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Abstract

The reproduction of what the nature offers us has been for long time
one of the most exciting challenges to scientists and engineers. The thrust
to copy the animals and their behavior is justified by the fact that biological
systems tend to have a better efficiency than those found in their artificial
counterparts. This concept can also be applied in space exploration, re-
placing with legged robots inspired by the animals, the classic rovers. The
latters, in fact, show mobility difficulties, particularly on rough terrain.
Because of this the choise to design a controller based on observed nat-
ural behavior. The main source of inspiration is the stick insect, because
of its high level of mobility and of the ease with which it can be studied.
This approach led to the creation of a decentralized control system that
has proven better performance and flexibility than those of classical con-
trol algorithms. A physical platform to test the designed controller has
been finally built.

Key words: neural networks, hexapod robot, walking, advanced control,
gait, biomimicry.

Sommario

La riproduzione di ciò che la natura ci offre è stato per molto tempo una
delle più avvincenti sfide lanciate da scienziati e ingegneri. La spinta a
copiare gli animali e i loro comportamenti è giustificata dal fatto che i sis-
temi biologici tendono ad avere un’efficienza maggiore di quella riscontra-
bile nelle loro controparti artificiali. Questo concetto può essere applicato
anche nell’ambito dell’esplorazione spaziale, sostituendo con robot mu-
niti di zampe ispirati al mondo animale i classici robot a ruote. Questi
ultimi, infatti, presentano difficoltà di mobilità, particolarmente su terreni
sconnessi. Per questo si è scelto di progettare un controllore basato sul
comportamento osservato in natura. La principale fonte di ispirazione è
l’insetto stecco, vista la sua ottima mobilità e la facilità con cui può essere
studiato. Tale approccio ha portato alla creazione di un sistema di con-
trollo decentralizzato che ha dimostrato prestazioni e flessibilità superiori
a quelle dei classici algoritmi di comando. Infine è stata costruita una pi-
attaforma fisica per testare il controllore progettato.

Parole chiave: reti neurali, robot esapode, camminata, controllo avanzato,
gait, biomimesi.





Chapter 1

Introduction
This thesis aims to improve the understanding of walking robots for space
exploration both creating a control system and realizing an hardware plat-
form to test theoretical results experimentally as part of the development
of the Neural Ento-Mechanic System (NEMeSys) project.

Interest on walking robots depends on current trends in space explo-
ration: no human missions on celestial bodies has been planned for the
immediate future so this essential part of scientific research relies on semi-
autonomous probes only.

1.1 Walking systems

Since the start of the space race only few semi-autonomous rovers have
been actually employed and all of them mounted wheels to propel them-
selves on the ground. This choice can be easily justified by examining
their advantages mainly as for legs. A wheeled system is almost always
simpler, cheaper and more reliable than a legged one, and it also shows
continuous stability, that can be achieved without any control strategy.

The problem is to understand when legs become preferable to wheels.
There are two main reasons supporting the first option: legs don’t require
a continuous area of solid ground for moving and navigation is not con-
strained.

Investigating the first reason it’s possible to say that ground always
offers a non-continuous support and the evaluation of motion depends
on the relationship between gap distance and wheel size. A wheel is able
to cross horizontal discontinuities as larger as its radius, but it can climb
only much smaller vertical ones. The other main problem is that a large
gap/radius relation drives to a very irregular and energetically inefficient
body motion. Furthermore wheel size can’t be changed during the motion
and this reduces vehicle flexibility. For a leg instead, overcoming either
horizontal or vertical gap it’s conceptually the same thing and the quality
of motion isn’t so strictly related to discontinuities dimensions. A leg has
also greater flexibility because each step can be adapted to the current gap
size thus optimizing energetic efficiency.

The second reason involves the total controlled Degree of Freedom
(DoF)s of each system. A wheeled vehicle moving on ground is a non-
holonomic system because it controls fewer variables than those defining

1



Chapter 1

its position. The problem descends from the single wheel that is controlled
only by two variables, angular velocity and wheel direction. So a wheeled
vehicle is able to explore the whole space, but only with a high number
of trajectory corrections and an advanced navigation planning. A typical
example of such a problem is a car parking maneuver. In opposition, a
jointed leg is able to reach every allowed position directly, without any
kind of trajectory adjustment. This drives to a simpler and more flexible
motion planning.

All the considerations used on wheels can be extended to other kinds
of mechanisms to transmit motion on ground, particularly to all the non-
holonomic systems such as whegs or oscillators, because their behaviors
can be easily reduced to the wheels’ ones.

After explaining the advantages in legs usage the attention can be fo-
cused on how this kind of systems works. From this point of view the
most important issues are stability, complexity, and control structure.

A legged system is not stable per se, like a wheeled one, because its
stability depends fundamentally on how many legs touch simultaneously
the ground. If during the walk, three or more legs are always in contact,
the motion is a mere juxtaposition of equilibrium state and the system is
called statically stable. This means the stability is not time dependant and
a global stability controller is not required. When only two legs or fewer
are in contact at the same time the system requires continuous adjustments
to posture and inertia to maintain its stability since it becomes dynamically
stable. It’s obvious that the former ones are safer and more robust than the
latter ones but they require at least four legs and a coordination between
all the legs in contact with the ground. On the other hand, dynamically
stable systems are more suitable for fast locomotion.

The single jointed leg, as said above, is an holonomic system because
the number of controlled variables is the same of the total DoFs in its task
space. Extending the problem to a complete robot and considering only
static-stable cases, the systems become redundant, because the task is the
body motion control producing a 6-dimensional task space, but the control
variables, i.e. the joints angles, are 9 or more. This property is a great ad-
vantage relating to nonholonomic systems for the previously shown rea-
sons, but it needs also a much more complex controller that is the main
disadvantage of legged systems.

The structure of any legged locomotion controllers can be analyzed at
three different levels: body trajectory, inter-leg coordination and single
leg motion. The first typically depends on the direction and the speed re-
quired for the vehicle and it’s normally a higher-level command. Once
fixed where the body should be, it’s possible to calculate the legs’ move-
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ment and hence joint positioning. However, each leg must take into ac-
count the motion of the other one, otherwise the robot could fall or walk
inefficiently. To avoid this a coordination among the legs is required. The
main advantage of such a structure is the possibility to design each level
independently because they are only weakly coupled. This allows the use
of a simpler, decentralized control system, since it requires a less perform-
ing CPU than a global controller.

From the spatial point of view a global evaluation of the legged ve-
hicles can be done. The exploration of a space environment requires a
very robust behavior, so a statically stable robot with an high number of
legs is preferable. The complexity of an high DoFs system is balanced by
its adaptability to an unknown environment and its flexibility to achieve
lots of different tasks. It also makes it more fault tolerant, since the robot
can lose a leg without losing its capability for walking. The possibilities
offered by using a decentralized control matches the requirements of the
low-performances space-certified CPUs.

At the start of the NEMeSys project a trade-off among some multi-
legged robots was done, driving to choose the six-legged one. The main
reason supporting this choice is the double symmetry of such a system:
they are both reflectional and translational symmetric with respect to the
walking direction. This simplifies the problem allowing to design only
one leg and obtaining the others by symmetry. Another reason is the high
number of existing works on these systems also from non-engineering
fields such as entomology or neurobiology.

1.2 Biomimicry

In engineering, as in other scientific fields, it’s usual to evaluate existing
natural models and emulate them on the purpose of obtaining the same
results. This process is called biomimicry from the ancient Greek βίoς,
meaning life, and µίµησις, meaning imitation.

Nature offers lots of perfectly walking systems and, at this level of de-
velopment of our science, they work all better than their artificial counter-
part. This means that some design ideas can be helpful in the pursuit for
building truly autonomous robots.

Obviously the best walking hexapod are insects, the most studied of
them are stick insects, particularly the specie Carausius Morosus, the ’com-
mon’, ’Indian’ or ’laboratory’ stick insect (see figure 1.1). One of the rea-
sons to choose this stick insect as a model is its researcher-friendly mor-
phology. It has a long, straight body allowing to strap it onto different
devices for researching it’s walking. The stick insect’s legs aren’t hidden
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Figure 1.1: A stick insect Carausius Morosus.

by other body parts as in a lot of other insects, allowing to observe them
easily. Finally breeding has proved to be fairly simple.

Once that the target of the study is chosen the main question becomes
which is the way of learning from insects. The answer depends on the
approach to insect walking problem. There are two ways of modeling
hexapod locomotion on the basis of biological findings. The former one is
to assemble the known components of the nervous and musculoskeletal
systems, just to build an incrementally realistic model of a moving insect.
The latter one, takes the complementary approach of assembling logical
components to reproduce a model of the system properties of the behaving
animal.

This work relies extensively on the second approach for the control
strategy concept: in previous works (see Cruse et al. [1]) kinematics and
dynamics motion parameters were measured, then the results were inter-
preted by the formulation of rules that were assumed to describe the prop-
erties of the underlying control system. The control system of NEMeSys
has been developed starting from these rules and adapting them to fulfill
the other project requirements.

Another important biomimetic feature involves the type of controller
used to implement behavioral rules. Insects show the ability to perform
an accurate walking control using a very simple neural network that has
a little computational capability compared to a computer. This means it’s
possible to decrease the computational cost of the problem adopting in-
stead of classic control systems, a biological-like ANN. Neural networks
have a decentralized structure, perfect to represent the problem of walk-
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ing control that doesn’t need a global supervision and can be divided in
fairly independent subtasks. Therefore they can show a nonlinear behav-
ior, very useful to simulate the leg motion that is an intrinsically nonlinear
physical phenomenon.

1.3 Goals

After an overview of the known walking systems and their biomimetical
features, it’s possible to identify the higher-level goals of this work. The
former of them is the realization of a ANN-based walking controller able
to generate the angular reference signal for each of the joints that manage
the walk. This goal can be achieved by fulfilling some tasks:

- the fundamental signal is able to produce a stereotypic leg motion.
This means that the system is able to walk also with no external input
improving fault tolerance;

- the reference signal can be changed depending on sensory feedback.
This requirement is necessary to guarantee the motion adaptability
to unpredictable external conditions such as: rough terrain, chang-
ing slope and obstacles;

- the reference signal can be changed depending on the high-level
path control. This allows the possibility to vary walking speed, walk-
ing direction or body attitude;

The other main goal is to design and build a walking robot on which to
test the control system. Starting from the results of the former NEMeSys
works it’s possible to identify the tasks as follows:

- the mechanical project need to be redone both to reduce the global
mass and to improve the mechanical efficiency of the robot;

- the electronics is already complete, but needs some improvements.
The main of them is the introduction of a force sensors to evalu-
ate the ground contact, in the place of the switch sensors previously
mounted. Other changes will be done in order to simplify the hard-
ware and to reduce the global weight;

- the software interface exists but has to be changed in order to be
adapted to the new control architecture.
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1.4 State of the art

To better understand how certain choices have been taken, as described in
the next chapters, it can be useful to look at some important examples of
legged locomotion in the robotics field. Because this work aims either to
build a robot or to project its control system, the overview shown below
involves both of these features: each example is an existing walking robot
having a particular kind of control structure.

1.4.1 Mobot Lab robots
The Mobot Lab of the MIT developed some interesting space-oriented
robots in the first half of the ’90s (see figure 1.2). The first of them was
Genghis an hexapod with only 2 DoFSs for each leg, but very compact
with a length of 35 cm and a weight of 1 kg. The sensors allow to measure
high-level path parameters like body orientation or obstacles contact. The
controller is mounted on-board.

Figure 1.2: Mobot Lab robots. From the left: Genghis, Attila and Hannibal.

The most interesting feature of this robot is its control system: it relies
on a network of elementary agents called Finite State Machines or FSM
[2]. Each of them managed only a very simple task, depending on few
inputs from sensors. Although this isn’t an actual neural network it can
be considered like a precursor of NEMeSys, since the main ideas behind
the projects are the same:

- modularity: the controller is decentralized on various blocks, each
of them working only on a limited task, almost independently from
the others;

- incremental growth: the project starts fulfilling only the simplest
tasks, adding more complex behaviors step-by-step.

After Genghis a couple of more complex robots were developed: Attila
and Hannibal [3]. They had 3-DoFs legs and were smaller than their pre-
decessor. The main advantage of these systems was the capability to main-
tain a stable configuration also with high slopes, thanks to an additional
DoF in the body.
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Figure 1.3: Randall Beer’s robots. From the left: Robot I and Robot II.

1.4.2 Randall Beer’s robots
The guidelines of the earlier development of the NEMeSys project had
been taken from the work of professor Randall D. Beer [4]. He and his
team worked extensively on the theory of neural networks-based con-
trollers and also realized some interesting walking platform.

Their first work is Robot I a hexapod with 2-DoFs legs. The control
system is a decentralized neural network with a single net controlling
each leg. The inter-leg coordination depends on the mutual influences
among the controllers of each single leg, with the aid of a global super-
visor. Another interesting feature of Robot I is the design approach: the
control parameters has been selected via a large number of simulation,
using biological-like evolutionary algorithms.

Robot II, the second model, is quite different: it relies on six 3-DoFs legs
and has a completely different controller based on reflexes. It means that
walking behaviors emerges only from the interaction between the robot
and the environment and is not generated autonomously by the platform.

Robot I and II aren’t designed for space exploration but are among the
best examples of working legged vehicles that are controlled by ANNs.

1.4.3 SCORPION
The SCORPION is an eight-legged walking robot sponsored by DARPA
and NASA and realized by Universität Bremen [5](see figure 1.4). The
vehicle is quite compact: mounting sensors, a communication system and
batteries, it reaches a global weight of 11.5 kg and a length of 65 cm. Each
leg has 3 DoFs actuated with DC motors and features a spring element too.

The control of this robot is based on the models of two biological con-
trol primitives: central pattern generators and reflexes. The model is con-
trolled by a higher central control level by means of Rhythmic Motion Pat-
terns (RMPs) that control path and Posture Control Primitives (PCPs) that
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Figure 1.4: The SCORPION robot.

control body attitude. With this approach there exists the possibility of
omni-directional walking and smooth and fast crossing between different
motion patterns. Moreover the posture and the speed of the robot can be
changed while walking.

The robot was successfully tested in rough, sandy and rocky ground.
This is a space oriented project: the vehicle is completely autonomous and
all the electronics is hidden to protect it by hostile environment. Its only
problem is the very high power consumption.

1.4.4 Walknet
Walknet is a controller developed by the Department of Biological Cyber-
netics and Theoretical Biology of the University of Bielefeld led by profes-
sor Holk Cruse [6]. He tries to resume the walking behavior of the stick
insect Carausius Morosus by means of a limited number of considerations
derived from his experiments on living animals:

- the motion of a single leg can be divided into two different phases,
the power stroke and the return stroke, that can be controlled inde-
pendently;

- transition between phases is regulated by two parameters only: the
ground contact and the posterior extreme position;

- coordination among legs can be summed up into six rules, by which
each leg influences the others.

On the basis of such an hypothesis, it’s possible to realize a decentralized
ANN that controls a 6-legged walk in a very simple, but flexible way.
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Figure 1.5: Walknet-controlled robots. From the left to the right: TUM, Tarry I
and Tarry II

Walknet has been tested in its full version only on two robots, TUM,
realized by Dr. Friedrich Pfeiffer at Technische Universität München [7],
and the Tarry family, built by the Department of Engineering Mechanics
at the University of Duisberg [8][9] (see figure 1.5). On the other hand, the
coordination rules have been used in lots of walking platforms, such as
Robot I and II, that prove their effectiveness.

Because Walknet has been a guideline for the present work, lots of
these features will be discussed later.

1.5 Thesis contributions

The main contributions of this thesis can be divided in both theoretical
and practical features. The former ones involve the realization of a decen-
tralized control system able to produce the legs’ trajectories (chapters from
2 to 6). The latter ones the design of a legged platform on which test the
controller (chapter 7).

This thesis aims to produce a hexapod walking control architecture that
incorporates elements of stick insect locomotion that would allow it to out-
perform current implementations. To obtain such a results ANNs can be a
powerful instrument. For this reason a good understand of how this kind
of systems works and the knowledge of their design process are neces-
sary. In this work a criterion that allows to chose the most effective ANN
to fulfill a given problem has been identified (chapter 2).

The structure of the controller has to be defined, starting from biologi-
cal findings, by recognizing all the behaviors to reproduce and by assign-
ing to each of them the correspondent control module. For each module
the required inputs and outputs and the interactions with other compo-
nents of the controller have to be identified too (chapter 3).

The decentralized approach allows to study the control of a single leg
independently from the rest of the robot. This problem has been solved
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by using a innovative solutions, e.g. dynamic neural networks, positive
feedback or nonlinear approximation. These ones has been combined with
classic control systems, in order to obtain the best results both in terms of
performances and reliability (chapter 4)

The single legs motion must be coordinated to obtain the desired global
motion. This works want to find a controller for the coordination that
ensure the stability of the robot during the entire motion with a structure
as simple as possible. It must also guarantee a great flexibility by allowing
to change the motion over a wide range of possibilities or to introduce new
behaviors, without any changes in the coordination system (chapter 5).

The complete control system needs to be tested. At first it can be eval-
uated on a multibody model of a legged system in a dynamic simulation
environment in order to identify possible problems or lacks into the pre-
vious design process (chapter 6).

The last major purpose of this thesis is the design of a legged robot. It
has to be a functional 18-DOF hexapod capable of straight-line and curve
walking able to respond to external forces through measurements taken
from foot-mounted force sensors and joint-mounted angular displacement
sensors. Its weight has to be kept down and the dimensions must be lim-
ited. Moreover it should has autonomous power and the capacity for au-
tonomous control (chapter 7).
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Neural networks
Biomimetic findings shown in section 1.2 imply that the problem of walk-
ing control can be solved in a better way by using an artificial version of
the insects’ neural network instead of a classic controller. To better under-
stand which is the most adapt network to fulfil a given requirement, it’s
necessary to know which kind of networks exist, how each type works
and how to design it. In this chapter, after an overview of such systems
(sections 2.1 to 2.3), the criteria to choice the correct type of neural net-
work will be evaluated (section 2.4) and the calculation methods for its
parameters will be explained (sections 2.6).

2.1 Overview

An ANN is a mathematical model that tries to simulate the structure and
functional aspects of biological neural networks. It consists of group of
units, called artificial neurons, mutually joined by weighted connections,
called synapses. Information can be processed using a connectionist ap-
proach to computation: this means that, in opposition to a typical com-
puter, tasks aren’t accomplished solving a deterministic sequence of oper-
ations, but with a distributed, parallel and local processing involving all
the units.

These characteristics result in some interesting advantages. Such a
structure allows to manage large amounts of data with great accuracy,
thus approximating complex mappings. They’re fairly independent to ev-
ery assumption on data’s distribution and interaction among components.
Fundamentally they are sophisticated statistical systems with a good ro-
bustness to noisy, incomplete or totally missing inputs; if some units work
incorrectly, the network could suffer a degradation of the level of its per-
formances, but almost never stops its work. They are able to generalize
by giving an output also when unknown inputs appear. It’s possible to
implement them in a parallel hardware optimizing their computational
efficiency.

Opposite to advantages, one must note that the model produced by
ANNs, although very efficient, can’t be explained with an analytical ap-
proach: results must be taken as they come and neural networks have to be
treated like black boxes. It’s not possible to understand how certain inputs
cause certain outputs so the only way to obtain an efficient ANN is to start
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from a set of well-chosen statistical data. If the problem to solve is com-
plex, the number of data needed to a correct ANN design is very high and
the calculation of the network parameters become very computer inten-
sive. Theorems or models that permit to define the best network structure
are not available yet, so the final result is obtained with heuristic methods
that heavily rely on the experience of their creator.

In this work all the networks aren’t realized by a dedicated hardware,
but with a software working on a classic computer. This strategy reduces
the computational efficiency of the neural approach, but allows to use ex-
isting components and avoids to waste resources on problems that are to
far from walking control.

2.2 Structure

An ANN consists of a pool of simple processing units which communicate
by sending signals to each other over a large number of weighted connec-
tions. It is called network because the output of each unit is defined as
a composition of functions depending on other units. All of the existing
ANNs show the same structure, composed by:

- a set of processing units called neurons;

- connections between the units. Generally each connection is defined
by a weight wi j which determines the effect which the signal of unit
i has on unit j. For positive wi j the contribution is considered an
excitation and for negative wi j an inhibition.

Every neuron is characterized by four different features:

- a state of activation yi, which is equivalent to the output of the unit;

- a propagation rule, which determines the effective input S i from its
external inputs;

- an activation function Φ, which determines the new level of activa-
tion based on the effective input S i and the current activation yi;

- an activation offset or bias θi.

The whole process of outputs generation by the elaboration of inputs is
called combination.
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2.3 Classification

On the basis of these fundamental assumptions a huge number of different
type of ANNs has been proposed in the past, so that a brief classification
is necessary to elaborate the discriminating criteria that enable to find the
best network that fulfills the requirements of this work.

2.3.1 Propagation rule
The first criterion depends on the propagation rules and the way to calcu-
late the effective input starting from external inputs and weights: it can be
a linear combination (Linear nodes), a polynomial combination (Sigma-pi
nodes) or a nonlinear boolean function (Cubic nodes).

2.3.2 Activation function
The second classification can be traced on the basis of different types of
activation function. Basically they can be divided in two great categories:
the step-like functions and the radial basis functions. The former ones
have been the first to be used and are composed by generalized forms of
the step-function. The most important functions of this class are:

- step function: it’s very easy to be implemented, but it’s not invertible
and it’s not up to approximate smooth functions;

- linear ramp: it’s simple, but has a linear zone that can imitate con-
tinuous functions. It’s not invertible;

- sigmoid: it’s invertible and continuously differentiable. It can both
approximate functions and take fuzzy decisions, but it’s more ex-
pensive in terms of computational cost and its outputs are limited to
positive values;

- hyperbolic tangent: has the same advantages of the sigmoid and can
also produce both positive and negative outputs. It’s difficult to be
implemented.

All of these function are very important because show a behavior very
close to the biological neurons’ one. In subsection 2.3.4 is shown a very
useful applications of such a type of functions.

The radial basis functions are inspired to the biological neurons of the
visual cortex: they produce a significant response only close to a specific
point in the space of inputs called center and the amplitude can be modu-
lated by a scale factor. A typical example of these functions are the gaus-
sian, the multiquadric, the polyharmonic spline and the thin plate spline.
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Figure 2.1: Two typical topologies for an ANN.

They are mainly used to approximate given functions particularly in time
series prediction and control of nonlinear systems with a sufficiently sim-
ple chaotic behavior and also in 3D reconstruction in computer graphics.

A last activation function has to be considered, the linear activation
function. In this case the neural state is the same as the effective input,
which allows to approximate non limited behaviors too.

2.3.3 Topology
Another classification criterion focuses on the pattern of connections be-
tween the units and the propagation of data. As for this pattern of con-
nections, the main distinction that can be made is between feed-forward
networks and recurrent networks.

Feed-forward neural networks were the first and arguably the simplest
ANNs devised. In these networks, the information moves strictly in one
direction only, that is forward, from the input nodes, to the output nodes.
The data processing can extend over multiple layers of units, but no cycles
or loops are present. An example of a three layers feed-forward neural
network is shown on the left side of figure 2.1.

A Recurrent Neural Network (RNN) is a kind of ANN in which con-
nections between units form a directed cycle. This creates an internal
state of the network which allows it to exhibit dynamic temporal behav-
ior. RNNs must be approached in a way different from feed-forward net-
works, typically using dynamical systems theory to model and analyze
them. An example of a two layers RNN is shown on the right side of
figure 2.1.

Classical examples of feed-forward networks are the Perceptron and
the Adaline. Examples of recurrent networks are Elman networks, Hop-
field networks and nonlinear autoregressive networks and the Continous
Time Recurrent Neural Network (CTRNN).
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2.3.4 Static and dynamic networks
In the present work the most important distinction among ANNs is based
on their capability to model time-dependant phenomena. From this point
of view static ANNs and dynamic ANNs can be identified.

A static network is an ANN that produces a specific output depend-
ing only on the inputs given in the current instant. Systems showing this
behavior are called reactive agents, because they produce a direct, time-
independent reaction.

For this reason to obtain the desired network is sufficient to know a
set of inputs and the corresponding desired set of outputs. Starting from
these sample data, by means of a training process, is possible to calculate
the correct set of parameters defining the network univocally. The adapt-
ability of a such a model allows, if the sample has been correctly chosen,
to produce acceptable outputs also when inputs are different from ones
thought of in the initial design.

Almost all the static networks are composed by neurons that, with little
variations, are versions of the first neural unit proposed by McCulloch
and Pitts in 1943 [10]: the perceptron. A typical perceptron-like neuron
uses a type of composition called nonlinear weighted sum, that can be
mathematically summarized as:

yi = Φ (S i) (2.1)

where S i, called the net sum, is defined as follows:

S i =

N∑
j=1

wi jy j + θi (2.2)

The scheme that represents such a structure is illustrated in figure 2.2. This
formulation shows that in a static network, after that the structure has
been chosen selecting the number of neuron and the combination rule, the
only sizing parameters are the synaptic weights and the activation offsets.

A dynamic network not only deals with nonlinear multivariate reactive
behavior, but can also include time-dependent features such as various
transient phenomena and delay effects. Its neurons have an internal state
depending not only on the inputs received at a given time but also on
the states evaluated in the previous instants. For this reason they are also
called pro-reactive agents. The state of the single neuron can be calculated
by a differential equation of the following form generally resumed in:

ẏi = f (τi,wi j, y j, θi) j = 1 : N (2.3)
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Figure 2.2: An example of neural unit.

where f is the generic nonlinear combination between the weighted inputs,
and the additional parameter τi is the time constant of the single neuron.

Typical examples of these networks are: the Dynamic Neural Network
(DNN), the Continuous Time Recurrent Neural Network CTRNN and the
Time-Delayed Recurrent Neural Network (TDRNN). All of these systems
can be selected with an evolutionary approach, that is particularly able to
reproduce a biological behavior (see [11] for more detail).

2.4 Choice criteria

In the present work ANNs have been used for two different purposes:

- approximate a function;

- reproduce time-dependent behavior.

In the former case the function could be a known analytical formula-
tion, such as an angle versus position conversion, or a unknown relation-
ship between input and output where the only given data are statistical
samples. A useful result to understand what kind of network can best ful-
fill these tasks is the universal approximation theorem for feed-forward
neural networks formulated by Hornik et al. [12]. They found that:

- a two layer ANN with sigmoid activation functions on all its units
can represent every boolean finite function;

- every real function Rn ⇒ R limitated and continue can be approxi-
mated with an arbitrarily little error with a two layers network with
sigmoids on the hidden layer and linear functions on the outputs
one.
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- every function can be approximated with a three layers network hav-
ing the output layer made of linear units.

