

Master of Science in Computer Engineering

Engineering of a set of Software Tools for
Server Farms Virtualization

Supervisor: Prof. Luigi Casalegno
Tutor: Dr. Mauro Gatti, IBM Italy

Master Graduation Thesis by: Mostafa Ahmed Sharaf
Student Id. number: 721502

Academic year-2009/2010

POLITECNICO DI MILANO
Facoltà di Ingegneria dell’Informazione

POLO REGIONALE DI COMO

Corso di Laurea Specialistica in Informatica

Ingegnerizzazione di un insieme di Strumenti

Software per la Virtualizzazione di Server Farm

Relatore: Prof. Luigi Casalegno
Tutor: Dr. Mauro Gatti, IBM Italia

Tesi di laurea di: Mostafa Ahmed Sharaf
Matr. 721502

Anno Accademioc-2009/2010

POLITECNICO DI MILANO
Facoltà di Ingegneria dell’Informazione

POLO REGIONALE DI COMO

Mostafa A. Sharaf Politecnico di Milano

3 Acknowledgements | Master Thesis

Acknowledgements
First, I would like to express my gratitude to Prof. Lugi Casalegno for his supervision on my

master thesis. His suggestions and encouragement helped me very much in writing this thesis.

A special thank you goes to Dr. Mauro Gatti for making it possible to write my master thesis at
IBM Italy. I enjoyed very much to work in IBM Italy, under his mentoring and supervision. Even
when his time was very tight, he always had an ear for me. I am heartily grateful for the time he
spent with me and for his great guidance and encouragement.

Furthermore, I want to thank the other members of WASFO team in IBM Italy: Salvatore
Morsello, Giuliano Andrea Pagani, Maria Benedetta Riccelli, Elisa Tonello and Arsene Fansi
Tchango, for the excellent help and support.

I owe my deepest gratitude to all the professors who taught me during my master courses in
Politecnico di Milano. They always had time for my questions and whose help was a great
support for achieving the master degree. I am also so grateful to Politecnico di Milano
University, in particular to the head of Como Campus: Professor Roberto Negrini, and also
Professor Piero Fraternalli, Professor Pozzi Giuseppe, Professor Paolo Paolini.

As a friend, I would never forget my beloved friend Alina Pitu, who gave me a great support
during the last year while I was in IBM Italy. I truly appreciate everything she made to me.

Finally yet importantly, I want to thank my family, particularly my mother for supporting me
throughout all my years of study. In addition, I would like to thank Nevine Helmy for correcting
the thesis and for her great encouragement. I finally thank God for giving me the opportunity to
achieve a master degree from a great university as Politecnico di Milano University.

Mostafa A. Sharaf Politecnico di Milano

4 Table of Contents | Master Thesis

Table of Contents
Acknowledgements ... 3

Table of Contents .. 4

List of Figures .. 7

List of Tables ... 9

List of Graphs .. 10

Abstract .. 11

Sommario .. 12

1 Introduction .. 13

1.1 IT Optimization .. 14

1.1.1 System Virtualization .. 14

1.1.2 Server Consolidation .. 16

1.2 WASFO Goals ... 17

1.3 WASFO Users ... 18

2 State of Art .. 19

2.1 State of Art of WASFO .. 19

2.2 State of Art of IT Optimization tools ... 21

2.2.1 Data Collection Tools .. 21

2.2.2 Data Analysis and Business case spreadsheets .. 21

2.2.3 Data Analysis and Business case tools ... 22

3 IBM WASFO Software Development Methodology & Software Requirements................................ 23

4 IBM WASFO Toolset ... 26

4.1 Overview.. 26

4.2 General Software Architecture ... 28

4.3 IBM WASFO Database .. 32

4.4 WASFO Shared Components .. 34

4.4.1 IBM.WASFO.Core ... 35

4.4.2 IBM.WASFO.ProjectDesign ... 37

4.4.3 IBM.WASFO.ProjectExplorer ... 41

4.4.4 IBM.WASFO.Authentication.. 45

4.4.5 IBM.WASFO.ReportGenerator .. 46

Mostafa A. Sharaf Politecnico di Milano

5 Table of Contents | Master Thesis

4.4.6 IBM.WASFO.Graphs .. 46

4.4.7 Infragistics .NET Controls .. 46

5 IBM WASFO Data Collector Tool .. 47

5.1 As-is WASFO Toolset for Data Collection .. 47

5.2 To-be WASFO Data Collector Tool .. 48

5.3 Software Architecture .. 50

5.3.1 Inventory Collection ... 50

5.3.2 Workload Collection ... 50

5.3.3 IBM.WASFO.DataCollector Component .. 51

5.3.4 IBM.WASFO.DCController Component.. 52

5.3.5 IBM.WASFO.DataCollectorGUI.exe Program ... 54

6 IBM WASFO Analysis and Optimization Tool .. 55

6.1 As-is WASFO Toolset for Analysis and Optimization .. 55

6.2 To-be WASFO Analysis and Optimization Tool .. 56

6.3 Software Architecture .. 58

6.3.1 IBM.WASFO.InventoryAnalysis Component .. 58

6.3.2 IBM.WASFO.WorkloadAnalysis Component .. 60

6.3.3 IBM.WASFO.Optimization Component ... 61

6.3.4 IBM.WASFO.AOController Component ... 61

6.3.5 IBM.WASFO.AnalysisOptimizationGUI.exe Program .. 63

6.4 Import Process of IDEAS International Spreadsheet .. 65

6.5 WASFO Matching Algorithm ... 67

6.6 Experimental Analysis for the Matching Algorithm ... 72

6.6.1 Customer1 project .. 72

6.6.2 Customer2 project .. 74

7 IBM WASFO Shipment Services .. 76

7.1 WASFO Shipment Web Services ... 76

7.2 Why WES 3.0? .. 76

7.3 IBM.WASFO.MTOM (Web Services Client) .. 78

7.4 WASFO Shipment User Controls ... 80

7.4.1 IBM.WASFO.SendControl.. 80

7.4.2 IBM.WASFO.ReceiveControl ... 81

Mostafa A. Sharaf Politecnico di Milano

6 Table of Contents | Master Thesis

7.5 Web Service Configuration ... 83

8 IBM WASFO License Generator .. 84

9 IBM WASFO Deployment ... 86

10 Conclusion ... 91

11 Future Work .. 93

11.1 WASFO Toolset Architecture .. 93

11.2 WASFO Toolset Components .. 93

11.3 WASFO Matching Algorithm ... 93

11.4 WASFO Graphical user Interface (GUI).. 94

11.5 WASFO Database ... 94

11.6 WASFO Toolset Connectivity with WASFO Database .. 94

12 Appendix ... 95

A. IBM WASFO Data Collector Tool ... 95

B. IBM WASFO Analysis and Optimization Tool... 95

C. IBM WASFO Data Collector Setup .. 96

D. Importing process of IDEAS International Excel Sheet (Reference servers) 96

E. The process of Inventory Collection (IBM WASFO Data Collector Tool) 97

F. The process of Inventory Analysis (IBM WASFO Analysis and Optimization Tool) 97

G. Identifying the performance capacity of collected servers (Matching process) 98

H. The InventoryAnalysis Table in WASFO Database, concerning the matching results between the
servers in the tables “ServersInventory” & “ReferenceServers” ... 98

I. WASFO ProjectDesign Custom Control (Project Wizard) ... 99

J. Exporting process of WASFO Projects (WASFO Data Collector Tool) ... 100

K. Importing process of WASFO Projects (WASFO Analysis and Optimization Tool)....................... 101

L. The design time of IBM.WASFO.ReceiveControl (WPF & XAML Coding) 102

Bibliography .. 103

Mostafa A. Sharaf Politecnico di Milano

7 List of Figures | Master Thesis

List of Figures
Figure 1 Example of System Virtualization (VMware ESX version 2.0) ... 14
Figure 2 Example of Server Consolidation using VMware ... 16
Figure 3 Activity diagram of IBM WASFO Solution .. 27
Figure 4 WASFO Deployment Diagram ... 30
Figure 5 Component diagram of the libraries’ dependencies in WASFO Toolset 31
Figure 6 Class Diagram of WASFO Core Library .. 36
Figure 7 Class diagram of ProjectDesign Component ... 38
Figure 8 Sequence diagram of ProjectDesign Component .. 39
Figure 9 State diagram of ProjectDesign Component ... 40
Figure 10 The ProjectExplorer Component (Custom control of type: Treeview) 42
Figure 11 Sequence diagram of ProjectExplorer Component.. 43
Figure 12 Class diagram of ProjectExplorer Component ... 44
Figure 13 The authentication Form of WASFO Toolset ... 45
Figure 14 Main form of WASFO Data Collector Tool ... 47
Figure 15 Component diagram of WASFO Data Collector Tool ... 49
Figure 16 Activity diagram of Inventory Collection Process (Drawn by other WASFO Team members, IBM
Italy) .. 50
Figure 17 Flow diagram of Workload Collection Process (Drawn by Dr. Mauro Gatti, IBM Italy) 51
Figure 18 Class diagram of DataCollector Library ... 52
Figure 19 Class diagram of DCController Library .. 53
Figure 20 .NET Class diagram of the DataCollectorGUI.exe... 54
Figure 21 Main form of WASFO Analysis and Optimization Tool ... 55
Figure 22 Component diagram of WASFO Analysis and Optimization Tool ... 57
Figure 23 UML Class diagram of InventoryAnalysis Library ... 59
Figure 24 .NET Class diagram of InventoryAnalysis Library ... 60
Figure 25 UML Class diagram of AOController library ... 62
Figure 26 .NET Class diagram of AOController library ... 63
Figure 27 .Net class diagram of AnalysisOptimizationGUI.exe .. 64
Figure 28 Diagram showing how to import IDEAS Sheet into IBM WASFO Database 65
Figure 29 Activity diagram of ETL Process for IDEAS International Sheet .. 66
Figure 30 Procedures of WASFO Matching Algorithm .. 69
Figure 31 Activity diagram of WASFO Matching Algorithm ... 70
Figure 32 Sequence diagram of WASFO Matching Algorithm ... 71
Figure 33 Component diagram of WASFO Shipment Web services ... 76
Figure 34 Class diagram of Shipment Web services .. 78
Figure 35 Class diagram of MTOM Component .. 79
Figure 36 Application Configuration file - WASFO Shipment Web Services (Client side) 79
Figure 37 Class diagram of the component “IBM.WASFO.SendControl” ... 81
Figure 38 Class diagram of the component “IBM.WASFO.ReceiveControl” ... 82

Mostafa A. Sharaf Politecnico di Milano

8 List of Figures | Master Thesis

Figure 39 Web Configuration file (XML file) of WASFO Shipment Web Services (Server side) 83
Figure 40 Authentication mechanism in WASFO Toolset (Drawn by Dr. Mauro Gatti, IBM Italy)............. 84
Figure 41 Table LicenseKey .. 85
Figure 42 UML diagram of WASFO Solution ... 86
Figure 43 Welcome screen during the setup process of IBM WASFO Data Collector Tool 87
Figure 44 IBM WASFO Data Collector Tool - Application Folder .. 90
Figure 45 App.config XML file of IBM WASFO Analysis and Optimization Tool .. 90
Figure 46 Screenshot of WASFO Data Collector Tool .. 95
Figure 47 Screenshot of WASFO Analysis and Optimization Tool .. 95
Figure 48 Screenshot of the installing process of WASFO Data Collector Tool .. 96
Figure 49 Screenshot of the import process of IDEAS International Tables into WASFO Database 96
Figure 50 Screenshot of the inventory collection-user form ... 97
Figure 51 Screenshot of the inventory analysis- user form ... 97
Figure 52 Screenshot of the identified collected servers-user form .. 98
Figure 53 Relations between the Inventory Analysis Tables in WASFO Database 98
Figure 54 Screenshots of the ProjectDesign component .. 99
Figure 55 Screenshot of IBM.WASFO.SendControl component .. 100
Figure 56 Screenshot of the exporting process-step1 (compressing WASFO projects) 100
Figure 57 Screenshot of the exporting process-step2 (uploading WASFO projects) 100
Figure 58 Screenshot of the exporting process-step3 (Verifying files’ integrity by hashing) 100
Figure 59 Screenshot of IBM.WASFO.ReceiveControl component .. 101
Figure 60 Automatic check in case of any found projects in the web server of WASFO......................... 101
Figure 61 Manual check for any uploaded projects in the web server of WASFO 101
Figure 62 Screenshot of the importing process-step1 (decompressing WASFO projects) 101
Figure 63 Screenshot of the importing process-step2 (downloading WASFO projects) 102
Figure 64 Screenshot of the importing process-step3 (Verifying files’ integrity by hashing) 102
Figure 65 Screenshot of the WPF & XAML Code of IBM.WASFO.ReceiveControl in the design-time 102

Mostafa A. Sharaf Politecnico di Milano

9 List of Tables | Master Thesis

List of Tables
Table 1 Data Collection of Customer1 project .. 72
Table 2 Analysis results of both algorithms for Customer1 Project ... 73
Table 3 Data Collection of Customer2 Project .. 74
Table 4 Analysis results of both algorithms for Customer2 Project ... 75

Mostafa A. Sharaf Politecnico di Milano

10 List of Graphs | Master Thesis

List of Graphs
Graph 1 3D View of Customer1 project’s data ... 72
Graph 2 Results of the old WASFO Matching Algorithm – Customer1 Project .. 73
Graph 3 Results of the new WASFO Matching Algorithm – Customer1 Project 73
Graph 4 3D View of Customer2 project’s Data ... 74
Graph 5 Results of the old WASFO Matching Algorithm – Customer2 Project .. 75
Graph 6 Results of the new WASFO Matching Algorithm – Customer2 Project 75

Mostafa A. Sharaf Politecnico di Milano

11 Abstract | Master Thesis

Abstract
In the world of IT1, enterprises face the challenge of how to spend a minimum cost on their

IT infrastructure, while reaching the same business performances and targets. Hence, more
conscious and reflective approaches are demanded.

The architectural design of the IT infrastructure requires a great effort to select the optimal
design among multiple alternatives satisfying the given requirements. The problem of designing
and sizing a virtualized server farm is one of the major problems in any IT infrastructures. Thus,
WASFO2 has come to the reality to solve and overcome this problem.

WASFO is a joint project between IBM Italy, Politecnico di Milano and the Università degli
Studi di Milano. Starting on October 2003, WASFO has been conceived to answer the need for
virtualized server farm’s sizing and design. My master dissertation is about the engineering of
IBM WASFO Toolset. WASFO stands for Workload Analysis for Server Farms Optimization.

A software solution optimizes the design of server farms. It collects inventory and workload data
from an existing server farm. Then based on the collected data, it finds the best virtualization
design for the server farm after performing analysis and optimization through several operations
and algorithms. Thus, WASFO allows the assessment, study and redesign of server farms from a
single point. All these features make it unique in the arena of capacity planning tools for server
virtualization.

Hence, the dissertation starts with a brief introduction to IT Optimization (Chapter.1) and after
then, the state of art of WASFO and a concise overview about IT optimization tools (Chapter.2).
Then detailed information is given about the software methodology used, the software
requirements and specifications (Chapter.3), and after that a detailed description about the
architecture of WASFO Toolset (Chapter.4). A chapter is then devoted to the description of
WASFO Data Collector Tool (Chapter.5). It is followed by a description to WASFO Analysis
and Optimization Tool (Chapter.6). Then, there is a chapter about the description of WASFO
Shipment Services (Chapter.7), and then another chapter about a description to WASFO License
Generator (Chapter.8). The last chapter is a detailed description of the deployment of WASFO
Toolset (Chapter.9), and after that, a section concludes the work in the Project. The last section
in the thesis is about the future work, which outlines the future possible evolutions of WASFO.

1 IT; Information Technology
2 WASFO; workload Analysis for Server Farms Optimization

Mostafa A. Sharaf Politecnico di Milano

12 Sommario | Master Thesis

Sommario
Nel mondo delle IT (Information Techonology), le aziende affrontano la sfida di come

limitare i costi per la loro infrastruttura IT, mantenendo inlaterate le prestazioni e gli obiettivi
delle stessa attività. Di conseguenza, sono necessari approcci più consapevoli e ben ponderati.

La progettazione architetturale delle infrastrutture IT richiede un grande sforzo per individuare la
progettazione ottimale tra le differenti alternative più corrispondenti agli obiettivi prefissati. Il
problema della progettazione e del dimensionamento di una server farm virtualizzata è uno dei
maggiori problemi in qualsiasi infrastruttura IT. Il progetto WASFO ha l’obiettivo di risolvere e
superare questo problema.

WASFO è un progetto congiunto tra IBM Italia, Politecnico di Milano e l'Università degli Studi
di Milano. L’acronimo WASFO indica Workload Analysis for Server Farms Optimization. A
partire dall’ottobre 2003, WASFO è stato concepito per rispondere alle esigenze di
dimensionamento e di progettazione di server farm virtualizzate. La presente tesi di laurea
considera l'ingegnerizzazione dell’insieme di strumenti software per la virtualizzazione di server
farms “WASFO Toolset”.

WASFO è un soluzione software che consente di ottimizzare la progettazione e la
virtualizzazione di server farm. WASFO raccoglie i dati sul carico di lavoro di una server farm
esistente e, sulla base dei dati raccolti, trova il miglior progetto per la virtualizzazione della
server farm esistente dopo averne eseguito una analisi ed una ottimizzazione attraverso diverse
operazioni e algoritmi. In tal modo WASFO permette di valutare, studiare e riprogettare una
server farm da un unico punto di vista: tali caratteristiche rendonoWASFO una strumento unico
nel panorama degli strumenti di pianificazione e progettazione per la virtualizzazione di server.

Mostafa A. Sharaf Politecnico di Milano

13 Introduction | Master Thesis

1 Introduction
The WASFO toolset has been developed over the years under the leadership of Dr. Mauro Gatti
(IBM Italy) and by many people. Today, many IBM partners and customers for IT Optimization
are using WASFO in reality. The current version of WASFO is designed and developed using
Microsoft Visual C++.Net 2008, Microsoft Visual C#.Net 2008, WPF3, XML4 Web Services,
ADO.NET5, Microsoft Excel, Visio-UML6, IBM Rational Modeler, Microsoft Database Access.

The Toolset has currently three tools:

I. Data Collector Tool; It is responsible for collecting inventory, workload, virtual
machines, applications inventory and connections data from existing server farms.

II. Analysis and Optimization Tool; It is responsible for analyzing, designing and
optimizing the virtualization design of a server farm, based on the collected inventory
data and collected workload data. Hence, it makes basic inventory and workload analysis
in order to be used to solve the optimization problem by finding the minimum cost way to
virtualize the current server farm.

III. License Generator Tool; It is responsible for authenticating and authorizing users’
access through authorized license keys.

During the master dissertation, I had a work plan that was composed of four stages:
 Create a new matching algorithm for identifying automatically the performance capacity of

collected servers from an existing server farm. Herein, performance capacity means the
estimate of the computational capability of the server.

