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Sintesi del lavoro

O
ggetto di questo lavoro di tesi è lo studio di un modello di Ericksen-
Leslie semplificato che descrive il flusso di un cristallo liquido ne-
matico. Più precisamente il sistema che è stato analizzato è il

seguente:





∂tu + (u · ∇)u − ν∆u + ∇p = −∇dt∆d + g(t)

∇ · u = 0

∂td + (u · ∇)d = ∆d − f(d)

|d| ≤ 1

in Ω × (0, ∞);

u(x, 0) = u0, d(x, 0) = d0 per x ∈ Ω;

u(x, t) = 0, d(x, t) = h(x, t) su ∂Ω × (0, ∞).

(0.1)
dove Ω ⊂ R

n, n = 2, 3, f(d) = 1
ǫ2 (|d|2 − 1)d. Il vettore u rappresenta il

campo di velocità incognito, p il campo di pressione mentre d è il parametro
di ordine che descrive l’orientamento locale delle molecole del fluido. I cri-
stalli liquidi nematici, infatti, possono essere considerati, almeno in prima
approssimazione, come costituiti da molecole che presentano una forma “a
bastoncino” e il vettore d rappresenta esattamente il loro asse di simmetria.

Notiamo che il sistema (0.1) può essere dedotto dalle equazioni di bilan-
cio della massa, della quantità di moto e del momento angolare applicate
ad un continuo dotato di microstruttura e descritto dalla variabile interna
aggiuntiva d (vd. capitolo 1). Le equazioni che danno luogo al sistema
considerato in questa tesi sono dedotte in modo da essere oggettive (cioè
compatibili con cambi inerziali del sistema di riferimento) e compatibili con
principi di dissipatività consistenti con l’esperienza fisica. Osserviamo che,
dal punto di vista fisico, il parametro d’ordine d dovrebbe essere un ver-
sore, ma per l’analisi matematica viene spesso preso in considerazione un
rilassamento di questo vincolo imponendo solo |d| ≤ 1 e penalizzando even-
tuali parametri d’ordine più piccoli dell’unità tramite un potenziale di tipo
Ginzburg-Landau F(d)

.
= 1

4ǫ2 (|d|2 − 1)2.
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L’analisi di buona positura Si può dimostrare che il problema (0.1) è
ben posto nel senso qui di seguito descritto (vd. capitolo 2). Siano L2 e H1

gli usuali spazi funzionali costituiti da funzioni a valori vettoriali in L2 e H1

rispettivamente e siano H e V gli spazi vettoriali comunemente utilizzati
per l’analisi delle equazioni di Navier-Stokes e definiti come segue:

H =
{

u ∈ C∞
0 | ∇ · u = 0

}L2

e

V =
{

u ∈ C∞
0 | ∇ · u = 0

}H1
0

La buona positura del problema può essere espressa in termini delle
seguenti nozioni di soluzione.

Definizione. Sia T > 0. Una coppia (u, d) è una soluzione debole per il
problema (0.1) se (u, d) ∈ L2(0, T ; V × H2), (∂tu, ∂td) ∈ Lp(0, T ; V∗) ×
L2(0, T ; L2) (con p = 2 se n = 2 e p = 4/3 se n = 3), , u(x, 0) = u0(x) in L2

e d(x, 0) = d0(x) in H1, se d(x, t) = h(x, t) su ∂Ω × (0, T ) nel senso delle
tracce e se:

〈∂tu(t), v〉 + 〈(u(t) · ∇)u(t), v〉 + ν (∇u(t), ∇v)

+ (∆d(t), ∇d(t)v) = 〈g(t), v〉

è verificata per ogni v ∈ V, q.o. t ∈ (0, T ) e

∂td(t) + (u(t) · ∇)d = ∆d − f(d(t)) e |d(x, t)| ≤ 1

è soddisfatta quasi ovunque in Ω × (0, T ).

Definizione. Una coppia (u, d) è una soluzione forte del problema (0.1)
se è una soluzione debole, se, inoltre, (u, d) ∈ L2(0, T ; (H ∩ H2) × H3),
(∂tu, ∂td) ∈ L2(0, T ; H × H1) e se:





∂tu(t) + (u(t) · ∇)u(t) − ν∆u(t) + ∇p(t) = −(∇d(t))T ∆d(t)g(t)

∇ · u(t) = 0

∂td(t) + (u(t) · ∇)d = ∆d − f(d(t))

|d(x, t)| ≤ 1

sono soddisfatte quasi ovunque in Ω × (0, T ).

Dimostriamo i seguenti risultati:

Teorema (Esistenza debole). Sia Ω ⊂ R
n con n = 2, 3 un dominio li-

mitato e regolare1, sia g ∈ L2(0, T ; V∗) e h ∈ L2(0, T ; H3/2(∂Ω)), ∂th ∈
L2(0, T ; H−1/2(∂Ω)) tale che |h| ≤ 1 q.o. su ∂Ω × (0, T ). Sia, inoltre,

1Per esempio Ω ∈ C1,1.
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u0 ∈ H, d0 ∈ H1 tale che |d0| ≤ 1 q.o. in Ω, allora esiste una soluzione
debole (u, d) di (0.1). Inoltre, se n = 2, tale soluzione è anche unica e
dipende con continuità dal dato iniziale, dai termini forzanti e dal dato al
bordo.

Teorema (esistenza forte). Sia Ω ⊂ R
2 un dominio limitato e regolare2, sia

g ∈ L2
loc(0, T ; H) e h ∈ L2(0, T ; H5/2(∂Ω)), ∂th ∈ L2(0, T ; H1/2(∂Ω)) tale

che |h| ≤ 1 q.o. su ∂Ω × (0, T ). Sia, inoltre, u0 ∈ V, d0 ∈ H2 tale che
|d0| ≤ 1 q.o. in Ω, allora esiste una (unica) soluzione forte (u, d) di (0.1).

Osserviamo che la dimostrazione dell’esistenza di soluzioni deboli per il
sistema in esame sfrutta un risultato di punto fisso applicato al seguente
splitting del sistema stesso. In primo luogo deve essere studiato il problema
per il parametro d’ordine supponendo dato il campo di velocità u:





∂td + (u · ∇)d = ∆d − f(d) in Ω × (0, T );

d(x, 0) = d0 in Ω;

d(x, t) = h su ∂Ω × (0, T ).

Quindi si analizza il problema per u con d fissato:




(∂tu(t), v) + ((u(t) · ∇)u(t), v) + ν (∇u(t), ∇v)

= − (∆d(t), ∇d(t)v) + 〈g(t), v〉
∀v ∈ V;

u(0) = u0 in Ω.

Attrattori globali Stabilita la buona positura del modello considerato,
il passo successivo è lo studio del comportamento asintotico delle soluzio-
ni. Più precisamente viene affrontato il problema dell’esistenza di attrattori
globali ed esponenziali. Per quanto concerne l’esistenza di un attrattore glo-
bale per un sistema dinamico non-autonomo, ricordiamo i seguenti risultati
generali.

Definizione. Una famiglia di applicazioni a due parametri {U(t, τ)}, t > τ ,
U(t, τ) : X → X (dove X è uno spazio di Banach) è detta processo in X se:

• la seguente identità è verificata:

U(t, s)U(s, τ) = U(t, τ) ∀t, s ≥ 0, ∀τ ∈ R

• soddisfa per ogni τ ∈ R la condizione U(τ, τ) = Id.

Solitamente si considerano famiglie di processi indicizzate da un para-
metro, detto simbolo dell’equazione, che rappresenta tutti i termini non-
autonomi presenti nel problema di interesse. Nel caso in esame il simbolo è
dato dalla coppia (g, h). Nel seguito indicheremo con Σ l’insieme dei simboli
considerati.

2Per esempio Ω ∈ C2,1.
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Definizione. Un insieme K ⊂ X è uniformemente (rispetto a σ ∈ Σ)
attraente per la famiglia di processi {Uσ(t, τ)}, σ ∈ Σ se soddisfa, per ogni
τ ∈ R fissato e per ogni B ∈ B(X), la relazione seguente:

lim
t→∞

sup
σ∈Σ

distX(Uσ(t, τ)B, K) = 0

Definizione. Un insieme chiuso AΣ ⊂ X è l’attrattore uniforme (rispetto a
σ ∈ Σ) della famiglia di processi {Uσ(t, τ)}, σ ∈ Σ se:

• AΣ è uniformemente (rispetto a σ ∈ Σ) attraente;

• AΣ è contenuto in ogni altro insieme chiuso uniformemente attraente.

Nel nostro caso, l’esistenza dell’attrattore (globale) è ottenuta sotto ipo-
tesi generali per lo spazio dei simboli. In particolare si utilizza il seguente
risultato astratto, al quale premettiamo due definizioni.

Definizione. Sia B un insieme limitato in uno spazio metrico E. La sua
misura di non-compattezza secondo Kuratowski è data da:

α(B)
.
= inf{δ > 0 | B può essere ricoperto

da un numero finito di insiemi di diametro ≤ δ}.

Definizione. Una famiglia di processi {Uσ(t, τ)}, σ ∈ Σ ha ω-limite uni-
formemente (rispetto a σ ∈ Σ) compatto se, per ogni τ ∈ R e ogni insieme
B ∈ B(X), l’insieme:

Bt =
⋃

σ∈Σ

⋃

s≥t

Uσ(s, τ)B

è limitato per ogni t e, inoltre, limt→∞ α(Bt) = 0.

Teorema. Sia {Uσ(t, τ)}, σ ∈ Σ una famiglia di processi in X (X × Σ, X)-
continua debolmente che abbia ω-limite uniformemente (rispetto a σ ∈ Σ)
compatto. Sia B0 un insieme debolmente compatto (cioè limitato) e uni-
formemente (rispetto a σ ∈ Σ) debolmente attraente per {Uσ(t, τ)} e sia Σ
un sottoinsieme debolmente compatto di uno spazio di Banach. Sia, inoltre,
{T (t)} un semigruppo debolmente continuo e invariante (T (t)Σ = Σ) agente
su Σ che soddisfi l’identità di traslazione:

Uσ(t + s, τ + s) = UT (s)σ(t, τ) ∀σ ∈ Σ, t, s, τ ∈ R, t ≥ τ, s ≥ 0.

Allora il semigruppo esteso {S(t)} definito da:

S(t) : X × Σ → X × Σ, S(t)(u, σ) = (Uσ(t, 0), T (t)σ), ∀t ≥ 0.

possiede l’attrattore A = ω(B0 × Σ) compatto (nella topologia debole) che è
strettamente invariante rispetto a {S(t)}: S(t)A = A. Inoltre:
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• ΠXA = AΣ è l’attrattore uniforme (rispetto a σ ∈ Σ) della famiglia di
processi {Uσ(t, τ)}, σ ∈ Σ (nella topologia forte!);

• ΠΣA = Σ;

• l’attrattore globale soddisfa:

A =
⋃

σ∈Σ

Kσ(0) × {σ};

• l’attrattore uniforme soddisfa:

AΣ =
⋃

σ∈Σ

Kσ(0) = ω0,Σ(B0)

dove Kσ(0) è la sezione al tempo t = 0 del nucleo Kσ del processo
{Uσ(t, τ)} (cioè dell’insieme di tutte le traiettorie complete e limitate
del processo).

Nel nostro caso è possibile considerare la seguente classe di funzioni come
spazio dei simboli.

Definizione. Sia E uno spazio di Banach. Una funzione f ∈ L2
loc(R; E) è

normale se per ogni ǫ > 0 esiste η > 0 tale che:

sup
t∈R

∫ t+η

t
|ϕ(s)|2E ds ≤ ǫ.

Indicheremo con L2
n(R; E) lo spazio di tutte le funzioni normali a valori in

E.

Introduciamo inoltre la seguente definizione.

Definizione. L’insieme:

HT (f)
.
= {T (h)f | h ∈ R}T

è l’inviluppo di f nella topologia T .

Dimostriamo i seguenti risultati.

Teorema. Siano g ∈ L2
n(R, H), h ∈ L2

n(R, H5/2(∂Ω)), tale che ∂th ∈
L2

n(R, H1/2(∂Ω)). Il processo {U(g,h)(t, τ)} generato dall’operatore soluzione
del problema (0.1) ha un attrattore AH(g)×H(h) compatto e uniforme (rispet-
to a (g, h) ∈ Hw(g)×Hw(h)) in V×H2 che attrae uniformemente (rispetto
a (g, h) ∈ Hw(g) × Hw(h)) i sottoinsiemi limitati di H × H1 nella norma
di H × H1. Inoltre si ha:

AH(g)×H(h) =
⋃

(g,h)∈Hw(g)×Hw(h)

K(g,h)(0)

dove K(g,h) è il nucleo del processo {U(g,h)(t, τ)} e dove K(g,h) non è vuoto
per ogni (g, h) ∈ Hw(g) × Hw(h).
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Teorema. Siano g ∈ L2
n(R, V∗), h ∈ L2

n(R, H3/2(∂Ω)), tale che ∂th ∈
L2

n(R, H−1/2(∂Ω)). Il processo {U(g,h)(t, τ)} generato dal problema (2.1)
possiede un attrattore AH(g)×H(h) compatto e uniforme (rispetto a (g, h) ∈
Hw(g) × Hw(h)) in H × H1 che attrae uniformemente (rispetto a (g, h) ∈
Hw(g) × Hw(h)) i sottoinsiemi limitati di H × H1 nella norma di H × H1.
Inoltre si ha:

AH(g)×H(h) =
⋃

(g,h)∈Hw(g)×Hw(h)

K(g,h)(0)

dove K(g,h) è il nucleo del processo {U(g,h)(t, τ)} e dove K(g,h) non è vuoto
per ogni (g, h) ∈ Hw(g) × Hw(h).

Attrattori esponenziali Gli attrattori globali non rappresentano l’unico
oggetto che caratterizza l’evoluzione di un sistema dinamico. Si possono,
per esempio, introdurre gli attrattori esponenziali, che, benché non unici,
attraggono esponenzialmente le traiettorie del sistema (vd. il capitolo 4).
In particolare riportiamo le seguenti definizioni.

Definizione. Sia E uno spazio di Banach. Un sottoinsieme compatto M ⊂
E è un attrattore esponenziale per il semigruppo {S(t)} se:

• ha dimensione frattale finita;

• è positivamente invariante, cioè se S(t)M ⊂ M, ∀t ≥ 0;

• attrae esponenzialmente le immagini degli insiemi limitati di E sotto
l’azione di S:

∀B ⊂ E limitato , distE(S(t)B, M) ≤ Q(|B|E)e−αt, t ≥ 0,

dove α è un numero positivo e Q è una funzione monotona entrambi
indipendenti da B.

Definizione. Siano E, E1 spazi di Banach tali che l’immersione di E1 in E
sia compatta. Sia inoltre X un sottoinsieme limitato di E1 e sia S : E → E.
Allora S è regolarizzante su X se esiste C = C(X) > 0 tale che

|Su − Sv|E1 ≤ C|u − v|E ∀u, v ∈ X.

Definizione. Siano E e E1 spazi di Banach tali che l’immersione di E1 in
E sia compatta. Sia inoltre X un sottoinsieme limitato di E1. Date due
costanti positive δ e K, un operatore (nonlineare) S : E → E appartiene
alla classe degli operatori regolarizzanti Sδ,K(X) se:

• SOδ(X) ⊂ X dove Oδ(X) è un intorno di X di raggio δ nella topologia
di E1;
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• S è regolarizzante su Oδ(X), cioè:

|Su − Sv|E1 ≤ C|u − v|E ∀u, v ∈ Oδ(X).

Utilizziamo il seguente risultato astratto.

Teorema. Per ogni S ∈ Sδ,K(X), esiste un attrattore esponenziale MS

nella topologia di E1, cioè

1. dimF (MS) ≤ C;

2. SMS ⊂ MS;

3. distE1(S(n)X, MS) ≤ Ce−αn, n ∈ N.

Inoltre l’applicazione S 7→ MS può essere scelta in modo da essere Hölder-
continua nel senso che segue:

distsymm

E1
(MS1 , MS2) ≤ C|S1 − S2|κS .

Infine, α, κ e tutte le altre costanti che compaiono nelle stime precedenti
dipendono solo da X, δ e K, e sono altresì indipendenti dal particolare
semigruppo S ∈ Sδ,K(X) considerato.

Nel nostro caso considereremo come spazio dei simboli quello generato
dall’inviluppo di funzioni quasi-periodiche:

Definizione. Sia Ξ uno spazio di Banach e sia (α1, . . . , αk) una k-upla di
numeri reali incommensurabili. Sia inoltre φ : Rk → Ξ una funzione continua
2π-periodica in ogni argomento, cioè:

φ(ω1, . . . , ωi + 2π, . . . , ωk) = φ(ω1, . . . , ωi, . . . , ωk).

Allora σ(s)
.
= φ(α1s, α2s, . . . , αks)

.
= φ(αs) è una funzione quasi-periodica a

valori in Ξ.

Dimostriamo i seguenti risultati.

Teorema. Sia Ω ⊂ R
2 un dominio regolare e limitato. Siano g e h funzioni

quasi-periodiche a valori rispettivamente in L2 e H5/2(∂Ω) tali che anche ∂th

sia quasi-periodica a valori in H1/2(∂Ω). Sia, inoltre, {S(t)} il semigruppo
esteso associato all’operatore di soluzione del problema (0.1) che agisce sullo
spazio delle fasi esteso H × H1 × T

k (qui k è pari alla somma del numero
di periodi incommensurabili di h e g)3. Allora esiste un tempo finito t∗ per
cui il semigruppo discreto generato dalla mappa S(t∗) possiede un attrattore
esponenziale uniforme (rispetto allo fase iniziale del simbolo θ ∈ T

k).

3Osserviamo che il dominio delle funzioni quasi-periodiche può essere naturalmente
identificato con il toro k-dimensionale T

k. Inoltre vale l’isomorfismo algebrico e geometrico
T

l ⊕ T
m = T

l+m.
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Teorema. Sotto le stesse ipotesi del teorema precedente esiste un attrattore
esponenziale M per il semigruppo esteso {S(t)} su H × H1 × T

k. Inoltre,
se Π1 e Π2 sono le proiezioni dello spazio delle fasi esteso rispettivamente
su H × H1 e T

k, allora Π1M è l’attrattore esponenziale uniforme (rispetto
a θ ∈ T

k) per la famiglia di processi e Π2M = T
k.

L’approssimazione numerica In quest’ultimo capitolo lo studio anali-
tico dei capitoli centrali è applicato alla formulazione di semplici metodi
numerici per l’approssimazione numerica delle soluzione del sistema (0.1).
Il calcolo della soluzione di equilibrio (minimo della energia libera del si-
stema) può essere condotto per una ampia gamma di valori di ǫ tramite
una opportuna linearizzazione alla Newton dell’equazione di equilibrio. In
particolare lo schema implementato è il seguente:

∆d(n+1) − 1

ǫ2

(∣∣d(n)
∣∣2 − 1

)
d(n+1) − 2

ǫ2

(
d(n) · d(n+1)

)
d(n) = − 2

ǫ2

∣∣d(n)
∣∣2d(n).

Per la simulazione del sistema evolutivo completo, invece, si sono confron-
tate le prestazioni del metodo di punto fisso di Newton applicato a tutto il
sistema con quello di uno schema iterativo basato sullo splitting del proble-
ma differenziale introdotto per provare l’esistenza di soluzioni del problema.
Come spazi di elementi finiti si è scelta una coppia che soddisfi la condi-
zione di Ladyzhenskaya-Babuška-Brezzi per l’approssimazione dei campi di
velocità e di pressione (in particolare la coppia P1bolla/P1) e di uno spazio
di elementi finiti di un ordine più accurato per il parametro d’ordine (nel
nostro caso P2): ciò serve a garantire un ordine di convergenza ottimale allo
schema risultante.

Gli esperimenti numerici evidenziano un notevole vantaggio nell’uso di
questo secondo schema numerico che riportiamo per completezza:

u
(n+1)
j + dt

(
u

(n)
j · ∇

)
u

(n+1)
j + dt

(
u

(n+1)
j · ∇

)
u

(n)
j − dt∆u

(n+1)
j

= dt
(
u

(n)
j · ∇

)
u

(n)
j + dt

(
d

(n)
j

)T
∆d

(n)
j + dt gj + uj−1,

d
(n+1)
j + dt

(
u

(n+1)
j · ∇

)
d

(n+1)
j − dt∆d

(n+1)
j

+
dt

ǫ2

(∣∣d(n)
j

∣∣2 − 1
)

d
(n+1)
j +

2dt

ǫ2

(
d

(n)
j · d

(n+1)
j

)
d

(n)
j

=
2dt

ǫ2

∣∣d(n)
j

∣∣2d
(n)
j + dj−1.