It means that a quite simple ANN can be used instead of a complex non-
linear analytical function reaching the same results. It’s important to un-
derline that this drives to a reduction of the computational cost of the op-
eration, but increases also the capability to manage noisy or incomplete
data.

In this work all the functions to approximate are of the second class, so
the networks to choose are two-layers feed-forward ANNs with sigmoids
on the first layer and linear functions on the second one. The simplest way
to calculate the parameters of this kind of networks is to use an existing
tool like the Neural Network Fitting Tool comprised in MATLAB that uses
hyperbolic tangent sigmoid activation function.

For the latter case, it’s clear that the only way to simulate a dynamic
system pass through a dynamic network, but lots of ANNs, although
showing dynamics behavior, cannot model an arbitrarly complex time-
dependent system. To understand which type of network is better to use,
another approximation theorem involving CTRNNs exists (see Funahashi
and Nakamura [13]). It states that for any finite interval of time, they can
approximate the trajectories of any smooth dynamical system on a com-
pact subset ofRn arbitrarily well. This means that, despite their simplicity,
they are universal dynamics approximators. For this reason they has been
adopted in this work to reproduce dynamic behavior. In the section below
a deeper analisys of this type of ANNs will be developed.

2.5 An overview on CTRNNs

A CTRNN can be identified by a set of differential equations of the follow-
ing general form:

ẏi =
1
τi

−yi +

N∑
i=1

wi jΦ(y j + θ j) +

Ni∑
k=1

WikIk

 (2.4)

where yi is the state of each neuron, τi is its time constant (τi>0), w ji is the
strength of the connection from the j-th to the i-th neuron, θ j is a bias term,
Φ is the activation function, Ik represents a constant external input and Wik

is the weigth of the k-th input in the i-th neuron. The activation function
usually adopted is the sigmoid one, but for the particular applications of
this project it is better to use the hyperbolic tangent as was shown in pre-
vious works [14][15].
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With N neurons and Ni inputs, the network can be completely identi-
fied by giving a total number of parameters equal to:

Ntot = N(N + Ni + 2) (2.5)

It has already been said that a CTRNN can approximate every dynamic
model, but the problem is how many units have to be used to obtain a
sufficiently accurate approximation. A high number of neurons produces
optimal results but requires a very long and computationally expensive
training process to obtain the correct set of parameters, so it can be useful
to investigate small networks and their behavior.

These networks show some typical aspects of nonlinear systems:

- they do not follow the principle of superposition (linearity and ho-
mogeneity);

- they may have multiple isolated equilibrium points;

- they may exhibit particular behaviors such as limit-cycle or bifurca-
tion.

A limit cycle is a closed trajectory in the phase space, producing peri-
odic behaviour in the time domain and it has the property that each tra-
jectory sufficiently close to the limit cycle tends to it asimptotically. A
bifurcation occurs when a small smooth change made in the parameter
values causes a sudden change in its behaviour, thus changing equilibria
from stable to unstable ones but also turning an equilibrium point into a
limit cycle.

The first property can be challenging because it makes it impossible to
analyze the system within the classic LTI theory. So to evaluate a CTRNN
it is necessary to use another instrument, the phase plane method, that
allows to investigate the equilibrium points, the bifurcations and the limit
cycles.

The analysis of the CTRNN state-space produces a very interesting re-
sult: the simplest CTRNN with only two neurons shows up to nine equi-
librium points, stable and unstable, and a limit cycle depending on the
choice of the parameters (see Beer [16]). This means that also a network
with a few units can model lots of different and quite complex behaviours
including periodic trajectories in the time domain and attractors in the
state domain, both fixed-points and limit cycles. Moreover: the chararac-
teristics of the attractors can be varied acting on external input I. An exam-
ple of such a behaviors are shown in figure 2.3. Since the goal of this work
is to design a controller, at this point the problem is not only to model a
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2.3.1: Attraction point.

2.3.2: Limit cycle.

Figure 2.3: Limit cycle and attraction point in a two-neurons CTRNN.

dynamic system, but it’s also necessary to achieve all the characteristics of
robusteness required by the control theory (see Friedland [17]). From this
point of view CTRNNs are powerful instruments because:

- they react very well to disturbance, filtering noise on inputs, even
without any specification during training;

- they respond with an acceptable output even when presented with
inputs that they have never seen before;

- if correctly trained, they produce good results even when parameters
change in an important measure.

In conclusion a CTRNN can be used like a controller each time that it’s
necessary to simulate a periodic behaviour or to reach a given target point.

The simplest way to implement a neural controller consists in using
measured or observed variables as states and, as control signal, the states
derivatives. If applicable, this method allows to avoid every integration,
thus producing a very efficient and robust control system also from a nu-
merical point of view.
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2.6 Network training

The identification of the set of parameters that defines a ANN is called
learinig or training process. Given a specific task to solve, learning means
using a set of observations to find the one which solves the task in some
optimal sense. The optimum is obtained defining a cost (or fitness) func-
tion that evaluates how far away a particular solution is from an optimal
solution. The cost function is dependent on the task of approximate a
model and on a priori assumptions related to the implicit properties of the
model, its parameters and the observed variables.

The learning can be classified from two different points of view: the
learning paradigm and the learning algorithm. The learning paradigm
is related to the model of the environment where the ANN works. The
learning algorithm consists in a set of learning rules each of them used to
modify the value of the network parameters. The criterion to follow to
modify the parameters is the minimization of the cost function, inserted
in a iterative process.

There are three major learning paradigms, each corresponding to a par-
ticular abstract learning task. In supervised learning, there is a given set of
sample couples of input/output and the aim is the one of finding a func-
tion that matches those data. The cost function is related to the mismatch
between network mapping and the data. In unsupervised learning there
are some given inputs and the cost function to be minimized, that can be
any function of the inputs, and the network’s output.

Classic learning algorithms, such as Hebbian rule, Back-Propagation
and Forward-Propagation, are based on some form of gradient descent.
This is done by simply taking the derivative of the cost function with re-
spect to the network parameters and then changing those parameters in a
gradient-related direction. There is another interesting method based on
an evolutionary approach: genetic algorithms, widely adopted in previ-
ous works.

Since classic learning applied to CTRNN is very slow, a feasible alter-
native for weight optimization is aGenetic Algorithm (GA). From a mathe-
matical standpoint, genetic algorithms are fundamentally stochastic meth-
ods based on the casual generation of solutions, called individuals, each
of them identified by a set of parameters, called chromosomes. There are
many individuals that make up the population. Once fixed the network’s
strucure the method works by the an iterative process that evolves through
the following steps:

1. definition of an existance field for each parameter (maximum and
minumum permitted values);
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Figure 2.4: Flow chart of the genetic algorithm.

2. definition of algorithm parameters: total individuals number, gener-
ations number, crossover fraction, mutation percentage, percentage
of parents in every generation;

3. creation of a random population of individuals compatible with the
fixed limits in the domain;

4. simulation of the behavior of each individual in the current genera-
tion;

5. evaluation of the cost function for each individuals;

6. classification of all the individuals on the basis of their performances
and choice of the parents;

7. evaluation of the terminating conditions;

8. generation of the children through crossover and mutation;

9. creation of the new generation composed by the best parents and the
best children;
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10. go to step 4.

The flow chart has been summarized in figure 2.4. In the inizialization
phase (step 1 to 3) the preliminar definitions are performed. After that
starts the iterative process that consists in the evaluation of the present
generation and the creation of the next one (steps 4 to 10). The algorithm
stops only if one of the terminating criteria (step 7) has been satisfied. The
algorith terminates when one of the following conditions has been veri-
fied:

- a solution that satisfies minimum criteria is found;

- a fixed number of generations reached;

- the allocated budget (computation time/money) has been reached;

- the highest ranking solution’s fitness is reaching or has reached a
plateau such that further iterations no longer produce better results.

Therefore, many different neural networks must be evolved until a
stopping criterion is satisfied. This allows to evaluate all the space of the
solutions, avoiding to lock the calculation into local minimum, in order to
obtain, if possible, several different networks that satisfy the convergence
condition.

The instrument used to apply the genetic algorithm in this work is a
tool developed by the Sheffield University and incorporated in MATLAB:
the Genetic Algorith Toolbox (GAT). See [18] for more details. All the fit-
ness functions used in the present work have the form:

Ψ = Ψ0(N −
N∑

i=1

e(−ki(Ai/Āi−1)2)) (2.6)

where Ψ0 is an amplification coefficient, N is the total number of evalua-
tion parameters, Ai the value of the i-th parameters and Ā its desired value.
The coefficient k can be modulated to obtain a certain Ψ̄ when the error on
the parameter reach a given value:

lim
A→Ā

Ψ = 1 − (1 − k(Ai/Āi − 1) = k(Ai/Āi − 1)2 (2.7)

Ψ < Ψ̄ ⇒ k <
Ψ̄

(Ai/Āi − 1)2
(2.8)

For a network used to approximate functions, a simpler approach has
been adopted: as already said in section 2.4, an existing tool has been used.
The nftool function of MATLAB uses the Levenberg-Marquardt back-
propagation algorithm to train the network.
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Control strategy - The problem of walking
The aim of this chapter is to illustrate the main ideas that are the foun-
dation of the NEMeSys control system. At first the global aspects of the
walking behavior will be studied and then a particular solution of this
problem will be discussed. In the last sections of the chapter all the parts
of this solution will be explained in detail.

3.1 General features

Walk can be defined, in the most general way, similarly to a method of
terrestrial locomotion that uses limbs. The main differences with other
kinds of movement are the presence of a non-continuous contact with a
substrate and the usage of more than one multiple-DoFs appendage.

Walking is one of many behaviors where machines still lag notably be-
hind the performance of animals, so it is natural to examine walking in
animals to look for hints to improve the performance of machines. From
a cognitive standpoint, walking appears to be a fairly automatic behavior.
Nevertheless, it’s also immediate arguing that walking in a natural envi-
ronment requires considerable capabilities from the controller, involving
different features, and it’s all but a trivial behavior.

The most important global aspects of the walking problem can be sum-
marized as follows:

- redundancy. In systems concerned with walking, the number of de-
grees of freedom is normally larger than the one necessary to per-
form the task. Thus, there may be a manifold of leg postures for a
given kinematic boundary condition;

- autonomy. The redundancy requires the system to select among dif-
ferent alternatives according to some, often context-dependent, opti-
mization criteria, which means that the system usually has to adopt
some choices without external command;

- embodiment of the controller. To maintain the problem at a level
as simple as possible, the controller needs the ability to exploit the
physical properties of the body

- situatedness of the body in its environment. Each walking system
is a physical systems situated in complex and often unpredictable
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environments, which means that any movement may be modified
by the physics of the system and the environment.

The best solution to fulfill all these tasks, as described in section 1.1,
is a decentralized control structure that consists of a number of distinct
modules each one solving particular subtasks. The division into mod-
ules and the choice of the subtasks have been accomplished starting from
biomimetics findings: the followed approach consist in assembling logical
components to model the system properties of the behaving animal.

Although many animals have body appendages that can be used for
walking, only a few species have been investigated in sufficient detail.
Among them, the stick insect is the more suitable for the purposes of this
work thanks to its capability to walk on very complex and irregular sub-
strates.

3.2 The walking system

Before starting the discussion about the structure of the controller it’s use-
ful to evaluate the main characteristics of the system to be controlled. It
is a simplified model of a stick insect, with a rigid body supported by six
legs: two legs are called ipsilateral if situated on the same side, contralateral
if situated on the opposite side.

Each leg has been modeled as a manipulator with three joints and
divided into three movable sections: the coxa, closest to the body, the
trochanter-femur, or just femur as they are fused and the tibia. A fourth
part, the tarsus, provides and holds the ground contact in real stick in-
sects, but it’s not strictly necessary to perform a walking behavior and this
is why it won’t be considered in this model.

The Body-Coxa (BC) joint is best described as a socket joint, whereas
the Coxa-Trochanter (CT) joint and the Femur-Tibia (FT) joint are hinge
joints. The CT and the FT axis are parallel, hence, the femur and tibia lie
on the same plane.

Orientation and motion of the coxa segment out of the body can be de-
scribed by three orthogonal rotations, one of which is dominant. On the
left hand side of Figure 3.1 there are shown the two orientations ψ′ and ψ′′

that change the least, thus both are considered fixed. However, although
variability during the walk is small, the angle ψ′ in the stick insect is large.
In this model, instead, both these angles have been taken equal to zero,
which drives the third axis to be perpendicular to the body plane and re-
ducing the BC joint to a hinge joint like the other ones. In this way all the
DoFs can be treated almost in the same manner.
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Figure 3.1: Leg orientation and angular variables.

On the right side of Figure 3.1, the geometric parameter defining the leg
are illustrated. The leg can be described as a 3-joint manipulator. Starting
from the body it’s possible to identify: the Body-Coxa (BC) joint identify
by the angle γ, the Coxa-Trochanter (CT) joint identify by the angle β and
the Femur-Tibia (FT ) joint identify by the angle α. The BC joint can be
modeled as a socket joint where two orientation (ψ′ and ψ′′) vary only a
little during the motion and can be considered as fixed. In this work their
values have been taken equal to zero. The third orientation is the only
significant DoF of the joint, the γ angle, that determines mostly how much
near to the front or to the back the leg plane it is positioned. The β angle
specifies how high or low the knee is. Finally, the α angle determines the
lateral proximity of the tarsus to the body. Note that all the joints influence
motion in all directions, i.e. joint variables are non-linear with respect to
Cartesian coordinates. Joints and the variables used to label their angular
position are used arbitrarily to name the joint.

Rotation of leg segments is usually accomplished by groups of antag-
onistic muscles: each one of them can pull in either direction. Muscle
groups controlling the BC, CT and FT joints are known as protractor-
retractor, levator-depressor and extensor-flexor respectively. To simplify
the matter, the control problem in terms of angles evaluating the effect of
actuators will be treated later on (see sections 6.1 and 7.3.1).

3.3 Problem definition

The modular approach adopted in this work allows the simplification of
the problem of walking control in a large measure, but needs a good dis-
tinction among all the tasks.
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Biological findings about various animals (e.g. Wendler [19]) show that
the movements of individual legs are managed by fairly independent con-
trol systems. On the other hand each leg has an influence on the other ones
and it’s the combination of all these influences that allows to generate an
efficient walk. This means that the global motion problem can be solved
by accomplishing two macro-tasks:

- control the motion of each single leg;

- coordinate all the legs;

The control of the single leg it’s fundamentally the problem of gener-
ate the step cycle. During the walking, the individual legs typically move
cyclically and, in order to facilitate the analysis, the motion of a leg is often
partitioned into phases: the control of each phase and transition among
phases are called subtasks of the walking problem. Other features regard-
ing the single leg control are related to maintaining a fixed leg and to re-
acting to external disturbances. In section 3.5 all these arguments will be
discussed deeply.

The coordination among legs is essential to regulate global parameters
such as advancing speed, stability margin or body attitude and position.
The first task consists in maintaining a steady motion and it can be ob-
tained introducing local weighted influences among neighboring legs. To
fulfill more complex task like regulating body attitude, local rules aren’t
enough and a global planning is required. The whole problem will be
treated in section 3.6.

In this work a bottom-to-top approach has been adopted to create an
incrementally realistic motion generator. Starting from the design of ef-
ficient controllers for every phase of the step cycle, a selector regulating
the transition among phases has been developed producing a complete
single leg controller. At this level mutual influences among neighboring
legs have been introduced and only in the last phase of the work global
coordination parameters have been taken into account accomplishing the
global task of walking control.

3.4 Global controller architecture

The approach to the problem of walking control is not unique: it heavy
depends on external parameters such as substrate properties and global
required speed. Walking in predictable environments and fast running, to
a large degree, rely on leg mechanical properties. Conversely, slow walk-
ing in unpredictable terrain, e.g. climbing in rugged structures, has to
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Figure 3.2: CPG vs. reflex-based approach.

rely on feedback systems that monitor and react to specific properties of
the environment. From these considerations the two different methods
descend to structure a walking controller: central pattern generator and
reflexes-based systems.

A Central Pattern Generator (CPG) may be defined as a system that can
endogenously, i.e. without sensory feedback or central input, generates
periodic motor commands for rhythmic movements such as locomotion.
To be classified as a rhythmic generator, a CPG requires: two or more pro-
cesses that interact such that each process increases and decreases sequen-
tially, and that, as a result of this interaction, the system returns repeatedly
to its starting condition. Typically a CPG controls each single leg and the
coordination is obtained by a temporal synchronization of all the CPGs.
This system allows to reach very high advancing speeds and a regular mo-
tion also with quite a simple control architecture. On the other hand they
require legs with particular reactive characteristics and powerful motors
and have very low crossing and climbing capabilities. The best-known
CPG-based walking behavior can be observed in cockroaches.

On the other hand, a reflex-based controller can be viewed as a closed
loop control system with fixed input/output characteristics that produce
an output only in relation with an environment depending input. The co-
ordination is typically based on rules that mediate the reflexes of every
single leg. The reflex driven approach seemed to provide a simple way to
stabilize the walking patterns, also in very difficult conditions, by provid-
ing a set of fixed situation-reaction rules to external disturbances and as a
way to regulate leg coordination among multiple independent legs. The
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problem of this system is the complexity required to be sufficiently flexi-
ble: to be able to face lots of situation, a high number of reflex has to be
taken into account. The most relevant example of such a behavior can be
found in stick insects.

In insects only one of this structure isn’t able to explain all the observed
behavior as underlined, among the other, by Porcino [20]. For a space-
oriented project, like this one, it’s clear that, at this level of development,
a very fast CPG-based robot has only little utility. In an unknown envi-
ronment, like planetary surfaces, the first priority for a robot is to ensure a
steady motion in any moment. A walking robot, besides, must be able to
reach locations out of the range of wheeled ones, balancing its complex-
ity with its higher capabilities. Furthermore a slow locomotion allows to
reduce energy consumption and to avoid shocks to the scientific payload.
All these considerations favored the choice on a reflex-based controller.

3.5 The control of a single leg

The problem of controlling a single leg can be simplified partitioning the
step cycle into the following two phases:

- during the stance phase, the leg maintains ground contact and is re-
tracted to propel the body forward, while supporting the weight of
the robot. The terms power stroke and support (or ground) phase are
also used in the literature to denominate this phase;

- during the swing phase, the leg is lifted off the ground and moved
in the direction of walking, to touchdown at the location where the
next stance should begin. The terms return stroke or transfer (or aerial)
phase are also used in the literature to denominate this phase.

This division is not the only one we may use, but it permits to reduce the
complexity of the problem, just producing the same results of the other
ones.

The phases are mutually exclusive behaviors: a leg cannot be in swing
and in stance at the same time. Therefore, the control structure must in-
clude a mechanism for deciding the transition between swing and stance,
creating the complete step cycle. This criterion can be identified on the
basis of spatial variable:

- at the Anterior Extreme Position (AEP) the transition from swing to
stance occurs;

- at the Posterior Extreme Position (PEP) the transition from stance to
swing occurs.
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Figure 3.3: Swing and stance phases.

This means that to produce a stereotypical step cycle, the leg controller
can be composed by only three modules each of them fulfilling a subtask:

- a swing module that controls the leg during the transfer phase;

- a stance module that controls the leg during the support phase:

- a selector that works at an higher level and switches between using
the outputs of either the stance or the swing module.

To guarantee a robust and efficient motion on irregular surfaces a stereo-
typical step cycle is not sufficient. For this reason a limited number of
standard reactions to typical unpredictable disturbances, called reflexes,
has been added to the standard controller.

Another interesting aspect of the controller’s general structure is the
choice of control variables: some advantages can be obtained by choosing
joint velocity commands rather than joint position commands in contrast
to traditional robot controllers. Biology’s use of velocity based control is
quite sensible, since the main objective of locomotion is to keep the body
moving forward at a desired rate of speed. Velocity control is also gener-
ally simpler and more stable than position control, since velocity control
in the presence of inertial dynamics generally involves only a single inte-
gration from actuator force.

The scheme of the complete single-leg controller is illustrated in figure
3.4 with particular attention to the input/output relation. The swing and
stance nets receive, as outputs set, the joint angular velocities of the three
leg joints (BC, CT and FT ). They are controlled by the selector net in a
mutually exclusive manner. The state of the selector net depends on the
sensory input from the own leg and weighted information correspond-
ing to the coordination rules. The reference values for the swing net are
calculated by a target net, that receives, as input, the position of the ante-
rior ipsilateral leg. The height net controls the body clearance during the
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Figure 3.4: Scheme for the controller of a single leg.

stance phase. Except for the input to the target net and the coordinating
influences, all sensory inputs are local proprioreceptive feedback of the
leg itself. The stance net receives two global commands: controlling body
advancing Vre f , and yaw θ̇re f velocity.

3.5.1 Swing phase
Controlling a swing movement is easier than controlling a stance move-
ment, because a leg in swing is mechanically uncoupled from the environ-
ment and, owing to its small mass, essentially uncoupled from the move-
ment of the other legs. Therefore, whatever a leg does during a swing
movement, it has virtually no impact on the movements of the other legs.

According to figure 3.1, each stick insect leg can be modeled as a ma-
nipulator with 3 DoFs of rotation. As physiological experiments on insects
have shown that each one of these DoFs may have only a weak coupling
to the other two, the controller must have three motor outputs at least, one
for each leg joint.

Since the stick insect regulates swing movements and compensate for
external perturbations, the control system must receive proprioreceptive
sensory feedback to account for a closed-loop control. Moreover, because
swing movements are known to be targeted towards a given location, the
controller must also receive information about a desired posture.

Detailed analysis show how the best choice is to take the three angular
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Figure 3.5: Swing control module.

coordinates defining the actual leg configuration and the three defining
the target as inputs and the three joint angular velocities as outputs. All
these considerations can be summarized in the scheme illustrated in fig-
ure 3.5, that shows the correlation existing among inputs and outputs: it
receives, as inputs, the current measured joint angles and a set of target
angles that define the AEP. Its outputs are the three desired joint angular
velocities. The target net calculates the target angles starting from the cur-
rent joint angles of the anterior ipsilateral leg. It is not present in the front
legs controller where the AEP has a fixed value.

To understand which behavior the controller should reproduce it is in-
teresting to evaluate a general swing trajectory as shown by Cruse and
Bartling [21]. In figure 3.6 it’s possible to see how the swing phase can be
defined by three points: the posterior extreme position (PEP), where the
leg lifts off the ground to start swing, and the anterior extreme position
(AEP) where the leg ends swing by touching the ground. The third point
is the Superior Extreme Position (SEP), the dorsal extreme position of the
swing movement. The swing height is defined as the distance in the x-z
plane between the SEP and the midpoint between AEP and PEP. To fulfill
the task, the controller must show two different behaviors: the leg has to
lift off and the foot has to move to the target position (AEP).

The first micro behavior permits to avoid all the obstacles below the
trajectory so, with an high SEP, the walk will be possible also on rough
terrain. On the other hand, to reach these positions, the motion should
be very fast thus becoming very energetically ineffective. Numerical rela-
tionship giving the optimal SEP depending on PEP coordinates has been
found starting from behavioral experiments on insects [22]. In this work a
different approach has been used: a minimum value for the SEP has been
taken and the controller has been designed to produce trajectory with a
SEP always above the limit value. This behavior involves only the CT
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Figure 3.6: Swing trajectory geometric parameters.

joint angle that has to be dependent on the TC angle to follow the correct
up-down movement.

The second micro behavior means that this point must be an attractor
for the controlled system, but only in the two dimensions of the ground
plane. In the direction perpendicular to the support surface, the attraction
point must be placed below the ground reference position thus prohibiting
the foot to move too much slowly immediately before the ground contact
and allowing it to detect the ground also if it’s beyond its reference posi-
tion. This behavior involves all the three joint angles but mainly the TC
one.

3.5.2 Stance phase
In a complex environment, the task of controlling the stance movements
of all the legs on the ground poses several major problems. It is not suffi-
cient to assign the motion of each leg on its own, because the mechanical
coupling through the substrate implies that efficient locomotion requires
the coordinated action of all the joints that connect the body to the ground.
Thus, the action of up to 18 joints may need to be coordinated at any mo-
ment in time. However, the number and combination of mechanically
coupled joints varies, depending on the current pattern. Accordingly, the
task to be solved changes continuously. Besides, the control of a kinematic
chain composed by three hinge joints is a nonlinear task and further com-
plexity is introduced by joints and actuators properties, such as friction or
flexibility.

In classic approach to walking machine, the so-called force distribution
problem, which occurs whenever parallel kinematic chains are mechani-
cally coupled via the ground, can be solved only by computationally costly
algorithms that take into account the complete dynamics of all the legs in
stance and try to optimize some additional criterion. The nature of the me-
chanical interactions and the search for a global optimum requires a single
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central control system instead of a distributed processing. In technical so-
lutions, such centralized system makes real-time control difficult, even in
simple cases.

Although the task to coordinate many joints appears complex, insects
master it with their simple nervous system. This means that they use,
instead of a centralized controller, a decentralized approach able to exploit
the dynamics of the body-environment interaction without calculating all
the required information explicitly, e.g. the mutual influences among the
joints.

To solve this particular problem in a very easy way, Cruse et al. [23][24]
propose to replace a central controller with distributed control in the form
of local positive feedback. For more detail on positive feedback in biolog-
ical systems see De Angelis [25]. The positive feedback occurs at the level
of the single joint, feeding back the position signal to control the motor
output of the same joint, without direct relationship with the rest of the
kinematic chain.

To understand how positive displacement feedback works, one must
consider, a standing legged system that begins to move one joint, while
keeping all the feet on the ground. Owing to the mechanical connections,
all other joints of the moved leg, and even joints of the other legs, passively
adjust to the active joint movement. Thus, the movement direction and
speed of each joint do not have to be computed because this information
is already provided by the physics of the whole system.

This example is related to postural control, a problem ruled by resis-
tance reflexes that maintain the position of each leg with local negative
feedback circuits. In the control of walking a resistance reflex may be re-
placed by an assistance reflex: it can be modeled by a positive feedback
that transforms this passive movement into an active one.

There are, however, several problems to be solved. The first is that pos-
itive feedback using the raw position signal would lead to unpredictable
changes in movement speed and not necessarily to the nearly constant
walking speed which is usually desired. This problem can be solved by
introducing a kind of band-pass filter into the feedback loop. The effect
is to make the feedback proportional to the angular velocity of the joint
movement and not proportional the angular position. This strategy is also
known as Local Positive Velocity Feedback (LPVF).

The second problem is that using positive feedback for all three leg
joints leads to unpredictable changes in body height, even in a computer
simulation excluding gravity. To avoid these effects the height control has
been decoupled to forward movement. According to experiments on stick
insect, LPVF has been applied only on γ and α angles, that are deputy
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Figure 3.7: Stance control module.

to propel the robot, but β is controlled by a negative feedback circuit that
controls the body height only.

