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Abstract

When we talk about applications of Mathematics in finance, a reasonable
question is "Do the results fit with the market being?". This question can be
answered in many ways, but the first point is, if you are looking for a model
that predicts the price of a stock, a tax, or something in a such way, maybe
Mathematical Finance will disappoint you. In another way, if you are looking
for the most honest price for that underlying, i.e. one more information to
ground you in order to take an attitude, the Mathematical Finance can start
to be useful. In this work we try to evaluate this link between the real
world, i.e. an European Call from a well known company immersed into the
Brazilian market, and four models that evaluates this European Call. Using
the historical data of this asset, observed for four years, we replicate and
compare these four asset pricing models to the real price from the market.
The aim of this work is to explore the pricing of an European Call in a
Jump model, where the asset can have jumps in its paths. We start with the
mathematical basis to evaluate an European Call when the asset is modeled
like a Jump-Diffusion process. After that, we use the hypothesis of "normal"
distribution to the jumps and evaluate the Call using its analytic equation.
Thereafter, we detail the construction of two numerical Monte-Carlo models
, differentiated by the jumps distribution, the "Normally distributed" Jump-
Diffusion model and the "Double Exponentially distributed" Jump-Diffusion
model. Afterwards, It’s priced using the well known Black-Scholes model,
used as a reference for all the results. Finally, all the prices are compared,
with special attention to the numerical Jump-Diffusion models. At the end
we hope to give enough basis to justify the use of an algorithm in order to
price this specific European Call.



Abstract

Quando parliamo di applicazioni della matematica in finanza, una ragionev-
ole domanda è la seguente "I risultati ottenuti aderiscono alla realtà del mer-
cato"? Le risposte alla domanda possono essere molteplici ma comunque il
punto focale della questione è stabilire se si stia cercando un modello che
predica il prezzo di un titolo azionario, un tasso o qualunque altra cosa in
modo tale che la finanza matematica possa risultare insoddisfacente. D’altra
parte, se si sta cercando di determinare il miglior prezzo per il sottostante,
i.e. una ulteriore informazione che permetta di prendere delle scelte fon-
date, la finanza matematica può iniziare ad essere utile. In questo lavoro
vogliamo analizzare la connessione tra il mondo reale, rappresentato da una
opzione di tipo Call Europea di una ben nota emittente che opera nel mercato
brasiliano e quattro modelli atti a valutare il suddetto strumento derivato.
Utilizzando i dati storici relativi ad una osservazione quadriennale di questo
asset, replichiamo e compariamo il prezzo fornito dai menzionati modelli a
quello fornito dal mercato reale. Il principale obiettivo del lavoro è quello
di esplorare la procedura di pricing di una opzione Call Europea in un mod-
ello con salti, ovvero dove l’asset può avere salti nelle traiettorie. Innanzi
tutto, i prerequisiti matematici necessari alla valutazione di una Call Euro-
pea, quando l’asset è modellato come un processo Jump-Diffusion, sono pre-
sentati. Quindi ipotizziamo che i salti siano distribuiti in modo "normale" e
valutiamo la Call per mezzo della sua equazione analitica. Dopodiché, diamo
i dettagli della costruzione di un metodo di tipo Monte Carlo che differiscono
per la tipologia di distribuzione ipotizzata per i salti: distribuzione "normale"
e distribuzione "doble exponential". Dunque il prezzo è ottenuto utilizzando
il ben noto modello di Black-Scholes, utilizzato come riferimento per tutti i
risultati. In conclusione, tutti i prezzi sono raffrontati dando particolare at-
tenzione ai modelli numerici per Jump-Diffusion. Alla fine speriamo di dare
una base sufficiente a giustificare l’uso di un algoritmo per il prezzaggio di
questa specifica opzione.
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Introduction

The study on Jump-Diffusion models applied to finance has started with
R.C.Merton in his paper of 1976 [9] proposing that the returns process con-
sists of three components, a linear drift, a Brownian motion repesenting
"normal" price variation, and a compound Poisson process that set jumps
to its paths generated by unexpected new informations. Since this, the use
of such models has been incrising in real markets and theoretical studies in
applied mathematics and quantitative finance. Its use, as the pure diffu-
sion models did, came from the pricing evaluation theory and in a second
stage has spread its application to headging, replication and riskless arbitrage
strategies of portfolios.

By the way, a good question should be: "Why does some body choose
the use of a Jump-Diffusion model, if the Diffusion models, like the Black-
Scholes one and its derivations, are so generalized and in many cases fit so
well with the Market being?". This is not a simple question and we will try
to summarize here in few lines the main ideas of more than trirty years of
study. For futher reading consult R.Cont and P. Tankov [7].

The first point are the large and sudden movements in prices. Although
diffusion models have a good "shape" for long-term asset models, for example
more than one month of observations, It’s very difficult to model the intraday
or short-term movements of an asset where the continue property of the
asset price can be doubtful, needing a very large volatility to simulate it.
For these short periods the assets seem to be better modelled by a jump
models when compared to empirical observations, where these movements
are a generic property that can be calibrated depending on the asset. The
jump models also permit concentrated "instantenous" large losses, this way
It can be modeled the large downward moves, the most common manner of
loosing in a stock investment.

Another difficulty of diffusion models are to deal with heavy tail asset
returns. This can be reduced by choosing non linear volatility structures,
as a diffusion-based stochastic volatility models, or simulated by technics
of volatility "smile" where the dependence of the volatility with respect to
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the strike "K" and the maturity "T" are taken into account. This is also a
generic property in the simple Jump-Diffusion process models, and can be
even better well characterized in Jump-Diffusion-based stochastic volatility
models.

The completeness of the market is another point that must be discussed.
In diffusion models the market is complete and so options can be hedged in
a risk-free manner. As we will see in the chapter 5, Jump-Diffusion models
are based in incomplete markets because of the large number of variables in
order to construct a risk-free measure, therefore option is a risky investment
as we can see in empirical observations. This means that some strategies can
not be hedged in all risks, but some sorts of hedges are still available. In pure
diffusion methods all the headging strategies as Delta, Vega, Theta hedgings
lead you to the zero residual risk by the right choice of assets, options and
free-risk investments in the portfolio. In jump models the hedging is more
realistic because its done by solving a portfolio stochastic optmization prob-
lem, and so the risk still exists in a probabilistic way. For further information
consult B.Oksendal and A.Sulem in [2].

These are the main principles in order to justify the use of Jump Models.
In this work we will give an empirical assessment on the use of Jump-Diffusion
processes, by choosing an especific well known European Call Option from
the Brazilian Market with maturity of four months and evaluate it in four
manners on the hope of finding a good method to model it. This work
is pointed on the study of this especific Call Option, and can be used as
inspiration in order to evaluate the price of other assets of the same origin,
i.e. an option with high liquidity, this is the second most traded asset in the
Brazilian market, and of middle Maturity, something between three months
and six months.

These last remarks should be taken into account because the stimation
of the parameters to short-term and long-term assets fallow different proce-
dures, by the fact the model is too much affected by its choices. Therefore
this work can not be taken as complete study of parametrization, and for
more information on the generic study of estimation and system calibration
for jump models, mainly to the "Double-Exponentially Distributed" Jump-
Diffusion processes consult C.A. Ramezani and Y. Zeng on [11], where It’s
used Maximum Likelihood Estimation technics take in generic procedures in
order to evaluate parameters.

The work is so split in five chapters and a conclusion, where all the models
are put together and compared. The aim of the first chapter is to give the
basic mathematical concepts in order to introduce the Jump models. First of
all, fallowing S. E. Shreve [1], from the very start It’s quoted the Exponential
Distribution, Poisson Process and Compound Poisson Process on which is
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supported all Jump-Diffusion theory. Is given also a topological introdution
to the broader class of the Lévy Process, fallowing P.Protter [3], where the
Jump-Diffusion Process takes part. In this topological view is presented
the Lévy measure ν necessary to set up the Jump-Diffusion process into the
filtered probability space (Ω,F , {Ft}t≥0,P). In this chapter is also take into
considetarion the essential properties of memorylessness and stationarity of
the Poisson Process, which permits ourselves, taking them as hypothesis, use
the independence in time ot these processes, enabling us to use Martingale
considerations in the fallowing chapters.

The second chapter is started defining ideas of continuity, a very impor-
tant issue when one is dealing with process that can jump as the Jump-
Diffusion processes do. After that, fallowing the approach of S. E. Shreve in
[1], B.Oksendal and A.Sulem in [2], the Jump-Diffusion process "X(t)" are
finally defined into the Levy decomposition perspective, i.e. a process com-
posed by four parts: an initial deterministic condition "X(0)", an Itô Integral
"I(t)", a Riemann integral "R(t)", and a pure jump process, like a Poisson
or a compound Poisson process, "J(t)". It is also presented two examples of
applications of how can this process be used to model a strategy with one
stock. The chapter ends introducing the Quadratic Variation to jump pro-
cess, that will be necessary to expose the Itô-Doeblin formula for the jump
process.

The third chapter, fallowing R.Cont and P.Tankov in [7], is introduced
the Stochastic Calculus for Jump Processes. It’s started with a introduction
for the Stochastic Calculus for continuous-path process, and from that by
the inclusion of the right-continuous pure jump term to the process, is then
presented the Itô-Doeblin formula for one jump process. This way we are
able to set the jump process into a free risk mesure by the change of measure
theory, in the same approach of the Girsanov’s Theorem does for Brownian
process. In the end is presented the Change of Measure for a compound
Poisson Process and Brownian Motion, the generic case of Jump-Diffusion
Process. This way the mathematical basis necessary to the development of
the Vanilla European Call price into a jump-diffusion viewpoint is offered.

Using the achievement of the last chapters, the fourth chapter is all cen-
tred to the development of the analytic formula to the European Call price
with the underlying asset driven by a Brownian motion and a compound
Poisson process. Fallowing the procedure of R.C. Merton in [9] and S.E.
Shreve in [1], the chapter starts with the Itô’s product rule for jump pro-
cess, hence is calculated the the differential equation to the stock price "S(t)"
and its solution, given an initial condition. After that the intention is the
construction of a risk-neutral measure which actually changes the compound
poisson process intensity "λ" to "λ̃" and the jumps distribution "Y " to "Ỹ ".

7



Using this measure we finally perform the Black-Scholes-Merton analytic
formula to price this European Call, using the hypothesis of normal distribu-
tion to the jumps. By the end of chapter, is also introduced some concepts
to the precification of the European Call when the jumps "Y " are "Double-
Exponentially" distibuted i.e. the up and down jumps fallow different and
independent exponential distributions, fallowing the approach of S.G. Kou
in [10]. This last part will not be used to construct an analytic formula to
the Call, but will be used into the numerical model of the fallowing chapter.

The main chapter of this work is the fifth chapter, where the models are
presented and the Call is priced in different ways, depending on the model.
The models that are experimented are the analytic formula to the Jump-
Diffusion Model, the Monte-Carlo numerical method in two perspectives,
with jumps "Normally" distributed and "Double-Exponentially" distributed,
and the Black-Scholes classic method. In the first part of the chapter the Call
is presented as It can be found in the Market, where is offered its original
price to the current date, and the data set of the stock in a period of four
years is presented. This data set is used to calirate all the models on their
own specific characteristics.

Then in this chapter It’s explained how the systems are modelled, being
the first one the analytic Jump-diffusion formula, which is nothing more
than a formula truncated on the summatory function, and the European
Call is priced on that perspective. After that is presented the algorithm,
whose the main ideas where get from R.Cont and P.Tankov [7], and the
calibration to both Monte-Carlo numerical methods, differing between them
by the jumps distribution "normal" or "double exponential", at the end once
again the European Call is priced. Afterwards the Call is priced using the
Black-Scholes formula, this price is given as a benchmark.

In the conclusion chapter the prices for all the models are compared be-
tween them, and It’s exposed how these prices are different from the Market
one. The two prices that more fit with the Market are the two Jump-Diffusion
Monte-Carlo numerical methods, with less than 10% of difference from the
market price. This way, these two models are explored in their own strengths
and weaknesses side by side taking into account th rate of convergence of each
model, the range of the confidence interval of the final price and observations
about the calibration, all of them observed during the algorithm contruction
and simulations. In the last part of the work is also made other relevant con-
siderations of the models, as suggestions of why the analytic Jump-Diffusion
method doesn’t fit so well with the Market being for this product, and why
the Black-Scholes price does so well.
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Chapter 1

Stochatic Calculus with Jump
diffusions

1.1 Introduction to Jump diffusions

This work points to develop an introduction to jump-diffusion processes, and
perform some examples of how They can be applied in the finance field. The
name "diffusion" cames from the well-known Brownian motion component
of its differential equation, and will be essential to our work show up some
concepts of these kind of processes. In addition, with that basic class of
processes, we will introduce jumps on their paths. In order to give us a more
applicable approach, in this project we will work with only finitely many
jumps in each finite time interval.

To model the jumps in their paths we will need to introduce the Poisson
process, the fundamental pure jump process. This kind of process is, in fact,
a different way to face the model of an asset on the stochastic calculus applied
to finance. How it was born, the Poisson process jumps are of size one. To
generalize the concept in a more general case we will present the compound
Poisson process, which has the same origin of a Poisson process, despite of
the jumps with a defined probability distribuition size. A pure jump process
begins at zero, has finitely many jumps in each finite time interval, and has
a constant value,a stair, between jumps.

Defining a jump process as a specific case of a Lévy Process, we will
split it in some components, i.e. in a deterministic initial condition, in a
differential Brownian motion dW (t) component, in a differential deterministic
component respect to time t, and in a pure jump process. Afterwards, We
will define, in a differential and integral way, the jump processes. Once
introduced the stochastic integral, we will be able to develop the stochastic
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calculus for jump processes, as a result of an extension of the Itô-Doeblin
equation in a pure diffusion case.

Like in the pure diffusion case, we must perform a change of probabil-
ity measure for the Poisson process and for the compound Poisson process.
Subsequently, we will find out the measure which handle simultaneously with
a change of measure to both process in the stochastic differential equation,
the Brownian motion and the compound Poisson process. Using a Jump-
Diffusion model and its Backward equation we will be able to price an Eu-
ropean Call based in that asset.

The last part of the work consists on simulations on a real data set from
the market. First we will take a real Option from the market to compare
all the results. Then we will propose four algorithms: an analytic formula
to price an European Call Option with underlying based on Jump-Diffusion
process with the jumps distributed in a normal density function, a numeric
method based on Monte Carlo simulation in a "Normally Distributed" Jump-
Diffusion process, a numeric method based on Monte Carlo simulation in
a "Double Exponentially Distributed" Jump-Diffusion process, and finally
the Black-Scholes model. At the end we will compare these four results
between them and the official price from the market. We will take with
special attention the comparision between the two numeric methods.

1.2 Basic definitions and results on Poisson
Process

The Poisson process is the building block for jump process. In this section
we will expose basic results and properties of these processes.

1.2.1 Exponential Random Variables
Definition 1.1 ([1]). We will say the random variable τ has a exponential
distribution if it has the following density :

f(t) =
{
λe−λt, t ≥ 0,
0, t < 0, (1.1)

where the constant λ ∈ ℜ+.

As a result we present the expected value of τ :

E[τ ] =
∫ ∞

0
tf(t)dt = λ

∫ ∞
0
te−λtdt = −teλt|t=∞t=0 +

∫ ∞
0
e−λtdt = 0−1

λ
e−λt|t=∞t=0 = 1

λ
.
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And for the cumulative distribution function, we stand :

F (t) = P{τ ≤ t} =
∫ t

0 λe
−λudu = −e−λu|u=tu=0 = 1− e−λt , t ≥ 0,

And so, by the complementary probability,

P{τ > t} = e−λt , t ≥ 0, (1.2)

The conditional probability of an event which can occur at the time t+s,
knowing it didn’t occured up to the time s, is given by :

P{τ > t+s|τ > s} = P{τ > t+ s and τ > s}
P{τ > s}

= P{τ > t+ s}
P{τ > s}

= e
−λ(t+s)

e−λs
= e−λt.

Therefore, the probability of occur an event when we have to wait an
additional time t, when we have already waited until s, is the same of the
probability of waiting from the start time t = 0. That result is a prop-
erty of the exponencial distribuition, i.e. the indifference in the probability
distribuition of our position in time. That property called memorylessness.