Dagli esperimenti numerici riportati si nota, inoltre, come l’accoppiamento
non-lineare tra le equazioni di Navier-Stokes e quelle per il parametro d’or-
dine abbia degli effetti qualitativi notevoli se confrontato con la soluzione
delle sole equazioni dei fluidi incomprimibili purché il numero di Reynolds
sia abbastanza grande.
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Introduction

I
n the study of the physical world, differential equations surely represent
one of the most powerful mathematical tools available to the researcher.
Their unifying language allows the description of systems arising from

different settings and is apt to describe a wealth of phenomena: from wave
propagation to the transport and diffusion of substances, from the deforma-
tion of solids to the description of the interaction between electromagnetic
fields and matter.

However powerful such an instrument could be, it cannot be free of draw-
backs. Although unifying and concise, both ordinary and partial differential
equations do not easily reveal their secrets. It is, indeed, often difficult to
obtain thorough information on the phenomenon under consideration. Only
in very few cases a full understanding of the differential problems is available
and in most of them also basic results may be hard to obtain. Several diffi-
culties can arise during the analysis: starting from existence and uniqueness
of solutions, one is usually furthermore interested in understanding what
the main features and characteristics of the phenomenon are and therefore
wishes to understand the regularity of the solution and/or its long term
behaviour.

Although such issues could seem quite abstract and academical at a first
glance, their importance must not be underestimated: thanks to the amazing
computing capabilities made available in the last decades, many effective
numerical methods which profoundly rely on these information have been
invented and applied to the simulation of potentially any known equation
or system of equations. This new aspect of applied sciences has led to new
ways to test the predictions of phenomenological theories and to improve
technological applications.

This last aspect could not be overemphasized: however deep and com-
plete the description and theoretical understanding of any physical system
could be, it has no practical value without some insight to applications. The
study of any physical system, described by PDEs, must be aware at any mo-
ment of the original setting for which it was written and of the problem from

1
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which it originated. Therefore abstract questions as the well-posedness of an
evolution system are to be understood as an analysis of the physical sound-
ness of the description adopted. Moreover, when dissipation principles are
available (as it is often the case in mechanical systems subjected to friction
or in fluid dynamics), the study of the asymptotic evolution and the problem
of the existence of finite-dimensional attractors for a set of evolution equa-
tions have to be related to the complexity of the non-transient behaviour
the system can exhibit. These aspects are then tightly bounded to the ro-
bustness of the system under changes in the external forcing terms and to
the difficulty arising from the numerical simulation in view of technological
applications.

In the present work we study a particular system arising from the phys-
ically and technologically important field of soft matter, trying to get as a
deep insight as possible on the equations ruling the evolution of liquid crys-
tal flows in view of numerical simulations for potential applications. This
field has been object of great interest in the last years and many important
and deep results are already available in the literature. For some of the most
recent developments see [19], [20] and [41] and the references therein.

Our work has been organized as follows:

Chapter 1 A simplified model for nematic liquid crystals

In this first part of our work we briefly summarize the physical ori-
gin of the system of PDEs which is the object of our study in all
other chapters. Our system is a simplified version of the full Ericksen-
Leslie equations first proposed by Liu et al. at the beginning of the
90’s and which has revealed itself to be compliant with mathemati-
cal investigations. The system consists of Navier-Stokes equations for
incompressible fluids non-linearly coupled with a vector equation of
Ginzburg-Landau type. This equation determines the evolution of an
order parameter describing the orientation of the crystal molecules.
As is often the case, even a simple understanding of the nature of the
phenomena to be described will help us in the understanding of its
mathematical features.

Chapter 2 Well posedness Here we study the main aspects of the math-
ematical well posedness of the simplified system introduced in the
first chapter, namely existence and uniqueness. We consider a non-
autonomous version of the system presenting a time-dependent vol-
ume force for the velocity equation and a time-dependent Dirichlet
boundary condition which varies with time for the order parameter.
In particular, we prove existence of weak solutions both in two and
three dimensions. Moreover we are also able to show the uniqueness
of weak solutions and existence of strong solutions in two dimensions.
We observe that here the same difficulties as in the study of Navier-
Stokes equations arise (i.e. the lack of uniqueness and existence of
global strong solutions).
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Chapter 3 Global attractors After having proven the well-posedness of
the model which we are working with, in this part of our work we study
the asymptotic evolution of its solutions. In recent years much energy
has been poured in the investigation of the long time description of im-
portant equations in order to characterize the non-transient dynamics.
The main focus of contemporary research has been the identification
of suitable “small” (i.e. finite-dimensional) attracting sets of configu-
rations for the system of interest. The emphasis on the smallness is
justified by the following important result originally due to Hölder and
Mañe (see [27] and the references cited therein).

Theorem. Let E be a Banach space and let X ⊂ E be compact and
such that dim X = d (where dim is the fractal dimension in E) and
let N > 2d be an integer. Then almost every bounded linear projector
P : E → R

N is one-to-one on X and has a Hölder continuous inverse.

In other words, if we can identify a suitable compact finite-dimensional
set which captures the long-time behavior of the system we are study-
ing, then (almost) any sufficiently detailed finite-dimensional reduction
of the evolution equations completely captures its evolution.

In this chapter we prove the existence of a global attractor for the
nonautonomous equations presented above, considering quite general
forcing terms belonging to a wide class recently introduced by Lu and
Wu.

Chapter 4 Exponential attractors The global attractors introduced in
the previous chapter, however, are not fully satisfactory from some
points of view: in particular, one cannot guarantee how fast they are
able to capture the evolution of the system starting from an arbitrary
initial state. In order to overcome this problem, Eden, Foias, Nico-
laenko and Temam in the 90’s and more recently Efendiev, Miranville
and Zelik developed the notion of exponential attractors respectively
for autonomous semigroups and non-autonomous processes. The main
result of this section is the proof of the existence of such an invariant
attracting set for our system considering quasi-periodic forcing terms.
This result also proves that the global attractor in this case has finite
dimension.

Chapter 5 Some numerical experiments Finally we conclude our work
by discussing how some of the abstract results of the previous chapters
can be useful when designing numerical schemes for the numerical ap-
proximation of the solution of our system. This section, although not
exhaustive, proposes some interesting results and shows how drastic
gains in the computation time can easily be obtained after an analyt-
ical study of the mathematical equations.
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Chapter 1
A simplified model for nematic
liquid crystals

I
n this chapter we will briefly review the classical Ericksen-Leslie model
for the dynamics of nematic liquid crystals. In the development of the
theory we will essentially follow [9] and [35]. Then we will discuss some

simplifications (as in [21]) to the full model which are particularly suitable
for the analysis of the following chapters.

As it is customary, the model splits naturally in two parts: some general
equations are directly derived from basic conservation (or balance) laws and
the closure of the system is given by some specific constitutive equations.
As it will be apparent in a few pages, despite the simplicity of the assump-
tion upon which the Ericksen-Leslie model relies, the resulting equations
are far from being easy to analyze. Therefore this somehow justifies the
simplifications we will introduce later on.

1.1 Balance laws

We begin by considering the usual balance equations derived in the con-
tinuum theory (see [16]). In particular, we consider conservation of mass,
linear momentum and angular momentum:

d

dt

∫

V
ρ dV = 0

d

dt

∫

V
ρv dV =

∫

V
ρF dV +

∫

S
t dS

d

dt

∫

V
ρx ∧ v dV =

∫

V
ρ(x ∧ F + K) dV +

∫

S
x ∧ t + l dS

Here ρ is the density, x is the position vector, F is the external body force,
t is the surface force per unit area, l is the surface torque per unit area and
K is the external body moment. We observe immediately that taking into

5
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account body moments is a somehow unusual starting point. However, one
of the interesting characteristics of liquid crystals is that they can transmit
torques (see [9, Chapter 2]) and therefore the role of body moments can be
quite important in the description of both the statics and the dynamics of
such systems.

In order to transform the integral form of the just recalled conservation
laws into a more analytically convenient differential form, we need some clas-
sical results. First of all we begin by recalling Reynolds transport theorem:

d

dt

∫

V
f dV =

∫

V
(ḟ + f(∇ · v)) dV

where the dot notation is a shorthand for the total derivative with respect
to time (explicitly ḟ = d

dtf = ∂tf + (v · ∇)f) and v is the velocity field.
We will also use the divergence theorem in its vector and tensor forms:

∫

S
f · ν dS =

∫

V
∇ · f dV

∫

S
Tν dS =

∫

V
∇ · T dV

Finally we remember that, from Cauchy stress theorem, the surface force
per unit area can be written as a double tensor acting on the normal vector to
the surface itself: t = Tν. However note that, since we are also considering
localized moments, the stress tensor T need not to be symmetric.

By using the just recalled results we can easily write the infinitesimal
form of the conservation laws introduced above:

ρ̇ = −ρ(∇ · v)

ρv̇ = ρF + ∇ · T

ǫijkρxjv̇k = ǫijkρxjFk + ǫijkxjTkp,p + ρKi + ǫijkTkj + Lij,j

A few considerations are now necessary. Consider the equation for the
conservation of mass. If the liquid crystal can be considered incompressible
(i.e. if ρ̇ = 0), then we easily deduce the familiar divergence-free condition
for the velocity field: ∇ · v = 0.

Moreover, we can simplify the equation for the angular momentum by
using the balance of linear momentum and obtain the simpler expression:

ρKi + ǫijkTij + Lij,j = 0.

Therefore we retain the following system:

∇ · v = 0 (1.1a)

ρv̇ = ρF + ∇ · T (1.1b)

ρKi + ǫijkTij + Lij,j = 0. (1.1c)

As it is obvious at first glance, the just written equations cannot form
a closed system. Actually we need some more relations which describe the
phenomenological link between the dynamic variables (T and L) on one side
and the kinematic ones (ρ and v) on the other.



CHAPTER 1. A MODEL FOR NEMATIC LIQUID CRYSTALS 7

1.2 Constitutive equations I: Frank-Oseen elastic

energy

In this section we will review Frank and Oseen’s theory. Our main goal is
to introduce an elastic energy (or free energy) which can account (in the
usual framework of elastic theory) for the static configuration of a nematic
liquid crystal under assigned body forces, torques and imposed boundary
anchoring. This energy will also be used later when we will be discussing
on the dynamic constitutive equations.

We introduce an internal variable (or order parameter) for our contin-
uum. We will indicate with n the local orientation of the molecules of the
liquid crystal. Since n is a versor, we will suppose n ∈ S

n−1 where S
n−1 is

the unit sphere in R
n and n is the dimension of the physical space considered

(n = 2 or n = 3 for the aims of the present work). We are here considering
the classical theory for which this order parameter field is a deterministic
quantity. We incidentally note that also a more recent approach is possible
by taking into account the natural variability (or noise) of the orientation
of the molecules. We refer the interested reader to [40, Chapter 6].

In writing Frank’s energy, we will care of some fundamental principles:
in particular, we must check for frame indifference and the equation has
to satisfy all the additional symmetries of the system we can identify. In
this context, these requirements translate into the following mathematical
constraints on Frank’s energy σF :

• σF can only depend on n and ∇n;

• if Q is the matrix representing any proper rotation, then σF (n, ∇n) =
σF (Qn, Q∇nQT ) must be satisfied;

• in our context, reversing the orientation of the nematic liquid crystal
molecules should not affect the overall energy of the medium. We
therefore also require σF (n, ∇n) = σF (−n, −∇n).

Moreover, in order to fix the arbitrary constant which arises in the definition
of this new energy we will require σF (n, ∇n) ≥ 0 for all order parameter
fields and σF (n, ∇n) = 0 only for a uniform order parameter field n(x) = n.
With some careful considerations, the most general form of Frank’s energy
for a nematic liquid crystals is shown to be1:

σF (n, ∇n) =
1

2
K1(∇·n)2 +

1

2
K2 (n · (∇ ∧ n))2+

1

2
K3 (n ∧ (∇ ∧ n))2 . (1.2)

1Actually, a further term should be added to Frank’s energy σF :

∇ · ((n · ∇)n − (∇ · n)v) = tr ∇(n)2 − (∇ · n)2

However, this part of free energy can be left behind without any harm to the physical
meaning of our model. From the point of view of the calculus of variations and Euler-
Lagrange equilibrium equations, this term is indeed a null lagrangian and therefore, giving
no contribution to the equilibrium equations, will be omitted in the following passages.
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Equation (1.2) contains really a bunch of information about the elastic
behaviour of nematic liquid crystals. Although we are not interested in the
fine details (see, for example, [9, Chapter 3]), we will give a short insight in
the physical meaning of the different terms in Frank’s free energy. Actually,
the dependence on ∇ · n is related to splay order parameter fields, that
is fields that look like a fan with molecules oriented as fan-sticks. The
second term, n · (∇ ∧ n) involves twist fields: these can be obtained from an
unperturbed situation by rigidly rotating by different angles parallel planes
of the liquid crystal which contain the order parameter vector. Finally the
last contribution to Frank-Oseen’s energy is given by bend fields. These also
show a fan-like alignment of the molecules of the medium, but in this case
these are orthogonal to the fan-sticks. In practical situation this subdivision
in splay, twist and bend contributions is usually more delicate.

We observe that, from a mathematical point of view, it is often con-
venient to adopt the so called “one-constant approximation” in order to
simplify the analytical form of Frank’s free energy. One can actually sup-
pose that all constants Ki in (1.2) are equal to K. Frank’s energy then
reduces to:

σF =
1

2
K|∇n|2 =

1

2
Kni,jni,j .

As we will see below, this free energy can easily be linked to the elastic
(and static) part of the stress tensor by the following elastic relation:

Tel
ij = −pδij − ∂ σF

∂nk,j
nk,i

where T = Tel + Tirr. If we consider the one-constant approximation, then
the elastic part of the stress tensor reduces to:

Tel = −pI − (∇n)T (∇n).

1.3 Constitutive equations II: A dissipation prin-

ciple and objectivity

We now have to consider the effect of motion on the stress configuration of a
nematic liquid crystal. The basic idea of this section will be the introduction
of a particular dissipation function which represents the “viscous” dissipation
of our medium. We start by writing the usual energy balance equation in
integral form:

∫

V
ρ(F ·v+K ·w) dV +

∫

S
(t ·v+l ·w) dS =

d

dt

∫

V
(1

2ρv ·v+σF ) dV +

∫

V
D dV

where w is the local angular velocity, i.e. the angular velocity of the
molecules of the medium (and not the usual curl pseudovector associated to
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the velocity field v) and where D is the rate of viscous dissipation per unit
volume. Indeed we have ṅ = w ∧ n. In accordance to the physical meaning,
we will assume that D is always positive.

By using some standard results (Reynolds’ transport theorem and diver-
gence theorem) and the mass and linear momentum balance equations (1.1a)
and (1.1b), passing to the point form, we deduce:

Tijvi,hj + Lijwi,j − ǫijkwiTkj = σ̇F + D

We now want to evaluate σ̇F . We therefore recall the following useful
identities, the second of which due to Ericksen:

d

dt
ni,j = (ṅi),j − ni,kvk,j

ǫijk

(
nj

∂σF

∂nk
+ nj,p

∂σF

∂nk,p
+ np,j

∂σF

∂np,k

)
= 0 (1.3)

Some simple calculations then lead to the following expression for the time
derivative of the free energy:

σ̇F = ǫiqp

(
nq

∂σF

∂np,j
wi,j − nk,q

∂σF

∂nk,p
wi

)
− np,i

∂σF

∂np,j
vi,j

The energy balance equation in local forms can then be rewritten as follows
to get an expression for the dissipation D:

D =

(
Tij +

∂σF

∂np,j
np,i

)
vi,j

+

(
Lij − ǫiqp

∂σF

∂np,j
nq

)
wi,j − ǫiqp

(
Tpq − ∂σF

∂nk,p
nk,q

)
wi.

We now use the positiveness constraint on D. Since the velocity fields
can be arbitrary, we deduce:

Tij =

Tel
ij︷ ︸︸ ︷

−pδij − ∂σF

∂np,j
np,i +Tirr

ij (1.4)

Lij = ǫipq
∂σF

∂nq,j
np + Lirr

where the dissipative parts of the strain tensors still have to satisfy the
following dissipative relation:

Tirr
ij vi,j + Lirr

ij wi,j − ǫijkwiT
irr
kj = D ≥ 0
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We now suppose that Tirr and Lirr
ij are functions of n, w and ∇v. More

precisely, objectivity requirements impose to restrict this dependence only
to the quantities n, N and A where N

.
= ṅ − Wn and where A and W

are respectively the symmetric part (strain tensor) and skew-symmetric part
(vorticity tensor) of the gradient of velocity. By imposing again the positiv-
ity condition we immediately deduce:

Lirr = 0

and, after some tedious calculations (see [35, Section 4.2]), imposing, ac-
cordingly to experiments, Tirr to be linear in A and N, we also have:

Tirr
ij = (µ1 + µ2nkAkpnp)δij + (µ3 + α1nkAkpnp)ninj

+ α2Ninj + α3Njni + α4Aij + α5njAiknk + α6niAjknk

If we consider again the positivity assumption on the dissipative term
D, we have µ3 = 0. Since the first term is a multiple of the identity, we can
incorporate it into the pressure term giving the following expression for the
dissipative part of the stress tensor:

Tirr
ij = α1nkAkpnpninj + α2Ninj + α3Njni

+ α4Aij + α5njAiknk + α6niAjknk (1.5)

Moreover, the coefficients αi must satisfy some inequalities in order to ensure
the positivity of D. We skip here the details referring again the interested
reader to [35, Section 4.2.3].

Before putting everything together, we also note that:

ǫijkTirr
ij = ǫijknjgk with gk

.
= −γ1Nk − γ2Akpnp

where we have set γ1
.
= α3 − α2 and γ2

.
= α6 − α5.

Remark. In the derivation of the constitutive relation for nematic liquid
crystals, we explicitly supposed that the stress tensors depend upon n, N

and A only. Actually a more general assumption is possible involving also
the dependence on n̈ through a coefficient which represents the rotational
inertial constant of the particles of the medium. Since this coefficient can
generally be considered small (unless in some very quick transient flows), it
is customary to simplify the constitutive equation by neglecting this contri-
bution.

1.4 The full Ericksen-Leslie model

We can now write all the equations which form the standard Ericksen-Leslie
model for nematic liquid crystal flows.
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From the balance of angular momentum (1.1c), by using the constitutive
relation of last section and Ericksen identity (1.3), if we suppose that bulk
body moments can be written as ρK = n ∧ G, we obtain:

ǫipqnp



(

∂σF

∂nq,j

)

,j

− ∂σF

∂nq
+ gq + Gq


 = 0

and therefore:

∇ ·
(

∂σF

∂∇n

)
− ∂σF

∂n
+ g + G = λn (1.6)

where λ is an arbitrary Lagrange multiplier which is associated with the
normalization constraint n · n = 1.

We can deal analogously with the linear momentum equation. Starting
from (1.1b) and substituting the constitutive relation (1.4), we deduce:

ρv̇i = ρFi − p,i −
(

∂σF

∂nk,j
nk,i

)

,j

+ Tirr
ij,j

or, in vector notation:

ρv̇ = ρF − ∇p + ∇ ·
(

(∇n)T ∂σF

∂∇n

)
+ ∇ · Tirr (1.7)

Equations (1.6) and (1.7) together with the constitutive relation (1.5)
and the definitions of g, N, A and W form the so called Ericksen-Leslie
system for nematic liquid crystal flows. As it can be easily seen, this system
has eight unknowns (namely v, n, p and λ) and after substituting everywhere
the constitutive relations we remain with eight equations (actually (1.6),
(1.7), (1.1a) and the constraint n · n = 1).

Although we have obtained a closed system of equations, it is evident
that this form is far too complex to be studied without any further simplifi-
cation. In the following section, we will therefore try to reduce the number
of unknowns and to discard some unessential terms.

1.5 Some simplifications

We start by considering the angular momentum equation (1.6). If we con-
sider the one constant approximation introduced in section 1.2, the terms
involving Frank’s free energy simply reduce to ∆n. If we further suppose
that the generalized body moments G are null, we obtain:

K∆n − γ1ṅ + γ1Wn − γ2An = λn (1.8)

In order to make the analysis of equation (1.8) even more amenable,
we will consider the following relaxation for the order parameter constraint.
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Instead of imposing exactly the constraint n · n = 1, we will consider an
additional potential term in Frank’s free energy which will be penalizing
anytime the constraint is not verified. In particular we will consider the
potential F .

= 1
4ǫ2 (|n|2 − 1)2 and set f(n)

.
= ∇nF = 1

ǫ2 (|n|2 − 1)n. We can
thus write:

K∆n − γ1ṅ + γ1Wn − γ2An = f(n) (1.9)

instead of (1.8) with the evident advantage of having eliminated an unknown
(namely λ) and having substituted the highly non-linear constraint n ∈ S

n−1

with the more analytically amenable polynomial nonlinearity f(n).
We now consider equation (1.7). Thanks to the angular momentum

equation (1.6), to the definition of g and to the identity (∇n)T n = 0, after
renaming the pressure, we obtain:

−∇p + ∇ ·
(

(∇n)T ∂σF

∂∇n

)
= −∇p − (∇n)T (γ1N + γ2Dn).

