

## <u>INDICE</u>

| ABSTRACT |                                                    | III |
|----------|----------------------------------------------------|-----|
| CAPIT    | OLO I - ANALISI DEL CONTESTO                       |     |
| 1.       | INTRODUZIONE                                       | 1   |
| 2.       | ANALISI STORICA                                    | 2   |
| 3.       | ANALISI VIABILISTICA                               | 13  |
| 4.       | ANALISI CLIMATICA                                  | 14  |
| 5.       | RILIEVO FOTOGRAFICO                                | 20  |
| 6.       | ANALISI DEI CASI SIMILI                            | 35  |
| CAPIT    | OLO II – PROGETTO ARCHITETTONICO                   |     |
| 1.       | INTRODUZIONE                                       | 43  |
| 2.       | DESCRIZIONE DEL LOTTO DI INTERVENTO                | 43  |
| 3.       | PARAMETRI PROGETTUALI                              | 44  |
| 4.       | DESCRIZIONE DEL PROGETTO                           | 45  |
| CAPIT    | OLO III - STUDIO DI UN SISTEMA SCHERMANTE ADATTIVO |     |
| 1.       | INTRODUZIONE                                       | 47  |
| 2.       | SCHERMATURE SOLARI                                 | 48  |
| 3.       | GEOMETRIA SOLARE                                   | 51  |
| 4.       | SISTEMA SPERIMENTALE DI SCHERMATURA SUNFLOWER      | 53  |
| 5.       | METODOLOGIE DI CONFRONTO                           | 58  |
| 6.       | COMPARAZIONE ANALITICA DEI SISTEMI SCHERMANTI      | 66  |
| 7.       | CONCLUSIONI                                        | 110 |
| CAPIT    | OLO IV - DIMENSIONAMENTO DELL'IMPIANTO STRUTTURALE |     |
| 1.       | INTRODUZIONE                                       | 111 |
| 2.       | ANALISI DELLE CONDIZIONI AL CONTORNO               | 112 |
| 3.       | DIMENSIONAMENTO DEI SOLAI                          | 116 |
| 4.       | DIMENSIONAMENTO DELLE TRAVI                        | 148 |
| 5.       | DIMENSIONAMENTO DEI PILASTRI                       | 200 |
| 6.       | UNIONI BULLONATE                                   | 226 |

Ī



|                                                        | 7.                  | DIMENSIONAMENTO DEI CONTROVENTI                        | 238 |  |
|--------------------------------------------------------|---------------------|--------------------------------------------------------|-----|--|
|                                                        | 8.                  | DIMENSIONAMENTO DELLE FONDAZIONI                       | 252 |  |
|                                                        |                     |                                                        |     |  |
| CAPITOLO V - PROGETTAZIONE DEGLI ELEMENTI TECNOLOGICI  |                     |                                                        |     |  |
|                                                        | 1.                  | INTRODUZIONE                                           | 263 |  |
|                                                        | 2.                  | METAPROGETTAZIONE DELLE SOLUZIONI TECNOLOGICHE         | 263 |  |
|                                                        | 3.                  | CALCOLO DELLE PRESTAZIONI DELLE SOLUZIONI TECNOLOGICHE | 310 |  |
|                                                        | 4.                  | VERIFICA DEI REQUISITI DELLE SOLUZIONI TECNOLOGHICHE   | 336 |  |
| CAPITOLO VI - DIMENSIONAMENTO DEGLI IMPIANTI           |                     |                                                        |     |  |
|                                                        | 1.                  | INTRODUZIONE                                           | 381 |  |
|                                                        | 2.                  | CALCOLO DEL CARICHI TERMICI                            | 381 |  |
|                                                        | 3.                  | IMPIANTO DI RISCALDAMENTO A PAVIMENTO                  | 395 |  |
|                                                        | 4.                  | IMPIANTO AD ARIA PRIMARIA                              | 403 |  |
|                                                        | 5.                  | IMPIANTO DI ADDUZIONE DELL'ACQUA SANITARIA             | 411 |  |
|                                                        | 6.                  | IMPIANTO DI PRODUZIONE DELL'ACQUA CALDA                | 421 |  |
|                                                        | 7.                  | IMPIANTO DI SCARICO                                    | 423 |  |
|                                                        | 7.1                 | IMPIANTO DI SMALTIMENTO DELLE ACQUE NERE               | 423 |  |
|                                                        | 7.2                 | IMPIANTO DI SMALTIMENTO DELLE ACQUE BIANCHE            | 429 |  |
| CAPITOLO VII – CERTIFICAZIONE ENERGETICA DELL'EDIFICIO |                     |                                                        |     |  |
|                                                        | 1.                  | INTRODUZIONE                                           | 435 |  |
|                                                        | 2.                  | CONDIZIONI DI BENESSERE                                | 435 |  |
|                                                        | 3.                  | RIFERIMENTI NORMATIVI                                  | 436 |  |
|                                                        | 4.                  | FABBISOGNO DI ENERGIA TERMICA DELL'EDIFICIO            | 437 |  |
|                                                        | 5.                  | FABBISOGNO DI ENERGIA PRIMARIA DELL'EDIFICIO           | 456 |  |
|                                                        | 6.                  | IMPIANTO DI PANNELLI FOTOVOLTAICI                      | 458 |  |
| BIBLIOGRAFIA                                           |                     |                                                        | 463 |  |
| INE                                                    | INDICE DELLE FIGURE |                                                        | 464 |  |
| INE                                                    | INDICE DELLE TAVOLE |                                                        | 470 |  |