 Design the architecture of the new tool; WASFO Analysis and Optimization Tool.

 Re-engineer the existing architecture of WASFO Data Collector Tool in order to modularize
the code that is written previously in a non-modular way, modify the graphical user interface
to look more professional and usable, and finally to add new functionalities to the current
tool.

 Design and develop a shipment web service for importing and exporting WASFO Project
files between the two WASFO tools; Data Collector Tool and Analysis and Optimization
Tool, in order to facilitate the shipment process of those files between both tools, which was
done manually in the past. The web service will use a new component for compressing
/decompressing WASFO project files before/after the shipment in order to facilitate the
transfer process of a large amount of files.

3 WPF; Windows Presentation Foundation
4 XML; Extensible Markup Language
5 ADO.NET; Active Data Object for Microsoft.NET
6 UML; Unified Modeling language

Mostafa A. Sharaf Politecnico di Milano

14 Introduction | Master Thesis

In this chapter, three main sections have been dedicated to IT and WASFO to give a broad view
of the WASFO importance in IT World, whereby WASFO plays a vital role in IT Optimization;

 IT Optimization (Basic concepts and benefits of IT optimization, system virtualization
and server consolidation)

 WASFO Goals (The main targets of WASFO Toolset)
 WASFO Users (Who are the users of WASFO Toolset?)

The following introduction about IT Optimization is mainly inspired by the website7 of Dr.
Mauro Gatti, the project leader of WASFO.

1.1 IT Optimization
IT Optimization describes a set of techniques developed to optimize IT according to objectives
established by the CIO8 or the IT Manager. Here are some of the IT optimization techniques:

 Techniques to improve the efficiency and effectiveness (business processes)
 Techniques to improve IT infrastructure

The optimization techniques for IT Infrastructure are as follows:
 System Virtualization
 Server Consolidation
 Operating System Consolidation
 Application Consolidation

1.1.1 System Virtualization
It allows multiple instances of the operating system to run concurrently on a host computer. The
software/firmware, which provides such feature, is called Virtual Machine Monitor (Hypervisor);

 VMware ESX Server (SW9 for Intel servers)
 Microsoft Hyper-V (SW for Intel servers)
 PowerVM (firmware for IBM System p servers)

Figure 1 Example of System Virtualization (VMware ESX version 2.0)

7 http://www.itdec.eu/, an open web site dedicated to the application of formal methods to the IT investment and
design decision processes. This web site is open in the sense that whoever can contribute by sending articles to us.
8 CIO; Chief Information Officer
9 SW; Software

Mostafa A. Sharaf Politecnico di Milano

15 Introduction | Master Thesis

A system virtualization project is always considered a server consolidation project, but it is not
restricted to be an operating system or application consolidation project.

1.1.1.1 Financial benefits

1.1.1.1.1 Minimization of hardware maintenance costs
Costs of HW10 maintenance are significantly dependent on HW virtualization. It is possible to
see 30-1 consolidation ratios in a system virtualization project, which results in about 30-1
maintenance savings.

“Detailed cost analysis in real projects using WASFO have shown that the savings of operating
expenses concerning old servers maintenance may be enough to offset the initial capital
expenditure of the overall project (servers, software and implementation) provided that tax shield
is taken into account”, said by (Dr. Mauro 2010).

1.1.1.1.2 Minimization of LAN/SAN costs
A system virtualization project typically provides LAN and SAN savings. In addition,
hypervisor-s can create virtual networks thereby further reducing the LAN costs. Thus, a system
virtualization project can free many LAN/SAN resources (for example: network switch ports).

1.1.1.1.3 Minimization of floor spaces costs
System virtualization projects usually produce great space savings due to the reduced number of
physical servers. “In a recent project we have estimated that 22 square meters could be freed
with a system virtualization project with a 30-1 consolidation ratio”, said by (Dr. Mauro 2010)

1.1.1.1.4 Minimization of power consumption costs
The reduction of the servers’ number minimizes the cost of the power consumption:

 Power consumptions by servers
 Power consumption by datacenters refrigeration

1.1.1.2 Intangible benefits

1.1.1.2.1 Increased availability
Live migration of Virtual Machines makes it possible to increase the overall dependability of a
server farm. Studies have shown that the overall availability of a server farm of Windows servers
without any high availability protection is on average 99.9%.

“We can say that live migration can help to further reduce the planned and unplanned system
downtime by dramatically reducing, let say for sake of simplicity by zeroing, the downtime due
to HW failures. We know from statistical analysis that HW failures are 15-30% of the overall
failures. So we should expect the overall availability to increase on average to 99.915-99.930%”,
said by (Dr. Mauro 2010).

10 HW; Hardware

Mostafa A. Sharaf Politecnico di Milano

16 Introduction | Master Thesis

1.1.1.2.2 Green IT
New servers typically consume more than old servers do even though the technologies of modern
power savings. However, the very high consolidation ratio is enough to replace such increases
and deliver efficient power savings.

“An in-depth analysis on real data collected with WASFO tool has shown that a server farm with
200 servers can produce through system virtualization (30-1 consolidation ration) over 150,000
Euros power savings per year (with a cost of 0.18 Euros per KW11/hour)”, said by (Dr. Mauro
2010).

1.1.2 Server Consolidation
It aims at reducing the number of servers. This can be achieved through the implementation of
system virtualization, operating system consolidation or application consolidation.

Figure 2 Example of Server Consolidation using VMware

1.1.2.1 Financial benefits

1.1.2.1.1 Minimization of hardware maintenance costs
The hardware maintenance costs are calculated per server and hence the fewer the servers, the
less is the overall cost. These costs are not considered within the first 3 years after server
purchase. However, they become explicit as soon as the warranties expire and the server is
consumed. Maintenance costs may increase significantly, when the server exceed the critical
age.

1.1.2.1.2 Minimization of network connectivity costs
The fewer the servers we use, the less number of ports and cables used for the LAN and SAN
connections. In fact, the new servers typically use higher number of connections than those of

11 KW; Kilo Watt

Mostafa A. Sharaf Politecnico di Milano

17 Introduction | Master Thesis

old servers. However, the consolidation ratio is usually so high enough to produce a significant
reduction in network connectivity.

1.1.2.1.3 Minimization of physical spaces costs
When the number of physical servers decreases, the used datacenter space is reduced. This
reflects a benefit on the utilization level of the datacenter; hence, in this case it can be fully
utilized. However, this benefit depends primarily on the datacenter’s utilization level.

1.1.2.1.4 Minimization of power consumption costs
As fewer servers we consume, as less power consumption we cost. Power consumptions are
directly due to the servers, and due to the datacenter refrigeration.

1.1.2.2 Intangible benefits

1.1.2.2.1 Increased availability
Server consolidation usually reduces the overall number of failures in server farms, and
henceforth minimizes the costs due to the management of these failures.

1.1.2.2.2 Green IT
Server consolidation clearly supports the principle of Green IT, because it reduces the number of
used servers.

1.2 WASFO Goals
The main goal of WASFO is to minimize the total cost of acquisition, the management cost, and
the energy consumption of server farms. Henceforth, WASFO is totally associated with an
approach to solve IT optimization problems. The following are the sequence steps of how to use
WASFO Toolset:

• Project’s design and creation: the server farm to-be analyzed, consists of several systems
which are divided into groups belong to:

o Different areas
o Different operating system technologies
o Different organizations inside the company

• Inventory collection: collects inventory data from the existing server farm.
• Workload collection: collects workload data from the existing server farm.
• Inventory analysis: performs statistical analysis of the collected inventory data.
• Workload analysis: performs statistical analysis of the collected workload data.
• Optimal virtualization: finds the best virtualization design for the current server farm.
• Presentation: the best solution is created to be presented and discussed with the client.

Thus, with WASFO Toolset you avoid the typical “rules of thumb” that is frequently used in
virtualization projects without a reasonable motivation. Indeed, WASFO Toolset answers typical
questions from clients. These questions are usually investigated during a server consolidation
project;

• Which servers should we virtualize? Moreover, which ones should not be virtualized?
• Which server models do we use?

Mostafa A. Sharaf Politecnico di Milano

18 Introduction | Master Thesis

• How many servers do we need?
• Which configurations should our virtualized servers have?
• How do we distribute the VMs12 on the virtualized servers? Moreover, how should the

servers be utilized after virtualization?

“WASFO software finds the best virtual machines allocation on both the new and legacy target
servers; it also provides a projection, based on collected data, on how the servers will be utilized
after the virtualization-consolidation project. In conclusion, the software tool can be an analytical
guide to drive the customer to the best possible solution”, said by (Andrea Pagani 2009).

1.3 WASFO Users
WASFO can be used only by IBM employees. Typical users of WASFO Toolset are:

• IT Specialists
• IT Architects

IBM Business partners can use WASFO for IBM BPs13 (the legal screening is being completed
currently). WASFO for IBM BPs only allows to collect data, hence IBM WASFO Data Collector
Tool is used for this purpose. Collected data will have to be analyzed by an IBM employee. This
restriction is due to the fact that licensing of IDEAS International Performance capacity tables is
required.

WASFO is mainly to design an optimal server farm in virtualization projects. Thereby, WASFO
guides sales, pre-sales, specialists and architects personnel from;

• IBM Systems Specialists/Architects
• IBM GTS14 Specialists/Architects (service delivery)
• IBM System Architects STG15
• IBM BPs (data collection)
• Techline (elaboration of data collected by IBM BPs)
• ITD16 Specialists/Architects

WASFO Toolset could also be used in strategic outsourcing projects in order to monitor physical
server farms to-be-virtualized to IBM facility or to virtualize clients’ servers that are already
outsourced to IBM.

12 VMs; Virtual Machines
13 IBM BPs; IBM Business Partners
14 GTS; IBM Global Technology Services
15 STG; IBM Systems and Technology Group
16 ITD; IBM Integrated Technology Delivery

Mostafa A. Sharaf Politecnico di Milano

19 State of Art | Master Thesis

2 State of Art
2.1 State of Art of WASFO
In this section, the previous WASFO Tool is investigated with comparison to the new WASFO
Toolset. WASFO started in 2003, and its first release was issued in 2007. Since that time,
WASFO has become a useful tool for the IBM x86 technical sales force and the IBM business
partner network. In fact, WASFO has succeeded in 10s of virtualization projects in Italy and
abroad as well. Although the old WASFO Tool was successful as an IT Optimization Tool, it
does not have good software architecture, besides that it lacks many features. Consequently, it
did face many technical problems. Some of these problems are as follows:

• Lack of Modularity
• Manual shipment of WASFO Projects
• Missing setup package for WASFO tool
• Missing reporting facility for WASFO projects
• The graphical user interface isn’t professional and has many defects
• Generating simple graphs which sometimes does not show important details
• Using XML files to WASFO Data instead of having a database management system
• The optimization algorithms does not take into account important scenarios (e.g.

currently virtualized server farms)
• Inefficient and non successful matching algorithm for the automatic identification process

of the collected servers’ performance capacity
• WASFO Tool is a single tool, since it performs data collection, analysis and optimization.

This monolithic architecture was poor in terms of design and performance

After the second release in 2008, WASFO went through an intensive revision and improvement
phase, both from the user and the technical perspectives. Currently the new WASFO is a toolset,
which comprises three WASFO Tools:

1. IBM WASFO Data Collector Tool
2. IBM WASFO Analysis and Optimization Tool
3. IBM WASFO License Generator Tool

The improvements regarding the user’s side are as follows:
• More user friendly interface
• New data collection from virtualized platforms and from different OS17 platforms
• Possibility of the choice between more IBM target platform families
• Addition capabilities to solve different decision issues
• Design of more detailed and comprehensive cost functions
• Financial analysis capabilities
• Generation of advanced graphs to help users in taking decisions

The improvements regarding the technical side are as follows:
• Entire code rewriting
• Software component’s reusability
• Distributed architecture based on middleware paradigm using IIS18 Web Server

17 OS; Operating System

Mostafa A. Sharaf Politecnico di Milano

20 State of Art | Master Thesis

• Introducing SOA19 by building set of web services in the middleware layer
• Design and Implementation of WASFO Database
• User friendly and professional GUI20
• Introducing professional GUI libraries to WASFO
• New matching algorithm for the automatic identification of the collected servers’

performance capacity
• Import automatically the reference servers from IDEAS International sheet into WASFO

Database
• Elaboration of the exact and heuristic solvers for the new mathematical models
• Design and development of advanced graphs
• Partial automation of data updates for server configurations
• Add more IBM systems as possible target platforms for the consolidations

In fact, my work in WASFO Project was part of this transformation process during the last year
in 2009. I was responsible for designing and implementing the completely new architecture of
WASFO Toolset. Hence, I created the new tool; WASFO Analysis and Optimization, and
modified many parts in the old WASFO Data Collector Tool. In addition to contributing to the
design and the implementation of the graphical user interface of WASFO Toolset, the
development and the integration of the Core, ProjectDesign, ProjectExplorer, DataCollector,
DataCollectorGUI, InventoryAnalysis, AOController, AnalysisOptimizationGUI, SendControl,
and ReceiveControl components. Moreover, I developed the deployment packages for WASFO
Tools.

Indeed the current WASFO is very different from the previous version. Currently, WASFO
Toolset has two main tools, and middleware software:

o WASFO Data Collector Tool
o WASFO Analysis and Optimization Tool
o IBM WASFO Middleware Software

One of the most interesting development issues during my work was the shipment of WASFO
projects’ files. Now, WASFO has introduced a middleware layer to-be called IBM WASFO
Middleware; IIS Web server that provides shipment web services to transfer remotely any
project files between both tools. The biggest challenge was how to optimize the transmission of
files of large size with zero error.

18 IIS; Internet Information Services, formerly called Internet Information Server that is created by Microsoft
19 SOA; Service Oriented Architecture
20 GUI; Graphical User Interface

Mostafa A. Sharaf Politecnico di Milano

21 State of Art | Master Thesis

2.2 State of Art of IT Optimization tools
In this section, the state of art of IT Optimization tools is investigated. Currently, IT
Optimization tools are classified into:

1. Data collectors
2. Data analysis and business case spreadsheets
3. Data analysis and business case tools

WASFO Team has performed a deep investigation for all these tools, and here below is a brief
overview about each tool.

2.2.1 Data Collection Tools
2.2.1.1 CDAT
It stands for Consolidation Discovery and Analysis Tool. CDAT is a data collection tool that is
used by IBM server consolidation specialists. It performs server discovery and data gathering of
Windows, Linux, Solaris, HP-UX, AIX21 and Netware servers.

2.2.1.2 IBM ATS SCON Monitor
The IBM ATS Server Consolidation Monitor (ASCM) is used to guide Server Consolidation
studies. It is a Microsoft Windows browser application which runs on Windows .NET
Framework. It has the ability to collect and report system architecture. Hence, it gathers system
architecture and performance data from Windows computers and UNIX/Linux hosts.

2.2.2 Data Analysis and Business case spreadsheets
2.2.2.1 Visian
An IBM internal tool developed to help sizing Intel and UNIX target servers in consolidation
study projects. VISIAN is an Excel-based IBM internal tool, which performs analysis based on
the collected inventory and workload data. Nevertheless, it has no data collection capabilities.

2.2.2.2 Zodiac
It is an IBM Excel-based internal tool used to project the costs of ownership and growth over
time, compare the base case, and alternate case in IT Optimization projects. It can be used in the
following cases:

 Examine costs
 Investigate potential for automation
 Investigate savings in software costs
 Investigate potential reductions in carbon emissions

2.2.2.3 Cobra
It is an eventual derivative of Zodiac. Cobra is an IBM Excel-based internal tool. It is possible to
switch to Cobra mode by accessing the Zodiac Spreadsheet. With Cobra, we can only gather
summary data about the number of servers in each functional group.

21 AIX; Advanced Interactive eXecutive

Mostafa A. Sharaf Politecnico di Milano

22 State of Art | Master Thesis

2.2.2.4 Race
It is an IBM Pre-Sales technical support tool, which allows the development of IT Cost and value
assessment for IBM Clients. Hence, it compares alternative infrastructure choices. Race stands
for Right-Fitting Applications into Consolidated Environments. RACE provides re-hosting
Applications into consolidated environments. It was designed to build business cases that
supports clients’ desire to move from a de-centralized computing model composed of discrete
servers to a virtualized model running on fewer centralized servers. RACE was used mainly for
sizing the mainframe as a replacement platform for Linux applications. Currently, it is being
used to evaluate potential benefits of consolidating workloads from Competitive Intel/UNIX
platforms into IBM Systems platforms.

2.2.3 Data Analysis and Business case tools
2.2.3.1 Cirba
Cirba has been selected as the standard software application for both for data collection and
analysis;

 Global Technology Services-Server
 Service Product Line-Optimization and Integration Services

It is considered as the most complete and advanced tool among the previous ones. It is Java web-
based software for datacenter intelligence.

Mostafa A. Sharaf Politecnico di Milano

23 IBM WASFO Software Development Methodology & Software Requirements | Master Thesis

3 IBM WASFO Software Development
Methodology & Software Requirements

To design and develop the new WASFO Toolset, we pursued the iterative and incremental
approach. This development methodology reduced project risk by breaking WASFO into smaller
segments and providing easier change during the development process.

After we performed an intensive analysis to the previous design of WASFO, we decided to
design the new WASFO Solution based on the principle of Component-based software
engineering. This principle “CBSE22” emphasizes the separation of complex functionalities
available throughout a given software system into reusable components. This kind of architecture
is similar to the SOA, whereby a system is composed of reusable services. In our case, WASFO
is composed out of reusable components. Indeed, component-based software engineering is
considered as a part of the starting platform for service orientation, where components can be
converted into services. Thus, WASFO could support SOA in the future if needed.

In fact, WASFO Toolset has passed through several software requirements in order to optimize
the architectural design, functionalities, graphical user interface and performance. These
software requirements have been categorized into three types of requirements;

 Design requirements:
o Optimization Design

WASFO architecture design should be optimized to make best use of the
available resources. Having a good choice of efficient algorithms and the
implementation of these algorithms will benefit from writing good quality
code. The architectural design of WASFO overwhelmingly affects the
performance. The choice of WASFO optimization algorithms affects the
efficiency more than any other item of the design.

o New architecture (Distributed Architecture)
Enable both WASFO Tools (Data Collector Tool & Analysis and
Optimization Tool) to communicate remotely together in order to
send/receive WASFO’s Project files “WASFO Data”. Hence, this will
require middleware software based on a web server to handle this issue.

o Modularity
The software architecture is divided into components called modules. The
related modules are grouped together in packages. In addition, appropriate
design patterns and standardized code are applied.