Substituting in (1.7) we obtain:

ρv̇ = ρF − ∇p + (∇n)T (γ1N + γ2Dn) + ∇ · Tirr. (1.10)

In order to further simplify equations (1.9) and (1.10), we will consider
a perturbative expansion for the backflow terms. This is physically sound
since experimentally we have that the coefficients αi in (1.5) are all very
small except α4. Following [2], we will therefore suppose ρ = O(ǫ−1) and
α4 = (ǫ−1) and we will write:

ρ =
ρ̃

ǫ
α4 = ρν =

α̃4

ǫ

with ρ̃ = O(1) and α̃4 = O(1). We define the perturbation parameter ǫ
as: ǫ

.
= max{|α1|, |α2|, |α3|, |α5|, |α6|}/α4. We will consider the following

expansion of the macroscopic fields:

u = ǫu1 + O(ǫ2), n = n0 + ǫn1 + O(ǫ2), p = p0 + ǫp1 + O(ǫ2).

Simple calculations then also show that N = ṅ0 + O(ǫ). Moreover the
external forcing F will also be considered of order O(ǫ); F = ǫF1 + O(ǫ2).

We now consider the O(1) term arising form equation (1.9). Easily we
get:

γ1ṅ0 = f(n0) + K∆n0 (1.11)

Analogously we consider the O(1) term of equation (1.10) (we note that the
O(ǫ−1) contribution is automatically satisfied under our assumptions). We
immediately obtain:

ρ̃u̇1 = −∇p−γ1(∇n0)T N0+∇·(α2N0⊗n0+α3n0⊗N0+α̃4A)+ρ̃ F1 (1.12)
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We now substitute in (1.12) N0 = ṅ0 and use equation (1.11) to obtain:

ρ̃u̇1 = ρ̃ F1 − ∇p0 + K(∇n0)T ∆n0 + (∇n0)T f(n0)

+
α2

γ1
f(n0)∇ · n0 +

α2K

γ1
∆n0∇ · n0

+
α3

γ1
n0∇ · f(n0) +

α3K

γ1
n0∆(∇ · n0) +

α̃4

2
∆u1. (1.13)

This last equation seems anything but a progress! We remark, however, that
we can largely simplify it. We begin by observing that, far from defects,
|n0| ≈ 1 and therefore we can suppose that all terms on the right hand side
of (1.13) containing f(n0) or its derivatives are very small. We also remark
that we cannot use a similar argument in equation (1.11) because otherwise
we would loose any reminiscence of the constraint n · n = 1.

From a mathematical viewpoint, the three terms (∇n0)T ∆n0, ∆n0∇·n0

and n0∆(∇·n0) can be treated in a very similar way in our analysis. In order
to keep the mathematical discussion of our model as simple as possible, we
will therefore keep only the first of these terms. For some extension of our
results to the complete system see, for example, [36].

After these considerations and hypothesis, forgetting subindexes and
tildes and considering all the experimental constants except viscosity to
1, we have obtained the following simplified system:





ρu̇ − ν∆u + ∇p = −(∇n)T ∆n + ρF

∇ · u = 0

ṅ = ∆n − f(n)

(1.14)

This system was firstly obtained by Lin and Liu back in 1995 (see [21]) and
since then has proved to be a very interesting benchmark for studying the
long term behaviour of solutions for non-linear non-autonomous systems of
partial differential equations. The goal of the following chapters is to delve
into these problems under very general assumptions.



Chapter 2
Well posedness

W
e now want to study the well posedness of the simplified Ericksen-
Leslie model (1.14) derived in last chapter. Essentially we will
follow the analysis in [8] for the system without external driv-

ing force. In particular, we will prove existence of weak solutions (to be
defined below) for the bi- and three-dimensional problem and we will com-
plete the analysis in the bi-dimensional case by obtaining uniqueness of weak
solutions and continuous dependence on the data. Moreover, always in the
bi-dimensional case, we will be able to prove existence of strong solutions.

2.1 Existence of weak solutions

We will consider the following slightly amended version of system (1.14)
where the order parameter will be denoted by d instead of using n, as
is common practice in the mathematical literature, and where the newly
introduced fourth equation is a reminder of the relaxed constraint on the
order parameter and is justified by the weak maximum principle holding for
this system that will be introduced below (see lemma 2.1.7):





∂tu + (u · ∇)u − ν∆u + ∇p = −∇dt∆d + g(t)

∇ · u = 0

∂td + (u · ∇)d = ∆d − f(d)

|d| ≤ 1

in Ω × (0, ∞);

u(x, 0) = u0, d(x, 0) = d0 for x ∈ Ω;

u(x, t) = 0, d(x, t) = h(x, t) on ∂Ω × (0, ∞).

(2.1)
We remember that f(d) = 1

ǫ2 (|d|2 − 1)d.
We start by introducing some functional spaces which are useful in the

analysis of (2.1). With L2 we will denote the standard function space made

14
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up by vector valued L2(Ω) functions. Analogously, H1 will be the usual
vector Sobolev space constituted by componentwise H1(Ω) functions. More-
over, let

H =
{

u ∈ C∞
0 | ∇ · u = 0

}L2

and

V =
{

u ∈ C∞
0 | ∇ · u = 0

}H1
0

be the usual divergenceless spaces used in the analysis of Navier-Stokes
equations (see, for example, [39] or [31]). The family {wn}n will be the
Hilbert basis of V given by the eigenfunctions of Stokes’ problem:

find wi : (∇wi, ∇v) = λi (wi, v) ∀v ∈ V, |wi|2 = 1 (2.2)

where, thanks to the spectral theorem, the sequence of λi is monotonically
increasing. From the well known spectral theory for compact operators (see,
for example, [4]) we know that the functions wi form a complete orthonormal
basis in H which is also orthogonal in H1. For convenience we will write
Vm = 〈w1, w2, . . . , wm〉 for the finite dimensional subspace of V spanned
by the first m eigenfunction of the just introduced Stokes’ problem. From
the regularity results for this problem (see [39]) and thanks to the finite-
dimensionality of Vm, we know that the canonical embedding Vm →֒ H2(Ω)
is compact. Finally, we will denote by V∗ the dual space of V.

Notation. We will write |w|p to indicate the Lp norm of w and |w|Hs when
referring to its Hs norm. Sometimes, as in the definition of the nonlinear
potential f just after problem (2.1), we will write |f(x, t)| or shortly |f | when
referring to the usual euclidean norm of vectors in R

n. Therefore, while at
fixed time |d|2 will be a real number, |d| will be a real valued function on
Ω.

We now give the definition of weak solutions for system (2.1).

Definition 2.1.1. Let T > 0. A pair (u, d) is a weak solution to prob-
lem (2.1) if (u, d) ∈ L2(0, T ; V×H2), (∂tu, ∂td) ∈ Lp(0, T ; V∗)×L2(0, T ; L2)
(with p = 2 when n = 2 and p = 4/3 when n = 3), u(x, 0) = u0(x) in L2

and d(x, 0) = d0(x) in H1, if d(x, t) = h(x, t) on ∂Ω × (0, T ) in the sense
of trace spaces and if:

〈∂tu(t), v〉 + 〈(u(t) · ∇)u(t), v〉 + ν (∇u(t), ∇v)

+ (∆d(t), ∇d(t)v) = 〈g(t), v〉

holds for every v ∈ V, a.e. t ∈ (0, T ) and

∂td(t) + (u(t) · ∇)d = ∆d − f(d(t)) and |d(x, t)| ≤ 1

hold almost everywhere in Ω × (0, T ).
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In this section we will prove the following result:

Theorem 2.1.1 (Weak existence). Let Ω ⊂ R
n with n = 2, 3 be a regular

bounded domain1, let g ∈ L2(0, T ; V∗) and h ∈ L2(0, T ; H3/2(∂Ω)), ∂th ∈
L2(0, T ; H−1/2(∂Ω)) with |h| ≤ 1 a.e., let u0 ∈ H, d0 ∈ H1 with |d0| ≤ 1
a.e. Then there exists a weak solution (u, d) of (2.1).

The proof of this result will occupy all the remaining part of this section.
For the ease of the reader we give now a brief sketch of it before introducing
all the details in the following pages. We start by studying the regularity
of solution for a lifting problem for the nonautonomous boundary condi-
tions on the order parameter and then give a semi-Galerkin formulation of
problem (2.1) by considering the discretized problem for the velocity field
leaving the other equations in the lifted form. We then prove local existence
of solutions for the approximating problem through a fixed point argument.
We remark that the lifespan of these solutions depends in a critical way on
the dimension of the approximating subspace Vm. Thus we need to extend
the approximating solutions before passing to the limit. This is achieved by
proving the following basic uniform energy estimate which also holds for the
approximating solutions (see pages 30 and 31 below).

Lemma 2.1.2. Under the assumptions of theorem 2.1.1, any weak solution
of (2.1) satisfies for all t > 0 the estimate:

|u(t)|22 + |∇d(t)|22 ≤ CΩ + |h(t)|2
H1/2 + e−Ct(|u0|22 + |∇d0|22)

+ CΩ

∫ t

0
|h(s)|2

H3/2 ds + CΩ

∫ t

0
|∂th(s)|2

H−1/2 ds +
1

ν

∫ t

0
|g(s)|2V∗ ds (2.3)

Finally we pass to the limit by means of standard arguments.

Remark. We note that lemma 2.1.2 justify us in introducing global solutions
defined for all positive t ∈ R. One actually only needs to observe that,
when the data g is in L2

loc(0, ∞; V∗) and h is in L2
loc(0, ∞; H3/2(∂Ω)) and

in L∞(0, ∞; H1/2(∂Ω)) such that ∂th ∈ L2
loc(0, ∞; H−1/2(∂Ω)), then the

size of the time interval [t, t + T ] on which the local solutions obtained by
theorem 2.1.1 are defined is independent of t. Moreover, estimate (2.3) is
uniform in t and therefore any local solution can be extended by successive
steps up to ∞.

The nonlinear potential f Before starting the proof of theorem 2.1.1
as outlined above, we summarize in this section some useful results about
the nonlinear forcing term f(d) which appears in the equation for the order
parameter field.

1Although we are not interested here in optimal regularity results for the domain,
Ω ∈ C1,1 should be a sufficient assumption.



CHAPTER 2. WELL POSEDNESS 17

Notation. In analogy with the notation for vector norms introduced above,
we will write |T| while referring to the usual euclidean norm for tensors
which is defined as |T|2 .

= TijTij (where we use the standard Einstein’s
sum convention on repeated indices).

Lemma 2.1.3. If |d| ≤ 1 a.e. on Ω ⊂ R
n, then

|f(d)| ≤ 2
√

3

9ǫ2
and |∇df(d)|2 ≤ n + 5

ǫ4
.

Moreover if both d1 and d2 satisfy the above assumption, then

|f(d1) − f(d2)| ≤ 2

ǫ2
|d1 − d2| .

and

|∇d(f(d1) − f(d2))| ≤ 2
√

n + 8

ǫ2
|d1 − d2|

Proof. The proof of this lemma is a simple exercise in univariate and mul-
tivariate calculus. The first statement can be obtained by considering the
function |f(d)| = 1

ǫ2 (1 − |d|2) |d| as depending only on the real variable |d|
in the interval [0, 1]. An easy calculation then shows that this function is
maximized when |d| = 1√

3
and gives the desired result.

In order to obtain the remaining results, we need to compute explicitly
the gradient ∇df(d). We have:

f(d)i,j =
1

ǫ2
di,j(|d|2 − 1) +

2

ǫ2
didj =

1

ǫ2
δij(|d|2 − 1) +

2

ǫ2
didj .

where with g,i we mean the derivation with respect to di, that is ∂g
∂di

. Then
the following simple estimate holds:

|∇df(d)| = f(d)i,jf(d)i,j =
n

ǫ4
(|d|2 − 1)2 +

4

ǫ4
|d|4 +

4

ǫ2
(|d|2 − 1) |d|2

≤ 1

ǫ4
(n + 4 + 1) =

n + 5

ǫ4
.

The continuity constant of f can be obtained by evaluating the maximum
eigenvalue of the gradient tensor calculated above. Due to the symmetric
form of f , we can assume that d is directed along the first versor of the
canonical basis in R

n. A simple substitution then gives λ1 = 1
ǫ2 (3|d|2 − 1)

and λi = 1
ǫ2 (|d|2 − 1) for i = 2, . . . , n. We can now easily conclude that the

maximum eigenvalue is obtained by evaluating λ1 when |d| = 1 and thus
|f(d1) − f(d2)| ≤ 2

ǫ2 |d1 − d2| as claimed.
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Finally, the last statement of the lemma can be obtained through a direct
computation where we have set e

.
= d1 − d2 as follows:

|∇d(f(d1) − f(d2))|2 =
1

ǫ4
(d1 kek + ekd2 k)δijδij(d1 lel + eld2 l)

+
4

ǫ4
(eid1 j + d2 iej)(eid1 j + d2 iej)

+
4

ǫ4
(d1 kek + ekd2 k)δij(eid1 j + d2 iej).

Remembering that δijδij = n and using repeatedly that |di| ≤ 1, i = 1, 2
and the Cauchy-Schwarz inequality, we obtain:

|∇d(f(d1) − f(d2))|2 =
n + 4

ǫ4
((d1 + d2) · e)2

+
4

ǫ4
|e|2

(
|d1|2 + |d2|2

)
+

8

ǫ4
(e · d1)(e · d2)

≤ n + 4

ǫ4
4 |e|2 +

8

ǫ4
|e|2 8

ǫ4
|e|2 =

4(n + 8)

ǫ4
|e|2

from which our claim can be immediately deduced.

Regularity of a time dependent lifting problem We start the proof
of theorem 2.1.1 by considering this simple linear lifting problem:





∂td̃ − ∆d̃ = 0 in QT
.
= Ω × (0, T );

d̃ = h on ∂Ω × (0, T );

d̃(0) = d0 in Ω.

(2.4)

Existence and uniqueness of solutions for problem (2.4) follow easily
from the standard Galerkin method for linear parabolic problems (see, for
instance, [22]). In particular the following lemma holds.

Lemma 2.1.4. Let Ω ⊂ R
n with n = 2, 3 be a regular domain, let d0 ∈ L2

and let h ∈ L2(0, T ; H1/2(∂Ω)). Then there exists a unique weak solution
d̃ ∈ L∞(0, T ; L2) ∩ L2(0, T ; H1) ∀T > 0 of problem (2.4). Moreover the
following estimate holds:

|d̃(T )|22 +

∫ T

0
|∇d̃|22 dt ≤ |d0|22 +

∫ T

0
C|h|2

H1/2(∂Ω) dt.

Proof. The lemma can be proven through the following formal estimate2.
Choosing d̃ as test function in the weak formulation of problem (2.4), we

2We remember that all the formal estimates computed in this chapter are rigorously
valid only for the approximating Galerkin problems. However, the estimate obtained
for the sequence {wn} of approximating solutions being uniform in n, we can always
extract from {wi} a weakly convergent subsequence whose limit is the solution of the
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obtain:
〈

∂td̃, d̃
〉

−
(
∆d̃, d̃

)
= 0

1

2

d

dt
|d̃|22 + |∇d̃|22 =

H−1/2(∂Ω)

〈
∂ν d̃, h

〉
H1/2(∂Ω)

≤ |∂ν d̃|H−1/2(∂Ω)|h|H1/2(∂Ω)

T
≤ C|d̃|H1 |h|H1/2(∂Ω)

We remember the equivalent norm in H1: |g|H1 ≤ C|∇g|2 + C|g|H1/2(∂Ω)

(see, for example, [28, Theorem 2.4.20]). Therefore we have:

1

2

d

dt
|d̃|22 + |∇d̃|22

P
≤ C|∇d̃|2|h|H1/2(∂Ω) + C|h|2

H1/2(∂Ω)

Y
≤ 1

2
|∇d̃|22 + C|h|2

H1/2(∂Ω)

After reordering all terms and integrating in time between 0 and T , we get
the sought a priori estimate.

Beyond this basic existence result, we can also prove stronger regularity
properties for the solution d̃ of the lifting problem (2.4).

Lemma 2.1.5. Let the same assumptions of lemma 2.1.4 be verified.

• If d0 ∈ H1, h ∈ L2(0, T ; H3/2(∂Ω)) and ∂th ∈ L2(0, T ; H−1/2(∂Ω))
then d̃ ∈ L∞(0, T ; H1)∩L2(0, T ; H2) and the following estimate holds:

|d̃|2H1 +

∫ t

0
|d̃|2H2 ≤ |d0|2H1 +C

∫ t

0
|∂th|2

H−1/2(∂Ω) + |h|2
H3/2(∂Ω) dt. (2.5)

• If d0 ∈ H2, h ∈ L2(0, T ; H5/2(∂Ω)) and ∂th ∈ L2(0, T ; H1/2(∂Ω))
then d̃ ∈ L∞(0, T ; H2)∩L2(0, T ; H3). Moreover the following estimate
holds:

|d̃|2H2 +

∫ t

0
|d̃|2H3 ≤ |d0|2H2 + C

∫ t

0
|∂th|2

H1/2(∂Ω) + |h|2
H5/2(∂Ω) dt. (2.6)

In order to prove this result we will proceed formally as usual. Take
−∆d̃ as test function in the weak formulation of the lifting problem. We

original problem. Thanks to the weak lower semi-continuity of norms, this limiting solution
obviously satisfies the same estimates proved for the approximating solutions.

We also observe that, by solving the approximate Galerkin problem associated with
equation (2.4), it is necessary to consider a further lifting problem for the boundary
condition h in [0, T ], by choosing a convenient function H ∈ L2(0, T ; H2) which satisfies
the boundary requirements. However, thanks to the theory of trace operators, all the
estimates of this section remain correct. We refer the interested reader to [22] for all the
results on trace spaces used here and in the sequel.
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observe that:
∫

Ω
∂td̃ · ∆d̃ dω = −

∫

Ω
∂t∇d̃ : ∇d̃ dΩ +

H−1/2(∂Ω)

〈
∂td̃, ∂ν d̃

〉
H1/2(∂Ω)

= −1

2

d

dt
|∇d̃|22 +

H−1/2(∂Ω)

〈
∂th, ∂ν d̃

〉
H1/2(∂Ω)

and remembering the equivalent form of the H2 norm |d̃|2
H2 ∼ |∆d̃|22 +

|d̃|2
H3/2(∂Ω)

, we get the following estimate:

1

2

d

dt
|∇d̃|22 + |∆d̃|22 =

H−1/2(∂Ω)

〈
∂th, ∂ν d̃

〉
H1/2(∂Ω)

CS−T
≤ C|∂th|H−1/2(∂Ω)|d̃|H2

P −Y
≤ C|∂th|2

H−1/2(∂Ω) +
1

2
|∆d̃|22 +

1

2
|h|2

H3/2(∂Ω).

We now integrate in time and obtain:

|∇d̃(t)|22 +

∫ t

0
|∆d̃|2 dt ≤ |∇d̃(0)|22 + C

∫ t

0
|∂th|2

H−1/2(∂Ω) + |h|2
H3/2(∂Ω) dt

from which (2.5) easily follows. We therefore deduce that d̃ ∈ L∞(0, T ; H1)∩
L2(0, T ; H2).

In order to prove the second part of lemma 2.1.5, we start by multiplying
equation (2.4) by −∂t∆d̃. If we integrate by parts the time derivative term,
we obtain:

|∂t∇d̃|22 +
1

2

d

dt
|∆d̃|22 =

H1/2(∂Ω)

〈
∂th, ∂t∂νd̃

〉
H−1/2(∂Ω)

CS−T
≤ C|∂th|H1/2(∂Ω)|∂td̃|H1

However, this time a problem arises: actually Poincarè’s inequality does not
hold for ∂td̃. Nevertheless, from the strong form of the lifting problem (2.4)
we have |∂td̃|2 = |∆d̃|2. Therefore applying Young’s inequality to the last
estimate we get:

|∂t∇d̃|22 +
1

2

d

dt
|∆d̃|22 ≤ C|∂th|2

H1/2(∂Ω) +
1

2
|∂t∇d̃|22 +

1

2
|∆d̃|2

Now we integrate in time and thanks the estimates of the previous para-
graphs and through standard arguments we deduce d̃ ∈ L∞(0, T ; H2) and
∂td̃ ∈ L2(0, T ; H1). Finally, using again directly the equation (2.1), we
obtain d̃ ∈ L2(0, T ; H3), ∂td̃ ∈ L∞(0, T ; L2) and estimate (2.6).

We end this summary of regularity results for problem (2.4) by noting
that, under physically sound assumptions, the following maximum principle
holds (see, for example, [14]).