A third problem related to using positive feedback is the following.
When a stationary walking robot is pulled backward by gravity or by a
brief disturbance, with LPVF, it should continue to walk backwards even
after the initial pull ends. This has never been observed in actual walking
animal. Therefore, in this work it has been assumed that a supervisory
system exists which is not only responsible for switching on and off the
entire walking system, but also specifies walking direction. This influence
is represented by applying a small, positive input value which replaces
the sensory signal if it is larger than the latter.

Positive velocity feedback could produce an irregular motion because
each single leg influences the global motion. To avoid this behavior all the
legs initiate forward-bound propulsive forces at the start, as it is the case
in insects, and a central yaw-control system maintains the desired course.

Finally, it’s necessary to choose a method to regulate the speed in such
a controller. Assuming a central value which represents the desired ref-
erence walking speed, it is compared with the actual speed and the error
signal is subject to a nonlinear transformation. The output is a gain, then
multiplied with the signals providing the positive feedback for each joints.

The complete structure for the stance control module or stance net is
summarized in figure 3.7. The stance net consists in two output units that
set the angular velocity of the BC and FT joint during stance. As the CT
joint mainly affects height of the body relative to its feet, it is controlled
by a separate module (height control). The stance net receives sensory in-
put from proprioreceptors signaling angular velocities, i.e. closing a local
positive velocity positive feedback loop (LPVF). Also, it receives central
commands that determine the velocity of forward translation and yaw ro-
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tation. Both of these signals are subtracted from a corresponding sensory
input signal, thus closing a negative feedback loops.

3.5.3 Phase transition
The problem of transition between phases seems to be complex, but truth
to say it’s simple and depends on two parameters only identified by nu-
merous authors, e.g. Cruse [26]. They are the following:

- the Ground Contact (GC) input excites the stance phase, at the same
time as it inhibits the swing phase;

- the Posterior Extreme Position (PEP) input indicates that it is time
for the transition to the swing phase.

This process can be controlled by a single module, called selector, that
switches the outputs calculation from a phase to the other one. Even if
the two motion phases are mutually exclusive, the output units receive
self-excitation (i.e. positive feedback) to fix into a state. This was found to
be less sensitive than the use of mutual inhibition from the output units.

3.5.4 Reflexes
A reflex is a type of behavior that can be roughly defined as a rapid, au-
tomatic involuntary response triggered by external stimuli. The response
persists for the duration of the stimulus and its intensity is correlated with
the stimulus’s strength. Reflexes are very useful during locomotion, mak-
ing the animal able to react to any unpredictable situation rapidly.

The control system described in this work for the generation of a step
cycle in each leg of the robot, is based on reflexes as it is illustrated in
section 3.4. This approach allows an higher flexibility than for CPG-based
systems, but the reflexes introduced in that model are only a part of the
total reactive behaviors shown by a stick insect: an assistance reflex to
propel the body and a step reflex to lift-off the leg.

In real animals other reflexes exist, that allow them not only to generate
a regular walking pattern, but also to produce the correct behavior in reac-
tion to a large number of unpredictable changes in the environment. From
this point of view a reflex may be considered as a stereotypical response
to a standard changing in the external inputs. Now the problem is how
many reflexes must be implemented in the controller to solve the problem
of walking correctly. Recent studies of neurophysiologists identified three
more different typologies of reflex in insects (Beer et al., 1997):

- stepping reflex: when a leg slides or assumes a configuration poorly
stable, performs a limited aerial phase to return in a posture able to
ensure a sufficient stability;
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Figure 3.8: Overview on reflexes.

- avoidance reflex: when a leg touches a obstacle, it moves away from it
and changes its elevation to produce a trajectory able to avoid it;

- searching reflex: when a leg doesn’t find the ground at the end of its
swing phase, starts a rhythmical motion in an increasing region of
space until a supporting surface is found.

In figure 3.8 such behaviors are shown. They will be discussed in detail in
section 4.4.

3.6 Legs coordination

The second macro behavior required in walking control is the coordination
among single legs movements. The problem must consider two things at
least. First, the timing of lift-off and touchdown in each leg must not im-
pair the stability of the whole body. Second, the number of legs in stance
determines the upper bound of propulsive force. Therefore, efficient tim-
ing and coordination of power and stance direction of all legs in stance
must be controlled to ensure their synergistic action. This two features
will be developed in section 3.6.1 and 3.6.2 respectively.

These two first requirements can be fulfilled without a central plan-
ning. To reach a satisfying solution it is sufficient to insert local influences
that link each limb only with its neighbors. This method, shown in sub-
section 3.6.3, allows to simplify the problem considerably, reducing com-
putational costs.

Some other problems need a global supervision on all the legs to be
correctly solved: the main of them is the control of the body’s height and
attitude. To manage these parameters, it’s necessary both to measure and
control variables of all the legs and to perform global calculation. The
other global feature, treated in subsection 3.6.4, involves the generation
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Figure 3.9: Static stability.

of curve trajectories in function of the body velocity and of the turning
radius.

3.6.1 Stability
The main high-level requirement for a walking controller is to ensure the
stability of the robot and to keep it during the walk. The work on stability
analysis was based on the Point of Center of Gravity (PCG) of the robot. In
this study, PCG denotes the two-dimensional point obtained by projecting
the Center of Gravity (CoG) onto a horizontal plane.

An ideal legged locomotion machine is statically stable at time t, if all
the legs in contact with the support plane at the given time remain in con-
tact with that plane, when all the legs of the machine are fixed at their
locations at time t and the translational and rotational velocities of the re-
sulting rigid body are simultaneously reduced to zero. It can be shown
that this definition is equivalent to the condition PCG ∈ Asup where Asup

is the area delimitated by the supporting polygon as shown in figure 3.9.
The supporting polygon (dotted lines) is the convex boundary obtained by
linking all the feet of the supporting legs. In a statically stable posture (left
side), the projection on the ground surface of the robot’s centre of gravity
(PCG), lies inside the supporting polygon. On the opposite in a statically
unstable configuration (right side) the PCG is placed outside this pattern,
causing the fall of the robot. From this condition, it’s possible to define the
static stability margin, as the shortest distance from PCM to the support
polygon’s boundary.

In this work a walk will be said to be statically stable if the static stabil-
ity margin is positive at all times during the locomotion, i.e. the condition
PCG(t) ∈ Asup(t) ∀ t is satisfied. Furthermore, the terms static balance and
statically balanced walk will be used instead of static stability. To maintain
a correct posture in order to avoid falling over, it can be useful to impose
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the static stability condition during the entire walk.
With a static balance requirement, at least three legs have to touch the

ground at the same time for locomotion if an ideal legged locomotion ma-
chine is assumed. This means that biped and quadruped walker require
more complex dynamical balancing to reach good performances, but it’s
not a problem for hexapod: previous studies on insects show that the walk
patterns allowing to reach the highest speeds for six-legged walking plat-
form are all statically balanced (see Wilson [27] and Song and Waldron
[28]).

Another consideration can be done supporting the choice of limiting
the stability analysis to statically stable gaits: the concept of a safe walk
can be introduced, to be a walk where, if all the joints are suddenly frozen,
the system still ends up in a statically stable equilibrium. This concept
does not imply a statically balanced gait, since falling is allowed as long
as the system ends in a safe configuration.

3.6.2 Gaits
A gait can be generally defined as a manner of moving the legs in walk-
ing or running or, more properly, as a pattern of locomotion characteristic
for a limited range of speeds described by a number of quantities, one
or more of which change discontinuously at the moment of transition to
other gaits. The concept of gait is strictly related to the stride concept, that
is a period of locomotion defined by the complete cycle of a reference limb.

A gait can be numerically quantified by four parameters:

- the stride duration, the duration of one stride;

- the stride length, the distance the trunk translates during one stride;

- the duty factor (typically denoted β), the temporal fraction of a step
cycle during which the foot is on the ground;

- the relative phase of leg l (typically denoted φl), described as the leg’s
phase with respect to a reference leg.

The simplest way to define a gait mathematically is a sequence of binary
vectors that indicates the phase (swing or stance) of each leg and the phase
duration. The gait is thus defined by the sequence in which the legs change
phase. This analysis can be summarized in a gait diagram showing the
phases of the different legs as a function of time.

In six-legged walkers the gaits that ensure the best performances can
be chosen from biological findings. In his reference work on hexapod loco-
motion Wilson [27] shows that all the typical gaits observed in stick insects
are based on five concepts:
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Figure 3.10: Gait diagrams of the most significant wave gaits.

- a wave of protractions runs from posterior to anterior;

- contralateral legs of the same segment alternate in phase;

- protraction time is constant;

- retraction time decreases as walking frequency increases;

- the intervals between steps of ipsilateral adjacent legs are constant,
while the interval between the foreleg and hind leg steps varies in-
versely with frequency.

Gaits of this family are called wave-gaits and show a periodic behavior
with a β ≥ 0.5 equal for all the legs. The most important characteristic of
these patterns is their capability to ensure a statically balanced motion on
a wide speed range. Another important feature is the possibility to adapt
the gait to speed variations continuously. In figure 3.10 the gait diagrams
of the most important wave-gaits have been summarized. An overview of
the most significant wave-gait is shown in figure 3.10. The leg are num-
bered as in the drawing. The horizontal axis represents the time. The solid
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bar indicates protraction (swing phase). Continuous enclosures indicates
fixed basic sequences of steps of the legs on one side, i.e. metachronal
wave, or simultaneous protractions. Contralateral legs on the same seg-
ment, e.g. hind legs (R3-L3), show an 180-degrees phasing. An increasing
duty factor β drives to a faster, but less stable gait.

On really rough terrain, cyclic gaits are not suitable and the free gait, a
gait that can produce both regular or irregular pattern depending on coor-
dination influences, is used instead. This means that a correct coordination
among legs must be able not only to change gait continuously when the
required velocity varies, but also to produce a non-periodic free gait when
disturbances are overwhelming.

3.6.3 Coordination rules
The coordination rules that regulate the gait in a six-legged walker have
been identified by Cruse starting from his experiment on stick insects and
can be summarized as six influences among both contralateral and ipsilat-
eral legs. The influence of inter-leg coordination mechanisms is stronger
between ipsilateral legs, than between contralateral legs. No direct influ-
ences between the diagonal legs have been found. The influences are as
follows:

1. the start of a transfer phase is inhibited if the ipsilateral posterior
leg is transferring (and up to 100 ms after footfall). This can cause a
prolonged support phase;

2. the start of a transfer phase is excited if the ipsilateral posterior leg
or the contralateral leg has just entered the support phase. This can
cause a shortened support phase;

3. the start of a transfer phase is more strongly excited, the further the
leg is to the rear of a supporting ipsilateral anterior leg or contralat-
eral leg. This causes the leg to start its transfer phase before the an-
terior leg;

4. the start of a support phase is targeted to occur next to the (support-
ing) ipsilateral anterior leg. This causes a follow-the-leader type of
gait to emerge;

5. a) the force of a supporting leg increases if an adjacent leg encoun-
ters increased resistance;
b) The support phase is prolonged, if the load of an adjacent leg in-
creases;
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Figure 3.11: Coordination rules that couple step cycles of neighboring legs.

6. if a foot is placed on the top of another foot, the placed foot is repo-
sitioned slightly to the rear (to avoid stumbling).

A scheme of how this coordinating system works is shown in figure 3.11.
Each of the six legs (boxes labeled L1 to L3 for the left front, the middle
and the hind legs, respectively, and R1 to R3 for the corresponding right
legs) signals information about its current state to its neighbors (arrows).
The known coordination rules are numbered according to the list to the
right. Numbers next to the arrows denote the rules known to be present
in a given signaling pathway. The actions/goals correspondence that can
be associated with the experimental evidence, is listed aside.

These rules have been implemented on lots of numerical control mod-
els, some of them applied on real walking platforms. Applications show
that mechanisms from 1 to 3 are sufficient to produce all the hexapod stat-
ically stable gaits, ensuring a correct control of the walk over a wide range
of velocity.

The main problem of this approach is the calculation of the weights that
modulate the mutual influences among legs. It’s a very expensive process
because it requires a simulation of the complete multi-legged model that
involves a large number of parameters. Moreover, if the weights aren’t
correctly calculated, the said rules don’t guarantee a stable gait for the
whole operative range of velocity.

A different approach has been introduced by Porta and Celaya: it al-
lows to use Boolean criteria only to coordinate the legs, and its parameters

41



Chapter 3

can be easily hand-tuned. The main disadvantage of this method is its
incapability to produce an efficient gait at low velocities.

In this work a mixed approach has been adopted: starting from the
simplest set of rules producing an always stable gait, then corrected with
some of the six rules developed by Cruse to obtain a more efficient gait.

3.6.4 Curve walking
The production of curve trajectories is another important aspect of the legs
coordination. The course control is a very complex problem that requires
a specific action on each limb changing both the control law for the single
leg and the gait pattern adopted for the straight walk case.

Basically, the behaviors observed in insect depend on one parameter
only: the turning radius, defined as the radius of the arc of circumference
to be followed at a given moment. The decreasing of the value of this vari-
able produces five behaviors identified by Zolotov for the Apis Mellifera
[29]. They are the following:

1. at the inner flank: gait unchanged, decrease of the stride length,
change of the step direction; at the outer flank: increase of the stride
length;

2. at the inner flank: decrease of frequency and velocity of metachronal
waves; at the outer flank: increase frequency and velocity of the
metachronal waves;

3. at the inner flank: anchoring of the hind leg, lateral steps in the fore
and middle legs;

4. at the outer flank: anchoring of the hind leg;

5. at the inner flank: backward marching.

This means that to produce a large curve trajectory (case 1) it is sufficient to
change the stance velocity of the legs on the outer and the inner side and to
vary the calculation of the AEP for the inner side, without any alteration in
gait structure. These results can be easily obtained with two updates only
on the original controller. The cases of smaller radii haven’t be considered
in this work.

Some examples of curve gait, observed by Zollikofer [30], are shown in
figure 3.12. Solid-line triangles indicates tripods R1-L2-R3 and dashed-line
triangles indicates tripods L1-R2-L3. The longitudinal axis of the body is
indicated from head position (dot) to centre of mass (end of line). Walking
direction is from left to right. With high turning radii (10÷20 units), the
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A

B

C

1 unit

Figure 3.12: Gait changes during a curve walking.

gait is almost unchanged from the normal forward walking (A,B). Only
little differences in the stride length on the two sides. No remarkable dif-
ferences between high (A) or low (B) speeds. With a smaller radius of
curvature (about 3 unit in C) it’s possible to see how the gait change, es-
pecially how the AEP gets closer to the body, but also a little frequency
variation between the two sides.

3.7 Final control structure

The most significant shortcoming of the biological-based approach pro-
posed by Cruse et al. is that their model did not consider any gravitational
effects, inertial dynamics, or ground contact reactions. In the case of a stick
insect, it’s possible to ignore such inertial dynamics. At the scale of a typ-
ical six-legged robot, however, such effects are meaningful, and change in
a significant manner the stability of the closed-loop system.

On the basis of these issues, Wait and Goldfarb [31] proposed a mod-
ified version of this type of control system that is based on its biological
paradigm, but that can provide stable locomotion also in the presence of
dynamics, while still enabling the significant benefits (i.e., self-selecting,
robust, emergent behavior) of the behavioral-based approach. A block di-
agram of the proposed approach is shown in figure 3.13.

The controller can fundamentally divided into two part. The high-level
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Figure 3.13: Block diagram of the complete control structure.

module called Trajectory generation gives as output the desired motion in
term of required angular joint velocities. Its inputs are a mix of measured
parameters (ground contact, joint angles) and calculated ones (body, yaw
and angular velocities). The structure of this subsystem is based largely on
that of the Cruse system in that there are independent blocks that generate
the swing and the stance trajectories and a third block that chooses which
of the two trajectories to use, as shown in the previous sections.

The main difference consists in a low level controller that manages the
angular velocities calculated by the higher levels, giving the correct com-
mand for the actuators. The low-level module is a simple Proportional-
Integral-Derivative (PID) controller that acts on the single joint. It receives
as input the error between the measured and the required angular veloc-
ity giving to motors the correct torque. This solution increases also the
flexibility of the walking system as a whole, robot and controller, allowing
to change only the block of trajectory generation to validate other higher-
level control strategies.

44



Chapter 4

Single leg controller
In the present chapter the controller for a single leg will be described in
detail. To understand the whole structure, the architecture and the results
for each single module will be illustrated. For a simulation of the complete
leg motion see section 6.2.

4.1 Swing control

The control of the swing phase can be achieved with a single module that
generates the desired trajectory during this phase. This trajectory, as pre-
viously described in section 3.5.1, must show two different behaviors: the
lift off from the ground and the targeting on the AEP. In the present work
the control module consists in an artificial neural network called swing net.

The variables of the problem are the angular positions and the three
target angle that define the AEP univocally. The current angles can be
measured directly by angular displacement sensors while the AEP angles
are calculated apart and reflect a spatial coordination between adjacent
legs (see section 5.4). On the basis of these two kinds of inputs it’s possible
to calculate the desired joints angular velocities for each time step.

The training process of each ANN requires the definition of a fitness
function (see 2.6). In the present case the network must simulate two dif-
ferent behaviors but only one of them requires to be scored in the fitness
function. Every quantitative evaluation of the lift-off properties, needs a
knowledge of the shape of the whole trajectory that isn’t required to cor-
rectly design a swing phase. For this reason, instead of a curve-fitting
criterion, a Boolean one has been adopted: the solution is considered suit-
able only if the trajectory shows a SEP higher than a reference value. The
score given by the fitness function evaluates the targeting on AEP only in
terms of minimum distance of the foot from the desired position.

The fitness is evaluated in a purely kinematics simulation of the leg
motion. To stop this simulation a temporal criterion has been used: when
the time reaches a given value the simulation stops and the evaluation
of the fitness is done on the best result obtained, i.e. the closest to the
target. To speed up the swing phase, when a sufficiently precise target
has been reached, one more training must be done to maximize the mean
angular velocities. The maximum allowed velocity depends on actuators
characteristics and it’s equal to 91 deg s−1 (see subsection 7.3.1).
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The other requirement in the project of a ANN is the structure of the
network, meaning with this definition the type of neuron, the number
of units and the connection among them. Two distinct cases have been
investigated: static ANN (see subsection 4.1.1) and dynamic ANN (see
subsection 4.1.2), by evaluating if the latter more complex solution might
perform better than the simpler former one.

4.1.1 Static network
The usage of a static network to control the swing phase is the solution
proposed by Cruse et al. [32] for their Walknet controller. The reference
paper for this application has been written by Linder [33]. In that work
he suggests that the simplest possible network was sufficient to solve the
problem. This ANN is a single-layer feed-forward network consisting of
three neural unit, the outputs of which are the angular velocity of the BC
(γ̇), CT (β̇) and FT joint (α̇) respectively . Each unit receives a weighted
input from external sensors that signal the current joint angles (γ, β, α).
Further inputs are the target angles (γt, βt, αt) from the target net.

In a detailed study using genetic algorithms, Linder shown that seven
non-zero weights out of a total of 18 are sufficient to simulate typical swing
movements. The structure of the network is illustrated in figure 4.1. This
solution consists essentially of three negative feedback controllers, one for
each of the three leg joints. The control loop is closed via the leg itself, as
movement changes the posture and, thus, the sensory input. Moreover,
the controller of the BC joint (protraction) and the CT joints (elevation)
are coupled via a seventh weight that is responsible for the lift-off/touch-
down behavior. Its variation allows to modulate the maximum height
reached by the trajectory (SEP). A sensitivity analysis on this parameter
shows how an increase in the SEP produces a decrease in the accuracy of
the targeting behavior. From a mathematical point of view the network
structure can be summarized by the equations set as follows:

γ̇ = wγγ γ + wγγt γt (4.1a)
β̇ = wβγ γ + wβγt γt + wββ β + wββt βt (4.1b)
α̇ = wαα α + wααt αt (4.1c)

Starting from these considerations the weights for this network adapted to
the present geometry have been calculated. The parameters for the train-
ing algorithm are shown in table 4.1. Remembering the characteristics
of the behavior to simulate, it’s possible to fix some constraints on the
weights:

- the maximum permitted magnitude is 2;
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Figure 4.1: Static swing net.

- the auto feedback weights on measured angles are all negative;

- the auto feedback weights on target angles are all positive;

- the BC influence on CT has a positive weight on the measure and a
negative one on the target;

- the two weight that calculate α̇ have the same magnitude but oppo-
site sign.

The fitness function evaluates when the minimum distance from the
AEP is reached during the simulation and then, for this time, calculates
the score using the error between each angle and its desired value. This
process occurs only if the SEP is beyond the limit value, otherwise a stan-
dard value, equal to three times the maximum value that the fitness can
assume, is given to the score.

The training process must take into account the changes either in start-
ing or in targeting position. For this reason each evaluation uses three dif-
ferent values for the x and the z of the two positions: the reference one, an
upper one and a lower one; one value only has been considered for the y
because it shows minor variations in the real environment. This produces
a total of 81 simulations to be evaluated for each individual, accepting as
total score, the worst one obtained.

The angular displacement and velocities are shown in figure 4.2 for the
reference case and some resulting trajectories in figure 4.3. It’s possible to
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N° of variables 7
Population size 500
Generation number 50
Elite count 10
Mutation Adaptive
Crossover fraction 0.8
Threshold score (Ψ̄) 5
Error level on angles [%] 5
Minimum SEP [mm] zAEP+30

Table 4.1: GA parameters for the static swing net training.

underline how this very simple ANN is able to produce precise trajecto-
ries on a wide range of PEPs and AEPs. This behavior shows also a great
robustness since it reacts in a very effective way to external disturbances
as shown in figure 4.4. This robustness can be explained looking at the
velocity field (see figure 4.5): the reference target is an attraction point for
the foot movement on the x-y plane. Along the z direction the attraction
point is placed below the plane of the target position in order to ensure
the contact with the ground. In figure 4.6 there is illustrated the trend on
error due to variation in the starting position (left side) and in the target-
ing position (right side); in both the evaluations, the other position is the
reference one. It’s possible to see how the minimum error is reached very
close to the reference position and shows more sensitivity to a variation of
the target than to a variation of the starting position.

Figure 4.2: On the top angular displacement of a swing trajectory in the reference
case. On the bottom the correspondent angular velocities.
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Figure 4.3: Swing trajectories with different start and target positions.

Figure 4.4: Response of the swing controller to an external disturbance.

Figure 4.5: Field of velocities.
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Figure 4.6: Error on target as function of trajectory parameters: on the left starting
position, on the right reference target.

4.1.2 Dynamic network
The choice of a dynamic neural network is based on its superior capability
to simulate a time-dependent behavior. CTRNNs will be investigated for
the reasons illustrated in section 2.4. In such a network it’s necessary to
understand which are the states and which are the inputs: in this case it
is immediate to choose the current angles as state and the target ones as
inputs. This choice allows to update the state with the measured angular
displacements and to use directly the state derivative calculated by the
network without any integration, reducing numerical problems in both
cases.

The work on CTRNNs starts from the results obtained with the static
swing net. For this reason the first trained network consisted of three un-
coupled neurons, with a connection only from γ to β unit. This structure
did not allow to produce a swing motion because it was not able to simu-
late both the required behaviors. Training with completely interconnected
versions of this network has not produced significantly better results. The
solution of this problem can be found by adding a neuron that is com-
pletely interconnected with the β unit and that receives the same kind of
influence from the γ one. The mathematical model of the dynamic recur-
rent ANN can be summarized by the equations set as follows:

τγγ̇ =
(
wγγ tanh(S γ) + wγγt γt

)
(4.2a)

τββ̇ =
(
wβγ tanh(S γ) + wββ tanh(S β) + wβh tanh(S h) + wβγt γt + wββt βt

)
(4.2b)

τhḣ =
(
whγ tanh(S γ) + whβ tanh(S β) + whh tanh(S h) + wβγt γt + wββt βt

)
(4.2c)

ταα̇ =
(
wαα tanh(S α) + wααt αt

)
(4.2d)

remembering that the variable S i are the weighted sum defined as follows:

S i = yi + θi (4.3)
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Figure 4.7: Dynamic swing net.

where yi is a general state. The state h, also called hidden state, has been
added to correctly recontruct the behavior of the CT joint angle. A scheme
of the network is shown in figure 4.7. The recurrence of the network is
guarantee by the leg that acts as an integrator on the three angular ve-
locities produced by the swing net and fed back. The hidden state is inte-
grated numerically. With these links the total number of weights decreases
from 36 in the full connected network to 22, but it is much higher than in
the static case. Moreover no boundaries on the weight can be introduced
because the nonlinear properties of the model doesn’t allow an easy inter-
pretation of each single contribution.

To improve the efficiency of the whole process the best solution is to
uncouple the training of FT joint angle from the other two. This is possible
because there isn’t any functional dependence between α and the other
angles, but there is a temporal synchronization only. The parameters for
these training algorithms are shown in table 4.2. In both these cases too, as
in the static one, if the SEP is below its limit value an high score is assigned
to it and the variation on starting and targeting positions have been taken
into account.

The first training is on γ and β: it involves 18 weights and considers
an α that linearly moves from its starting to its targeting value. The fit-
ness evaluates the error on target angles at the time that it minimizes the
distance between current and target position. In the CTRNN training the
distance is measured in the angular displacement space instead of in the
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BC+CT FT
N° of variables 18 4
Population size 10000 100
Generation number 50 50
Elite count 40 10
Mutation type Gaussian Gaussian
Mutation scale 20 20
Mutation shrink 1 1
Crossover fraction 0.8 0.8
Threshold score (Ψ̄) 5 5
Error level on angles [%] 5 1
Minimum SEP [mm] (zPEP+zAEP)/2+30 (zPEP+zAEP)/2+30

Table 4.2: GA parameters for the dynamic swing net training.

Cartesian coordinates one, in order to speed up the convergence of the al-
gorithm. This training is very computationally expensive because only a
few trajectories have the correct shape.

After that, the simpler training on α is performed. For the part of the
network that regulates the motion of the other angles, the weights ob-
tained at the previous step have been used. The error between the FT
angle and its target to evaluate the score has been taken. In this training
also the variations on y of PEP and AEP have been considered, since the
α motion heavily depends on them. The synchronization is automatically
reached because the error is calculated for the position that minimizes the
distance from the target in the Cartesian space.

Note how the first case requires a number of simulation two order of
magnitude greater than the second one: the higher number of parameter
and the much more complex behavior to simulate, justify this difference.
To accelerate the convergence, the error level for the first training has been
relaxed. In the other one, a greater precision can be obtained without any
problem.

