cut cost(ni,Csol) =



1 ni is completely covered
|cov(ni,Csol)|+1

f anout(ni)
ni is partially covered

0 ni is already cut

0 ni is a primary inputs

Intuitively, the cost of a cut depends also on how many fanouts are covered by

Csol . Nets with few not-covered fanouts have an high likelihood to be completely

covered and thus an high cost for their cutting. The +1 factor in the covering ratio

is used in order to distinguish between completely uncovered net with different

fanouts advantaging small nets. For instance, a net with two fanouts has a cut cost

of 1
2 whereas a net with ten fanouts has a cut cost of 1

10 since has less probability of

being completely covered. On the other hand, there is no cost if we cut a net that

already has a multiplexer such as a circuit primary input (where multiplexers are

mandatory) or an input net already in the solution Csol . The generalized cut cost

cut cost(c,Csol) is obtained by substituting cut cost(ni) with cut cost(ni,Csol) in

the mean calculation

cut cost(c) =
∑ni∈Inp(c) cut cost(ni,Csol)

|Inp(c)|

Finally, we can combine the two key concepts in an unique benefit metric. It

might be argued that both covering metric and cut cost have value in the range

82

CHAPTER 4. HEURISTICS FOR CONE GENERATION AND SELECTION

[0,1]. Moreover, a “good” cone should maximize the covering metric and mini-

mize the cut cost. For this reason, we define the benefit metric for a cone c as

bene f it(c,Csol) =
cov(c,Csol)

cut cost(c,Csol)

This formulation implies a maximization goal. Moreover, it encourages sharing of

internal nets across multiple cones (in order to completely cover them) and inputs

nets (in order to share multiplexers). The benefit metric has value in the range

[0,∞]. In fact, it can virtually assume value infinity if the correspondent cut cost

is zero. We define ∞-cones as cones with no cut cost. It might be argued that

selecting ∞-cones does not introduce any additional hardware overhead since all

the needed input multiplexers are already placed in the trusted FPGA circuit. In

section 4.3 we will see how the covering algorithm will take advantage of these

∞-cones by directly including them in the solution Csol .

After having devised the benefit metric, we propose a cone generation algo-

rithm responsible for producing a set of cones then available for covering. These

cones are constructed according to a maximal benefit metric in order to increase

the possibilities for hardware overhead minimization. Each generation is done

considering a single slice-grained functional output (seed net) and continuing with

iterative expansion steps based on a local benefit maximization approach. Each it-

eration expands an intermediate cone temp cone by including a functional output

fi corresponding to one of its input net. This expansion should always satisfy the

following constraints.

[a] TPG size : We consider the number of available TPG lines p as an a-priori

parameter determined by upper bounds on metrics such as trust-checking

time and TV size. Thus, we cannot construct a cone with more than p

inputs.

[b] DAG constraint : We cannot include any net that generates a loop in the

cone. This is done in order to have a cone that can be exhaustively tested as

an “almost-combinatorial” circuit without requiring to sequence through all

the states of the circuit.

83

CHAPTER 4. HEURISTICS FOR CONE GENERATION AND SELECTION

[c] Sequential paths : We cannot construct a cone with internal paths that in-

clude more than a sequential element. This is done in order to be able to

detect any flip-flop inclusion or deletion within the cone.

[d] Cut net : As we have seen earlier, there is no aim in covering a net if there is

already a multiplexer on it. For this reason, we avoid expansion along such

path.

We omitted the overlapping constraint described in section 4.1. In fact, the set

of generated cones are no more than candidate for being inserted in the covering

solution Csol . Thus, we assume to use the splitting technique on Csol in order to

solve possible overlapping conflicts.

Algorithm 1 describes in greater detail the cone generation process. During

the generation phase, we iteratively choose an intermediate temp cone that maxi-

mizes the benefit metric, and that respects the given cone constraints. According

to the general cutting and covering metric formulations, the generation algorithm

may produce different cones depending on the particular partial solution Csol .

Given a seed f , the generation algorithm returns two alternative cones rooted in f :

one is the maximum-benefit cone over all the intermediate steps, and the second is

a maximal-size maximum-benefit cone that is generated in the last iteration when

no further expansion is possible. While more alternative cones could be generated

starting from seed f , this generally causes a combinatorial explosion in the num-

ber of generated cones. Moreover, we reduce the search space by using the set of

input nets I f orb in order to prune those expansions which violates the constraints.

A-priori pruning is also possible for those nets with large fanout which have small

probability to be completely covered. The time complexity of the algorithm is

related with the number of iterations and the number of possible expansion at

each iteration. For the sake of simplicity, suppose a purely combinatorial circuit

with single fanout nets. In this scenario, the time complexity is O(p2) where p

is a-priori TPG size parameter. It might be argued that in an arbitrary circuit the

enforced constraint may reduce the average case time complexity.

84

CHAPTER 4. HEURISTICS FOR CONE GENERATION AND SELECTION

Algorithm 1 Cone Generation algorithm
Input : A functional output f (cone seed)

Output : The maximum-benefit cone and the maximal-size maximum benefit cones

Notations :

temp cone := the expanded cone at each iteration

simple cone(f) := a cone only composed by a functional output f (root net) and its input nets

Cint := the set of maximum-benefit cones at each intermediate step

I f orb := the set of input nets associated with forbidden expansions

Inp(c) := the set of input nets for cone c

Cexp := the set of generated expansion cones for each iteration

cone(fi,c) := the cone obtained including simple cone(fi) into cone c

Csol := the set of cones selected to be in the final solution

bene f it(c,Csol) := metric evaluation for cone c given the solution Csol
Algorithm :

// Create the initial cone from a functional output

temp cone← simple cone(f);

Cint ←{temp cone};
I f orb← /0;

// Iterate only if there are possible expansions for the cone

while Inp(temp cone) 6⊆ I f orb do
Cexp← /0;

// Try an expansion at each of current cone’s inputs

for each fi ∈ Inp(temp cone) do
// Construct the cone related to the selected expansion and verify the cone constraints

c′ = cone(fi, temp cone);

if ([a] and [b] and [c]) then
Cexp←Cexp∪ c′;

else
I f orb← I f orb∪ fi;

end if
end for
// Save the maximum-benefit cone for this iteration and continue the expansion

Select c′′ ∈Cexp with highest bene f it(c′′,Csol);

temp cone←{c′′};
Cint ←Cint ∪{temp cone};

end while
// Return maximum-benefit cone c and the maximal-size maximum-benefit cones temp cone

Select c ∈Cint with highest bene f it(c,Csol);

return {c, temp cone};

85

CHAPTER 4. HEURISTICS FOR CONE GENERATION AND SELECTION

4.3 Cone covering algorithm for overhead minimiza-

tion

After cone generation, we can implement the cone-based iFIE architecture by

selecting an appropriate composition of functional cones. Thus, we propose a

covering algorithm which represents the key step for minimizing the multiplexer

hardware overhead. The optimization strategy basically relies on the devised ben-

efit metric and tries to compose a solution where cones share as many inputs as

possible (thus sharing multiplexers) and cover as many net fanouts as possible

(thus obviating the need for multiplexers for the completely covered net).

A set of candidate cones Cgen is generated by applying Algorithm 1 on each

slice-grained function outputs of the FPGA circuit. An iterative process is then ap-

plied in order to compose the covering solution Csol . At each step, the algorithm

selects and includes a cone c which maximizes the benefit metric. The iterations

only stop when all the coarse-grained functional outputs are covered by cones in

Csol . As mentioned, we have defined the benefit metric in order to take account of

the current solution Csol . For this reason, the selection of a cone c may modify the

covering metric and the cut cost for some candidate cones, especially if overlap-

ping with c. It might be argued that a new cone generation phase may obtain better

results than the previous one based on an old Csol . For this reason, we introduce a

regeneration step for each iteration in order to always have the best possible set of

candidate cones according to the updated benefit metric. All the presented steps

concerning cone covering are summarized by Algorithm 2.