## **ABSTRACT**

Per la riqualificazione di un'area industriale dismessa, collocata in una zona centrale del suo territorio, la giunta comunale della città di Erba ha espresso la volontà di prevedere la realizzazione di un nuovo centro per il rilancio della vita sociale. Il progetto dovrà comprendere sia edifici adibiti al pubblico utilizzo, quali una sala civica, una sala espositiva ed un auditorium, sia edifici privati, ovvero residenze, uffici e spazi commerciali. In particolare viene evidenziato l'obbligo di destinare una porzione degli edifici adibiti a residenze, ad un'edilizia economicamente sostenibile, senza però rinunciare alle performance del risparmio energetico. Il progetto da noi redatto presenta come elemento organizzatore dell'intero complesso, una piazza, collegata con il contesto da quattro accessi, disposti omogeneamente lungo perimetro del lotto di intervento. Questi accessi inoltre rappresentano le estremità di due assi pedonali che sono invece gli elementi generatori degli spazi costruiti, distinti l'uno dall'altro in funzione degli edifici che lambiscono e disegnano. In particolare il percorso che attraversa il lotto lungo la direzione est-ovest, viene chiamato asse "costruito" perché appunto, partendo dall'elemento torre in cui vengono collocati gli uffici, si snoda tra gli edifici a destinazione residenziale e commerciale per terminare in via Argimira. L'altro percorso, per cui si prevede la parziale chiusura di via Fiume e la sua riqualificazione a percorso pedonale per l'appunto, viene chiamato asse "naturale" dato che delimita gli edifici pubblici ed uno spazio commerciale destinato ad un mercato coperto, i quali giacciono al di sotto di una copertura verde che termina nella parte sud-ovest del lotto in una zona verde piantumata.

La necessità di realizzare spazi costruiti aventi la duplice connotazione di sostenibilità ambientale e sensibilità energetica, si è tradotta nello studio e nel calcolo di un involucro ad alte prestazioni di isolamento termico ed ombreggiamento estivo delle porzioni vetrate, abbinato ad un'impiantistica che prevede un consistente sfruttamento delle risorse energetiche rinnovabili, come per l'appunto l'energia solare, ed il recupero dell'energia termica e dell'entalpia dell'aria esausta in espulsione dall'impianto meccanizzato dell'aria, mediante l'utilizzo di uno scambiatore di calore.

Inoltre è stata avviata un'attività di ricerca circa la possibilità di ottimizzare l'efficacia di un sistema di schermatura fisso previsto all'interno di una doppia vetrocamera, già presente in commercio, in funzione dell'esposizione della facciata su cui viene installata. I risultati conseguiti mostrano come possano essere sensibilmente migliorate le prestazioni di ombreggiamento, senza compromettere il comfort visivo interno, mediante il sistema schermante sperimentale.

Al termine del lavoro è stata poi effettuata la certificazione energetica del complesso residenziale prospiciente la piazza, al fine di determinare la classe energetica globale dell'edificio. Si è poi proceduto nella valutazione del fabbisogno di energia primaria dello stesso, definendo in base a questo, una strategia energetica che prevede oltre allo sfruttamento dell'energia solare tramite un impianto a pannelli fotovoltaici installati sulle coperture, la produzione combinata e contemporanea di energia elettrica e termica per mezzo di un impianto di cogenerazione, che permette di abbattere le dispersioni causate dai cali di tensione e perdite di carico lungo la rete di distribuzione elettrica, nel caso in cui si fosse utilizzata l'energia elettrica pubblica.