The obtained trajectories are shown in figure 4.9. Trajectories are less
precise than in the case of a static swing net, but the error is sufficiently low
in the standard operative range. Moreover the incorrect targeting follows
reasonable behavior, tending to minimize the distance from the reference
target. The lower accuracy is compensated by an improved robustness.
The velocity fields (see figure 4.11) shows an attraction point similar to
its static counterpart but the behavior is much stronger because is able to
compensate an higher level of disturbances.
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Figure 4.8: On the top angular displacement of a swing trajectory in the reference
case. On the bottom the correspondent angular velocities.

Figure 4.9: Swing trajectories with different start and target positions.

Figure 4.10: Response of the swing controller to an external disturbance: the per-
turbed trajectory return autonomously to the reference target.
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Figure 4.11: Field of velocities.

Figure 4.12: Error on target as function of trajectory parameters: on the left start-
ing position, on the right reference target.

In figure 4.12 there is illustrated the trend on error due to the variation
in the starting position (left side) and in the targeting position (right side);
in both the evaluation, the other position is the reference one. It’s possible
to see how the minimum error, in this case, isn’t reached for the reference
position, but is less sensible to variation in starting y and more sensible to
variations in targeting y, than the static swing net and the opposite behav-
ior can be observed for the x coordinate (see figure 4.6).

4.2 Stance controller

In subsection 3.5.2 the main features of stance control have been already
explained. At first the LPVF controller on the BC and CT joint angles will
be implemented. After that, it will be necessary to introduce the other
aspects that involve the power stroke, especially the height, velocity and
direction control. In the last part of the section a more comprehensive ap-
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proach to the problem will be discussed briefly. Since the stance controller
has been implemented in a purely kinematical form, but can be evaluated
only in a dynamical contest, all the results of the present section have been
derived from the dynamic simulation (see chapter 6).

4.2.1 Local positive velocity feedback
The Local Positive Velocity Feedback (LPVF) solution allows one to solve
the problem of controlling the BC and FT joints in a very simple form
maintaining a decentralized architecture. The problem is how to effec-
tively implement this solution. The LPVF, as shown in figure 4.13, is fun-
damentally a closed-loop system with an High Pass Filter (HPF) on the
feedback path. The scheme of this system is very simple with a first order
HPF on the feedback path and a unitary gain on the forward path. A typi-
cal first order high-pass filter has a transfer function that can be expressed
as follows:

G(s) =
τs

1 + τs
(4.4)

where τ is the time constant of the HPF, the inverse of the cutoff frequency.
The closed-loop transfer function between input and output becomes:

y(s) = (1 + τs)x(s) (4.5)

This means that the output of such a system corresponds to the sum of the
input and the derivative of the input. In the present case the input is the
angular displacement and its derivative is the angular velocity. This struc-
ture allows one to solve the main problem of the normal simple positive
feedback. Feeding directly back the joint angle, the correspondent angular
velocity could continuously increase in an unpredictable way. The intro-
duction of the HPF avoids this behavior by maintaining the speed almost
constant as required to a stance control system. In this case, for example,
a short velocity impulse given at the input, after the pulse, leads to an
almost continuously constant velocity output value.

Considering as input the measured current joint angle and as output
the required one, it’s possible to formulate the problem in the discrete time
domain, where the current value is referred to step k and the required to
step k + 1. With this assumption, the LPVF controller can be implemented,
for the angle α, as follows:

α(k + 1) = α(k) + τα̇(k) (4.6)

In the discrete time domain the angular velocity can be calculated by a
first order backward finite difference formula as:

α̇(k + 1) =
α(k + 1) − α(k)

∆t
(4.7)
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Figure 4.13: High pass filtered positive feedback.

Taking α(k + 1) from the 4.7 and substituting it in the 4.6 it’s possible to
alternatively formulate the problem as follows:

α̇(k + 1)∆t + α(k) = α(k) + τα̇(k) (4.8)

that allows to found the required relation among the angular velocities as:

α̇(k + 1) =
τ

∆t
α̇(k) (4.9)

The formulation is the same for the γ angle. This means that the LPVF
can be completely implemented in terms of angular velocities by simply
multiplying the current value for a given gain. The gain depends on the
integration time step but this results can be easily justified remembering
that a positive feedback system is stable only when is verified the follow-
ing condition:

τ

∆t
< 1 (4.10)

Since the time constant τ of the HPF, to correctly manage the problem,
should depend on the sampling frequency that is the inverse of the time
step ∆t, the total gain K that multiply the angular velocity can be taken
as constant independently to the time parameters. To correctly evaluate
them a brief hand tuning has been performed. The chosen values are
Kγ=0.0086 and Kα=0.0057. Lower values produce a stance phase with a
SEP too low, higher value cause the saturation of the angular velocity and
lead to instability. In order to avoid backward walking induced by direc-
tional biases, e.g. when gravity opposes the walking direction on a steep
slope, a supervisory system has been introduced. It specifies the correct
walking direction, but allows also to stop or start the entire system. This is
also necessary to avoid any influences of the previous swing phase on the
succeeding stance phase. The central bias in walking direction is caused
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Figure 4.14: Angles and angular velocities of a reference stance trajectory in a
dynamic simulation environment.

by a constant, small offset value, which replaces the sensory information
of the BC joint angular velocity γ̇ if it is larger than the latter. This added
contribution can also be seen as a pulse that allow to the LPVF to reach a
non null constant angular velocity. The offset value has always been taken
equal to 5 deg/s, less than 6 % of the maximum permitted value.

This alternative formulation allows to give directly an angular veloc-
ity command to the actuator as required in section 3.5. The problem is that
the sensors mounted on the joints measure angular displacements only. To
obtain an information about the angular velocity is necessary to numeri-
cally calculate the derivative of the measure. In the present work a second
order backward finite difference formula has been used.

The stance phase, although it’s implemented by a kinematic rule, could
be evaluated only in a taking into account the interactions with the envi-
ronment. For this reason the result shown in figure 4.14 have been ob-
tained by a dynamic simulation (see chapter 6). During a reference stance
phase the most part of the motion depends on the γ angle that move the
leg backward, propelling the body forward. The angular velocity shows
the behavior previously predicted for a system with LPVF, remaining al-
most constant after a starting initial perturbation, given by the walking
direction offset. The angle α shows small variations only, due to numeri-
cal error, but also to the motion of the other legs. This behavior can justify
a different control strategy, e.g. a closed-loop negative feedback to increase
lateral stability.
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4.2.2 Height control
The control of the body clearance depends completely on the CT joint in
order to maintain the modularity approach adopted so far: the γ and α an-
gles are responsible for ground parallel movements and thus they provide
the thrust by using LPVF, whereas the β angle doesn’t show any rever-
sal reflex, but controls the movement in the direction perpendicular to the
ground. This action is performed by the simplest control system possible.
The required angular velocity is calculated by a classical closed-loop regu-
lator that uses negative feedback. The actual body height, evaluated at the
leg insertion point, is compared to a reference value. The resulting error is
transformed into a desired angular velocity, equivalent to a desired change
in the angular position in the discrete time domain, by a linear character-
istic. The choice of using a simple proportional controller has its biological
counterpart in the findings on height control in stick insects that show an
individual proportional element acting as a servomechanism on each leg
(see Cruse et al. [34]). The control law can be summarized as follows:

β̇ = Kβ(hsens − hre f ) (4.11)

The proportional gain Kβ has been set equal to 2.5 deg s−1 mm−1. The
body height in the reference configuration has been considered as refer-
ence body height hre f . The results obtained with this controller are illus-
trated in figure 4.15. If the ground has a step (bold line), when the leg
passes from swing (dashed line) to stance (solid line), it sees a change in
the local body height. The controller tries to maintain the reference body
height (dash-dotted line), by feeding-back a β̇ command, proportional to
the error on height. The system reacts by reaching the regime value in less
than 0.5 s. This results can be justified remembering that the linearized
model of the closed-loop system can be represented by a first-order trans-
fer function with an integrator on the forward path, that transform β̇ in
h, and a unitary gain on the feedback path. The gain of the integrator is
KβG where G is the derivative of h(β) evaluated in the reference position
that assume the value of 2.65 mm deg−1. The resulting closed-loop transfer
function is:

H(s) =
KβG 1

s

1 + KβG 1
s

=
1

1 + 1
KβG

s
(4.12)

This means that the time constant can be estimated as τ ≈ 1/(KβG). The ob-
tained value of τ=0.15 s means that the regime condition should be reached
in about 4τ=0.6 s that is almost exactly the data given by the simulation.

The value of the current body height hsens isn’t directly measured by
any sensor but can be easily deduced by the measure of the joint angles.
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Figure 4.15: Body height control.

The distance of the body from the ground corresponds to the z coordinate
in a Cartesian system centered in the BC joint. The value can be calculated
by the analytical expression as follows:

hsens = Lt cos(α − β) − L f cos(β) (4.13)

where Lt and L f are the length of the tibia and femur sections respectively.
The complete analytical formulation uses twice a trigonometric function:
this increase a lot the computational cost of this function. The best way to
reduce the simulation time is to approximate the function by an ANN as
previously shown in section 2.4. In the present case the simplest network
possible has been used, with two outputs, one input and only one neural
unit on the hidden layer. The calculation time decrease of almost one order
of magnitude from the 5.03 × 10−5 s of the analytical case to the 9.1 × 10−6 s
of the neural one. Comparison between the standard and the approximate
results are shown in figure 4.16 where a mapping of the approximation
error due to the ANN as function of the CT and FT joint angles (left side)
and of the foot position on the y-z plane (right side) is illustrated. Since
the network has been trained to best-fit the reference position, the error is
smaller, when the foot is closer to this one. The error level is always lower
than the 5 ‰ of the reference height.

In the present work the desired body clearance hre f has been taken as
fixed. A further development might be the introduction of a higher-level
controller that vary the reference height of each leg in the same way, in
order to regulate the total body height or in a different way, to change its
attitude. These results can be obtained without any variation on the single
leg control structure, but only by adding an additional module.
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Figure 4.16: Error on body height calculated by the ANN.

4.2.3 Velocity control
To maintain a constant advancing speed it is necessary to correct the val-
ues of the angular velocities previously calculated. Since the movements
on the plane parallel to the ground mainly depend on the γ and α an-
gles, the correction has been applied only on them. The velocity correction
works as a classic negative feedback supervisor that modifies the ampli-
fication of the positive feedback control signal by a gain Kv. The required
angular velocities can be calculated as follows:

γ̇(k + 1) = Kγ Kv γ̇(k) (4.14a)
α̇(k + 1) = Kα Kv α̇(k) (4.14b)

where Kγ and Kα are the fixed static gains of the LPVF controller. To evalu-
ate the gain Kv it is necessary to define the error e as the difference between
the required velocity Vre f and the measured velocity Vsens. The required
speed descends from a higher control level, e.g. a human operator or a
pattern optimizer, and can be varied over a normalized range from 0 to 1
where 0 means a null speed and 1 indicates the maximum allowed value
(see section 5.5). The current advancing speed of the single leg can be
obtained indirectly from the angular variables as follows:

Vsens = − ((Lc + L f sin β + Lt sin(α − β)) cos γγ̇+

+ (L f cos ββ̇ + Lt cos(α − β)(α̇ − β̇)) sin γ)
(4.15)

The correction depending on advancing speed can be calculated as fol-
lows:

Kv =

1 + e : e ≥ 0
1

1−e : e < 0
(4.16)

These nonlinear characteristics, proposed by Schmitz et. al [35], ensures
values either bigger or smaller than 1 at the output when walking too
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Figure 4.17: Control of the advancing velocity.

slowly or too fast respectively. Its trend in function of the error on the
advancing velocity is shown in figure 4.17 (left side). As the global output
of the controller is based on global (Vre f ) and local (Vsens) data, it is dif-
ferent for each leg in stance phase: this amplifies or weakens the control
signal to compensate its own error. This can produce little variations in
the direction, but it’s in accordance with the decentralized structure ap-
proach followed thus far. The control of the global velocity accords with
the biological findings on stick insects reported by Cruse [36], who found
a velocity control rather than a position control during leg retraction.

Like each other stance parameter, the advancing velocity too needs to
be evaluated in a dynamic environment (see chapter 6). The results for a
typical ripple gait are shown in figure 4.17 (right side). The actual trend
fits very well the reference value except for some little variation and a
sudden oscillation that happens at 1.2 s. The variations can depend on
phase transitions of the leg (initial time), variations in the reference signal
that the leg doesn’t follow correctly or adjustments in the body attitude
due to the motion of other legs. The oscillations depend on numerical
errors that may occur when a neighboring leg touches the ground. They
are not present in motion of a real robot.

4.2.4 Direction control
The direction control, in the same way as height and velocity one, relies
on a negative feedback strategy. Owing to its closed-loop nature, this sys-
tem can compensate for unbalanced coupling factors or other inequalities
between right and left legs. The yaw-turning velocity is assumed to be
known, i.e. rotation around the body vertical axis, the deviation between
the desired and the actual headings is determined. This error signal is
subtracted from the BC joint angles of all the legs, with opposite signs for
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left and right side. If the yaw reference is set to zero, the system moves
straight with small, side-to-side oscillations in heading like all that can
be observed in walking insects (see Kindermann [37]). To simulate curve
walking, a small positive or negative bias is added to the reference value
in order to determine the curvature direction and magnitude. This model
makes it possible robust course control and performs very good also with
very small turning radii, up to 1.5 times the total body length.

The actual yaw angular velocity can be estimated on the basis of the
current joint angular variable of the supporting legs, but the analytical for-
mulation of this problem is quite complex. Moreover in a real-world con-
troller it can amplify every error on the measures. To avoid this problem
it is necessary to introduce a angular rate sensor that hasn’t been mounted
yet on the robot. The best choice in this preliminary phase is to evaluate
the direction control in the multibody simulation where a correct informa-
tion on yaw rate is available. Moreover this behavior can be evaluated on
a complete model of the robot only. For more detail see chapter 6.

4.3 State selector

The selector is the module deputy to govern the transition between swing
and stance phase and thereby to control the rhythm of a leg’s motion. In
line with the conclusions of section 3.4 an oscillator based on external in-
puts has been used to control the rhythmic alternation of swing and stance
phases. Cruse et al. [6] suggests that this requirement can be fulfilled in the
easiest way by a module driven by two sensory input and the information
about the activity of both the states that can be modeled as a simplified
four-unit ANN.

In this network, the motor outputs that are active during return stroke
and during power stroke are each represented by a single artificial unit (RS
and PS in figure 4.18). The activity of a state is indicated by a Boolean truth
value that works as switch for the velocities calculation: if the RS is true
and the PS is false the angular velocities are given by the swing net, in the
opposite case by the stance net; in the simulation the real leg is modeled as
a triple integrator. Other situations cannot happen because the states are
mutually exclusive. The sensory inputs are given by two distinct units: a
ground contact unit (GC in figure 4.18), that signals the onset of foot con-
tact with the substrate, and a PEP unit that observes whether the leg has
reached a reference posterior extreme position (PEP in figure 4.18) or not.
The GC unit simply consists in an evaluation of the force measured by the
sensor mounted on the foot: if the value is higher than a threshold, chosen
equal to 0.1 N, the GC becomes 1, otherwise 0. In figure 4.18 (right side)
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Figure 4.18: The selector network.

has also been shown an example of pattern of state transitions needed to
produce a proper step rhythm. A true value indicates the activity of the
state.

For the PEP unit a more complex structure is needed as shown in sub-
section 4.3.1. In this work the sensory inputs have been summarized as
logical information, but is possible to manage directly the analogous val-
ues of forces and displacements if disposable. This four-unit network is
made internally recurrent by allowing the outputs of each unit to feed
back to its own input and to that of all other units. These connections can
be found in lot of classic neural oscillators such as the CTRNN central pat-
tern generator shown in section 2.5. The work done on Walknet shows
how the training process always led to an unexpected result: each motor
unit developed positive feedback to itself (see figure 4.18). Hence, state
changes occur only when the simulated leg movement reaches a position
to trigger a change in sensory input. In other words, the trained model
relies on positive feedback to maintain the current step phase until a sen-
sory unit signals that the leg has reached an appropriate endpoint. This
positive feedback was unexpected because typical model to generate an
alternative motion, such as neural CPGs, incorporates mutual inhibition
between antagonistic motor pools. However, such a mutual inhibition,
when implemented in the controlled system proved to be less stable in the
sense that it was more easily disrupted by noise added to the activity of
the units. Therefore, the positive feedback version was selected for the
final control model.

The step activation function on the output units has a threshold value:
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this simply means that the state can be considered active only when the
correspondent output has a value larger than zero. The value for the
threshold has been arbitrarily taken equal to 0.1 but any other value com-
prised in the interval (0,1). This is a good choice in the case of non Boolean
sensory inputs.

This architecture, unlike a purely central neural oscillator or a mixed
model, does make the model entirely dependent on the reliability of its
sensory input. In the insect, the large number of units contributing to
measure leg parameters should guarantee sufficient reliability, but in this
model it isn’t so. This implies that the robot will be less robust to each sen-
sor failure and that with this kind of controller, the only way to improve
the robustness is to mount redundant sensors. This is the main disadvan-
tage of a completely reflex-based control strategy.

4.3.1 PEP net
The selector requires a Boolean information that indicates if the foot has
passed or not its posterior extreme position. This evaluation can be done
only by knowing both the PEP value and the current position of the foot.
In order to simplify the problem the comparison is done in terms of Carte-
sian coordinate taking into account the x one only, because is the most
significant. The PEP can be calculated starting from a reference value of
119 mm and adding all the coordinating influences (see chapter 5 for more
details). The current x coordinate of the foot requires a more complex
procedure. Since it’s not directly measured, in opposition with the GC pa-
rameter, it needs to be calculated starting from the current joint angles as
follows:

x = Lc + L f sin β + Lt sin(α − β)) sin γ (4.17)

This analytical expression, as the body height one, involves trigonomet-
ric functions that produces an increase in the computational cost. The
solution is the same: replace the exact formulation with an approximat-
ing ANN. The structure requires three inputs, one output and a mini-
mum number of hidden unit of three. With such a network the calcula-
tion time becomes one order of magnitude smaller than the original case:
6.95 × 10−5 s versus 7.35 × 10−6 s. A mapping of the approximation error
due to the ANN as function of foot position on the x-y plane (left side)
and of the foot position on the x-z plane (right side) is illustrated in figure
4.19. The error tends to be smaller closer to the reference position in the
x-z plane, but not in the y direction due to the nonlinearity of the behavior.
It increases faster after the reference PEP because it is a limit position for
the motion. The error level is always lower than the 1 % of the reference
length.
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Figure 4.19: Error on PEP calculated by the ANN.

The complete PEP net is composed by three units: a sum node that
translate the PEP from its reference value in dependency with the coor-
dinating influences, an ANN that takes as inputs the current joint angles
and calculate the current x coordinate of the foot and a switch node that
evaluate if the foot is placed behind the PEP or not.

4.4 Reflexes

A reflex is a behavior that happens only when a sudden change appears
in the environment. This means that the control of reflexes must be active
only for a little fraction of the whole motion. In order to manage these sit-
uations it is necessary to create an independent module to control each re-
flex. When the change occurs, the module is activated and the calculation
of the angular velocity for that leg skips from the current standard module
(swing or stance) to the required reflex one. This strategy has been success-
fully adopted by the Case Western University team (see Espenschied et al.
[38]) to control their Robot II (see figure 1.3). Another method to solve the
reflex problem has been used in the latest versions of Walknet (see Cruse
[1]). In this approach all the reflexes have been implemented as exten-
sions of the swing net: this seems to be closer to the biology than the first
one, but it requires a much more complex training process on the swing
module. To maintain the modularity of the controller, the first approach is
preferable and has been adopted in the present work.

4.4.1 Avoiding reflex
When an insect leg strikes an obstacle during its transfer phase, it initially
attempts to avoid it by retracting and elevating it for a short time and
then renewing its forward motion from this more favorable position. This
behavior is called elevator reflex and has been adopted in lots of controller.
A deeper analysis shows that there is not only a single elevator but at least
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Reflex Time [s] ∆γ [deg] ∆β [deg] ∆α [deg]
r1 0.1 –2 –5 —
r2 0.1 –4 –8 —
r3 0.1 — –5 –5
r4 0.1 –2 +5 —

Table 4.3: Angles and duration time required for the avoiding reflexes.

four avoidance reflexes exist and are activated by the sensory feedback
given by an obstacle:

- r1: a frontal stimulation of the tibia produces a levation and a retrac-
tion;

- r2: a frontal stimulation of the femur produces a levation and a re-
traction;

- r3: a lateral stimulation of the tibia produces a levation and a fles-
sion;

- r4: a dorsal stimulation of the femur produces a depression and a
retraction.

It’s very simple to reproduce an avoidance behavior, with a number
of different strategies: in this work the avoiding reflexes have been im-
plemented by four CTRNN all of them made by two completely intercon-
nected units. Three parameters must be fixed to train the networks: the
duration time and the two angular displacements imposed by the reflex.
The value of each parameter has been hand-tuned by a trade-off between
the duration of the reflex and the limits on the maximum permitted an-
gular velocity. In Table 4.3 these data have been resumed. The complete
training process is really fast due both to the little number of variables,
that reduces the dimensions of the solution space, and the simplicity of
the required behaviors. The parameters chosen for the GA, shown in table
4.4, have been the same used to train all the four avoiding reflexes.

It might be interesting to understand how effectively the controller
works: when the obstacle is detected, a sudden variation in the error on
the measured angular velocity occurs. At that instant the current joint an-
gles are memorized and a counter starts. The differences between the cur-
rent joint angles and their values are taken as state variables for the neural
network, when the external stimulation had been detected. The reflex is
stopped when the counter reaches the assigned duration time.
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4.20.1: Reflex r1.

4.20.2: Reflex r2.

4.20.3: Reflex r3.

4.20.4: Reflex r4.

Figure 4.20: Angles and angular velocities during the avoiding reflexes.
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N° of variables 8
Population size 100
Generation number 50
Elite count 4
Mutation type Gaussian
Mutation scale 20
Mutation shrink 1
Crossover fraction 0.8
Threshold score (Ψ̄) 5
Error level on angles [%] 5

Table 4.4: GA parameters for the training process of avoiding reflexes.

With the addition of the avoiding behaviors the motion of the leg be-
comes able to maintain its capabilities also when it faces obstacles of var-
ious nature. The effects on swing trajectories produced by these reflexes
are shown in figure 4.20.

4.4.2 Searching reflex
On a natural irregular terrain, supporting surface may be missing, e.g. if
there is a hole, or may be lost, e.g., if part of the terrain slides away from
under a leg. Insects can successfully negotiate terrain with large gaps and
then a walking robot must be able to do the same.

Stereotypical searching reflex in stick insect has been studied as a vari-
ation in the swing motion (see [39][40]). In this work a different approach
has been adopted, following the one proposed by Pearson and Franklin
[41] and applied by Espenschied et al. [38] on Robot II. This strategy con-
sists in moving the leg rhythmically in an increasing region of space to
search for a supporting surface. To fulfill this requirement efficiently, the
controller must show three different micro behaviors:

- oscillating motion describing a circle in the leg movement sagittal
plane (x-z);

- increasing size of the oscillation with each cycle;

- advancing motion in the direction of robot movement (x) and almost
constant in the other two direction, especially z.

This behavior is much more complex that the other ones that have been
shown up to now. The only way to simplify the design of this module is
to realize a sub-module for each micro behavior.
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Angle Frequency [Hz] Phase [deg]
γ 1.41 0
β 1.41 80.4
α 1.41 57.5

Table 4.5: Frequency and phase parameters for a searching reflex.

The oscillating movement can be obtained in the easiest way with a
CTRNN like a CPG, as shown in section 2.5, with a unit for each angle. The
training of a rhythmical generator can be done by using a fitness function
based on the harmonic behavior of the neural states, as widely investi-
gated in the previous works on NEMeSys (see [14] [15]). In this case two
distinct purpose drive the choice of the fitness: the three angles must have
the same frequency and must show a relative phase. The frequency and
phase values have been calculated, once fixed the desired trajectories in
the Cartesian coordinate space, by the analytical expression of the joint
angles as function of x, y and z. The reference values, that allow to max-
imize the angular velocities, are shown in table 4.5. To reduce the size of
the problem, two solutions have been adopted: since the frequency can be
scaled only by changing the time constants, their value have been taken
equal to 1 and hand-tuned later; the training of the α angle has been done
only after γ and β and every influences of the FT joint on the other ones
hasn’t been considered. This strategy allows to reduce the total number
of parameters from 12 to 10, but up to 6 for the single training process
that has to investigate a much smaller space of solutions. To increase the
size of the oscillations a gain with a linear time-dependency has been ap-
plied directly to the angular velocities given by the oscillators. The gain’s
parameters have been hand-tuned.

The advancing behavior is very complex too, because depends on a
condition in the Cartesian coordinates space, but the problem is expressed
in terms of joint angles. To obtain satisfying results, three CTRNNs, each
of them composed by two completely connected units, have been used.
These networks have been trained with the purpose to fit, with one of
their two states, the ideal trajectory required for a joint angle and with an
input corresponding to the target angular value that can be reached in the
furthest allowed position. The score to minimize is the maximum error on
the reference trajectory. Because each network is completely uncoupled to
the other, except for the timing, three different training, with the same GA
settings, have been done to reduce the time for each simulation.

The problems emerging from this structure are fundamentally two.
The former is the use of two different networks to calculate the required
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Oscillating Advancing (3×)
γ+β α

N° of variables 6 4 8
Population size 2000 100 1000
Generation number 50 30 50
Elite count 10 2 2
Mutation type Gaussian Gaussian Gaussian
Mutation scale 20 20 20
Mutation shrink 1 1 1
Crossover fraction 0.8 0.8 0.8
Threshold score (Ψ̄) 5 5 5
Error level on angles [%] — — 5
Error level on frequency [%] 1 1 —
Error level on phase [rad] 0.1 0.1 —

Table 4.6: GA parameters for the training process of a searching reflex. Both the
oscillating and the advancing behavior are present.

angular velocities, obtaining the outputs simply summing the two results.
This means that it isn’t immediate to insert the proprioreceptive feedbacks
coming from the sensors. Same as in avoiding reflex module the idea is to
use as states, not directly the angles, but values obtained subtracting the
joint angles at the start of the reflex, to the measured angular displacement,
but also, for each of the two networks, the ideal angles obtained when the
other network only was active, calculated by a numerical integration. The
latter problem is the need of a nonlinear offset to add to the β target angle
to avoid excessive variations in the z coordinate.

The searching behavior starts when the difference between the target
zAEP and the current foot height becomes greater than a given threshold.
The choose threshold value has been taken equal to 10 mm. The reflex
stops when the foot touches the ground. If this event doesn’t happen, the
foot returns to its starting position with a stepping reflex and the motion
of the entire robot must be stopped.