Another interesting aspect of the covering is related to the cuts imposed by

Csol . In other words, each cone c ∈Csol requires a set of switching multiplexers in

front of its inputs nets and this added structure identifies a cut (basically, the cone

is cut on these nets and connected to TPG during trust-checking). By iteratively

selecting cones to be included in the solution, the covering algorithm continues

to insert cuts in the circuit. Often, some of the candidate cones may have all

their inputs on cuts. It might be argued that the addition of these cones has no

overhead since all the needed multiplexers are already placed into the circuit. For

86

CHAPTER 4. HEURISTICS FOR CONE GENERATION AND SELECTION

Algorithm 2 Cone Covering algorithm
Input : All the circuit functional outputs f ∈ F

Output : A covering solution Csol with minimized overhead

Notations :

Cgen := the set of candidate cones for covering

cone generation(f) := the set of cones generated by Algorithm 1 using seed f

seed(c) := the root net of cone c

covered(f ,Csol) := a flag indicating if functional output f is covered by some cones in Csol

overlap(c,C) := a flag indicating if cone c overlaps with any cone in the cone set C

For other notations, see Algorithm 1
Algorithm :

//Generate candidate cones using all the functional outputs in the circuit

Cgen←∪ f∈F cone generation(f);
Csol ← /0;

// Iterate while there are uncovered functional outputs

while ∃ f ∈ F : !covered(f ,Csol) do
// Add to the solution the cone with maximum-benefit

select c ∈Cgen with highest bene f it(c,Csol);
Csol ←Csol ∪ c;

// If the cut induced by cone c creates some ∞−cones then add them to the solution

while exist c′ ∈Cgen with bene f it(c′,Csol) = ∞ do
Csol ←Csol ∪ c′;

end while
// Update the set of candidate cones according to updated solution

for each cone c′ ∈Cgen do
//Delete cones with root already covered by the solution

if covered(seed(c′),Csol) then
Cgen←Cgen− c′;

end if
//Regenerate cones that overlap with covered functional outputs in order to take account of the updated solution

if overlap(c′,Csol) then
Cgen←Cgen− c′;

Cgen←Cgen∪ cone generation(seed(c′));

end if
end for

end while
return Csol ;

87

CHAPTER 4. HEURISTICS FOR CONE GENERATION AND SELECTION

this reason, the covering algorithm immediately includes ∞-cones (defined with

zero cut cost) in the solution Csol , covering additional slice-grained functional

outputs and reducing the set of candidate cones Cgen. An example of ∞-cone is

presented by Figure 4.4.

Figure 4.4: Example of ∞-cone

As we can see, there are two placed cones with primary output f0 and f2 that

impose a cut on their input sets {i0, i1, i2, i3} and {i4, i5, i6, i7}. Moreover, we can

identify a ∞-cone rooted in f1 with an input set {i2, i3, i4, i5}. Including this new

∞-cone in the solution Csol we have the benefit of covering the coarse-grained

functional output f1 without additional hardware overhead.

Regarding the time complexity, the algorithm is based on an iteration which

can be repeated at most n times where n is the size of the FPGA circuit in terms

of functional outputs. This worst case scenario is associated with the basic FIE

approach where we have simple cones only composed by a slice-grained func-

tional output. Moreover, each iteration involves a linear search O(n) for the cone

selection and a cone regeneration with time complexity O(p2) repeated for a set

of candidate cones Cgen which decreases iteration after iteration. Thus, we have

an overall time complexity

n

∑
i=1

n

∑
j=i

O(p2) = O(p2n2)

where p is a parameter related with the TPG size and the other cone constraints.

In practice, we have a faster average case because we may have the immediate

88

CHAPTER 4. HEURISTICS FOR CONE GENERATION AND SELECTION

inclusion of ∞-cones (this reduces the number of external loops) and because the

regeneration is only limited to a subset of overlapping cones (this reduces the

number of internal loops).

4.4 Performance-aware cone covering algorithm

The presented covering algorithm is focused on reducing the hardware overhead

related with multiplexers but it does not account for degradation in circuit perfor-

mance. More in detail, the covering solution introduces cuts on some circuit nets.

Each of these cuts add delay on all the paths from which is traversed since we have

an added switching multiplexer necessary to implement the trust-checking struc-

ture. Measuring the delay in terms of traversed slices, each cut trivially increases

the delay by one since the correspondent switching multiplexer is implemented by

the means of a slice k-LUT.

An area-optimized covering algorithm may introduce too many cuts over a sin-

gle critical path, leading to a significant performance degradation for the trusted

FPGA circuit. Referring to the basic FIE approach where we have a cut on each

net, the corresponding critical path is virtually doubled. It might be argued that

the presented benefit metric is not tailored for minimizing the number of cut over

critical paths. For this reason, we introduce a different approach of generating

cones called deep cone generation. Intuitively, we can reduce the number of cuts

on a critical path p by constructing a deep cone c in which most of the critical path

length lies within the cone. Consider a circuit with an unique critical path p from

its primary input i to a primary output f . We can virtually construct a cone rooted

in f and composed by all the slice-grained functional outputs along the path p.

In this way, the critical path delay is only degraded by a switching multiplexer

(mandatory, since i is a primary input). More formally, we can define a critical

cone as a cone c that contains a path p that will exceed a delay threshold Dmax

after the insertion of a cut. Applying the cone generation approach based on the

benefit metric and presented in Algorithm 1, we may cover few nets belonging to

path p leading inevitably to other cuts introduced by several “shallow” cones, and

89

CHAPTER 4. HEURISTICS FOR CONE GENERATION AND SELECTION

then a large delay increment. We thus change the expansion policy so that each

critical cone is tailored in order to covers most of such critical path resulting in a

deeper cone with less cuts on path p. Typically, a cone based on benefit metric has

a more broad “shape” whereas a deep cone presents more levels along the critical

path p. Figure 4.5 shows an example of the two cone types.

(a) Normal cone (b) Deep cone

Figure 4.5: Different approaches for cone generation

As we can see, the two cones have the same number of covered slice-grained func-

tional outputs. However, a deep cone is capable of covering the entire critical path

in order that a unique switching multiplexer is required in the final covering solu-

tion. In other words, the trusted FPGA circuit will only have a small performance

degradation.

The proposed deep cone generation approach is described in detail by Algo-

rithm 3. If during generation the cone is not critical, the algorithm exactly be-

haves as the conventional cone generation approach by expanding those inputs

that maximize the benefit metric and by returning the maximum-benefit cone and

90

CHAPTER 4. HEURISTICS FOR CONE GENERATION AND SELECTION

Algorithm 3 Deep-cone generation algorithm
Input : A functional output f (cone seed) and the delay threshold Dmax corresponding to critical paths

Output : A deep-cone which minimizes the added delay on critical paths, otherwise same output of Algorithm 1

Notations:

pathdel(f ,Csol) := the longest delay path traversing functional output f (considered the current solution Csol)

deep mode := a flag used to switch between benefit metric expansion and critical path expansion

Icri := the set of input nets traversed by critical paths

For other notations, see Algorithm 1

Algorithm :

temp cone← simple cone(f); Cint ←{temp cone}; I f orb← /0;

deep mode← f alse;

// Iterate only if there are possible expansions for the cone

while Inp(temp cone) 6⊆ I f orb do
Cexp← /0; Icri← /0;

// As Algorithm 1, try an expansion at each of current cone’s inputs

for each fi ∈ Inp(temp cone) do
c′ = cone(fi, temp cone);

if ([a] and [b] and [c] and [d]) then
Cexp←Cexp ∪ c′;

// If the current input net is on a critical path then activate a deep-cone expansion on that path

if (pathdel(fi,Csol)+1)> Dmax then
deep mode← true;

Icri← Icri ∪ fi;

end if
else

I f orb← I f orb ∪ fi;

end if
end for
// Finalize the cone expansion depending by the scenario

if deep mode and Icri 6= /0 then
// Between all the critical paths, select the least expanded in order to balance cut length

Select fc ∈ Icri closest to root f ;

temp cone← cone(fi, temp cone);

else
Select c′′ ∈Cexp with the highest bene f it(c′′,C);

exp← c′′; Cint ←Cint ∪ temp cone;

deep mode← f alse;

end if
end while
// If critical path expansion activated then return deep-cone otherwise as Algorithm 1

if deep mode then
return (temp cone);

else
Select c ∈Cint with highest bene f it(c,Csol);

return {c, temp cone};
end if

91

CHAPTER 4. HEURISTICS FOR CONE GENERATION AND SELECTION

the maximal-size maximum-benefit cone. However, if during the expansion pro-

cess we encounter an input net over a critical path then the algorithm switch to

a deep mode for which the expansion is only done through critical input nets.