1.2.2 Construction of a Poisson Process
Suppose a sequence of i.i.d exponential random variables τ1, τ2, τ3..., all of
them with mean 1

λ
. We will define the "jump" model in the following way:

The sign of a random variable will be replaced by its first occurrence, each
of them called interarrival times. So, the first jump occurs at time τ1, the
second occurs at τ2 time units after the first one, the third occurs τ3 after
the second, and so on.
Definition 1.2 ([1]). We will call the arrival time the unit of time of the
nth jump, in that way:

Sn =
n∑
k=1
τk (1.3)

Definition 1.3 ([1]). The Poisson process N(t) counts the number of jumps
that occured at or before time t. In that way:

N(t) =



0 if 0 ≤ t < S1,
1 if S1 ≤ t < S2,
.
.
n if Sn ≤ t < Sn+1,

And we say the Poisson process N(t) has the an intensity λ, which measure
the avarage rate of jumps in a unit time.
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Defined the Poisson process we can present some basic topological con-
cepts of it. N(t) is right-continous, i.e. N(t) = lims↓tN(s). We can de-
fine (Ω,F , {Ft}t≥0,P) the filtered probability space , with F(t) = Ft the
σ-algebra generated by the observation of the Poisson process N(s) at the
time 0 ≤ s ≤ t, it means that we know the paths, what occured, up to the
time t.

And so we can define, in a topological sense, a more generic process:

1.2.3 Basic definitions and results on Lévy Process
Now we will present some basic concepts needed to apply the calculus of
jump diffusions.

Definition 1.4 ([3]). Let (Ω,F , {Ft}t≥0,P) be a filtered probability space. A
Ft-adapted process {ηt}t≥0 ⊂ ℜ is called a Lévy process if :

1. η0 = 0 a.s.;

2. ηt is continous in probability;

3. has stationary, independent increments;

We say convergence in probability when there is a succession (Xn)n,
signed by Xn

P→ X, if for each δ > 0, limn→∞ P (d(Xn, X) > δ) = 0. [4]
A result from any Lévy process {ηt} is that we can perform a cadlag ver-
sion (right continous with left limits), which is also a Lévy process.[3] Hence,
hereafter we will assume all the Lévy processes as cadlag processes.

Definition 1.5. We will define a jump of {ηt} at t ≥ 0 by

∆ηt = ηt − ηt− . (1.4)

Definition 1.6 ([3]). Given B0 the family of Borel sets U ⊂ ℜ, whose 0 /∈ Ū
(closure of U). For ∀U ∈ B0 we define the Poisson random measure of η(.)
as :

N(t, U) = N(t, U, ω) =
∑
s:0<s≤t

χU(∆ηt) (1.5)

In differential notation is written N(dt, dz)

Where χU(.) is the indicator function of the set U , i.e., χU(x) = 1 if x ∈ U
or χU(x) = 0 if x /∈ U . By the right continuity, we can conclude N(t, U) is
finite ∀U ∈ B0.
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Definition 1.7 ([4]). A process B = (Ω,F , {Ft}t≥0, (Bt)t≥0, P ) with real
values is a Brownian motion if:

1. B0 = 0 a.s;

2. for each 0 ≤ s ≤ t the random variable Bt −Bs is independent of Ft;

3. for each 0 ≤ s ≤ t the random variable Bt − Bs has the following
distribution N(0, t− s);

Hence, by the definition, The Brownian motion {Bt}t≥0 is a particular
case of Lévy processes.

Another Lévy process is the Poisson process π(t) of intensity λ > 0,
taking values in natural numbers. This process has the following distribution
of probability:

P [π(t) = n] = (λt)n

n!
e−λt; n = 0, 1, 2, 3...

1.2.4 Distribution of Poisson Process Increments
First of all, we must determine the distribution of the arrival jump times Sn
for n = 1, 2, 3... :

Lemma 1.8 ([1]). The random variable Sn, such that n ∈ N and n ≥ 1,
defined by the definition 1.2 has following the gamma density:

gn(s) = (λs)n−1

(n−1)! λe
−λs , s ≥ 0. (1.6)

where the constant, said density, λ ∈ ℜ+.

Proof. We will prove 1.6 by induction on n.
For n = 1, we have that S1 = τ1 is given by the density 1.1, and so,

g1(s) = λe−λs , s ≥ 0.

Now, by induction, let us assume that 1.6 holds to n and let it expand to
n+ 1. Hense, accepting Sn let us find Sn+1 = Sn+ τn+1 by the independence
of Sn and τn+1, and the convolution, we reach the density :∫ s

0 gn(υ)f(s− υ)dυ =
∫ s

0
(λυ)n−1

(n−1)! λe
−λυ · λe−λ(s−υ)dυ

= λn+1e−λs

(n−1)!
∫ s

0 υ
n−1dυ = λn+1e−λs

n! υn|υ=sυ=0

= (λs)n
n! λe

−λs = gn+1(s)

, and so, 1.6 is proved by induction.
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And, in the same way, we can find the distribution of the Poisson process
N(t) :

Lemma 1.9 ([1]). The Poisson process N(t) of intensity λ has the following
distribution

P{N(t) = k} = (λt)k
k! e

−λt, k = 0, 1, .. (1.7)

,and this result is well known.

By the memorylessness proper from Poisson process, we know the prob-
ability distribution of the process N(t − s) − N(s), and so the probability
distribution of the number of jumps in the interval (s, t + s].They are inde-
pendent of the number of jumps before the time s, and so,it is independent
of Fs. In the same way, we conclude that the distribution of N(t− s)−N(s)
has the same distribution of N(t) alone, an exponential distribution with
intensity λ. Thus, the important parameters for its distribution is the in-
tensity λ and the time interval of the increment. That property of a process
increment depending only on a time interval, independent of which one in the
time progress, is called stationarity. As we saw, also the Brownian motion
has that property.

We finally can develop the distribution of an increment.

Theorem 1.10. Let N(t) be a Poisson process, with the distribution given
by 1.7, and the given times 0 = t0 < t1 < t2 < .. < tn. The sequential
increments N(t1)−N(t0), N(t2)−N(t1), ..., N(tn)−N(tn−1) are stationary
and independent, with the distribution,

P{N(tj+1)−N(tj) = k} = λk(tj+1−tj)k
k! e−λ(tj+1−tj), k = 0, 1, .... (1.8)

Proof. The proof is given by the independence and stationarity of Poisson
increments, explained at the last point, and is a consequence of the lemma
1.9.

In a topological way, with those instruments we can propose the following
theorem, which will offer us a measure whose we will be required to build up
the Lévy decomposition and all the Jump difusion theory.

Theorem 1.11 ([3]). 1. The set function U → N(t, U, ω) defines a σ −
finite measure on B0 for each fixed t,w;

2. The set function ν(U) = E[N(1, U)] defines a σ − finite measure on
B0, called the Lévy measure of {ηt}, where E = EP denotes expectation
respect to the probability measure P;
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3. Fix U ∈ B0. Then the process

πU(t) := πU(t, ω) := N(t, U, ω)

is a Poisson process of intensity λ = ν(U);

As a result we can perform the mean and the variance of Poisson Incre-
ments:

By the theorem 1.10, the Poisson Increment N(t)−N(s) has distribution

P{N(t)−N(s) = k} = λk(t−s)k
k! e

−λ(t−s), k = 0, 1, .... (1.9)

Is interesting to see that the distribution density follows the basic cumulative
probability property, in that way,

∞∑
k=0

P{N(t)−N(s) = k} = e−λ(t−s)
∞∑
k=0

λk(t− s)k

k!
= e−λ(t−s)eλ(t−s) = 1.

and this is an outcome of the exponential time series ex = ∑∞
k=0

xk

k! .
We next compute the expected value of a increment,

E[N(t)−N(s)] = ∑∞
k=0 k

λk(t−s)k
k! e

−λ(t−s)

= λ(t− s)e−λ(t−s)∑∞k=0
λk−1(t−s)k−1

(k−1)!
= λ(t− s)e−λ(t−s)eλ(t−s)
= λ(t− s).

(1.10)

Then, the average of jumps in the time interval [s, t], for s ≤ t, is given by
E[N(t)−N(s)] = λ(t− s).

And, by the second moment of the increment,

E[(N(t)−N(s))2] = ∑∞
k=0 k

2 λk(t−s)k
k! e

−λ(t−s)

= e−λ(t−s)∑∞k=1
λk(t−s)k

(k−1)! (k − 1 + 1)
= e−λ(t−s)∑∞k=2

λk(t−s)k
(k−2)! + e−λ(t−s)∑∞k=1

λk(t−s)k
(k−1)!

= λ2(t− s)2e−λ(t−s)
∑∞
k=2

λk−2(t−s)k−2

(k−2)! + λ(t− s)e−λ(t−s)∑∞k=1
λk−1(t−s)k−1

(k−1)!
= λ2(t− s)2 + λ(t− s).

We can find the increment’s variance,

V ar[N(t)−N(s)] = E[(N(t)−N(s))2]− E[N(t)−N(s)]2
= λ2(t− s)2 + λ(t− s)− λ2(t− s)2

= λ(t− s).

(1.11)

A special case of the Poisson process is the following definition
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Definition 1.12 ([1]). Let N(t) be a Poisson process with intensity λ. We
define a compensated Poisson process as

M(t) = N(t)− λt

As a result we find out a compensated Poisson process M(t) is a martin-
gale. Then, for 0 ≤ s < t,

E[M(t)|Fs] =M(s)

1.3 Compound Poisson Process
To be more generic we need a kind of jump which performs more than a
process that jumps up only one unit, as the Poisson process and the com-
pensated Poisson Process, for instance. Furthermore, we need to build up a
process which the jump’s size is given by a random distribution.

1.3.1 Construction of a Compound Poisson Process
Definition 1.13 ([1]). Let N(t) be a Poisson process with intensity λ, and
let Y1, Y2, ... be a sequence of i.i.d. random variables with mean β = E[Yi],
and also independent of N(t). We define a Compound Poisson process as

Q(t) = ∑N(t)
i=1 Yi t ≥ 0. (1.12)

The jumps of Q(t) occur at the same time of the pure Poisson process
of size 1, whereas the compound Poisson Process has jumps of random size,
following the Yi random distribution. As occurred with the Poisson process,
the increments of a compound Poisson process Q(t) are independent. For
instance, for 0 ≤ s < t, we have

Q(t)−Q(s) =
N(t)∑

i=N(s)+1
Yi,

It sums up the jumps between the time interval (s, t].In addition, the com-
pound Poisson process has the stationarity and memorylessness properties,
i.e. N(t) − N(s) is distributed as N(t − s), depending only on the time
interval (s, t].

The expected value of a compound Poisson process is

E[Q(t)] = ∑∞
k=0 E[∑ki=1 Yi|N(t) = k]P{N(t) = k}

= ∑∞
k=0 βk

(λt)k
k! e

−λt = βλte−λt∑∞k=1
(λt)k−1

(k−1)! = βλt
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We read that result in the following way: The average of a process Q(t) is
given by λt (jumps

time × time) jumps in the time interval [0, t], with the average
size β. As hypothesis the number of jumps is independent of theirs sizes.

In the same way of the result for the compensated Poisson process, we
can give the following theorem,

Theorem 1.14. With Q(t) given as in 1.13 the compensated compound Pois-
son process

Q(t)− βλt

is a martingale.

Proof. For 0 ≤ s < t, the increment Q(t) − Q(s) is independent of Fs and
mean βλ(t− s). Then we have,

E[Q(t)− βλt|F(s)] = E[Q(t)−Q(s)|F(s)] +Q(s)− βλt
= βλ(t− s) +Q(s)− βλt = Q(s)− βλs

Then, as already named, the compound Poisson process has stationary
independent increments. The general case is

Proposition 1.15 ([1]). With Q(t) given as in 1.13 and the given times
0 = t0 < t1 < t2... < tn. The increments

Q(t1)−Q(t0), Q(t2)−Q(t1), ..., Q(tn)−Q(tn−1)

are independent and stationary. The process Q(tj) − Q(tj−1) has the same
distribution of Q(tj − tj−1).

We can also propose the compound Poisson Process in a topological more
generic way,

Proposition 1.16 (The compound Poisson process[2]). Let Yn, with n ∈ N,
be a sequence of i.i.d. random variables taking vulues in ℜ with common
distribution µY1 = µY and let N(t) be a Poisson process of intensity λ, inde-
pendent of all the Yn’s. The compound Poisson process is given by 1.13 and
its increments are

Q(t)−Q(s) =
N(t)∑

i=N(s)+1
Yi,

This is independent of FN(s)+1 and depends only on the difference (s − t].
Thus, Q(t) is also a Lévy process.

17



To find the Lévy measure ν of Q(t) note that if U ∈ B0 then, by the
independence

ν(U) = E[N(1, U)] = E[∑s;0≤s≤1 χU(∆Q(s))] =
E[(number of jumps · χU((jump)] = E[N(1)χU(Y )] = λµY (U),

And we conclude that ν = λµY

1.3.2 Moment-Generating Function
For this section we will follow [1]. As the formula for the density of a com-
pound Poisson process increment Q(tj − tj−1) is quite complicated , we will
present its moment-generating function formula. Let Q(t) defined as in 1.13.
Denote, in a generic way, the moment-generating function of a Random vari-
able Yi by

φY (u) = E[euYi ] (1.13)

Because of all Yi’s are i.i.d the distribution does not depend on the index i.

Proposition 1.17 (Moment-Generating function for the Compound Pois-
son Process). The Moment-Generating function for the Compound Poisson
Process Q(t) is, by the independence of Yi and N(t),

φQ(t)(u) = E[euQ(t)]
= E[exp{u∑N(t)

i=1 Yi}]
= P{N(t) = 0}+∑∞

k=1 E[exp{u∑ki=1 Yi|N(t) = k}]P{N(t) = k}
= P{N(t) = 0}+∑∞

k=1 E[exp{u∑ki=1 Yi}]P{N(t) = k}
= e−λt +∑∞

k=1 EeuY1EeuY2 ...EeuYk (λt)k
k! e

−λt

= e−λt + e−λt∑∞k=1
(φY (u)λt)k
k!

= e−λt∑∞k=0
(φY (u)λt)k
k!

= exp{λt(φY (u)− 1)}
(1.14)

In the case of Yi follows a deterministic distribution, taking the constant
value y, then the compound Poisson process Q(t) is actually give by yN(t)
and 1.13 assumes the deterministic value φY (u) = euy. By the way, if we take
y times a Poisson process it holds the following moment-generating function

φyN(t)(u) = E[euyN(t)] = exp{λt(euy − 1)} (1.15)

Thus, for y = 1 we have the moment-generating function of a Poisson process,

φN(t)(u) = E[euN(t)] = exp{λt(eu − 1)} (1.16)
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Another interesting case is when Yi takes one of the finitely possible de-
terministic values y1, y2, .., yM with the distribution p(ym) = P{Yi = ym},
with p(ym) > 0 for every m and the cummulative property ∑Mm=1 p(ym) = 1.
And so, from 1.13 we have φY (u) = ∑M

m=1 p(ym)euym , and from 1.17 it follows

φQ(t)(u) = exp{λt(∑Mm=1 p(ym)euym − 1)}
= exp{λt∑Mm=1 p(ym)(euym − 1)}
= exp{λp(y1)t(euy1 − 1)}...exp{λp(yM)t(euyM − 1)}.