In figure 4.21 the results for the searching reflex controller are shown
in term of joint angles and angular velocities. This module produces a
sequence of oscillatory movements biased in the direction of motion that
grow in amplitude with each cycle, as required by rules. This effects cause
a constant growth in the angular velocities and drive to a saturation for
the α angle in the last part of the reflex. The correspondent trajectories are
illustrated in figures 4.22 and 4.23. The mean foot height remains almost
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Figure 4.21: Angles and angular velocities during a searching reflex.

Figure 4.22: Foot trajectory in the x-z plane during a searching reflex.

Figure 4.23: Foot trajectory in the x-y plane during a searching reflex.
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Figure 4.24: Error on advancing movement depending on starting height.

constant and the lateral distance from the body symmetry plane decreases
in order to maximize the explored area in the direction of forward motion.

In figure 4.24 the error on advancing movement is illustrated. A change
in the starting height produces a variation in the advancing behavior that
loose regularity, especially when the required AEP is placed below its ref-
erence value (left side). In such a case, the maximum error on the tra-
jectory, compared to the desired one, can reach 1 cm. The error show a
minimum when th AEP is placed 4 cm above its reference value.

4.4.3 Stepping reflex
Locomotion on rough terrains requires a legged platform to adjust itself
rapidly to mechanical perturbations of the single legs. Insects do this using
two strategies: in response to small perturbations, they activate muscles to
oppose the change in angle of a perturbed joint, producing the so-called
swaying reflex in the robot as shown in section 4.2. To re-establish a stable
posture in response to larger displacements, this approach isn’t sufficient:
the robot’s leg has to lift and move towards the center of its range of move-
ment, reducing the loads acting on its joints and improving the stability of
the posture. This behavior is known as stepping reflex (see [38]).

The identification of the starting instant for the stepping reflex is done
by space parameters: when a single joint angle goes beyond its upper or
lower limit, the reflex module is activated targeting the movement of the
whole leg to the reference values of the three joint angles (see table 4.7).
This happens when the leg is in its stance phase so the reflex induces a
phase transition that does not depend on the selector. This means that
the implementation must by-pass the selector module to perform this be-
havior. The limit values represent the value beyond which the torques
required by the actuators to maintain a given posture become greater than
the maximum allowed values or the stability can be guarantee by the co-
ordination system. In opposition, the reference values represent the sets of
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Angle Reference Upper limit Lower limit
γ 0/±30 35 –35
β 80/83.9 120 65
α 90/104.8 130 73

Table 4.7: Limit and reference values (in degrees) for the stepping reflex.

joint angles that allow to maintain static stability and minimize the torque
level. Three different sets have been considered, corresponding to the ref-
erence PEP, AEP and resting position. The controller chooses, as target,
the set closest to the reached limit position. The reflex ends when the
ground contact occurs, exactly as for a standard aerial phase.

To avoid a simultaneous execution of too many stepping reflexes, that
produces a statically unstable posture, the priority of each leg follows the
same coordination criteria applied during the normal motion (see chapter
5). Another problem typical of the stepping reflex is the one that it’s de-
tected during the stance phase, while the other ones start during a swing
phase, but its execution consist in an aerial phase. These two features re-
quire a more complex implementation that involves both the two states
and the transition criterion too.

To reproduce the stepping behavior a static ANN has been used, in-
stead of a CTRNN. This choice can be justified remembering that a reflex
has a very little duration time during which disturbances exert a small in-
fluence on the motion and that the initial and target conditions vary much
more than in the swing control case: in the CTRNN case, this drives to a
training process too much complex when compared to the importance of
this module.

In this case, as in the other reflexes, the stepping variable γs, βs and
αs aren’t directly the measured joint angles, but these ones decreased by
the correspondent target values: in this way all the targets of the network
become zero. This allows to reduce the total number of synaptic weights
from nine to six, because it is useless to size a weight that has to be multi-
plied for zero. The network consists in three neural units with a functional
dependency that can be summarized in the following equations:

γ̇s = wγγ γs (4.18a)
β̇s = wβγ |γs| + wββ βs + wβα |αs| (4.18b)

α̇s =

wαβ |βs| + wαα αs : βs >0
wαα αs : βs ≤0

(4.18c)

This structure shows the same auto feedback loops seen in the swing net
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Figure 4.25: Angles and angular velocities during a stepping reflex.

Figure 4.26: Trajectories in the x-y plane during a stepping reflex.

and a nonlinear coupling among different joints. In this case the coupling
involves not γ and β only, but also α. These further links and the non-
linear dependencies ensure the lift-off behavior for every configuration.
This complication of the original static swing net is necessary because the
stepping reflex can occurs with all the possible combination of signs that
the network variables can assume, a situation much more complex that a
standard swing motion that involves only a limited range of angles.

By this simple set of rules it is possible to reproduce all the stepping
reflexes that can occur during the motion. An example of these trajecto-
ries in the x-y and x-z plane is illustrated in figures 4.27 and 4.26 respec-
tively. In figure 4.25 the correspondent angles and angular velocities are
shown. It’s possible to see how, when the stepping reflex occurs it pro-
duces a sudden variation in all the angular velocities. This is necessary to
perform the motion as fast as possible as required to a reactive behavior.
Although its rapidity, this reflex causes the velocity to saturate only for lit-
tle configurations because it involves limited displacement, in opposition
with the searching behavior that shows wide saturations since it produces
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Figure 4.27: Trajectories in the x-z plane during a stepping reflex.

Figure 4.28: Error on advancing movement depending on starting height.

larger ones. In figure 4.28 the error on the target in function of the starting
position has been plotted. The error level is almost ignorable for all the
evaluated configurations, since it remains always below 0.1 mm
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Coordination
The strategy of the present work is to design a free-gait controller able to
adapt the coordination among legs to produce the most efficient gait de-
pending on required advancing velocity and external environment. This
problem can be solved by the application of local influence that varies the
motion of each limb in dependency of its neighbors. Advantages of local
rules are their simplicity and the resulting simpler implementation. How-
ever, the global behavior of a system of local rules can only be predicted
with difficulty. Therefore, it is also hard to set the design process to meet
certain criteria, e.g. body stability. The best tested system of local coor-
dination rules is the one based on stick insects behavior, elaborated by
Cruse [42]. Another very interesting model of this type has been proposed
by Porta and Celaya [43]. These two systems will be discussed in sections
5.1 and 5.2 respectively. The main idea of the this chapter is to merge the
structures of the two controllers, taking features of both of them, in or-
der to create a coordination model that had all the advantages of the two
systems, but also reduced the problems of each one. This process will be
described in section 5.3.

5.1 Cruse’s coordination rules

The behaviors of the legs affected by coordinating influences have been
already illustrated in subsection 3.6.3. In this section a quantitative for-
mulation of those rules will be introduced. Cruse’s model implemented
in its simplest version introduces only three of the coordination rules (1-
3) plus a fourth rule (4) that involves the targeting of the swing phase: it
will be discussed apart (see section 5.4). The model for rules 1 to 3 uses
default positions for the PEP of each leg. The local coordination rules shift
these default PEPs along the x-axis. These relationships can be summa-
rized qualitatively as follows:

1. the PEP of the affected leg is shifted backwards along the x-axis if
the ipsilateral posterior leg is protracting. This prolongs retraction
in the affected leg;

2. the PEP of the affected leg is temporarily shifted forward if the ip-
silateral posterior leg or the contralateral leg has just changed from
protraction to retraction. This shortens retraction in the affected leg;
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Figure 5.1: Coordinating influences.

3. while the ipsilateral anterior or the contralateral leg is retracting, the
PEP of the affected leg is shifted forward proportionally. This short-
ens the retraction in the affected leg.

The rules listed above produce variations in the motion of the affected leg
as it is illustrated in figure 5.1. Each rule can be mathematically expressed
as a mechanism that can be summarized in the following form:

∆PEP1 = −m1 (5.1a)
∆PEP2 = m2 : t < τ (5.1b)
∆PEP3 = m3(t/T ) (5.1c)

where the time t is taken 0 at the start of the stance of the sending leg and
T is the duration time of this phase. The interval τ is very little and often
taken equal to 60 ms. This means that each rules is defined by only one
numerical parameter. Reference values for PEP displacements compared
to other geometrical parameters are illustrated in table 5.1. The values
for each parameter are expressed in normalized units as given by each
reference work. The values used in the NEMeSys case are the ones that
give the more acceptable results.

The influences required in the simplified case (see figure 5.2) can be
summarized in three groups: rule 1 and 2 acting forward and rule 3 acting
backward on ipsilater legs, rule 2 and 3 acting between couple of corre-
spondent controlateral legs. All the rules are necessary because each of
them shows a specific effects on the receiving leg. Rule 1 avoid lift-off to
avoid static instabilities. Rule 2 facilitates early protraction to favor tem-
poral coherence. Rule 3 enforces late protraction to maintain temporal
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Figure 5.2: Simplified Cruse’s coordination model.

coherence. Taking the start from these considerations, a total of 18 rules
work in a six-legged walker. This means that to correctly size a controller
for the coordination among leg based on this set of local influences, up to
18 parameters are needed. The usage of natural symmetries makes it pos-
sible to reduce this number, but, also in this case, the space of the solutions
is quite wide. Another important problem of the training process involves
the evaluation of the fitness function: to calculate a score that allows to
obtain the correct weights, a very high number of simulations of the com-
plete model is necessary, e.g. with all the six legs active and connected
by the body, because either the variations in the advancing velocity or the
variability of the external environment must be taken into account. These
two features mean that the whole process is very cost expensive and gives
results only in a long time.

The complexity of the weights calculation is not the only trouble re-
lated on Cruse’s model. This coordination scheme maintain the stability
delaying or anticipating the transition from stance to swing, avoiding to
have too many legs in swing at the same time. The problem is how this
timing is obtained: supposing that the protraction velocity is almost con-
stant, as shown by experiments on stick insects (see Wendler [19]), Cruse
establishes that the duration of the stance phase can be varied by changing
the position of the PEP, the geometric parameter that manages the transi-
tion. This method has an important limitation: if the affected limb has to

79



Chapter 5

Parameter Espenschied Roggendorf NEMeSys
Step size 2 20 1
Mechanism 1 0.59 15÷20 0.7
Mechanism 2 1 3.5 0.5
Mechanism 3 0.58 6 0.2÷0.25

Table 5.1: Reference parameters for Cruse’s coordination rules.

remain in contact with the ground for a long time, e.g. the middle leg,
when the hind leg performs a searching reflex, the PEP should be shifted
far behind. This motion is not possible because the maximum allowed
posterior position is limited either by the geometry of the leg, e.g. seg-
ments length and limit angular displacements, or by the physical contact
with the body. In such a situation becomes it is impossible to maintain
the static stability of the robot by simply using the above said rules; other
rules or global criteria have to be introduced, losing the advantages of a
decentralized controller.

In its comparative analysis on some significant coordination mecha-
nism for a free-gait controller, Roggendorf [44] found the same difficulties
in the calculation of the parameters of the Cruse’s model and identified
other problems of this method: it performed reliably only when walking
slowly on even ground while its performance worsened with higher walk-
ing speeds; during the simulation of an obstacle crossing, the model shows
instabilities while ascending the obstacle and while descending it; during
a curve walking it shows a high probability to become statically unstable.

5.2 Porta and Celaya model

In order to describe the model of the gait generator proposed by Porta
and Celaya [43], the term of neighboring legs must be defined. According
to the Porta and Celaya model, the legs connected by arrows in figure
5.2 are neighboring, with the exception of the middle legs, which are not
considered neighbors. Thus each leg has exactly two neighbors.

To ensure stability, it must be granted that a sufficient set of legs stay on
the ground supporting the body at any time. In the case of most six-legged
robots, this requirement can be satisfied by observing the following rule:

Rule 1. Never have neighboring legs raised from the ground at the same time.

In their work Porta and Celaya assume that Rule 1 is a sufficient con-
dition to guarantee statically stable gaits. The fulfillment of this rule as-
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sures that, at any time, the robot will be supported by at least three non-
neighboring legs, forming a triangular support polygon (see subsection
3.6.1) for which it is possible to assume it will always contain the vertical
projection of the center of gravity (PCG). This assumption might not hold
in robots with very particular leg configurations or when the robot is too
much tilt. In any case, the violation of Rule 1, however, will result in a
situation in which two neighboring legs are out off the ground at the same
time, most probably leaving the robot in an unstable situation.

According to Rule 1, a leg can be raised to make a step only while its
two neighboring legs are in contact with the ground. However, Rule 1 by
itself is not enough to determine a gait. It leaves undetermined which one
of a pair of neighboring legs should actually perform a step when Rule 1
would allow both of them to be raised. To deal with these situations, it’s
possible to assign priorities to the legs introducing another rule:

Rule 2. A leg should perform a step when this is allowed by Rule 1 and its two
neighboring legs have stepped more recently than it has.

According to the Porta and Celaya model, a leg is lifted if it has a higher
lifting priority than both the neighboring legs. Lifting priority is defined,
taking the start from Rule 2, as follows:

- protracting legs have the highest lifting priority. This choice implic-
itly means that neighboring legs cannot protract simultaneously as
required by the Rule 1;

- retracting legs have a lifting priority negatively proportional to the
legs’ distance from their physical PEP: the closer a leg is to its phys-
ical PEP, the higher its lifting priority is. The physical PEP is deter-
mined by leg geometry mainly on the basis of leg segments’ length.
It can be defined as the hindmost point a leg can reach in a normal
walking position.

Porta and Celaya [43] proposed to determine the lifting priority by tem-
poral parameters. In that paper they also describe how they determine
the reference velocity vre f . Their method is, however, closely linked to
their method for the retraction trajectory control, that can be explained
by a physical analogy as illustrated in figure 5.3 (right side). An opti-
mal posture of the legs is defined (dotted lines) as the posture that min-
imize its distance from the reference one without changing the stability
characteristics. Each retracting leg tries to minimize the distance from its
actual position (solid lines) to its position in the optimal posture. The min-
imization follows a gradient (springs). The resulting translational and ro-
tational vectors are averaged to determine the global movement vector for
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Figure 5.3: Legs configuration in the Porta and Celaya model.

all legs. Retraction in a given leg is achieved by protracting other legs to
new positions: legs that step (protract) will shift their positions forward
(in front of their optimum), dragging the body with them by minimizing
their distances to their corresponding optimal positions once they reach
the ground. Thus, retraction velocity is determined by the protraction tra-
jectory length. Curved walking can be achieved by making protraction
trajectories that are longer on one side of the body than on the other. This
method hasn’t been reproduced in the present work, but is useful to un-
derstand how it’s possible to manage the retracting velocities in the correct
way to enhance the stability of the whole system.

To reach a better comprehension of how effectively this gait genera-
tor works, another concept has to be introduced: the gait state. For two
adjacent legs a and b, we will denote as:

a < b

when leg b has more priority to step than leg a. Taking the start from this
notation, the gait state of a six-legged robot at a given time is defined as
the list of the six relationships as the ones above that can be established
between neighboring legs. The gait state can be represented as a row of
six symbols < or >, corresponding to the relationships between priorities
of neighbors. The legs are numbered counterclockwise and number 1 is
the front leg of the left side as shown in figure 5.3. The resulting order is:
1, 2, 3, 4, 5, 6. Thus, for example, the state:

<><><>

represents the following relationships between leg priorities:

1 < 2 > 3 < 4 > 5 < 6 > 1
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Figure 5.4: Wave gait emerging from the Porta and Celaya model.

The gait state is important because it determines in a very immediate
way the number of legs that can start a protraction at a given time: if a
leg appears between a <> pair is allowed to protract, otherwise it must
remain in support phase. The description of a gait pattern by the gait
state notation, is a powerful instrument, because it’s able to characterize
all the hexapod gait in a very useful way. An example is the description
of a generic wave gait, the most stable and efficient kind of walk on a flat
surface, is shown in figure 5.4.

Porta and Celaya [45] propose an optimized version of that model: if
a>b>c>d change priorities to a>b<c>d, thus leg c can be lifted despite
the original rule. The converse also holds: if a<b<c<d change priorities
to a<b>c<d, thus leg b can be lifted. Since protracting legs always have
higher lifting priorities than both neighbors, the rule not to lift neighboring
legs simultaneously is not violated. However, since more distant neigh-
borhood relations have to be taken into account, the model is less local
when using this optimization procedure. Without the optimization only
immediate neighborhood relations are required for coordination. This op-
timization was used in the controller presented in the section below.

The main problem of the Porta and Celaya’s model is its incapability
to produce autonomously the most efficient wave gait when the reference
advancing velocity becomes slower. At the maximum speed permitted by
the static stability requirement, the gait converge to the tripod one, but
with smaller velocities the coordination criterion above, starting from a
general position, aren’t able to drive to the gait more appropriate to its
range of speed, as done by the Cruse model (see [46]). This behavior can
be explained with the motivation supported by Roggendorf in his work
[44]. He considers that this model tends to lift legs as soon as possible with
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the purpose of maximize the advancing velocity. This requirement drives
the walking pattern to the tripod gait that is the fastest possible, but, at the
same time produce a very poor performance with low retraction velocities.
The generation of gaits at the lower velocities becomes a problem because
this controller tends to concentrate the swing phases in almost the same
time slice, producing a situation in which the legs are all close to their PEP
and the robot is too inclined. This is the kind of posture in which Rule 1
doesn’t ensure static stability and an unstable gait can occurs.

5.3 Coordination model

In the present section the coordination model adopted for the gait gen-
eration of the NEMeSys robot will be discussed. The system consists in
a hybrid version of the two models summarized above that tries to take
into account advantages and disadvantages of both of them. The purpose
is the design of the simplest controller possible able to fulfill, at the same
time, the two following requirements:

1. ensure static stability in all the situations. The criteria on which is
based the generation of the gait pattern, must ensure a statically sta-
ble motion not only during a typical walk, but also on a wider range
of possible movement, i.e. during a searching reflex. Thus the con-
troller must be able to decrease the advancing velocity of the whole
robot or to stop it if necessary;

2. produce an efficient gait. The fulfillment of the stability requirement
shall not reduce the efficiency of the gait. Thus, during the walking
on flat surface the free-gait has to naturally evolve through a stereo-
typical wave-gait. This behavior should ensure to obtain the most
efficient gait at every speed, in the entire range of velocities.

The first requirement implies that another criterion, based on the retrac-
tion velocity, has to be considered. This criterion must be global, to man-
age the advancing velocity and has to be as simple as possible to avoid
any decrease in the computational efficiency of the whole system. The
second requirement implies that the rules that produce a certain wave-
gait must be found. These rules must be obviously local and have to be
implemented in their simplest form. Moreover they should be the same
used for the stability control, or at least don’t have to be in conflict with
them.

The comparison done by Roggendorf shows how the most effective
system for the generator of gaits, among the tested ones, is represented
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Figure 5.5: Slow gait with an unmodified Porta and Celaya model.

by the model developed by Porta and Celaya. It fulfils per se the first
requirement of the problem: the stability margin is always maintained
above zero during the entire walks. This results descends automatically
from the structure of the controller, because Rule 1 doesn’t allow to reach
an unstable posture. Moreover, this model outperforms not only the sim-
ple Cruse’s method, but also more complex, even globally controlled ones.
The better results are obtained in terms of higher stability margin, es-
pecially during complex behavior such as crossing an obstacle or curve
walking. Another important advantage of this model is that it reached
the lowest computational cost among all the principal tested gait genera-
tors. These considerations show how a good choice to design an efficient
gait controller is to start from the Porta and Celaya model and to intro-
duce some modification to it in order to improve its capabilities. To solve
some of the troubles that afflict this system, Roggendorf was the first to
introduce some modification to the model.

The first important updating was a different method to calculate the
reference velocity: as it was shown in the previous section the original
version uses a quite complex method based on minimization criteria that
involves the calculation of lots of global parameters. Instead, an even sim-
pler approach can be adopted: as legs get close to their physical PEPs,
the retraction velocity vr for all legs is lowered. In this way the retrac-
tion velocity can reach zero as needs by the first control requirement. This
approach is somewhat similar to the one discussed by Porta and Celaya
[43]. In the Porta model, one leg that approaches its physical extreme will
’stretch its spring’, exerting a backward force on the body, eventually halt-
ing retraction altogether; in this one the same behavior is obtained with a
much simpler kinematical criterion.
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Another problem of the Porta and Celaya model is its tendency to lift
off the leg as soon as possible. This allows to reach the most effective tri-
pod gait earlier than in the other models, but with low retraction velocity,
the PEPs are shifted very far forward, eventually to positions shortly be-
hind the AEPs, to maintain the correct timing. This can lead to dangerous
instabilities because the support polygon assume a very stretched configu-
ration. An example of this behavior is illustrated in figure 5.5. To avoid it a
second modification of the Porta and Celaya model has been proposed. In
this version, the lifting rules were applied only if the distance D of a given
leg from its physical PEP was smaller than a preset threshold T. In his
work the threshold is set to 5.0 length units in the simulation, compared
to mean step size of 20 units. These parameters are used to calculate the
actual retraction velocity vr. Each retracting leg proposes a desired global
retraction velocity accorded by equations 5.2.vr = D

T vrre f : D<T
vr = vrre f : D≥ T

(5.2)

This method to calculate the global reference velocity implies that the
leg with the smallest proposal determines the actual vre f . The calculated
reference velocity will obviously be a fraction of the required one (vrre f )
and in the ideal case of perfectly coordinated legs movement, it will as-
sume exactly the required value. This coordination rule requires a global
planning to be performed: all the reference velocities proposed by the six
legs have to be taken into account to calculate the actual one. The introduc-
tion of a global rule seems to make the method lose the properties depend-
ing to its decentralization. This situation, however, doesn’t produce any
decrease in the performances, because the formulation of the rule is very
simple and involve only parameters that have been already calculated.

Roggendorf proposed another modification to the Porta and Celaya
model. This control system made use of the threshold T for calculation of
vr only, but it calculated the lifting priorities with a different approach. It
was checked whether the walker would become unstable if that leg were
lifted: a leg was lifted only if the walker retained static stability. The prob-
lem is evaluating the stability a global parameter as the stability margin
must be calculated. This means that this extension implies a much more
advanced planning than the previous ones and drives to a greater increase
in the computational cost. This is the reason why it will not be employed
in this work.

The only parameter involved in the sizing process of this modified
Porta and Celaya model is the value of the threshold T. The reference value
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5.6.1: High threshold.
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5.6.2: Reference threshold

Figure 5.6: Effects of a too much high threshold T on the coordination.

found by Roggendorf is exactly 1/4 of the mean step size. To evaluate the
possibility to change it, a sensitivity analysis about its effects on the quality
of the gait pattern has been performed showing the behaviors as follows:

- the increase of the threshold value causes the PEP to be placed too
near to the AEP, especially at low velocities. This is the same prob-
lem shown by the unmodified model that has a threshold virtually
equal to the step size. An advantage of an high threshold is to have
a quick transition from a free-gait to the more effective tripod one.
The other important advantage in increasing the threshold is to im-
prove the regularity of the gait: with a sufficiently high T, the leg
doesn’t have to slow down to enhance the static stability of the gait,
maintaining a proposed vr always equal to vrre f ;

- the decrease of the threshold value drives to an irregular motion.
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Figure 5.7: Effects of a too much small threshold T on the coordination.

With a too much little T, the leg hasn’t enough time to correctly de-
crease its velocity, and this causes to a loss of coordination. During
a poorly coordinated walk, the controller tries to keep a leg on the
ground as longer as possible stopping its motion; this is the reason
why the advancing velocity becomes irregular. The main advantage
of this behavior is the possibility of having the PEP closer to its refer-
ence value, producing a legs’ motion that allows to reach a globally
optimal posture.

The irregularity effects occurs only for threshold values very close to
zero, so the sizing criterion is to minimize the threshold, but, at same time,
to maintain a regular motion. The limit value has been found equal to
1/12 of the mean step size. Smaller values produce sudden decrease in the
advancing velocities followed by returns to the reference ones, when the
global configuration allows it. This behavior can be identified especially
at the fastest gaits.

The version of the Porta and Celaya model modified by Roggendorf
and adopted in this work fulfils the stability requirement completely, but
doesn’t allows to solve the incapability of this model to reproduce a wave-
gait for low velocities. On the other hand, as it has already been said,
the same behavior autonomously emerges from the Cruse’s set of rules.
The solution might be to understand which of the rules are responsible of
this particular behavior and to insert them into the modified version of the
Porta and Celaya model, paying attention not to lose the useful capabilities
that it shows per se.

The evaluation of a decentralized control system, as the one adopted to
manage the coordination, is very difficult to obtain with classic techniques.
The way used in related works, as in the present one, is the Kindermann’s
ethological approach to systems analysis that consists of an evaluation and
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Figure 5.8: Effects due to the absence of coordinating mechanism 2.

a quantification of the behavior of the complete, rather complex models.
The systems are run in a global simulation, and the general behaviors are
observed building a statistical description of their main aspects rather than
a complete formal analysis. This means that an evaluation of the actual in-
fluence of each single rule is not available. To understand reasonably how
a rule works, the most interesting results are the ones obtained in lesion
studies (e.g. Espenschied et al. [46]). In these works that aimed to evaluate
the robustness of the Cruse’s coordination model, entire mechanisms have
been removed. Without a given mechanism, the coordination loses one or
more of the behaviors identified by Wilson (see subsection 3.6.2) making
it possible to establish some relations between mechanisms and behaviors
as follows:

- mechanism 2 promotes normal back-to-front metachronal wave on
the ipsilateral legs. This mechanism exerts an excitatory influence
on anterior legs. Upon touchdown of a leg, it facilitates the lift-off of
the next anterior leg. Thus starting from a random legs configuration
it tends to put the swing phase of each leg juts after the protraction
of the posterior one producing a metachronal wave on each side. In
figure 5.8 the effects due to the absence of this rule are illustrated.
Without it the legs, instead of reproduce a back-to-front wave, try to
reach in every case a tripod gait. At low velocities, this behavior con-
centrate the start of swing phases all at the same time (left side). In
this configuration more than one leg is in transfer phase and legs on
the ground are close to their PEP. This produces a very tilt posture,
reducing the stability margin (right side);

- mechanism 3 promotes 180-degrees phasing between cross-body leg
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Figure 5.9: Effects due to the absence of coordinating mechanism 3.

pairs. This mechanism exerts an excitatory influence on the neigh-
boring limbs during late stance. The closer a leg gets to its normal
lift-off position, the stronger the facilitatory influence is on the other
legs to undergo a stance-swing transition. This mutual influence
among two contralateral legs causes the identified phasing. In figure
5.9 the effects due to the absence of this rule are illustrated. With-
out it the robot tends to concentrate all the swing at the same time.
This produces an inefficient gait at low velocities, with a peak in the
power consumption too much beyond the requirements for a slow
motion.

It’s clear how this two mechanisms are sufficient to solve the main prob-
lem of the modified Porta and Celaya model: mechanism 2 produces the
backward sequences of swing phases on each side and mechanism 3 phase
them to produce the correct wave-gait.