22 CBSE; Component-based software engineering

Mostafa A. Sharaf Politecnico di Milano

24 IBM WASFO Software Development Methodology & Software Requirements | Master Thesis

o Code optimization
Avoid poor quality and redundant coding, modify WASFO to make it
possible to work more efficiently and use fewer resources by means of
high quality and well commented (.Net and XML comments) code.

o Loosely coupling between presentation and business components
Clear separation between presentation and business components; thereby
avoid writing business code in the graphical components of WASFO.

o Database design
The old version of WASFO Tool did not have a database management
system to store the projects’ data of WASFO, and therefore the tool faced
many technical problems in data storage, and performance as well. Thus,
the new WASFO architecture requires the storage of projects’ data in a
relational database management system to satisfy the functional and non-
functional requirements introduced by WASFO Toolset.

o Software components’ reuse
Break down complexity and create components "reusable pieces" that can
be shared and used by both tools: WASFO Data Collector and WASFO
Analysis and Optimization Tool.

o Extensibility
New capabilities could be added to WASFO without major changes to the
underlying architecture.

 Functional requirements:
o High quality user interface

Provide flexible and professional interface in order to have a user friendly
and easy to use environment.

o Import IDEAS Spreadsheet into WASFO Analysis and Optimization Tool
Import automatically reference servers from the IDEAS spreadsheet into
WASFO Database through WASFO Analysis and Optimization tool.

o New matching algorithm for performance capacity’s identification
Due to the fact that the old algorithm does not work properly and
inefficient at all; we need to develop a new algorithm that work properly
and guarantees better and efficient results.

o New methods for data collection
Introduce VMware’s inventory and workload data collection, and Linux
I/O data collection as well.

o Improved and new optimization algorithms
Support capacity planning of partially virtualized server farms, and
provide stochastic noise modeling. Introduce new mathematical models.

Mostafa A. Sharaf Politecnico di Milano

25 IBM WASFO Software Development Methodology & Software Requirements | Master Thesis

o Parallel execution of computations
Use multi-threading techniques and concurrency control.

 Non-Functional requirements:
o High performance

Reduce computation time of WASFO optimization and matching
algorithms, plus a greater accuracy.

o Legal and licensing issues
WASFO users must have a valid license and a registered account in order
to use WASFO Toolset.

o Deployment
Provide easy and flexible installation process to customers.

o Memory management
Use the language-specific garbage collector, and efficient data types.

o Robustness
Have the ability to cope with errors during execution or the ability of
WASFO algorithms and data collection methods to continue to operate
despite any abnormalities in the input, calculations, servers…etc.

o Efficiency
Balance the resources’ consumption corresponding to WASFO
Algorithms. WASFO should executes more rapidly, and operate with less
memory storage or other resources.

o Technical Documentation & User Documentation
Produce technical documentation that is necessary to facilitate future
development and maintenance by using .NET and XML comments inside
the code. In addition, produce user documentation to guide users with a
professional description about all WASFO steps to optimize the design of
a virtualized server farm.

Mostafa A. Sharaf Politecnico di Milano

26 IBM WASFO Toolset | Master Thesis

4 IBM WASFO Toolset
4.1 Overview
The WASFO toolset is a set of tools designed and developed to optimize the virtualization
design of server farms through data collection, analysis and optimization. WASFO Solution
currently consists of IBM WASFO Middleware-software (based on IIS Web Server for hosting
IBM WASFO Shipment Web Services), and two main tools:

 IBM WASFO Data Collector Tool
 IBM WASFO Analysis and Optimization Tool

The scenario begins when the customer installs WASFO Data Collector Tool, and then starts to
create a new project, which usually contains group(s) of servers, and subgroup(s) of servers
according to the design of the existing server farm in the customer site. These groups and
subgroups represent the different departments, organizations, policies or operating systems…etc
within the customer’s company.

After then, WASFO Data Collector Tool collects firstly the inventory data, and secondly the
workload data of the existing server farm. When the tool completes the collection process of
inventory and workload data, the customer will be able to upload the entire project’s data
(collected data of the existing server farm) into IBM WASFO Middleware by a specific web
service dedicated for exporting WASFO Projects into the server.

After then, specialists or architects in IBM or IBM Partner use WASFO Analysis and
Optimization Tool to download the customer’s data from IBM WASFO Middleware through a
web service dedicated for importing WASFO Projects into the tool. Once the project’s data is
loaded, the tool will be ready to navigate through the project’s structure and performs statistical
inventory analysis on the collected servers, and then statistical workload analysis on the collected
servers.

After the analysis phase is completed, specialists or architects will be able to find the optimal
virtualization design of the customer’s server farm. At the end, a presentation is prepared by
these specialists or architects in order to discuss the proposed solution with the customer. Indeed,
WASFO finds the best allocation of virtual machines on the new servers and the legacy servers
as well. It provides also a forecast on how the servers will be utilized after the virtualization-
consolidation solution, based on collected data of the sever farm.

As we can see, the main target of WASFO Toolset is to find the best optimization design of how
to virtualize a server farm in order to minimize the total cost of acquisition, the management
cost, and the energy consumption of the targeted server farm. Using such tool can help
significantly in optimizing the design of the IT Infrastructures in companies.

Here below is the activity diagram that shows the flow of the main activities inside WASFO
Tools and the shipment’s activities between WASFO Toolset and IBM WASFO Middleware:

Mostafa A. Sharaf Politecnico di Milano

27 IBM WASFO Toolset | Master Thesis

Figure 3 Activity diagram of IBM WASFO Solution

Mostafa A. Sharaf Politecnico di Milano

28 IBM WASFO Toolset | Master Thesis

4.2 General Software Architecture
At the beginning WASFO was a single tool, and hence It was designed as a single tier
architecture. This design suffered from many technical problems in terms of inefficiency, poor
performance, non-modularity and redundancy of business functionalities. Moreover, having the
presentation, the application processing, and the data management altogether in one code without
a clear logical separation was very inappropriate and an obstacle in modifying the design of
WASFO or even in updating it.

Hence, we had to analyze the whole situation and think carefully whether we should re-engineer
the current architecture or engineer a new one in order to find the optimal design for WASFO,
with respect to the new software requirements and specifications, plus the user requirements.
Moreover, we had to put in our account that the old version of WASFO carried on the data
collection, data analysis and data optimization altogether in one tool. However, now we need to
split the data collection functionalities from the data analysis and optimization ones in order to
optimize WASFO’s Design.

As a result, WASFO currently is a toolset that has two main tools; WASFO Data Collector Tool,
and WASFO Analysis and Optimization Tool. In fact, one of the most interesting issues during
the design phase of the new architecture was that both tools are standalone applications which
share set of business functionalities particularly in the core level.

Hence, I had to develop software components to build those common functionalities in the form
of class libraries and usercontrol libraries. Each component packages a group of classes and
functionalities which have a logical relation based on OOP Paradigm and also based on our
structure’s design. Indeed, we classified these shared components as the following:
1. Class libraries contain the common business functionalities;
2. Usercontrol libraries contain the common presentation functionalities.

Thus, I made advantage of following the principle of components’ reuse by building these
common libraries to be shared by both tools in order to optimize the architecture design of
WASFO Toolset. Besides that, I followed this principle in designing all the functionalities of
WASFO Toolset in the form of libraries in order to break the whole complexity of WASFO
functionalities into small functions, and so I could manage to group all the related functions in
thier corresponding library. Thus, the concept of building all the functionalities in libraries has
introduced intuitively a logical separation of the 3 software layers in WASFO’s design;
1. Presentation layer: represented by the usercontrol libraries and all the graphical components
2. Business layer: represented by the class libraries and the business components
3. Data layer: represented by WASFO Database, and the data interface classes inside the

IBM.WASFO.Core Library

Mostafa A. Sharaf Politecnico di Milano

29 IBM WASFO Toolset | Master Thesis

As we see, this logical separation could be very helpful in updating or modifying the architecture
design of WASFO Toolset in the future when needed. For example, it is currently possible to
build WASFO in 2 or 3 tier architecture model in case if WASFO will be used remotely by
clients in the future or something like that. So we could separate physically the three software
layers of WASFO to achieve a three tier model; presentation layer (client side), logical layer
(server side), and data layer (database server).

After then, WASFO Toolset has evolved in terms of functional requirements, since we needed to
build a communication link between both tools for the sake of importing and exporting the
projects’ files which are created by WASFO Tools. Hence, it came to my mind the development
of a Middleware Software which will be responsible for communicating WASFO Tools together.
Indeed, middleware is especially integral to modern information technology based on XML,
SOAP23, Web services, and SOA. Thus, WASFO Middleware consists of two loosely coupled
web services, which connect both tools together to be able to send and receive projects’ files to
each other in the form of SOAP messages. Currently, the middleware acts as a messaging
software, however the idea of building web services has introduced the concept of Service-
Oriented Architecture.

Indeed, SOA has been used in WASFO in the form of exposing web service for files’ export and
web service for files’ import, accessible over the network in order to allow WASFO Tools to
combine and reuse them in their applications. These web services and their corresponding
consumers communicate with each other by passing data in a well-defined, shared format.

Here below is the deployment diagram of WASFO Toolset, which shows the different physical
nodes of WASFO Solution:
1. IBM WASFO Data Collector Tool
2. IBM WASFO Analysis and Optimization Tool
3. IBM WASFO Middleware – Software for Shipment Web services

In addition, the diagram shows the most important shared libraries between both WASFO tools
(it will be discussed later in the section of WASFO Shared Libraries). You can see also the
communication protocol between the three physical entities; the request-response protocol
(HTTP24), the exchanging protocol (SOAP), and the format of the exchanged messages (XML).

From figures 4 and 5 you can observe that there is a common rule for naming our WASFO
components. This rule is a standard for naming any component in WASFO Toolset;
“CompanyName.ProgramName.ComponentName”. Thus, in our case the component will be
named in this way “IBM.WASFO.ComponentName”. In this way, we guarantee to overcome
any internal or external naming conflict that might happen with the components. In figure 5,

23 SOAP; Simple Object Access Protocol
24 HTTP; HyperText Transfer Protocol

Mostafa A. Sharaf Politecnico di Milano

30 IBM WASFO Toolset | Master Thesis

a component diagram shows in details the relations between all WASFO components (shared
and unshared) for both WASFO Tools and their dependencies upon each other.

Figure 4 WASFO Deployment Diagram

Mostafa A. Sharaf Politecnico di Milano

31 IBM WASFO Toolset | Master Thesis

Figure 5 Component diagram of the libraries’ dependencies in WASFO Toolset

Mostafa A. Sharaf Politecnico di Milano

32 IBM WASFO Toolset | Master Thesis

4.3 IBM WASFO Database
In the past, the old version of WASFO did not use a database management system to store its
data, while XML files were chosen to store WASFO Projects’ data, thinking this could be
enough. However, after involving WASFO in real projects, it was obvious that the choice was a
short-term decision and as a consequence, many technical problems have arisen due to the over
simplicity in the data storage’s technique. Hence it became very clear that using simple files to
store WASFO’s data was not wise and inappropriate design in our case.

Although I was not involved in the design and the development of WASFO Database, I took part
in taking critical decisions about the quality of the database design due to my main role as an
architect of the new architecture of WASFO Toolset. Thus, we arrived to a decision of using a
database engine to overcome the previous problems of storing WASFO’s data. The design and
the implementation of WASFO Database started last year, and now the current database system
is implemented in Microsoft Access. It is being used by both WASFO tools; WASFO Data
Collector Tool and WASFO Analysis and Optimization Tool.

The choice of Microsoft Access for storing WASFO’s data is due to the following reasons:
1. The simple design of the database at the beginning of the development of WASFO;
2. Microsoft Access is considered as a light-weight relational database management system,

hence it is a good portable database;
3. Microsoft Access is a Microsoft product and it is usually installed within the package of

Microsoft Office, hence it is supported and installed by all windows platforms;
4. Because of the 2nd and 3rd reasons, each WASFO Tool could have a local copy of WASFO

Database. Thus the connection with the database is done locally, which should be fast.

In fact, one of the major issues in the design of WASFO Database is that WASFO Data Collector
shares all its data tables in the database with WASFO Analysis and Optimization Tool, not vice
versa. Hence, WASFO Analysis and Optimization Tool has its own data (tables) for the analysis
and optimization processes. Based on this fact, we had to think about the best way to design the
database, and whether we should keep the current database to be shared by both tools, or build a
separate database for each tool.

Indeed, having a single database shared between both tools is an inefficient design, since the data
tables of WASFO Analysis and Optimization Tool is exposed to WASFO Data Collector Tool,
and consequently we are sharing undesired data with WASFO Data Collector Tool. However,
this is the current solution of WASFO Database due to its simplicity.

On the other hand, if we design two separate databases (database for WAFSO Data Collector
Tool and another one for WASFO Optimization and Analysis Tool), the database of the Analysis
and Optimization Tool will need to import the database of the Data Collector Tool in order to

Mostafa A. Sharaf Politecnico di Milano

33 IBM WASFO Toolset | Master Thesis

make the analysis and optimization based on the collected data. Indeed, this is could be an
optimal solution to design the databases, since we will keep both database separate avoiding the
problem of having undesired data tables between WASFO Tools, and hence we will need only to
import WASFO Data Collector’s tables into the database of the other Tool. The import process
can be done through the new IBM WASFO Middleware, which could merge the two databases
together to be ready for usage by WASFO Analysis and Optimization Tool. Thus, each database
will work locally with its tool, and this would be efficient in terms of database connection.

Currently, the installation process of WASFO Data Collector, accompanies the installation of
WASFO Database to be used for storing the collected data from server farms. However, this
does not happen with WASFO Analysis and Optimization Tool, because it depends on the
collected data from WASFO Data Collector Tool in order to be able to proceed with the analysis
and optimization processes. Thus, WASFO Data Collector Tool calls a specific web service to
upload (export) all the projects’ data of the tool including the database into IBM WASFO
Middleware (installed in IBM Site). After that, WASFO Analysis and Optimization Tool will be
able to download (import) all the available projects’ data including the recent database from IBM
WASFO Middleware through a specific web service.

In fact, the choice of Microsoft Access is inefficient due to the following points:
1. The need for more efficient and advanced database, since Microsoft Access does not have

some advanced features such as advanced design tools, stored procedures, triggers and
advanced constraints…etc;

2. We must buy the private license of Microsoft Access (even though it should not be a
problem since we already have a Microsoft Office License);

3. Why don’t we use IBM Database-DB2 “free of charge”? Hence, we can benefit from having
a database server that centralizes the data layer of WASFO Toolset.

Indeed, DB2 would be a good choice to build WASFO Database. since it is an IBM relational
model database server and so it is reasonable to use it for IBM WASFO Toolset without the need
to buy a license for the database. This would certainly help in minimizing the development cost
of WASFO. In addition, using DB2 for WASFO will introduce the idea of having a database
server in WASFO Toolset Architecture, and this could bring us to have a single database server
(for example: IBM WASFO Database Server) to-be managed and used by IBM WASFO
Middleware. In this way, we could avoid having a local copy of the database with WASFO Data
Collector or WASFO Analysis and Optimization tools, relying on the advantage of the remote
connection with the database server.

Despite the fact that the database performance will be much better using DB2 than with
Microsoft Access, however a question mark remains; WILL this new design affect the
performance of the database connection with WASFO Toolset? This question arises from the
fact that the central database will be located in the server side, not in the client side and hence all
the connections will be done remotely. One solution is that each WASFO tool can work with a

Mostafa A. Sharaf Politecnico di Milano

34 IBM WASFO Toolset | Master Thesis

local copy of the database in the machine where it’s running, then when the transactions are
completed, the tool connects to the central server and updates the database server with the new
updated data.

As we can see, the whole database design is going to be modified in the near future. Thus, we
need to think carefully about the optimal design of WASFO Database, and foresee how it is
going to be used by WASFO Toolset in order to guarantee better and more efficient performance
in the long term.

4.4 WASFO Shared Components
They are the common components between the two main tools of WASFO Toolset (WASFO
Data Collector Tool, WASFO Optimization and Analysis Tool). The concept of having shared
components between both tools was one of the most interesting ideas in my architecture design.
During the design phase of the new architecture of WASTO Toolset, I observed that there are
many classes and functionalities which are shared and used extensively by the data collection
part, the analysis and the optimization part as well. Thus, I found out that applying the software
principle of components’ reuse would be the best solution to solve the major problem of the code
redundancy and non-modularity. In this way, we could provide an optimized architecture,
efficient object oriented design, non- redundant and modular code.

In fact, these components have been designed and implemented before starting the development
phase of WASFO Data Collector Tool, and WASFO Analysis and Optimization Tool. This was
due to the fact that there is an extensive usage and complex dependencies on the functionalities
of these components by both WASFO tools.

The previous release of WASFO was totally developed by using managed C++/CLI25. However,
this was a non-professional choice since C++/CLI is a new programming language introduced in
.Net platform, and unfortunately it was not fully supported by all the .Net facilities like for
example C#.Net programming language (the .Net primary language). Thus, we decided to use
C#.Net as possible to build these shared components.

The choice of the programming language was strongly depending on whether we are going to
build new functionalities from scratch in the new library or we are going to move many existing
functionalities from the old version of WASFO into the new library. Actually the oldest
components are developed in C++/CLI and the newest ones in C#.NET.

In fact, some of the functionalities have been taken from the old version of WASFO Tool.
However, these existing functionalities have been divided and moved into the new libraries after
being modified and optimized according to WASFO requirements and specifications.

25 C++/CLI; C++/Common Language Infrastructure, is a Microsoft’s language specification intended to replace
Managed Extensions for C++.

Mostafa A. Sharaf Politecnico di Milano

35 IBM WASFO Toolset | Master Thesis

The shared components which, have been implemented for WASFO Toolset are as follows:
1. IBM.WASFO.Core (C++/CLI)
2. IBM.WASFO.ProjectExplorer (C++/CLI)
3. IBM.WASFO.ProjectDesign (C++/CLI)
4. IBM.WASFO.Graphs (C#.NET)
5. IBM.WASFO.MTOM (C#.NET)
6. IBM.WASFO.ShipmentService (C#.NET)

The components which, will be implemented for WASFO Toolset in the future are as follows:
7. IBM.WASFO.Authentication (C#.NET)
8. IBM.WASFO.ReportGenerator (C#.NET)
9. IBM.WASFO.DCController (already designed using C#.NET)

We bought also a license of .NET Controls Library from Infragistics26 for the sake of WASFO
GUI in order to improve and enhance the graphical user interface of both WASFO Tools. In the
following sections, detailed descriptions are given about each WASFO’s shared library.