(1.17)

This expression is a moment-generating function of a product of the
moment-generating functions of kind 1.15, with the mth process with an
intensity λp(ym) and jump size ym. If it holds we have the following theo-
rem, essential to the theory of Jump-process.
Theorem 1.18 (Decomposition). [1] Let y1, y2, .., yM be a finite set of de-
terministic numbers, with associated probability p(yi), for i = 1, ..,M , and∑m=1
M p(ym) = 1. Assume the intensity λ > 0, and let us define N̄1(t), ..., N̄M(t)

be independent Poisson processes, with N̄m(t) having the intensity λp(ym).
We define a new process

Q̄(t) = ∑M
m=1 ymN̄m(t), t ≥ 0. (1.18)

Thus, Q̄(t) is a compound Poisson process. Let us assume, for instance, Ȳ1
is the size of the first jump of Q̄(t), Ȳ2 is the size of the second jump, etc.,
and

N̄(t) = ∑M
m=1 N̄m(t), t ≥ 0. (1.19)

where N̄(t) is a cumulative function which measures the total number of
jumps on the time interval (0, t], It holds :

1. N̄(t) is a Poisson process with intensity λ;

2. the random variables Ȳ1, Ȳ2, .., ȲM are independent with probability dis-
tribution P{Ȳi = ym} = p(ym), for m = 1, ...,M ;

3. the random variables Ȳ1, Ȳ2, .., ȲM are independent of N̄(t);

4. Q̄(t) = ∑N̄(t)
i=0 Ȳi, t ≥ 0;

So, we can conclude from Theorem 1.18 that there are two ways to face
a compound Poisson process that has finitely many possible jump sizes. It
can be thought as a Single Poisson process in which we use jumps of random
size, instead size-one jumps. It can also be regarded as a sum of independent
Poisson processes in each of which the size one jumps are replaced by jumps
of a pre-fixed size. To reassume is given the following corollary.
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Corollary 1.19. Let y1, y2, .., yM be a finite set of deterministic numbers,
with associated probability p(yi), for i = 1, ..,M , and ∑m=1

M p(ym) = 1. The
random variables Ȳ1, Ȳ2, .., ȲM are independent with probability distribution
P{Ȳi = ym} = p(ym), for m = 1, ...,M . Let N(t) be a Poisson process and
define the compound Poisson process

Q(t) =
N(t)∑
i=1
Yi

At the another way of regarding, for m = 1, ...,M , let Nm(t) denote the
number of jumps in Q(t) of size ym in the time interval [0, t]. Then

N(t) =
M∑
m=1
Nm(t) and Q(t) =

M∑
m=1
ymNm(t).

The processes Nm’s are independent Poisson process, with intensity λp(ym).

We are able to understand the fallowing theorem, that will be regarded
with more considerations in the next chapter.

Theorem 1.20 (Lévy decomposition ([5])). Let {ηt} be a Lévy process. Then
ηt has the following decomposition

ηt = αt+ βB(t) +
∫
|z|<R
zÑ(t, dz) +

∫
|z|≥R
zN(t, dz), (1.20)

for some constants α, β ∈ ℜ , R ∈ ℜ+.
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Chapter 2

Integrals of Jump Process

In this chapter will be introduced the stochastic integral when the integrator,
i.e. the dX part is a process with jumps. We will also discuss some properties
of these process. In our case the process of our integrator has a Brownian
motion and a Poisson or a Compound Poisson parts. First of all, let’s give
some main ideas of continuity:

2.1 Directional continuity
A function may happen to be continuous in only one direction, either from
the "left" or from the "right". A right-continuous function is a function which
is continuous at all points when approached from the right. Technically, the
formal definition is similar to the definition above for a continuous function
but modified as follows:

Definition 2.1. The function f(t) is said to be right-continuous at the point
c if f(t) = lims↓tf(s),and so the following holds: For any number ϵ > 0
however small, there exists some number δ > 0 such that for all x in the
domain with c < x < c+ δ, the value of f(x) will satisfy:

|f(x)− f(c)| < ϵ.

Notice that xmust be larger than c, that is on the right of c. If x were also
allowed to take values less than c, this would be the definition of continuity.
This restriction makes possible the function to have a discontinuity at c, but
still be right continuous at c, as pictured.

Likewise a left-continuous function is a function which is continuous at
all points when approached from the left, that is, c− δ < x < c.

Denoting a generic process with jumps J(t) , a right-continuous version
of such process. The left-continuous version will be denoted by J(t−). We
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should interpret this in the following manner: If there is a jump on the process
J ,a right-continuous process, at the time t, then J(t) is the value of J at the
very time immediately after the jump, and J(t-) is its value immediately
before the jump.

A function is continuous if and only if It has both properties, the right-
continuity and the left-continuity.

2.2 Defining a Jump Processes
We will define the terminogy to make a connection between a process and
σ-algebra or filtration.

Definition 2.2 ([1]). Let the usual probability space (Ω,F , {Ft}t≥0, P ), with
{Ft}t≥0 = F(t), t ≥ 0, being a filtration of this space. We define a Brow-

nian motion W (t) to be a process relative to F(t) if W (t) is F(t)-measurable
for every t and for u > t the increment W (u)−W (t) is independent of F(t).
It holds for a Poisson process too. We say N(t) is a Poisson process relative
to the filtration F(t) if N(t) is F(t)-measurable for every t and for u > t the
increment N(u) −N(t) is independent of F(t). This definition holds in the
same way for a compound Poisson process Q(t).

Let’s consider the following right-continuous process, also called the Levy
decomposition[2]:

X(t) = X(0) + I(t) +R(t) + J(t) (2.1)

Where X(t) is the integrator of the following stochastic integral,∫ t
0

Φ(s)dX(s) (2.2)

Let (Ω,F , P ) the usual probability space, by the σ-algebra we generates
the filtration F(t), for t ≥ 0. By now all the processes will be adapted to
this filtration. Let’s better specify each element of the process 2.1

• X(0) in this case will be a deterministic inicial condition.

• I(t) will be stochastic integral, called an Itô Integral

I(t) =
∫ t

0
Γ(s)dW (s) (2.3)

where Γ(s) is a adapted process, with the integrator as a Brownian
motion dW (s) relative to the filtration F(t).
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• R(t) is a Riemann integral for the adapted process Θ(s)

R(t) =
∫ t

0
Θ(s)ds (2.4)

• J(t) is an adapted, right-continuous pure jump process with J(0)=0.
The left-continuous version of that process will be denoted J(t−). Our
process in this case is a pure jump process, hence J does not jump at
time zero, has only finitely many jumps on each finite time interval
(0,T], and is constant between jumps. This constance is a characteris-
tic from Poisson and compound Poisson processes. But a compensated
Poisson process does not have that characteristic because of the de-
creasing characteristic between jumps. So, J(t) is the pure jump part
of X(t).

Hence, can be defined:

Definition 2.3. The continous part of the process X(t) will be

Xc(t) = X(0) + I(t) +R(t) = X(0) +
∫ t

0
Γ(s)dW (s) +

∫ t
0

Θ(s)ds (2.5)

And we finally define a jump process

Definition 2.4 ([1]). A process X(t) define as in 2.1, will be called a jump
process.

By definition the pure jump process J(t) is right-continuous and adapted.
Because of the continuity of I(t) and R(t) the left-continuous version of X(t)
is given

X(t−) = X(0) + I(t) +R(t) + J(t−). (2.6)

And we will define the jump size of the jump process X(t) [2] as

∆X(t) = X(t)−X(t−). (2.7)

If at a time t, there is no jump, by the continuity it implies ∆X(t) = 0.
As a result, it can be seen that the jump size cames from the pure jump
process J(t), hence the jump size ∆X(t) = X(t)−X(t−) and the jump size
∆J(t) = J(t)−J(t−) have both the same sizes. How it was already defined,
there are no jumps at the time zero, then ∆X(0) = 0.

Given the stochastic integral and the jump process, we will split the
stochastic integral in its parts.
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Definition 2.5. [1] Let X(t) be a jump process as defined above, and let Φ(s)
be an adapted process to the current filtration F(t). The stochastic integral
of Φ with respect to the integrator X is such that

• In integral form∫ t
0

Φ(s)dX(s) =
∫ t

0
Φ(s)Γ(s)dW (s) +

∫ t
0

Φ(s)Θ(s)ds+
∑

0<s≤t
Φ(s)∆J(s).

(2.8)

• Or in differential notation,

Φ(t)dX(t) = Φ(t)dI(t) + Φ(t)dR(t) + Φ(t)dJ(t)
= Φ(t)Γ(t)dW (t) + Φ(t)Θ(t)dt+ Φ(t)dJ(t)
= Φ(t)dXc(t) + Φ(t)dJ(t)

(2.9)

Let’s see in a pratice way what this implies.

Example 1 : Holding a asset with a strategy "Φ(t)"[1]

The path of a generic underlying will be modeled as X(t) = M(t) =
N(t)−λt, and so X(t) will be a compensated Poisson process with a Poisson
process N(t) with an intensity λ. Following the notation of the equation 2.1
we split our equation in its different parts:

• Itô Integral I(t) = 0;

• Continuous part Xc(t) = R(t) = −λt;

• J(t)=N(t)

With the strategy Φ(s) = ∆N(s), i.e.

Φ(s) =
{

1, if there is a jump of the process N(t) at time s,
0, otherwise, (2.10)

Φ has finitely many values 1 at the time interval [0, t], each of them during
a time with measure zero (instantaneous). It is reflected at the continuous
part of the integral,∫ t

0
Φ(s)dXc(s) =

∫ t
0

Φ(s)dR(s) = −λ
∫ t

0
Φ(s)ds = 0. (2.11)

24



However, by the pure jump part,∫ t
0

Φ(s)dN(s) =
∑

0<s≤t
(∆N(s))2 = N(t). (2.12)

And so it implies,∫ t
0

Φ(s)dM(s) = −λ
∫ t

0
Φ(s)ds+

∫ t
0

Φ(s)dN(s) = N(t). (2.13)

In our case is interesting to have the stochastic integral,

I(t) =
∫ t

0
Γ(s)dW (s).

like a martingale. To make this, we aproximate the integrand Γ(s) by simple
integrands Γn(s), hence we choose the stochastic integral in that way,

In(t) =
∫ t

0
Γn(s)dW (s).

and verifying ,for each n, that In(t) is a martingale. Defining :

lim
n→∞
In(t) = I(t)

I(t) will be a martingale. It will be possible when the stochastic integral
with the integrand Γ(s) satisfies the following technical condition,

E[
∫ t

0
Γ2(s)ds] <∞, for every t>0.

In a financial view, the stochastic integral will be the gain, if we replace
Γ(s) by the position in an asset and we replace the pure Brownian motion
W (t) by the price of that asset. If this price is a martingale, i.e. with a pure
volatility path which can goes up and down, and the position Γ(s) respects
the condition above, the gain we make will be also a martingale.

In our example, an agent who invests in the compensated Poisson pro-
cess M(t) by choosing his position according to the formula Φ(s) = ∆N(s)
will create an arbitrage in the market. An arbitrage portfolio is basically a
deterministic money make machine, and we considerate the existence of an
arbitrage portfolio as equivalent to a serious case of mispricing on the market
[6].

The agent holds a zero position at all times except when there is a jump
of the process N(s), when he has a one position. At the same time we have
the compensated Poisson process M(s) jumping positively, and so he will
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reap the upside gain from all these jumps and have no possibility of loss, i.e.
the gain is assured (arbitrage).

Actually, the position Φ(s) = ∆N(s) cannot be implemented because
the investidor must take his positions before the jump, the other fact is the
impossibility to him to take a instantaneous position. If an agent don’t have
an inside information, and it is rightfully forbidden, is impossible to him to
know when the asset will jump, and so is impossible to him to hold this asset
at only exatly that time. This is true by the fact that our position Φ(s)
depends only on the path of the asset M(s), for t ≤ s, do not depending on
the future path of the asset. This is axatly the definition of adapted process
when we have contructed a stochastic integral respect to a Brownian motion.

To assure the condition of a martingale and no arbitrage processes holding
for our strategy, is not enought to require only the integrand like a adapted
process to the underlying, we will need also to put the extra condition of
our strategy is a left-continuous process. With this, during the jumps of the
underlying M(s) path, our strategy Φ(s) will have a zero position between
and during the jump times. All these facts are assured by the following
theorem.

Theorem 2.6 ([1]). Assume that the jump process X(s) defined as in 2.1,
is a martingale, the integrand Φ(s) is left-continuous and adapted, and

E[
∫ t

0
Γ2(s)Φ2(s)ds] <∞ ,for all t ≥ 0 .

If all those conditions hold, the stochatic integral
∫ t

0 Φ(s)dX(s) is a martin-
gale.

It is important to verify that, despite the fact that we require the inte-
grand process Φ(s) to be left-contiuous, we have the integrator process X(t)
always taken as a right-continuous process and so the integral

∫ t
0 Φ(s)dX(s)

will be right-continuous in the upper limit of integration t. The integral
jumps whenever X jumps and Φ is simultneously not zero, and so the exatly
time of the jump is "protected" avoiding the arbitrage. By the stochastic
integral 2.8 we have included the value of integral at the final time t the
possible jump. To better represent the idea, we will give another example:

Example 2 : Holding a asset with a strategy "Φ(t)"[1]

LetM(t) be the process of an underlying, given by a compensated Poisson
process, with N(t) the Poisson process with intensity λ. The strategy will
be given by the process,

Φ(s) = I[0,S1](s)
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This process is given by an left-continuous process with value 1 up to and
included the time of the first jump of the Poisson process N(t) with which
the process is adapted, and zero thereafter. Therefore we have the gain:

∫ t
0

Φ(s)dM(s) =
{
−λt, 0 ≤ t < S1,
1− λS1, t ≥ S1,

It follows, ∫ t
0

Φ(s)dM(s) = I[S1,∞)(t)− λ(t ∧ S1). (2.14)

To verify the martingale property of the sthocastic integral, we perform
by the definition. For 0 ≤ s < t, we have
E[I[S1,∞)(t)− λ(t ∧ S1)|F(s)] = P{S1 ≤ t|F(s)} − λE[t ∧ S1)|F(s)]. (2.15)

Now we split this equation in two cases, differing in time location:
• For S1 ≤ s:
In that case as we are at the time s, by the filtration F(s) we know exatly

the time of first jump S1 and the conditional expectations give us the correct
value of the random variables being estimated. In particular, we have

E[I[S1,∞)(t)− λ(t ∧ S1)|F(s)] = = P{S1 ≤ t|F(s)} − λE[t ∧ S1)|F(s)]
= 1− λS1
= I[S1,∞)(s)− λ(s ∧ S1).

(2.16)
Hence the martingale property is satisfied.
• For S1 > s: By the probability property, and the memorylessness of the

exponential random variables, we develop the first part of the equation 2.15:
P{S1 ≤ t|F(s)} = 1− P{S1 > t|S1 > s}

= 1− P{S1≥t}
P{S1≥s}

= 1− e−λt
e−λs

= 1− e−λ(t−s)

(2.17)

The second part of the equation 2.15 will be given by:
λE[t ∧ S1|F(s)] = λE[t ∧ S1|S1 > s]

= λ2 ∫∞
s (t ∧ u)e−λ(u−s)du

= λ2 ∫ t
s ue

−λ(u−s)du+ λ2 ∫∞
t ue

−λ(u−s)du
= −λue−λ(u−s)|u=tu=s + λ

∫ t
s e
−λ(u−s)du− λte−λ(u−s)|u=∞u=t

= λs− λte−λ(t−s) − e−λ(u−s)|u=tu=s + λte−λ(t−s)
= λs− e−λ(t−s) + 1.

(2.18)
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And joining together the equations 2.17 and 2.18, we obtain :

E[I[S1,∞)(t)− λ(t ∧ S1)|F(s)] = P{S1 ≤ t|F(s)} − λE[t ∧ S1)|F(s)]
= 1− e−λ(t−s) − (λs− e−λ(t−s) + 1)
= −λs
= I[S1,∞)(s)− λ(s ∧ S1).

(2.19)

For both cases S1 ≤ s and S1 > s we have the stochastic integral 2.14 as a
martingale, and so the maringale property is verified.