This strategy permits to build deep cones which cover most of the critical path.

Suppose now that more than one input net is critical. In this scenario the algo-

rithm selects for the expansion the one which is closest to its root. This strategy

is oriented to balance the cuts over the various critical paths since an unbalanced

scenario trivially corresponds to the delay of the path with more cuts. At last, the

parameter Dmax may simply specify the critical path length or may represent an

acceptable performance degradation within which we can continue to enforce the

benefit metric and the hardware overhead minimization. Moreover, all the delay

considerations are done by the means of Static Time Analysis (STA) [37] applied

to the technology-mapped FPGA circuit.

After having introduced deep cones, we devise a performance-aware covering

algorithm based on two different covering strategies depending on whether a can-

didate cone is on a critical path or not. In order to enforce this distinction, we

partition the set of generated cones Cgen in two subsets Ccri and Cnon cri. The for-

mer is composed of cones with critical input nets whereas the latter is not. We also

introduce a new path covering metric related with the covering of critical cones.

The rationale behind this metric is that we should place the smallest possible num-

ber of cones (and thus cuts) over critical paths. For this reason, we should prefer

a cone that covers more uncovered nets traversed by critical paths. Given a cone

c and a (partial) covering solution Csol . We define the set of critical nets as

Ncri(c,Csol) = { f ∈ Int(c) : f is critical and not covered by Csol}

where a net f is critical if (pathdel(f ,Csol)+1)> Dmax and “ f is not covered by

Csol” means that no cones already included in the solution has f as root or internal

net. The path covering metric is then defined as

path cov(c,Csol) = |Ncri(c,Csol)|

This simple formulation permits to discriminate between two critical cones by

counting how many critical nets they add to the covering solution Csol . Ties in the

92

CHAPTER 4. HEURISTICS FOR CONE GENERATION AND SELECTION

Algorithm 4 Performance-aware cone covering algorithm
Input : All the circuit functional outputs f ∈ F and the delay threshold Dmax

Output : A covering solution Csol with minimized hardware and performance overheads

Notations :

deep cone generation(f) := the set of cones generated by Algorithm 3 from seed f

path cov(c,Csol) := path covering metric for cone c considering the solution Csol

Ccri := the set of critical candidate cones that increase the circuit delay over the threshold

Cnon cri := the set of non-critical candidate cones that do not increase the circuit delay over the threshold

to switch(c,Csol) := a flag indicating if cone c should switch from Ccri to Cnon cri or vice versa after Csol updating

For other notations, see Algorithm 2 and 3

Algorithm :

//Generate candidate cones using all the functional outputs and partition them into critical and non-critical cones

Cgen←∪ f∈F deep cone generation(f ,Dmax);

for each c ∈Cgen do
if ∃ f ∈ Inp(c) : (path(f ,Csol)+1)> Dmax then

Ccri← c

else
Cnon cri← c

end if
end for
// Iterate while there are uncovered functional outputs

while ∃ f ∈ F : ! covered(f ,Csol) do
if Cnon cri 6= /0 then

//If possible, select between the available non-critical cones in order to not increase the delay

select c ∈Cnon cri with higher bene f it(c,Csol)

else
// Otherwise select a critical cone which covers most functional outputs on critical paths

select c ∈Ccri with higher path cover(c,Csol) using bene f it(c,Csol) as tie-breaker

Dmax← Dmax +1

end if
//As Algorithm 2, add the selected cone and potential ∞-cones to the solution

Csol ←Csol ∪ c;

while exist c′ ∈Cgen with bene f it(c′,Csol) = ∞ do
Csol ←Csol ∪ c′;

end while
//As Algorithm 2, update candidate cones according to current solution

for each cone c′ ∈Ccri ∪Cnon cri do
if covered(seed(c′),Csol) then

Ccri←Ccri− c′; Cnon cri←Cnon cri− c′;

end if
//Some cones may need to be regenerated from their seed

if overlap(c′,Csol) or to switch(c′,Csol) then
Ccri←Ccri− c′; Cnon cri←Cnon cri− c′;

Use deep cone generation(seed(c′),Dmax) and partition the result cones into Ccri and Cnon cri

end if
end for

end while

93

CHAPTER 4. HEURISTICS FOR CONE GENERATION AND SELECTION

path covering metric are broken by using the benefit metric. In other words, the

algorithm maintains a secondary hardware overhead minimization goal. While

Cnon cri 6= /0, the performance-aware covering algorithm optimizes multiplexer

hardware overhead by selecting cones in Cnon cri along the lines of Algorithm

2. When Cnon cri = /0 and Ccri 6= /0, the algorithm applies another performance-

oriented strategy and selects cones based on the highest value of the path covering

metric. At any critical cone inclusion, the delay threshold is clearly increased to

Dmax +1 since the new critical path will contain an additional multiplexer. More-

over, it might be argued that after each cone selection some parts of the overall cir-

cuit timing are changed. Consequently, some cone should be moved from Cnon cri

to Ccri (or vice versa) since may (or may not) be traversed from a critical path ac-

cording to the new circuit timing. In order to always have the best possible cones

(normal or deep), we regenerate all the cones involved in the switching between

Cnon cri ans Ccri as well as all the cones overlapping with the last selected cone.

Algorithm 4 describes in greater detail the performance-aware cone covering. We

can notice a strong similarity with the previous cone covering algortithm. For

instance, all the two algorithms stops when no more slice-grained functional out-

puts are available. Moreover, when Cnon cri 6= /0 they exactly behaves in the same

way. In terms of time complexity, the performance-aware cone covering remains

O(p2n2) since the algorithmic structure of Algorithm 4 is maintained. However,

it might be argued that average case of the performance-aware algorithm is faster

since it separately deals with two smaller candidate cone sets Cnon cri to Ccri in-

stead of an unique candidate cone set Cgen.

94

Chapter 5

Results ans simulations

The presented iFIE approach for ECC-based trust-checking deals with many dif-

ferent minimization techniques, which include architectural improvement such as

multiplexer sharing over common nets or trust-checking without parity functions

and algorithmic approaches for overhead minimization and simultaneous over-

head/delay minimization. Aim of this chapter is to provide a set of experimental

results in order to show a drastic reduction in the multiplexer overhead contribu-

tion. We note that our work is, to the best of our knowledge, the first of its kind,

and there is thus no previous work to compare to if not the basic FIE approach

suggested in [3]. Moreover, we propose a behavioral and a post-P&R simulations

which validate the presented idea of trust-checking based on cone structures.

The chapter is organized in the following way. Section 5.1 introduces the ex-

perimental setup. Section 5.2 presents the experimental results related with the

proposed architectural and algorithmic overhead minimization techniques. The

effectiveness of the underlying ideas is verified showing the achieved improve-

ment steps related with the use of each single technique. Thus, we compare our

algorithms to some internal variations that establish that our chosen metrics are

advantageous. Section 5.3 is then completely dedicated to simulations which con-

struct a circuit representation of a cone PG with the aim of testing the capability

of the ECC-based mechanism of detecting any Trojan injection or any malicious

modification such as logic, sequential or interconnection tampering.

95

CHAPTER 5. RESULTS ANS SIMULATIONS

5.1 Experimental setup

In this section we report the experimental results concerned with the overhead

minimization techniques introduced by the iFIE approach. All the architectural

calculations as well as the covering algorithms have been implemented in C++

using Xcode developer tools [38]. The simulations were done using Xilinx ISE

development tool [39]. Moreover, all the experiments were run on an Intel Core

2 Duo@2.66 GHz [40] under Max OS X [41] operating system. We consider a

set of benchmark circuits from the ITC99 benchmark set [29]. In our experiments

we specifically target the Xilinx Virtex 4 architecture [12]. For this reason, an

initial high level description of the benchmark circuits is synthesized and then

technology-mapped to the specified FPGA architecture producing a parsable Xil-

inx Design Language (XDL) file [42]. In others words, the benchmark set corre-

sponds to a set of technology-mapped XDL circuits on which the proposed iFIE

ECC-based trust-checking mechanism is then applied. We selects six benchmark

circuits of different sizes and composed by slices with both combinatorial and

sequential configurations.

5.2 Experimental results

The first experiment results are related with the effectiveness of multiplexer shar-

ing over common nets. As mentioned in Section 3.2, this architectural technique

is adopted by the iFIE approach and places an unique multiplexer upstream on

each net instead of covering the fanout. The results are reported in Table 5.1.