Lemma 2.1.6. Let the same assumptions of lemma 2.1.4 be verified. If in
addition |h| ≤ 1 a.e. on ∂Ω × [0, T ] then |d̃| ≤ 1 a.e. (x, t) ∈ Ω × [0, T ].
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The semi-Galerkin approximation We now go back to the weak for-
mulation of problem (2.1) and give its announced Galerkin approxima-
tion. We will use the usual Faedo-Galerkin method only for the veloc-
ity field. In particular, we will search a solution um ∈ C1(0, T ; Vm) and
dm ∈ L2(0, T ; H2) ∩ L∞(0, T ; H1) such that:





(∂tu
m(t), vm) + ((um(t) · ∇)um(t), vm) + ν (∇um(t), ∇vm)

+ (∆dm(t), ∇dm(t)vm) = (g(t), vm)
∀vm ∈ Vm;

∂td
m(t) + (um(t) · ∇)dm(t) = ∆dm(t) − f(dm(t))

|dm| ≤ 1
a.e. in (0, T ) × Ω;

um(0) = u0m
.
= Pmu0

dm(x, 0) = d0 for x ∈ Ω;

dm(x, t) = h(x, t) on ∂Ω × (0, T )

(2.7)
holds, where the linear operator Pm : H → Vm is the orthogonal (in L2)
projection on Vm (we remember that u0m → u0 in L2 for the dominated
convergence theorem and the completeness of the basis we are using). Ac-
tually also the following lifted problem will play an important role:





(∂tu
m(t), vm) + ((um(t) · ∇)um(t), vm) + ν (∇um(t), ∇vm)

+ (∆dm(t), ∇dm(t)vm) = (g(t), vm)
∀vm ∈ Vm;

∂td̂
m(t) + (um(t) · ∇)dm(t) = ∆d̂m(t) − f(dm(t))

|dm| ≤ 1
a.e. in (0, T ) × Ω;

um(0) = u0m
.
= Pmu0

d̂m(x, 0) = 0 for x ∈ Ω;

d̂m(x, t) = 0 on ∂Ω × (0, T )

(2.8)
where we write d̂m .

= dm−d̃ and d̃ is the solution of the lifting problem (2.4).

Local time existence of solutions We will now apply a fixed point
argument to prove existence of (at least) a solution on the time interval
[0, Tm] for the approximating problem (2.7). We start by introducing the
following splitting.

1. Let um ∈ C(0, T ; Vm) be a given velocity field. We look after the
order parameter field dm ∈ L2(0, T ; H2) ∩ L∞(0, T ; H1) which solves:





∂td
m + (um · ∇)dm = ∆dm − f(dm) in Ω × (0, T );

dm(x, 0) = d0 in Ω;

dm(x, t) = h on ∂Ω × (0, T ).

(2.9a)
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2. Let dm ∈ L2(0, T ; H2) ∩ L∞(0, T ; H1) be the order parameter field
just determined. The second part of the splitting consists in finding a
velocity field um ∈ H1(0, T ; Vm) such that the following equation is
satisfied.




(∂tu
m(t), v) + ((um(t) · ∇)um(t), v) + ν (∇um(t), ∇v)

= − (∆dm(t), ∇dm(t)v) + 〈g(t), v〉
∀v ∈ Vm;

um(0) = um
0 in Ω.

(2.9b)
We stress that in this problem the order parameter field dm is given.

Remark. The just introduced splitting and the fixed point argument of the
following pages can be considered as possible starting points in the design
of an efficient numerical scheme to solve problem (2.1). One possible advan-
tage of this numerical strategy is that one can use only existing programs
that already efficiently solve Navier-Stokes equations and simple transport-
diffusion equations without the need of implementing from scratch a whole
new numerical algorithm.

Existence and uniqueness for problem (2.9a) In order to obtain
the existence of an order parameter field which satisfies equation (2.9a) we
will use again a fixed point argument. Consider the following linearization
of problem (2.9a):





∂td
m + (um · ∇)dm = ∆dm − f(e) in Ω × (0, T );

dm(x, 0) = d0 in Ω;

dm(x, t) = h on ∂Ω × (0, T )

(2.10)

and let e ∈ L2(0, T ; H1). Noting that |f(e)| ≤ 1 + |e|3 and using Sobolev
embedding theorems, we easily deduce that f(e) ∈ L2(0, T ; L2). Since by hy-
pothesis we have um ∈ C(0, T ; H1), the standard theory for linear parabolic
equations immediately tells us that the solution of the problem obtained
using the lifting (2.4) satisfies d̂m ∈ L2(0, T ; H1) and ∂td̂

m ∈ L2(0, T ; H−1)
(see [14]). Thanks to the regularity of the lifting d̃ proved above (see lem-
mas 2.1.4 and 2.1.6), we conclude that also the solution dm of problem (2.10)
satisfies the same regularity properties.

We now chose ∂td̂
m as test function in the weak formulation of the

linearized lifted version of problem (2.9a). Remembering that Vm ⊂ L∞,
we obtain the following estimate:

|∂td̂
m|22 +

1

2

d

dt
|∇d̂m|22 = −

∫

Ω
(um · ∇)dm∂td̂

m dΩ −
∫

Ω
f(e)∂td̂

m dΩ

H
≤ |um|∞|∇dm|2|∂td̂

m|2 + |f(e)|2|∂td̂
m|2

Y
≤ C|∇um|2∞|∇dm|22 +

1

4
|∂td̂

m|22 + |f(e)|22 +
1

4
|∂td̂

m|22.
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Simple algebra and Gronwall’s inequality then give d̂m ∈ L∞(0, T ; H1) and
∂td̂

m ∈ L2(0, T ; L2).
From well-known elliptic-regularity results applied to problem (2.10)

(see, for example, [15] for a comprehensive exposition), we actually have
dm ∈ L2(0, T ; H2). We therefore deduce that the solution operator S : e 7→
dm of problem (2.10) maps bounded subsets of L2(0, T ; H1) into bounded
subsets of L2(0, T ; H2)∩W 1,2(0, T ; L2) and henceforth into precompact sub-
sets of L2(0, T ; H1). This solution operator is also continuous as a function
of e as was shown in lemma 2.1.3. Therefore we have proven that S is
compact.

In order to apply the Leray-Schauder fixed point argument (see, for
example, [10]) we still need an “a priori” estimate for the solutions of problem
dm

s = sS(dm
s ) with s ∈ [0, 1]. This time we take dm as test function in the

weak formulation of problem (2.10) and obtain:

1

2

d

dt
|dm

s |22 + |∇dm
s |22 + s

∫

Ω
f(dm

s ) · dm
s dΩ = H−1/2(∂Ω)〈∂νdm

s , h〉H1/2(∂Ω) .

However, due to the particular structure of the nonlinear forcing term f we
have:

∫

Ω
f(dm

s ) · dm
s dΩ =

1

ǫ2

∫

Ω
(|dm

s |2 − 1)|dm
s |2 dΩ ≥ − 1

4ǫ2
|Ω|

and therefore, remembering |g|H1 ≤ C|∇g|2 + C|h|H1/2(∂Ω), we deduce:

1

2

d

dt
|dm

s |22 + |∇dm
s |22 ≤ C|h|2

H1/2(∂Ω) +
1

2
|∇dm

s |22 +
1

4ǫ2
|Ω|

that is |dm
s |L2(0,T ;H1) ≤ C where C does not depend on s. Using Leray-

Schauder theorem there exists a fixed point for the operator S i.e. a solution
in [0, T ] of problem (2.9a).

Before continuing the well-posedness analysis of the problem for the order
parameter field, we observe that the following weak maximum principle holds
for solutions of problem (2.9a) (see [7] for a proof).

Lemma 2.1.7 (Weak maximum principle). Let d0 ∈ H1 such that |d0(x)| ≤
1 a.e. x ∈ Ω and let h ∈ L∞(0, T ; H1/2(∂Ω)) such that |h(x, t)| ≤ 1 a.e.
(x, t) ∈ ∂Ω × [0, T ]. Then every weak solution d of problem (2.9a) verifies
|d(x, t)| ≤ 1 a.e. Ω × [0, T ]

Consider now the lifted problem obtained by subtracting system (2.4)
from (2.9a):





∂td̂
m + (um · ∇)dm = ∆d̂m − f(dm) in Ω × (0, T );

d̂m(x, 0) = 0 in Ω;

d̂m(x, t) = 0 on ∂Ω × (0, T )

(2.9a′)



CHAPTER 2. WELL POSEDNESS 24

As usual, let −∆d̂m be the test function in the weak form of (2.9a′). We
obtain:

1

2

d

dt
|∇d̂m|22 + |∆d̂m|22 =

(
f(dm), ∆d̂m

)
+
(
(um · ∇)dm, ∆d̂m

)

H
≤ |f(dm)|2|∆d̂m|2 + |um|6|∇dm|3|∆d̂m|2
Y −S
≤ 1

2
|f(dm)|22 +

1

2
|∆d̂m|22 + C|∇um|2|∇dm|3|∆d̂m|2

that is:

d

dt
|∇d̂m|22 + |∆d̂m|22 ≤ |f(dm)|22 + C|∇um|2|∇dm|3|∆d̂m|2. (2.11)

We now consider the right hand side of this last inequality and notice that
both contributions are easily bounded. First of all, since f is continuous and
since the weak maximum principle of lemma 2.1.7 holds, we deduce from
lemma 2.1.3 that supt∈(0,∞) |f(dm)|2 ≤ 2

3
√

3
1
ǫ2 |Ω|1/2. Moreover, we have

um ∈ C(0, T ; Vm) which implies supt∈[0,T ] |∇um|2 ≤ M . Thanks to Sobolev

embedding theorems (see [37]), we then have |∇dm|3 ≤ C|∇dm|1/2
2 |∇dm|1/2

H1

so that the last term (2.11) becomes:

|∇um|2|∇dm|3|∆d̂m|2 ≤ CM(|∇dm|1/2
2 + |dm|1/2

H2 )|∇dm|1/2
2 |∆d̂m|2

≤ CM |∇dm|2|∆d̂m|2 + CM |∇dm|1/2
2 |∆d̂m|3/2

2

+ CM |d̃m|1/2
H2 |∇dm|1/2

2 |∆d̂m|2
Y
≤ CM2|∇dm|22 +

1

4
|∆d̂m|22 + CM4|∇dm|22

+
1

4
|∆d̂m|22 + CM2|∇dm|2|d̃m|H2 +

1

4
|∆d̂m|22.

Substituting back this estimate in (2.11) we obtain:

d

dt
|∇d̂m|22 +

1

4
|∆d̂m|22 ≤ 2

3
√

3

1

ǫ2
|Ω|1/2 + C(M4 + M2)|∇dm|22 + CM2|d̃m|2H2 .

Integrating in time from 0 to T and remembering from our previous discus-
sion that dm ∈ L2(0, T ; H1), we eventually get:

|∇d̂m(t)|22 +
1

4

∫ t

0
|∆d̂m(s)|22 ds ≤ T

2

3
√

3

1

ǫ2
|Ω|1/2

+ C(M4 + M2)|∇d|2L2(0,T ;L2) + CM2|d̃|2L2(0,T ;H2)
.
= K(T, M) (2.12)

for almost every t ∈ [0, T ]. We remind that, from the above results, we
have d̃ ∈ L2(0, T ; H2) and therefore the right hand side of last estimate is
bounded. We have thus obtained that dm ∈ L2(0, T ; H2) ∩ L∞(0, T ; H1).
Observe that we also have limT →0 K(T, M) = 0.
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Before ending this part of the proof, we still have to show uniqueness
of solutions for problem (2.9a) and the continuity of the solution operator
Sm

d : C(0, T ; Vm) → L∞(0, T ; H1)∩ L2(0, T ; H2), Sm
d : um 7→ dm. Consider

now a pair of velocity fields u1, u2 ∈ C(0, T ; Vm) and let d1, d2 be the
respective solutions of problem (2.9a). Choosing δd

.
= d1 − d2 as test

function for the difference between the equations satisfied by d1 and d2 and
using lemma 2.1.3, we get:

1

2

d

dt
|δd|22 + |∇δd|22 =

∫

Ω
(δu · ∇)d1 · δd dΩ +

∫

Ω
(u2 · ∇)δd · δd dΩ

+

∫

Ω
(f(d1) − f(d2)) · δd dΩ

H
≤ |δu|∞|∇d1|2|δd|2 +

2

ǫ2
|δd|22

Y
≤ 1

2
|δd|22 +

1

2
|δu|2∞|∇d1|22 +

2

ǫ2
|δd|22

where we have set δu
.
= u1 −u2. Upon reordering the terms of last estimate

we get:
d

dt
|δd|22 + 2|∇δd|22 ≤ |δu|2∞|∇d1|22 +

(
4

ǫ2
+ 1

)
|δd|22

If δu = 0, we have thus obtained uniqueness of solutions for the first part
of our split problem. Otherwise, in the general case, we have the continuity
of the solution operator Sm

d in L2(0, T ; H1) ∩ L∞(0, T ; L2). We conclude
this part of our proof by observing that further regularity of the solving
order parameter field can be obtained by completely analogous estimates if
we start by taking −∆δd as test function.

Existence and uniqueness for problem (2.9b) We now turn our
attention to problem (2.9b). As before, we want to prove uniqueness of
solutions (this time in H1(0, T ; H1)) and continuity for the solution operator.
We immediately observe that, since ∇dm(t) ∈ L6, ∆dm(t) ∈ L2 a.e. t ∈
[0, T ], the dm-dependent forcing term can indeed be read as a scalar product
in L2 instead of being a duality.

Since um(t) ∈ Vm we can write the solution to our problem as um =∑n
i=0 ηm

i (t)wi where wi is the orthonormal basis made up by the eigenfunc-
tions of Stokes’ problem introduced above. The approximating Galerkin
solution um we are looking for is therefore determined by the solution of the
following system of ordinary differential equations for the coefficients ηm

j (t)
which can be obtained by choosing wj as test functions in (2.9b):




d
dtη

m
j (t) +

∑m
i=1 ((um(t) · ∇)wi, wj) ηm

i (t) + λjνηm
j (t)

= − (∆dm(t), ∇dm(t)wj) + 〈g(t), wj〉
j = 1, . . . , m

ηj(0) = (u0, wj) j = 1, . . . , m

(2.13)
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From Cauchy-Lipschitz classical result (see [29]), this system has a unique
solution in the time interval [0, Tm) with Tm ≤ T .

If we take um(t) (with t ∈ [0, Tm)) as test function in (2.9b) and using
the usual orthogonality relation for the trilinear convective term, we get:

1

2

d

dt
|um|22 + ν|∇um|22 = −

(
(∇dm)t∆dm, um

)
+ 〈g, um〉 .

We also observe that the following vector identity holds:3

∇ · (∇dm ⊙ ∇dm) = (∇dm)t∆dm +
1

2
∇|∇dm|2 (2.14)

Using this last relation, remembering that ∇ · um = 0 and thanks to the
embedding Vm ⊂ L∞, which holds for all m ∈ N, after an integration by
parts, we obtain:

1

2

d

dt
|um|22 + ν|∇um|22 =

(
(∇dm)t∇dm, ∇um

)
+ 〈g, um〉

H
≤ |∇dm|22|∇um|∞ + |∇um|2|g|V∗

≤ Cm|∇dm|22|∇um|2 + |∇um|2|g|V∗

Y
≤ Cm

ν
|∇dm|42 +

ν

4
|∇um|2 +

1

ν
|g|2V∗ +

ν

4
|∇um|22

Standard algebra then gives:

d

dt
|um|22 + ν|∇um|22 ≤ Cm

ν
|∇dm|42 +

2

ν
|g|2V∗

and integrating from 0 to Tm we obtain the desired estimate:

|um(t)|22 + ν|∇um|2L2(0,t;L2)

≤ |u0|22 +
2

ν
|g|2L2(0,Tm;V∗) +

Cm

ν
Tm|∇dm|4L∞(0,Tm;L2) (2.15)

which holds for a.e. t in [0, Tm]. From estimate (2.12) we have ∇dm ∈
L∞(0, T ; L2) and we therefore obtain um ∈ L∞(0, T ; H) ∩ L∞(0, T ; V).

In addition to ηm
i ∈ L2(0, T ), we also observe that we can easily prove

d
dtη

m
i ∈ L2(0, T ). Actually, thanks to the finite dimension of Vm, we have

um ∈ L∞(0, T ; Vm) ⊂ L∞(0, T ; L∞) and from the previous discussion we

3We remember that for two second-rank tensors we have by definition (f ⊙g)ij
.
= fkigkj ,

where we use the common Einstein sum convention on repeated indices.
The vector identity we are interested in follows easily then:

[∇ · (∇dm ⊙ ∇dm)]i = (∇dm ⊙ ∇dm)ij,j = (dm
k,id

m
k,j),j = d

m
k,ijd

m
k,j + d

m
k,id

m
k,jj

=
1

2
(dm

k,jd
m
k,j),i + (∇dm)t

ik∆dm
k =

1

2
|∇dm|2,i +

[
(∇dm)t∆dm

]
i
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recall that dm ∈ L2(0, T ; H2)∩L∞(0, T ; H1). Moreover, the standard eigen-
function theory for elliptic equations tells us that the wi are regular. Directly
from equation (2.13) we then obtain:

(
d

dt
ηm

j (t)

)2 Y
≤ 4m

m∑

i=1

((um(t) · ∇)wi, wj)2 (ηm
i (t))2 + 4λ2

j ν2(ηm
j (t))2

+ 4
(
(∇dm(t))t∆dm(t), wj

)2
+ 4 〈g(t), wj〉2

H
≤ 4m

m∑

i=1

|um(t)|2∞|∇wi|22|wj|22(ηm
i (t))2 + 4λ2

j ν2(ηm
j (t))2

+ 4|∇dm(t)|22|∆dm(t)|22|wj|2∞ + 4|g(t)|2V∗ |wj|22

Finally, integrating on [0, Tm] and observing that all terms on the right hand
side of the resulting estimate are bounded, we obtain the desired result. The
time regularity just proved for the coefficients ηm

i gives um ∈ H1(0, Tm; H1).
With this regularity of solutions for problem (2.9b) we can easily prove

uniqueness and, as we did before for the order parameter, we can straight-
forwardly obtain continuity for the solution operator: Sm

u : L2(0, T ; H2) ∩
L∞(0, T ; H1) → H1(0, T ; Vm), Sm

u (dm) = um. As before, these results can
be obtained by considering the difference between the problems solved by
um

1 and um
2 having respectively dm

1 , u1 and dm
2 , u2 as forcing terms and

by choosing δum .
= um

1 − um
2 as test function in the corresponding weak

formulation.

A fixed point result We now have everything which is needed in order to
prove existence and uniqueness of solutions for problem (2.7) for sufficiently
short time intervals. Note that the composition of the solution operator Sm

u

e Sm
d introduced before is compact for all m ∈ N. Actually, the continuity

follows from the continuous dependence on data which has been proved
for both operators whereas pre-compactness is a direct consequence of the
regularity estimates of the previous sections. In particular we have Sm

u ◦Sm
d :

C(0, Tm; Vm) → H1(0, Tm; Vm), Sm
u ◦ Sm

d : um 7→ um(dm(um)) where
the immersion H1(0, Tm; Vm) →֒ C(0, Tm; Vm) is actually compact due to
Rellich theorem (see [4]) and to the finite-dimensionality of Vm.

Let now M > 0 such that |u0|22 + 2
ν |g|2L2(0,T ;V∗) ≤ M

2 . Thanks to esti-

mates (2.12) and (2.15), if |um(t)|22 ≤ M for all t ∈ [0, Tm], we have:

|um(t)|22 ≤ M

2
+

Cm

ν
T |∇dm|4L∞(0,T ;L2)

that is |um(t)|22 ≤ M for all t ∈ [0, T̃m] where 0 < T̃m ≤ T is sufficiently
small so that the norms of dm are suitably bounded. We can therefore apply
Schauder’s Theorem (see, for example, [10]) to the composition operator
Sm

u ◦ Sm
d acting on the closed ball of radius M of C(0, Tm; L2). Thus we
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have proved that problem (2.7) has at least a solution um ∈ H1(0, Tm; Vm),
dm ∈ L∞(0, Tm; H1) ∩ L2(0, Tm; H2).

Uniqueness for the just constructed solution can be proven in a standard
way by following the same strategy we used to prove it in the split problems.
Therefore we leave out the straightforward details.

Extending approximating solutions Ideally, we could now use the se-
quence of approximating solutions just obtained from the semi-Galerkin ap-
proximation (2.7) to pass to the limit in the original equation and deduce
the existence of solutions for our model. However, this is not possible since
the time interval on which these approximating solutions are defined de-
pends on the dimension m of the linear space considered: actually a careful
analysis of the estimates of the previous paragraphs reveals that Tm → 0
when m → ∞.

In order to find a turnaround for this problem we need to extend the time
interval of existence of the approximating solutions. This can be achieved
through some a priori estimates obtained by considering a different lifting
problem for system (2.1).

We will consider the following lifting problem:




−∆d̊ = 0 in Ω;

d̊ = h su ∂Ω.
(2.16)

From the standard theory for elliptic partial differential equations we know
the following existence and regularity result.

Lemma 2.1.8. Let Ω ⊂ R
n, n = 2, 3 be a regular bounded domain.