4.4.1 IBM.WASFO.Core
It is the core library of WASFO Toolset, since it is used mostly by all WASFO components, the
dependent libraries including the unimplemented libraries yet, are the following:

1. IBM.WASFO.ProjectDesign
2. IBM.WASFO.ProjectExplorer
3. IBM.WASFO.DataCollector
4. IBM.WASFO.InventoryAnalysis
5. IBM.WASFO.WorkloadAnalysis
6. IBM.WASFO.Optimization
7. IBM.WASFO.AOController
8. IBM.WASFO.Authentication (unimplemented yet)
9. IBM.WASFO.ReportGenerator (unimplemented yet)
10. IBM.WASFO.DCController (unimplemented yet, however has been designed)

As mentioned before, the old version of WASFO did not use libraries so the code related to this
library was previously implemented in the application of WASFO. The code was non-modular
and complex. Thus, I had to break down the complexity of the code by separating all the classes
that are frequently used by both WASFO Tools and put them in the core library. As a
consequence, the core library has currently the basic classes and functionalities which are shared
between all WASFO components. The library has also the data interface layer with WASFO
database which is called OleDBInterface. This interface is responsible for data manipulation and
queries with the database.

26 Infragistics; A company which is considered as one of the world leaders in user interface development tools

Mostafa A. Sharaf Politecnico di Milano

36 IBM WASFO Toolset | Master Thesis

In fact, this library has introduced a significant improvement in WASFO architecture in terms of
code modularity, efficiency and performance. Thus, it was the first step to split the business layer
from the presentation layer. As a consequence, it became the root library of the libraries’
structure and so it helped in building the other libraries of WASFO. In the above figure (Fig. 5),
we can see how much are the dependencies on the Core library by other WASFO components. In
addition, we can imagine how complex was the previous situation of WASFO Tool when it had
the code altogether in one application with non-modularity and redundancy. In the figure below,
you can see the class diagram of IBM.WASFO.CoreLibrary.

Figure 6 Class Diagram of WASFO Core Library

Mostafa A. Sharaf Politecnico di Milano

37 IBM WASFO Toolset | Master Thesis

4.4.2 IBM.WASFO.ProjectDesign
The ProjectDesign component is a user control library which is composed of a professional main
menu, customized forms and some other classes. This control is used in the GUI of both WASFO
tools as a menu strip at the top of the main form. The menu has the basic items needed for
designing WASFO projects. One of the important menu items is the “New Project” item; It is
mainly designed for the creation process of new WASFO projects through a wizard that consists
of a sequence of 5 customized forms. The wizard starts when users selects the “New Project”.

Figure 7 shows the class diagram of the ProjectDesign component. There is the class
“ProjectDesignController” that hosts the menu strip. It acts as the controller of the menu; adding
menu items, removing menu items and adding handlers for menu items. In addition, it receives
requests/events from users in the form of actions, and then redirects these requests to the proper
handlers in order to handle the fired events.

In the diagram you find also the customized forms of the wizard dedicated for creating new
WASFO projects. The forms of the wizard are as follows:

1. AddProject Form
2. AddDatacenters Form
3. AddGroupsOfServers Form
4. AddSubgroupsOfServers Form
5. AddServers Form

In figure 8, you can see the sequence diagram that describes the creation process of a new project
through WASFO Project Wizard. During the creation process, users are able to navigate forward
and backward between the wizard forms. Normally, the wizard starts with the “AddProjectForm”
to add the project’s details, then users select “Next” button to go to the “AddDatacentersForm”
to add datacenters to the created project, then users select “Next” button to go to the
“AddGroupsOfServersForm” to add groups of servers that should group some existing servers in
the server farm of the company, after then users select “Next” button to go to the
“AddSubgroupsOfServersForm” to add subgroups of servers inside the created groups in order to
better separate logically the servers, and finally users select “Next” button to go to the last form
“AddServersForm” to add the existing servers of their server farms inside the previously created
groups and subgroups. The wizard completes when users select “Finish” button in order to add
the new project’s structure into the database with the help of the class “ProjectWizard”. Thus,
the ProjectDesign component depends on the IBM.WASFO.Core library for any database
handling issues. Indeed, the class “ProjectWizard” is responsible for initializing forms,
navigating between forms, handling projects’ structure and adding new projects into the
database. Moreover, WASFO’s wizard is so efficient since it can be used also for modifying the
structure of existing projects at any level, hence users can start the wizard by selecting the
desired project/group/subgroup/server node in the ProjectExplorer control without the need to
start the wizard from the beginning.

Mostafa A. Sharaf Politecnico di Milano

38 IBM WASFO Toolset | Master Thesis

Figure 7 Class diagram of ProjectDesign Component

Mostafa A. Sharaf Politecnico di Milano

39 IBM WASFO Toolset | Master Thesis

Figure 8 Sequence diagram of ProjectDesign Component

In the figure below, a state diagram describes the different states of WASFO Project Wizard
during the creation of a new project. The states are as follows:

1. NewProject
2. NewDatacenters
3. NewGroupsOfServers
4. NewSubgroupsOfServers
5. NewServers

Mostafa A. Sharaf Politecnico di Milano

40 IBM WASFO Toolset | Master Thesis

As mentioned before, the class “ProjectWizard” controls the procedures of the wizard, and hence
it controls the state transitions based on users’ actions. In each visual form, users have the ability
to select between several buttons to navigate and proceed between the forms; the button “Next”
is to proceed, the button “Previous’ is to move backward, the button “Cancel” is to cancel the
wizard, and finally the button ‘Finish’ is to add the new project. The interesting fact in WASFO
wizard that users could finish the wizard at any level, without being restricted to continue till the
end, being sure the wizard will save the project’s data into the database until the form in which
users has reached. Thus, the wizard is designed to be fast, user-friendly and flexible with users to
allow the efficient design of WASFO projects. In figure (60) at section (I) in Appendix, you can
find a screenshot of the Wizard, which shows the creation process of a new WASFO project.

Figure 9 State diagram of ProjectDesign Component

Mostafa A. Sharaf Politecnico di Milano

41 IBM WASFO Toolset | Master Thesis

4.4.3 IBM.WASFO.ProjectExplorer
The ProjectExplorer component is a user control library which is composed of a treeview,
context menus and customized forms to be used in the GUI of each WASFO Tool. The treeview
enables users to explore the structure of WASFO projects’ through the tree nodes. The WASFO
Project has the following nodes’ structure:

 Project Node (Root)
o Servers Node (All servers inside the project)
 Server Node

o Groups of Servers Node (All groups of servers inside the project)
 Group of Servers Node
 Servers Node (All servers inside a specific group of servers)
 Server Node

 Optimizations Node
 Optimization Node

 Constraints Node
 Constraint Node

 Subgroup of Servers Node
 Server Node

Each node in the treeview is represented by a treenode object. This object carries information
about the node such as nodeId, tag, name, icon, projectId...etc. Actually, the ProjectExplorer
connects with the database of WASFO in order to get all the needed information for representing
a project’s structure and for making it accessible and navigable to users. Thus, it depends on the
IBM.WASFO.Core library for any database handling issue. Figure 10 shows a diagram which
explains the hierarchical structure of projects’ nodes and their different levels.

In figure 11, a sequence diagram shows two different processes of loading information for
project’s nodes in ProjectExplorer. The diagram shows in details the sequence of operations for
each case between 3 main participants (each participant resides in a different library/component):

1. IBM .WASFO.DataCollectorGUI or WASFO.AnalysisOptimizationGUI Tool
2. IBM.WASFO.ProjectExplorer Component
3. IBM.WASFO.Core Component

Case 1, describes how to load detailed information (project, datacenters, groups, subgroups and
servers) of a project’s nodes using the Eager-Loading technique. This case happens when
WASFO tool starts up or after the user creates a new WASFO project. Hence, the treeview
controller starts to get all information needed from the database to create a project node in the
treeview of WASFO. Due to the long duration of this process, it runs in a background thread to
avoid hanging the user interface of WASFO tool, and so users could interact with the program
efficiently without the need to wait until the ProjectExplorer completes loading all projects’
nodes (For example users could access the loaded nodes while other projects’ nodes being
loaded).

Mostafa A. Sharaf Politecnico di Milano

42 IBM WASFO Toolset | Master Thesis

Figure 10 The ProjectExplorer Component (Custom control of type: Treeview)

Case 2, shows how to load limited information (project, datacenters) of a selected project’s node
using the Lazy-Loading technique. This happens when the users select a project’s node in the
treeview. Hence, the selected project becomes the current selected project in ProjectExplorer
component. In addition, to add more efficiency to the component, I implemented an algorithm
for storing the selected projects in a dynamic list (resizable array) in the cache memory, in order
to avoid re-loading these nodes again, alternatively ProjectExplorer will get the cached node and
its related information directly from cache memory. However, I had to optimize using the cache
memory by restricting the size of the list to avoid causing a heavy load on the cache, which as a
consequence might cause inefficiency.

Mostafa A. Sharaf Politecnico di Milano

43 IBM WASFO Toolset | Master Thesis

The scenario starts when a project node (or any sub-node in a project node) is selected, the
algorithm checks automatically if the project node was selected before. If it was previously
selected, so the algorithm will increase its rank by 1 (herein rank means number of selections);
every element in the list has a corresponding rank. If the selected node is new, the algorithm will
check if the list has reached its maximum size, then based on this, it behaves as the following:

1. If not; the project node will be added automatically to the list.
2. If yes; the array will remove from the list the node which has the lowest ranking

(minimum number of selections, which means that the node is not frequently used)

Figure 11 Sequence diagram of ProjectExplorer Component

Mostafa A. Sharaf Politecnico di Milano

44 IBM WASFO Toolset | Master Thesis

In figure 12, a class diagram of the ProjectExplorer component shows the class
ProjectExplorerController which hosts WASFO’s Treeview and its context menu. The controller
controls and performs all the operations regarding initializing, loading and manipulating
WASFO project’s node. In addition, you can see all the customized forms which represent the
different operations that can be done by the ProjectExplorer component. These operations are
initialized by accessing the context menu. They allow users to add, modify, search and delete any
node in the project, and the corresponding object in the database.

Figure 12 Class diagram of ProjectExplorer Component

Mostafa A. Sharaf Politecnico di Milano

45 IBM WASFO Toolset | Master Thesis

4.4.4 IBM.WASFO.Authentication
A visual component will be responsible for authenticating WASFO users. Currently, the logic of
the authentication process is implemented separately inside both WASFO Tools; consequently, it
is duplicated in each tool. Thus to overcome this problem, we should build this component to-be
shared between WASFO Tools. The component will include the current login form of WASFO.
Hereunder, you can find a figure about the WASFO Authentication Form that is currently used by
WASFO Tools. Hence, the component will depend on IBM.WASFO.Core Library to
authenticate users based on the users’ license keys and the users’ data in the database. Indeed,
this component is not implemented yet because it is still under design.

Figure 13 The authentication Form of WASFO Toolset

The authentication process is quite complicated in WASFO, since it comprises three different
inputs to verify and validate the users successfully. The three inputs are the following:

1. Username
2. Password
3. Import the user’s license key

The authentication process begins once the user inserts the required inputs and clicks on the
button OK. After that, the authentication component calls a sequence of specific functions to
check and verify the user identity. The authentication’s procedures are as follows:

1. Check if the UserName and the Password exist and are correct in WASFO database in
the table “LicenseKeys”;

2. Get the SecretKey of the user from the table, and then the LicenseKeyType;
3. Get the ComputerName of the user from the table;
4. Compute the Salt; the salt’s output of the user’s password;
5. Perform SHA-1 Hashing for a combination of the UserName, Password, LicenseKeyType

and the SecretKey. The output represents the computed LicenseKey of the user;
6. Compare the output of the hashing process with the imported license key of the user;

Mostafa A. Sharaf Politecnico di Milano

46 IBM WASFO Toolset | Master Thesis

7. If equal, then get the user security credentials by performing SHA-1 hashing to the
following combination;

a. The user’s entries in the table “LicenseKeys”: UserName, Password, SecretKey,
ComputerName, Salt.

b. Plus, the LicenseKey that has been computed previously.
8. Then, compute the SHA-1 hashing of the following combination;

a. Username (inserted by the user)
b. Password (inserted by the user)
c. Secret Key (fetched from the database based on the UserName and the Password)
d. License key (imported by the user)
e. Computer Name (obtained programmatically from the user’s running machine)
f. Salt of the user’s password (computed based on the inserted password by the user)

9. Compare this hashing output with the user’s security credentials (above calculated);
10. If equal, then the user is identified by WASFO, and hence logins successfully.

4.4.5 IBM.WASFO.ReportGenerator
A component will be responsible for generating reports in excel and PDF format concerning the
results of WASFO processes. It will take the results of the processes as inputs and produces
reports as outputs. The processes could be the data collection, inventory analysis, workload
analysis or optimization design for a virtualized server farm. The generated reports are very
useful in understanding the results, and discussing them with the customers. The library will be
shared by both tools of WASFO; WASFO Data Collector Tool (for data collection’s processes)
and WASFO Analysis and Optimization Tool (for analysis’s processes and optmization’s
processes). This library is not designed yet.

4.4.6 IBM.WASFO.Graphs
A component responsible for generating advanced 2D-graphs concerning the results of WASFO
processes. It depends on NetAdvantage-Infragistics .NET Graph control. It takes the results of
WASFO processes as inputs and produces graphs as outputs. The processes of WASFO could be
the data collection, inventory analysis, workload analysis or optimization design for a virtualized
server farm. Indeed, using graphs would be of great benefit in understanding and better
visualizing WASFO results. The library is shared by both tools of WASFO; WASFO Data
Collector Tool and WASFO Analysis and Optimization Tool.

4.4.7 Infragistics .NET Controls
NetAdvantage for .NET is a comprehensive suite of Windows Forms, Windows Presentation
Foundation-WPF, Silverlight controls, components, and tools for the .NET platform. The user
controls are included in a private library called InfragisticsControls. We used these controls in
the GUI of WASFO Data Collector Tool and in the GUI of WASFO Analysis and Optimization
Tool in order to add awesome power and performance to the graphical user interface of the
toolset. In fact, the library has been used particularly for generating good look and feel graphs.
Hence, it will be used more in the future like for example generating professional reports...etc.

Mostafa A. Sharaf Politecnico di Milano

47 IBM WASFO Data Collector Tool | Master Thesis

5 IBM WASFO Data Collector Tool
5.1 As-is WASFO Toolset for Data Collection
The old version of WASFO is a single tool which included the functionalities of data collection
from existing server farms. The main functionalities are the following:

1. Inventory Collection
2. Workload Collection

These functionalities are used by IBM business partners, however WASFO tool included also the
functionalities of data analysis and optimization (inventory analysis, workload analysis and data
optimization), hence the user could have also the ability to switch from the Data Collection-
Mode to the Analysis and Optimization-Mode through the main menu of WASFO Tool, and
vice versa.

Obviously, this was an inefficient and non-professional way to use the analysis and optimization
mode of WASFO since its use is only allowed to IBM employees. However all users could use
this feature once they have WASFO Tool installed on their PC. Thus, we had to separate the data
collection functionalities of WASFO in a new tool to-be called “IBM WASFO Data Collector
Tool”. Below you can see a screenshot of the old WASFO version for data collection mode. As
you might observe the limited and inefficient GUI of the data collection mode.

Figure 14 Main form of WASFO Data Collector Tool

Mostafa A. Sharaf Politecnico di Milano

48 IBM WASFO Data Collector Tool | Master Thesis

5.2 To-be WASFO Data Collector Tool
After a deep analysis that was performed on the release of the old WASFO, we came up with the
new tool “IBM WASFO Data Collector Tool”, that is responsible for collecting data from
existing server farms for the sake of designing an optimal virtualized server farm. The tool
currently collects:

 Inventory data (server model, CPU27 model, number of CPUs…etc)
 Workload data (processor utilization, memory utilization…etc)
 Virtual Machines data (name of virtual machines, processor shares, memory share…etc)
 Applications inventory (name and version of installed applications)
 Connections data (connected server’s IP address, used network protocol…etc)

The servers’ data can be collected from several operating systems such as:
 Windows

o By using Windows Management Instrumentation-WMI.
 Linux

o By executing standard Linux command through a SSH28 connection. The
connection is created by using PUTTY.exe tool.

 AIX
o By using a Telnet connection.

 VMware ESX and vSphere
o By using web services. VMware API provides a mechanism that makes it possible

to collect inventory and workload data.

Based on WASFO requirements and specifications, the new tool has been designed and
developed in a modular and optimized way. Thus, we guarantee that the process of data
collection is quick, easy, and efficient. Indeed, the main features of the current WASFO Data
Collector are as follows:

 Data collection does not have to be installed on monitored systems (agent-less)
 Data collection exploits multi-threading techniques to provide fast and efficient data

collection methods

The data collection process should work efficiently with well-managed server farms. However, it
could be a tough process if some conditions have not been met such as the following:

 Understanding the LAN structure.
 Awareness of where firewalls are and what they do.
 Right security credentials.
 Inexistent servers that exhibit various forms of corruption.

Figure 15 demonstrates the UML component diagram that shows the dependencies between
WASFO Data Collector Tool and its related libraries. Some of these libraries are shared libraries;
hence, WASFO Analysis and Optimization Tool are using these libraries as well (as previously
discussed). As mentioned before, all the shared libraries are implemented except for
IBM.WASFO.ReportGenerator and IBM.WASFO.Authentication.

27 CPU; Central Processing Unit
28 SSH; Secure Shell, a network protocol allows data to be exchanged between two networked devices. It is used
mainly on Linux and UNIX systems.

Mostafa A. Sharaf Politecnico di Milano

49 IBM WASFO Data Collector Tool | Master Thesis

Regarding the dedicated (unshared) libraries for the Data Collector tool, as you can see below in
figure 15 they are as follows:

 IBM.WASFO.DataCollector
 IBM.WASFO.DCController

WASFO DataCollector library was implemented using the old class structure for data collection.
Hence, a new version of the library has been implemented to overcome the design problems of
the old version but still not yet integrated (this new version will be discussed later). Regarding
WASFO DCController library, it has been designed, and hence it should be implemented in the
near future along with future work for WASFO.

In addition, there is the EXE program of the tool; “IBM.WASFO.DataCollectorGUI.exe”. This
program will use the controller “IBM.WASFO.DCController” to call any data collection method.
The controller acts as a facade, which receives requests from the user interface of the tool and
then sends them to the proper handlers in the DataCollector library, after that the controller
responds to the user with the results. IBM.WASFO.DataCollector library depends on
IBM.WASFO.Core library for performing database operations or any needed basic
functionalities. Indeed, DataCollectorGUI represents the presentation layer of the tool, while
DCController, DataCollector, and some other libraries will represent the business layer of
WASFO Data Collector Tool. From the diagram below, we can observe that most of the
components are dependent on the library of IBM.WASFO.Core. Thus, the tool is a collection of
combined components that form transparently an integrated tool. This is definitely so efficient
and powerful since these components could be reused in other tools. Moreover, they can be
updated and modified easily because of their high modularity. Detailed descriptions about these
components will be given later in this chapter.