As we can see, we compare the overhead of the basic FIE approach (a multiplexer

on each fanout) with the one resulting after the application of the multiplexer shar-

ing technique. The hardware overhead is then given as a percentage of the total

size of the original circuit. The average results are instead obtained by weighting

the circuits according to their sizes. Moreover, we report a column expressing

the relative overhead reduction introduced by the multiplexer sharing technique.

It might be argued that the effectiveness of the technique mainly depends by the

96

CHAPTER 5. RESULTS ANS SIMULATIONS

Benchmark Size Average Multiplexer Overhead Overhead

Name (slices) Fanout Basic FIE Sharing Technique Reduction

b11 75 3,72 373.33% 101.33% 72.86%

b12 220 3,90 340.91% 89.55% 73.73%

b14 1275 4,06 358.98% 88.71% 75.29%

b15 1349 3,50 345.14% 105.93% 69.31%

b17 4106 3,54 344.40% 103.90% 69.83%

b20 2384 4,15 367.37% 88.63% 75.87%

Average 2384 3,81 352.45% 97.91% 72.22%

Table 5.1: Multiplexer overhead of sharing over common nets

average net fanouts. For instance, circuits b15 and b17 have a smaller overhead

reduction due to their smaller average fanout. The analytical consideration intro-

duced in Section 3.2 have predicted a multiplexer overhead around 91%. As we

can see, the obtained experimental results are along that line. At last, considering

an average reduction of 72.22%, we can positively evaluate the idea of multiplexer

sharing over common nets.

The second set of experimental results is related with the another architec-

tural improvement introduced by the iFIE approach. As explained in Section 3.3,

we can avoid the use of structural parity functions in order to reduce the hard-

ware overhead associated with the trust-checking architecture. The impact of this

technique is shown by Table 5.2. As we can notice, the hardware overhead re-

lated with the ECC-based trust-checking mechanism, comparing the basic FIE ap-

proach with the technique without parity functions. Again, the overhead is given

as percentage of the original circuit size and its average (given in the bottom row)

is weighted. Moreover, we report the circuit size in terms of slice-grained func-

tional outputs that will be included into the ECC-based trust-checking mechanism.

This information is then used for calculating the size of the squared 2D ECC par-

ity scheme which gives a clue about the amount of hardware associated with the

trust-checking. In order to highlight the various benefits related with the iFIE ap-

97

CHAPTER 5. RESULTS ANS SIMULATIONS

Benchmark Functional 2D ECC Trust-checking Overhead Overhead

Name Outputs Scheme Basic FIE w/o Parity Function Reduction

b11 144 12 x 12 118.67% 70.67% 40.45%

b12 420 21 x 21 107.73% 69.55% 35.44%

b14 2262 48 x 48 75.84% 60.78% 19.86%

b15 2823 54 x 54 88.51% 72.50% 18.09%

b17 8529 93 x 93 79.42% 70.36% 11.41%

b20 4214 65 x 65 71.18% 60.28% 15.32%

Average 3065 49 x 49 79.13% 66.80% 15.58%

Table 5.2: Trust-checking overhead with and without parity functions

proach, we keep separated the multiplexer overhead from the remaining overhead

associated with the TPG unit, the multiple ORA units and the parity functions. A

reported average reduction of 15.58% clearly points out the effectiveness of the

proposed architectural improvement. Moreover, we can notice that the technique

without parity functions is more effective when we are dealing with smaller cir-

cuits. Intuitively, in this scenario the overhead contribution of parity functions is

more relevant so its deletion has a greater benefit. On the other hand, if the circuit

increases its size then the single parity function overhead remains the same (it

basically requires a slice-grained functional outputs) whereas the number of PGs

(and so parity functions) grows with complexity O(
√

n) assuming a squared 2D

ECC parity scheme. For this reason, the relative overhead contribution decreases

with the circuit size. At last, it might be argued that with coarse-grained func-

tionalities the overhead contribution is heavier since the parity functions itself is

implemented by the means of a coarse-grained functionality. However, this does

not change the decreasing behavior related with circuit size.

The next set of experimental results proposes an interesting comparison be-

tween a generation and covering approach based on the presented benefit metric

and an alternative metric which takes account of the covering but not of the cut

cost. In this way, we can point out the effectiveness of the underlying algorithmic

98

CHAPTER 5. RESULTS ANS SIMULATIONS

ideas. Moreover, the cones are generated under increasing TPG size constraints

in order to evaluate the benefit of having large cones. The obtained multiplexer

overhead is presented in Table 5.3 and Table 5.4.

Multiplexer Overhead

Bench Range TPG 12 bit TPG 16 bit

Name [Min-Max] Covering Benefit Reduction Covering Benefit Reduction

b11 [5.33-78.91]% 61.33% 57.33% 28.17% 52.00% 44.00% 44.87%

b12 [2.27-101.33]% 44.09% 35.45% 65,02% 33.18% 30.00% 70.39%

b14 [1.33-89.54]% 51.92% 43.29% 51.65% 33.80% 33.02% 63.12%

b15 [2.89-105.93]% 52.85% 52.85% 50.11% 48.11% 42.55% 59.83%

b17 [1.97-103.90]% 53.51% 52.68% 49.30% 47.59% 41.94% 59.63%

b20 [0.71-88.63]% 54.49% 49.37% 44.30% 36.87% 35.53% 59.91%

Avg. [2.42-97.91]% 53.29% 50.23% 47.05% 42.78% 38.93% 58.96%

Table 5.3: Multiplexer overheads using different metrics (TPG 12-16 bit)

Multiplexer Overhead

Bench Range TPG 20 bit TPG 24 bit

Name [Min-Max] Covering Benefit Reduction Covering Benefit Reduction

b11 [5.33-78.91]% 45.33% 37.33% 53,23% 41.33% 32.00% 59.90%

b12 [2.27-101.33]% 32.73% 27.27% 73,09% 28.18% 25.91% 74,43%

b14 [1.33-89.54]% 28.63% 27.45% 69,34% 24.86% 25.10% 71,97%

b15 [2.89-105.93]% 45.00% 36.84% 65.22% 40.47% 33.36% 68,51%

b17 [1.97-103.90]% 43.42% 36.95% 64.44% 38.85% 32.81% 68,42%

b20 [0.71-88.63]% 30.41% 31.25% 64.74% 26.38% 26.80% 69,76%

Avg. [2.42-97.91]% 38.11% 33.98% 64,18% 33.80% 30.15% 68,22%

Table 5.4: Multiplexer overheads using different metrics (TPG 20-24 bit)

For each benchmark circuit we have an upper and a lower overhead bounds

related with the iFIE trust-checking architecture. Assuming the use of the multi-

plexer sharing technique, the upper bound represents a scenario in which each net

has a multiplexer (this overhead was already calculated in Table 5.1). The lower

bound instead represents the only switching multiplexers necessary for the circuit

primary inputs. It might be argued that this overhead is mandatory in order to

implement the ECC-based trust-checking mechanism. Moreover, the tables are

99

CHAPTER 5. RESULTS ANS SIMULATIONS

divided in sections which correspond to different TPG sizes. Within each section

we have two different overhead results still expressed in terms of a percentage of

the original circuit. One column corresponds to the covering metric and the other

corresponds to the more advantageous benefit metric. A third column expresses

the relative overhead improvement achievable starting from the upper bound and

using the proposed covering algorithm.

Taking a look at the results, it might be argued that the proposed cone gen-

eration and covering algorithms obtain a reasonable iFIE cone-based solution far

away from the tremendous multiplexer overhead of the basic FIE approach pro-

posed in [3]. Considering a large TPG constraint, we can achieve an average

multiplexer overhead corresponding to 30.15% of the original circuit with a con-

siderable relative reduction of 68,22% respect to the upper bound. As expected,

the benefit metric represents the best solution since includes both the concepts

of covering metric and cutting cost. Moreover, it is not surprisingly that increas-

ing the TPG size results in lower overhead, since we can select larger and deeper

cones to cover the circuit.