• If h ∈ H1(0, ∞; H−1/2(∂Ω))∩L2(0, ∞; H3/2(∂Ω)) then the lifting prob-
lem (2.16) has a unique solution d̊ in H1(0, T ; L2) ∩ L∞(0, T ; H1) ∩
L2(0, T ; H2) and the following estimates hold for a.e. t > 0:

∫ T

0
|̊d|H1 dt ≤ C

∫ T

0
|h|H3/2(∂Ω) dt

and

∫ T

0
|∂td̊|L2 dt ≤ C

∫ T

0
|∂th|H−1/2(∂Ω) dt.

• If h ∈ H1(0, ∞; H1/2(∂Ω)) ∩ L2(0, ∞; H5/2(∂Ω)) then the lifting prob-
lem (2.16) has a unique solution d̊ in H1(0, T ; H1) ∩ L∞(0, T ; H2) ∩
L2(0, T ; H3). Moreover, the following estimates hold for a.e. t > 0:

∫ T

0
|̊d|H2 dt ≤ C

∫ T

0
|h|H5/2(∂Ω) dt
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and

∫ T

0
|∂td̊|H1 dt ≤ C

∫ T

0
|∂th|H1/2(∂Ω) dt.

In the following, we will write ďm .
= dm − d̊ to refer to this differently

lifted function. We immediately observe that ďm is a solution of the following
problem:




(∂tu
m(t), vm) + ((um(t) · ∇)um(t), vm) + ν (∇um(t), ∇vm)

+
(
(∇dm)t(t)∆ďm(t), vm

)
= (g(t), vm)

∀vm ∈ Vm;

∂tď
m(t) + (um(t) · ∇)dm = ∆ďm − f(dm(t)) − ∂td̊, a.e. in (0, T ) × Ω;

um(0) = u0m = Pmu0

ďm(x, 0) = d0 for x ∈ Ω;

ďm(x, t) = 0 on ∂Ω × (0, T ).

(2.17)
Analogously we will write d̊ and ď for the lifting of the original equa-
tion (2.1).

If we choose um and −∆ďm as test functions in (2.17), summing the
resulting two equations we get:

1

2

d

dt
(|um|22 + |∇ďm|22) + ν|∇um|22 + |∆ďm|22 +

(
(∇dm)t∆ďm, um

)

=
(
(um · ∇)dm, ∆ďm

)
+
(
f(dm), ∆ďm

)
+
(
∂td̊, ∆ďm

)
+ (g(t), um) .

We remember the following useful vector identity4:
(
(∇dm)t∆ďm, um

)
=
(
(um · ∇)dm, ∆ďm

)
(2.18)

Using Young’s inequality we obtain:

d

dt
(|um|22 + |∇ďm|22)+ ν|∇um|22 + |∆ďm|22 ≤ 2(|f(dm)|22 + |∂td̊|22)+

1

ν
|g(t)|2V∗ .

Thanks to the weak maximum principle introduced before we obtain:

d

dt
(|um|22 + |∇ďm|22)+ν|∇um|22 + |∆ďm|22 ≤ 8

27ǫ4
+CΩ|∂th|2

H−1/2 +
1

ν
|g(t)|2V∗ .

(2.19)

4This relation follows easily using the index notation. We actually have:
(
(∇dm)t∆ďm

, um
)

= ((∇dm)t∆ďm)ju
m
j = d

m
i,j∆ď

m
i u

m
j

and, analogously:
(
(um · ∇)dm

, ∆ďm
)

= ((um · ∇)dm)i∆ď
m
i = u

m
j d

m
i,j∆ď

m
i .
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Using now Poincarè’s inequality in the left hand side, we can write:

d

dt
(|um|22+|∇ďm|22)+C0(|um|22+|∇ďm|22) ≤ 8

27ǫ4
+CΩ|∂th|2

H−1/2 +
1

ν
|g(t)|2V∗ .

where CΩ does not depend on m and C0 = min{ ν
CP

, 1
CP

} = min{νµ1, µ1}
with CP Poincarè constant for the domain Ω and with µ1 first eigenvalue of
the homogeneous Laplace-Dirichlet operator on Ω. Multiplying by eC0t and
integrating from 0 to t we obtain:

∫ t

0

d

ds
eC0s(|um|22 + |∇ďm|22) ds

≤ 8

27C0ǫ4
+ CΩ

∫ t

0
eC0s|∂th(s)|2

H−1/2 ds +
1

ν

∫ t

0
eC0s|g(s)|2V∗ ds.

which can easily be written as;

|um|22 + |∇ďm|22 ≤ e−C0t(|u0|22 + |∇d0|22) +
8

27C0ǫ4

+ CΩe−C0t
∫ t

0
eC0s|∂th(s)|2

H−1/2 ds +
1

ν
e−C0t

∫ t

0
eC0s|g(s)|2V∗ ds (2.20)

We note that, since |∇d̊|2 ≤ C|h|H1/2(∂Ω) ≤ C|h|L2(H3/2) + C|∂th|L2(H−1/2),
this last inequality implies lemma 2.1.2 for the approximating solutions
(um, dm).

With this estimate we have shown that the L2 norm of um and ∇dm

are uniformly bounded in m. Therefore we can extend all approximating
solutions beyond Tm up to any fixed time T .

Passing to the limit We can now pass to the limit in (2.7). For the
reader convenience we recall all the results we have obtained in the above
discussion:

• the sequence dm is bounded in L∞(0, T ; H1), in L2(0, T ; H2) and in
L∞(0, T ; L∞);

• the sequence um is bounded in L∞(0, T ; H) and in L2(0, T ; V).

With these results at hand, using identity (2.14), we can deduce directly
from equation (2.7) that ∂tu

m is bounded in Lp(0, T ; V∗), with p = 2 when
n = 2 and p = 4/3 when n = 3, and that ∂tď

m is bounded in L2(0, T ; L2)5.

5We remember the estimates used in this passage (see [31, Proposition 9.2]):

|((u · ∇)v, w)| ≤ C

{
|u|

1/2
2 |u|

1/2

H1
|v|

H1 |w|
1/2
2 |w|

1/2

H1
for n = 2

|u|
1/4
2 |u|

3/4

H1
|v|

H1 |w|
1/4
2 |w|

3/4

H1
for n = 3

and

|(∆e, ∇d v)| ≤ C

{
|e|

H2 |d|
1/2

H1
|d|

1/2

H2
|v|

1/2
2 |v|

1/2

H1
for n = 2

|e|
H2 |d|

1/2

H1
|d|

1/2

H2
|v|

H1 for n = 3
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Using Banach-Alaoglu theorem it is thus possible to extract subsequences
which converge weakly(-∗) in each one of the just enumerated functional
spaces. From the standard theory we deduce that this limit is the same in
all spaces and that lim ∂tu

m = ∂tlimum.
We now briefly review and justify this limit passage in all the nonlinear

terms of (2.7).

• Since from the weak maximum principle we have |dm| ≤ 1, the po-
tential term f(dm) is dominated by a constant. Thus we can use the
dominated convergence theorem to pass to the limit.

• We can control ((um · ∇)dm, wj) by observing that the sequence dm

admits a subsequence which converges strongly in L2(0, T ; H1). We
then have:

∫

Ω×[0,T ]
(um · ∇)dm · wj dΩdt

=

∫

Ω×[0,T ]
(um · ∇)(dm − d) · wj dΩdt +

∫

Ω×[0,T ]
(um · ∇)d · wj dΩdt.

Since |∇dm − ∇d|L2(H1) → 0 when m → ∞, the first term in this ex-
pression converges to zero. The second term converges to ((u · ∇)d, wj)
thanks to the weak-∗ convergence in H of um.

• We then have to consider the usual convective term (u · ∇)u in the
velocity field equation. This can be dealt with by the same techniques
used for the Navier-Stokes equation. We shortly remember the exist-
ing results (see [31, Chapter 9] for a comprehensive discussion of the
details): if n = 2 when we pass to the limit in equation (2.7), the
(sub-)sequence converges in L2(0, T ; V∗), whereas for n = 3, we only
have convergence in L4/3(0, T ; V∗).

• Finally, we can deal with the nonlinear term
(
(∇dm)t∆dm, v

)
in an

equivalent manner using the strong convergence (up to subsequences)
of dm in L2(0, T ; H1) and its boundedness L∞(0, T ; H2). In par-
ticular this term convergences in L2(0, T ; V∗) when n = 2 and in
L4/3(0, T ; V∗) when n = 3.

This concludes the proof of theorem 2.1.1 both for n = 2 and for n = 3.
In the next sections we will prove uniqueness and existence of strong solu-
tions in the two dimensional case. However, before continuing, we note that,
passing to the limit in (2.20), we can easily prove lemma 2.1.2. This result let
us extend local weak solutions up to arbitrarily large times T under very mild
assumptions. These global solutions can indeed be obtained just suppos-
ing g ∈ L2

loc(0, ∞; V∗) and h ∈ L2(0, ∞; H3/2(∂Ω)) ∩ L∞(0, ∞; H1/2(∂Ω)),
∂th ∈ L∞(0, ∞; H−1/2(∂Ω)).
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Corollary 2.1.9 (Global weak existence). Let Ω ⊂ R
n with n = 2, 3 be

a regular domain, let g ∈ L2
loc(0, ∞; V∗) and h ∈ L2(0, ∞; H3/2(∂Ω)) ∩

L∞(0, ∞; H1/2(∂Ω)), ∂th ∈ L2(0, ∞; H−1/2(∂Ω)) with |h| ≤ 1 a.e., let u0 ∈
H, d0 ∈ H1 with |d0| ≤ 1 a.e. Then there exists a global weak solution
(u, d) satisfying (2.1) for all T > 0.

2.2 Uniqueness and continuous dependence on ini-

tial conditions in the 2D case

We now want to prove uniqueness of solutions and continuous dependence
on initial conditions in the 2D case. In particular, this section is dedicated
to the proof of the following basic result.

Theorem 2.2.1 (Uniqueness and continuous dependence). Under the same
assumptions of theorem 2.1.1, if n = 2, the weak solution of problem (2.1)
is unique. Moreover, it continuously depends on the initial conditions d0,
u0 and on the forcing terms g and h, and the following estimate holds:

|δu(t)|22 + |∇δd(t)|22 +

∫ t

0

(
ν|∇δu|22 + |∆δd|22

)
ds ≤ Ψ(t) (1 + Φ(t)) eΦ(t)

(2.21)
where:

Φ(t) = C

∫ t

t0

(
1

ν
|∇u1|22 + |∆d1|22 + |u1|22|∇u1|22 +

1

ǫ2

)
ds

Ψ(t) = |δu(t0)|22 + |∇δd(t0)|22
+

∫ t

t0

(
3
ν |δg|2V∗ + C|∂tδh|2

H−1/2 + C
(
1 + 1

ǫ2

)
|δh|2

H3/2

)
ds

Remark. We observe also, as a simple corollary of estimate (2.21), that
(u, d) ∈ C(L2 × H1).

We begin the proof of theorem 2.2.1 by summarizing briefly the results
we have obtained up to now:

• any velocity field u solution of system (2.1) is bounded in L∞(0, T ; H)∩
L2(0, T ; V). This follows from estimates for the system (2.1) similar
to inequalities (2.19) and (2.20) which can be easily obtained also for
solutions of the original problem;

• analogously, any order parameter field d solution of (2.1) is bounded
in L∞(0, T ; H1(Ω)) and in L2(0, T ; H2(Ω)) as it can be verified using
the maximum principle previously stated and again estimates similar
to (2.19) and (2.20) for the original system.
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Actually, from (2.19) and (2.20), we have the estimate:

|u(t)|22 + |d(t)|2H1 +

∫ t

0
ν|u|2H + |d|2H2 ds

≤ |u0|22 + |d0|2H1 +
CΩ

ǫ4
t + C|h(t)|2

H1/2(∂Ω) +
1

ν

∫ t

0
|g(s)|2V∗ ds

+ C

∫ t

0

(
|h(s)|2

H3/2(∂Ω) + |∂th(s)|2
H−1/2(∂Ω)

)
ds.

We remember that the embedding H1(0, t; H−1/2(∂Ω)) ∩ L2(0, t; H3/2(∂Ω))
→ C(0, t; H1/2(∂Ω)) is continuous (and compact) for all t > 0.

As usual, let (u1, d1) and (u2, d2) be two solutions of system (2.1) re-
spectively with forcing terms g1 and g2 and boundary conditions h1 and h2.
We will use δu

.
= u1 −u2 and δd

.
= d1 −d2 to denote the difference between

these two solutions and δg
.
= g1−g2, δh

.
= h1−h2 for the difference between

the non-autonomous terms. By considering the difference of the equations
solved by (u1, d1) and (u2, d2) we have:

∂tδu + (δu · ∇)u1 + (u2 · ∇)δu − ν∆δu

= −(∇δd)t∆d1 − (∇d2)t∆δd + g1 − g2

and

∂tδd + (u1 · ∇)δd + (δu · ∇)d2 − ∆δd = −(f(d1) − f(d2))

where δu and δd satisfy suitable Dirichlet boundary conditions and have
given initial value.

We now recall that the first equality holds in L2(0, T ; V∗) and the second
in L2(0, T ; L2(Ω)). We can therefore evaluate the first equation against the
test function δu and take the inner product (in L2) of the second with −∆δd.
We obtain:

1

2

d

dt
|δu|22 + 〈(δu · ∇)u1, δu〉 + ν|∇δu|22 =

−
〈
(∇δd)t∆d1, δu

〉
−
〈

(∇d2)t∆δd, δu
〉

+ 〈δg, δu〉

1

2

d

dt
|∇δd|22 − ((u1 · ∇)δd, ∆δd) − ((δu · ∇)d2, ∆δd) + |∆δd|22 =

(f(d1) − f(d2), ∆δd) + H1/2(∂Ω)〈∂νδd, ∂tδh〉H−1/2(∂Ω) .

Summing up, recalling identity (2.18), the estimate of lemma 2.1.3, and
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finally using Hölder’s and Sobolev’s inequalities we get:

1

2

d

dt

(
|δu|22 + |∇δd|22

)
+ ν|∇δu|22 + |∆δd|22

H
≤ |δu|24|∇u1|2 + |∇δd|4|∆d1|2|δu|4

+ |u1|4|∇δd|4|∆δd|2 +
2

ǫ2
|δd|2|∆δd|2

+ |δg|V∗ |∇δu|2 + |∂νδd|H1/2(∂Ω)|∂tδh|H−1/2(∂Ω)

S
≤ C|δu|2|∇δu|2|∇u1|2 + C|∇δd|1/2

2 |δd|1/2
H2 |∆d1|2|δu|1/2

2 |∇δu|1/2
2

+ C|u1|1/2
2 |∇u1|1/2

2 |∇δd|1/2
2 |δd|3/2

H2 +
C

ǫ2
|δd|2|∆δd|2

+ |δg|V∗ |∇δu|2 + C|δd|H2 |∂tδh|H−1/2(∂Ω).

We observe that, when uniqueness estimates are of concern, thanks to the
Poincarè inequality, the H2 norm of δd can be replaced by the L2 norm of
∆δd. In the general case we are treating now, the H2 norm can be easily
estimated as follows:

|δd|H2 ≤ |δď|H2 + |δd̊|H2

≤ C|δ∆ď|2 + C|δh|H3/2(∂Ω) ≤ C|δ∆d|2 + C ′|δh|H3/2(∂Ω).

We now repeatedly use Young’s inequality and deduce the following es-
timate:

1

2

d

dt

(
|δu|22 + |∇δd|22

)
+ ν|∇δu|22 + |∆δd|22

Y
≤ ν

6
|∇δu|22 +

C

ν
|∇u1|22|δu|22

+
ν

6
|∇δu|22 +

1

8
|∆δd|22 + C|∆d1|22|δu|22 + C|∆d1|22|∇δd|22

+
1

8
|∆δd|22 + C|u1|22|∇u1|22|∇δd|22

+
1

8
|∆δd|22 +

C

ǫ2
|∇δd|22 +

C

ǫ2
|δh|2

H1/2(∂Ω)

+
ν

6
|∇δu|22 +

3

2ν
|δg|2V∗ +

1

8
|∆δd|22 + C|∂tδh|2

H−1/2(∂Ω) + C|δh|2
H3/2(∂Ω).

After reordering we obtain the inequality:

d

dt

(
|δu|22 + |∇δd|22

)
+ ν|∇δu|22 + |∆δd|22

≤ C

(
1

ν
|∇u1|22 + |∆d2

1|2
)

|δu|22

C

(
|∆d1|22 + |u1|22|∇u1|22 +

1

ǫ2

)
|∇δd|22

3

ν
|δg|2V∗ + C|∂tδh|2

H−1/2(∂Ω) + C
(
1 + 1

ǫ2

)
|δh|2

H3/2(∂Ω).
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Neglecting the positive terms on the left hand side, we finally deduce:

d

dt

(
|δu|22 + |∇δd|22

)
+ ν|∇δu|22 + |∆δd|22

≤ C

(
1

ν
|∇u1|22 + |∆d2

1|2 + |u1|22|∇u1|22 +
1

ǫ2

)(
|δu|22 + |∇δd|22

)

+
3

ν
|δg|2V∗ + C|∂tδh|2

H−1/2(∂Ω) + C
(
1 + 1

ǫ2

)
|δh|2

H3/2(∂Ω).

If we apply Gronwall’s inequality to this last estimate we eventually ob-
tain (2.21).

Considering now the estimate just obtained, we notice that we have
proved Lipschitz continuous dependence on initial conditions. Moreover, if
δu(t0) = 0, ∇δd(t0) = 0, δg = 0 and δh = 0, we obtain δu = 0 and ∇δd = 0
a.e. t ≥ 0, x ∈ Ω. Since when studying uniqueness of solutions we have
δd|∂Ω = 0 for the “difference” problem, we have finally proved that δd = 0
a.e. t ≥ 0, x ∈ Ω that means uniqueness of solution for problem (2.1) if
Ω ⊂ R

2.

2.3 Strong solution in the 2D case

Having proved existence and uniqueness of weak solutions for system (2.1),
we are now ready to investigate existence and regularity of strong solutions.
We start by introducing the notion of strong solution for system (2.1).

Definition 2.3.1. A pair (u, d) is a strong solution for problem (2.1) if it is
a weak solution and moreover (u, d) ∈ L2(0, T ; (H∩H2)×H3), (∂tu, ∂td) ∈
L2(0, T ; H × H1), u(x, 0) = u0(x) in H1 and d(x, 0) = d0(x) in H2 and if:





∂tu(t) + (u(t) · ∇)u(t) − ν∆u(t) + ∇p(t) = −(∇d(t))T ∆d(t)g(t)

∇ · u(t) = 0

∂td(t) + (u(t) · ∇)d = ∆d − f(d(t))

|d(x, t)| ≤ 1

hold almost everywhere in Ω × (0, T ).

Our main objective is now to prove the following existence result whose
proof will occupy the remaining part of this chapter.

Theorem 2.3.1 (Strong existence). Let Ω ⊂ R
2 be a bounded regular do-

main6, let g ∈ L2
loc(0, T ; H) and h ∈ L2(0, T ; H5/2(∂Ω)) such that ∂th ∈

L2(0, T ; H1/2(∂Ω)) with |h| ≤ 1 a.e., let u0 ∈ V, d0 ∈ H2 with |d0| ≤ 1 a.e.
Then there exists a strong solution (u, d) of (2.1).

6Here Ω ∈ C2,1 is sufficient.
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We remark that, in the proof of this result, we should consider again the
approximate solutions obtained by the semi-Galerkin formulation (2.7) and
derive bounds (independent of m) on um and dm strong enough to justify
passing to the limit in (2.7). For simplicity, however, we will state only the
formal estimates leaving out other inessential technicalities.