2.3 Quadratic Variation
In this section we will follow the approach [1][3]. It is essential to the conti-
nuity of the study to give some principles of quadratic variation, mainly to
write down the Itô-Doeblin formula for the process with jumps. Let X(t) be
a jump process. To compute its quadratic variation on [0, T ], we choose the
following time points 0 = t0 < t1 < t2 < ... < tn = T . Let’s denote the set
of these times by Π = t0, t1, ..., tn, we also define the length of the longest
subinterval as ∥Π∥ = maxj(tj+1 − tj) and finally will be defined,

QΠ =
n−1∑
j=0

(X(tj+1)−X(tj))2

Definition 2.7. The quadratic variation of X on [0,T] is defined as

[X,X](T ) = lim∥Π∥→0QΠ(X),

By this definition, when the time interval measure ∥Π∥ goes to 0, Π has
infinity time intervals. The quadratic variation is random number in general,
depending on its path. But for the Brownian motion, for instance, we know
that [W,W](T)=T has a deterministic value T, not depending on its path.
In the case of an Itô Integral I(T ) =

∫ T
0 Γ(s)dW (s), in respect to the pure

Brownian motion "W", [I, I](T ) =
∫ T

0 Γ2(s)ds will depend on the path Γ.
Another concept will be needed:

Definition 2.8. Given X1(t) and X2(t) two jump process. We have

CΠ(X1, X2) =
n−1∑
j=0

(X1(tj+1)−X1(tj))(X2(tj+1)−X2(tj))

The cross variation between X1(t) and X2(t) on [0,T] is defined to be,

[X1, X2](T ) = lim∥Π∥→0CΠ(X1, X2).
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With these two conceps we can stand the following theorem, for a proof
consult [3],

Theorem 2.9. Let the usual jump process X1(t) = X1(0) + I1(t) + R1(t) +
J1(t), where I1(t) =

∫ t
0 Γ1(s)dW (s), R1(t) =

∫ t
0 Θ1(s)ds, and J1(t) is the

usual pure right-continuous jump process, remembering Xc1(t) = X1(0) +
I1(t) +R1(t). The quadratic variation of the process X1(t) will be,

[X1, X1](T ) = [Xc1, Xc1](T ) + [J1, J1](T ) =
∫ T

0
Γ2

1(s)ds+
∑

0<s≤T
(∆J1(s))2

(2.20)

Let the jump process X2(t) = X2(0) + I2(t) + R2(t) + J2(t), where I2(t) =∫ t
0 Γ2(s)dW (s), R2(t) =

∫ t
0 Θ2(s)ds, and J2(t) is the usual pure right-continuous

jump process, and Xc2(t) = X2(0)+I2(t)+R2(t). The cross variation between
the processes X1(t) e X2(t) will be,

[X1, X2](T ) = [Xc1, Xc2](T ) + [J1, J2](T )
=
∫ T

0 Γ1(s)Γ2(s)ds+∑
0<s≤T ∆J1(s)∆J2(s).

(2.21)

The proof is an application of the definition 2.8. We can use the theorem
above in the differential notation, for X1(t) = X1(0) + Xc1(t) + J1(t) and
X2(t) = X2(0) +Xc2(t) + J2(t) by the definition 2.7 and the theorem 2.9 we
have:

dX1(t)dX2(t) = dXc1(t)dXc2(t) + dJ1(t)dJ2(t).
In particular, it follows

dXc1(t)dJ2(t) = dXc2(t)dJ1(t) = 0;

It can be concluded that the cross variation between a continuous process,
a Brownian motion for instance, and a pure jump process is zero. It holds
for any cross variation between a continuous process and a process without
a Itô integral part. So, in order to have a non zero cross variation both
process must have a Brownian motion term or the process must have simul-
taneous jumps, furthermore a cross variation between a Brownian motion
and a compensated Poisson process will be zero. The general case is given
in the following corollary:

Corollary 2.10. Let W (t) be a Brownian motion and M(t) = N(t)− λt be
a compesated Poisson process relative to the same filtration F(s). Then, for
t ≥ 0

[W,M ](t) = 0
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Proof. To prove that is enought to use the theorem 2.9, with I1(t) = W (t),
R1(t) = J1(t) = 0 and take I2(t) = 0, R2(t) = −λt, and J2(t) = N(t).

An implication of this corollary is the fact that a Brownian motionW and
a compensated Poisson process M are independent, and also W and Poisson
process N relative to the same filtration F(s) are independent. Now, will be
shown how the cross variation holds for the stochastic integral relative to a
jump process, in the following corollary:

Corollary 2.11. For i=1,2, let Xi(t) be the usual adapted, right-continuous
jump process. Therefore, in our case it means Xi(t) = Xi(0)+ Ii(t)+Ri(t)+
Ji(t), where Ii(t) =

∫ t
0 Γi(s)dW (s), Ri(t) =

∫ t
0 Θi(s)ds, and Ji(t) is a pure

jump process. Let X̃i(0) be a constant, and let Φi(s) be and adpted process,
and assume

X̃i(t) = X̃i(0) +
∫ t

0
Φi(s)dXi(s)

And so, it holds

X̃i(t) = X̃i(0) + Ĩi(t) + R̃i(t) + J̃i(t),

Where, obviously, the notation is given by Ĩi(t) =
∫ t

0 Φi(s)Γi(s)dW (s), R̃i(t) =∫ t
0 Φi(s)Θi(s)ds, J̃i(t) = ∑

0<s≤tΦi(s)∆Ji(s).
Look that, at the same way of the process Xi(t), the process X̃i(t) has a

continuous part and a pure jump part. We have

[X̃1(t), X̃2(t)] = [X̃c1, X̃c2] + [J̃1, J̃2]
=
∫ t

0 Φ1(s)Φ2(s)Γ1(s)Γ2(s)ds+∑
0<s≤tΦ1(s)Φ2(s)∆J1(s)∆J2(s)

=
∫ t

0 Φ1(s)Φ2(s)d[X1, X2](s).

In differential notation we have, for i = 1, 2 we have dX̃i(t) = Φi(t)dXi(t),
and it holds

dX̃1(t)dX̃2(t) = Φ1(t)Φ2(t)dX1(t)dX2(t)
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Chapter 3

Stochastic Calculus for Jump
Processes

In this chapter will be presented the one dimensional Stochastic Calculus
for Jump Processes. In this chapter will be followed, for the main ideas of
Stochastic Calculus for Jump Process, the procedure of [1] and [7].

3.1 Itô-Doeblin formula for One Jump Pro-
cess

Remembering, the Itô-Doeblin formula for a continuous-path process is [6],

Xc(t) = Xc(0) +
∫ t

0
Γ(s)dW (s) +

∫ t
0

Θ(s)ds (3.1)

Or in differential notation

dXc(t) = Γ(s)dW (s) + Θ(s)ds (3.2)

With initial condition Xc(0).

The quadratic variation is the usual:

dXc(s)dXc(s) = Γ2(s)ds

,where Γ(s) and Θ(s) are F(s) adapted process.
Let f(x) ∈ C1 ∩ C2, remembering the Itô-Doeblin formula for continuous

process, is given by:
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df(Xc(s)) = f ′(Xc(s))dXc(s) + 1
2f
′′(Xc(s))dXc(s)dXc(s)

= f ′(Xc(s))Γ(s)dW (s) + f ′(Xc(s))Θ(s)ds+ 1
2f
′′(Xc(s))Γ2(s)ds.

(3.3)

If we write this in the integral form, we also must include the initial
contidion:

f(Xc(t)) = f(Xc(0)) +
∫ t

0 f
′(Xc(s))Γ(s)dW (s) +

∫ t
0 f
′(Xc(s))Θ(s)ds

+1
2
∫ t

0 f
′′(Xc(s))Γ2(s)ds.

That are the well known Itô formula for the continuous diffusion case.
In the jump diffusion case we must add a right-continuous pure jump

term, and then [1]

X(t) = Xc(0) +
∫ t

0
Γ(s)dW (s) +

∫ t
0

Θ(s)ds+ J(t)

Between jumps we have the same differential equation for the continuous
diffusion case,

df(X(s)) = f ′(X(s))dX(s) + 1
2f
′′(X(s))dX(s)dX(s)

= f ′(X(s))Γ(s)dW (s) + f ′(X(s))Θ(s)ds+ 1
2f
′′(X(s))Γ2(s)ds.

(3.4)

In the jump of the X process, from X(s−) to X(s), for instance, there
will be also a jump in the f(X) process from f(X(s−)) to f(X(s)). The
procedure to develop a jump diffusion case is to hold the equation 3.4 and
integrate its both sides form 0 to t, and add all the jumps occurred up to the
final time. This important result is given by the following theorem.

Theorem 3.1 (The Itô-Doeblin formula for one jump process[1]). Let X(t)
be a jump process with f(x) ∈ C1 ∩ C2 Then

f(X(t)) = f(X(0)) +
∫ t

0 f
′(X(s))dXc(s) + 1

2
∫ t

0 f
′′(X(s))dXc(s)dXc(s)∑

0<s≤t[f(X(s))− f(X(s−))]

Proof. We start the proof fixing a path w ∈ Ω on the probability space, and
fixing the jump times 0 < τ1 < τ2 < ... < τn−1 < t, all of them in the
time period [0, t), in the path of the process X. Given the start point like
a non jump time τ0 = 0, and the final time τn = t, which may be or not a
jump time. We choose two time points u < v are both in the same interval
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(τj, τj+1). By this choice there is no jumps between u and v. The equation
3.4 for the continuous case for the Itô-Doeblin formula, in the integral form,
will be:

f(X(v))− f(X(u)) =
∫ v
u
f ′(X(s))dXc(s) + 1

2

∫ v
u
f ′′(X(s))dXc(s)dXc(s).

Choosing v and u by its limits, u ↓ τj and v ↑ τj+1 and by the right-continuity
of X, we conlclude that,

f(X(τj+1−))−f(X(τj)) =
∫ τj+1

τj
f ′(X(s))dXc(s)+1

2

∫ τj+1

τj
f ′′(X(s))dXc(s)dXc(s).

Here is important to integrate respect to the integrator Xc(s) and not the
X(s), remembering that the processX(s) is right-continuous and so the jump
will be at the next stair. Choosing the process Xc(s) as an integrator we can
handle with the left-continuous version at the jump X(τj+1−) and so we can
aprossimate in that way

limv↑τ+1

∫ v
u
f ′(X(s))dXc(s) =

∫ τ+1

u
f ′(X(s))dXc(s)

Now we sum at the continuous parts the jump at both hands of the last
equation, as following

f(X(τj+1))− f(X(τj)) =
∫ τj+1
τj
f ′(X(s))dXc(s)

+1
2
∫ τj+1
τj
f ′′(X(s))dXc(s)dXc(s) + f(X(τj+1))− f(X(τj+1−))

(3.5)

And summing all the jumps over j=0,...,n-1, we will have

f(X(t))− f(X(0)) =
∫ τt

0 f
′(X(s))dXc(s)

+1
2
∫ t

0 f
′′(X(s))dXc(s)dXc(s) +∑n−1

j=0 f [(X(τj+1))− f(X(τj+1−))
(3.6)

And the theorem is prooved.

In many cases is not possible to find a differential equation for the sum
of jumps, and because of that characteristic is not always easy to find a dif-
ferential form for the Itô-Doeblin formula 3.1. Let’s see a specific case where
It is possible to find a differential form for the equation.

Example 3 : Geometric Poisson process [1]

Let the geometric Poisson process

S(t) = S(0)eN(t)log(σ+1)−λσt = S(0)e−λσt(σ + 1)N(t), (3.7)
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,where we choose the constant σ > −1 in that way: If σ > 0, this
process jumps up and by the diffusion part moves down between jumps. If
−1 < σ < 0, it jumps down and moves up between jumps. By its move
characteristics, i.e. the process moving down and up, it can be a candidate
to be a martingale process.

For f(x) = ex, we can write the equation in that way S(t) = S(0)f(X(t))
and so,

X(t) = N(t)log(σ + 1)− λσt

Writing the equation in like in 2.1 it follows:

• Xc(t) = −λσt

• J(t) = N(t)log(σ + 1)

By the Itô-Doeblin formula 3.1,

S(t) = f(X(t))
= f(X(0))− λσ

∫ t
0 f
′(X(u))du+∑

0<u≤t[f(X(u))− f(X(u−))]
= S(0)− λσ

∫ t
0 S(u)du+∑

0<u≤t[S(u)− S(u−)]
(3.8)

If there is a jump at time u, then S(u) = (σ + 1)S(u−). And the jump
for the S process will be,

S(u)− S(u−) = σS(u−) = σS(u−)∆N(u). (3.9)

Look that if there is no jump at the time u ∆N(u) = 0. Be able to write
the jump in terms of S(u−) is the characterisc which permits us to write the
equation in its differential form, as a final result. This result is the basis for
writing the sum of jumps of the equation 3.8 in the differential way,

∑
0<u≤t

[S(u)− S(u−)] =
∑

0<u≤t
σS(u−)∆N(u) = σ

∫ t
0
S(u−)dN(u).

As the two Riemann integral
∫ t

0 S(u)du and
∫ t

0 S(u−)du differs only in finite
many points with measure zero, the two integrals are equivalent a.s. and so,
we can rewrite the equation

S(t) = S(0)− λσ
∫ t

0 S(u)du+ σ
∫ t

0 S(u−)dN(u)
= S(0)− λσ

∫ t
0 S(u−)du+ σ

∫ t
0 S(u−)dN(u)

= S(0)− σ
∫ t

0 S(u−)dM(u)
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Where M is the well-known compensated process M(u) = N(u)− λu, which
, as was already proved, is a martingale. By the theorem 2.6, and knowing
that we were working with limited and adpated processes, we have S(t) as a
martingale process.

Is also known how to write the equation in the differetial form,

dS(t) = σS(t−)dM(t) = −λσS(t)dt+ σS(t−)dN(t) (3.10)

And obviously, the equation 3.7 is the solution for the differential equation
above, for an initial condition S(0).
It implies an important corollary,
Corollary 3.2. [1] Let the probability space (Ω,F , {Ft}t≥0, P ) with {Ft}t≥0
the filtration and the adapted process W (t) be a Brownian motion and let
N(t) be a Poisson process with intensity λ > 0. Then W (t) and N(t) are
independent.

For a key step in proof consult [1].

3.2 Change of Measure
Given a process Xt, t ∈ [O, T ] it can be considered a random variable on a
space Ω of cadlag processes adapted to the filtration Ft. The distribution of
X defines a probability measure P on the space of paths. Now we consider
another process Yt, t ∈ [0, T ] and P̃ its distribution on the same space of paths
Ω. We will see in this section the conditions, in a jump scenario, for P and
P̃ are equivalent probability measures, i.e. the stochastic processes models
X and Y give us the same set of possible evolutions for the paths. The
procedure to construct a new process on the same set of paths by assigning
news equivalents probabilities to events is the so called change of measure[7].

As we can use the Girsanov’s Theorem to change the measure of a Brow-
nian motion with drift for a Brownian motion without drift, we can change
the measure for Poisson processes and compound Poisson processes. As we
will see, the change of measure affects the intensity for a Poisson process, and
for a compound Poisson process it can interfere also in the distribution of the
jumps sizes. In this chapter will be treated these three situations: a process
with only a Poisson process, a process with a compound Poisson process and
at the end we will treat the case with also a Brownian motion in the path.

3.2.1 Change of Measure for a Poisson Process
Initially will be presented how to perform a change of measure in stochastic
calculus without jumps. By the Girsanov’s Theorem the change of measure
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using the Radon-Nikodym derivative process [4].
Suppose

∫ T
0 |Γ|

2 ds ≤ K, where K is a constant.

Z(t) = exp{−
∫ t

0
Γ(s)dW (s)− 1

2

∫ t
0

Γ2(s)ds}

We can also prove that this process satisfies the following stochastic equa-
tion

dZ(t) = −Γ(t)Z(t)dW (t) = Z(t)dXc(t),

Taking Xc(t) = −
∫ t

0 Γ(s)dW (s) and [Xc, Xc](t) =
∫ t

0 Γ2(s)ds, we can rewrite
Z(t) as,

Z(t) = exp{Xc(t)− 1
2

[Xc, Xc](t)} (3.11)

For processes with jumps we have an analogous stochastic differential
equation, but now the path of the process X(t) may have jumps.

dZX(t) = ZX(s−)dX(t) (3.12)

The solution is similar to the continuous case but with the jumps added.

ZX(s) = ZX(s−) + ∆ZX(s) = ZX(s−)(1 + ∆X(s)) (3.13)

The final result will be given by the following corollary, in the same way
of the Girsanov thorem, but for jump diffusions processes.

Corollary 3.3. [1] Let X(t) be a jump process. We call the Doleans-Dale
exponential of X, the process:

ZX(t) = exp{Xc(t)− 1
2

[Xc, Xc](t)}
∏

0<s≤t
(1 + ∆X(s)).