A more comprehensive analysis of the cone-based iFIE approach is possible

from Table 5.5. Considering the favorable scenario of a large TPG constraint,

we can evaluate what is the real implementability of the proposed trust-checking

mechanism. In the first part of Table 5.5 we have both the multiplexer and the

trust-checking overheads. More in detail, this latter overhead is determined by

a TPG unit and by multiple ORA units, assuming of not having structural parity

functions. Referring to the results in Table 5.2, it might be argued that the cone-

based iFIE approach does not only decrease the multiplexer overhead but also

the one related with trust-checking. The underlying reason is that coarse-grained

functionalities decrease the number of element to be included in the 2D ECC par-

ity schema and, consequently, the size of the trust-checking components. More

in detail, we have shown in Section 3.4 that the cone-based iFIE approach scales

down by a factor l the overhead associated with multiple ORA units, where l is the

average cone size in terms of covered coarse-grained functional outputs. From the

sum of the two contributes we obtain the total overhead associated with a trusted

100

CHAPTER 5. RESULTS ANS SIMULATIONS

TPG 24 bit

Bench Overhead Masking Running

Name Multiplexer Trust-checking Total Probability Time

b11 32.00% 30.67% 62.67% 625 ·10−6 61 s

b12 25.91% 27.27% 53.18% 51.0 ·10−6 153 s

b14 25.10% 17.57% 42.67% 2.43 ·10−6 2102 s

b15 33.36% 22.46% 55.82% 1.32 ·10−6 5089 s

b17 32.81% 21.92% 54.72% 0.135 ·10−6 31519

b20 26.80% 18.62% 45.43% 0.629 ·10−6 9086 s

Avg. 30.15% 20.77% 50.92% 6.91 ·10−6 8002 s

Table 5.5: Overall cone-based iFIE overhead (TPG 24 bit)

FPGA circuit. There are several reasons for which an average total overhead of

50.92% can be considered reasonable. In absolute terms, there is no objective

comparison for which we can positively or negatively judge the overhead associ-

ated with our checking technique. We may consider a duplicate-and-compare ar-

chitecture in which the trust-checking is based on output comparison between two

copies of the same circuit. Despite the underlying security weaknesses, it might be

argued that this duplicate-and-compare architecture offers trust-checking with at

least 100% of hardware overhead, a lot more than our cone-based iFIE approach.

Referring to the NIE approach introduced in [3], we have the same underlying

ECC-based mechanism with very low overhead due to partial dynamic reconfig-

uration and due to single PG trust-checking. However, the iFIE approach has

the main advantage of being combined with bitstream encryption, a feature not

currently compatible with partial dynamic reconfiguration.

In general, it might be argued that an average hardware overhead of 50.92%

does not really represent an implementation issue for the proposed iFIE approach.

Typically, a significant portion of an FPGA is left unused by an application cir-

cuit so the iFIE approach is immediately implementable. On the other hand, a

slightly larger FPGA chip should be available on the market considering the level

of nanoscale integration provided by the modern IC industry. We believe this is

well worth the cost, especially considering the sensitive military or commercial

101

CHAPTER 5. RESULTS ANS SIMULATIONS

application in which a trusted FPGA circuit is used. From another perspective,

it might be argued that overhead is not completely a disadvantage since the asso-

ciated trust-checking components will cover the unused part of the FPGA device

from tampering or Trojans. No matter how, a trusted FPGA circuit must occupy

100% of the FPGA device in order to extend the trust-checking mechanism to

all the available CLBs. In fact, we have seen that the remaining area should be

configured as zero functions and included in the 2D ECC parity scheme. For this

reason, the introduced overhead may be considered as an alternative “filler”.

Coming back to Table 5.5, we also have a column related with the mask-

ing probability pmask. Intuitively, this parameter represents the robustness of the

underlying ECC-based trust-checking mechanism. Not surprisingly, a 2D ECC

parity schemes with more functional outputs also have smaller pmask. According

to the theoretical analysis presented in [3], the obtained masking probability is the

order of O(1/n2) where n represents the number of slice-grained functional out-

puts in the circuit. In addition, we have shown in Section 3.4 that the cone-based

iFIE approach increases the masking probability by a factor l2. Despite this dis-

advantage, the obtained results show reasonably small probabilities, especially for

larger circuit. However, it is still possible to apply the RecECC technique which

makes the masking probability astronomically small without increasing the hard-

ware overhead associated with the iFIE approach. The last column of Table 5.5

presents the algorithm running times. In short words, it might be observed that

the algorithm duration is coherent with the circuit size increasing.

Last but not least, Table 5.6 provides results comparing the algorithms with

and without performance considerations. Beside the multiplexer hardware over-

head, we report the original FPGA circuit critical path length in terms of slices

and the added delay in the covering solution expressed as a percentage of the

critical path length. As we can see, the performance-aware cone covering algo-

rithm in collaboration with the deep cone generation approach yields a small area

increasing of about 5%, but significantly reduces the trusted FPGA circuit per-

formance overhead of 33.71% (from 65.85% to 44.38%). It thus offers a good

minimization tradeoff between area and delay overheads. It might be argued that

102

CHAPTER 5. RESULTS ANS SIMULATIONS

differently from hardware overhead the introduced delay has no bright side from

the perspective of the ECC-based trust-checking mechanism. In other words, the

performance degradation intrinsically affects the trusted FPGA circuit which may

thus require a slower clock cycle. However, we can consider the circuit trust-

worthiness as an additional FPGA circuit design parameter. The designer is then

responsible for balancing the various design aspects such as area, delay, power and

security in order to identify the right trade-off which satisfies the application re-

quirements. In this perspective, a delay increasing is counterbalanced by the added

protection against tampering and Trojan injections, a very sensitive feature indis-

pensable for some military or commercial applications. At last, we notice that the

performance-aware cone covering algorithm is faster. Despite the two proposed

approaches have the same quadratic time complexity, the performance-aware al-

gorithm works on reduced sets of candidate cones (Ccri and Cnon cri) instead of a

large one (Cgen) leading to a better average-case time complexity.

TPG 24 bit w/o Performance Considerations w/ Performance Considerations Performance

Bench Critical Multiplexer Overhead Running Multiplexer Overhead Running Overhead

Name Path Hardware Performance Time Hardware Performance Time Reduction

b11 8 32.00% 25.00% 61 s 37.33% 12.50% 13 s -50.00%

b12 6 25.91% 50.00% 153 s 35.91% 66.67% 28 s +33.33%

b14 38 25.10% 73.68% 2102 s 29.65% 44.74% 1373 s -39.29%

b15 21 33.36% 66.67% 5089 s 41.81% 33.33% 3229 s -50.00%

b17 25 32.81% 68.00% 31519 s 35.97% 44.00% 26670 s -35.29%

b20 38 26.80% 65.79% 9086 s 33.56% 50.00% 3883 s -24.00%

Avg. 22.67 30.15% 65.44% 8002 s 35.35% 43.38% 5866 s -33.71%

Table 5.6: Covering algorithms with and without performance considerations

5.3 Validation simulations

In this section, we validate the cone-based iFIE approach by simulating the pro-

posed architecture during a trust-checking phase. The aim is to provide a proof-of-

concept for the ECC-based trust-checking mechanism applied to coarse-grained

functionalities. In [3] it has been proposed a simulation for the ECC-based mech-

103

CHAPTER 5. RESULTS ANS SIMULATIONS

anism applied to the NIE scenario. In our thesis work, we propose two different

simulation approaches more focused on the cone structures. The first simulation

approach is concerned with a behavioral model in which the iFIE trust-checking

architecture is described as a circuit of high-level functional components whereas

the second one is concerned with a post-P&R simulation where the iFIE trust-

checking architecture is described in terms of slices mapped on a FPGA device, a

scenario closer to a real implementation of a trusted FPGA circuit.

Our aim is to describe the trust-checking architecture composed by a cone

PG, by a TPG and by an ORA unit. Given an exhaustive TVs sequence, we ver-

ify the ability of detecting tampering or Trojan insertions. More in detail, we

intentionally introduce functional modification into the cone PG and we observe

if the trust-checking architecture raises an alarm. For this reason, we define the

tamper detection probability PD as the percentage of times that an inserted tamper

is detected by the 2D ECC parity scheme and the false alarm probability PFA as

percentage of times that a tamper-insertion alarm is raised without intentional or

unintentional modifications in the circuit. We are interested in testing different

kinds of tampering such as modification of the logic functions implemented by

the slice-grained functional outputs, insertion or deletion of flip-flops, intercon-

nection rerouting or Trojan injection in the zero-configured slices. Moreover, we

are not only interested in tampering the cones but also the related trust-checking

components.