Figure 15 Component diagram of WASFO Data Collector Tool

Mostafa A. Sharaf Politecnico di Milano

50 IBM WASFO Data Collector Tool | Master Thesis

5.3 Software Architecture
5.3.1 Inventory Collection
The first process to be performed by WASFO Data Collector Tool is to collect the inventory data
of an existing server farm. Inventory data is needed information to further design and optimize
the existing server farm. It corresponds to the running servers in a customer’s company such as
server model, server manufacturer, processor model, number of processor cores, amount of
installed memory and used storage space...etc. The tool is flexible and customizable since it
permits users to choose the inventory items they require for collection without being forced to
collect all inventory items, which are offered by the tool. Figure 16 demonstrates the activity
diagram about the process of the inventory collection. It shows the sequence of activities that the
process follows when it collects the inventory data from a server farm. As you can see, the
process ignores any unready servers in order to avoid any obstacles during the process. When the
collection is completed, the data will be saved into WASFO database by the help of
IBM.WASFO.Core library for further analysis.

Figure 16 Activity diagram of Inventory Collection Process (Drawn by other WASFO Team members, IBM Italy)

5.3.2 Workload Collection
The second process to be performed by WASFO Data Collector Tool is the workload collection.
In this process, the tool collects the workload data of an existing server farm. This data is so
important for the design and the optimization of the server farm, since it gives us a real time
indication about the servers’ utilization in a running server farm. Workload data could be the
processor utilization, memory utilization, disk I/O utilization or network I/O utilization. Indeed,
users have the facility to select the workload items they need for the collection process. Hence,
this gives them more flexibility to optimize the design of their server farms. Figure 17 shows the
flow diagram of the workload data collection form a server. It shows the activities of data
collection from a server that has one or more virtual machines. At the end of the process, a
workload file is created for each machine in the server (Machine means a running virtual
machine on a physical server). All the workload files are saved into a folder called “Workload
Files” in the local desk, where WASFO tool is installed. When the collection is completed, the
machines’ data will be saved into WASFO database by the core library for further analysis.

Mostafa A. Sharaf Politecnico di Milano

51 IBM WASFO Data Collector Tool | Master Thesis

Figure 17 Flow diagram of Workload Collection Process (Drawn by Dr. Mauro Gatti, IBM Italy)

5.3.3 IBM.WASFO.DataCollector Component
This library is the main library of the Data Collector tool, since it provides the data collection’s
functionalities. The code in this library was implemented before inside the tool directly without
being modular. Moreover, it was not well designed and hence the performance was inefficient.
Thus, I separated all the classes related to the data collection from WASFO Tool into the
DataCollector library, in order to modularize the code and also re-design it better. It is now being
used successfully by WASFO Data Collector Tool.

However, due to the inefficient performance of the library, we had to re-design the class
structure of the old code in order to make the library more efficient and modular. Hence, the new
version of the library is ready but not yet integrated with WASFO Data Collector tool. Currently
the new version of the DataCollector library is designed based on Go4 design patterns using
.NET language. The design patterns that have been used are as follows:

1. Factory Method pattern
2. Facade pattern
3. Product pattern

In figure 18 below, you can see the class diagram of the component and the hierarchical structure
of the classes with respect to the types of the data collectors. As mentioned before, WASFO Data
Collector collects data from several operating systems such as Windows, Linux, VMware or
AIX. In fact, for each operating system, two classes of the data collection are implemented; One
class for collecting inventory data, and the other class for collecting workload data. These classes
are designed as several products-desing pattern. The factory method-design pattern

Mostafa A. Sharaf Politecnico di Milano

52 IBM WASFO Data Collector Tool | Master Thesis

“MonoDataCollectorFactory” is used for creating instances of the required data collectors for
data collection purpose. The facade-design pattern “PoliDataCollectorHandler” is designed to
be the interface of the Data Collector library. In other words, WASFO Data Collecor Tool
performs inventory or workload data collection on server farms through this facade by calling the
appropriate method in the facade, providing it the desired servers and their security credentials.
Based on the type of the server’s OS, the related data collection’s class is called.

Figure 18 Class diagram of DataCollector Library

5.3.4 IBM.WASFO.DCController Component
This library will be mainly a gateway between the DataCollector library and the Data Collector
Tool (user interface). This component has been designed, however it is not implemented yet.
Thus, it should be implemented and integrated with the tool in order to complete the current
architecture of WASFO Data Collector. As mentioned before, it acts as facade for the business
functionalities concerning the data collection. Besides this, it carries all the requests/responses
from/to any business component used by the tool, and so it hides the complexity from the
presentation layer. We can imagine it as an interface layer between the presentation and the
business layers. I have designed the library using the Go4 design patterns in .NET language:

1. Facade pattern
2. Singleton pattern

Mostafa A. Sharaf Politecnico di Milano

53 IBM WASFO Data Collector Tool | Master Thesis

3. Proxy pattern
The facade pattern-classes (InventoryCollection, WorkloadCollection and MachineCollection)
act as interfaces between the DCController component and the referenced library
“DataCollector”. Hence, all the methods of the referenced library are provided and called in their
corresponding facade classes. For example, all the methods in the DataCollector library
concerning the inventory collection’s functionalities are called in the InventoryCollection-facade
class.

The proxy pattern-classes (InvCollController, WklCollController, MachineCollController) act as
proxies for the facade classes, in front of WASFO Data Collector Tool. In other words, they
represent the interface controllers of the DCController component, whereby each controller
(proxy) is responsible for its corresponding facade class. Indeed, each proxy class implements a
corresponding Interface (IInventoryCollection, IWorkloadCollection and IMachineCollection) to
its facade class. This interface represents a contract between the facade class and its proxy class,
and so we guarantee the data integrity between both classes.

The singleton pattern is built inside each controller to guarantee that only one instance will be
created for every controller in order to provide more efficiency in the performance. Thus, as you
can see the DCController component has a double-sided interface; interface between the
”DCController component” and the ”DataCollector library”, and another interface between the
”DCController component” and ”WASFO Data Collector Tool”.

Figure 19 Class diagram of DCController Library

Mostafa A. Sharaf Politecnico di Milano

54 IBM WASFO Data Collector Tool | Master Thesis

In the above figure (Fig. 19), a class diagram of the component shows the classes and their
corresponding design patterns. It shows also how the “IBM.WASFO.DataCollectorGUI.exe”
calls the controllers to request business functionalities. As you can see, there is also a main
controller which have the common functions needed for the sub-controllers. Hence, all the sub-
controllers inherit from this main controller.

5.3.5 IBM.WASFO.DataCollectorGUI.exe Program
The “IBM.WASFO.DataCollectorGUI.exe” is the executable program of WASFO Data Collector
Tool. It consists of the main class (the entry point of the program), GUI classes, utitliy classes,
visual forms and user controls (ProjectDesign, ProjectExplorer and SendControl components)
which all, represent the graphical user interface of the tool. In addition, the tool is composed of a
collection of libraries that represent the business layer (data collection). The data layer of the tool
is represented by WASFO database. Indeed, the database and the EXE program are both installed
using the package setup that is called “IBM.WASFO.DataCollectorSetup.exe”.

In order to make the tool portable and easy to use, we created an application configuration file
called “App.config” in XML format to be installed with the tool. This file carries all the
configurations needed for the tool to run successfully such as the database’s path, workload files’
path, shipment web services’ reference…etc. Indeed, this file can be modified in the run-time, in
case if the user needs to change some configurations. Hereunder, is the class diagram of WASFO
Data Collector Tool. As we can see, the class structure is clear, whereby it contains only visual
forms, their related classes and some utility classes. This is due to the fact that the business layer
is built in the form of business components, which are used by the tool as reference libraries .The
main form of the tool is the “FormMain”, which starts after the appearance of the welcome
screen. The caller to the main form is the main entry of the tool; the class “Program” that
contains the “Main” method of the program. There is also the class “Resources” which manages
all the resources needed for the tool. In section A at Appendix, you will find a screenshot of the
graphical user interface of WASFO Data Collector Tool.

Figure 20 .NET Class diagram of the DataCollectorGUI.exe

Mostafa A. Sharaf Politecnico di Milano

55 IBM WASFO Analysis and Optimization Tool | Master Thesis

6 IBM WASFO Analysis and Optimization
Tool

6.1 As-is WASFO Toolset for Analysis and Optimization
Previously WASFO was a single tool which included the functionalities of data analysis and
optimization for server farms virtualization. The main functionalities are the following:
 Inventory analysis
 Workload analysis
 Optimal virtualization design
 Graphs generation

Although these functionalities are supposed to be used by IBM employees, however WASFO
Tool included also the functionalities of data collection (inventory and workload data), hence the
user has the ability to switch from the Analysis and Optimization-Mode to the Data Collection-
Mode through the main menu of WASFO Tool, and vice versa. This is useless since the data
collection functionalities are only used in customers’ sites not in IBM. Moreover, all users could
use the analysis and optimization functionalities, once they have WASFO Tool installed on their
PC. Obviously, this was an inefficient and non-professional way to use WASFO for server
farm’s analysis and optimization. Thus, we had to separate the analysis and optimization
functionalities in a new tool to-be called “IBM WASFO Analysis and Optimization Tool”. Here
below, you can see a screenshot of the old WASFO version for analysis and optimization mode.
As you might observe the simple and limited GUI of the analysis and optimization mode.

Figure 21 Main form of WASFO Analysis and Optimization Tool

Mostafa A. Sharaf Politecnico di Milano

56 IBM WASFO Analysis and Optimization Tool | Master Thesis

6.2 To-be WASFO Analysis and Optimization Tool
After the analysis phase regarding the old version of WASFO, we decided to build a new tool
called “IBM WASFO Analysis and Optimization Tool”, that will be responsible for analyzing
inventory and workload data to solve the optimization problem by finding the minimum cost way
of a virtualized server farm. WASFO Analysis and Optimization Tool currently provides the
following functions:
 Inventory analysis
 Import of IDEAS International tables
 Workload analysis
 Optimal virtualization design
 Graphs and reports generation

The inventory analysis process is about finding automatically the performance capacity of the
collected servers based on their data. The performance capacity means an estimate of the
computational capability of a server. The analysis process depends on identifying the matched
server in IDEAS International tables. WASFO Analysis and Optimization makes such a process
much faster by means of algorithms that support the identification process.

The workload analysis process is concerned with the analysis of the workload data of collected
servers. This process is complex because it passes through several sub-processes; Firstly the
handling process of data holes (missing data), and secondly the normalizing process, and finally
performing statistical analysis so that we consider that the collected data is just one instance of a
stochastic process.

For the virtualization process, WASFO Team has implemented a mathematical model that is
using Binary Programming. With such model, the tool using an Optimization Engine could
compute the optimal way to virtualize a server farm. Herein optimal design means finding the
minimum cost including costs related to servers’ purchase cost, power consumption, floor space
utilization…etc.

According to WASFO requirements and specifications, the new tool has been designed and
developed in a modular and optimized way, in order to guarantee that the analysis process and
the optimization process are quick and efficient. Indeed, the main features of the current tool are
as follows:

 Efficient matching algorithm; identifies the performance capacity of the collected servers
 Data analysis exploits the multi-threading technique to provide efficient analysis methods
 Powerful optimization; Identification of the minimum cost solution to the virtualization

problem

Here below is the UML components diagram that shows the dependencies between the
components and WASFO Analysis and Optimization Tool. Some of these components are shared
libraries; hence they are being used by the other tool; WASFO Data Collector Tool as well. As
you see, the dedicated components for the Analysis and Optimization Tool are as follows:

 IBM.WASFO.InventoryAnalysis
 IBM.WASFO.WorkloadAnalysis
 IBM.WASFO.Optimization

Mostafa A. Sharaf Politecnico di Milano

57 IBM WASFO Analysis and Optimization Tool | Master Thesis

 IBM.WASFO.AOController

In addition, there is the EXE program of the tool; “IBM.WASFO.AnalysisOptimizationGUI.exe’.
This program uses the controller “IBM.WASFO.AOController” to call any analysis and
optimization methods. The controller acts as a facade, which receives requests from the GUI of
the tool and then sends them to the proper handlers in the required libraries, after then, the
controller responds to the user interface with the results. The specific components (mentioned
above) of the tool depend on IBM.WASFO.Core library for any database operations or any
needed basic functionalities. Indeed, the AnalysisOptimizationGUI represents the presentation
layer of the tool, while AOController, InventoryAnalysis, WorkloadAnalysis, Optimization
libraries and some other libraries represent the business layer of WASFO Analysis and
Optimization Tool. From can figure 22, we can observe that most of the components are
dependent on the library of IBM.WASFO.Core. Thus, the tool is a collection of combined
components that form transparently an integrated tool. This is definitely so efficient and
powerful since these components could be reused in other tools. Moreover, they can be updated
and modified easily due to their high modularity. Detailed descriptions about these components
will be given later in this chapter.

Figure 22 Component diagram of WASFO Analysis and Optimization Tool

Mostafa A. Sharaf Politecnico di Milano

58 IBM WASFO Analysis and Optimization Tool | Master Thesis

6.3 Software Architecture
6.3.1 IBM.WASFO.InventoryAnalysis Component

This library is designed to perform all the functionalities related to the inventory analysis based
on the collected inventory data from a server farm. I was involved in the design and the
implementation of this library with another team member (Andrea Pagani).

WASFO Data Collector Tool collects data from hundreds of different servers, and hence we
need to provide a mechanism to identify automatically the performance capacity of the collected
servers. This is actually done through the InventoryAnalysis library by the help of the IDEAS
International Sheet’s data, which provides a spreadsheet that contains the performance capacity’s
estimate of thousands of server models. RPE and OLTP RPE are the used metrics for the
computation of the performance capacity, and it is obtained by calculating the average results of
five different benchmarks. In case of the unavailability of any of the required data used for the
computations, extrapolations are used.

Hence, I designed and implemented a matching algorithm in the library to identify automatically
the performance capacity. Starting from the collected server’s data, the algorithm is able to
identify in the IDEAS International spreadsheet the correct server model and configuration.
Indeed, the matching algorithm exploits the IDEAS data and therefore, WASFO Analysis and
Optimization Tool requires a license to use this data. This is one of the main reasons that only
IBM employees use the tool. The matching algorithm will be discussed in details later in this
chapter.

In figure 23, you will find the class diagram of the InventoryAnalysis library. As you can see in
the diagram, there are several design patterns, which have been used to design the classes’
structure. The used patterns are as follows:

1. Strategy pattern
2. Context pattern
3. State pattern

These design patterns are integrated altogether to build WASFO Matching algorithm. Hence, the
strategy pattern represents the different strategies by means of algorithms (MatchByMemory,
MatchByFrequency and MatchByFrequencyMemory), which are used to find the best match to
the collected server out of the reference servers in the IDEAS spreadsheet. The context pattern
represents the context of the matching process, where the matching algorithms are applied to find
the ideal match by mixing and filtering the results of these algorithms. The state pattern
represents the different cases (SingleAlgorithmState, DoubleAlgorithmState and
TripleAlgorithmState) which, occur in the matching context during the matching process.
Whenever the matching context switches the running algorithm to an alternative one, the
matching state will change based on the number of the applied algorithms. This is very useful in
identifying which results will be taken in order to be mixed, filtered and finally prioritized to find
the best match. There is also the class “MatchingHelper”, which acts as utility class for the
“MatchingContext“and the “MatchingAlgorithm” classes. Beside the matching functionality,
IBM.WASFO.InventoryAnalysis library has other important functionalities such as the
following:

Mostafa A. Sharaf Politecnico di Milano

59 IBM WASFO Analysis and Optimization Tool | Master Thesis

 Import of the IDEAS International spreadsheet automatically to the tool, and then
stores the extracted data and information from the spreadsheet into WASFO database.

 Manages the Blade Center Chassis related to a collected server.
 Parses and extracts all the needed information from the configuration file used for

configuring the collected servers inside a server farm.

In figure 24, you can find the .NET class diagram concerning the InventoryAnalysis library. It
shows more details about the methods, properties, delegates and events of the classes. However,
it does not show the design patterns that were used for designing the class diagram of the library.

Figure 23 UML Class diagram of InventoryAnalysis Library

Mostafa A. Sharaf Politecnico di Milano

60 IBM WASFO Analysis and Optimization Tool | Master Thesis

Figure 24 .NET Class diagram of InventoryAnalysis Library

6.3.2 IBM.WASFO.WorkloadAnalysis Component
This library is designed to perform all the functionalities related to the workload analysis based
on the collected workload data from a server farm. It has been implemented by the project leader
Dr. Mauro Gatti, and (Andrea Pagani 2009). Collected workload data from an existing server
farm, usually contains some data holes “some missing data in the workload time series”. This
could happen due to several reasons such as the monitored server has been turned off or a
network disconnection has occurred to the server.

The optimization algorithms currently cannot support handling such holes; therefore we need to
fill in these gaps in the workload data. For this problem, WASFO uses some interpolation
algorithms to fill in these holes when possible. After filling these holes, the data are normalized.

Mostafa A. Sharaf Politecnico di Milano

61 IBM WASFO Analysis and Optimization Tool | Master Thesis

After the normalization, we will be able to compare the collected workload data from one server
with those collected data from another server. Indeed, the collected workload data can be
absolute data or complex data. The absolute data (e.g., free memory) can be compared easily
even without normalization. However, the complex data (e.g., processor utilization) cannot be
compared the same as the absolute data, particularly if the the servers are different. For this
reason we need the normalization process for the workload data. Hence, for the normalization,
we take into our account that the collected servers have different performance capacity. Herein
performance capacity means any metric that is used for measuring a server’s capability
according to some criterion.

As we can see, the normalization process is very important in solving the optimization problem.
The last step is to pass the normalized data through a basic statistical analysis by computing the
moving average and moving variance, thus the optimization does not depend directly on the raw
data but on the statistics of this data.

6.3.3 IBM.WASFO.Optimization Component
This library is designed to perform all the functionalities and processes related to optimize the
design of a virtualized server farm based on the analysis done for the collected data. It has been
implemented by other members in WASFO team; (Tchango 2010) and (Andrea Pagani 2009). In
fact, many mathematical models regarding the server farm’s virtualization have been designed
and implemented, since the birth of WASFO. These models are varying in their complexity,
hence the more complex they are the longer computation times they take. Every model of these
models depends on a specific target function. The target function describes the overall cost of a
virtualized server farm, in order to better minimize this cost. Thus, the model will be able to
identify a server farm that meets the required operational requirements at a minimum cost.

6.3.4 IBM.WASFO.AOController Component
This library is mainly a gateway between the business components (InventoryAnalysis,
WorkloadAnalysis and Optimization libraries) and the Analysis and Optimization Tool
(graphical user interface). As mentioned before, it acts as facade for the business functionalities
regarding the data analysis and optimization. Besides that, it carries all the requests/responses
from/to any business component used by the tool, and so it hides the complexity from the
presentation layer. It is basically an interface layer between the presentation and business layers.
I have designed the library usingthe Go4 design patterns in .NET language:

1. Facade pattern
2. Singleton pattern
3. Proxy pattern

The facade pattern-classes (InventoryAnalysis, WorkloadAnalysis, Optimization and
OptimalVirtualization) act as interfaces between the AOController component and the referenced
libraries “InventoryAnalysis, WorkloadAnalysis, Optimization and OptimalVirtualization”.
Hence, all the methods of the referenced libraries are provided and called in their corresponding

Mostafa A. Sharaf Politecnico di Milano

62 IBM WASFO Analysis and Optimization Tool | Master Thesis

facade classes. For example, all methods in the InventoryAnalysis library concerning the
inventory analysis’s functionalities are called in the InventoryAnalysis facade-class.