This process is the solution for the process 3.12 with initial condition ZX(0) =
1. The integral form is the fallowing equation:

ZX(t) = 1 +
∫ t

0
ZX(s−)dX(s).

Let the probability space (Ω,F , {Ft}t≥0, P ) with {Ft}t≥0 the filtration.
We denote the poisson process N(t) with intensity λ > 0. As already showed
the compesated Poisson process M(t) = N(t)− λt is a martingale under the
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probability measure P. Let fix λ̃ as a positive number. We define a new
process,

Z(t) = e(λ−λ̃)t
(
λ̃

λ

)N(t)

. (3.14)

The idea of change the probability measure is similar to the way of changing
the measure of the Radon-Nikodym theorema for a continuous process. We
fix a time T > 0 and we will use that fixed value Z(T ) to change to a new
measure P̃. In that new measure the process N(t) has an intensity λ̃ rather
than λ. In order to use Z(T ) to change the measure, we must guarantee
E[Z(T )] = 1

Lemma 3.4. [1] The process Z(t), for all t > 0, satisfies the differential
equation:

dZ(t) = λ̃− λ
λ
Z(t−)dM(t). (3.15)

And Z(t) is a martingale under P, and EZ(T ) = 1∀t

Proof. We define X(t) = λ̃−λ
λ
M(t). By the property of the compesated Pois-

son process this process is a martingale with continuous part Xc(t) = (λ−λ̃)t
and pure jump part λ̃−λ

λ
N(t). How it was already showed [Xc, Xc](t) = 0, and

if there is a jump at time t, then ∆X(t) = λ̃−λ
λ

,and obviously 1+∆X(t) = λ̃
λ
.

The process 3.14 by the corollary 3.3, can be rewritten as

Z(t) = exp{Xc(t)− 1
2

[Xc, Xc](t)}
∏

0<s≤t
(1 + ∆X(s))

Or in the integral way,

Z(t) = 1 +
∫ t

0
Z(s−)dX(s)

To prove the martingale property we have to see the fact that X(t) being a
martingale, Z(s−) is left-continuous, and so Z(t) is also a martingale. With
this in hands we know that the integral is a martingale. This fact enduces,

E[Z(t)] = E[1 +
∫ t

0
Z(s−)dX(s)] = 1 + 0

and we conclude E[Z(t)] = 1∀t ≥ 0
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Using the Radon-Nikodym theorem, for a fixed time T we will use the
constant value Z(T ) to change the measure. Therefore we define, for ∀A ∈ F

P̃(A) =
∫
A
Z(T )dP (3.16)

Now we will see how the change of measure of a Poisson process leads to
a change of intensity.

Theorem 3.5 (Change of Poisson intensity[1]). Under the probability mea-
sure P̃, the process N(t), 0 < t ≤ T , is a Poisson process with intensity
λ̃.

Proof. We will see the change of measure by computing the moment-generating
function of N(t) under the measure P̃ . Using the Radon-Nikodým theorem,
we can change the expectation Ẽ of the moment-generating euN(t) to the E
expectation by using, for a fixed t under 0 ≤ t ≤ T , Z(t). Therefore using
the formula of Z(t), the moment-generating function and the formula 1.16:

E[euN(t)Z(t)] = eλ−λ̃E[euN(t) λ̃
λ
]

= eλ−λ̃E[exp{(u+ log λ̃
λ
N(t)}]

= eλ−λ̃exp{λt(eu+log λ̃λ − 1)}
= eλ̃t(eu−1)

As we can see this is the moment-generating function for a Poisson process
with intensity λ̃

We can better see by an example[1]:
Example 3 : Change of measure

In the same way of the classic geometric Poisson process, we will model
a stock with the following geometric Poisson process,

S(t) = S(0)eαt+N(t)log(σ+1)−λσt = S(0)e(α−λσ)t(σ + 1)N(t)

It is assumed σ > −1, σ ̸= 0, and the process N(t) is a Poisson process with
intensity λ under the usual probility measure P. As we have seen the process
eαtS(t) is a martingale under P, it means that S(t) has a mean rate of return
α. Changing the Itô-Doeblin differential equation form 3.10, we introduce
one,

dS(t) = αS(t)dt+ σS(t−)dM(t), (3.17)
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where M(t) is the usual compensated Poisson process M(t) = N(t) − λt.
The ideia is to change to a probability measure P̃, for which the differential
equation becomes:

dS(t) = rS(t)dt+ σS(t−)dM̃(t), (3.18)

, where r is the interest rate, N(t) is a Poisson process with, under a prob-
ability measure P̃, has intensity λ̃, and has a compensated Poisson process
M̃(t) = N(t) − λ̃t. With this probability measure we have the classical sit-
uation where the geometric Poisson process would have mean rate of return
equal to the free risk interest rate, and P̃ would be a risk neutral measure.
The continuous "dt" part of both equations above can be developed by the fol-
lowing relation, remembering that for the continuous part of these equations,
S(−t)dt and S(t)dt have the same integral.

λ̃ = λ− α− r
σ
.

So using the Radon-Nykodym formula 3.16 to change the probability
measure, by the choice of the measure we are working with a risk neutral
process. We have to hold some hypothesis to change the a risk-neutral mea-
sure . We must have λ̃ > 0, and so, λ > α−r

σ
. If it doesn’t hold we must have

an arbitrage. We can have these cases of arbitrage :

• If σ > 0 then,

S(t) ≥ S(0)ert(σ + 1)N(t) ≥ S(0)ert

And the arbitrage consists in borrowing at the interest rate "r" and
invest the amount in the stock, the value of the stock will be always
greater than the loan, and we can be sure that we are winning money
when we sell the stock for pay the loan (arbitrage).

• If −1 < σ < 0 then, the arbitrage consists of short the stock and invest
the amount in a market account. The value of the money in the account
will be always greater than the value of the stock (arbitrage)

3.2.2 Change of Measure for a Compound Poisson Pro-
cess

We will now develop the change of measure for a more complex process, the
Compound Poisson Process, i.e. a Poisson process with the jumps not only
sized one, but with their amplitude given by a probability distribution[1].
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Let the probability space (Ω,F , {Ft}t≥0,P), N(t) be a Poisson process
with intensity λ, and let Y1, Y2, Y3... be a sequence of i.i.d random variables,
also independent form the Poisson process, all of them defined in the prob-
ability space. Remembering the compound Poisson process will be given
by

Q(t) =
N(t)∑
i=1
Yi

For notation we have the jump size for a compound Poisson process,

∆Q(t) = YN(t). (3.19)

In this section we intend to change the measure for a given compound Poisson
process where the N(t)’s intensity and the probability distribuition of the
jump sizes Y1, Y2... both will change. To introduce some concepts we will
first, in the most simple case, consider when the jump sizes distribuition is
discrete, and then each Yi takes its value in a finitely many non zero values
y1, y2, ..., yM . We will denote the probability of occurrence a jump of size ym
by p(ym), and so,

p(ym) = P{Yi = ym}, m = 1,...,M

We will assume that p(ym) > 0 for every m and, ∑Mm=1 p(ym) = 1. Let define
some new variables too. Nm(t) is the number of jumps in Q(t) of size ym up
to and including time t, so that

N(t) =
M∑
m=1
Nm(t)

Like a result we also have this,

Q(t) =
M∑
m=1
ymNm(t)

How was already proved N1, N2, ..., NM are independent Poisson processes
and each Nm has intensity λm = λp(ym). In the same way of the Poisson
process case, It’s defined:

Zm(t) = e(λm−λ̃m)t( λ̃m
λm

)Nm(t). (3.20)

Z(t) =
M∏
m=1
Zm(t). (3.21)
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Where λ̃m, for m = 1, ...,M , are given positive numbers. In the same
way of the change of probability measure for a Poisson process, It holds the
following lemma, in order to prove this Lemma fallow the steps of the Poisson
process case:

Lemma 3.6. [1] The process Z(t) of 3.21 is a martingale. In particular we
have E[Z(t)] = 1 for all t.

For a fixed T > 0, Z(T ) > 0 and E[Z(T )] = 1, Z(T ) is used to change
the measure, the new measure is defined by

P̃(A) =
∫
A
Z(T )dP for all Z ∈ F . (3.22)

It suggests the theorem,

Theorem 3.7 (Change of compound Poisson intensity and jump size dis-
tribution for finitely many jumps sizes[1]). Let Q(t) be a compound Poisson
process with intensity λ̃ = ∑M

m=1 λ̃m, the random variables Yi are i.i.d with

P̃Yi = ym = p̃(ym) = λ̃m
λ

(3.23)

Proof. We will give some hints for the proof, the whole proof is to much
technical. By the independence of the process N1, N2, .., NM under P to
compute the moment-generating function of Q(t) under P̃. Using the formula
1.16, for 0 ≤ t ≤ T it holds,

Ẽ[euQ(t)] = E[euQ(t)Z(t)]
= E[exp{u∑Mm=1 ymNm(t)}∏Mm=1 exp{(λm − λ̃m)t}( λ̃m

λm
)Nm(t)]

= ∏M
m=1 exp{(λm − λ̃m)t} · E[exp{(uym + log λ̃m

λm
)Nm(t)}]

= ∏M
m=1 exp{(λm − λ̃m)t}exp{λmt(euym+log( λ̃m

λm
) − 1)}

= ∏M
m=1 exp{(λm − λ̃m)t+ λ̃mteuym − λmt}

= ∏M
m=1 exp{λ̃mt(euym−1)}

= ∏M
m=1 exp{λ̃tp̃(ym)euym − λ̃mt}

= exp{λ̃t(∑Mm=1 p̃(ym)euym − 1)}

And this last equation by the equation 1.17 is the moment-generating func-
tion for a compound Poisson process with intensity λ̃ and a jump size disti-
bution given by P̃Yi = ym = p̃(ym) = λ̃m

λ

In the more general case, when we have instead of discrete values of "ym"
for the possible values of "Yi", a density function of probability values, i.e.
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each "Yi" takes its values in a continuous density we will perform this way:
The equation Z(T ) of 3.21 could be rewritten in that way,

Z(t) = exp{
M∑
m=1

(λm − λ̃m)t} ·
M∏
m=1

( λ̃p̃(ym)
λp(ym)

)Nm(t) = e(λ−λ̃)t
N(t)∏
i=1

λ̃p̃(Yi)
λp(Yi)

We can suppose that we don’t have anymore discrete values for "Yi" but
they take their values in a commom probability density f(y), and so we can
use "Z(t)" to change the probability measure of the process Q(t) and then
changing its intensity to λ̃ and its probility density function to f̃(y). The
Z(t) to use in the Radon-Nicodým derivative process of changing measure
will be

Z(t) = e(λ−λ̃)t
N(t)∏
i=1

λ̃f̃(Yi)
λf(Yi)

. (3.24)

In order to avoid the division by zero, we will suppose that if a size of
jump has probability zero to occur under the measure P, so it will be also
probability zero under the probability P̃. We will indicate how to lead with
that situtation in the following theorem. We won’t prove this theorem, but
its principles will be in the same way of the discrete case. To their prove
consult [1] and [7].
Lemma 3.8. [1] The process Z(t) given by the formula 3.24 is a martingale
with mean E[Z(t) = 1] for all t ≥ 0.

In integral form, the differential equation where Z(t) will take its value
is given by,

Z(t) = 1 +
∫ t

0
Z(s−)d(H(s)− λ̃s)−

∫ t
0
Z(s−)d(N(s)− λs) (3.25)

And in the differential form,

dZ(t) = Z(t−)d(H(t)− λ̃t)− Z(t−)d(N(t)− λt) (3.26)

And the jump of this process is,

∆Z(t) = Z(t−)∆H(t)− Z(t−)∆N(t) (3.27)

As was already done, fixing a positive time T, we define

P̃(A) =
∫
A
Z(T )dP for all A ∈ F (3.28)

42



Theorem 3.9 (Change of compound Poisson intensity and jump distribution
for a continuum of jump sizes[1]). Under the probability measure P̃, Q(t) is
a compound Poisson process with intensity λ̃, and its jumps are i.i.d with
density f̃(y).

3.2.3 Change of Measure for a Compound Poisson Pro-
cess and a Brownian Motion

Now we will study the case that more interests us, when besides the Com-
pound Poisson process we have also a Brownian Motion. In this section
we will follow the approach of [1] and [7]. Let the usual probability space
(Ω,F , {Ft}t≥0,P), with {Ft}t≥0 a single Filtration which a Brownian motion
W (t) and a compound Poisson process Q(t) will be adapted in, and indepen-
dent between them. The compound Poisson process will have a density func-
tion f(y) and an intensity λ. Given a different positive intensity λ̃, and a an-
other density function f̃(t), with the property that f(y) = 0⇔ f̃(y) = 0∀y,
and let Θ be an adapted process. We define the three process:

Z1(t) = exp{−
∫ t

0
Θ(u)dW (u)− 1

2

∫ t
0

Θ2(u)du} (3.29)

Z2(t) = exp{(λ− λ̃)t}
N(t)∏
i=1

λ̃f̃(Yi)
λf(Yi)

(3.30)

Z(t) = Z1(t)Z2(t) (3.31)

Lemma 3.10. [1] The process Z(t) 3.31 is a martingale, in particular E[Z(t)] =
1 for all t ≥ 0.

For a fixed positive T, we will have

P̃(A) =
∫
A
Z(T )dP for all A ∈ F (3.32)

And so we propose, the following theorem,

Theorem 3.11. [1] Under the probability measure P̃, the process

W̃ (t) =W (t) +
∫ t

0
Θ(s)ds (3.33)

Is a Brownian motion, Q(t) is a compound Poisson process with intensity λ̃
and i.i.d random distribution for the jump sizes, all of them with intensity
f̃(y), and the processes W̃ (t) and Q(t) are independent.
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For the discrete jumps sizes, the more simple case, we have the same
result, hence in the case of Z2 in 3.30 replaced by Z of the equation 3.21 we
can sustain the following theorem,

Theorem 3.12. [1] Under the probability measure P̃, the process

W̃ (t) = W (t) +
∫ t

0
Θ(s)ds (3.34)

Is a Brownian motion, Q(t) is a compound Poisson process with intensity
λ̃ and i.i.d random distribution for the jump sizes, all of them satistying
P̃{Yi = ym} = p̃(ym) for any i and ∀m = m1, ..,M , and the processes W̃ (t)
and Q(t) are independent.
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Chapter 4

Pricing an European Call in a
Jump Model

4.1 The analytic equation to evaluate an Eu-
ropean Call

In this chapter we will price an European Call with the underlying asset
driven by a Brownian motion and a compound Poisson process. Let’s before
redifine some variables and the filtrated probability space (Ω,F ,F(t),P).
On this probability space we define the Brownian motion W (t), 0 ≤ t ≤ T ,
and M independent Poisson processes N1(t), N2(t), ..., NM(t), for 0 ≤ t ≤ T .
This filtration F(t) is generated by the Brownian motion and theM Poisson
processes. First of all, let’s propose the following corollary,

Corollary 4.1 (Itô’s product rule for jump processes[1]). Let X1(t) and
X2(t) be jump processes. Then

X1(t)X2(t) = X1(0)X2(0) +
∫ t

0 X2(s)dXc1(s) +
∫ t

0 X1(s)dXc2(s)
+[Xc1, Xc2](t) +∑

0<s≤t[X1(s)X2(s)−X1(s−)X2(s−)]
= X1(0)X2(0) +

∫ t
0 X2(s−)dX1(s) +

∫ t
0 X1(s−)dX2(s) + [X1, X2](t)

(4.1)

Let’s also fix Q(t) the compound Poisson process,

N(t) =
M∑
m=1
Nm(t)

Q(t) =
M∑
m=1
ymNm(t)
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Where λm > 0 is the intensity of Nm(t)th Poisson process, and a serie of
possible size jumps given by −1 < y1 < y2 < .... < yM . In our case the
intensity of Poisson process N(t) will be,

λ =
M∑
m=1
λm

Is defided also Yi denoting the size of the ith jump of Q taking their values
in the set y1, .., yM , as already explained, we redefine,

Q(t) =
N(t)∑
i=1
Yi.

And defining the probability of the jump size ym will be,

p(ym) = λm
λ

Defining also the random variable Yi, they are i.i.d. with distribution P{Yi =
ym} = p(ym). It holds,

β = E[Yi] =
M∑
m=1
ymp(ym) = 1

λ

M∑
m=1
λmym (4.2)

In order to define our underlying asset we will also need the compensated
compound Poisson process

Q(t)− βλt = Q(t)− t
M∑
m=1
λmym

This process is a martingale process. The stock price will be modeled in the
following way, on the stochastic differential equation version,

dS(t) = αS(t)dt+ σS(t)dW (t) + S(t−)d(Q(t)− βλt)
= (α− βλ)S(t)dt+ σS(t)dW (t) + S(t−)dQ(t)

(4.3)

In the original probability measure P, the mean rate of return is given by the
coefficient of drift,then α. The stock price is limited for negative values by
limiting the down jumps yi > −1 for i = 1, ...,M . The initial price for the
stock must be positive and different from zero otherwise it will be zero for
all t.