We start by considering again lifting (2.4) and the lifted problem (2.8)
(without m s!). By using −∆u as a test function in the equation for the
velocity field u and remembering that in the 2D case 〈(u · ∇)u, ∆u〉 = 0,
we get:

1

2

d

dt
|∇u|22 + ν|∆u|22 ≤ |∇d|∞|∆d|2|∆u|2 + |g|2|∆u|2

S
≤ C|∇d|1/2

2 |∇d|1/2
H2 |∆d|2|∆u|2 + |g|2|∆u|2

Y
≤ ν

4
|∆u|22 + δ|d|2H3 +

C

δν2
|∇d|22|∆d|42 +

2

ν
|g|22. (2.22)

where δ will be determined later.
To get regularity estimates for the order parameter d we can take the

duality of the second equation in (2.8) with ∆(∆d̂ − f(d)). We note that,
since u|∂Ω = 0 and d̂|∂Ω = 0, from the lifted equation for the order parameter
we have (∆d̂−f(d))|∂Ω = 0 and therefore Poincarè’s inequality holds for the
test function now chosen. Integrating by parts and observing that boundary
terms vanish, after a few calculations we have:

1

2

d

dt
|∆d̂ − f(d)|22 + |∇(∆d̂ − f(d))|22

=
(
∂tf(d), ∆d̂ − f(d)

)
+
〈
(∇ut · ∇)d, ∇(∆d̂ − f(d))

〉

+
〈

∇∇d · u, ∇(∆d̂ − f(d))
〉

(2.23)

We now have to find bounds for every term on the right hand side of
this last equation. We start by observing that ∂tf(d) = ∇df(d) · ∂td. Re-
membering that |∇df(d)|∞ ≤ C because |d| < 1 by the maximum principle
(see lemma 2.1.3) and using again the lifted equation, we obtain:

−
(
∂tf(d), ∆d̂ − f(d)

)

= −
(
∇df(d)(∆d̂ − f(d)), ∆d̂ − f(d)

)
+
(
∇df(d)∆d̃, ∆d̂ − f(d)

)

+
(
∇df(d)(u · ∇)d, ∆d̂ − f(d)

)

Remember that under the regularity assumptions of this section we have
d̃ ∈ L∞(0, T ; H2) and that we can use the weak regularity estimates of the
previous sections u ∈ L∞(0, T ; L2) and d ∈ L∞(0, T ; H1). Therefore, by
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proceeding as usual, we get:

−
(
∂tf(d), ∆d̂ − f(d)

) H
≤ C|∆d̂ − f(d)|22 + C|∆d̃|2|∆d̂ − f(d)|2

+ C|u|∞|∇d|2|∆d̂ − f(d)|2
S
≤ C(1 + |∆d̂ − f(d)|22 + |u|1/2

2 |∆u|1/2
2 |∇d|2|∆d̂ − f(d)|2)

Y
≤ ν

4
|∆u|22 + C|∆d̂ − f(d)|22 + C

(
1 +

1

ν

)

Likewise we can bound the second term in the right hand side of equa-
tion (2.23):

〈
(∇ut · ∇)d, ∇(∆d̂ − f(d))

〉 H
≤ |∇u|4|∇d|4|∇(∆d̂ − f(d))|2

S
≤ C|∇u|1/2

2 |∆u|1/2
2 |∇d|1/2

2 |∇d|1/2
H1 |∇(∆d̂ − f(d))|2

Y
≤ 1

4
|∇(∆d̂ − f(d))|22 +

ν

4
|∆u|22 +

C

ν
|d|4H2 +

C

ν
|∇u|42.

Proceeding similarly for the third and last term, we have:

〈
∇∇d · u, ∇(∆d̂ − f(d))

〉 H
≤ |d|W2,4 |u|4|∇(∆d̂ − f(d))|2

S
≤ C|d|1/2

H2 |d|1/2
H3 |u|1/2

2 |∇u|1/2
2 |∇(∆d̂ − f(d))|2

Y
≤ 1

4
|∇(∆d̂ − f(d))|22 + δ|d|2H3 +

C

δ
|d|4H2 +

C

δ
|∇u|42.

where δ > 0 will be determined in a few passages.
We now gather all the results obtained in this section. Summing up esti-

mates (2.22) and (2.23) and using the last three inequalities, after reordering
all terms we get:

1

2

d

dt

(
|∇u|22 + |∆d̂ − f(d)|22

)
+

ν

4
|∆u|22 +

1

2
|∇(∆d̂ − f(d))|22

≤ 2δ|d|2H3 +
C

δν2
|∆d|42 + C|∆d̂ − f(d)|22

+ K|d|4H2 +
2

ν
|g|22 + C

(
1 +

1

ν

)
+ K|∇u|42 (2.24)

where we have set K = C(1 + 1/ν + 1/δ) for simplicity reasons.
Recalling the triangle inequality, we can easily bound the norms |d|Hi ,

with i = 2, 3. In particular we have:

|d|2H2 ≤ 2|d̂|2H2 + 2|d̃|2H2 ≤ C|∆d̂|22 + 2|d̃|2H2

≤ C|∆d̂ − f(d))|22 + C|f(d)|22 + 2|d̃|2H2

≤ C|∆d̂ − f(d))|22 + C
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and

|d|2H3 ≤ 2|d̂|2H3 + 2|d̃|2H3 ≤ C|∇∆d̂|22 + C|∆d̂|22 + 2|d̃|2H3

≤ C|∇(∆d̂ − f(d))|22 + C|∇f(d)|22 + C|∆d̂|22 + 2|d̃|2H3

≤ C|∇(∆d̂ − f(d))|22 + 2|d̃|2H3 + C

where in the last passage we have used the Poincarè inequality which holds
for ∆d̂ − f(d).

This last estimate allows us to determine the parameter δ previously
introduced: we chose δ < 1

4 so small that 2δ|d|2
H3 ≤ 1

4 |∇(∆d̂−f(d))|22 +O.T.
and we observe that δ depends only on the domain Ω and on the boundary
data h. Using these bounds in (2.24) we finally obtain:

1

2

d

dt

(
|∇u|22 + |∆d̂ − f(d)|22

)
+

ν

4
|∆u|22 +

1

4
|∇(∆d̂ − f(d))|22

≤ K̃2|∆d̂ − f(d)|42 + K̃1|∇u|42 + |d̃|2H3 +
2

ν
|g|22 + K̃. (2.25)

Setting A(t) = |∇u(t)|22 + |∆d̂(t)−f(d(t))|22, this inequality can be rewritten
as:

d

dt
A(t) ≤ K̃2A2(t) + |d̃|2H3 +

2

ν
|g|22 + K̃ (2.26)

Thanks to estimate (2.19) we have A ∈ L1(0, T ) for all T > 0. We can
therefore apply Gronwall’s inequality and get:

|∇u(t)|22 + |∆d̂(t) − f(d(t))|22
≤
(

|∇u0|22 + |f(d0)|22 + K̃t +

∫ t

0
|d̃(s)|2H3 ds +

2

ν

∫ t

0
|g(s)|22 ds

)

eK̃2
∫ t

0
|∇u(s)|22+|∆d̂(s)−f(d(s))|22 ds

from which we easily prove that u ∈ L2(0, T ; H2) ∩ L∞(0, T ; H1) and d ∈
L2(0, T ; H3) ∩ L∞(0, T ; H2) for all T > 0 as claimed.

With these results we have completed the study of the well-posedness
of model (2.1). In the next chapters we will continue our analysis of equa-
tion (2.1) by studying the long term behavior of solutions and focusing on the
existence and properties of attractors for the corresponding non-autonomous
dynamical system.



Chapter 3
Global Attractors
(after Chepyzhov and Vishik)

I
n this chapter we will study the existence of a global attractor for sys-
tem (2.1). We will follow the approach of Chepyzhov and Vishik (see [6,
Part 2]) as developed for less regular forcing terms by Lu et al. in [25]

and [26].
We start by recalling some basic notions for autonomous dynamical sys-

tems which will be useful when studying the non-autonomous case. We will
try to cast these results in a rather general setting, avoiding, when possi-
ble, the use of metric notions. Next we will quickly resume Chepyzhov and
Vishik’s results in order to emphasize the differences with respect to the new
approach by Lu. We will conclude this chapter by applying these results to
system (2.1).

3.1 Autonomous global attractors in Hausdorff

spaces

The theory of autonomous global attractors seems to be cast in its outmost
generality when stated for semigroups acting on Hausdorff spaces (see [6,
chapter XI]). With this approach we can easily state the main results on the
existence of a global attracting set under very weak hypothesis that apply
in a wide variety of situations arising from applications. Actually, we will
be able to obtain the existence of the global attractor for groups acting on
Banach spaces endowed with various topologies (both strong and weak).
We also remind that the much quicker and common approach to attracting
sets through metric space cannot be applied to weak topologies of Banach
spaces which are not metrizable (see, for example, [33]). For a more classical
approach the reader is referred to, e.g., [1, Chapter 2] or [17, Chapter 3].

39
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We begin by recalling some general facts about Hausdorff spaces (see [5]
for a complete presentation of this subject).

Definition 3.1.1. Let X be a topological space. If for any two distinct
points x, y ∈ X there exists a neighbourhood V of x and a neighbourhood
W of y such that V ∩W = ∅, X will be said to satisfy the second separability
axiom, and we will call X a Hausdorff space.

Notation. In the following of this section X will always indicate a Hausdorff
space, unless otherwise explicitly stated.

We now define semigroups. Informally speaking, a semigroup is a one-
dimensional family of maps parameterized by a “time gap” variable δt which
describes the evolution of a certain system after a time δt.

Definition 3.1.2. A family of mappings S(t) : X → X defined on a topolog-
ical space X and depending on a real parameter t ≥ 0 is called a semigroup
acting on X if

• the semigroup identity holds

S(t1)S(t2) = S(t1 + t2) ∀t1, t2 ≥ 0

• the fixed time condition S(0) = Id is verified.

Notation. In the sequel we will denote simply by {S(t)} a semigroup acting
on X.

Absorbing and attracting sets are the next two important notions in the
analysis of long time behaviour of dynamical systems we are now going to
introduce. These concepts translate in a mathematical rigourous setting the
notion of dissipation and loss of energy usually associated with the evolution
of open physical systems. We observe that the notion of absorbing set is not
strictly necessary in the development of the abstract theory here presented.
However, it will result very useful in applications.

Definition 3.1.3. A set B0 ⊂ X absorbs a set B ⊂ X with respect to the
semigroup {S(t)} if there exists a time t0 = t0(B) > 0 such that S(t)B ⊂ B0

for all t ≥ t0.

Definition 3.1.4. A set K ⊂ X attracts a set B ⊂ X with respect to the
semigroup {S(t)} if for every neighbourhood V of K, there exists a time
t0 = t0(B, V ) such that S(t)B ⊂ V for all t ≥ t0.

Remark. Obviously an absorbing set for B also attracts B. Moreover, if K
attracts (absorbs) B, then any set V ⊃ K attracts (absorbs) B.
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We now introduce a description of the ultimate evolution of a certain set
under the action of the semigroup of interest. The basic idea is to focus on
those states of the system which are asymptotically relevant starting from
a given set of initial data. To fix ideas, consider a point mass whose motion
is subject to a quadratic potential and to a dissipative drag force. Intuition
tells us that the fate of the system is to asymptotically reach a rest state
with the point mass lying at the point of minimum potential. The notion of
ω-limit set, will formalize this natural idea.

Definition 3.1.5. The set

ω(B)
.
=
⋂

t≥0

⋃

h≥t

S(h)B

is the ω-limit set of B ⊂ X.

We can now introduce the central notion of this chapter: the global
attractor. Always stressing on the intuitive point of view, a global attractor
of a system contains the descriptions of all the intrinsic motions of a physical
system which can be observed after all transient dynamics have decayed
starting from any set of initial conditions.

Definition 3.1.6. A set A ⊂ X is called the global attractor or, more
simply, attractor of the family B of subsets of X if:

• A is compact;

• A attracts every set in B;

• A is contained in any other compact attracting set for the family B

(minimality property).

Remark. The minimality property ensures uniqueness of the attractor. In
less general situations, the minimality property can be substituted by the
strict invariance of the attractor: S(t)A = A for all t ≥ 0 (see, for example [1,
Chapter 2] or [6, Chapter II]). Moreover, in those contexts one can also show
that the global attractor is also the maximal compact invariant subset of X.

There exists a strong connection between global attractors and ω-limit
sets which can be summarized with the following to theorems (see [6, Chap-
ter XI] for a detailed proof of these results). We stress on the fact that no
regularity assumption is needed on the semigroup in order to guarantee the
existence of the attractor.

Theorem 3.1.1. Let K ⊂ X, with X a Hausdorff space, be a compact
attracting set for the family B of subsets of X under the action of the semi-
group S(t). Then B has the attractor A:

A =
⋃

B∈B

ω(B).
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Theorem 3.1.2. Let the assumption of theorem 3.1.1 hold. If in addition
the semigroup {S(t)} is continuous (that is, for every t ≥ 0 S(t) : X → X
is a continuous map), then the attractor A is also strictly invariant.

We now show how these rather abstract results can be applied in the more
familiar setting of Banach spaces endowed with strong or weak topologies.

Usually, one wishes to study the fate of bounded sets of initial conditions
in some metric vector space (for example L2). This simply amounts to
considering all the bounded sets of initial conditions as the family B of
subsets of X previously introduced. In this setting it is easy to give a more
explicit description of the structure of the global attractor. We still need a
couple of definitions.

Definition 3.1.7. Let X be a Banach space. A curve γ : R → X is said
to be a complete trajectory of the semigroup {S(t)} if S(t)γ(s) = γ(t + s),
for all t ≥ 0 and for all s ∈ R. A bounded complete trajectory is a complete
trajectory such that supt∈R |γ(t)|X < ∞.

Definition 3.1.8. The kernel K of {S(t)} is the union of all bounded com-
plete trajectories of {S(t)}. The kernel section at time t is the set:

K(t)
.
= {γ(t) | γ ∈ K}.

We can now state theorem 3.1.2 in the particular form we will need when
dealing with Banach spaces.

Theorem 3.1.3. Let X be a Banach space endowed with an Hausdorff topol-
ogy (which is not necessarily the one induced by the natural norm) and let
{S(t)} be a continuous semigroup acting on X. Assume that there exists a
compact set K ⊂ X attracting all bounded (in the natural norm) subsets of
X and that K is bounded in X. Then there exists a unique global attractor
A ⊂ X which is also bounded and which verifies:

A = K(t) = K(0) ∀t ∈ R.

Notation. In the following we will write B(X) to denote the family of all
bounded subsets of the Banach space X.

3.2 The non-autonomous case - Chepyzhov and

Vishik’s theory

We now wish to extend the theory developed in the previous section to non-
autonomous dynamical systems. In this section we will restrict the exposi-
tion of the abstract theory to the more usual setting of Banach spaces. As
reference problem we will consider the non-autonomous evolution equation:

∂tu = A(u, t) ∀t ∈ R (3.1)
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completed by suitable initial (and boundary) conditions. For example, if
A(u, t) = ∆u+f(t), one gets the usual heat equation with a time-dependent
source term.

We will usually suppose that the time dependency can be completely
described through a finite set of functions that we shall denote by σ(t). We
will call σ(t) the time symbol or simply the symbol of equation (3.1). In
order to emphasize this time dependence, we will also write:

∂tu = Aσ(t)(u) ∀t ∈ R, σ ∈ Σ

instead of (3.1), where Σ is the set of all symbols of interest (we will shortly
discuss this aspect in detail). Considering again the previous example, the
time symbol of the just introduced heat equation will simply be f(t).

First of all we need some definitions in order to deal with families of
(solution-) operators which now have a much richer structure than before.
The central notion will be that of processes.

Definition 3.2.1. A two parameter family of mappings {U(t, τ)}, U(t, τ) :
X → X (where X is a Banach space) is said to be a process in X if:

• the process identity holds:

U(t, s)U(s, τ) = U(t, τ) ∀t, s ≥ 0, ∀τ ∈ R

• the fixed time condition U(τ, τ) = Id is verified for all τ ∈ R.

We now need to introduce some notions of dissipativeness also in this
context. However, here the problem is much more delicate since many defi-
nitions of absorbing and attracting sets are possible depending on the uni-
formity properties one wishes to guarantee (for example, with respect to the
symbols or to time). Under suitable hypothesis, these uniformity properties
are, however, equivalent (see for example [6, Chapter 4]).

Definition 3.2.2. A set B0 ⊂ X is said to be uniformly (with respect to
σ ∈ Σ) absorbing for the family of processes {Uσ(t, τ)}, σ ∈ Σ if for any
τ ∈ R and every B ∈ B(X) there exists an absorbtion time t0 = t0(τ, B) ≥ τ
such that ∪σ∈ΣUσ(t, τ)B ⊂ B0 for all t ≥ t0.

Definition 3.2.3. A set K ⊂ X is uniformly (w.r.t. σ ∈ Σ) attracting for
the family of processes {Uσ(t, τ)}, σ ∈ Σ if it satisfies, for any fixed τ ∈ R

and B ∈ B(X), the following relation:

lim
t→∞

sup
σ∈Σ

distX(Uσ(t, τ)B, K) = 0

Notation. We will write distX(A, B) to indicate the usual Hausdorff semi-
distance between subsets of a metric space (X, dX ):

distX(A, B) = sup
a∈A

inf
b∈B

dX(a, b).
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Definition 3.2.4. A family of processes possessing a compact uniformly
(w.r.t. σ ∈ Σ) attracting set will be said to be uniformly asymptotically
compact.

As in the preceding section, we can now define the (uniform) ω-limit set
of a set B ⊂ X and the (uniform) global attractor for a family of processes.

Definition 3.2.5. The set:

ωτ,Σ(B) =
⋂

t≥τ

⋃

σ∈Σ

⋃

s≥t

Uσ(s, τ)B
X

is the uniform (w.r.t. σ ∈ Σ) ω-limit set of B ⊂ X.

Definition 3.2.6. A closed set AΣ ⊂ X is the uniform (w.r.t. σ ∈ Σ)
attractor of the family of processes {Uσ(t, τ)}, σ ∈ Σ if:

• AΣ is uniformly (w.r.t. σ ∈ Σ) attracting (attracting property);

• AΣ is contained in every other closed uniformly attracting set (mini-
mality property).

Remark. We observe that in general ∪σ∈ΣAσ ⊆ AΣ and that strict inclusion
may be verified. See, for example [6, Section IV.4].

As in the previous section, the following existence result follows under
very weak assumptions.

Theorem 3.2.1. A uniformly (w.r.t. σ ∈ Σ) asymptotically compact family
of processes {Uσ(t, τ)} possesses the uniform (w.r.t σ ∈ Σ) attractor AΣ.
Moreover, AΣ is compact in X and, if B0 is a closed bounded uniformly
(w.r.t. σ ∈ Σ) absorbing set for {Uσ(t, τ)}, then:

AΣ =
⋃

τ∈R

ωτ,Σ(B0).

In order to better understand how the autonomous theory can be ex-
tended to the non-autonomous case, we shortly digress and consider the
well-known finite dimensional case. In this setting, one possible way to
deal with the time dependent terms is to consider an extended phase space.
Consider a generic first order non-autonomous ODE:

d

dt
y(t) = F (y, t). (3.2)

It is easily seen that this equation (3.2) is equivalent to the autonomous
extended system to which apply all the results we already know:

{
d
dsy = F (y, t)
d
ds t = 1
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In an analogous way, when dealing with infinite dimensional non-au-
tonomous systems we can think of defining a semigroup on an extended
phase space. If the symbol space Σ is invariant under time-shifts:

T (t) : Σ → Σ σ(s) 7→ σ(t + s),

then we can define the so called skew product semigroup:

S(t) : X ×Σ → X ×Σ, S(t)(u, σ) = (Uσ(t, 0), T (t)σ), ∀t ≥ 0. (3.3)

As for semigroups, we can introduce a notion of kernel also for processes.

Definition 3.2.7. A curve u(s), s ∈ R is a complete trajectory of the process
{U(t, τ)} if

U(t, τ)u(τ) = u(t) ∀t, τ ∈ R, t ≥ τ.

Definition 3.2.8. The kernel K of the process {Uσ(t, τ)} is the set of all
its bounded complete trajectories.

We still need a continuity hypothesis in order to apply theorem 3.1.3 to
the extended semigroup.

Definition 3.2.9. A family of processes {Uσ(t, τ)}, σ ∈ Σ acting in X is
said to be (X × Σ, X)-continuous if for all fixed t, τ ∈ R, t ≥ τ the mapping
(u, σ) 7→ Uσ(t, τ)u is continuous.

Theorem 3.1.3 then easily extends to the following non-autonomous ver-
sion [6, theorem IV.5.1].

Theorem 3.2.2. Let {Uσ(t, τ)}, σ ∈ Σ be a uniformly (w.r.t. σ ∈ Σ)
asymptotically compact and (X × Σ, X)-continuous family of processes act-
ing in X, let K be a compact uniformly (w.r.t. σ ∈ Σ) attracting set for
{Uσ(t, τ)}, let Σ be a compact metric space and let {T (t)} be a continuous
invariant (T (t)Σ = Σ) semigroup on Σ satisfying the translation identity:

Uσ(t + s, τ + s) = UT (s)σ(t, τ) ∀σ ∈ Σ, t, s, τ ∈ R, t ≥ τ, s ≥ 0. (3.4)

Then the skew product semigroup {S(t)} defined by (3.3) possesses the com-
pact attractor A = ω(K × Σ) which is strictly invariant with respect to
{S(t)}: S(t)A = A. Moreover:

• ΠXA = AΣ is the uniform (w.r.t. σ ∈ Σ) attractor of the family of
processes {Uσ(t, τ)}, σ ∈ Σ (here ΠX : X × Σ → X is the natural
projection of the product space X × Σ on the first factor);

• ΠΣA = Σ (here ΠΣ : X × Σ → Σ is the natural projection on the
second factor);
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• the global attractor satisfies:

A =
⋃

σ∈Σ

Kσ(0) × {σ};

• the uniform attractor satisfies:

AΣ =
⋃

σ∈Σ

Kσ(0)

where Kσ(0) is the section at time t = 0 of the kernel Kσ of the process
{Uσ(t, τ)}.

3.3 Weaker symbol compactness

Although theorem 3.2.2 can be useful in many applications, it has some
drawbacks. Most importantly compactness of the symbol space is required
and this reduces greatly the kind of forcing terms (external forces in physical
problems) one can consider. The range of applicability is actually reduced
to the so called translation compact function, that is functions whose trans-
lation hull is compact in the symbol space.