The proxy pattern-classes (InvColController, InvAnlController, WklAnlController and
OptimizationController) act as proxies for the facade classes in front of WASFO Analysis and
Optimization Tool. In other words, they represent the interface controllers of the AOController
component, whereby each controller is responsible for its corresponding facade-class. Indeed,
each proxy class implements a corresponding Interface (IInventoryAnalysis, IWorkloadAnalysis,
IOptimization and IOptimalVirtualization) to its facade class. This interface represents a contract
between the facade and its proxy class, hence we guarantee the integrity between the classes.

The singleton pattern is built inside each controller to guarantee that only one instance will be
created for every controller to provide more efficiency in the performance. Thus, as you can see
the AOController component has a double-sided interface; interface between the ”AOController”
and the ”Referenced libraries”, and another interface between the ”AOController” and ”WASFO
Analysis and Optimization Tool”. In figure 25, the class diagram of the library shows the classes
and their corresponding design patterns. It shows also how the AnalysisOptimizationGUI calls
the controllers to request business functionalities. As you can see, there is also a main controller
which have the common functions needed for any sub-controller. In figure 26, the .NET Class
diagram shows in details the methods and the properties of the classes.

Figure 25 UML Class diagram of AOController library

Mostafa A. Sharaf Politecnico di Milano

63 IBM WASFO Analysis and Optimization Tool | Master Thesis

Figure 26 .NET Class diagram of AOController library

6.3.5 IBM.WASFO.AnalysisOptimizationGUI.exe Program
The “IBM.WASFO.AnalysisOptimizationGUI.exe” is the executable program of WASFO
Analysis and Optimization Tool. It consists of the main class (the entry point of the tool), GUI
classes, visual forms and user controls (ProjectDesign, ProjectExplorer and ReceiveControl
components), which represent the graphical user interface of the tool. In addition, the tool is
composed of a collection of libraries which represent the business layer (data analysis and data
optimization). The data layer of the tool is represented by WASFO database. The database and
the EXE program “IBM.WASFO.AnalysisOptimizationGUI.exe” are both installed using the
package setup that is called “IBM.WASFO.AnalysisOptimizationSetup”. In order to make the

Mostafa A. Sharaf Politecnico di Milano

64 IBM WASFO Analysis and Optimization Tool | Master Thesis

tool portable and easy to use, I created an application configuration file called “App.config” in
XML format to be installed with the tool. This file carries all the configurations needed for the
tool to run successfully such as the database’s path, IDEAS spreadsheet’s path, workload files’
path, shipment web services’ reference...etc. Indeed, this file can be modified in the run-time, in
case if the user needs to change some configurations.

Here below, is the class diagram of the Analysis and Optimization Tool. As you see, the class
structure is clear, whereby it contains only visual forms, their related classes and some utility
classes. This is due to the fact that the business layer is built as business components, which are
used by the tool as reference libraries. The main form of the tool is the “MainForm” class, which
starts after the appearance of the welcome screen. The caller to the main form is the main entry
of the tool; the class “Program” that contains the “Main” method of the program. There is also
the class “Resources” which manages all the resources needed for the tool. In section B at
Appendix, you will find a screenshot of the graphical user interface of WASFO Analysis and
Optimization Tool.

Figure 27 .Net class diagram of AnalysisOptimizationGUI.exe

Mostafa A. Sharaf Politecnico di Milano

65 IBM WASFO Analysis and Optimization Tool | Master Thesis

6.4 Import Process of IDEAS International Spreadsheet
As mentioned before, the InventoryAnalysis component provides the possibility to import the
IDEAS excel sheet’s data into WASFO Analysis and Optimization Tool. In the figure below,
you can see an overview about the importing process through the tool. The process begins when
the user selects to import a spreadsheet; a file dialog prompts the user to choose the desired
IDEAS excel file. Then, the program verifies that the file exists and if so, it stores the file’s path
in the App.conifg XML file of the tool. Then, the tool calls a background thread for the importing
process, which consequently uses the InvAnlController instance to call the import method of the
class IdeasInternationalSheet through the InventoryAnalysis component.

In figure 29, you can see the activity diagram of the importing process for the IDEAS
spreadsheet. The diagram shows the performed activities and the interactions between the
InventoryAnalysis component and the tool. Indeed, the import process is considered as an ETL
(Extraction, Transformation and Loading) process, where the desired data is extracted from the
IDEAS spreadsheet for further processing. Then the data is mapped from the spreadsheet format
(Excel sheet) into the Data Table format (database table) after performing data transformation by
means of removing unnecessary data and adding extracted information out of the given data (e.g.
extracting the frequency value from a ProcessorModel or the server family from a ServerModel).
After that, the data is finally loaded into the database in the table “ReferenceServer”.

Figure 28 Diagram showing how to import IDEAS Sheet into IBM WASFO Database

Mostafa A. Sharaf Politecnico di Milano

66 IBM WASFO Analysis and Optimization Tool | Master Thesis

Figure 29 Activity diagram of ETL Process for IDEAS International Sheet

Mostafa A. Sharaf Politecnico di Milano

67 IBM WASFO Analysis and Optimization Tool | Master Thesis

6.5 WASFO Matching Algorithm
After we collect the inventory data from a server farm. The performance capacity of the collected
servers should be identified, and hence we need to match these servers with the corresponding
ones out of the reference servers in the IDEAS data table. In order to provide an automatic
mechanism for such identification process, we need a matching algorithm that is based on the
collected data of a server , it finds the best match with those of the reference servers. Thus, we
can get better results while optimizing the virtualization design of the server farm. The server’s
collected data is as follows:

 Server manufacturer
 Server model
 Processor model

This data is necessary for identifying the collected server, otherwise the server will be considered
unknown, and so the matching algorithm will ignore it from the collected servers’ list. This is
due to the fact that if there is no information about the server (the manufacturer or the model), it
is impossible to match unknownserver with one of the reference servers. However, some times
the collected data misses the server manufacturer or the server model so in this case the
algorithm tries to find the best match based on the processor model and the available data (server
manufacturer or server model), but if both are missing it is totally impossible.

On the other hand, the information we get regarding the reference servers after importing the
IDEAS international spreadsheet into the database in the table “ReferenceServer” is more broad:

 Server manufacturer
 Server family
 Server model
 Processor model
 Processor speed (Frequency in HZ)
 Cache memory (KB)

The reason for this is that the spreadsheet stores the servers’ data in columns format, so it was
easy for the InventoryAnalysis component to either import this data as it is (server manufacturer,
server family, server model and processor model), or extract and transform the required
information out of it (processor frequency and cache memory). Thus, this gives us more
flexibility in identifying correctly the best match to a collected server.

Until now the matching problem looks simple, however we faced a major problem in matching
the collected data with the reference servers; The problem is that the IDEAS data table has a
fixed format and order of the data. But on the other hand, the format of the collected data is
totally random and unknown. In other words, there is no specific syntax or order of the data we
collect from the servers due to the fact that the servers are produced by different vendors, and

Mostafa A. Sharaf Politecnico di Milano

68 IBM WASFO Analysis and Optimization Tool | Master Thesis

moreover they run different operating systems. In addition, WASFO Data Collector Tool uses
different data collection methods to collect data from these servers based on the server’s type and
its running operating system. Thus, all these factors result in having different data formats of the
collected data. For example, you might find that the collected data from a known server is as
follows;

 Server manufacturer “hewlett-packard”.
 Server model “proLiant- ML350 G pentium3 11300 mhz 512 kb”.

Now, if we match this server with one of those corresponding servers in the IDEAS data table
(ReferenceServer), we would find that the matched server will have this fixed format

“HP ProLiant ML350 G2 PIII 1.13GHz 512KB (1ch/1co)“

As you can see, in order to match both servers, we need a specific algorithm for such purpose.
Using only a string matching algorithm is insufficient. We still need more advanced criterion to
be able to map the collected data to the reference data successfully.

In figure 30, you can see a visual view about the taken steps of WASFO Matching algorithm.
The procedures that the algorithm follows are as following:

1. Extract information from the “ReferenceServer” data table;
o List of server families, list of server models and list of processor models.

2. Extract keywords from the collected server, using the previously extracted lists;
o Server’s (vendor, family, model) and processor’s (model, speed, cache memory)

3. Load the data table of all the reference servers in order for the matching algorithms to
filter it with the help of the found keywords;

4. Call the first algorithm “MatchByFrequency” to filter the reference servers using the
extracted keywords in a certain sequence (the cache memory keyword is excluded);

5. Call the second algorithm “MatchByMemory” to filter the reference servers using the
extracted keywords in a certain sequence (the processor frequency keyword is excluded);

6. Call the third algorithm “MatchByMemoryAndFrequency” to filter the reference servers
using the extracted keywords in a certain sequence (all the keywords are used);

7. Then, the three dataviews (above results) are mixed in one datatable, and then the results
are ordered based on the number of similarities between the 3 dataviews. Hence the best
matches, are the ones that got high rank. Herein, matching rank means the number of
similarities between the 3 dataviews. For example, rank 3 means that a reference server is
idealy found in the 3 dataviews. Thus, the servers with the lowest ranks will be
eleminated from the results, and the servers with the highest ranks will be shown to the
user. In case that there are no matches between the 3 dataviews, all the datatable’s results
will be returned to the user to have the possiblity to select the best match manually;

8. Then, the final results will be published into the inventory analysis’s gridview through
the user interface of WASFO Analysis and Optimization Tool. Finally, the save option
will be activated to allow the user to store the data results in WASFO database (Table
InventoryAnalysis).

Mostafa A. Sharaf Politecnico di Milano

69 IBM WASFO Analysis and Optimization Tool | Master Thesis

In figure 31, you can see the activity diagram of the matching algorithm. It shows the performed
activities and the interactions between the InventoryAnalysis library and the matching classes
(MatchingContext, MatchingAlgorithm, MatchingHelper and MatchingState) in order to match a
collected server with its corresponding reference server. The diagram describes in details all the
matching activities starting from the user’s request to match a single server or a list of servers.

In figure 32, you can see the sequence diagram regarding the steps taken by the different
matching algorithms for identifying a collected server during the inventory analysis process. The
diagram shows the procedures of each matching algorithm. In fact, the three matching algorithms
inherit the common matching functionalities from the parent algorithm, which mainly extracts
information from the IDEAS data table “ReferenceServer”, and also extracts the keywords from
the collected data server. Hence, the extraction process is performed once by the parent matching
algorithm, before the sub-matching algorithms start to run. Then, each algorithm performs
filtration steps based on its strategy, and at the end returns a dataview which represents the
matching results.

Figure 30 Procedures of WASFO Matching Algorithm

Mostafa A. Sharaf Politecnico di Milano

70 IBM WASFO Analysis and Optimization Tool | Master Thesis

Figure 31 Activity diagram of WASFO Matching Algorithm

Mostafa A. Sharaf Politecnico di Milano

71 IBM WASFO Analysis and Optimization Tool | Master Thesis

Figure 32 Sequence diagram of WASFO Matching Algorithm

Mostafa A. Sharaf Politecnico di Milano

72 IBM WASFO Analysis and Optimization Tool | Master Thesis

6.6 Experimental Analysis for the Matching Algorithm
In order to verify the execution performance, correctness and efficiency of the new matching
algorithm in WASFO Analysis and Optimization Tool, I had to do a comparison between the old
and the new matching algorithms by means of a deep experimental analysis based on real data.
The experimental analysis has been performed on previously collected data from real projects of
two IBM customers. Due to the confidentiality of these projects, only the summery data of the
performed analysis will be mentioned. Hence, the first customer will be called “Customer1” and
the second one will be called “Customer2”.

6.6.1 Customer1 project
This project is of a small scale, where the data was collected from a server farm that is composed
of 115 servers. The data was collected by the old version of WASFO Tool. Table 1 shows, that
the collected servers are classified between known and unknown servers’ data. The known
servers can also be classified into 100% known servers’ data or known servers with some
missing data (missing server’s model or missing server’s manufacturer). In graph 1, you can see
a 3D graph that shows a visual statistics regarding the collected servers’ data.

Data Collection of Customer1 Project
Total Servers 115 Servers

Known Servers 77 Servers
Unknown Servers 33 Servers

Known Servers
(missing server model/manufacturer)

5 Servers

Table 1 Data Collection of Customer1 project

Graph 1 3D View of Customer1 project’s data

77 Servers

5 Servers

33 Servers

Customer1 Project - Experimental Analysis

Known Collected Servers

Missing Model Servers OR
Manufacturer Servers

Unknown Collected Servers (Ignored in
matching process)

Mostafa A. Sharaf Politecnico di Milano

73 IBM WASFO Analysis and Optimization Tool | Master Thesis

In table 2, you can find the comparison of the analysis results between the old and the new
algorithms. As you can see, the new algorithm achieved better results than the old one by having
a higher number of correctly matched servers, and by having less number of incorrect matched
servers. In addition, if we look carefully at the data, we find that incorrect matched servers
regarding the new matching algorithm are the servers whose server model or/and server
manufacturer is/are missing! This indicates that the new algorithm almost achieved 100%
success. Indeed, the results of both algorithms are generally excellent because the collected
servers’ data is of a good quality, which consequently helped in better matching the servers. In
graphs 2 and 3, you can see better view of the analysis’s results of both algorithms.

Analysis Results of the algorithms for Customer1
 Ignored

Servers
Correct

Matching
Incorrect
Matching

Elapsed
Time

Old Matching Algorithm 33 74 8 40 Seconds
New Matching Algorithm 33 77 5 03.06 Minutes

Table 2 Analysis results of both algorithms for Customer1 Project

Graph 2 Results of the old WASFO Matching Algorithm – Customer1 Project

Graph 3 Results of the new WASFO Matching Algorithm – Customer1 Project

74 Servers

8 Servers

Test results of Customer1 Project
Old WASFO Matching Algorithm

Correct Matching

Incorrect Matching

Elapsed Time 40 seconds

77 Servers

5 Servers

Test results of Customer1 Project
New WASFO Matching Algorithm

Correct Matching

Incorrect Matching

Elapsed Time 3:06 minutes

Mostafa A. Sharaf Politecnico di Milano

74 IBM WASFO Analysis and Optimization Tool | Master Thesis

6.6.2 Customer2 project
This project is of a medium scale, where the data was collected from a server farm that is
composed of 475 servers. The data was collected by the old version of WASFO Tool. As you
can see in table 3, the collected servers are classified between known and unknown servers’ data.
The known servers can also be classified into 100% known servers’ data or known servers with
some missing data (missing server’s model or missing server’s manufacturer). In graph 4, a 3D
graph shows a visual statistics regarding the collected servers’ data.

Data Collection of Customer2 Project
Total Servers 475 Servers

Known Servers 245 Servers
Unknown Servers 188 Servers

Known Servers (missing
server model/manufacturer)

42 Servers

Table 3 Data Collection of Customer2 Project

Graph 4 3D View of Customer2 project’s Data

In the table below, you can find the comparison of the analysis results between the old and the
new algorithms. As you can see, the new algorithm achieved significantly better results than the
old one by having a higher number of correctly matched servers, and by having less number of
incorrect matched servers. Moreover, by comparing the data results between both algorithms, we
find that in case of the old matching algorithm, the percentage of incorrect matched servers (138)
to the correct matched servers (149) is nearly equal to 50 %. This means that almost half of the
well-known collected servers are not identified correctly. Hence, this is certainly inefficient and
unacceptable.

On the other hand, if we look at the results of the new algorithm, we find that incorrect matched
servers are the servers whose server model or/and server manufacturer is/are missing! This

245 Servers

42 Servers

188 Servers

Customer2 Project - Experimental Analysis

Known Collected Servers

Missing Model Servers OR
Manufacturer Servers

Unknown Collected Servers
(Ignored in matching process)

Mostafa A. Sharaf Politecnico di Milano

75 IBM WASFO Analysis and Optimization Tool | Master Thesis

indicates that the new algorithm achieved 100% success in matching the known servers. In
graphs 5 and 6, you can see better view of the analysis’s results of both algorithms.

Analysis Results of the algorithms for Customer2
 Ignored Servers Correct Matching Incorrect Matching Elapsed Time

Old Matching Algorithm 188 149 138 04.35 Minutes
New Matching Algorithm 188 245 42 30.10 Minutes

Table 4 Analysis results of both algorithms for Customer2 Project

Graph 5 Results of the old WASFO Matching Algorithm – Customer2 Project

Graph 6 Results of the new WASFO Matching Algorithm – Customer2 Project

As a conclusion, we realize that the new algorithm achieved better results than the old one.
However, if we look at the elapsed time used for each algorithm, we notice that the old algorithm
is quicker in computations than the new one. Nevertheless, this is due to the fact that, it has very
simple string algorithm, which is not sufficient in matching the collected servers.

149 Servers

138 Servers

Test results of Customer2 Project
Old WASFO Matching Algorithm

Correct Matching

Incorrect Matching

Elapsed Time 4:35 minutes

245 Servers

42 Servers

Test results of Customer2 Project
New WASFO Matching Algorithm

Correct Matching

Incorrect Matching

Elapsed Time 30:10 minutes

Mostafa A. Sharaf Politecnico di Milano

76 IBM WASFO Shipment Services | Master Thesis

7 IBM WASFO Shipment Services
7.1 WASFO Shipment Web Services
It represents the middleware layer of WASFO Solution. Indeed, it acts as middleware software
between WASFO Tools, in order to ship WASFO projects (database and project files) from
WASFO Data Collector Tool to WASFO Analysis and Optimization Tool. The shipment process
is performed through specific web services for importing and exporting files of large size in an
optimized way. Hereunder, is the component diagram of WASFO middleware and the
corresponding WASFO Shipment Web service’s client of each WASFO Tool. The web services
have been implemented using the WSE 3.029 for Microsoft® .NET. WSE 3.0 enables developers
to build secure Web services based on the latest Web services protocol specifications. Moreover,
it provides a simpler method for sending binary data in small chunks over HTTP web services.

Figure 33 Component diagram of WASFO Shipment Web services

7.2 Why WES 3.0?
In order to send a large file across a web service under .NET platform, I had to understand how
to do that, particularly how the web service call, Internet Information Service and .NET can all

29 WSE 3.0; Web Services Enhancements 3.0

Mostafa A. Sharaf Politecnico di Milano

77 IBM WASFO Shipment Services | Master Thesis

fit together. We might think to send a file in one single array of bytes as an input parameter to a
web service call. Then this call will be sent to the web server as a single request. This looks
simple; however, it is totally inefficient in case if the file’s size is beyond the configured
MaxRequestLength of the application or if the request results caused an IIS timeout. Moreover,
there is no way to provide a file’s transfer feedback to the graphical user interface of the
application, because there is no indication about the progress of the transfer until it is either
completed or failed. We also could think about transmitting files via web services using Direct
Internet Message Encapsulation-DIME. It is a good approach however it has a significant
problem that the binary contents of the messages are sent outside the SOAP-Envelope of the
XML messages. This means although the messages are secured, their DIME attachments might
not be secured.