We can reach the solution for the 4.3 differential equation by the following
theorem,
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Theorem 4.2. [1] The solution to the diffential equation 4.3, given an initial
value S(0) is

S(t) = S(0)exp{σW (t) + (α− βλ− 1
2
σ2)t}

N(t)∏
i=1

(Yi + 1) (4.4)

Proof. For the proof, we will follow [1]. We must show the process S(t) of
4.4 solve the differential equation 4.3. Hence, we split that solution in that
way,

X(t) = S(0)exp{σW (t) + (α− βλ− 1
2
σ2)t}

the continuous stochastic process, and

J(t) =
N(t)∏
i=1

(Yi + 1).

the pure jump process. Then S(t) = X(t)J(t), and we will show the equation
is a solution for the process 4.3. By the Itô equation for continuous processes,

dX(t) = (α− βλ)X(t)dt+ σX(t)dW (t). (4.5)

At the time of the ith jump, J(t) = J(t−)(Yi + 1) and then

∆J(t) = J(t)− J(t−) = J(t−)Yi = J(t−)∆Q(t)

This equation holds also for non jump times, when both sides are equal to
zero. So, in a differential form

dJ(t) = J(t−)dQ(t) (4.6)

By the Itô product rule, we have

S(t) = X(t)J(t) = S(0) +
∫ t

0
X(s−)dJ(s) +

∫ t
0
J(s)dX(s) + [X, J ](t)

(4.7)

Since J is a pure jump process and X is continuous, [X,J](t)=0. Replacing
the last equation, in integral form,

S(t) = X(t)J(t)
= S(0) +

∫ t
0 X(s−)J(s−)dQ(s) + (α− βλ)

∫ t
0 J(s)X(s)ds

+σ
∫ t

0 J(s)X(s)dW (s).

(4.8)
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and in differential form,

dS(t) = d(X(t)J(t))
= X(t−)J(t−)dQ(t) + (α− βλ)J(t)X(t)dt+ σJ(t)X(t)dW (t)
= S(t−)dQ(t) + (α− βλ)S(t)dt+ σS(t)dW (t)

(4.9)

Thereafter can be performed the construction of a risk-neutral measure.
Let Θ be a constant and the intensities λ̃1, .., λ̃M be positive constants. It’s
defined,

Z0(t) = exp{−ΘW (t)− 1
2Θ2t},

Zm(t) = exp{(λm − λ̃m)t
(
λ̃m
λm

)Nm(t)
} , m=1,...,M,

Z(t) = Z0(t)
∏M
m=1 Zm(t),

P̃(A) =
∫
A Z(T )dP for all A ∈ F

The next statements follow the Theorem 3.12, and the independece between
the Poisson processes N1, .., NM and the Brownian motion is proved by the
corollary 3.2. Under the probability measure P̃, we redefine some variables

• the process W̃ (t) =W (t) + Θt

• each Nm is a Poisson process with intensity λ̃m

• The Brownian W̃ process and the Poisson processes N1, ..., Nm are in-
dependent of one another.

In the same way of the measure P,

λ̃ =
M∑
m=1
λ̃m

p̃(ym) = λ̃m
λ̃

We also have N(t) = ∑M
m=1Nm(t) is Poisson with intensity λ̃, the jump-

size random variables Y1, ..., YN(t) are i.i.d. with distribution P̃{Yi = ym} =
p̃(ym), and we have also the compensated compound Poisson process Q(t)−
β̃λ̃t as a martingale process. On this measure holds,

β̃ = Ẽ[Yi] =
M∑
m=1
ymp̃(ym) = 1

λ̃

M∑
m=1
λ̃mym.
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As is expected the probability measure P̃ is risk-neutral if, and only if, the
mean rate of return of the stock under P̃ is the interest rate r. Therefore, P̃
is risk-neutral if

dS(t) = (α− βλ)S(t)dt+ σS(t)dW (t) + S(t−)dQ(t)
= rS(t)dt+ σS(t)dW̃ (t) + S(t−)d(Q(t)− β̃λ̃t).

(4.10)

By this equation we can develop, remembering the definition of the β and
β̃.

α− βλ = r + σΘ− β̃λ̃, (4.11)

α− r = σΘ + βλ+ β̃λ̃
= σΘ +∑M

m=1(λm − λ̃m)ym.
(4.12)

In this case, we have the variables Θ, λ1, ..., λM and just one equation. As this
equation is indeterminate, i.e. more unknown variables than equations, we
have many choices of risk-neutral measures one for each combination of the
variables that satisfies 4.12 . That is a characteristic of an incomplete market.
In order to solve this problem an option is to add more stocks to determine
a unique risk-neutral measure. In this work we will use a model with a
single stock given by 4.3 and 4.4. Choosing one combination of variables
Θ, λ̃1, ..., λ̃M that satisfies the market price of risk equations 4.12. Then, in
the notation pattern of the process S(t), under the P̃ probability measure we
have,

dS(t) = rS(t) + σS(t)dW̃ (t) + S(t−)d(Q(t)− β̃λ̃t)
= (r − β̃λ̃)dt+ σS(t)dW̃ (t) + S(t−)dQ(t)

(4.13)

And the solution is given by,

S(t) = S(0)exp{σW̃ (t) + (r − β̃λ̃− 1
2
σ2)t}

N(t)∏
i=1

(Yi + 1) (4.14)

It’s important to understand that by the change of probability measure,
we don’t change the stock price process, but only change its distribution. We
will compute the risk-neutral price of a Call on the stock price process given
by 4.14. For this we must choose the variables Θ, λ̃1, ..., λ̃M . The Θ will not
appear in our pricing formula. However,

β̃λ̃ =
M∑
m=1
λ̃ym
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will appear in the formula, so we can choose any risk-neutral intensities
λ̃1, ..., λ̃M , all of them positive, and choose Θ to satisfy the equation 4.12.
With that variables fixed in the such way. In the practice way is common to
use these free parameters to calibrate the model to market data.

Definition 4.3. Let k(τ, x) be the standard Black-Scholes-Merton call price
on a geometric Browian motion. We define

k(τ, x) = xN(d+(τ, x))−Ke−rτN(d−(τ, x)), (4.15)

where
d±(τ, x) = 1

σ
√
τ

[
log
x

K
+
(
r ± 1

2
σ2
)
τ
]

and N(y) is the cumulative normal distribution,

N(y) = 1√
2π

∫ y
∞
e−

1
2 z

2
dz

With volatility σ, the current stock price is x, the maturity is τ time
units in the future, the interest rate is r, and the strike price is K. For these
conditions, the stock price is given by

k(τ, x) = Ẽ
[
e−rτ

(
xe{−σ

√
τY+(r− 1

2σ
2)τ} −K

)+
]

Where Y is a standard normal random variable under the measure P̃.
We finally propose the theorem,

Theorem 4.4. [1] For 0 ≤ t < T , let

V (t) = Ẽ[e−r(T−t)(S(T )−K)+|F(t)]

where V(t)=c(t,S(t)), is the risk-neutral price of a call, and finally

c(t, x) =
∞∑
j=0
e−λ̃(T−t)

λ̃j(T − t)j

j!
Ẽk

T − t, xe−β̃λ̃(T−t) j∏
i=1

(Yi + 1)

 (4.16)

To see the prove consult [1] and also [7]. In the previous measure P we
have,

c(t, x) = Ek

τ, xe−β̃λ̃τ N(T )∏
i=N(t)+1

(Yi + 1)

 . (4.17)

That theorem holds also for a continuous distribution for the jump size.
Suppose the jump sizes Yi with a density f(y), and this function is strictly
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positive on a set B ⊂ (−1,∞) and zero elsewhere. In this case, we replace
the formulation of β by the formula,

β = EY i =
∫ ∞
−1
yf(y)dy

And to assure a risk-neutral measure, we can choose Θ, λ̃ > 0 and a density
f̃(y) that is strictly positive on B and zero elsewhere, hence the market price
of risk equation must satisfy

α− r = σΘ + βσ − β̃λ̃

And we finally have for the risk-free measure P̃

β̃ = ẼYi =
∫ ∞
−1
yf̃(y)dy.

On the discrete jump size model, It is presented the differential equation of
that process by the fallowing theorem :

Theorem 4.5. [1] The call price c(t, x) of the theorem 4.4 satisfies the equa-
tion

−rc(t, x) + ct(t, x) + (r − β̃λ̃)xcx(t, x) + 1
2σ

2x2cxx(t, x)
+λ̃

[∑M
m=1 p̃(ym)c(t, (ym + 1)x)− c(t, x)

]
= 0 ,0 ≤ t < T, x ≥ 0 (4.18)

With the Call characteristic boundary condition,

c(T, x) = (x−K)+, x ≥ 0.

4.2 General concepts of the "Double-Exponentially
Distributed" Jump-Diffusion model

In this section will be presented some concepts for the asset pricing model pro-
posed by Kou [10], based on the "Double-Exponentially Distributed" Jump-
Diffusion process. In the next chapter between the simulations we will pro-
vide this alternative model to the more used "Normally Distributed" Jump-
Diffusion model for the asset. It will be fallowed the same steps in onder
to construct and calibrate the model under both kinds of Jumps, the "Nor-
mally Distributed" and the "Double-Exponentially Distributed" ones. Here
will be not presented the analytic formula for the option price, only offering
the equations which will be useful for the model construction. For a general
study of its explicit deduction consult [10] and [11].
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The generic differential equation for an asset guided by a "Double-Exponentially
Distributed" Jump-Diffusion process can be represented by the fallowing [11]
:

dS(t) = αS(t)dt+ σS(t)dW (t) + S(t−)∑j=u,d(V jNj(λjt) − 1)dN j(λjt)
(4.19)

Where α is the drift, σ is the volatility, W (t) is the standard Wiener
process, N j(λj) are the independent Poisson process with intensities up and
down parameters λu and λd, and V j is the jump magnitude. This last parti-
tion of the equation is the central point that differs from the original "Nor-
mally distributed" Jump-Diffusion model.

The up-jump magnitudes (V u) has the fallowing density function :

fV u(x) =
(
ηu
xηu+1

)
This distribution is called Pareto(ηu) with parameter ηu, and providing

V u ≥ 1. The mean and variance are fallowing :

E(V u) = ηu
ηu−1

var(V u) = ηu
(ηu−2)(ηu−1)2

These two equations will be used in the fallowing steps, at the calibration
of the model. An useful characteristic of the Pareto distribution is its rela-
tion with the exponential distribution (also this characteristic is used in the
model). The relation is, if Y is exponetially distributed with intensity ηu,
then eY is Pareto-distributed with parameter ηu.

On the other hand the down-jump magnitudes(V d) are distributed Beta(ηd,1)
with density function:

fV d(x) = ηdxηd−1

Where the jump sizes are nested in 0 < V d < 1. The mean and variance are:

E(V d) = ηd
ηd+1

var(V d) = ηd
(ηd+2)(ηd+1)2

All the jumps are assumed to be independent, the path has stationary and
independent increments and is continuous in probability. As the "Normally
distributed" case, the Doléans-Dade formula [3] provides an explicit solution
for 4.19:
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S(t) = S(0)exp
{

(α− 1
2
σ2)t+ σW (t)

} ∏
j=u,d
V j(N(λjt)) (4.20)

We can set togheter the both up and down jumps in a unique density
distribution. Let λ = λu + λd the intensity of the jumps. Setting p = λu

λ
,

and q = 1 − p. The density function of the mixture of Pareto and Beta
distribution is fallowing:

fV (x) = p ηu
xηu+1 Ix>1(x) + qηdxηd−1I0<x<1 (4.21)

Where ηu > 1 , ηd > 0.
If we set Y = ln(V ), as have Ramezani and Zeng propose in [11], It

can be noticed that the distribution of the logarithm of Pareto and Beta is
exponential. Then,

fY (x) = pηue−ηuyIy≥0 + qηdeηdyIy<0 (4.22)

Under a model with the probability distribution of the logarithm of the
jumps given by 4.22 we can say we are dealing with a "Double Exponen-
tially Distributed Jump-Diffusion process. This model has intensity λ and Y
has an i.i.d. mixture distribution of Exponential(ηu) with probability p and
Exponential(ηd)with probability q.
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Chapter 5

Simulations and Results

In this chapter we will perform some results comparing four methods to verify
which one is more suitable to evaluate a specific European Call Option. On
our study, we mark as reference the market price of an European Call Option
VALEC38, traded on 17/11/2009, with strike price K = 38 and maturity on
15/03/2010.

Cor = R$6, 82.
Where "R$" is the Brazilian currency "Real" (2, 40 Reais ≈ 1, 00 Euro). The
difference in time between the trade date and the maturity date is about
T = 4 months.

The procedure that we will follow to reach the results will be:

• Present how the parameters were estimated from the historical data
set.

• Chosen a distribution for the jumps, we will perform a formal analytic
formula for the European Call, with underlying asset modeled by a
jump-diffusion process.

• By a Monte Carlo simulation evaluate the same Call Option, with the
underlying driven by a jump-diffusion process, using two methods.

• Using a Lognormal Brownian process model for the underlying asset,
get the analytic price for the Call Option by Black-Scholes formula.

5.1 Parameters and the historical data
In this section, we will see firstly how was the procedure to calibrate the
parameters for the jump-diffusion model, after we will see the case for a
Lognormal Brownian model.
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5.1.1 Jump-diffusion model for the underlying asset
On our system there are two main random processes which add stochasticity
to the trajectory of the stock. The first one is the diffusion process, or
Lognormal Brownian motion, and the second one is the jump process driven
by a compensated compound Poisson process. Therefore, our model implies
the stock guided by the equation 4.4 and so,

S(t) = S0exp{σW (t) + (α− βλ− 1
2
σ2)t}

N(t)∏
i=1

(Yi + 1) (5.1)

Which is solution to the differential equation,

dS(t) = αS(t)dt+ σS(t)dW (t) + S(t−)d(Q(t)− βλt)
S(0) = S0

(5.2)

Where, in units per year:

1. S(t) is the asset price at time t,

2. α is the drift of the diffusion process,

3. σ is the standard deviation of the diffusion process,

4. β is the mean of the jumps at the compensated compound Poisson
process,

5. λ is the intensity for the jumps.

6. τ is the period of time in years.

This generic model is independent of distributions of the jumps. On our
model we work with a risk free probability and so the drift parameter will
be the interest rate of a risk free asset. The Brasilian risk free interest rate
can be given by Brazil’s Selic Interest rate, which is the Interest rate paid
by securities backed by the national treasury. Nowadays this interest rate is
about 8, 75% per year, but our market is also influenced by foreign markets
which have a lower one. The Black-Scholes model give us good results using
a lower interest rate, so we standardize our stock to have a drift of 6, 00%
per year.

As we will explain at the next section, Let us assume the jumps Yi have
a normal distribution with mean β and standard deviation δ. All these
parameters were evaluated using a daily data set of VALE5 stock price,
traded on Brazilian stock market. The gotten data set is between the period
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from 2005 to 2009, totalizing 1091 work days, about τ = 4, 3 years, of daily
returns.

The asset’s price is observed in daily intervals, the price on the close of
market. In finance we usually work with the daily returns, so if Si is the
price at the end of ith interval, the return is,

ui = ln
(
Si
Si−1

)
.

The criterion to define when the asset jumps is generic and depends on
each case and of the asset itself. In this study we calibrate the algorithm
to understand like a jump when ui = ln

(
Si
Si−1

)
> 0, 04 therefore when the

daily return goes more than 4% approximately. This choice gives us an
intensity λ = 30, 95 jumps per year, giving a good result for the Monte Carlo
convergence as we will see at the next section.

Given the criterion to define a jump, we split the returns of the data set in
two groups, the group one when the process is ruled by the lognormal diffu-
sion process, and the group two where the process is ruled by the compound
Poisson process, and so when it jumps.

Taking the group one data set we can estimate the standard deviation by
the following formula,

s =

√√√√ 1
n− 1

n∑
i=1

(u1i − ū1)2

In the literature, see [8], we have many examples of choices for the size of
the time series to get good numbers for stimation. Those suggested numbers
are always from 180 to 360 returns. In our case we get a bigger sample than
it, about 957 returns, with this we try to compensate the last year financial
crisis, because it can influence the results in a wrong way. Therefore as we
are nowadays in a time of recuperation of the economy, we prefer to enlarge
the sample trying to compensate the instability of the market.