Definition 3.3.1. The hull of a function f : R → E is the set:

H(f) = {T (s)f | s ∈ R}Ξ

where E and Ξ are metric spaces such that E ⊂ Ξ.

Common choices for the enveloping space Ξ are C(R, E) or Lp(R, E). In
these settings translation compact functions have been widely studied. On
behalf of completeness we recall some characterization theorems.

Proposition 3.3.1. A function f is translation compact in C(R, E) if and
only if:

• the set {f(t) | t ∈ R} is precompact in E;

• f is uniformly continuous on R.

Proposition 3.3.2. A function f is translation compact in Lp
loc(R, E) if

and only if:

• for any h ∈ R the set {∫ t+h
t f(s) ds | t ∈ R} is precompact in E;

• the function:

y 7→ sup
t∈R

∫ t+1

t
|f(s) − f(s + y)|pE ds

is uniformly continuous on R.
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The interested reader can find a more detailed discussion of translation
compact functions in [6, Chapter V] and many interesting compactness re-
sults in [34].

Usually, in applications, one wants to construct an attractor in the strong
topology of a certain Banach space (for example L2 or H1). The necessity of
considering translation compact functions is a somewhat strong limitation
and leaves out of the analysis some kinds of forcing terms which can be
interesting in applications. For example, if E = R, any forcing function
which oscillates at an arbitrary high frequency cannot be considered.

To obtain asymptotic results for larger classes of symbols, one could
ideally work in the weak topology of the Banach space of interest. However,
this kind of results is usually too weak to be of practical interest. A possible
way around this problem is given by the recent results of Lu and coworkers
(see [25] and [26]). This extension of the theory of Chepyzhov and Vishik
consists in optimally weakening the asymptotic compactness hypothesis and
then considering the interaction of strong and weak topologies in order to
prove that the attractor in the weak topology is indeed the sought attractor
in the norm convergence.

We start by slightly weakening the uniform asymptotic compactness of
the family of processes. This can be done by introducing the Kuratowski
measure of noncompactness (see [10] for more details and properties).

Definition 3.3.2. Let B be a bounded subset of some metric space E. Its
Kuratowski measure of noncompactness is defined by:

α(B)
.
= inf{δ > 0 | B admits a finite cover by sets of diameter ≤ δ}.

Definition 3.3.3. A family of processes {Uσ(t, τ)}, σ ∈ Σ is uniformly
(w.r.t. σ ∈ Σ) ω-limit compact if for any τ ∈ R and any set B ∈ B(X) the
set:

Bt =
⋃

σ∈Σ

⋃

s≥t

Uσ(s, τ)B

is bounded for every t and limt→∞ α(Bt) = 0.

Remark. We observe that although a uniformly (w.r.t. σ ∈ Σ) asymptoti-
cally compact process is uniformly ω-limit compact, the converse is not in
general true. In order to fix ideas, consider the family of sets in R

2:

Bt = (0, 1) × ((2t)−1, t−1)
⋃

{1} × [−1, 1].

Then ω(B) = {1}× [−1, 1] and we have α(Bt) = 0, but distR2(Bt, ω(B)) = 1
as t → ∞.

With this weaker notion of asymptotic compactness we can state a more
strict existence result (see [25, Theorem 2.2]).
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Theorem 3.3.3. Let {Uσ(t, τ)}, σ ∈ Σ be a family of processes and let Σ
be a symbol space invariant under the action of the time shift operator T (t)
such that the translation identity (3.4) holds. Then the process {Uσ(t, τ)}
possesses the (compact) uniform (w.r.t. σ ∈ Σ) attractor AΣ if and only if:

• {Uσ(t, τ)} has a uniformly (w.r.t. σ ∈ Σ) absorbing set B0;

• {Uσ(t, τ)} is uniformly (w.r.t. σ ∈ Σ) ω-limit compact.

As before, by adding a suitable continuity hypothesis we can obtain also
some information on the structure of the attractor (see [25, Section 2.3]).

Theorem 3.3.4. Let {Uσ(t, τ)}, σ ∈ Σ be a uniformly (w.r.t. σ ∈ Σ) ω-
limit compact and (X × Σ, X)-weakly continuous family of processes acting
in X, let B0 be a weakly compact (i.e. bounded) uniformly (w.r.t. σ ∈ Σ)
weakly attracting set for {Uσ(t, τ)}, let Σ be a weakly compact subset of some
Banach space and let {T (t)} be a weakly continuous invariant (T (t)Σ = Σ)
semigroup on Σ satisfying the translation identity:

Uσ(t + s, τ + s) = UT (s)σ(t, τ) ∀σ ∈ Σ, t, s, τ ∈ R, t ≥ τ, s ≥ 0.

Then the skew product semigroup {S(t)} defined by (3.3) possesses the com-
pact attractor A = ω(B0 × Σ) (in the weak topology) which is strictly invari-
ant with respect to {S(t)}: S(t)A = A. Moreover:

• ΠXA = AΣ is the uniform (w.r.t. σ ∈ Σ) attractor (in the strong
topology!) of the family of processes {Uσ(t, τ)}, σ ∈ Σ;

• ΠΣA = Σ;

• the global attractor satisfies:

A =
⋃

σ∈Σ

Kσ(0) × {σ};

• the uniform attractor satisfies:

AΣ =
⋃

σ∈Σ

Kσ(0) = ω0,Σ(B0)

where Kσ(0) is the section at time t = 0 of the kernel Kσ of the process
{Uσ(t, τ)}.

We now state a useful result that gives us a criterion to prove the uniform
ω-limit compactness for a given process (see [25, Theorem 2.3]).

Proposition 3.3.5. Let X be a uniformly convex Banach space (see [4],
any Lp space with p 6= 1, ∞ will be suitable). Then the family of processes
{Uσ(t, τ)}, σ ∈ Σ is uniformly (w.r.t. σ ∈ Σ) ω-limit compact if and only if
for any fixed τ ∈ R, B ∈ B(X) and ǫ > 0 there exists t0 = t0(τ, B, ǫ) ≥ τ
and a finite-dimensional subspace X1 of X such that:
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• Π (∪σ∈Σ ∪t≥t0 Uσ(t, τ)B) is bounded;

• |(Id −Π) (∪σ∈Σ ∪t≥t0 Uσ(t, τ)u) |X ≤ ǫ, ∀u ∈ B

where Π : X → X1 is a bounded projector.

Before concluding this section, we introduce the class of functions (which
are not translation compact) for which we will prove the existence of uniform
attractors for system (2.1) in the rest of this chapter. See [25] and [26] for
a more detailed treatment.

Definition 3.3.4. Let E be a Banach space. A function f ∈ L2
loc(R; E) is

normal if for every ǫ > 0 there exists η > 0 such that:

sup
t∈R

∫ t+η

t
|ϕ(s)|2E ds ≤ ǫ.

With L2
n(R; E) we shall indicate the space of all normal functions taking

values in E.

Remark. We note that normal functions are obviously not necessary transla-
tion compact whilst all translation compact functions are also normal. This
new class is a proper subset of the set of all translation bounded functions
(i.e. weakly translation compact functions).

3.4 Back to our system: bounded absorbing sets

In order to apply the abstract theory of the previous sections to the sim-
plified model of liquid crystals we are studying, we need some preliminary
estimates. Our first goal will be to find some absorbing sets for the trajec-
tories of our system in various function spaces. Most of the results of this
section are simple consequences of the estimates obtained in the previous
chapter which can be given a deeper meaning.

First of all, we have to define the symbol spaces and the phase spaces
we will consider in the following sections. We set:

Σ = H(g) × H(h) (3.5)

where H(f) is the (weak) hull of f defined as follows.

Definition 3.4.1. The set:

HT (f)
.
= {T (h)f | h ∈ R}T

is the hull of f in the topology T .

In particular, in this chapter we will consider two different symbol spaces,
one with optimal regularity conditions and one with stronger regularity as-
sumptions. Actually we will use:
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• a “weaker” symbol space Σ0, defined as in (3.5) considering a forc-
ing term g ∈ L2

n(R, V∗) and boundary conditions such that h ∈
L2

n(0, ∞; H3/2(∂Ω)) and ∂th ∈ L2
n(0, ∞; H−1/2(∂Ω)).

• a more regular symbol space Σ1 for which we suppose g ∈ L2
n(R, H),

h ∈ L2
n(0, ∞; H5/2(∂Ω)) and ∂th ∈ L2

n(0, ∞; H1/2(∂Ω)).

We now have to define an appropriate phase space. By reviewing the
“weak” existence result of the previous chapter (theorem 2.1.1), we see that
the natural phase space for our system is H × H1(Ω) with the additional
constraint |d| ≤ 1 a.e. x ∈ Ω which follows from the weak maximum
principle stated above.

Finally, thanks again to theorem 2.1.1 and to the dissipation result which
follows, we can also define the process associated with the solution operator
of equation (2.1) acting on the phase space H × H1(Ω) indexed by a symbol
σ ∈ Σ0 (or σ ∈ Σ1).

Theorem 3.4.1. Under the regularity assumptions of theorem 2.1.1, sys-
tem (2.1) admits a uniformly (w.r.t. σ ∈ Σ0) absorbing set B0 ⊂ H × H1:

B0 = {(u, d) ∈ H × H1 | |u|22 + |d|2H1 ≤ ρ0}

where

ρ0 = |Ω| + 2
(

8
27C0ǫ4 + eC0

eC0−1

(
1
ν |g|2L2

b
(V∗) + CΩ|∂th|2L2

b
(H−1/2)

)
+ C|h|H1/2

)
.

Moreover we have:

∫ t+1

t
|u(s)|2V ds +

∫ t+1

t
|d(s)|2H2 ds ≤ ρ1

with
ρ1 = max{1, ν}

(
2ρ0 + CΩ|h|2L2

b
(R,H3/2)

)
.

Proof. Consider estimate (2.20) again. We only need to show that the two
integrals are bounded if (g, h) ∈ Σ0. Actually this can be easily shown
under more general assumptions, namely it is enough that g and h are L2

translation bounded. In the general case we have the following definition
(see [6, Section V.4]).

Definition 3.4.2. A function ϕ ∈ L2
loc(R; E) (where E is a Banach space)

is said translation bounded if

|ϕ|2
L2

b
(R,E)

.
= sup

t∈R

∫ t+1

t
|ϕ(s)|2E ds < ∞.

The function space made up by all translation bounded functions with values
in E will be indicated with L2

b(R; E).
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The sought uniform estimate then simply is:

e−C0n
∫ n

0
eC0s|g(s)|2V∗ ds = e−C0n

n−1∑

i=0

∫ i+1

i
eC0s|g(s)|2V∗ ds

≤ e−C0n
n−1∑

i=0

eC0(i+1)
∫ i+1

i
|g(s)|2V∗ ds

≤ e−C0neC0 |g|2L2
b
(V∗)

n−1∑

i=0

eC0i ≤ eC0

eC0 − 1
|g|2L2

b
(V∗) (3.6)

Recalling a standard elliptic regularity estimate (cf. (2.16)) |∇d̊|2 ≤ |h|H1/2

and remembering that, under the present hypothesis, h is continuous with
values in H1/2(∂Ω), we obtain the absorbing set B0 as claimed. We will
denote by t0(B) the absorbtion time of the bounded set B in B0.

In order to prove the second part of theorem 3.4.1, we only need to
integrate equation (2.19) from t to t+1 with t sufficiently large (it is enough
to consider t ≥ t0). This immediately gives the estimate we claimed.

Analogously, starting from the result of section 2.3, we can prove the
existence of absorbing sets bounded in the stronger topology of V × H2.

Theorem 3.4.2. Under the regularity assumptions of theorem 2.3.1, sys-
tem (2.1) admits a uniformly (w.r.t. σ ∈ Σ1) absorbing set B2 ⊂ V × H2:

B2 = {(u, d) ∈ V × H2 | |u|2H1 + |d|2H2 ≤ ρ2}

and we have:
∫ t+1

t
|u(s)|2H2 ds +

∫ t+1

t
|d(s)|2H3 ds ≤ ρ3

where ρ2 and ρ3 depend only on ν, ǫ, Ω, |h|L2
b
(R,H5/2), |∂th|L2

b
(R,H1/2) and

|g|L2
b
(R,L2).

Proof. Consider estimate (2.26). If we use the uniform Gronwall’s inequality
(see, for example, [38, Chap. 3, Sec. 1.1.3]), we can deduce for all t ∈ R:

|∇u(t + ǫ)|22 + |∆d̂(t + ǫ) − f(d(t + ǫ))|22
≤
(

1

ǫ

∫ t+ǫ

t
A(s) ds + Kǫ +

∫ t+ǫ

t
|d̃|2H3 ds +

2

ν

∫ t+ǫ

t
|g(s)|22 ds

)

· e
∫ t+ǫ

t
A(s) ds = C(ǫ).

where A(t) = |∇u(t)|22 + |∆d̂(t)− f(d(t))|22 as we set in the previous chapter
satisfies A ∈ L1(0, T ) for all T > 0. By choosing ǫ = 1 and by recalling the
regularity estimate (2.6) for the lifting solution d̃, we then easily deduce the
existence of the strong absorbing set B2.
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As in the proof of theorem 3.4.1, in order to obtain the second part
of the theorem we only need to integrate estimate (2.25) from t to t + 1
with t sufficiently large (again it is sufficient to suppose t greater than the
absorbtion time in B2).

We end this section introducing another absorbing set which will prove
to be useful when dealing with exponential attractors in the next chapter.

Corollary 3.4.3. Under the regularity assumptions of theorem 2.3.1, sys-
tem (2.1) admits the following uniform (w.r.t. σ ∈ Σ1) long-term bound:

|∂td|22 ≤ ρ4

where

ρ4 = Cρ0ρ2 + 3ρ2
2 +

4

9ǫ4
|Ω|.

Proof. This estimate can be obtained directly from the equation for the
order parameter field in (2.1). Indeed we have:

|∂td|22 ≤ 3|(u · ∇)d|22 + 3|∆d|22 + 3|f(d)|22
≤ 3|u|24|∇d|24 + 3|∆d|22 + 3|f(d)|22
≤ C|u|2|∇u|2|∇d|2|d|H2 + 3|∆d|22 + 3|f(d)|22
≤ Cρ0ρ2 + 3ρ2 +

4

9ǫ4
|Ω|

which is the desired result.

3.5 A smooth attractor

The goal of this section is to apply theorem 3.3.4 to system (2.1) under
strong regularity assumptions. We will consider the less regular setting in
the next section.

First of all we have to define the symbol space Σ for our problem. In the
following we will consider Σ = Σ1 as defined in the previous section. The
aim of this section is to prove the following result.

Theorem 3.5.1. Given g ∈ L2
n(R, H), h ∈ L2

n(R, H5/2(∂Ω)), and ∂th ∈
L2

n(R, H1/2(∂Ω)), the process {U(g,h)(t, τ)} generated by the solution opera-
tor of problem (2.1) possesses a compact uniform (w.r.t. (g, h) ∈ Hw(g) ×
Hw(h)) attractor AH(g)×H(h) in V × H2 which uniformly (w.r.t. (g, h) ∈
Hw(g)×Hw(h)) attracts the bounded sets in H×H1 in the norm of H×H1.
Moreover we have:

AH(g)×H(h) =
⋃

(g,h)∈Hw(g)×Hw(h)

K(g,h)(0)

where K(g,h) is the kernel of the process {U(g,h)(t, τ)} and where K(g,h) is
nonempty for all (g, h) ∈ Hw(g) × Hw(h).
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Remark. From this result we deduce that all the solution of (2.1) belonging
to the kernel of the solution process are strong and globally bounded. We
therefore deduce that system (2.1) holds a.e. on the kernel.

We observe that these regularity assumptions on the boundary term h

immediately imply that h ∈ L∞(0, ∞; H3/2(∂Ω)).
Actually, with the above assumptions, most of the hypothesis of theo-

rem 3.3.4 are automatically verified. In order to get the result just stated,
we will have only to prove ω-limit compactness and weak continuity of the
process defined by the solution operator.

We start by proving ω-limit compactness for our system. To obtain this
result we will consider again the lifted system (2.17) (always forgetting all
m’s). First of all, however, we have to prove that the lifted term ∂t∇d̊ is
bounded and in particular normal itself under these assumptions. From the
problem (2.16) tested against a function v ∈ H1(Ω), a simple integration by
parts yields: ∫

Ω
∇d̊ : ∇v =

∫

∂Ω
∂ν d̊ · v.

By choosing v = d̊ we eventually get:

|∇d̊|22 ≤ |∂ν d̊|H−1/2 |h|H1/2

≤ C|∇d̊|2|h|H1/2 + C |̊d|2|h|H1/2

≤ 1

2
|∇d̊|22 + C

(
1 + |h|2

H1/2

)
.

We then easily obtain:

sup
t∈R

∫ t+ǫ

t
|∇d̊|22 ≤ C sup

t∈R

∫ t+ǫ

t
|h|2

H1/2 + Cǫ.

If we apply this last estimate to ∂td̊ instead of d with ∂th substituted to h,
we have then proved that ∂t∇d ∈ L2

n(R, L2) since ∂th ∈ L2
n(R, H1/2).

We now recall proposition 3.3.5, which gives a straightforward way to
check ω-limit compactness for the process. Thanks to the Hilbert setting
which provides a natural norm-reducing projection onto any linear subspace
and thanks to the estimates of the previous section, the first assumption
of proposition 3.3.5 has already been verified. We now have to control for
the “dissipativeness” of the higher modes. As subspaces we will consider
those generated by the first n eigenvalues of Stokes’s problem (the space
Vn already introduced in chapter 2) for the velocity field and Dm spanned
by the first m eigenfunctions of the Laplacian with Dirichlet homogeneous
boundary conditions in Ω. Let {λn} and {µm} be the ascending sequences
of eigenvalues respectively for Stokes’s problem and Laplace’s problem on
Ω and let Pn and Qm be the projections respectively in the subspace gener-
ated by the first n eigenfunctions of Stokes’s problem and the first m eigen-
functions of Laplace’s one. Let u1

.
= Pnu (respectively d1

.
= Qmd) and
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u2
.
= u − u1 (respectively d2

.
= d − d1) be the projections of u (respectively

d) on Vn (respectively Dm) and its orthogonal complement.
Consider again the equation for the velocity field in (2.17) and take its

scalar product in L2 with −∆u2. Using the orthogonality of the chosen base
(notice, for example that (∆u, ∆u2) = |∆u2|22), we obtain:

1

2

d

dt
|∇u2|22 + ν|∆u2|22 = ((u · ∇)u, ∆u2) +

(
(∇d)t∆ď, u2

)
− (g(t), ∆u2) .

(3.7)
As usual, we have to estimate all terms on the right hand side of this

last expression. In order to obtain the desired estimates we recall a useful
interpolation result of [3].

Lemma 3.5.2. Let f ∈ H2(Ω), let Ω ⊂ R
2 have a compact smooth bound-

ary, then

|f |L∞ ≤ C|f |H1

(
1 + ln

|f |2H2

|f |2H1

)1/2

where the constant C depends only on the domain Ω.

We start by analyzing the well-known trilinear term of Navier-Stokes
equations. We have:

|((u · ∇)u, ∆u2)| ≤ |((u1 · ∇)u, ∆u2)| + |((u2 · ∇)(u1 + u2), ∆u2)|
≤ |u1|∞|∇u|2|∆u2|2 + |u2|∞|∇u1|2|∆u2|2

≤ C|∇u1|2
(

1 + ln
|∆u1|22
|∇u1|22

)1/2

|∆u2|2|∇u|2

+ C|u2|1/2
2 |∆u2|3/2

2 (|∇u1|2 + |∇u2|2) .

Recalling the absorbing sets identified in the previous sections and noticing
that |∆u2|22 ≤ λn+1|∇u2|22, we finally obtain:

|((u · ∇)u, ∆u2)| ≤ Cρ2 (1 + ln λn+1)1/2 |∆u2|2 + Cρ
1/4
0 ρ

1/2
2 |∆u2|3/2

2

≤ ν

12
|∆u2|22 +

CLρ2
2

ν
+

Cρ0ρ2
2

ν3
,

where we have set L
.
= 1 + ln λn+1 for easiness.