The first step is the introduction of mechanism 2 alone. The action re-
quired for this mechanism is the generation of a back-to-front metachronal
wave on each of the two sides of the robot. This means that the rules need
to be implemented only between two ipsilateral legs. Since the rule moves
toward the front of the robot the couple of hind legs isn’t affected, so, two
rules only for each side have to be taken into account, for a total of four
local influences. To size the parameters correctly for this mechanism a
consideration has to be done: in the full Cruse model, rule 2 acts synergi-
cally with rule 1 to couple a back-to-front sequence of swing movements,
first by suppressing, then by facilitating a stance-swing transition in the
anterior leg. In the present model the situation is quite different: instead
of the rule 1, the Porta and Celaya criterion based on the lifting priority
has been used. It exerts an inhibitory influence on anterior legs as rule
1, but also on the other neighboring leg, thus the influence required by
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rule 2 is different from the one needed in the reference case. The actual
values for the parameters could be far different from the reference ones as
shown in table 5.1, especially for one reason: the Porta and Celaya model
tends to put the swing phase of each strictly before or after the protraction
of its posterior neighbor. Since the wave-gait can be obtained in the first
case only, in the second one the influences have to be very high to coun-
terbalance. To calculate them an hand-tuning process has been performed
starting from the standard values and evaluating the sensitivity of the gait
properties depending on each parameters. This process allows to classify
three important behaviors:

- the duration of the mechanism has to be extended up to the whole
first half of the power stroke of the sending leg. This is an impor-
tant change when compared to the classic formulation in which this
duration was very small: about 60 ms by temporal criteria, less than
the 5% of the power stroke duration for a tripod walk. The effect of
this behavior is to accelerate the transition from a free-gait to a wave-
gait, by locking the swing of a leg as soon as possible just after the
protraction of its posterior neighbor. With a smaller duration time,
the wave-gait emerges only after a high number of steps, especially
at lower velocities, while with greater ones, the motion becomes un-
stable during the faster gaits;

- the influence of the mechanism depends on advancing velocity. At
lower velocities the duration of the stance phase is much higher than
with the swing one. This means that a value of influence compara-
ble with the step length has to be applied to ’unlock’ a swing phase
placed just before the protraction of its posterior neighbor, instead
of after. This happens because, in this case, the swing is performed
while the sending leg is at the end of its power stroke, so the differ-
ence between the current location of the return stroke of the target
leg and the required one is comparable with the length of the power
stroke itself. At higher velocities the problem is the same, but the
duration of the stance phase is very close to the swing one and the
required effect can be obtained also with a smaller displacement of
the PEP, compared with an half of the step. At these speeds another
problem occurs: a much higher value of displacements produce an
unstable gait, so its value must be reduced;

- the regularity of the gait depends on the strength of the influence. A
strong influence, like a high duration time, is able to produce a fast
transition from a general free-gait, to a wave one. With a lower in-
fluence some legs have to wait the other ones, that are still in stance,
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decreasing their protracting velocities. Since the global advancing
velocity is the minimum of these ones, the whole robot has to walk
with a slower speed, until the configuration allows to start with a
new step sequence. This behavior generates an irregular advanc-
ing velocity that causes an inefficient motion. The problem is that
it isn’t possible to increase the strength of the influence arbitrarily,
because this could produce an instable gait, as discussed in the pre-
vious point;

In this work the influences of both the mechanisms have been calculated
by spatial, instead of temporal, parameter. This choice has been preferred
because the controller structure allows to have almost exact values of all
the geometric parameters starting from the measured joint angles, while
the characteristic times of the motion could be only roughly estimated.
The implementation of mechanism 2 is the same as show in section 5.1,
but the threshold T2 is a displacement, instead of a time:

PEP1 = PEP1−re f + m2 : (AEP2 − x2) < T2 (5.3a)
PEP2 = PEP2−re f + m2 : (AEP3 − x3) < T2 (5.3b)
PEP5 = PEP5−re f + m2 : (AEP4 − x4) < T2 (5.3c)
PEP6 = PEP6−re f + m2 : (AEP5 − x5) < T2 (5.3d)

The mechanism 2 is only able to produce statically stable gaits that
show a metachronal wave propagating among the legs of each side, but
to introduce correct relationship from a side to the other, is necessary to
introduce another rule. The second step consists of the usage of the mech-
anism 3 to obtain the correct phasing between the two sides. Before start-
ing with the sizing of the parameters of this mechanism, an important
consideration must be done. The back-to-front wave of protracting has
been obtained with four rules acting from a leg toward its anterior neigh-
bor: this means that on the couple of hind legs no more influences have
been added to the Porta and Celaya model. But, more important, it also
implies that the coordination of the three legs attached on each side de-
scends from the motion of the correspondent hind leg. Taking the start
from this consideration it is possible to argue that the complete coordina-
tion can be achieved by applying the mechanism 3 only between the two
contralateral hind-legs. This simplification could seems quite brutal, but
the results obtained by the simulation show all its effectiveness. Moreover
it allows to reduce the number of influences from six to only two. The only
parameter that manages this mechanism is the maximum displacement
reached at the end of the sending leg’s power stroke. The formulation for
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the mechanism 3 can be summarized as follows:

PEP3 = PEP3−re f + m3

(
1 −

x4 − PEP4

AEP4 − PEP4−re f

)
(5.4a)

PEP4 = PEP4−re f + m3

(
1 −

x3 − PEP3

AEP3 − PEP3−re f

)
(5.4b)

where m3 is the weight of the influence, PEPre f the reference posterior ex-
treme position. Obviously, as widely shown before, this coordinating in-
fluences acts only if the sending leg is performing a power stroke, other-
wise is equal to zero. The calculation of the strength of this coordinating
mechanism has been performed the same way as the parameters of mech-
anism 2: by an hand-tuning process that evaluates the sensitivity of the
gait properties depending on its only parameter. The reference value of m3

taken from table 5.1, is of about 25% of the normal step length. Variations
from this value show the behaviors as follows:

- at low velocities, an increase in the strength of the mechanism accel-
erate the phasing. In the same way of mechanism 2 an high influence
reduces the time to pass from a free-gait to a wave one. The prob-
lem is that higher strength corresponds to a higher phasing and this
changes the gait starting a side too much late after the other one.
This behavior can be identified only when a sufficient number of
stride have been performed. This is the reason why the simulation
time depends on the advancing velocity;

- at high velocities the required influence seems to vanish. This hap-
pens because the Porta and Celaya model converges to a tripod gait
at the highest velocities without any add-on. With just a little lower
advancing speeds the obtained phasing is far from being correct.
This means that the mechanism must be maintained active for all
the range of velocities.

When the value is altered with respect to the reference one, all the shown
behaviors cause decreases in the performances, without introducing any
advantage. This means that maintaining the reference value appears to be
the best choice in order to size the weight of this mechanism in the correct
way.

5.4 AEP targeting

In this investigation upon the mechanisms that regulate the targeting be-
havior shown by the legs during the swing phase, Cruse [47] obtained an
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Figure 5.10: Targeting on AEP in a stick insect.

unexpected result. He found that the anterior extreme position of a leg is
not fixed within a coordinate system relative to the body, but it’s controlled
by the position of its ipsilateral anterior leg. This means that the behav-
ior can be considered as a form of coordination among legs and, for this
reason, he treated it in this way, inserting this mechanism in his biological-
based coordination model as rule number four (see subsection 3.6.3). This
rule is also called the follow-the-leader placement strategy.

The calculation of the leg’s target position during the swing phase can
be treated as a problem apart from the rest of the coordination, because it
involves the module that controls the return stroke, instead of the selector.
The idea is to create a separate module able to give, as outputs, the three
joint angles used by the swing net as targeting inputs. This additional
part of the controller has been introduced for the first time in Walknet and
called target net (see Dean [48]). In the present section a simplified version
of this module will be discussed.

The first consideration is that for the two front legs, the AEP doesn’t
depend on any parameter of other legs. In this case the value of the AEP
is always the same and it’s taken equal to the reference anterior extreme
position. The choice to maintain a constant AEP for the front legs could
seems a problem especially when they face an obstacle or a gap, but it isn’t
so. When a leg finds a gap, a searching reflex is activated to cross it, as ex-
plained in subsection 4.4.2. A general obstacle can be climbed if the leg is
sufficiently elevated during the swing phase or can be completely avoided
when its trajectory passes above it. Should the gap be larger or the obsta-
cle higher than the capabilities of the control system, a correction of the
pattern at an higher level would be necessary (see section 1.1). For the
other legs, the module basically consists in a function able to take, the cur-
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rent joint angles of the correspondent anterior ipsilateral leg as inputs and
gives the set of joint angles that represents the required AEP as outputs .
This function can be expressed in its simplest form as follows:

xAEP = xant − ∆AEP (5.5a)
yAEP = yant (5.5b)
zAEP = zant (5.5c)

where the Cartesian coordinates are expressed in the absolute reference
frame and the value for ∆AEP has been taken equal to 60 mm. The reason
for this choice can be justified remembering that the model of the robot
uses monodimensional beams to simulate the limb’s segments, but the
real legs has a square section with a side of 25 mm (see chapter 7). In the
worst case the contact between two feet may occur when the distance from
a footprint to the other becomes lower than 35 mm about. Taking a margin
equal to the side of the section the value of 60 mm is obtained. The required
behavior is shown in figure 5.11 (left side). The requirement is the same,
independently from the current position of the target footholds.

In his work on leg targeting in stick insects, Cruse found that the actual
behavior is quite more complex, because the AEP shows a displacement
not only in the x direction, but also in the y one. Moreover, the value of
these displacements changes as a function of the position of the sending
leg and it assumes different values when the target leg is a middle or a
hind one. This complexity seems to be useless in the control of NEMeSys
because it has a geometry far different from the one on which Cruse per-
formed his test: the stick insect shows a differentiation among front, mid-
dle and hind legs, while the robot have six legs with the same geometric
characteristics. Other differences can be found in the position of the legs
on the body and in the ratios among characteristic lengths, such as the
distance among legs or the mean step length. The superior symmetry of
the robot allows to use only the x-component of the required displacement
obtaining the correct results.

The first idea could be to use the Cartesian coordinate directly to solve
the problem, but, since the model is completely controlled in terms of an-
gular variables, this isn’t the best choice. Obviously the calculation of the
AEP can be expressed in a very simple form, but this procedure requires a
double conversion, first from angles to displacements and then from dis-
placements back to angle. The process involves nonlinear trigonometric
functions that increase the computational cost, so, a better solution is to
formulate the problem directly in the joint angles space.

This means that the aim is to fulfill a task in the Cartesian space only
by using calculation in the joint space with angular variables. As shown
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Figure 5.11: Targeting on AEP with the simple form of the target net.

in section 2.4, a simple method to solve such a problem might be to ap-
proximate the function with a properly trained static ANN. To train the
network it’s necessary to start from a standard set of inputs and outputs
to fit. The method to obtain these values is quite simple: a great amount
of sets of joint angles has been selected inside the limit working space of
each joint; for each of these sets the analytical, cost expansive calculation
described above has been performed obtaining the correspondent sets of
target angles; taking the former values as inputs and the latter ones as
outputs, it’s possible to start the training process. To obtain sufficiently
accurate results in all the range of joint angles is necessary to use at least
three neurons on the hidden layer of the network. The results obtained
with this configuration are shown in figure 5.11 (right side). The error be-
tween the desired position and the one actually given by the ANN has
been mapped as a function of the displacements from the reference PEP in
the x-y plain. The values are sufficiently low in a wide range of positions,
but increases suddenly in certain areas. This can be justified because this
region are close to the limit values of the position used during the training
process.

The main disadvantage of this solution is its poor flexibility. If the po-
sition of the sending leg is far from its reference value, the target leg will
receive the input to assume a posture that can reduce the stability consid-
erably or increase the stress levels too much. To solve this problem it’s
possible to start from Cruse’s findings, by using a 2-dimensional displace-
ment that can be expressed as a function of the position of the sending leg.
Instead of using the values found for the stick insects, an optimization cri-
terion has been adopted: the required target position will be the one that
finds a good compromise between the follow-the-leader requirement and
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Figure 5.12: Targeting on AEP with the complete form of the target net.

the displacement from the reference AEP value. Moreover the distance
between the two footprints will always be sufficiently high to avoid every
contact between the sending and the receiving leg. The simplest method
to obtain these results is to start from a standard displacement and to cor-
rect it with a function of the distance of the sending leg from its reference
position, with the constraint that the distance between the two legs can’t
be smaller than a limit value δ=40 mm. The functional dependency can be
summarized as follows:

xAEP = xant − ∆x + f (xant − xre f ) (5.6a)
yAEP = yant − ∆y + g(yant − yre f ) (5.6b)
zAEP = zant (5.6c)√

(xAEP − xant)2 + (xAEP − xant)2 + (xAEP − xant)2 > δ (5.6d)

The functions f and g have a linear behavior. The relative weights be-
tween the two influences have been found by an hand-tuning process. The
correspondent behavior is shown in figure 5.12 (left side). When these re-
lationships are known it’s possible to produce sets of inputs and corre-
spondent sets of outputs and to proceed with the same training process as
described above. In this case to obtain sufficiently correct results it’s nec-
essary to use higher number of hidden units: a good compromise between
precision and network complexity is given by an hidden layer with twelve
neurons. The results obtained with this configuration are shown in figure
5.12 (right side). The calculation error of the network on the x-y plane is
smaller than the one in the simplified design. This happens because the
number of hidden units is much greater than in the previous case.
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5.5 Results

In this section the results obtained for different gait pattern will be illus-
trated. A single input to the controller, the gain on advancing velocity
Gv, varies the robot speed from zero to the maximum value which is ap-
proximatevely of 160 mm/s. As the speed is varied, a continuous range of
statically stable gaits is produced, as shown in subsection 5.5.1. In subsec-
tion 5.5.2 the critical case of leg failure is illustrated. For each gait, the first
figure represents the gait diagram, the second one the advancing speed
proposed by the gait controller (left side) and the longitudinal x position
in the body reference frame for each leg as function of the time (right side).

The robot begins to walk always in the same reference configuration,
but the results have been shown when the regime condition has been
reached. This is necessary to do a correct comparison among different
gaits, because the slower is the gait, the longer is its transient.

5.5.1 Wave gaits

Figure 5.13: Gait diagram of a slow wave gait (β=5/6).

Figure 5.14: Proposed advancing speed and stepping patterns of each leg of a
slow wave gait (β=5/6).
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Figure 5.15: Gait diagram of a slow ripple gait (β=3/4).

Figure 5.16: Proposed advancing speed and stepping patterns of each leg of a
slow ripple gait (β=3/4).

Figure 5.17: Gait diagram of a fast ripple gait (β=2/3).
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Figure 5.18: Proposed advancing speed and stepping patterns of each leg of a fast
ripple gait (β=2/3).

Figure 5.19: Gait diagram of a tripod gait (β=1/2).

Figure 5.20: Proposed advancing speed and stepping patterns of each leg of a
tripod gait (β=1/2).
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The gait diagrams previously illustrated, show how the coordination
system fulfils all of the requirement: the gaits range from the slow wave
gait to the tripod gait, all of which display a metachronal back-to-front
wave. More important, the gait controller avoids to any couple of neigh-
boring leg to be in swing phase at the same time, automatically ensuring
a statically stable motion. These results show also an almost perfect ac-
cordance with the ones obtained by Wilson [27] in its work on insects (see
figure 3.10). The main difference is that, in an actual insect gait, between
the swing phases of a couple of neighboring legs there is always a pe-
riod during which both of them are in stance. This is a further strategy
to improve the robustness of the gait that hasn’t been considered for the
NEMeSys controller.

The trend for the proposed velocity is the same for every gait: after a
brief transient phase, during which its value can repeatedly decrease re-
turning to the reference value in less than a second, the gait reaches its
regime condition and the proposed velocity remains constant ensuring
the regularity of the motion. This means that the main disadvantage of
this controller, the possibility to produce an irregular advancing motion,
doesn’t occur in the entire range of the wave gaits.

The behavior of the x-position of the foot allows to identify two char-
acteristics of a stereotypical wave-gait. The former is that the duration of a
swing phase remains constant, independently from the global advancing
velocity that is regulated by the speed of the protracting legs only. The
latter is the 180-degree phasing that exist between two contralateral legs.
Both of these two behaviors are correctly simulated by the gait controller
in all the evaluated gait pattern.

It may be interesting to evaluate quantitatively the effect of the refer-
ence velocity command Gv on the two most important gait parameter: the
duty factor β and the actual advancing speed. In both the case the func-
tions β(Gv) and V(Gv) monotonically decrease as shown in figure 5.21. It’s
possible to obtain analytical expression of these functions by a least mean
square approximation. It gives the following results for the duty factor β:

β = 0.7853 ×G2
v − 1.8847 ×Gv + 1.6047 (5.7)

and for the global advancing speed V :

V = 278.68 ×Gv − 113.13 (5.8)

These two functions can be very useful to command the actual robot in
a real-time application. By inverting them it’s possible to assign directly,
as command, the advancing speed or the gait form, expressed in terms of
duty factor.
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Figure 5.21: Effects of changes in the velocity command Gv on duty factor β and
on body advancing speed.

It’s important to note that to a given value of Gv corresponds a regime
value of advancing speed different from the relative proposed one Vrre f .
The ratio between the two is constant and equal to 0.415. This is not a
problem, because the trend of Vrre f interest only from a qualitative point
of view. To obtain the same values is sufficient to normalize it by adding
another gain to the stance net.

A last consideration: the two analytical relation shown above works
only if Gv>0.5 and Gv<1. Below this range (Gv=0.45 in the figure) the be-
havior changes and becomes less regular. This is not a problem because
the advancing velocities in this range of gains are too much low to be ef-
fectively employable during the motion. Above the limit, the global ad-
vancing speeds doesn’t change because the gait controller stops the legs
that walk too much faster in order to maintain a tripod gait. This behavior
is necessary to ensure a statically stable motion with always at least three
non-neighboring legs that touch the ground. Moreover, although the lack
of regularity, the behaviors maintain their trends since the two curve are
monotonically decreasing in the entire range of permitted Gv values.

5.5.2 Leg failure
A major advantage of a hexapod robot on quadruped and biped one is
its capability to maintain a statically stable posture also when one, or even
two legs, are in failure. This means that the leg cannot correctly follows the
trajectory given by the controller because one or more sensors or actuators
don’t work or because the structure is broken. For the stability this implies
that the leg isn’t able to support its part of the body weight or from a more
formal point of view, that it can’t be a vertex of the supporting polygon
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Figure 5.22: Gait diagram with a leg failure on L2 (Gv=0.65).

Figure 5.23: Proposed advancing speed and stepping patterns of each leg with a
leg failure on L2.

like it was always in swing phase (see subsection 3.6.1).
A coordination method must allows a stable motion also when the fail-

ure of at least one leg occurs. This can be obtained in a easy way with a
method based on local rules like the one adopted in this work. It is suf-
ficient to switch-off the broken leg and to bypass the rules by applying
them directly between the other limbs. It’s obvious that a high-level fault-
detection system is necessary in order to understand when switch-off a leg
and bypass it.

In this section a failure in the middle left leg (L2) has been considered:
in this case the hind and front legs become neighbors and the coordina-
tion has been applied between them. In figures 5.22 and 5.23 the resulting
motion is shown. The main difference from a wave gait is the loss of regu-
larity in the global advancing velocity. Another degradation in the perfor-
mance is the loss of the metachronal wave in the gait pattern. This can be
easily justified by remembering that the system has been designed in or-
der to work optimally with six legs. The static stability is maintained with
a velocity command Gv<0.7, but above this value it isn’t ensured anymore.
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Numerical results
This chapter describes the derivation of a dynamic model of NEMeSys.
The complete model is too complex for formal derivation, so a numeri-
cal approach based on a multibody software was used. The first section
discusses aspects of modeling walking robots, gives general and specific
assumptions to NEMeSys. Then section 6.2 describes the results obtained
by an application of the controller developed in the previous chapters.

6.1 Model

In order to simulate the robot’s behavior, some kind of model of a legged
system is necessary, as underlined by Riddenström [49]. This virtual en-
vironment is also very useful for analysis and control design. A relatively
complete simulation of a walking robot requires several kinds of models:

- kinematic differential equations and dynamic differential equations
of the robot’s rigid body model;

- actuator and sensor models;

- models of the environment, such as a model of the ground and the
interaction between foot and ground, including ground geometry
and characteristics or a model of external and internal disturbances;

- model of control implementation and communication system.

To test the controller it is important the introduction of a dynamic
model of the robot and of dynamics effects in the components and in the
interaction with the environment. Without this complexity it would be
impossible to understand how the system effectively reacts to the gravity
or if it’s really able to walk upon the terrain. For the design phase, on the
other hand, it might be enough just a partial kinematic description of the
robot as shown in the previous chapters.

The usage of an analytical description of the dynamics and the kine-
matics could be interesting with a traditional control system design that
requires a complete knowledge of the equations that control the motion.
In this case a partial definition of the kinematic equation that describes
the robot has been sufficient to design the controller completely, so, to
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simulate the dynamics, a simpler method can be used. For example, this
approach could be the usage of a multibody model that allows to describe
the whole robot with a very immediate procedure. A multibody model is
typically used to describe the dynamic behavior of interconnected rigid or
flexible bodies, each of which may undergo large translational and rota-
tional displacements. In the present case the small load levels and the low
frequencies allows to approximate each component of the robot as a rigid
body.

Note that there is, of course, a tradeoff between using detailed mod-
els and the speed with which the simulation runs. Therefore, models of
sensors, control implementation and communication have been included
and used in special cases only. On the other hand, the rigid body model
and ground model are always used, whereas different types of actuator
models have been switched between frequently.

6.1.1 Simulation environment
To simulate the behavior of a multibody model a great number of available
softwares exist, such as MSC ADAMS or MBDyn. The main problem of
these programs is that it’s quite difficult to interface them with software
developed in different languages. In the present case the choice of the
software mainly depends on two different requirements:

- to interface the simulation environment with the control system that
has been designed in MATLAB and converted in a C code;

- to find a user-friendly multibody software as simple as possible but
able to post process the simulation’s results.

The best solution to this problem is given by MATLAB itself. MATLAB
is an integrated environment that combines numeric computation with
graphics and a high-level programming language. Additional MATLAB
tools are called toolboxes. Simulink/SimMechanics is a MATLAB tool-
box that provides a simulation and prototyping environment for mod-
eling, simulating and analyzing multibody systems [50]. As any other
Simulink application, it has a graphical interface for creating and working
with block diagrams.

6.1.2 Multibody model
The rigid body model can be described by the following general assump-
tions:

- the six articulated leg are attached to a main body, i.e. the trunk or
simply body;
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Figure 6.1: Conceptual scheme of the complete multibody model.

- the force or torque applied at each joint is the output of an actuator
model, or zero for an non actuated joint. Friction, backlash and elas-
ticity in the power transmission are modeled in the actuator model.
Similarly, the actuator model also includes models of the physical
joint limits;

- the interaction with the environment is completely described by ex-
ternal forces, i.e. outputs of a ground model or baricentric gravita-
tional effects.

The last assumption implies that the rigid body model is modeled as an
open mechanical loop regardless of the number of feet in contact with the
ground. A different approach could have been to assume that a foot in
contact with the ground creates a closed mechanical loop, with a different
set of differential equations since the number of degrees of freedom has
changed. However, the open loop alternative was chosen since it makes
it easier to model slipping and a wide variety of ground characteristics by
simply changing a little set of parameters.

Each leg is structurally identical and consists of three rigid bodies that
correspond to the three sections of the leg, as described in section 3.2, with
rotational joints between each couple of bodies. This assumption implies
that some mechanical details of NEMeSys have been ignored:

- the mechanisms that physically composed each joint such as bevel
gears and shafts aren’t modeled as separate bodies, but lumped with
the section on which are connected;

- the foot is not modeled as a separate rigid body. Instead, the foot’s
mass and inertia is lumped with the tibia ones. Moreover, one may
neglect, in a complete measure, the motion of the additional DoFs
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Part N° Length [mm] Mass [g]
Trunk 1 574 2626
Coxa 6 53 27.9
Femur 6 126 264
Tibia 6 167 258
TOTAL 19 574 5925

Table 6.1: Multibody model parameters.

introduced by the mechanism necessary to permit the foot’s force
sensor’s correct work.

A conceptual scheme of the complete mutibody model used in the dy-
namic simulation is show in figure 6.1. The Simulink/SimMechanic model
allows to describe each body only by a reduced set of parameters and the
joint only by its axis. This means that it’s possible to adapt the model to
every change or correction in the configuration of the actual walking plat-
form. The reference values used for the simulation are the final data di-
rectly measured on the real robot once it has built on, except for the inertia
that have been obtained, starting from the Computer-Aided Design (CAD)
models of each single part, by a specific function offered by the modeling
program. The measured data have been summarized in table 6.1.

In SimMechanics each body is modeled by the definition of points,
placed on the body itself, identified by a local coordinate system with an
orientation that can be defined in respect to another body at which this
one is jointed or in the global system. In the same way a joint between
two bodies represent an active or fixed DoF that can be defined in global
axis or relative to one of the bodies that links. As global reference has been
chosen the centre of gravity of the trunk of the robot, but with a nonzero
height equal to distance from the ground in the reference posture. The
central body that models the trunk is simply defined by the six reference
systems by which the legs are attached to it.

6.1.3 Actuators model
The robot mounts 18 brushed DC electric motors, each of them acting on
the DoF of each single joint. The choice among different actuators mod-
els has been done by a trade-off that takes into account the simulation
speed against the accordance of the results with the experimental data.
The models range from the ideal torque source up to and including the DC
motor’s electrical and mechanical dynamics, viscous damping and linear
spring/damping characteristics. The most effective model of the electrical
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dynamics is the classic RL scheme that can be mathematically summarized
as follows: 

Va = Rai + La
di
dt

+ Eg

Eg = Keω

Jω̇ = C − Kti

(6.1)

where Va is the input voltage, i the electrical current, ω the rotational veloc-
ity of the motor shaft and Eg the electromotive induced force. The values
Kt and Ke are the torque constant and the electric constant of the actua-
tor respectively. Moreover, J is the rotor inertia, La the motor inductance
and C the output torque given by the motor. The value of La is typically
sufficiently small to ignore the derivative term: this is equivalent to state
that the transient time of the electric dynamic of the motor is much shorter
than the other time constants of the problem. The value of J can be ne-
glected too, thus ignoring the internal mechanical dynamics. These two
simplifications reduce the equations to the following form:{

Va = Rai + Keω

C = Kti
(6.2)

The mechanical effects introduced in the model don’t change the sim-
ulated behavior of the robot. The stiffness of the motor is sufficient high
to neglect it and no significant damping effects have been found. The only
mechanical problem is the backlash given by the planetary gears of the
transmission. It has been modeled like an uncertainty on the angular value
at each joint. Unmodeled problems, including wire pulley dynamics and
slippage as well as the motor’s temperature dependence might occur dur-
ing the experimentations on the actual robot, but only with minor effects.
Experience has shown that the motor parameters are really temperature
dependent, but if the motor works for a little time and at low speed, these
effects can be neglected.