An optimal solution for transmitting a file, notably one of large size, via web services is using
WSE 3.0, which provides the ability to send large amounts of binary data efficiently and securely
via the MTOM30 specification (W3C31 SOAP). MTOM reduces the size of messages on the wire
helping in scenarios of low bandwidth. Moreover, WSE 3.0 automatically handles the binary
encoding of the transmitted data inside the web service’s message when MTOM is turned-on in
the client and the server applications. The most interesting fact of MTOM is the way in which it
encodes the binary data; it sends the binary data in its original binary form, without any increase
in the size of the data because of its text’s encoding. Normally any binary data in the SOAP
message is encoded as text using the Base6432 encoding, which results in increasing the size of
the binary data by 33%. However, with MTOM this never happen, and so this reflects how
powerful and efficient WSE is.

Indeed, MTOM sends the file as chunks one-by-one and appends them to the file on the server.
MTOM fully complies with the other Web services specifications like WS-Security, so the entire
message is secured. In figure 34 below, you can see the class diagram of WASFO Shipment Web
Services. IBM.WASFO.ShipmentService is called in our context Shipment Web services. These
web services are built in the class Shipment, and they are as the following:

 SendChunk: uploads a file into the server in the form of chunks.
 ReceiveChunk: downloads a file from the server in the form of chunks.
 GetFileSize: calculates the size of a file in bytes.
 GetListFiles: retrieves a list of files inside a folder.
 GetMaxRequestLength: one useful and important feature is that MTOM provides the

MaxRequestLength setting on the server. Thus, this web service enables the client to stay
within acceptable request sizes on the server during the transfer process. Thus, the
overall result is a self-controlled file transfer that will adapt to changing network
conditions during the transfer.

30 MTOM; Message Transmission Optimization Mechanism
31 W3C; The World Wide Web Consortium
32 Base64; It is a generic term for any number of similar encoding schemes that encode binary data by treating it
numerically and translating it into a base 64 representation.

Mostafa A. Sharaf Politecnico di Milano

78 IBM WASFO Shipment Services | Master Thesis

 VerifyFileHash: verifies the integrity of a file by computing the MD533 hash value of
the file’s stream before and after the transmission in order to check that the file received
is identical to the file sent. Thus, the web service determines whether any changes have
been made to the file during the transfer.

Figure 34 Class diagram of Shipment Web services

After the shipment web service completes uploading the WASFO project into the web server of
WASFO, the project is then saved in a folder named by the user id in the local desk of the server.
So in this way, the web server could manage the stored projects belong to different users.

7.3 IBM.WASFO.MTOM (Web Services Client)
This component represents the Web service client of WASFO Web services. Hence, it has a
client reference to the Shipment Web services. This client contains a custom control of type
.NET Background Worker, and so it acts as a background process in any .NET Application.
Indeed, IBM.WASFO.MTOM carries the shipment process of WASFO projects through this
custom control. Hence, both WASFO tools can send/receive files into/from the web server of
WASFO Middleware with the help of this component. In the figure below, is the class diagram
of the component. As you can see, the two main client classes are as follows:

 DownloadBackgroundWorker: calls the ReceiveChunk service for downloading files.
 UploadBackgroundWorker: calls the SendChunk service for uploading files.

Both of them inherit from the class MTOMBackgroundWorker. This parent class is also a client
class to some Shipment web services (GetFileSize, GetListFiles, GetMaxRequestLength...etc),
and has some common functionalities needed for the transmission process
(VerifyLocalFileHash). For example, it calls the web service “VerifyFileHash” to perform MD5

33 MD5; Message Digest algorithm 5

Mostafa A. Sharaf Politecnico di Milano

79 IBM WASFO Shipment Services | Master Thesis

file hash before or after the transmission on the server application to verify that the received file
is identical to the sent file.

Figure 35 Class diagram of MTOM Component

Here below, you find a screenshot of the app.config file shown in figure 36; this file is necessary
to run MTOM in the client side of the application. It contains sections referring to the WSE 3.0
assembly and a messaging clinetMode setting for the client.

Figure 36 Application Configuration file - WASFO Shipment Web Services (Client side)

Mostafa A. Sharaf Politecnico di Milano

80 IBM WASFO Shipment Services | Master Thesis

7.4 WASFO Shipment User Controls
They are mainly designed to be used as custom user controls in the GUI of WASFO tools for the
sake of exporting or importing projects’ files between WASFO tools. Both controls import the
Shipment Web Services’ client (IBM.WASFO.MTOM), in order to be able to call WASFO
Shipment Web Services to export or import WASFO projects through WASFO Middleware Web
Server. The two custom controls are as the following:

 IBM.WASFO.SendControl
 IBM.WASFO.ReceiveControl

In order to make the shipment process through WASFO Middleware more quick and efficient; I
developed functionalities for compressing WASFO project’s files (database, workload files...etc)
before the export process of Shipment Web services, and also other functionalities for
decompressing these projects’ files after the import process. Thus, I could minimize the transfer
load on the shipment web services by reducing the size of the transferred files, notably of large
size before sending them. The received projects are always kept compressed in the server side to
be ready for sent.

For such purpose, I used the DotNetZip Library. The library is licensed by Microsoft Public
License (Ms-PL). It is a free, small, fast, and easy library for manipulating zip files. The
CodePlex34 powers this library, which is used mainly by .NET Applications installed on
Windows PCs with the full .NET Framework to easily create, read, and update zip files. Indeed,
the zip compression and decompression is so efficient with this library. Hence, the DotNetZip
Library is used by both WASFO Shipment user controls in order to provide the compression or
decompression functionalities for any files.

These custom controls are built by the latest .NET GUI Framework technology; Windows
Presentation Foundation. WPF is an advanced graphical system for rendering user interfaces in
Windows applications. It is based on DirectX that provides hardware acceleration and enables
modern user interface features such as transparency, gradients, and transforms…etc. WPF uses
the new user interface markup language of Microsoft .NET; XAML35. This language is used to
define UI36 elements, data binding and events...etc.

7.4.1 IBM.WASFO.SendControl
A visual component that is imported by WASFO Data Collector Tool to export WASFO projects
into the Middleware web server of WASFO. In figure 37, you can see the class diagram of the
component. The component contains a visual form that allows users to export their projects’
files. The export process runs always in a background thread to avoid interrupting the main
thread (GUI) of WASFO Data Collector Tool. During the uploading process, the user interface
provides the user with the files’ transfer feedback, through a progress bar, which shows the
progress of the transfer until the transmission completes. We should remember that the
component uses WSE 3.0 in order to use MTOM feature while exporting WASFO projects.

34 The CodePlex; Open Source Project Community
35 XAML; Extensible Application markup Language
36 UI; User Interface

Mostafa A. Sharaf Politecnico di Milano

81 IBM WASFO Shipment Services | Master Thesis

7.4.1.1 Compression Process
When the user requests to export WASFO projects, the IBM.WASFO.SendControl calls the
DotNetZip library to perform a compression for the required files, then the component calls the
MTOM library to upload the zipped projects into the web server of WASFO (Middleware layer).
In fact, the compression process uses the following options to compress WASFO projects:

 Format: ZIP64.
 Encryption: Advanced Encryption Standard 56 (AES56).
 Encoding: IBM Code Page 437 (IBM437).
 Password: The zipped project always has a protected password for security reasons.
 Compression Level: High Speed.

Figure 37 Class diagram of the component “IBM.WASFO.SendControl”

7.4.2 IBM.WASFO.ReceiveControl
A visual component that is imported by WASFO Analysis and Optimization Tool to import
WASFO projects from the Middleware web server of WASFO. Below you can see the class

Mostafa A. Sharaf Politecnico di Milano

82 IBM WASFO Shipment Services | Master Thesis

diagram of the component. It contains a visual form that allows users to import their projects’
files. The import process runs always in a background thread to avoid interrupting the main
thread (GUI) of WASFO Analysis and Optimization Tool. During the downloading process, the
user interface provides the user with the files’ transfer feedback, through a progress bar, which
shows the progress of the transfer until the transmission completes. In addition, the component
provides a function, which allows the user to check manually if there are any related projects in
the web server of WASFO. If it finds any projects, it prompts the user if s/he wants to import the
found projects. This function runs also automatically in a background thread every certain
interval to check if there are any available projects in the web server. If so, it informs
automatically the user whether to download those available projects immediately. Indeed, the
component uses WSE 3.0 in order to use MTOM feature while exporting WASFO projects.

Figure 38 Class diagram of the component “IBM.WASFO.ReceiveControl”

Mostafa A. Sharaf Politecnico di Milano

83 IBM WASFO Shipment Services | Master Thesis

7.4.2.1 Decompression Process
When the user requests to import WASFO projects, the IBM.WASFO.ReceiveControl calls the
MTOM library to download the available projects on the web server of WASFO (Middleware
layer), and after that the component calls the DotNetZip library to perform a decompression for
the received projects (zipped projects). In fact, the decompression process follows the same
options that were used for compressing WASFO projects:

 Format: ZIP64.
 Encryption: Advanced Encryption Standard 56 (AES56).
 Encoding: IBM Code Page 437 (IBM437).
 Password: The same password that was used while compressing the file.
 Compression Level: High Speed.

7.5 Web Service Configuration
Any Web service that uses WSE 3.0 must refer to Microsoft.web.services3 in its web
configuration file. This file is needed to configure all the settings related to a web service in
order for the web service to run successfully. As you can see below the screenshot of the
web.config file is shown in figure 39; this file is necessary to run MTOM in the server side of the
application. It contains sections referring to the WSE 3.0 assembly and the messaging
serverMode setting for the web server.

Figure 39 Web Configuration file (XML file) of WASFO Shipment Web Services (Server side)

Mostafa A. Sharaf Politecnico di Milano

84 IBM WASFO License Generator | Master Thesis

8 IBM WASFO License Generator
This tool is designed to create a valid license for WASFO user to be authorized to access one of
WASFO Tools based on the user’s type. The tool is an internal tool in IBM, which is managed
by Dr. Mauro Gatti, the project leader of WASFO. He has designed and developed this tool to
secure the access to WASFO Tools against any misuses or fraud actions. As you can see below,
this is a general picture of how user’s license is generated, and how the user can be authenticated
through the authentication Form (WASFO Login Form) of WASFO Toolset.

Figure 40 Authentication mechanism in WASFO Toolset (Drawn by Dr. Mauro Gatti, IBM Italy)

WASFO License Generator generates a license file in XML format, which represents a license
key to be imported afterward during the user’s login. The license contains the hashing result of;

Mostafa A. Sharaf Politecnico di Milano

85 IBM WASFO License Generator | Master Thesis

1. User credentials
a. UserID the user’s email
b. Password the user’s password

2. Type of the license key
a. License for WASFO Data Collector Tool
b. License for WASFO Analysis and Optimization Tool);

3. Secret key

The “SecretKey” Object represents the secret key (random value) that a specific algorithm inside
the IBM.WASFO.Core library creates it automatically. After that, the license tool creates the
“LicenseKey” Object using the IBM.WASFO.Core Library, then it stores this generated object in
the table “LicenseKeys” for further authentication (as shown below in figure 41).

Figure 41 Table LicenseKey

In the cryptography world, our license key is called a message digest, which is obtained by
computing the SHA-137 hashing of a combination of the id, password, license type and secret key
of the user. The length of the license key is 160 bits. The cryptographic hash function has four
main properties:

 Easy to compute the hash value for any given license;
 Infeasible to find a license that has a given hash;
 Infeasible to modify a license without changing its hash;
 Infeasible to find two different licenses with the same hash.

For the authentication purpose (using IBM.WASFO.Authentication), a hashing process of the
user’s security credentials is computed in order to identify the corresponding user and his/her
machine that is running an instance of WASFO tool. The user’s security credentials represents
the output of the SHA-1 hashing process for the combination of the user’s id, user’s password,
secret key, imported license key, user’s computer name and salt. The salt is an output, which
results from a key derivation function that takes two inputs (random bits and user’s password).
The output of this key derivation function is stored as the encrypted version of the password.
This output is then used as a part of the security credentials of the user.

37 SHA-1; Secure Hash Algorithm-1

Mostafa A. Sharaf Politecnico di Milano

86 IBM WASFO Deployment | Master Thesis

9 IBM WASFO Deployment
As we already know, WASFO Toolset has four main entities:

1. IBM WASFO Data Collector Tool (data collection)
2. IBM WASFO Analysis and Optimization Tool (data analysis and optimization)
3. IBM WASFO Middleware Software (IIS, hosts WASFO Shipment Web Services)
4. IBM WASFO Database (data storage)

Hereunder, you can see a real picture of WASFO Solution after the deployment:

Figure 42 UML diagram of WASFO Solution

Mostafa A. Sharaf Politecnico di Milano

87 IBM WASFO Deployment | Master Thesis

Hence, two deployment packages have been developed for WASFO Toolset in order to enable
users to install the desired WASFO Tool in their PCs. Both tools are installed in a release mode
because they are stable, and so there is no need to install them in a debug mode in users’
machines. The two-setup packages for WASFO are:

1. IBM.WASFO.DataCollector.Setup
2. IBM.WASFO.AnalysisOptimization.Setup

During the setup process of WASFO, users must insert a setup key to verify their validity to use
WASFO Tool. Hereunder, is an example of one of the screenshots that appears during the
installing process of IBM.WASFO.DataCollector Tool:

Figure 43 Welcome screen during the setup process of IBM WASFO Data Collector Tool

In order to install WASFO Tools successfully, there are three mandatory pre-requisites that must
be found in the running machine prior to the setup process;

 Microsoft.NET Framework 3.5 or later.
 Windows Installer 3.1 or later.
 Microsoft Visual C++ 2005 SP138 Redistributable Package (x86). This package installs

the runtime components of Visual C++ Libraries required to run applications developed
with Visual C++ on a computer that does not have Visual C++ 2005 installed.

Without installing these pre-requisites, the installation process of the desired WASFO Tool will
definitely fail, warning the user about the reason of the failure. The interesting thing is that the

38 SP1; Service Pack1, is a collection of updates, fixes and enhancements of Microsoft Visual C++ 2005

Mostafa A. Sharaf Politecnico di Milano

88 IBM WASFO Deployment | Master Thesis

setup process detects automatically any missing pre-requisite(s) in the user’s machine, and if so
it prompts the user to install the missing pre-requisite(s) automatically online from the provider’s
website (Microsoft Website) or either manually from the local PC or the local network.

Indeed, building the setup packages of WASFO Tools was a quite complex process, due to the
high dependencies between the libraries of WASFO both for the shared and unshared libraries.
Thus, I had to take care of the ordering to build (compile) these libraries, based on their
dependencies upon each other. Hence, I started by the root library “IBM.WASFO.Core.dll”,
which has no dependencies upon any other libraries except for “Vimservice2005.dll” library, and
then I continued building the subsequent libraries starting from the less dependent libraries until
the high dependent libraries. You can see in figure 5, the hierarchy of the libraries’ dependencies
above in page (30) at section (5.2) in Chapter.5 “IBM.WASFO.Toolset”.

Hence, after installing WASFO DataCollector Tool into the user’s PC, the application folder will
contain the following structure (after implementing and integrating the new components):

 EXE Program file; IBM.WASFO.DataCollectorGUI.exe
 App.config file
 Libraries

1. Vimservice2005.dll
2. Vimservice2005.XMLserializers.dll
3. Ionic.Zip.dll (the DotNetZip library)
4. Infragistics2.Win.v8.3.dll
5. Infragistics2.Shared.v8.3.dll
6. Infragistics2.Win.UltraWinChart.v8.3.dll
7. Microsoft.ReportViewer.Common.dll
8. Microsoft.ReportViewer.ProcessingObjectModel.dll
9. Microsoft.ReportViewer.WinForms.dll
10. Microsoft.Web.Services3.dll
11. IBM.WASFO.Core
12. IBM.WASFO.Authentication (new component to-be introduced)
13. IBM.WASFO.ReportGenerator.dll (new component to-be introduced)
14. IBM.WASFO.Graphs.dll
15. IBM.WASFO.MTOM.dll
16. IBM.WASFO.SendControl.dll
17. IBM.WASFO.ExcelInterface.dll
18. IBM.WASFO. ProjectExplorer.dll
19. IBM.WASFO. ProjectDesign.dll
20. IBM.WASFO.DCController.dll (new component to-be introduced)
21. IBM.WASFO.DataCollector.dll (new version to-be integrated)

 Folders
1. Database Folder (WASFODB)

Mostafa A. Sharaf Politecnico di Milano

89 IBM WASFO Deployment | Master Thesis

2. Icons Folder (Icon files)
3. Tools Folder (putty.exe, plink.exe)
4. Profiles Folder (log for servers’ data collection)
5. Workloads Folder (Workload files)

On the other hand, after installing WASFO Analysis and Optimization Tool into the user’s PC,
the application folder will contain the following structure (after implementing and integrating
the new components):

 EXE Program file; IBM.WASFO.AnalysisOptimizationGUI.exe
 App.config file
 Libraries

1. Vimservice2005.dll
2. Vimservice2005.XMLserializers.dll
3. Ionic.Zip.dll (the DotNetZip library)
4. Infragistics2.Win.v8.3.dll
5. Infragistics2.Shared.v8.3.dll
6. Infragistics2.Win.UltraWinChart.v8.3.dll
7. Microsoft.ReportViewer.Common.dll
8. Microsoft.ReportViewer.ProcessingObjectModel.dll
9. Microsoft.ReportViewer.WinForms.dll
10. Microsoft.Web.Services3.dll
11. IBM.WASFO.Core
12. IBM.WASFO.Authentication (new component to-be introduced)
13. IBM.WASFO.ReportGenerator.dll (new component to-be introduced)
14. IBM.WASFO.Graphs.dll
15. IBM.WASFO.MTOM.dll
16. IBM.WASFO.ReceiveControl.dll
17. IBM.WASFO.ExcelInterface.dll
18. IBM.WASFO. ProjectExplorer.dll
19. IBM.WASFO. ProjectDesign.dll
20. IBM.WASFO.InventoryAnalysis.dll
21. IBM.WASFO.WorkloadAnalysis.dll
22. IBM.WASFO.Optimization.dll
23. IBM.WASFO.AOController.dll

 Folders
1. Database Folder (WASFODB)
2. Icons Folder (Icon files)
3. Solvers Folder (solveModel.exe)
4. Workloads Folder (Workload files)

Here below you can find a screenshot regarding the contents of the application folder of IBM
WASFO Data Collector Tool after the setup process. You will find also in figure 45, another

Mostafa A. Sharaf Politecnico di Milano

90 IBM WASFO Deployment | Master Thesis

screenshot regarding the application configuration file of IBM WASFO Analysis and
Optimization Tool. As you can see, the application configuration file is in XML format.