The first behavioral simulation is manually composed by considering a simple

PG with five cones outputs (each cone with average size of three slice-grained

functional outputs) randomly selected from benchmark b12. Each of those cones

has at most 16 input nets (TPG constraint) and is represented in the behavioral

model as a composition of k-LUTs and flip-flops which agrees with the slice

configurations and interconnections. Given these five cones, we are then able

of constructing an unique functional component representing the entire cone PG.

It might be argued that this is the component on which we will target the tamper-

ing in order in order to verify the ECC-based mechanism. In the trust-checking

architecture adopted for this behavioral simulation we suppose to simply impose

104

CHAPTER 5. RESULTS ANS SIMULATIONS

a fixed even parity scheme by the means of a structural parity function for the PG.

We implement this latter combinatorial function from an untampered copy of the

PG component in order to be able of producing the correct parity sequence asso-

ciate with the cones. Moreover, the TPG unit is implemented as a 16-bit sequential

counter whereas the ORA unit is implemented by XOR gates (in fact, we suppose

even polarity). The final behavioral model is then obtained by assembling these

trust-checking components with the cone PG component as shown by Figure 5.1.

Figure 5.1: Simulation schematic constructed with ISE

Looking at the picture, it is possible to recognize the TPG unit (a counter on

the top), the ORA unit (a 6-input XOR gate on the bottom), the parity function

(the blue component connected to the TPG on the right) and the cone PG (the

105

CHAPTER 5. RESULTS ANS SIMULATIONS

other red component on the left). The presented schematic model essentially rep-

resents a cone PG during trust-checking. Thus, the behavioral simulation will

consist of generating all the possible TVs expecting a zero PV on the ORA output

(we are implementing an even parity scheme). With a 16-bit counter and a 10 ns

clock, the simulation should last at least 65.536 µs. A tamper is trivially detected

by observing any value different from zero on the ORA output. An example of a

positive simulation without tampering detection is shown by Figure 5.2.

Figure 5.2: Tamper-free behavioral simulation

As we can see, the ORA output (second logic signal) is stable at zero. In other

words, the ORA is producing a zero parity vector corresponding to a correct trust-

checking phase. In order to observe the opposite scenario, we introduce a func-

tional modification in the schematic component representing the cone PG. Run-

ning again the simulation, we obtain a result similar to Figure 5.3.

Figure 5.3: Behavioral simulation with tamper

Not surprisingly, this time the ORA does not produce a zero vector. This kind of

output represents a detection signal and an alarm for the ECC-based mechanism.

The behavioral simulation tests the trust-checking architecture under a set of dif-

ferent tampers (25 logic tampers, 10 sequential tampers, and 15 internal cone

interconnection tampers) inserted within the cone PG, keeping track of the ob-

tained detections and false alarms. We assume to insert each tamper individually

106

CHAPTER 5. RESULTS ANS SIMULATIONS

since we are just interested into simulating a single PG trust-checking architecture

and not the robustness against masking of the entire 2D ECC parity scheme. As

we have seen, two tampers in the same PG can mask each other. However, con-

sidering the two PGs in the opposite 2D dimension we can still assume a single

tampering scenario. According to the simulation results reported by Table 5.7, the

ECC-based trust-checking mechanism maintains its effectiveness when applied to

coarse-grained functionalities. In fact, every tampering is detected with a certain

detection probability PD and without raising any false alarm in case of untampered

PG (thus, implying a zero false alarm probability PFA).

Tamper Type PD PFA

Logic 100% 0%

Sequential 100% 0%

Interconnection 100% 0%

Total 100% 0%

Table 5.7: Behavioral simulation results in terms of PD and PFA

A second simulation approach based on a post-P&R scenario is used in order

to validate the cone-based iFIE trust-checking architecture at an FPGA imple-

mentation level. More in detail, we describe the cone PG and the related trust-

checking components as a set of slices placed and routed on the FPGA device.

Again, the aim is to analyze the reaction against tamper insertions, evaluating the

effectiveness of the ECC-based mechanism on coarse-grained functionalities. A

post-P&R model can be composed only dealing with the low level details of XDL

files [42]. In other words, we parse an FPGA technology-mapped circuit file com-

posing again a cone PG and the related trust-checking architecture. The cones are

directly extracted by a technology mapped file representing the benchmark b12.

On the other hand, the TPG unit is still a 16-bit counter and the ORA unit is still

composed by XOR gates. However, their models are not functional but directly

correspond to FPGA technology-mapped circuits (basically, we have a set of slices

configured as flip-flops or k-LUTs). Differently from the behavioral simulation,

we also include some zero-configured slices in the technology-mapped cone PG

107

CHAPTER 5. RESULTS ANS SIMULATIONS

in order to simulate Trojan insertions. Moreover, the trust-checking mechanism

will be based on an off-chip parity comparison in order to avoid a structural imple-

mentation of the parity function. When the trust-checking architecture model is

completed, we apply placing and routing in order to obtain the final model ready

for the simulation. This FPGA post-P&R model is shown by Figure 5.4.

(a) Placed (b) Placed and routed

Figure 5.4: Post-P&R simulation model

As we can see, we have a magnified view of the FPGA device where the simula-

tion model is placed and routed. The blue-colored rectangles represent the slices

composing the cone PG and the related trust-checking architecture. Moreover,

the routing is presented in red. As mentioned, we implement the trust-checking

mechanism by the means of an off-chip comparison. For this reason, we store a bit

vector containing the expected PV. During the simulation, we obviously compare

the PV produced by the ORA with the the expected one. Figure 5.5 clarifies this

procedure by showing a screenshot of the expected ORA output. As we can see,

Figure 5.5a presents a correct PV produced by a genuine cone PG. On the other

hand, Figure 5.5b shows an unsuccessful trust-checking simulation for a tampered

model in which the output PV is different from the expected parity sequence.

Thus, it is still possible to validate the effectiveness of the cone-based iFIE ar-

108

CHAPTER 5. RESULTS ANS SIMULATIONS

(a) Correct PV

(b) Tampered model

Figure 5.5: Post-P&R trust-checking simulation

chitecture by inserting different kinds of tampers in the post-P&R model and ob-

serving if the ECC-based trust-checking mechanism is capable of detecting these

malicious modifications. In order to provide a more comprehensive validation

against tampering and Trojans insertions, we target not only the cone PG but also

the empty slices, the TPG unit and the ORA unit. As for the behavioral simula-

tion, the results reported by Table 5.8 correspond to a certain detection probability

PD and to a zero probability PFA of raising false alarms.

Tamper Type PD PFA

Logic 100% 0%

Sequential 100% 0%

Interconnection 100% 0%

Empty slices 100% 0%

TPG & ORA 100% 0%

Total 100% 0%

Table 5.8: Post-P&R simulation results in terms of PD and PFA

109

CHAPTER 5. RESULTS ANS SIMULATIONS

In conclusion, this post-P&R simulation shows not only the effectiveness of the

cone-based iFIE trust-checking but also its implementability on a real FPGA de-

vice.

110

Chapter 6

Conclusions

In this thesis I have presented an on-chip functionality-based trust-checking mech-

anism capable of detecting with very high probability any malicious tampering or

Trojan insertion in a FPGA circuit. The underlying goal is concerned with the

more general idea of trusted FPGA design for which FPGA circuits, especially

if used in sensitive application, must perform only the functionality for which

they were originally designed. Introducing a significative extension of the ideas

and methodology proposed in [3], I have provided an hardware and delay effi-

cient implementation of the iFIE trust-checking architecture which protects the

FPGA circuit at any stage of its life and, differently from the NIE approach, can

be combined with bitstream encryption, an highly desirable feature in sensitive

applications. The proposed approach is also general enough that it can be adapted

to any FPGA device family with little effort. Moreover, it can be applied for

fault-detection purposes since the underlying 2D ECC parity scheme is able of

detecting any functional modification in the deployed trusted circuit.