The stimation s is, in fact, the stimation for the standard deviation in
a given period. Hence, s ≈ σ

√
τ , where τ is the series period of time. It

results,
σ ≈ s√

τ
= 0, 0176 per year

For the group two, the group of jumps, we use the same procedure of
stimation, with a sample size of 134 returns assumed to be normal distributed
jumps with mean β and standard deviation δ. The mean β was estimated
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by β ≈ −0, 001, in the algorithm it is assumed as β ≈ 0. The standard
deviation will be stimated by:

δs =

√√√√ 1
n− 1

n∑
i=1

(u2i − ū2)2

It results

δ ≈ δs√
τ

= 0, 064 per year

The calibration of the system when the jumps are distributed in a "Double
Exponential" density function will be explained togheter to the model itself,
because we will need some specific equations.

5.1.2 Lognormal Brownian model for the underlying
asset

We will use also the Black and Scholes model as a reference, and for this
model, all the process is given by a lognormal Brownian trajectory. On that
case the process will be distributed as :

lnST ∼= ϕ[lnS0 +
(
µ− σ

2
BS

2

)
T, σBS

√
T ]

Where , ϕ[X, Y ] is the normal distribution with mean X and standard de-
viation Y . The first parameter µ is the drift of the lognormal process and
will be, on the risk free probability, equal to 0, 06 per year as already signed.
The standard deviation will be estimated, for period τ :

δbs =

√√√√ 1
n− 1

n∑
i=1

(ui − ū)2

It results

σBS ≈
δbs√
τ

= 0, 028 per year

These parameters will be used in the simulations.
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5.2 Analytic formula for an European Call
with the underlying asset driven by a jump-
diffusion process

By the theorem 4.4 the European Call Option price is given by :

c(t, x) =
∞∑
j=0
e−λ̃(T−t)

λ̃j(T − t)j

j!
Ẽk

T − t, xe−β̃λ̃(T−t) j∏
i=1

(Yi + 1)

 (5.3)

Merton [9] has proposed a model where the size of the jumps of the jump-
diffusion process has a normal distribution. On this model the jumps are
included on the formula as a correction to the standard deviation and to the
drift of the original lognormal process, as we will see at the final formula.

As already signed the process S(t) will be,

S(t) = S0exp{σW (t) + (α− βλ− 1
2
σ2)t}

N(t)∏
i=1

(Yi + 1) (5.4)

and Call Option Price will be

CJD =
∞∑
n=0

eλ̆τ (λ̆τ)n

n!
CBS(S0, K, rn, σ

2
n, τ) (5.5)

Where:

• CBS is the usual price on the Black-Scholes model. S0 is the initial
price, or the today price of the asset at the market. We evaluated
the expression in 24/11/2009 when the market value of the asset was
S0 = R$43.10. K = R$38.00 will be the strike price.

• τ is the period of time, on our case we will evaluate an Option in a
period of 4 months, and so τ = 1

3 year.

• λ̆ = λ(1 + β) where λ = 30.95 per year is the intensity of the compen-
sated compound Poisson process and β = 0 is its mean.

• σ2
n = σ2 + nδ2

τ
is the corrected standard deviation of merton’s jump-

diffusion model. The diffusion standard deviation is σ = 0.017 per year
and the jump’s size standard deviation is δ = 0.064 per year.

• rn = r − λβ + nln(1+β)
τ

is the corrected drift on a risk free probability,
where r = 0.06 per year.
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On the implemention of the formula 5.5, we need to teminate the infinite sum
at some point. The factorial term n! grows in a much higher rate than any
other, so on the algorithm we terminate the process when n = 50 because
the term eλ̆τ (λ̆τ)n

n! = 7.3983 · e−77. The sum over this point can be ignored.
Finally the price for an European Call Option, for the analytic jump-

diffusion model implemented by an algorithm with those parameters will be:

CJD = R$3.63

5.3 Monte Carlo simulation for Jump-Diffusion
process

The main result of this work is the construction of Monte Carlo simulations
to implement the jump-diffusion process properly. In order to construct that
we will follow these steps:

1. Constructing the algorithm for the compensated compound Poisson
process.

2. Constructing the algorithm for the lognormal Brownian diffusion pro-
cess.

3. Constructing the jump-diffusion model, apply the Monte Carlo Method
and calibrate the system. It will be done using the hypothesis of
"normally distributed" jumps, and "double exponentially distributed"
jumps.

4. Evaluate the price to the European Call Option to a given time interval.

The final models will be based on the original formula of a jump-diffusion
process:

For the "Normally distributed" Jump-Diffusion model:

S(t) = S0exp{σW (t) + (α− βλ− 1
2
σ2)t}

N(t)∏
i=1

(Yi + 1)

And, for the "Double Exponentially Distributed" Jump-Diffusion model:

S(t) = S0exp
{

(α− 1
2
σ2)t+ σW (t)

} ∏
j=u,d
V j(N(λjt)) (5.6)

Actually, these models are the same, differing only in the jump size dis-
tribution.
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5.3.1 The algorithm for the compensated compound
Poisson process

At this point we will present an algorithm to evaluate the compensated com-
pound Poisson process,

CM(t) = Q(t)− βλt.

The basis for the algorithm is given by R.Cont and P.Tankov on [7] and the
steps are:

1. Simulate a random variable N from a Poisson distribution with param-
eter λ ·T , where λ = 30.95 per year. N gives the total number of jumps
on the interval [0, T ]. At the calibration time we have used a grid of
252 points and T = 1.

2. Simulate N independent random values, Ui, sorted uniformly distributed
on the interval [0, T ]. These variables correspond to the jumps’ times.

3. Simulate the jumps’ sizes: N independent random values Yi normally
distributed with mean β = 0 and standard deviation δ = 0.064. Each
Yi will be the jump size at time Ui.

4. The trajectory is given by,

X(t) = βt+
N∑
i=1

1Ui<tYi.

An example of the path of a compensated compound Poisson process is
in the picture 5.1.

5.3.2 The algorithm for the lognormal pure diffusion
process

The lognormal Brownian process has the following formula,

S(t) = S0exp{σW (t) + (µ− 1
2
σ2)t}.

Where W(t) is a Brownian motion with mean 0 and standard deviation 1.
The basic algorithm to construct a lognormal pure diffusion process is a
discretization of the lognormal process in many small times ∆t, constructing
the path step by step. It holds,

S(t+ 1) = S(t) · exp{σ
√

∆tϵ+ (µ− 1
2
σ2)∆t} (5.7)
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Figure 5.1: Typical trajectory of a compound Poisson process.

Where ϵ is a Normally distributed random variable with mean 0 and standard
deviation 1. A typical trajectory of a simulated lognormal process is given
by 5.2

5.3.3 The "Normally distributed" Jump-Diffusion model
contruction: Monte Carlo simulation and cali-
bration of the sytem

On this algorithm the Jump-Diffusion model is constructed with its two com-
ponents simulated separately, i.e. the lognormal component, based in a diffu-
sion process guided by a Brownian motion process, and the jump component
of a compound Poisson process with the jumps fallowing a Normal density
function. Utilizing the independence hypothesis, the algorithm contructs
them separately and locates them togheter step by step on the simulation.

Remembering the basic differential equation 4.3 for a Jump-Diffusion pro-
cess is:

dS(t) = αS(t)dt+ σS(t)dW (t) + S(t−)d(Q(t)− βλt) (5.8)
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Figure 5.2: Typical trajectory of a simulated lognormal process

Here it holds some assumptions:

1. We work with the values in a fixed time grid, the number of points in
the grid will be given by the number N.

2. The compound Poisson process and the Brownian motion are indepen-
dent.

3. In each step of time can exist only one jump.

4. The jump influence the process proportionally, hence if at the time t
there is jump of size +0.2 the process grows 20%.

Initially, the algorithm is such that, with initial value S0 :

1. If at the time interval ∆t there is a jump of size Yi, with "normal"
distribution:

S(t+ 1) = S(t)exp
{
σw(t) + (µ− βλ− 1

2
σ2)∆t

}
(Yi + 1) (5.9)
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If there is no jump at that time interval:

S(t+ 1) = S(t)exp
{
σw(t) + (µ− βλ− 1

2
σ2)∆t

}
(5.10)

2. We work with that algorithm until the evalution of the final value of
the asset S(N). At this point It’s priced the payoff for an European
Call Option of the asset, given by:
if (S(N)−K < 0) payoff= 0.
else payoff= S(N)−K.
Where K is the strike price.

3. Finally we evaluate the price of the call by the risk free argument, and
so we put that payoff at the present time, in this way :

CJD = exp(−µ ∗ T ) ∗ payoff.

Where µ is the risk free interest rate. On our algorithm µ = 0.06 per
year.

An example of a simulation of a "Normally Distributed" Jump-Diffusion
process is given on the figure 5.3.

Now, we have the price for one simulation for an European Call in a Jump-
Diffusion model. The Monte Carlo method is nothing else than simulate
many times a process and get the mean of the prices as the value of the
official price for the European Call. In our case we achieve good results to
the system with 100 simulations. An example of a Jump-Diffusion Monte
Carlo simulation is on the figure 5.4.

Some observations about Monte Carlo convergence were observed during
the simulations:

• The error decreases with increasing number of paths.

• The error is smaller if the variance of the jump-size is smaller.

• If the jump intensity (λ) is high, then the error decreases at slower rate
with increasing number of paths.

To calibrate the system we used the simulation with T = 1, comparing
the price result with the Black-Scholes reference formula, and then such that
R$7.21 and the parameters given by the data set.

At our model, the parameter that offer a more generic calibration is the
intensity λ of the compound Poisson process. The question is, "when the
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Figure 5.3: Typical trajectory of a "Normally Distributed" Jump-Diffusion
process
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Figure 5.4: Typical trajectory of a simulated jump-diffusion with the Monte
Carlo method
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process jumps?". In order to answer this question we made a plenty of simu-
lations, changing the intensity by changing the criterion to define when the
process jumps from the data set, remembering:

ui = ln
(
Si
Si−1

)

So when ui is greater than a value, V1 = 0.032 for example, i.e the process
jumps more than 3% of its value, we staked that It jumped, and for this value
on our data set we have the intensity λ1 = 43.3 jumps per year. Changing
the value Vi we have others intensities λi. The calibration of the system for
the period of one year give us the result that for Vi = 0.04 and the intensity
λi = 30.95 jumps per year are good choices when we compare to the Black-
Scholes reference price.

Finally, we simulate the Jump-Diffusion process with Monte Carlo method
to evaluate an European Call, with strike price K = 38, initial price S0 =
43, 1 , T = 1

3 (4 months), number of points at the grid N = 252/3 = 84,
with 100 Monte Carlo simulations, and parameters gotten from the data set
of the stock, as specified on section 5.1. We got the mean price:

CNJDMT = R$6.52

Assuming a normal distribution for the Call final price, we can also give a
confidence interval with 95% of significance to the mean price:

ICNJDMT = [5.67 7.38]

The simulation of the process is given on the figure 5.5.

5.3.4 The "Double Exponentially Distributed" Jump-
Diffusion model contruction: Monte Carlo simu-
lation and calibration of the sytem

In the same way of the last section, here we will evaluate the European
Call Option in the hyphotesis that the asset fallows a "Double Exponentially
Distributed" Jump-Diffusion Process. Here, the model will be based on two
building blocks.

Firstly the lognormal component, based in a diffusion process guided by a
Brownian motion process, and after the jump component with intensity given
by a compound Poisson process with jumps fallowing a "Double Exponential"
density function. The algorithm constructs the components separately.
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Figure 5.5: Final Monte Carlo simulation on a "Normally Distributed" Jump-
Diffusion model for the asset

67



An asset modeled as a "Double Exponentially Distributed" Jump-Diffusion
model is given by the equation 4.19:

dS(t) = αS(t)dt+ σS(t)dW (t) + S(t−)∑j=u,d(V jNj(λjt) − 1)dN j(λjt)
(5.11)

Which is quite similar to the "normally" distributed version of the equa-
tion. The assumptions to the grid of time, independence of the components,
rate and influence of jumps in the path of the asset still holds for this model.

In the same idea of the last algorithm we construct the path of the asset
step by step with the characteristic function given by 4.20, with initial value
S0 in this way:

1. If at the time interval ∆t there is a jump of size V j, fallowing the
"Double-Exponential" distribuition equation 4.21:

S(t+ 1) = S(t)exp
{
σw(t) + (α− 1

2
σ2)∆t

}
(V j) (5.12)

Here something particular is the kind of jumping we are dealing:

• The asset has a p probability of jumping up, and in this case it
fallows the density function Pareto(ηu) of the equation fV u(x) =(
ηu
xηu+1

)
• Else, the asset has a q = 1−p probability of jumping down, and in

this case it fallows the density function Beta(ηd,1) of the equation
fV d(x) = ηdxηd−1.

Hence, if there is a jump in this time interval, the algorithm chooses
randomly if it goes up or down, and apply the correct formula. This
way we are simulating the mixture density function 4.21.
If there is no jump at that time interval:

S(t+ 1) = S(t)exp
{
σw(t) + (α− 1

2
σ2)∆t

}
(5.13)

2. We work with that algorithm until the evalution of the final value of
the asset S(N). At this point It’s priced the payoff of the European
Call Option of the asset for this model, given by:
if (S(N)−K < 0) payoff= 0.
else payoff= S(N)−K.
Where K is the strike price.
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3. Finally we evaluate the price of the Call with the risk-free argument,
and so we put that payoff at the present time, in this way :

CJD = exp(−α ∗ T ) ∗ payoff.

Where α is the risk-free interest rate. On our algorithm, as already
signed α = 0.06 per year.

An example of a simulation of a "Double Exponentially Distributed"
Jump-Diffusion process is given on the figure 5.3.
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Figure 5.6: Typical trajectory of a simulated "Double Exponentially Dis-
tributed" Jump-Diffusion process

At this figure we can notice that the path of the asset in the "double
exponential" simulation case has a smoother pattern than the "normal" case.
This is a characteristic of the "Double-Exponential" distribution, and can be
controled by the parameters ηu and ηd.

Up to now, we presented the algorithm that provides the price for an
European Call in the Jump-Diffusion model. Then we can start with the
process of the Monte Carlo simulation, which ,as already was explained, is
nothing else than simulating many times a process and get the mean of the
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prices as the value of the official price for the European Call. In our case we
calibrate the system to do 100 simulations.

Some observations about Monte Carlo convergence for these kind of pro-
cess were observed during the simulations:

• The rate of convergence increase with the namber of simulations.

• It’s quite sensible the influence of the change in the intensity of the ups
(λu) and downs (λd) jumps, in both the path and the final value.

The criteria of calibration of the system for the "Double Exponentially
Distributed" Jump-Diffusion process goes in the same way of the "normal"
case. In order to calibrate the system we have this set of parameters: θ =
(α, σ, λu, λd, ηu, ηd). Remembering that the probability of the up jumps is
given by p = λu

λu+λd
and so for the down jumps is q = 1− p.

Using the Black-Scholes model as reference in the period of one year,
and the same data set already presented, the calibration of the system is
set using the simulation with T = 1, comparing the price result with the
Black-Scholes reference formula, and then such that R$7.21. Again for this
model the problem is to define when we can consider, in the data set, that
between two days the asset jumped. Defining the intensities of the jumps,
λu and λd, becomes easy to define the other parameters.

In order to set up these two parameters, It’s used the same procedure of
the last section, therefore we reach to the intensities by changing the criterion
that defines when the process jumps from the data set, always regarding the
reference price given by the Black-Sholes model. The procedure is to looking
for returns up to Vi = 0.04 in absolute value. With this criterion we are
able to separate between these returns the up jumps from the down jumps.
With these jumps, we can finally stimate the intensities of the jumps, i.e.
λu = 15.23 and λd = 15.69.

The other parameters that we need to estimate are the probability densi-
ties ηu from the Pareto(ηu)distribution and the ηd from the Beta(ηd,1)distribution.
As we have already set the jumps up and jumps down, we can use their own
equations for the mean and variance on the historical data:

E(V u) = ηu
ηu−1

var(V u) = ηu
(ηu−2)(ηu−1)2

and,
E(V d) = ηd

ηd+1
var(V d) = ηd

(ηd+2)(ηd+1)2
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And solving these systems the parameters are stimated, i.e. ηu = 17.35 and
ηd = 16.35.