6.1.4 Sensors model
The robot mounts only two type of sensors: linear potentiometers to mea-
sure angular displacement and force sensors to identify the ground con-
tact. The potentiometer is fundamentally a three terminal resistor with a
sliding contact that forms a variable voltage divider. A simplified version
of the electric scheme of a loaded potentiometer is illustrated in figure 6.2.
From this structure descends a relation between the voltages and the re-
sistances:

VL

VS
=

R2RL

R1RL + R2RL + R1R2
(6.3)
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Figure 6.2: Electric scheme of a potentiometer with a resistive load.

This means that if the resistance is linearly dependent on the angular dis-
placement the angle measured by the potentiometer can then be directly
related to the output voltage with a simple linear relation as follows:

θ =
θMAX

2

(
Vout −

VMAX

2

)
(6.4)

where θMAX is the amplitude of the field of measure Vout is the measured
tension and VMAX is full scale of the instrument. This formulation shows
how the potentiometer doesn’t have any dynamic behavior and its effects
can be simply modeled as a static module. For more detail on sensors
modeling see Doebelin [51]. The only addition to the model given by these
sensors is an electric noise that changes the measured signals. To correctly
simulate the behavior of the potentiometers it’s necessary to evaluate this
noise by an identification procedure that can be summarized as follows:

- measure a signal with a null input, equivalent to measure only noise;

- calculate the Power Spectral Density (PSD) of this signal;

- verify that the signal is ergodic by evaluating whether the statistical
parameters are stationary.

The process allows to found that the PSD of the measurement noise is
almost constant for all the frequencies in the spectrum. This means that the
noise can be modeled as a white noise with a variance calculated starting
from the spectral analysis of the measured data and equal to 5.12 × 10−5 V2.

The problem is less sensitive to the characteristics of the force sensors’
model because in this work they have been used only as a contact sensors:
the force value is compared to a threshold and if the former is greater
than the latter, the ground contact is detected. In each case these sensors
show only an electrical dynamics that is sufficiently fast to be completely
neglected. The only mechanical behavior that can be found is a little back-
lash in the mechanism that transmit the force to the sensor. It hasn’t been
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considered for two reasons: it is sufficiently little to become negligible
compared to the other effects and its introduction complicates too much
the whole model, by introducing an additional DoF in each leg. In the
same way as for the potentiometers, also for the force sensors, the only
behavior that must be model is an electrical noise that could be evaluated
with the same method. In the actual model this contribution hasn’t been
inserted because a sufficiently high value of threshold for the ground con-
tact level makes it useless.

All the sensors give an analog information, so the errors depending
on discretization and quantization had to be taken into account. In the
present simulation this hasn’t been done because no sampling has been
modeled, considering the sampling and the quantization processes suffi-
ciently accurate to avoid any significant degradation phenomena.

6.1.5 Ground contact model
Terrain geometry is described using plane surfaces. In this work it has
been assumed that the ground applies forces only and no torques, and
that this action is limited to the foot contact point. This simplification can
be justified by the small footpad radius (about 25 mm).

The ground force is calculated as a function of the penetration depth
and the velocity with some typical parameters illustrated in table 6.2. A
linear spring/damper model is easy to use, but can result in discontinuous
impact forces, due to damping and nonzero impact velocities. For the
force perpendicular to the surface, a nonlinear spring-damper model to
avoid these effects is typically used. In the present work the formulation
proposed by Lankarani and Nikravesh [52] has been used, that can be
summarized as follows:

Fz = −kzδ
n
z − dzδzδ̇z (6.5)

where kz and dz are the stiffness and damping coefficients, and δz is the
penetration depth. For the x and y-components, a smoothed viscous fric-
tion with a maximum saturation based on the vertical force is used as by .
They can be summarized as follows:

Fx = −γFz
2
π

arctan
(
dh

ẋ
Fz

π

2

)
(6.6a)

Fy = −γFz
2
π

arctan
(
dh

ẏ
Fz

π

2

)
(6.6b)

where γ is the friction coefficient and ẋ and ẏ are the velocities in the x and
y direction respectively.
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Type of terrain kz [ N
m ] dz [ Ns

m2 ] γ dh [ Ns
m ] n

Weakly damped 70’000 2’000 0.7 2’000 1
Heavily damped 50’000 100’000 0.7 2’000 1

Table 6.2: Ground contact parameters for two different terrains.

6.1.6 Control model implementation
In order to simulate a limited control frequency, instead of using different
simulation times for the dynamic model of the robot and the controller,
a filtering of the sensory inputs and actuator commands have been per-
formed. Similarly, signals are delayed to reflect the fact that the control is
done over a bus, but the corresponding effects, e.g. irregularity in the mo-
tion, haven’t been modeled. However, the simulation runs substantially
slower when including this model, but the results don’t change in a signif-
icant way, so usually it’s not used. Moreover a single step delay has been
introduced on some signals to avoid algebraic loops in the model.

Another problem that can be found during the implementation of the
controller, is the definition of geometric conditions that control the some
parts of motion, e.g. the transition from stance to swing. The introduction
of dynamical effects produce the risk of oscillating behavior close to the
cross of the condition because the solver identifies a sudden change in
the parameter of the problem and tries to reduce the time step. Further
problems occur when a time delay has been introduced. To avoid this
kind of problems it is sufficient to introduce a threshold suitably low to
not change the structure of the controller.

6.1.7 Simulation parameters
The last important consideration that should be done involves the param-
eters of the dynamic simulation. At first it’s necessary to identify an inte-
gration method. In this case a variable step solver has been used to avoid
the troubles depending on the variability of the problem due to the ground
contact. Each time a leg lifts off or touches the ground, the geometry of
the kinematics chains that composed the model changes and this requires
a different level of accuracy. On the other hand a fixed step method had
to use a time step with the same order of magnitude of the minimum time
constant of the problem that in this case can be estimated as the one of
the spring-damper that models the foot-ground interaction. With such a
nonlinear behavior, the time step should become too much small to allow
the simulation to be completed in a reasonable time.

The other main problem is the identification of which method effec-
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tively use. The present model shows a quite stiff behavior, because it in-
corporates very fast dynamics such as the foot-ground interaction and the
electric model of the DC-motor. For this reason a multistep solver for stiff
problem has been used: it is a variable order integration method based
on the numerical differentiation formulas (NDFs). Optionally, it uses the
backward differentiation formulas (BDFs, also known as Gear’s method)
that are usually less efficient.

It is also requires the choice of suitable initial values and/or a method
to start the simulation. In the present work all the simulations start with
the six legs placed at a little distance (about 2 mm) above the ground:
this method allows to avoid the generation of unreasonably high forces or
oscillating effects due to an incorrect interaction with the ground.

6.2 Dynamic model results

In this section the results given by the complete simulation will be dis-
cussed. The most important difference between the kinematic evaluation
used during the design process and the analysis of a model that takes into
account dynamic effects is the possibility to estimate the torque level re-
quired by the actuators to produce the trajectories defined by the gait con-
troller.

To better understand the behavior of the system the simulation has
been performed in three different conditions: a slow forward walking (see
subsection 6.2.1), a fast forward walking (see subsection 6.2.2) and a curve
walking (see subsection 6.2.3). For each condition all the joint parame-
ters (angles, angular velocities and torques) of the most loaded leg will be
shown. For a regular wave gait, this one is a middle leg, alternatively the
left one and the right one, depending on the time slice. In this case the
middle left leg has been chosen (L2 in figure 5.2 or 2 in figure 5.3). Other
global data such as the gait diagram and the body parameters (coordinates
and velocities) will be illustrated.

6.2.1 Slow wave gait
To obtain a slow wave gait a velocity command Gv equal to 0.5 has been
assigned. According to the gait analysis performed in chapter 5, equation
5.7 gives a correspondent value of duty factor β=0.859. The mean duty
factor obtained by the simulation is β=0.843 with an error on the actual
value that corresponds to the 1.9% of the ideal one. This is a demonstration
of the effectiveness of the control approach proposed in section 5.5.

The angles and the angular velocities for the left middle leg are shown
in figure 6.3 and 6.4 respectively. The behavior is very regular with a per-
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Figure 6.3: Angles of the middle left leg during a slow wave gait (Gv=0.5).
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Figure 6.4: Angular velocities of the middle left leg during a slow wave gait
(Gv=0.5).
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Figure 6.5: Joint torques of the middle left leg during a slow wave gait (Gv=0.5).

fect accordance with the results of the kinematic analysis, especially for the
swing phase. Only small variations in the joint velocities can be observed
due to the coupling with the other legs by the trunk: the entire motion
of each single leg is almost independent for the other ones, as previewed
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Figure 6.6: Gait diagram of a slow wave gait (Gv=0.5).
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Figure 6.7: Global advancing velocity for a slow wave gait (Gv = 0.5)

by the decentralized approach. The sudden variation that occurs in the
CT joint angular velocity during a stance-to-swing transition can be easily
managed by the actuators.

In figure 6.5 the torques required for each joint are illustrated. With
a slow motion, the torque level remains always below the limit value of
2 Nm except for the last part of the stance phase during which the CT joint
as to increase its torque in order to maintain the required body height. It’s
obvious that it’s the most stressed joint because it has to counterbalance
the main external force: the gravitational one. For the same reason the
BC joint is the less stressed because its action is perpendicular to this kind
of loads. Two spikes appears in correspondence of phase transitions, but
they are due to numerical effects.

The gait diagram in figure 6.6 shows almost the same behavior given
by the kinematic analysis: one leg in aerial phase only for every instant
and a metachronal wave that moves from back to front at each side. No
important difference can be identified.
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Figure 6.8: Trajectory in the x-y plane for a slow wave gait (Gv=0.5).
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Figure 6.9: Trajectory in the x-z plane for a slow wave gait (Gv=0.5).

The global advancing velocity has been taken equal to the body CoG
speed in a global reference frame. Its behavior has been illustrated in fig-
ure 6.7. With a velocity command Gv=0.5, equation 5.8 gives a value of
V=26 mm/s. The actual mean speed is V=25.2 mm/s with an error of about
the 3% on the prediction. Although the reference speed is the same during
the entire simulation, the actual speed varies every time a phase transition
occurs, with spikes across the transition itself. This happens because the
nonlinearity of the problem changes the action of the controller in depen-
dency on the current legs’ configuration.

The trends of the y and z coordinates of the body’s CoG have been
shown in figures 6.8 and 6.9 respectively. The z coordinate is maintained
perfectly constant by the feedback control system acting on the CT joint
of each leg. No significant variation can be seen. The y coordinate shows
a oscillating behavior, the same identified in walking insects by Kinder-
mann [37], but also a tendency to turn on the left side. This behavior
is very weak compared to the advancing one and can be easily justified
remembering that no closed-loop control has been applied to this compo-
nent of the motion.

6.2.2 Tripod gait
The tripod gait has been obtained in the same way as the slow wave one,
by fixing a value of velocity command Gv=0.95. This value has been cho-
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Figure 6.10: Angles of the middle left leg during a tripod gait (Gv=0.95).
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Figure 6.11: Angular velocities of the middle left leg during a tripod gait
(Gv=0.95).
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Figure 6.12: Joint torques of the middle left leg during a tripod gait (Gv=0.95).

sen in order to obtain a tripod gait that show a proposed velocities that
tends to zero. This has been done to evaluate the effects of irregularity in-
troduced by the gait controller. Equation 5.7 gives a value of duty factor
β=0.521 that compared to the duty factor β=0.543 obtained by the simu-
lation means a error of 4.2%. It’s greater than the one in the slow case
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Figure 6.13: Gait diagram of a tripod gait (Gv=0.95).
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Figure 6.14: Global advancing velocity for a tripod gait (Gv = 0.95).

because the motion is already become irregular.
Angles and angular velocities of the middle leg of the left side are

shown in figures 6.10 and 6.11 respectively. There are no major difference
with the behaviors identified in the slow case except the fact that the mo-
tion is faster. The most interesting feature involves γ and γ̇ in the instants
that proceed the lift-off (t≈0.7 s). At this time as required, by the coordi-
nation system, the leg slows down in order to maintain a statically stable
posture. This happens because the reference velocity is too much elevated.

The torques are illustrated in figure 6.12. During the swing phase, their
activation levels are quite low: the torques required by BC and the FT
joints are almost zero and the CT one only shows a significant activation
to produce the lift-off of the leg. In the stance phase the situation changes:
in order to propel the body at the required velocity, all the joints show an
high level of activation especially during the last phase of the stance. The
CT and the FT joints reach a continuous requirement of 7 Nm and of 5 Nm
respectively with a non-neglectable peak of 7.5 Nm.
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Figure 6.15: Trajectory in the x-y plane for a tripod gait (Gv=0.95).
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Figure 6.16: Trajectory in the x-z plane for a tripod gait (Gv=0.95).

The gait diagram (figure 6.13) and the correspondent body advancing
speed (figure 6.14) illustrate the effect of a too much high velocity com-
mand on the global motion. The gait pattern becomes less regular in re-
spect of the ideal tripod gait (see figure 5.19), by losing the 180-degrees
phasing and the back-to-front wave behaviors. Nonetheless it maintained
for the entire motion the static stability. This happens because the advanc-
ing velocity is reduced even up to stop the motion, as happens between 2 s
and 2.5 s, in order to avoid statically unstable postures, as required by the
gait controller.

For the motion in the x-y and x-z plane (figures 6.15 and 6.16) the
same considerations of the slow motion can be done: the z coordinate
is more regular thanks a closed-loop control system on β, the y one, al-
though not directly controlled, shows a ignorable side-to-side heading a
little tendency to turn left only. Both the trajectories are less regular than
the correspondent ones in the slow case, because the global motion looses
regularity in order to ensure its stability.

6.2.3 Curve walking
The curve walking can be obtained by giving to the stance controller of
each leg a non null reference yaw velocity as shown in subsection 4.2.4. For
this simulation a Yawre f =8 deg/s has been used, with a velocity command
Gv=0.65. The correspondent curve gait generated by the control system
produces a differentiation in the motion between left and right side. To
underline this behavior, the joint parameters of the both middle legs have
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Figure 6.17: Angles of the middle left leg during a curve gait.
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Figure 6.18: Angles of the middle right leg during a curve gait.
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Figure 6.19: Angular velocities of the middle left leg during a curve gait.

been illustrated.
The joint angles are illustrated in figures 6.17 and 6.18, for the left and

the right middle leg respectively. The correspondent angular velocities are
shown in figures 6.19 and 6.20. The differentiation can be easily identified
as an increase in the frequency of the right (outer) flank and a correspon-
dent decrease in the frequency of the left (inner) one. This is one of the
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Figure 6.20: Angular velocities of the middle right leg during a curve gait.
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Figure 6.21: Joint torques of the middle left leg during a curve gait.
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Figure 6.22: Joint torques of the middle right leg during a curve gait.

insect-like behaviors described in subsection 3.6.4. Moreover the leg on
the outer flank varies its stride length.

The torques have the same qualitative behavior shown in the previous
cases, but the different motion on the two side produce higher torques on
the right side (figure 6.22) than on the left one (figure 6.21). The outer
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Figure 6.23: Gait diagram of a curve gait.
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Figure 6.24: Global advancing velocity for a curve gait.

flank shows also a less regular trend with more spikes during the phase
transition. This happens for its faster motion but also because its step
length isn’t constant.

The gait diagram in figure 6.23 shows the differentiation for all the six
legs in terms of step frequency: it’s smaller on the inner side than on the
outer one. Nonetheless, the static stability is still ensured for the entire
simulation. It’s interesting to notice how the curve walking doesn’t affect
the metachronal wave among ipsilateral legs that is maintained in both the
sides, but causes the loss of the 180-degrees phasing among contralateral
legs.

The mean value of advancing velocity during the curve walking is
V=58.7 mm/s. This value has been obtained by evaluating instantaneously
the component of the CoG velocity tangent to the trajectory as shown in
figure 6.24. If compared to the correspondent velocity V=68 mm/s calcu-
lated for the straight gait with the same Gv, it shows how the curve gait is
only little slower than the standard one. The main problem is the greater
irregularity of the speed that reaches almost null values very often. The
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Figure 6.25: Trajectory in the x-y plane for a curve gait.
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Figure 6.26: Trajectory in the x-z plane for a curve gait.

incapability to ensure a regular motion during a regular curve walking is
the main problem of this kind of gait control.

The trajectories in the x-y plane (figure 6.25) illustrates in the best way
the turning of the body. Asterisks indicated the start and the stop of the
non null yaw reference. The robot react to this command without any
remarkable delays. The z coordinates (figure 6.26) is maintained constant
for all the simulation, independently from the value of the yaw command,
thanks to the feedback controller.

Finally a sensitivity analysis on the turning behavior has been per-
formed, by changing two global parameter: the yaw reference velocity
Yawre f and the velocity command Gv. In figures 6.27 and 6.28 are illus-
trated the changes in the x-y trajectories and in the mean turning radius
R respectively. The mean turning radius is the radius of the osculating
circle (figure 6.29) obtained as solution of a least mean square problem.
The trends show by the diagrams indicated that R doesn’t vary signifi-
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Figure 6.27: Effects of variations in turning reference velocity Yawre f and in ve-
locity command Gv on the trajectory in x-y plane.
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Figure 6.28: Effects of changings in turning reference velocity Yawre f and in ve-
locity command Gv on turning radius R.
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Figure 6.29: Osculating circle definition for two different curve trajectories.

cantly if the advancing speed changes, but it’s inversely proportional to
the yaw reference velocity. It can be easily understood remembering that if
Yawre f =0 the walk becomes straight, a situation that corresponds to R = ∞.
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Walking platform
The purpose of this section is giving an overview of the robot on which
the control system shown in previous chapters will be tested. First of all
the design of the new mechanical platform will be presented, than the
discussion will be on the changes of the electrical parts necessary to adapt
the old components to the new ones (especially the contact sensors).

7.1 Design requirements

NEMeSys was initially thought as a robot for space exploration, but, after
the evaluation of what this means in term of construction techniques, the
target was translated to a platform to test new control structures. This
choice was made to match the fixed limits on the costs and the complexity
of the robot.

In this project the same guideline is followed, and it tries to recover the
initial idea of space application whenever possible. Starting from these
considerations some important targets have been fixed:

- reduction of the weight. This is important both for a space explo-
ration use of NEMeSys and for a correct motion of the robot. The
cost of the transfer to another planet is dependent on the weight of
the payload heavily, so, the higher the weight is the higher will be
the cost of the launch. Furthermore the test on the old version of
the robot showed that the CP requested torque was higher than the
maximum available from the propulsive system, so that a reduction
of the weight is mandatory;

- reduction of the costs. To minimize the total cost is necessary to use,
in the largest possible measure, components from the old robot. Par-
ticularly the motors and the planetary gear adaptors must be the old
ones, so that some parameters, e.g. the dimensions of propulsive sys-
tem but also the maximum torque available, are fixed. For the same
reason, where possible, the use of common materials and profiles for
the design of the structure is to prefer;

- reduction of the dimensions. The robot must be as small as possible,
with respect of the size of the electronic boards and of the motors,
taken from the old robot, but hasn’t to limit the movement of the
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legs, within the range set during the design of the controller (see ta-
ble 4.7). Moreover, thinking about the stowage of the robot during
the transfer to a planet, if possible it should be able to reach a config-
uration that employs the least volume possible;

- some parts must be removed without difficulties to permit changes
or reparations. This requirement is very important because this robot
is going to be a platform for future tests also with controllers com-
pletely different from the one presented in this work, so that changes
in structure, or more probably in sensors and actuators must be pos-
sible and quite easy. This necessity is very common in the sphere of
space exploration because the number of production is very small,
so that is usual to update a lot of time the same object rather than
building a new one.

In order to comply with this requirement the choice made is to completely
rebuild the structure, to study a new way for the transmission of the torque
and to modify the electronic system of the old version of NEMeSys in the
least possible percentage.

7.2 Mechanical system

At first the new mechanical system has been designed beginning from the
general layout and than focusing on the most demanding parts, especially
the construction of the joints. At least some structural analysis have been
made in order to calculate the distribution of internal forces and to check
validate the design.

7.2.1 General layout
Starting from the considerations described in the previous section, a struc-
ture based on a mix of standard profiles with a square section and milled
from solid parts, both in aluminum, has been designed.

This solution permits a high level of modularity because the dimen-
sions of the body and of the legs are dependent from the length of the
standard profile, so that the geometry can be easily and cheaply varied by
changing the profiles themselves. On the contrary the milled from solid
parts form a rigid and robust box for the transmission of the torques and,
if needed, can be re-used if the shape of the robot will be changed.

In order to ensure the possibility of disassembling the robot, most parts
of the junctions between the pieces are made with screws and nuts. For the
shaft that connect the parts in mutual motion, a shape-based connection
has been used.
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Figure 7.1: General layout of NEMeSys.

To save space the motors are placed into the profiles and the torque
is transmitted to the joint by miter gear as well as the angular position
sensors of the CT and FT joints. The disposition of the eighteen motors is
shown in figure 7.1. On the top is represented the leg; on the bottom is
shown the draft of the body. The gray parts are the motors-adaptors set.
The profiles used for the robot are all of the same type, with square section
of 25 mm of side dimension and a thickness of 1.3 mm. This dimension
is the one that best matches the need to have the thinnest possible leg
and the capability to store the motors inside the profile. As the motor
has a diameter nearly to 22 mm, only a 0.5 mm free space remains between
profiles and motors. In order to have a better cooling of the propulsive
system, but also to reduce the weight, holes on the lateral faces of the
profiles are necessary. The angles of the profile can be used to house the
wires for the power supply of the motors and for the sensors.

The thickness of the milled parts has been reduced to 3 mm, that is the
best trade-off found between robustness, lightness and ease of manufac-
turing. Also the usage of bearings between rolling parts imposes a mini-
mum limit to the thickness of the wall.
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The size of a walking robot and length/width or length/height ratios
are limited by different and sometimes conflicting considerations:

- ensure the correct motion. The joints must be able to reach adequate
angles and two ipsilateral legs must not to collide when the posterior
one is at the AEP and the anterior one at the PEP. In this configura-
tion a gap between the feet is desirable, so that a further motion e.g.
a searching of the posterior one may be possible. This requirement
fixes a lower limit to the longitudinal distance from two BC joints,
and consequently to the body length;

- limit the joint torques. In section 7.3.1 the maximum torques avail-
able from the motor-adaptor set are shown. An analysis of the typ-
ical shape and posture of an hexapod robots (but also of insect like
Carausius Morosus) display that the most stressed joint is the CT one.
The torque on this joint depends (once that the weight of the robot
and the gait are fixed) on the horizontal distance between CT and FT
joint, function of CT-FT joints distance and of β angle. The lower is
the gap between the two joints, the lower the torque required will
be;

- size of the components and of the payload. In order to have compact
robot, the motors have been placed into the profiles that form the
structure. This poses a minimum limit to the length of the profiles.
At the moment no payload is installed on the robot, but in the future
a set of optical or attitude sensors are expected;

- capability of overtake obstacles. This requirement affects the height
of the body from the ground. This parameter is a function of the
length of the femur and of the tibia and of the value of α and β an-
gles. Ones that the standard (at rest) height is fixed, is usual in robot
tests to fix the highest obstacle that the robot has to overtake, as a
percentage of the body height (usually 50-60%).

Taking the start from these consideration the best trade-off has been found
with the configuration shown in figure 7.1.

At first the dimensions of the leg have been set. The femur has the
minimum length necessary to carry the motor-adaptor group, so that the
CT-FT joint distance is 126 mm. The reference for β has been set at 80°,
giving the robot a little lateral stability. For the length of the tibia a value
of 167 mm has been chosen, so that, using a reference for α of 90° in resting
position, the robot should be able to overtake obstacles with a height of
70 mm. The coxa is 52 mm long, to allow a correct range of γ.

128



Walking platform

Minimum γ [deg] Maximum γ [deg]
Front legs –38 +128
Middle legs –38 +38
Posterior legs –128 +38

Table 7.1: Mechanical limits for angle γ.

The body has a length of 604 mm, a width of 194 mm and a thickness of
32 mm. This size is the one that most matches the necessity of storing the
electronic boards and the correct distance between ipsilateral legs. Once
that the boards dimensions will be reduced, the width of the body could
be decreased until a minimum of approximately 100 mm only by changing
three profiles.

The choice of the body’s length of is also a result of the setting of the
resting position of the legs. In order to use the same identical controller
for all the legs, the resting configuration chosen is the same for all the legs,
with γ=30°, β=80° and α=90°. The range of γ around the resting position
during normal walking is set to a maximum of ±30°. Is mechanical limits
are the ones shown in table 7.1. Choosing the length of 600 mm for the
body a minimum longitudinal distance of about 60 mm between feet of
consecutive legs is reached during normal walking.

7.2.2 Joint design
In order create the eighteen degrees of freedom (three for each leg) neces-
sary for the motion of the robot, the same number of revolute joints must
be created. The joints are composed by a shaft fixed to one of the two part
in mutual motion and free to rotate with respect to the other one. A cou-
ple of bearings are useful to avoid friction and early degradation of the
aluminum parts.

After the creation of the joint, it is necessary to find a way to transmit

Producer Maedler
Thansmission ratio 1:1
No. of teeth 20
B [mm] 4
d [mm] 12
ND [mm] 8
Admissible MD [Ncm] 1.8

Table 7.2: Bevel gear specifications.

129



Chapter 7

Figure 7.2: Meter gear dimension and joint example.

the torque to the shaft. Seeing that to save space the motors are oriented
perpendicularly to the corresponding joint, the most simple one is to use
miter gears. These components are very useful because they allow the
change of the direction of the motion, but must be mounted with the ut-
most precision and a way to fix them to the shafts must be found. In this
work this last task is performed by threaded pins screwed on the lateral
side of the gears. In order to have best friction the shafts have been flat-
tened in correspondence of the pins. In table 7.2 are presented the main
data of the gear used for this work. The measures are referred to the left
side of figure 7.2. In order to save space, the angular position sensors are
operated by miter gears too. On the right side of figure 7.2 is shown an
example of the joint between femur and tibia of NEMeSys.

7.2.3 Structural analysis
In order to confirm the correct sizing of the robot frame, some structural
analysis have been performed. These analysis have been used only as
control, not for the design, for which design only the data given from the
profile producer have been used.

The material used for all the structural parts of Finite Element Method
(FEM) models is aluminum 6061-O, that has low mechanical properties
shown in table 7.3. This is because of the uncertainty about the exact qual-
ity of the material effectively used during the construction.