The obtained multiplexer overhead minimization is the result of some archi-

tectural and algorithmic techniques applied to the basic FIE approach. Firstly, I

have introduced multiplexer sharing over common nets, a technique which drasti-

cally reduces the hardware overhead without affecting the robustness of the ECC-

based mechanism. Then, I have removed the structural implementation of parity

function by substituting the off-chip random polarity comparison with an off-chip

111

CHAPTER 6. CONCLUSIONS

parity comparison. Finally, I have introduced a more important architectural in-

novation related with cone structures in order to reduce the number of switch-

ing multiplexers on the internal connections. This cone-based iFIE architecture is

supported by algorithmic approaches available for optimal cone generation and se-

lection in order to provide overhead minimization or even simultaneous overhead-

delay minimization. The proposed heuristics take advantage of a benefit metric

based on the concepts of covering and cut cost. Moreover, an alternative deep cone

generation strategy is available for critical path covering. Last but not least, I have

introduced the RecECC technique, a novel challenge-response trust-checking pro-

tocol which is robust against replay attacks and that reduces the masking proba-

bility to an astronomically small value.

The presented iFIE architecture is supported by theoretical considerations which

assess the mechanism robustness against tampering and justify the overhead re-

duction. Other experimental results show that the proposed techniques can reduce

the average multiplexer hardware overhead to 30.15% of the original FPGA cir-

cuit, a satisfactory result considering an overhead of about 350% related with the

basic FIE technique. Moreover, the performance-aware cone covering can limit

the performance degradation to 43.38% which may be reasonable considering a

scenario where delay and security represent two opposite design aspects of the

FPGA circuit. On the whole, the iFIE architecture can be implemented with an

average total overhead of 50.92% which practically does not represent an issue.

In fact, we should consider that typically a significant portion of an FPGA is left

unused by an application circuit. Alternatively, it is still possible to use a slightly

larger FPGA chip with an affordable additional cost. At last, a behavioral and a

post-P&R simulations validate the trust-checking architecture related with a cone

PG showing an optimal detection probability PD=100%. Combining this result

with the theoretical consideration about the 2D ECC parity scheme, it possible

to assess the iFIE architecture robustness. In addition, this consideration is also

supported by an average masking probability pmask of 6.91 · 10−6. In case this

probability value is not satisfactory, we can still apply the RecECC technique

which further reduces pmask without overhead increasing.

112

CHAPTER 6. CONCLUSIONS

The presented thesis work contributes to a novel research area recently sup-

ported by DARPA [2] and concerned with the design of trusted FPGA circuits

and trust-checking mechanisms suitable for detecting FPGA circuit tampering or

Trojan injection. The proposed iFIE approach may be considered quite mature

from a theoretical point of view. However, it still needs development work in or-

der to provide a set of EDA tools capable of implementing the presented trusted

FPGA design flow. A more ambitious project may involve a redesign of the avail-

able FPGA devices in order to naturally integrate the ECC-based trust-checking

mechanism in their chip layout. For instance, we can add a set of switching mul-

tiplexer to each CLB. Intuitively, the added performance overhead will be small

since multiplexers are implemented as transistor circuits instead of k-LUTs. The

PGs composition cannot be decided at chip fabrication time. For this reason, it

seems logical to consider the RecECC technique with its capability of configuring

PGs at runtime.

A drawback of the iFIE trust-checking mechanism is concerned with the rout-

ing between cones. Considering the internal interconnections, these are covered

by the trust-checking since their modification also affects the cone functionality.

On the other hand, this is not true for connections between cones. It might be ar-

gued that it is difficult to craft meaningful tampers by only changing the inter-cone

routing. Despite this favorable consideration, it may be useful to introduce an ex-

tension of the trust-checking mechanism in order to protect inter-cone routing.

Last but not least, it may be interesting to investigate different ECCs or hashing

codes in order to substitute the underlying trust-checking mechanism and possibly

reduce the hardware and the performance overheads.

113

Appendix A

List of Abbreviations

2D Two Dimensional

AES Advanced Encryption Standard

ASIC Application Specific Integrated Circuit

ATPG Automatic Test Pattern Generation

BTE Bitstream Trust Engine

CLB Configuration Logic Block

COTS Commercial Off-The-Shelf

DAG Direct Acyclic Graph

DES Data Encryption Standard

DMR Digital Right Management

DPA Differential Power Analysis

ECC Error Correcting Code

EMP ElectroMagnetic Pulse

FIE Fully Integrated Embedding

114

APPENDIX A. LIST OF ABBREVIATIONS

FPGA Field Programmable Gate Array

HDL Hardware Description Language

IC Integrated Circuit

iFIE improved Fully Integrated Embedding

IOB Input Output Block

IP Intellectual Property

LVS Layout-Versus-Schematic.

LUT Look-Up Table

NIE Non Integrated Embedding

ORA Output Response Analyzer

PCB Printed Circuit Board

PG Parity Group

PI Primary Input

PIE Partially Integrated Embedding

PO Primary Outputs

PV Parity Vector

PUF Physical Unclonable Function

RecECC Reconfigurable Error Correcting Code

SRAM Static Random Access Memory

STA Static Time Analysis

SUM Secure Update Mechanism

115

APPENDIX A. LIST OF ABBREVIATIONS

TMR Triple Modular Redundancy

TPG Test Pattern Generator

TV Test Vector

VLSI Very Large Scale Integration

XDL Xilins Design Language

116

Bibliography

[1] Steve Trimberger. Trusted fpga design in fpgas. Proceedings of the 44th

annual Design Automation Conference, pages 5–8, June 2007.

[2] DARPA. Darpa program for trust in integrated circuits (trust).

[3] Shantanu Dutt and Li Li. Trust-based design and check of fpga circuits using

two-level randomized ecc structures. ACM Transactions on Reconfigurable

Technology and Systems (TRETS), 2(1):1–36, March 2009.

[4] Cynthia E. Irvine and Karl Levitt. Trusted hardware: Can it be trustworthy?

Proceedings of the 44th annual Design Automation Conference, pages 1–4,

June 2007.

[5] Francis Wolff, Chris Papachristou, Swarup Bhunia, and Rajat S.

Chakraborty. Towards trojan-free trusted ics: problem analysis and detec-

tion scheme. Proceedings of the conference on Design, automation and test

in Europe, pages 1362–1365, March 2008.

[6] Xiaoxiao Wang, Mohammad Tehranipoor, and Jim Plusquellic. Detecting

malicious inclusions in secure hardware: Challenges and solutions. Pro-

ceedings of the 2008 IEEE International Workshop on Hardware-Oriented

Security and Trust, pages 15–19, June 2008.

[7] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analy-

sis. Proceedings of the 19th Annual International Cryptology Conference on

Advances in Cryptolog, pages 388–397, August 1999.

117

BIBLIOGRAPHY

[8] Junjun Gu, Gang Qu, and Qiang Zhou. Information hiding for trusted system

desig. Proceedings of the 46th Annual Design Automation Conference, pages

698–701, July 2009.

[9] Jarrod A. Roy, Farinaz Koushanfar, and Igor L. Markov. Epic: ending piracy

of integrated circuits. Proceedings of the conference on Design, automation

and test in Europe, pages 1069–1074, March 2008.

[10] Yousra Alkabani and Farinaz Koushanfar. Active control and digital rights

management of integrated circuit ip cores. Proceedings of the 2008 interna-

tional conference on Compilers, architectures and synthesis for embedded

systems, pages 227–234, October 2008.

[11] G. Edward Suh and Srinivas Devadas. Physical unclonable functions for

device authentication and secret key generation. Proceedings of the 44th

annual Design Automation Conference, pages 9–14, June 2007.

[12] Xilinx. Virtex-4 FPGA User Guide. Xilinx,

http://www.xilinx.com/support/documentation/user guides/ug070.pdf,

December 2008.

[13] Dylan McGrath. Gartner dataquest analyst gives asic, fpga markets clean

bill of health, June 2005.

[14] Brian Dipert. Cunnung circuit confound crooks, October 2000.

[15] Thomas Wollinger and Christof Paar. How secure are fpgas in cryptograpic

applications? Proceedings of the International Conference on Field Pro-

grammable Logic and Applications (FPL), pages 91–100, September 2003.

[16] Thomas Wollinger, Jorge Guajardo, and Christof Paar. Security on fpgas:

State-of-the-art implementations and attacks. ACM Transactions on Embed-

ded Computing Systems (TECS), 3(3):534–574, August 2004.

118

BIBLIOGRAPHY

[17] Srivaths Ravi, Anand Raghunathan, Paul Kocher, and Sunil Hattangady. Se-

curity in embedded systems: Design challenges. ACM Transactions on Em-

bedded Computing Systems (TECS), 3(3):461–491, August 2004.