So we can present our calibrated system :

θ = (α = 0.06, σ = 0.018, λu = 15.23, λd = 15.69, ηu = 17.35, ηd = 16.35)

Where the diffusion parameters are stimated from the data set as we have
already explained.

Finally, we simulate the process by Monte Carlo method to evaluate
an European Call in a "Double Exponentially Distributed" Jump-Diffusion
model, with strike price K = 38, initial price S0 = 43, 1 , T = 1

3 (4 months),
number of points at the grid N = 252/3 = 84, with 100 simulations. We got
the mean price:

CDEJDMT = R$6.40

Assuming a normal distribution for the Call Price, we can also give a confi-
dence interval with 95% of significance for the mean price:

ICDEJDMT = [5.02 7.79]

As we can see, the "Double-Exponential" model offer a larger confidence
interval for the mean price than the "normal" Jump-Diffusion model. This
characteristic will be retake on the conclusion.

The simulation of the process is given on the figure 5.7

5.4 The Black-Scholes model as reference
In this section we will use the classical model for price stock options, the
Black-Scholes model. It assumes the percentage changes in the stock price
for short periods, in our case one day, are lognormally distributed. The stock
price process will be given by

dS = µSdt+ σSdz (5.14)

Where z is a Brownian Motion, µ is the Expected return on stock per year,
and σ is the volatility of the stock price per year. Both of them were stimated
by a stock historical series. If f is the price of an European Call Option, it has
the differential equation, called Black-Scholes-Merton differential equation,

∂f

∂t
+ rS ∂f
∂S

+ 1
2
σ2S2 ∂

2f

∂S2 = rf. (5.15)
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Figure 5.7: Final Monte Carlo simulation on a "Double Exponentially Dis-
tributed" Jump-Diffusion model for the asset
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Where r is the risk-free expected return stock.For the European Call Option,
the differential equation has the boundary condition:

f = max(S −K, 0) when t=T (5.16)

As was already done for pricing a stock modeled by a Jump-Diffusion process,
we will use the risk-free measure to price our option. So in practice we will
do the following procedure [8]:

1. Assume that the expected return from the underlying asset is the risk-
free interest rate, r (i.e. assume µ = r)

2. Calculate the expected payoff from the derivative

3. Discount the expected payoff at the risk-free interest rate

Finally we can perform the well known Black-Scholes formula for price at
time 0 an European Call Option,

CBS = S0N(d1)−Ke−rTN(d2) (5.17)

where,

d1 = ln(S0/K)+(r+σ2/2)T
σ
√
T

d2 = ln(S0/K)+(r−σ2/2)T
σ
√
T

= d1 − σ
√
T

(5.18)

The function N(x) is the cumulative probability distribution function for
a standardized normal distribution. On our simulation, we use a stock price
with the parameters: S0 = 43, K = 38, r = 0.06 per year, σ = 0.03 per year,
and T = 1/3 of a year. Applying these parameter to the equation 5.17 we
have,

CBS = 43N(d1)− 38e−0.06∗ 1
3N(d2)

where,

d1 = ln(43/38)+(0.06+(0.03)2/2)∗ 1
3

0.03
√

1
3

d2 = ln(43/38)+(0.06−0.032/2)∗ 1
3

0.03
√

1
3

And It results,
CBS = R$5.75.
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Chapter 6

Conclusions

When one evaluate the price of an European Call by a model, or any other
stock product, the first question that comes in our mind is how close this
solution is to the market prices. In fact, do the traders really use these
models to determining a price for an option?

The answer is yes. Besides the fact that the Black-Scholes model is the
most used model, traders use it in a different way in respect to the manner
that Black and Scholes orinally presented it. Actually, the Black-Scholes
model have some problems with its lognormal Brownian hypothesis model for
drivig the trajectory of an asset. There are many ways to solve the peakness
problems, and the heavy tails problems of a lognormal distribution, the most
aplied are the volatility smile, and stochastic volatility, for this see [8] and
[1].

This work tried to evaluate another Levy process model, the Jump-
Diffusion model, which has a continuous lognormal characteristic with some
sporadic jumps on its path. Introducing these jumps, some problems of the
lognormal Brownian motion are solved [7].

So, this work, first of all brought into focus the problem of finding an an-
alytic formula of an European Call Option price. Once arrived to it, we im-
plemented some algorithms to evaluate this Call option in a Jump-Diffusion
view, using a real data set to parameterize them. In this work We used four
different models to price the option, futher on the market price itself, and it
enables us to compare them. Here It’s summarized the results,
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Model Price Market difference
Market price R$6, 82 0%
Analytic Jump-Diffusion R$3, 63 47%
Monte Carlo "Normally Dis-
tributed" Jump-Diffusion

R$6, 52 4%

Monte Carlo "Double-
Exponentially Distributed"
Jump-Diffusion

R$6, 40 6.1%

Black-Scholes R$5, 75 16%

These results come from the same data set of parameters, differening
between them only on the proper model characteristics. The data set was
taken from real values from the market, the stock VALE5, an ordinary stock
from one of the biggest companies in Brazil.

Talking about the results we have seen that between the models, the
Monte Carlo simulations for Jump-Diffusion process are which best suit with
the market value, with a difference of 4% for the "Normally Distributed"
Jump-Diffusion process from the market value, and 6.1% for the "Double
Exponentially Distributed" version. Here we can compare the results for the
both models, observed under the model contruction and simulation:

Subject "Normal" jumps "Double Exponential"
jumps

Final price R$6, 52 6, 40%
Market difference 4% 6.1%
Confidence Interval [5.67 7.38] [5.02 7.79]
Range of confidence
Interval

Strait Large

Converge of the model Faster Slower
Control of simulations The same probability

to up and down jumps
The distribution of the up
and down jumps can be set

Number of parameters
to calibrate

Less parameters(5) More parameters(6)

Comparing the results we can see that if we assume a normal distribution
for the Monte Carlo prices, we have a confidence interval of ICNJDMT =
[5.67 7.38] for the "Normal" version and ICDEJDMT = [5.02 7.79] for the
"Double Exponential" , with 95% of significance. For both models It’s ob-
served that the market price is in the confidences intervals of the means,
despite the fact that the "normal version" has a straiter interval. This is
caused mainly because of the rate of convergence characteristic of the model,
faster to the "normal version" as observed into the simulations.
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An advantage of the "Double Exponential" version is the control of the
ups and downs jumps, selecting in the right way the parameters we are free
to calibrate an asset of a company as we expect. For example, if the company
is passing for a good financial situation, we can set the model to have more
up jumps than down jumps, of course always based in the historical data.
This kind of control is impossible in a "normal" version of the jump-diffusion
model. By the way, this advantage turns to a disadvantage if we think in
the number of parameters, more in the "double exponential" version. This
greater number of parameters brings to the model more parameters that can
be set mistakenly, and so the precision of the model could be more doubtful.

The both Jump-Diffusion methods are also good because they can be
easily calibrated, and here differing totally from the analytic methods as the
Black-Sholes and the analytic formula for Jump-Diffusion process. It means
that when you change some parameter value, It can be seen directly the
change on the simulated path, or in the final value. On analytic methods the
calibration is more generic because when there is a change on the parameters,
the only value that can be evaluated in this choice is the final value,i.e the
formula works like a Black-Box where one cannot evaluate how the change
affects the trajectory of the underlying.

The analytic formula for the European Call Option with jump-diffusion
underlying works with many parameters, and there is a natural difficult in
order to calibrate all of them at the same time. We have saw during the
simulations that It influences too much the final value of the product. Hence,
the formula is too much sensitive to the set of parameters, and it’s hard to
see how much each one of the parameters interfere to the final price.

Another problem of the final formula, and this one was stated during the
simulations, is the fact that the exponential term penalizes too strongly the
final value, and maybe this term needs some kind of correction. So, we have
seen that analytic formula for jump-diffusion process didn’t sufficiently suit
with the market value, with a difference price of 47%.

The Black-Scholes formula was used like a reference model in all the
work, and as we saw it evalutes very well the market price of this European
Call Option, with just 16% of difference. Maybe it occurred because, with
some corrections, the Black-Scholes model is the most used model to evaluate
options in the market, therefore maybe it suits with the market value actually
because is the benchmark model for all the market.

Finally, we can conclude that the models which best suit with the market
value for this specific European Call Option are the Monte Carlo Jump-
Diffusion models, after the second best one is the Black-Scholes model, and
the last is the analytic "Jump-Diffusion" model which isn’t a good manner
to evaluate the price of this product.
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Appendix A

Algorithms

Here It’s present the algorithms used to model the European Call. They are
sorted this way:

1. The Black-Sholes Formula

2. The analytic Jump-Diffusion function

3. The Monte-Carlo "Normally Distributed" Jump-Diffusion process model

4. The "Normally Distributed" compound Poisson process model

5. The Monte-Carlo "Double Exponentially Distributed" Jump-Diffusion
process model

6. The "Double Exponentially Distributed" compound Poisson process
model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%(1)Black-Scholes formula %%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function price=callPrice(S0,K,miu,sig,T)

d1=(log(S0/K)+(miu+0.5*(sigˆ2))*T)/(sig*sqrt(T));
d2= d1 - sig*sqrt(T);
price=S0*cdf(’Normal’,d1,0,1) - K*exp(-miu*T)*(cdf(’Normal’,d2,0,1));
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%(2)Analytic Jump-Diffusion Function %%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function pricejdp=jdpanal()

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%Compound Poisson Data%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%intensity
lamb = 30.95;

%average
k = 0;

%standard deviation
stdjump = 0.064;

%%%%%%%%%%%%%%%%%%%
%%%Diffusion Data%%%%%%%%%
%%%%%%%%%%%%%%%%%%%

% Diffusion variance a.a.(stddev)
sig = 0.0176;

%mi a.a.
miu = 0.06;

%Initial value
S0 = 43.1;

%strike
K = 38;

%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%Generic Data%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%
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T = 1/3;

%%%%%%%%%%%%%%%%%%%
%%%%%%%%%PRICING%%%%%%%
%%%%%%%%%%%%%%%%%%%

lambl= lamb*(1+k);
price1 = 0;
for i=1:50

sign = sqrt(sigˆ2 + (i*stdjumpˆ2)/T);
rn = miu - lamb*k + i*log(1 + k)/T;
soma = 0;
for j=1:i

soma = soma + log(i);
end
expo = exp(-lambl*T + i*log(lambl*T)-soma)
pricecall=callPrice(S0,K,rn,sign,T)
expo*pricecall
price1 = price1 + expo*pricecall;

end

pricejdp = price1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%(3)Monte Carlo normal Jump-Diffusion Function %%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function price=jdp()

%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%Generic Data%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%

simnum = 100;
K = 38;
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%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%Compound Poisson Data%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%

%So
S0=43.1;

%T
T=1/3;

%lambda
lamb = 30.95;

% Grid
N = round(252/3);

%average
beta = 0;

%standard deviation
stjump = 0.064;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%Diffusion Data%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%stddev da difusão a.a.
sig = 0.0176;

%mi a.a. miu = 0.06;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%Simulating%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

dt = T/N;
soma2=0;
x=1;

%Constructing the grid
for j=1:(N + 1)

temp(j)= soma2;
soma2 = soma2 + dt;

end
for j=1:simnum

x=1;
z=0;
sumtime = 0;
S(1)=S0;
[caro]=cpp2(S0,T,lamb,stjump,N)
Tk=caro(:,1);
Yk=caro(:,2);
NTk = length(Tk);
for i=1:N

sumtime= sumtime + dt;
eps=randn(1);
v=miu-(sigˆ2)/2;
if (sumtime > Tk(x)) & (x ˜= NTk)

z = z + 1;
S(i+1)=S(i)*exp(v*dt+sig*(dtˆ(1/2))*eps)*(Yk(x)+1);
x=x+1;

else
S(i+1)=S(i)*exp(v*dt+sig*(dtˆ(1/2))*eps);

end
end
if(S(N+1)-K<0)

payoff(j)=0;
else

payoff(j)=S(N+1)-K;
end
if (j==1)

figure(’Name’,’JUMP DIFFUSION PROCESS’);
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plot(temp’,S’);
else

line(temp’,S’,’color’,[rand rand rand]);
end

end
trag=[temp’,S’];
cp =[Tk,Yk’];

% Confidence Interval 95%
price2=exp(-miu*T)*payoff;
media = mean(price2)
stdev = std(price2)
Icinf= media -1.96*stdev/sqrt(simnum);
Icsup= media +1.96*stdev/sqrt(simnum);
priceIC = [Icinf Icsup]
price=mean(exp(-miu*T)*payoff);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%(4)Compound Poisson Process normal model%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [caro]=cpp2(X0,T,lamb,stddev,pontos)
N= round(exprnd(lamb*T));
if (N==0) N=1; end
Tk = sort(rand(N,1));
Yk = randn(N,1)*stddev;
i=0;
st = T / pontos ;
soma = 0;
for j=1:pontos

temp(j)= soma;
soma = soma + st;

end
sumtime = 0;
Xk(1)=X0;X=X0;
x = 1;
for i = 2:pontos

sumtime = sumtime + st;
if (sumtime > Tk(x)) & (x ˜= N)

X = X + Yk(x);
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x = x + 1;
end
Xk(i) = X;

end
caro = [Tk,Yk];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%(5)Double Exponential Jump-Diffusion Function %%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function price=dbexpfinal()

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%Generic Data%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

simnum = 100;
K = 38;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%Compound Poisson Data%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%So
S0=43.1;
%T
T=1/3;
%eta
etaup = 17.35;
etadow = 16.35;
%lambda
lambup = 15.23;
lambdow = 15.69;
% grid
N = round(252/3);
%probabilities
probpos = lambup/(lambup+lambdow);
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probneg = lambdow/(lambup+lambdow);

%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%Diffusion Data%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%

%stddev da difusão a.a.
sig = 0.0176;
%mi a.a.
miu = 0.06;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%Simulating%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

dt = T/N;
soma2=0;
x=1;

%%%%%%Constructing the grid
for j=1:(N + 1)

temp(j)= soma2;
soma2 = soma2 + dt;

end
for j=1:simnum

x=1;
z=0;
sumtime = 0;
S(1)=S0;
[caro]=cdexp(S0,T,lambdow,lambup,etaup,etadow,N,probpos);
Tk=caro(:,1);
Yk=caro(:,2);
NTk = length(Tk);
for i=1:N

sumtime= sumtime + dt;
eps=randn(1);
v=miu-(sigˆ2)/2;
if (sumtime > Tk(x)) & (x ˜= NTk)

z = z + 1;
S(i+1)=S(i)*exp(v*dt+sig*(dtˆ(1/2))*eps)*(Yk(x));
x=x+1;
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else
S(i+1)=S(i)*exp(v*dt+sig*(dtˆ(1/2))*eps);
end

end
if(S(N+1)-K<0)

payoff(j)=0;
else

payoff(j)=S(N+1)-K;
end
if (j==1)

figure(’Name’,’DOUBLE EXPONENTIAL JUMP DIFFUSION PRO-
CESS’);

plot(temp’,S’);
else

line(temp’,S’,’color’,[rand rand rand]);
end

end
trag=[temp’,S’];
cp =[Tk,Yk’];
% Confidence Interval of 95%
price2=exp(-miu*T)*payoff;
media = mean(price2)
stdev = std(price2)
Icinf= media -1.96*stdev/sqrt(simnum);
Icsup= media +1.96*stdev/sqrt(simnum);
priceIC = [Icinf Icsup]
price=mean(exp(-miu*T)*payoff);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%(6)Compound Poisson Process double exponential model%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [caro]=cdexp(X0,T,lambdo,lambup,etaup,etadow,pontos,probp)
lamb=lambdo+lambup;
N= round(exprnd(lamb*T));
if (N==0) N=1; end
Tk = sort(rand(N,1));

for j=1:N
if (rand(1)<probp)

Yk(j)=exp(exprnd(1/etaup));

86



else
Yk(j)=betarnd(etadow,1);

end
end

i=0;
st = T / pontos ;
soma = 0;
for j=1:pontos

temp(j)= soma;
soma = soma + st;

end
sumtime = 0;
Xk(1)=X0; X=X0;
x = 1;
for i = 2:pontos

sumtime = sumtime + st;
if (sumtime > Tk(x)) & (x ˜= N)

X = X + Yk(x);
x = x + 1;

end
Xk(i) = X;

end

[Tk,Yk’]
caro = [Tk,Yk’];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%END%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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