The first important information is the knowledge of the internal forces.
For their evaluation a FEM model developed with Femap/Nastran software
has been used. In order to obtain the correct results, this model needs the
real distribution of the mass, so that inertial loads can be correctly eval-
uated. The distribution of stiffness can be far from the real one, causing
a false deformation of the structure, but this is not important for this first
calculation whose target is only to evaluate the internal forces.
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Yeld stress [MPa] 55
Tensile stress [MPa] 125
Young module [GPa] 69
Density [Kg/m3] 2700

Table 7.3: Mechanical properties of 6061-O aluminum alloy.

Because of this all the structure has been modeled by BEAM elements.
The section of the element is a square tube with a variable thickness that
ensures a distribution of mass next to the real one. The non-structural
elements, e.g. the motors and the electronic boards, have been modeled
as lumped mass, MASS element using Nastran language, connected to the
beam elements with RBE2 rigid elements. The total number of element is
340, 278 of which of beam type, 40 of mass type and 22 of rigid type and
the number of nodes is 299.

The analysis made on this model are all of the static type with different
postures of the legs. No dynamic analysis have been performed because
the frequencies of interest are very low, so that the most important load on
the robot is his own weight. The simulation of the gravitational field has
been performed by applying a body load.

The postures analyzed are the ones corresponding to typical gaits. The
most stressful for the structure is the tripod one, particularly on the side
where only one leg is in contact with the ground, just after that the stance
phase begins. In table 7.4 are reported the maximum of each internal force
and the zone where are reached, with reference to the left side of figure 7.3.
The positions corresponding to the numbers of the table are shown on the
right side of the same figure. The most stressed part is the leg number 2,
particularly the coxa and the femur for bending moment and shear force
and the tibia for axial force. The latter is in the compression direction. The
Plane 1 moment shown in table 7.4 corresponds to the maximum torque
requested to the CT motor during the tripod walk and can be compared
with the one obtained during the simulation shown in section 6.2. The
two results present a good accordance, taking in account that the FEM
analysis have been made at the beginning of the work. Moreover while
the Simulink analysis is a dynamic calculation, the FEM one is only static,
so that differences due to inertial loads are present.

The second step of the structural analysis is the calculation of the stress
into each component of the robot. In this case the model must consider the
real geometry of the parts, so that the equivalent stiffness are the correct
ones. The target, in this case, is both to know the values of the stresses and
to calculate the deformation of the structure. For the analysis the single
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Figure 7.3: Beam model constraints and most loaded sections.

Value Position
Plane 1 moment [Nmm] 5999 1
Plane 2 moment [Nmm] 145.8 2
Axial force [N] 27.11 3
Plane 1 shear force [N] 25.62 4
Plane 2 shear force [N] 0.88 5
Torque force [Nmm] 1455 6

Table 7.4: Maximum of internal forces in the beam model.

component, or small group of components, have been considered, in order
to have a lower number of nodes and elements. The loads applied to the
parts are the maximum of the ones resulting from the beam analysis just
described.

The profiles have been modeled using PLATE element with the thick-
ness equal to the real one. For the milled parts two solution are possible:
the first one is to model also these components with plate element; the
second one is the use of SOLID elements. The former way allow to have a
low number of nodes, reducing the computation time; the latter permits to
know the distribution of the stress along the thickness of the wall. Look-
ing to the dimensions of the milled parts it is possible to affirm that a plate
modeling would describe with good accuracy the distribution of stresses
as the ratio between thickness and section dimensions are around 1/10.
However both the two approaches have been used.

The results of the analysis show that the most stressed profile is, as
expected, the one corresponding to the femur during a tripod walk on
the side where only foot is in contact with the ground. The value of the
maximum Von Mises stress is 41.9 MPa.
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Figure 7.4: The NEMeSys robot in a simulated martian environment.

The milled parts present a significant value of stress only next to the
bearings and the shafts.

The last consideration is about the use of solid or plate element to
model the milled parts. The difference between the results of the two dif-
ferent calculation are small on condition that the nodes of the plate model
are sufficiently thick.

7.3 Electrical design

The electrical system of NEMeSys is composed by three main parts:

- actuation system. To this part is entrusted the motion of the joints.

- sensor system. This subsystem is primary for a control structure like
the one used in this work (see section 3.4).

- communication and connection system. This subsystem allows the
data exchange between the boards and between boards and PC.
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Some parts of these system are existing from the old versions of NEMeSys;
some others have been updated or completely replaced by new ones.

7.3.1 DC electric motors
The actuation of the eighteen joints is assigned to as many DC electrical
motors. A planetary gear set to reduce the speed and increase the torque
must be introduced between the motors and the joints. These two com-
ponents have been taken from the old robot, so no changes with respect
of previous work have been made (see [14] for more details). In tables 7.5
and 7.6 the principal data of the components are summarized.

The data show that the maximum continuous torque generated from
the motor-adapter is of 5.12 Nm, and a peak of 15 Nm can be reached. In
section 6.2 the torque diagrams show that for the most of the time the nec-
essary torque is below the maximum continuous and reaches a maximum
below the permitted continuous torque for all the gaits except for the tri-
pod one. During this last gait a peak of 7.5 Nm is achieved. This value is
low in relation to the one allowed from the motor, but is high with respect
to the maximum torque of the adapter. Only the wave gait respects the
torque limit of the adaptors, with a maximum of 2.7 Nm. In the test made
with old version of NEMeSys the exceeding of the torque didn’t cause any
failure, so that also in this work these components are used.

The command to the motor is given by using a Pulse Width Modulation
(PWM) technique. This is a very efficient way when the is necessary an
intermediate amount of electrical power. The basic idea is to use a rectan-
gular pulse wave whose pulse width is modulated resulting in the varia-
tion of the average value of the waveform. The electrical circuit necessary
for the use of PWM has been developed during the first two works on
NEMeSys. For more detail see [14] and [53].

Producer Maxon
Product code A-max 22
Input voltage [V] 12
Maximum power [W] 6
Maximum continuous torque [mNm] 7.425
Stall torque [mNm] 22
Maximum speed [RPM] 10500
Torque constant [mNm/A] 10.9
Speed constant [RPM/V] 875

Table 7.5: Motor specifications.
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Producer Maxon
Product code GP-22 C
Reduction ratio 690
Maximum continuous torque [Nm] 2
Maximum peak torque [Nm] 2.7

Table 7.6: Adapter specifications.

7.3.2 Angular position sensors
For angular position measure single-turn potentiometers have been used.
This type of sensor is suitable for this usage because is the one that best
matches the requests of littleness, low cost end quite high precision of
measure. In order to reduce to the minimum the space taken from the
sensors and to avoid parts protruding from the legs, the CT and FT poten-
tiometers’ axis are turned by ninety degrees with respect to the shafts of
the joints and the motion is transmitted using miter gears. This solution
is also used for the BC joint of central legs. For anterior and posterior leg,
instead, the BC angular sensors have been installed coaxial to the shafts
in order to ensure an easier assembly. The main data of the potentiometer
used on the robot are shown in table 7.7. The signal from potentiometer
is sent directly to an analogical input of the microcontroller of the corre-
sponding leg and, from here, using a particular communication standard
(see section 7.3.4), to the device that exchange the data with a PC through
a Universal Serial Bus (USB) standard. The power supply to the poten-
tiometer is at 5 V.

Producer Piher
Product code T-16SHM04N102A
Mechanical rotation angle [deg] 300±5
Electrical rotation angle [deg] 280±20
Resistance [KΩ] 1±20%

Table 7.7: Potentiometer specifications.

7.3.3 Contact force sensors
To detect the contact force between the foot and the ground a Force Sens-
ing Resistor (FSR) has been used (see [54]). They are a polymer thick film
(PTF) device which exhibits a decrease in resistance with an increase in the
force applied to the active surface. This is the principal updating in the
electronic part with respect to the old versions of NEMeSys. In NEMeSys
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Figure 7.5: Force sensor construction and characteristic curve.

Mk I and II the contact sensor was simply a switch commanded by a mov-
able part of the leg.

The major advantage of the contact sensor used in NEMeSys Mk III is
that allows the measure of the reaction force, not only the detection of the
contact. The information of the load is important to improve the control
structure, especially the coordination model. Having the reaction force the
coordination rule no. 5 of Cruse model could be implemented, permitting
a better control of the stability. In this work only the contact detection has
been used, living to further development the possibility to use the load
information.

Other leads of the resistive contact sensors are the lightness (only 1 g
for a sensor), the smallness (particularly the thickness is only 0.3 mm), the
ease of montage (the sensor is pasted on an aluminum base), and the long
lifetime (more than 10 million actuations). In table 7.8 are shown the main
features of the adopted model of sensor. On the left side of figure 7.5
are shown the parts that compose the FSR. On the right side a typical
force-resistance characteristic is illustrated. At low-force side a switch like
response is evident. This turn-on threshold, or break force, that swings
the resistance from greater than 100 kΩ to about 10 kΩ (the beginning of
the dynamic range that follows a power-law) is determined by the sub-

Producer Interlink Electronics
Product code 400
Active area diameter [mm] 5
Force resolution better than 0.5% full scale
Turn-on force [g] 20 to 100 (depending on mechanics)
Unloaded resistance [Ω] > 1M

Table 7.8: Force sensor specifications.
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Figure 7.6: Electrical interface for force sensor

strate and overlay thickness and flexibility, size and shape of the actuator,
and spacer-adhesive thickness (the gap between the facing conductive ele-
ments). Break force increases with increasing substrate and overlay rigid-
ity, actuator size, and spacer adhesive thickness. Eliminating the adhesive,
or keeping it well away from the area where the force is being applied,
such as the center of a large FSR device, will give it a lower rest resistance.
At the high force end of the dynamic range, the response deviates from the
power-law behavior, and eventually saturates to a point where increases
in force yield little or no decrease in resistance. The saturation point is
more a function of pressure than force. The saturation pressure of a typi-
cal FSR is on the order of 100 to 200 psi. Forces higher than the saturation
force can be measured by spreading the force over a greater area.

The FSR output is a resistance, but controller input must be a tension,
so a little electrical interface must be built. The most simple way to have a
tension as output with a variable resistance in input is to build up a voltage
divider by using an operational amplifier. On the left side of figure 7.6 is
shown the electrical circuit used for this work. The graph on the right
side illustrates the trend of the output tension function of the force for
different values of RM. The operational amplifier necessary to obtain a
voltage divider is of the class rail to rail, with a range of output from 0 to
5 V.

The selection of the value of the resistance RM illustrated in figure 7.6
depends on the range of measure of interest: the lower is the maximum
foreseen load, the higher must be the value of RM to have a good reso-
lution. Looking to the typical loads expected on the leg, a value of 10 kΩ

has been chosen. Using this resistance in the low force part the resolution
is very high and measures until 10 N are possible. The first aspect is im-
portant in this work, because, as said before, although a force measure is
available, the controller needs only to know if the foot is in contact with the
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terrain or not, so that is necessary to establish a reference value in Newton
over which the foot is considered on the ground. The good resolution at
low load permits to choose a lower threshold value.

7.3.4 Communication and connection system
The changes made on the connections with respect to the old versions of
NEMeSys are minor and concern the reduction of the length and of the
weight of the cables and the optimization of wire path. For this reason, for
low current connections, ribbon cables have been used. This is possible
for the sensors and for the communication between the boards. For the
power supply to the motors, instead, single wires have been used. About
communication and processing of data, three devices are involved: a PC,
and two different types of Programmable Interface Controller (PIC).

In figure 7.7 is shown a scheme of the communication system used for
this work. For each leg the information about angles and contact force de-
tected from the sensors are sent to analogical inputs of a PIC18F4431 mi-
crocontroller that converts the data in convenient units (degrees and New-
tons), calculates the actual angular velocities using the pseudo-derivative
described in section 7.5 and turns all the information to a PIC18F4550 (the
same for all the legs) using the Inter Integrated Circuit (I2C) communica-
tion protocol. This last device communicates these information using the
USB standard to a PC, where the high-level controller described in previ-
ous sections calculates the next step angular velocities. These are the ref-
erence values that are sent back to the 4550 microcontroller and from here
to the correct PIC4431. The software of this device computes the proper
value of current for each motor necessary for the correct motion. The elec-
tronic boards that manage the data flow and the motors actuation have
been developed in previous works over NEMeSys. Only minor changes
have been made. For more details see [53] and [55]. The most important
innovation is the construction of six new little boards (one for each leg) in-
stalled on the in the vicinity of the BC joint. All the wires coming from the
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Figure 7.7: Electrical connection scheme.
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legs are connected to these boards so that the disassembly of the legs from
the body if faster and easier. Also the operational amplifier needed for the
conversion of the signal coming from the contact sensors is positioned on
these cards.

7.4 Weight evaluation

As before said the reaching of the lighter configuration is one of the most
important target.

It must be taken in account that a huge part of the total weight is due to
not structural parts, particularly propulsive system and electronics. These
components have been taken with only minor changes from the old robot.
The graph in figure 7.8 shows the contribution of each type of component
to the total amount.

The weight of the structure is about the 23% of the total. The major
contribution is from motors and adapters, that represent the 41% of the
total weight. The boards give an important contribution, so that a minia-
turization in the future is desirable.

Another significant partition of the weight is the one related with the
location. The table 7.9 summarize the weights of the main subparts of the
robot. The data are the sum of the single components, estimated by the use
of CAD and then verified on real model, and include screws, nuts, wire,
motors, adaptors and all is necessary for the transmission of the torque.
The electronic boards, although fixed to the body, are per se in this list,
because of their weight importance. These values are the ones used in the

Figure 7.8: Partition of the weights between type of components.
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Part Number CAD weight [g] Real weight Error [%]
Coxa 6 28 28 0
Femur 6 264 277 +4.9
Tibia 6 258 257 –0.4
Body 1 1574 1538 –2.3
Boards 4 1050 1030 –1.9
Wires — 300 210 –30
TOTAL — 6224 6150 –1.2

Table 7.9: Weight of the principal subparts of NEMeSys.

Model Year Weight [g]
Mk I 2005 ≈7500
Mk II 2008 ≈8300
Mk III 2010 6150

Table 7.10: Weight comparison between versions of NEMeSys.

multibody model presented in section 6.1.

The main difference found between CAD and real weight is in the fe-
mur. The cause of this is the high quantity of wires in this part (CT and FT
motor supply, potentiometer supply and signal and contact sensor wires).
The estimation in CAD supposed a uniform distribution of the wires. The
reduction of the weight of the boards is due to the remaking of the supply
and communication one, that in new version is a half of the old one for
dimensions. The item wires includes only the ones between the boards.

At last, a comparison between the weights of the three versions of
NEMeSys can be made. The table 7.10 shows the three values. The weight
of the first version, NEMeSys Mk I, is the one reported in [53]; for the other
two versions the values are the ones measured.

The first version adopted a way similar to the one of this work for
the transmission of the motion, but without bearings, so that an abnormal
backlash appeared after a short time. The body was made by an aluminum
plate and the legs by standard profiles. In NEMeSys Mk II the body was
re-made using a truss structure and motors become the joints themselves,
trying to avoid the first version problems. The results were poor and the
weight increased a lot. The third version (NEMeSys Mk III) is the current
one. The weight reduction from Mk 2 to Mk 3 models is considerable,
about the 25%.
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7.5 Software

The software used for the control of NEMeSys con be divided into three
main blocks:

- generation of the trajectory. The next-step angular velocity is gener-
ated by the PC. This is the controller described in the previous sec-
tions;

- follow the reference. Once that the reference value of angular ve-
locity has been generated, it is necessary a low level controller that
takes as input the error between current angular velocity and refer-
ence one and exits the correct value of current to give to the motor;

- management of the communication. This part comprises all the func-
tions and the libraries necessary to have a correct I2C and USB com-
munication. These software are at most available from the Microchip,
the PIC producer, and only minor changes are necessary.

The high level controller is written using C language because of the good
trade-off between ease of programming, the presence of a lot of functions
in the free libraries and the computational power needed that this lan-
guage offers.

The low level controller, instead, has to be programmed using Assem-
bler. This because has to work over the 4431 microcontrollers that have
very low computational power, so that the software must be optimized
as more as possible. Another advantage of the Assembler language is the
possibility of setting the system register to adapt the configuration of the
device according to the requests. All the register settings are described
on the data sheets of the PIC devices [56][57]. The USB communication
software is written using C; the I2C one is programmed in Assembler. For
more details see [55].

7.5.1 Low level controller
For the low level controller three are the main requirements:

- low computational cost;

- high adaptability to changes of the high level controller;

- ease of calibration of the parameters.

For these reasons a PID (Proportional-Integral-Derivative) controller
has been chosen. This is a very common and used class of feedback con-
trollers, particularly when some variables of the problem are unknown or
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not completely modeled. Furthermore the calibration process of these con-
troller can be made easily and only looking to the response of the system.
A typical expression of a PID controller is shown in equation 7.1.

u(t) = Kpe(t) + Ki

∫ t

0
e(τ)dτ + Kd

d
dt

e(t) (7.1)

where Kp, Ki and Kd are proportional, integrative and derivative gains re-
spectively, e(t) the error between reference and measure at current time
and u(t) the control action.

Referring now to this work, e(t) is the error between the angular veloc-
ity requested from the high level controller and the one calculated from
the measure of the potentiometer. To obtain the angular velocity from the
angle measure has been implemented a second order formulation for the
derivative numerical calculation (see 7.2).

y′(i) ≈
1
2

y(i − 2) − 2y(i − 1) +
3
2

y(i) (7.2)

Obviously a backward formulation has been used, as the calculation is
real-time performed. This forces to save in the PIC memory the value
of the angular position for the last two steps, but allows to have a better
accuracy on the derivative calculation.

In order to estimate the integral of the error the trapezoidal rule (equa-
tion 7.3) has been used.∫ b

a
f (t)dt ≈ (b − a)

( f (a) + f (b)
2

(7.3)

In the present work a is the previous time step and b is the current one.
f (a) and f (b) are the corresponding values of the angular velocities.

The values of the PID constants have been hand-tuned looking to the
response of the multi-body model described in section 6.1. At least a pro-
portional controller must be used. This type of controller, using an appro-
priate value for Kp, is able to stabilize the response. Increasing the value
of Kp, beyond a certain value instability occurs. However, a proportional
controller produces a high error on the angular position. To recover the
appropriate accuracy on the position, an integral controller is necessary.
The final choice for this controller is a PI. This system can be also seen as
a proportional controller both on the angular position and on the angu-
lar velocity. The derivative control (equal to a proportional control of the
error on angular acceleration), usually used to decrease overshoot, is not
necessary in this case. The best result can be obtained with gains Kp = 0.02
and Ki = 0.95.
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Conclusion
In this section are summarized the main results reached during this work,
both in the control system and in the construction of the walking platform.
At the end will be listed some possible improvements or changes for the
next work on NEMeSys.

8.1 Results of the work

The first result obtained is the control of the single leg motion. At first
only the standard walking has been implemented, beginning from the two
phases swing and stance. For the former one two possible model has been
designed, one using a static network and one using a dynamic network.
Both these two networks have been tested on a huge number of different
start and target positions in order to evaluate advantages and disadvan-
tages of each one. A positive feedback has been implemented in order to
control the power stroke. A closed loop has been applied on height and
body speed. Once that the single phases have been optimized, the design
of the selector has permitted to reproduce a standard single leg motion.
The next step has been the implementation of the reflexes by using ANN.
These are the main expression of the interaction between the robot and the
environment. Three types of reflexes have been identified looking to the
behavior of stick insect. The single leg motion is so completely simulated.

The coordination between the legs has been the following target. Be-
ginning from two different existing models of coordination, a new one has
been designed, trying to keep the positive aspects of each one. The simu-
lations of the motion using this new model have demonstrated to be able
to ensure the static stability of the robot for a large range of speed, that
can be varied with continuity from a value next to zero to the maximum
permitted from the motors. The typical gaits of stick insect walking auto-
matically emerge by changing the value of the reference velocity. On flat
terrain wave gait from the rear to the front appears. It is demonstrated
that this type of gait is the most efficient one. Furthermore also in case of
failure of one leg, the coordination is ensured. Also curve trajectory can be
performed only by giving a reference value of the angular speed of yaw,
without any change in the control and coordination parameters. It is im-
portant to underline that these results have been obtained by using only
kinematic models, without taking in account dynamic effects.
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In order to proof the effectiveness of the control system designed, it has
been tested on a multibody model. During these simulations a realistic
model of the ground has been used in order to have the effective values
of ground reactions. The output of these calculations have confirmed a
good accordance with the kinematics ones demonstrating that the design
can be made ignoring the dynamic effects. However these simulations
have given the possibility to analyze particular behavior that can’t emerge
only considering the kinematics, especially during the stance phase, where
the interaction with the environment is strong. The controller has also
demonstrated a high level of robustness also against disturbance on the
measures.

The use of a reflex-based controller has the main disadvantage of need-
ing the signal of the sensors, so that in case of sensor failure the generation
of a correct trajectory is impossible. In this case the only way is to switch
off the corresponding leg and to continue with five legs, with a degrada-
tion of the performances, but maintaining the control and the coordination
of the robot. This is also possible because of the high level of decentral-
ization of the current controller, so that the trajectory of each leg can be
generated using the data from the sensors of the leg itself.

Meanwhile a mechanical platform has been designed and built. The
main result is a great reduction of the weight (about 20%) and of the size
of the legs. The new type of junction allows to have more compact legs
and body. Moreover the type of structure chosen for NEMeSys Mk III
has a high level of modularity, allowing to change the shape rapidly and
cheaply maintaining the current milled parts and replacing the profiles.
The new contact sensors permit the measure of the ground reaction in-
stead of the only contact detection of the last works.

8.2 Innovation

The main innovative feature developed during this work is the new co-
ordination model shown in chapter 5. Compared to the other proposed
decentralized coordination models, the present one matches the ability to
ensure the static stability of the robot and to generate wave gates on flat
ground. The static stability is maintained not only in case of standard
walking on flat terrain, but also un presence of obstacles and when par-
ticular behaviors, e.g. reflexes, are activated. The emersion of wave gate,
instead, ensures that the walking is performed by the most efficient way.

The second innovation is about the swing trajectory generation: in this
work a dynamic ANN has been designed, trained and tested. The main
advantage with respect to the static swing network is its robustness with
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respect to the static one in front of disturbance.
In order to represent particular behaviors a complete set of reflexes

have been implemented using ANN. These are an innovation with respect
to the previous work because are completely uncoupled with respect to the
normal walking trajectory generation. They only work if a particular input
comes from the environment, so that, normally, they have no influence on
the robot motion.

Moreover the modular approach improves the flexibility of the con-
troller by allowing to introduce new behaviors in very simple way.

About the mechanical platform, the main innovation with respect to
the old versions of NEMeSys is the joint architecture and the use of miter
gears for the transmission of the motion.

8.3 Future developments

About the future development, the first thing to be done is the test of the
controller presented in this work on the walking platform. The software
necessary for this activity is at most already programmed by using C and
Assembler. However it is necessary a check of the USB and I2C communi-
cation and the calibration of the sensors. The first tests will be done with
straight reference trajectory beginning from low speed gait. If these tests
will conclude successfully high speed and curve walking could be tested.

With regard to the controller, starting from the actual one, a lot of de-
velopment can be thought. The first one is the implementation of a system
that allows to maintain the position when the robot is stopped in presence
of disturbance. The LPVF acting during stance does not allow this behav-
ior. It is necessary to introduce a stiffness on the joints somehow. The most
simple way is the introduction of a negative feedback on the single joint
every time that the current position has to be held.

A weakness of the controller described in this work is that no raise is
possible if the robot falls. This because particular behavior are necessary
in this case. The solution could be to implement a system that first of all
detects the fall and computes a strategy for the lift. These strategy are
stereotyped behaviors function of the position after the drop.

About the curve walking other behaviors can be applied: in this work
has been implemented only the change of frequency of the gait to perform
a curve trajectory, but other ones are possible. The simplest is the changing
of the target position of the swing phase and of the PEP in relation to the
yaw angular velocity reference. By this way it will be possible to reduce
the radius of the trajectory, up to permit to the robot to turn on itself.

The presence of force sensors that measure the ground reaction on the
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foot allows to design a more complex selector that takes into account the
longitudinal and lateral position of the PEP and the amount of the reac-
tion. The result of this will be a better control of the stability, that even-
tually will change the coordination model, adding to the current one the
equivalent of the rule 5 of the Cruse model (see section 5.1).

For the high level control, attitude sensors can be installed on the robot.
By this way will be possible to command the orientation of the body. This
means that a better control of the reference height for each leg can be im-
plemented, allowing, for example, to lift the forward part of the body if
an obstacle is detected. For a better interaction with the environment a set
of vision sensors could be used. By this way the detection of an irregu-
larity of the ground can be made in advance, and an optimization of the
trajectory and of the gait can be performed.

As previously said, with the current controller, in case of failure of fail-
ure even of one sensor, it is necessary to switch off all the legs, that has to
be locked in swing position to avoid interference with the working legs.
A strategy can be studied to try to use, perhaps with a degradation of the
performance, the damaged leg too. An idea can be to insert a shadow CPG
that, only in case of failure, using as input the signal of the remaining sen-
sors of the leg, replaces the normal reflex-based controller. By this way the
pattern generator is restored. Obviously this shadow controller must be
synchronized through the coordination to the reflex-based ones working
on the healthy legs.

A parallel activity on the robot could be the identification of the model
from the data coming from the tests. By this work it could be possible to
build a simple and efficient model for numerical simulation of any type of
controller.

About the mechanical platform, the first thing to do could be the minia-
turization of the electronic boards. This would mean also a great reduction
of the weight (supposed about 10%), so that a payload or a on-board CPU
could be installed.
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List of Acronyms
AEP Anterior Extreme Position

ANN Artificial Neural Network

BC Body-Coxa

CAD Computer-Aided Design

CoG Center of Gravity

CPG Central Pattern Generator

CT Coxa-Trochanter

CTRNN Continous Time Recurrent Neural Network

DNN Dynamic Neural Network

DoF Degree of Freedom

FEM Finite Element Method

FSR Force Sensing Resistor

FT Femur-Tibia

GA Genetic Algorithm

GC Ground Contact

HPF High Pass Filter

I2C Inter Integrated Circuit

LPVF Local Positive Velocity Feedback

NEMeSys Neural Ento-Mechanic System

PCG Point of Center of Gravity

PEP Posterior Extreme Position

PIC Programmable Interface Controller

PID Proportional-Integral-Derivative
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PSD Power Spectral Density

PWM Pulse Width Modulation

RNN Recurrent Neural Network

SEP Superior Extreme Position

TDRNN Time-Delayed Recurrent Neural Network

USB Universal Serial Bus
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