[18] Ted Huffmire, Brett Brotherton, Timothy Sherwood, Ryan Kastner, Timothy

Levin, Thuy D. Nguyen, and Cynthia Irvine. Managing security in fpga-

based embedded systems. IEEE Design and Test of Computers, 25(6):590–

598, November 2008.

[19] Philippe Adell and Greg Allen. Assessing and mitigating radiation effects in

xilinx fpgas. Technical report, Jet Propulsion Laboratory, California Institute

of Technology, Pasadena, California, February 2008.

[20] Cristiana Bolchini, Davide Quarta, and Marco D. Santambrogio. Seu miti-

gation for sram-based fpgas through dynamic partial reconfiguration. Pro-

ceedings of the 17th ACM Great Lakes symposium on VLSI, pages 55–60,

March 2007.

[21] Thomas Eisenbarth, Tim Güneysu, Christof Paar, Ahmad-Reza Sadeghi,

Dries Schellekens, and Marko Wolf. Reconfigurable trusted computing in

hardware. Proceedings of the 2007 ACM workshop on Scalable trusted com-

puting, pages 15–20, November 2007.

[22] Benoit Badrignans, Reouven Elbaz, and Lionel Torres. Secure update mech-

anism for remote update of fpga-based system. International Symposium on

Industrial Embedded Systems, pages 221–224, June 2008.

[23] Oliver Kömmerling and Markus G. Kuhn. Design principles for tamper-

resistant smartcard processors. Proceedings of the USENIX Workshop on

Smartcard Technology, pages 2–2, May 1999.

[24] Marco Maggioni. Techniques for fully-integrated embedding of design and

verification logic for trusted fpga circuits. Master’s thesis, University of

Illinois at Chicago, May 2009.

119

BIBLIOGRAPHY

[25] Shu Lin and Daniel J. Costello. Error Control Coding: Fundamentals and

Applications. Computer Applications in Electrical Engineering. Prentice-

Hall, 1983.

[26] Peter J. Ashenden. The Designer’s Guide to VHDL. Morgan Kaufmann, 2nd

edition, June 2001.

[27] Donald Thomas and Philip Moorby. The Verilog R© Hardware Description

Language. Springer, 5th edition, October 2002.

[28] Joe Burkis. Clock tree synthesis for high performance asics. Proceedings of

the 4th ASIC Conference and Exhibit, pages 9.8.1–9.8.3, September 1991.

[29] University of Texas at Austin, http://www.cerc.utexas.edu/itc99-

benchmarks/bench.html. ITC99 Benchmark Home Page, 1999.

[30] James Cong and Yuzheng Ding. Flowmap: An optimal technology mapping

algorithm for delay optimization in lookup-table based fpga designs. IEEE

Transaction on Computer-Aided Design,, 13(1):1–12, January 1994.

[31] James Cong and Yuzheng Ding. On area/depth trade-off in lut-based fpga

technology mapping. IEEE Transaction on VLSI Systems, 2(2):137–148,

June 1994.

[32] Gabriele Saucier, Daniel Brasen, and J.P. Hiol. Partitioning with cone struc-

tures. Proceedings of the 1993 IEEE/ACM international conference on

Computer-aided design, pages 236–239, November 1993.

[33] Daniel Brasen and Gabriele Saucier. Using cone structures for circuit parti-

tioning into fpga packages. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 17(7):592–600, July 1998.

[34] Zhonghai Lu Axel Jantsch Ming Liu, Wolfgang Kuehn. Runtime partial re-

configuration speed investigation and architectural design space exploration.

International Conference on Field Programmable Logic and Applications,

pages 498–502, August 2009.

120

BIBLIOGRAPHY

[35] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison Wesley, 2006.

[36] Thomas H. Cormen, Ronald L. Rivest Charles E. Leiserson, and Clifford

Stein. Introduction to Algorithms. The MIT Press, third edition, September

2009.

[37] J. Bhasker and Rakesh Chadha. Static Timing Analysis for Nanometer De-

signs: A Practical Approach. Springer, first edition, April 2009.

[38] Apple Computer, http://developer.apple.com/technologies/tools/xcode.html.

Xcode Developers Tool.

[39] Xilinx, http://www.xilinx.com/tools/logic.htm. Xilinx ISE.

[40] Intel, http://www.intel.com/itcenter/products/core/core2/index.htm. Intel

Core 2 Processors.

[41] Apple Computer, http://www.apple.com/macosx/. Mac OS X Snow Leopard.

[42] N.J.Steiner. A standalone wire database for routing and tracing in xilinx

virtex, virtex-e, and virtex-ii fpgas. Master’s thesis, Electrical Engineering

Virginia Polytechnic Institute and State University, August 2002.

121

Ringraziamenti

Giunti al termine di questa esperienza universitaria, arriva il momento di fermarsi

un attimo per guardare indietro. Parlando con onestà, il lavoro di questa tesi mi ha

insegnato che nella vita bisogna prendere i momenti difficili cosı̀ come vengono,

e lavorarci su per tirare fuori un qualcosa di buono. Si deve magari giocare un po’

in difesa ma al momento giusto si deve avere la forza per un contropiede, per un

cambiamento che cambia le tue prospettive.

Vorrei comunque ringraziare le molte persone incontrate lungo il cammino. Il

primo pensiero va sempre alla mia famiglia che mi vuole bene e che è sempre alle

mie spalle nei casi di difficoltà. Grazie per avermi cresciuto con i giusti valori

e avermi dato l’opportunità di costruirmi un futuro con lo studio. Ringrazio in

particolare mamma Orietta e papà Giovanni per avermi fatto cosı̀, sempre con un

sorriso per tutti. Un bacio va alla mia Benedetta che, nonostante la mia lontananza

per la maggior parte dell’anno, vive pensando tutti giorni a me. D’altronde ogni

rosa ha le sue spine e i sacrifici che si fanno oggi saranno la base per una luminosa

vita insieme domani.

Un ringraziamento di tutto il cuore va al “Santa” che piú di un relatore é un

amico su cui posso sempre contare. In tutta sincerità, è grazie ai suoi consigli

se mi trovo dove sono ora. Ringrazio anche la mia zia americana Leila, senza la

quale non saprei come la mia esperienza di dottorato a Chicago potrebbe conti-

nuare. Come si dice, la vita è tutto un “What goes around comes around” quindi

spero anch’io un giorno di fare per qualcun altro quello che ho avuto la fortuna

di ricevere. Un altro ringraziamento va ai miei attuali advisor alla University of

Illinois, Prof. Tanya Berger Wolf e Prof. Jie Liang, che mi hanno lasciato questa

122

BIBLIOGRAPHY

estate libera per finalmente completare questa laurea. Una menzione anche per il

Prof. Shantanu Dutt, per la collaborazione nella ricerca nell’area trusted FPGA

design.

Per concludere, un ringraziamento generico per tutti gli amici e le persone

che mi sono vicine. A volte, quando sono un po’ triste, mi basta pensare alle

avventure passare insieme che mi torna subito il sorriso. Anche se per gli impegni

c’é sempre meno per stare insieme, vi porto sempre nel cuore.

Milano, Giugno 2010.

Marco

123

	Introduction
	Hardware Trojans
	Trust issue in FPGA manufacturing
	Trusted FPGA design
	Innovative contributions

	State of the Art
	Overview on Error Correcting Codes
	2D ECC parity scheme on FPGA
	Randomization of parity groups
	Tamper masking analysis
	Random parity polarities
	Trusted FPGA design flow
	Embedding of trust-checking components
	Non Integrated Embedding
	Partially Integrated Embedding
	Fully Integrated Embedding

	An improved Fully Integrated Embedding
	Hardware and performance overheads
	Test Pattern Generator
	Output Response Analyzer
	Parity functions
	Switching multiplexers

	Multiplexer sharing over common nets
	Trust-checking without parity functions
	Cone-based iFIE approach
	A more general CLB functional model
	Cone structures
	Cone-based trusted FPGA design

	Reconfigurable Error Correcting Code

	Heuristics for cone generation and selection
	A covering problem
	Metrics for cone generation
	Cone covering algorithm for overhead minimization
	Performance-aware cone covering algorithm

	Results ans simulations
	Experimental setup
	Experimental results
	Validation simulations

	Conclusions
	List of Abbreviations