Figure 44 IBM WASFO Data Collector Tool - Application Folder

Figure 45 App.config XML file of IBM WASFO Analysis and Optimization Tool

Mostafa A. Sharaf Politecnico di Milano

91 Conclusion | Master Thesis

10 Conclusion
WASFO Toolset has now a completely new architecture. In addition, most of the algorithms,
functionalities, policies have been refined and improved in order to increase the efficiency and
the execution performance of WASFO Toolset.

Currently WASFO Toolset is composed of five physical entities:

 IBM WASFO Data Collector Tool
(for data collection)

 IBM WASFO Analysis and Optimization Tool
(for data analysis & optimization)

 IBM WASFO License Generator Tool
(for creating users’ licenses)

 IBM WASFO Database
(for data storage)

 IBM WASFO Middleware Software
(for the shipment purpose of WASFO projects between the two main tools)

In fact, using web services for the shipment of WASFO Project files and WASFO Database has
evolved the single-tier architecture (monolithic application) of WASFO to a distributed
architecture. The distributed architecture is based on IBM WASFO Middleware that acts as a
central Web Server (represented by Internet Information Server-IIS) for any requests coming
from WASFO Data Collector Tool or WASFO Analysis and Optimization Tool. Currently, the
middleware software is being used for exporting projects’ data from the Data Collector Tool, and
for importing them to the Analysis and Optimization Tool.

Hence, I think there is a lot to be introduced for IBM WASFO Middleware in the near future,
which will certainly help WASFO to cope with the current trends and software technologies,
particularly regarding the web services technologies and SOA.

Indeed, WASFO has made significant steps, changes and updates during the latest year, which
improved it to be more robust than before. Moreover, these changes will make the future
development and modification of WASFO Toolset is easier and flexible. Here are the main
changes and updates, which have been made for WASFO during the latest year:

A. New architecture
B. Building a middleware in the form of exposed web services
C. New database design
D. User friendly and flexible graphical user interface
E. Using Web services;

 VMware Web service
 WASFO Shipment Web services

F. Building shared libraries and components
G. Parallel execution of computations using threading techniques
H. Automatic import of reference servers from IDEAs Spreadsheet into WASFO DB
I. New and efficient matching algorithm for finding automatically the performance

capacity of collected servers in existing server farm

Mostafa A. Sharaf Politecnico di Milano

92 Conclusion | Master Thesis

J. New optimization algorithms (Advanced mathematical and analysis models)
K. New Data Collection methods;

 VMware inventory and workload data collection
 Linux I/O data collection

Actually, the interesting part of the architecture design is that the two main WASFO Tools, share
set of business functionalities and graphical user controls. Therefore, I had to apply the principle
of software components’ re-use by designing and building set of shared components in the form
of class libraries and custom control libraries during the engineering of WASFO Optimization
and Analysis Tool, and during the re-engineering of WASFO Data Collector Tool. This helped
significantly in improving the architecture design of WASFO Toolset. The following are the
components in which I contributed to its development:

 IBM.WASFO.Core
 IBM.WASFO.ProjectDesign
 IBM.WASFO.ProjectExplorer
 IBM.WASFO.DataCollector
 IBM.WASFO.DataCollectorGUI
 IBM.WASFO.InventoryAnalysis
 IBM.WASFO.AOController
 IBM.WASFO.AnalysisOptimizationGUI
 IBM.WASFO.ShipmentService
 IBM.WASFO.MTOM
 IBM.WASFO.SendControl
 IBM.WASFO.ReceiveControl

In addition, building a database management system to store WASFO data was an appropriate
decision, because it has resolved many technical problems that were arisen because of using
XML files for the data storage. Although, the current design of the database system is not the
optimal one, however, it is considered a significant improvement for representing the data layer
of WASFO. Thus, the current database system is implemented by using Microsoft Access, and
hence it is being used by both WASFO tools; WASFO Data Collector Tool and WASFO
Analysis and Optimization Tool.

The development of WASFO solution included taking care of the performance engineering,
software efficiency, memory management, scalability (by means of distributed architecture),
multithreading techniques, software components’ re-use, and code modularity. For the
performance of the workload analysis and the optimization, it was crucial to make it sure that
computations did not last forever.

To conclude, this current architecture has increased significantly the efficiency of the
performance, and added a greater modularity and robustness in the whole software architecture.
Moreover, the graphical user interface has been improved significantly than the old GUI, in order
to add more flexibility and provide high quality and more user-friendly interface to the user.

Mostafa A. Sharaf Politecnico di Milano

93 Future Work | Master Thesis

11 Future Work
11.1 WASFO Toolset Architecture

The current architecture of WASFO Toolset has introduced the layer of WASFO
Middleware through SOA; hence continuing the design and development under the trend of
SOA for WASFO, would be of a great benefit to the current distributed architecture. In
addition, WASFO should support parallel computation for performing algorithms and data
collection to increase the performance and the efficiency of the toolset. For example, cluster
computing and grid computing would be very useful and beneficial in our case.

11.2 WASFO Toolset Components
Indeed, new libraries still need to be introduced for WASFO Toolset such as the follows:
1. IBM.WASFO.Authentication (shared library, to-be developed using C#.NET)
2. IBM.WASFO.ReportGenerator (shared library, to-be developed using C#.NET)
3. IBM.WASFO.DCController (non-shared library, to-be developed using C#.NET)
4. IBM.WASFO.DataCollector (non-shared library, the new version is implemented

by using C++.NET and will be integrated with the current WASFO Data Collector tool)

These new components will definitely improve the performance and efficiency concerning
the business layer of WASFO Tools, notably WASFO Data Collector Tool. In addition, some
existing libraries will need to be modified particularly the core library which in a deep need
for great improvement. Although the class design of the core library has been improved
significantly, the code inside the classes still needs to be modified and optimized due to its
complexity and lack of modularity. Indeed, using design patterns and software best practices
will certainly help in having reliable software architecture and modular code.

11.3 WASFO Matching Algorithm
The new matching algorithm is in a stable status now, however we still need to test it in
many real projects in order to verify its correctness, speed and efficiency. In the future, it is
important that the algorithm will have the self-learning ability, in order to update it easily and
adapt it to any new cases. Thus, introducing a kind of artificial intelligence-AI technique can
help in creating a smart matching algorithm that is capable of recognizing unknown collected
servers (servers with missing information) from previous experiences and learning. The
current algorithm uses some strategies and criteria for filtering and matching collected
servers such as; Server Vendor, server model, processor model, processor frequency and
cache memory. I expect that more strategies and criteria will be introduced in the future to
maximize the efficiency of the algorithm and to increase the matching probability for the
collected servers.

Mostafa A. Sharaf Politecnico di Milano

94 Future Work | Master Thesis

11.4 WASFO Graphical user Interface (GUI)
The current graphical user interface is based on .NET built-in controls and custom controls.
Although it looks good, we still need to provide more professional and flexible user interface.
This can be achieved by customizing the user controls for our specific purposes. In addition,
we have bought the license of the NetAdvantage-Infragistics.Net library last year. It is a
private library, which has many professional and usable .NET controls. Hence, it is a good
idea to make advantage of this professional library to improve WASFO GUI. Another
important thing is the new application development framework; WPF “Windows
Presentation Foundation” that should be used as a new technology for the GUIs in
Microsoft.NET. WPF provides a professional look and feel user interface of .NET
Applications, which will increase the usability and flexibility of WASFO GUI.

11.5 WASFO Database
The current database design has significant problems that should be modified in order to
become more efficient and less complex. WASFO database has been created by using
Microsoft Access, which is not suitable any more to handle the complexity of the database
design and the volume of stored data by WASFO Toolset. For these reasons, I recommend to
re-design the database using DB2, which is very suitable since it is an IBM Database Engine.
In this way, we will be able to use stored procedures, triggers, constraints and rules, which in
consequence will improve the performance of WASFO Database. Moreover, DB2 is a
database server, which is able to centralize the data layer of WASFO Toolset, henceforth
both WASFO tools could communicate remotely to each other through the database server.

11.6 WASFO Toolset Connectivity with WASFO Database
The code regarding the database operations is written in one big class “OleDBInterface”.
This design is not the most suitable and efficient way to handle the database. Hence, it should
be re-modified in the near future to overcome the increasing complexity of the class, and to
improve the efficiency of WASFO’s data connectivity with the database. This is can be done
by splitting this DB39 class into several classes each one acts as database adapter that is
responsible for specific tables and tasks in the database. Currently, we are using the database-
connected mode of ADO.NET in order to connect to WASFO Database for any queries.
Hence, this is not always efficient in every case; henceforth, using the latest .NET specific-
database language “LINQ40” would facilitate the connectivity with our WASFO DB, and
make it more efficient. In addition, having the database in DB2 will enable us to use
advanced features such as stored procedures, triggers, and constraints…etc.

39 DB: Database
40 LINQ; Language INtegrated Query

Mostafa A. Sharaf Politecnico di Milano

95 Appendix | Master Thesis

12 Appendix
A. IBM WASFO Data Collector Tool

Figure 46 Screenshot of WASFO Data Collector Tool

B. IBM WASFO Analysis and Optimization Tool

Figure 47 Screenshot of WASFO Analysis and Optimization Tool

Mostafa A. Sharaf Politecnico di Milano

96 Appendix | Master Thesis

C. IBM WASFO Data Collector Setup

Figure 48 Screenshot of the installing process of WASFO Data Collector Tool

D. Importing process of IDEAS International Excel Sheet (Reference servers)

Figure 49 Screenshot of the import process of IDEAS International Tables into WASFO Database

Mostafa A. Sharaf Politecnico di Milano

97 Appendix | Master Thesis

E. The process of Inventory Collection (IBM WASFO Data Collector Tool)

Figure 50 Screenshot of the inventory collection-user form

F. The process of Inventory Analysis (IBM WASFO Analysis and Optimization Tool)

Figure 51 Screenshot of the inventory analysis- user form

Mostafa A. Sharaf Politecnico di Milano

98 Appendix | Master Thesis

G. Identifying the performance capacity of collected servers (Matching process)

Figure 52 Screenshot of the identified collected servers-user form

H. The InventoryAnalysis Table in WASFO Database, concerning the matching results
between the servers in the tables “ServersInventory” & “ReferenceServers”

Figure 53 Relations between the Inventory Analysis Tables in WASFO Database

Mostafa A. Sharaf Politecnico di Milano

99 Appendix | Master Thesis

I. WASFO ProjectDesign Custom Control (Project Wizard)

Figure 54 Screenshots of the ProjectDesign component

Mostafa A. Sharaf Politecnico di Milano

100 Appendix | Master Thesis

J. Exporting process of WASFO Projects (WASFO Data Collector Tool)

Figure 55 Screenshot of IBM.WASFO.SendControl component

Figure 56 Screenshot of the exporting process-step1 (compressing WASFO projects)

Figure 57 Screenshot of the exporting process-step2 (uploading WASFO projects)

Figure 58 Screenshot of the exporting process-step3 (Verifying files’ integrity by hashing)

Mostafa A. Sharaf Politecnico di Milano

101 Appendix | Master Thesis

K. Importing process of WASFO Projects (WASFO Analysis and Optimization Tool)

Figure 59 Screenshot of IBM.WASFO.ReceiveControl component

Figure 60 Automatic check in case of any found projects in the web server of WASFO

Figure 61 Manual check for any uploaded projects in the web server of WASFO

Figure 62 Screenshot of the importing process-step1 (decompressing WASFO projects)

Mostafa A. Sharaf Politecnico di Milano

102 Appendix | Master Thesis

Figure 63 Screenshot of the importing process-step2 (downloading WASFO projects)

Figure 64 Screenshot of the importing process-step3 (Verifying files’ integrity by hashing)

L. The design time of IBM.WASFO.ReceiveControl (WPF & XAML Coding)

Figure 65 Screenshot of the WPF & XAML Code of IBM.WASFO.ReceiveControl in the design-time

Mostafa A. Sharaf Politecnico di Milano

103 Bibliography | Master Thesis

Bibliography
(Europe), Mauro Gatti-IBM System x™ Architect. IBM Italy, Executive presentation, "Workload Analysis
for Server Farm Optimization (WASFO) Version 0.9.1.0". Milan.

(Italy), Mauro Gatti-IBM System x™ Architect (Europe) and Salvatore Morsello-IBM System x™ Specialist.
IBM Italy, Education Presentation, "Workload Analysis for Server Farm Optimization (WASFO) Version
0.9.1.0”. Milan.

AMD. "AMD64 Virtualization Codename "Pacifica" Tecnology." Secure Virtual Machine Architecture
Reference Manual. May 2005. http://www.mimuw.edu.pl/~vincent/lecture6/sources/amd-pacifica-
specification.pdf (accessed April 2009).

Andrea Pagani, Maria Benedetta, Elisa Tonello. Master Thesis, "An analytical approach to decision
problem in IT optimization projects". Milan: IBM Italy, 2009.

Bittman, P. Dawson and T. J. Virtualization changes virtually everything. Gartner Research, 2008.

Carr, N. G. IT doesn’t matter. Review, Harvard Business, 2003.

Community of Software development and Design developer, The Code Project.
http://www.codeproject.com/KB/cpp/DimeBufferedUpload.aspx. http://www.codeproject.com
(accessed November 2009).

—. http://www.codeproject.com/KB/cpp/wsaltroute.aspx. http://www.codeproject.com (accessed
November 2010).

—. http://www.codeproject.com/KB/webservices/SoapMSMQ.aspx. http://www.codeproject.com/
(accessed November 2010).

—. http://www.codeproject.com/KB/XML/MTOMWebServices.aspx. http://www.codeproject.com/
(accessed November 2009).

Company, Infragistics. http://www.infragistics.com/dotnet/netadvantage.aspx#Overview.
http://www.infragistics.com/ (accessed June 2010).

D. Ardagna, C. Francalanci, G. Bazzigaluppi, M. Gatti, F. Silveri, M. Trubian. "A Cost-oriented tool to
support server consolidation." ICEIS Proceedings. Miami, Florida, USA: ICEIS , 2005.

D. Ardagna, C. Francalanci, M. Trubian. A Cost-oriented Approach for Infrastructural Design. ACM
Symposium on Applied Computing, Milan: Politecnico di Milano & Università degli Studi di Milano, 2004.

D. Ardagna, C. Francalanci, M. Trubian. A Multi-Model Algorithm for the Cost-Oriented Design of the
Information Technology Infrastructure. Paper, Milan: Politecnico di Milano & Università degli studi di
Milano.

Mostafa A. Sharaf Politecnico di Milano

104 Bibliography | Master Thesis

D. Ardagna, C. Francalanci. A cost-oriented methodology for the design of web based IT architectures.
Paper, Milan: Politecnico di Milano, permited by SAC Madrid, Spain, 2002.

D. Ardagna, E. Conforti, C. Francalanci, M. Gatti, S. Lucchini, S. Mor- sello, M. Trubian. Method, system
and computer program for configuring server farms at minimum cost. Politecnico di Milano - IBM
(European Patent) Patent Patent pending EP06123004.

Dr. Mauro, Gatti. IT Optimization. 2010. http://www.itdec.eu/ (accessed June 2010).

Erich Gamma, Richard Helm, Ralph Johnson, John M. Vlissides. Design Patterns, Elements of Reusable
Object-Oriented Software.

Friedman, Mark. "The reality of Virtualization for Windows Server." paper.

Gatti, Dr. Mauro. "Planning IT Infrastructure Change in Server VirtualizationProjects with the WASFO
Tool." Conference Estimating Exchange. IBM Academy, 2008.

Gil Neigher, Amy Santoni, Felix Leung, Dion Rodgers, Rich Uhlig. "Intel Virtualization Technology:
Hardware Support for E_cient Virtualization." Intel Technology Journal. August 10, 2006.
http://download.intel.com/technology/itj/2006/v10i3/v10-i3-art01.pdf.

Horton's, Ivor. Beginning Visual C++ 2008. Wiley Publishing, Inc., 2008.

IBM Italy, Mauro Gatti, IBM System x™ Architect (Europe) and Salvatore Morsello, IBM System x™
Specialist. Presentation, Education, "Workload Analysis for Server Farm Optimization (WASFO) Version
0.9.1.0". Milan.

J. S. Robin, C. E. Irvine. Anlaysis of the Intel Pentium's Ability to Support a Secure Virtual Machine
Monitor. Paper, U.S. Air Force & Naval Postgraduate School.

M. Salsburg, P. Karnazes, B. Maimone. It May Be Virtual - But the Overhead is Not. March 2008.
http://www.cmg.org/measureit/issues/mit39/m_39_1.html (accessed March 2009).

Marco Antonello Tromboni, Luca Terribile. Master Thesis, "Una metodologia e uno strumento software
per la progettazione ottimale di una server farm virtualizzata". Milan: Politecnico di Milano & IBM Italy,
2008.

Mauro Gatti-IBM System x™ Architect (Europe), Salvatore Morsello-IBM System x™ Specialist (Italy). IBM
Italy, Exercises presentation, ”Workload Analysis for Server Farm Optimization (WASFO) Version 0.9.1.0".
Milan.

MSDN, Microsoft. Microsoft.NET Resources. http://msdn.microsoft.com/en-us/default (accessed May
2010).

Open Source Project Community, CodePlex. http://dotnetzip.codeplex.com/. http://www.codeplex.com/
(accessed June 2010).

Mostafa A. Sharaf Politecnico di Milano

105 Bibliography | Master Thesis

Tchango, Arsene FANSI. Master Thesis, Servers Consolidation Problem Models and Algorithms
Application to the IBM WASFO Tool. Milan: IBM & Politecnico di Milano, 2010.

Wikipedia. Design Patterns. http://en.wikipedia.org/wiki/Design_Patterns/ (accessed April 2010).

—. MTOM. http://en.wikipedia.org/wiki/Message-oriented_middleware (accessed May 2010).

—. Software Deployment. http://en.wikipedia.org/wiki/Software_deployment (accessed April 2010).

—. Software Design. http://en.wikipedia.org/wiki/Software_design/ (accessed May 2010).

—. Software Development. http://en.wikipedia.org/wiki/Software_development_process (accessed April
2010).

—. Software Requirements. http://en.wikipedia.org/wiki/Software_requirements_specification
(accessed April 2010).

—. Software Testing. http://en.wikipedia.org/wiki/Software_testing (accessed April 2010).

—. Systems Architecture. http://en.wikipedia.org/wiki/Systems_architecture (accessed April 2010).

—. Visual Studio. http://en.wikipedia.org/wiki/Visual_Studio (accessed May 2010).

—. Web Services. http://en.wikipedia.org/wiki/Webservice (accessed April 2010).

WMWARE. VMware Resources. http://www.vmware.com/resources/techresources/ (accessed April
2010).