The other nonlinear term can be estimated analogously as follows:
∣∣∣
(
(∇d)t∆ď, u2

)∣∣∣ ≤ |∇d1|∞|∆ď|2|∆u2|2 + |∇d2|4
(
|∆ď1|4 + |∆ď2|4

)
|∆u2|2

≤ C|∇d1|H1

(
1 + ln

|∇d1|2
H2

|∇d1|2
H1

)1/2

|∆u2|2|∆ď2|2

+ C|∇d2|1/2
2 |∇d2|1/2

H1

(
|∆ď1|1/2

2 |∆ď1|1/2
H1 + |∆ď2|1/2

2 |∆ď2|1/2
H1

)
|∆u2|2

≤ Cρ2M1/2|∆u2|2
+ Cρ

1/4
0 ρ

1/2
2

(
|∇∆ď1|1/2

2 + |∇∆ď2|1/2
2

)
|∆u2|2 + Cρ

1/4
0 ρ

3/4
2 |∆u2|2
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where M
.
= 1 + ln µm+1. By recalling that |∇∆ď1|2 ≤ µ

1/2
m+1|∆ď1|2, we

finally get:

∣∣∣
(
(∇d)t∆ď, u2

)∣∣∣ ≤ ν

12
|∆u2|22 +

1

12
|∇∆ď2|22

+ C(ρ0, ρ2, M, ν) + C
ρ

1/2
0 ρ

3/2
2

ν
µ

1/2
m+1

The last term on the right hand side of equation (3.7) is easily dealt with:

|(g, ∆u2)| ≤ |g|2|∆u2|2 ≤ ν

12
|∆u2|22 +

3

ν
|g|22.

Putting everything together, we get the first half of the desired estimate:

d

dt
|∇u2|22 +

3

2
ν|∆u2|2

≤ C(ρ0, ρ2, L, M, ν) +
6

ν
|g|22 +

1

6
|∇∆ď2|22 + C

ρ
1/2
0 ρ

3/2
2

ν
µ

1/2
m+1. (3.8)

We now turn our attention to the equation for the order parameter.
Multiplying the second equation in (2.17) by ∆∆ď2, integrating by parts
and using the orthogonality of the eigenbasis of the Laplacian, we get:

1

2

d

dt
|∆ď2|22 + |∇∆ď2|22 =

(
(∇ut · ∇)d, ∇∆ď2

)
+
(
∇∇d · u, ∇∆ď2

)

+
(
∇f(d), ∇∆ď2

)
+
(
∂t∇d̊, ∇∆ď2

)
−

H1/2

〈
∂td̊, ∂ν∆ď2

〉
H−1/2

.

As with the equation for the velocity field, we now have to bound all terms
on the right hand side of this last equality.
∣∣∣
(
(∇ut · ∇)d, ∇∆ď2

)∣∣∣ ≤ |∇u|2|∇d1|∞|∇∆ď2|2
+ (|∇u1|4 + |∇u2|4) |∇d2|4|∇∆ď2|2

≤ Cρ2M1/2|∇∆ď2|2 + Cρ
1/4
0 ρ

1/2
2

(
|∆u1|1/2

2 + |∆u2|1/2
2

)
|∇∆ď2|2

≤ 1

12
|∇∆ď2|22 +

ν

10
|∆u2|22 + Cρ2

2M +
C

ν
ρ0ρ2

2 + Cρ
1/2
0 ρ

3/2
2 λ

1/2
n+1.

The second term is dealt with in a similar way. We only remember that,
due to the elliptic regularity results that apply to problem (2.16), we have
|d|2

H3 ≤ C(|∇∆ď|22 + |h|2
H5/2 ).

∣∣∣
(
∇∇d · u, ∇∆ď2

)∣∣∣ ≤ |d|H2 |u1|∞|∇∆ď2|2 + |d|H2 |u2|∞|∇∆ď2|2
≤ Cρ

1/2
2 L1/2|∇u1|2|∇∆ď2|2 + Cρ

1/2
0 ρ

1/4
2 |∆u2|1/2

2 |∇∆ď2|2

≤ 1

12
|∇∆ď2|22 + Cρ2

2L +
ν

12
|∆u2|22 +

C

ν
ρ2

0ρ2.
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Finally the last two bulk terms can be estimated quite easily:
∣∣∣
(
∇f(d), ∇∆ď2

)∣∣∣ ≤ C|∇d|2|∇∆ď2|2 ≤ 1

12
|∇∆ď2|22 + Cρ0

and
∣∣∣
(
∂t∇d̊, ∇∆ď

)∣∣∣ ≤ 1

12
|∇∆ď2|22 + C|∂t∇d̊|22.

In order to control the boundary term, we can write:
∣∣∣

H1/2

〈
∂td̊, ∂ν∆ď2

〉
H−1/2

∣∣∣ ≤ C|∂th|H1/2(∂Ω)|∆ď2|H1

≤ 1

12
|∇∆ď2|22 + Cρ2 + C|∂th|2

H1/2(∂Ω).

Adding everything together, we eventually get:

1

2

d

dt
|∆ď2|22 +

7

12
|∇∆ď2|22

≤ C(ρ0, ρ2, L, M, ν) + Cρ
1/2
0 ρ

3/2
2 λ

1/2
n+1 + Cρ

1/2
0 ρ

3/2
2 µ

1/2
m+1

+
ν

4
|∆u2|22 + C|∂t∇d̊|22 + C|∂th|2

H1/2(∂Ω).

By recalling estimate (3.8) and adding the last inequality we have ob-
tained, we find the desired bound on the higher modes of our solution:

d

dt

(
|∇u2|2 + |∆ď2|22

)
+ ν|∆u2|2 + |∇∆ď2|22

≤ C(ρ0, ρ2, ν) + C(ρ0, ρ2, ν)(M + L) + C(ρ0, ρ2, ν)(λ
1/2
n+1 + µ

1/2
m+1)

+
6

ν
|g|22 + C|∂t∇d̊2|22 + C|∂th|2

H1/2(∂Ω).

From Poincarè’s inequality in V and H1
0 we have |∆u2|22 ≥ λn+1|∇u2|22 and

|∇∆ď2|22 ≥ µm+1|∆ď2|22. By setting κ = min{νλn+1, µm+1} we can rewrite
the last estimate as:

d

dt

(
|∇u2|2 + |∆ď2|22

)
+ κ

(
|∇u2|2 + |∆ď2|22

)

≤ C(ρ0, ρ2, ν) + C(ρ0, ρ2, ν)(M + L) + C(ρ0, ρ2, ν)(λ
1/2
n+1 + µ

1/2
m+1)

+
6

ν
|g|22 + C|∂t∇d̊2|22 + C|∂th|2

H1/2(∂Ω).

By using Gronwall’s inequality we finally get:

|∇u2(t)|22 + |∆ď2(t)|22 ≤
(
|∇u2(t0)|22 + |∆ď2(t0)|22

)
e−κ(t−t0)

+
C(ρ0, ρ2, ν)

κ
+

C(ρ0, ρ2, ν)

κ
(M + L) +

C(ρ0, ρ2, ν)

κ
(λ

1/2
n+1 + µ

1/2
m+1)

+
6

ν

∫ t

t0

e−κ(t−s)|g(s)|22 ds + C

∫ t

t0

e−κ(t−s)|∂t∇d̊(s)|22 ds

+ C

∫ t

t0

e−κ(t−s)|∂th(s)|2
H1/2 ds.
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All terms on the right hand side of last inequality can be made arbitrarily
small by choosing n and m sufficiently large and so that νλn ≈ µm. In
particular, recalling estimate (3.6) for translation bounded functions, the
integral terms can be bounded uniformly as follows:

∫ t

t0

e−κ(t−s)|g(s)|22 ds ≤ 1

1 − e−κ
sup
t∈R

∫ 1

0
e−κ(1−s)|g(s + t)|22 ds.

Moreover, by the normality assumption, for every ǫ > 0 there exists η(ǫ) > 0
such that

sup
t∈R

∫ 1

1−η(ǫ)
|g(s + t)|22 ds ≤ ǫ

2
.

Standard estimates then lead to the desired result:

sup
t∈R

∫ 1

0
e−κ(1−s)|g(s + t)|22 ds

≤ sup
t∈R

∫ 1

1−η(ǫ)
e−κ(1−s)|g(s + t)|22 ds + sup

t∈R

∫ 1−η(ǫ)

0
e−κ(1−s)|g(s + t)|22 ds

≤ sup
t∈R

∫ 1

1−η(ǫ)
|g(s + t)|22 ds + e−κη(ǫ) sup

t∈R

∫ 1

0
|g(t + s)|22 ds

≤ ǫ

2
+ e−κη(ǫ) sup

t∈R

∫ t+1

t
|g(s)|22 ds.

We have therefore proved ω-limit compactness for the process generated
by equation (2.1) under strong regularity assumptions. To complete the
proof of the existence of the global attractor we still have to control weak
continuity of the process with respect to initial data and to the symbol. In
the last part of this section we will follow [32, Lemma 2.1] with the obvious
changes.

Consider again the lifted problem (2.17). Obviously the lifting problem
is weakly continuous with respect to the initial boundary data so we have
to care only of the lifted equation. Let {u0n} ⊂ V, u0n ⇀ u0, {d0n} ⊂
H2, d0n ⇀ d0, {gn} ⊂ L2

loc(R, H), gn ⇀ g and {hn} ⊂ L2
loc(R, H5/2) ∩

L∞(R, L∞), {∂thn} ⊂ L2
loc(R, H1/2), hn ⇀ h, ∂thn ⇀ ∂th be all weakly

convergent sequences of initial data, forcing terms and boundary data. We
want to prove U(gn,hn)(t, τ)(u0n, d0n) ⇀ U(g,h)(t, τ)(u0, d0) in V × H2.

Let (un(t), dn(t)) = U(gn,hn)(t, τ)(u0n, d0n). From the absorbing esti-

mates of section 3.4 we already know that {(un(t), ďn(t))} is bounded in
L∞(τ, ∞; V) × L∞(τ, ∞; H2) and in L2

loc(τ, ∞; H2) × L2
loc(τ, ∞; H3). More-

over {dn} is bounded in L∞(τ, ∞; L∞). Directly from the equation we also
get that {(∂tun, ∂tďn)} is bounded in L2

loc(τ, ∞; H) × L2
loc(τ, ∞; H1).

The next step will be of proving the precompactness of {(un(t), ďn(t))}
in L2

loc(τ, ∞; V) ×L2
loc(τ, ∞; H2). Actually we have:

(un(t + a) − un(t), v) =

∫ t+a

t
(∂tun(s), v) ds

≤ a1/2|v|2|∂tun|L2
loc

(L2) ≤ Ca1/2|v|2
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for all v ∈ L2 and for a.e. t ∈ [τ, T ]. By choosing v = −∆(un(t + a) −
un(t)) ∈ H a.e. t ≥ τ and integrating by parts, we obtain:

∫ T −a

τ
|∇(un(t + a) − un(t))|22 dt ≤ CT a1/2

∫ T −a

τ
|∆(un(t + a) − un(t))|2 dt

≤ CT a1/2T 1/2
∫ T −a

τ
|∆(un(t + a) − un(t))|22 dt ≤ CT a1/2.

Since {un} is bounded in L2(τ, T ; H2) it follows from [34, theorem 3]1that
{un} is precompact in L2(τ, T ; V) for all T > τ .

We can proceed analogously for the order parameter field by considering:

(
∇(ďn(t + a) − ďn(t)), w

)
=

∫ t+a

t

〈
∂t∇ďn(s), w

〉
ds

≤ a1/2|w|2|∂t∇ďn|L2
loc

(L2) ≤ Ca1/2|w|2 (3.9)

for any w ∈ L2 and a.e. t ∈ [τ, T ]. If we take w = −∇∆(dn(t+a)−dn) ∈ L2

a.e. t ≥ τ , we get:

∫ T −a

τ
|∆(ďn(t + a) − ďn(t))|22 dt

≤
∫ T −a

τ H−1/2

〈
∂ν(ďn(t + a) − ďn), ∆(ďn(t + a) − ďn)

〉
H1/2

dt

+ Ca1/2
∫ T −a

τ
|∇∆(ďn(t + a) − ďn)|H1 dt

However, noting that ∆ď − f(h) − ∂th|∂Ω = 0, the first term on the right
hand side of this inequality can be estimated as follows:

∫ T −a

τ H−1/2

〈
∂ν(ďn(t + a) − ďn(t)), ∆(ďn(t + a) − ďn(t))

〉
H1/2

dt

≤ C

∫ T −a

τ
|ďn(t + a) − ďn(t)|H1

· |f(hn(t + a)) − f(hn(t)) + ∂thn(t + a) − ∂thn(t)|H1/2 dt.

From estimate (3.9) we immediately have:

|∇(ďn(t + a) − ďn(t))|22 ≤ CT a1/2

1We recall here, for the ease of the reader, the result we used.

Theorem. Let X, B be Banach spaces and let X be compactly embedded in B. Let
F ⊂ Lp(0, T ; B), 1 ≤ p ≤ ∞ such that:

• F is bounded in L1
loc(0, T ; X);

• |f(t + a) − f(t)|L2(0,T −a;B) → 0 as a → 0 uniformly for f ∈ F .

Then F is precompact in Lp(0, T ; B) (and in C(0, T ; B) if p = ∞).
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and therefore, on account of the regularity assumptions on h, we deduce:

∫ T −a

τ H−1/2

〈
∂ν(ďn(t + a) − ďn(t)), ∆(ďn(t + a) − ďn(t))

〉
H1/2

≤ CT a1/4.

Since we already know that {dn} is bounded in L2(τ, T − a; H3), using the
same lemma as before, we conclude that {dn} is precompact in L2(τ, T −
a; H2).

From the boundedness and compactness of the sequences just proved,
by means of a diagonal extraction process, we can find two subsequences of
{un} and {dn} such that:

• {un} converges weakly* in L∞(τ, ∞; V), weakly in L2
loc(τ, ∞; H2) and

strongly in L2
loc(τ, ∞; V) to u;

• {dn} converges weakly* in L∞(τ, ∞; H2) and in L∞(τ, ∞; L∞), weakly
in L2

loc(τ, ∞; H3) and strongly in L2
loc(τ, ∞; H2) to d,

where u and d solve equation (2.1) (the passage to the limit in the equation
being completely analogous to that treated in chapter 2, we shall skip the
detail here).

From the strong convergence we have un(t) → u(t) strongly in V and
dn(t) → d(t) strongly in H2 for a.e. t ≥ τ . We therefore have:

(∇un(t), v) → (∇u(t), v)

(∆dn(t), w) → (∆d(t), w)

for almost every t ≥ τ and any regular pair of functions (v, w). We note that,
from the estimates of the previous paragraphs, the functions (∇un(t), v) and
(∆dn(t), w) are equibounded and equicontinuous as functions of t. Therefore
the previous convergences hold for all t ≥ τ , i.e. we have obtained weak
continuity for the solution process we are studying.

Thanks to this result we can apply proposition 3.3.5 and theorem 3.3.4.
This finishes the proof of theorem 3.5.1.

3.6 A less regular attractor

We now want to extend the results of the previous section to a more gen-
eral setting. In particular, we want to investigate what happens when we
consider less regular forcing terms of critical regularity. In this section we
will suppose Σ = Σ1 = H(g) × H(h) where g ∈ L2

n(R, V∗) and where
h ∈ L2

n(R, H3/2(∂Ω)), ∂th ∈ L2
n(R, H−1/2(∂Ω)). The main result we shall

obtain is the following.

Theorem 3.6.1. Given g ∈ L2
n(R, V∗), h ∈ L2

n(R, H3/2(∂Ω)), and ∂th ∈
L2

n(R, H−1/2(∂Ω)), the process {U(g,h)(t, τ)} corresponding to problem (2.1)
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possesses a compact uniform (w.r.t. (g, h) ∈ Hw(g) × Hw(h)) attractor
AH(g)×H(h) in H × H1 which uniformly (w.r.t. (g, h) ∈ Hw(g) × Hw(h))
attracts the bounded sets in H × H1 in the norm of H × H1. Moreover we
have:

AH(g)×H(h) =
⋃

(g,h)∈Hw(g)×Hw(h)

K(g,h)(0)

where K(g,h) is the kernel of the process {U(g,h)(t, τ)} and where K(g,h) is
nonempty for all (g, h) ∈ Hw(g) × Hw(h).

Starting from the discussion of the previous section, we observe that
most of the assumptions of the abstract theorem 3.3.4 have already been
verified. As for the stronger regularity setting we only have to check ω-limit
compactness and weak continuity. Although the proof of the weak continuity
can be carried over to the current setting with no significant changes (and
therefore we skip here the details), checking ω- limit compactness involves
a slightly more refined estimate. We note that, due to the structure of the
nonlinear terms and in particular to the convective term (u · ∇)u, the direct
approach adopted in the last section does not lead to any useful estimate
in this case. All this section will therefore be devoted to checking this last
assumption.

We start by recalling some results from section 3.4. In particular, we
proved that there exists an absorbing set for |u(t)|22 + |d|2

H1 and that:

ν

∫ t+δt

t
|∇u(s)|22 ds +

∫ t+δt

t
|∆d(s)|22 ds

is uniformly bounded (w.r.t. t ≥ τ) for sufficiently large t.
As usual we now look for a bound on the time derivative of the solution

fields in the natural weak norms. By standard estimates we have:

|∂tu|V∗ ≤ |(u · ∇)u|V∗ + ν|∆u|V∗ + |∇dt∆d|V∗ + |g|V∗

|∂td|2 ≤ |(u · ∇)d|2 + |∆d|2 + |f(d)|2.

where the nontrivial terms on the right hand side of the last inequalities can
be bounded as follows:

|∆u|V∗ = |∇u|2
|∇dt∆d|V∗ ≤ C|d|1/2

2 |d|H1 |d|1/2
H2 ≤ Cρ

1/2
0 |d|1/2

H2

|(u · ∇)d|2 ≤ |u|4|∇d|4 ≤ C|u|1/2
2 |∇u|1/2

2 |∇d|1/2
2 |d|1/2

H2

≤ Cρ0|∇u|2 + Cρ0|d|H2 .

Remembering that |d|2
H2 ≤ C|∆ď|22 + |h|2

H3/2 , we easily obtain that ∂tu ∈
L2

loc(τ, ∞; V∗) and ∂td ∈ L2
loc(τ, ∞; L2). We observe that the bound on the
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norm over the interval [t, t + δt] of both derived fields does not depend on
the time t. Thanks to [34, Corollary 4]2 we have that

B[t,t+δt] = {(u(s), d(s)) = U(g,h)(t, τ)(uτ , dτ ), (uτ , dτ ) ∈ B0}
∣∣∣
s∈[t,t+δt]

is precompact in L2(t, t + δt; H × H1).
From the precompactness of B[t,t+δt] we deduce that there exists a finite

number of pairs (u1, d1), . . . , (uN , dN ) such that for any (u, d) ∈ B[t,t+δt]

there exists an i that verifies:

∫ t+δt

t

(
|u − ui|22 + |∇d − ∇di|22

)
≤ ǫ

Therefore there exists a time t̃ ∈ [t, t + δt] such that:

|u(t̃) − ui(t̃)|22 + |∇d(t̃) − ∇di(t̃)|22 ≤ ǫ

δt
.

We now use the continuous dependence estimate (2.21) proven in chap-
ter 2 and get:

|u(t + δt) − ui(t + δt)|22 + |∇d(t + δt) − ∇di(t + δt)|22
≤ C

(
|u(t̃) − ui(t̃)|22 + |∇d(t̃) − ∇di(t̃)|22

)

+ C

(
sup
t≥τ

∫ t+δt

t̃

(
3
ν |g|2V∗ + C|∂th|2

H−1/2 + C|h|2
H3/2

)
ds

)

where all constants depend only on ρ0, ρ1 and are bounded with respect to
δt ≤ 1. Using the normality assumption on the forcing and boundary terms
and the precompactness of the trajectories just proven, we can therefore
bound the left hand side of the last inequality by a fixed constant times ǫ.
We have so proven that BT = UT,τ B0 is compact for sufficiently big T − τ ,
uniformly w.r.t. τ ∈ R. Since B0 is absorbing, this also proves the ω-limit
compactness for the process and ends our proof of theorem 3.6.1.

In this chapter we have studied the existence of the global attractor for
system (2.1) under very general assumptions. However, as it is well known
from the abstract theory (see, e.g., [27]), global attractors suffer a serious
drawback: the rate of attraction of orbits can indeed be arbitrarily slow.

2As before for reader’s convenience, we recall the result we used.

Theorem. Let X, B, Y be Banach spaces, X ⊂ B ⊂ V and let X be compactly embedded
in B. Let F ⊂ Lp(0, T ; X), 1 ≤ p < ∞ such that:

• F is bounded in Lp(0, T ; X);

• ∂tF is bounded in L1(0, T ; Y ).

Then F is precompact in Lp(0, T ; B).
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In order to avoid this problem, it is necessary to construct larger attracting
sets that are still finite dimensional, but which guarantee an exponential
rate of attraction. This can actually be done by establishing the existence
of exponential attractors which will be the goal of the next chapter.



Chapter 4
Exponential Attractors

A
s it was noted at the end of the previous chapter, global attractors are
not necessarily the only description of a dissipative dynamical sys-
tem. A feature one usually wants to guarantee is an exponential at-

tracting rate of trajectories to the attractor preserving the finite-dimension.
This corresponds, from a physical point of view, to an observable quick de-
cay of high order modes and to a fast reduction of the variety of the expected
dynamics. Moreover, some sort of continuous dependence of the attractor
on the external data is hoped for. This means that small changes in the
form of the forcing terms should not cause any relevant modification in the
characteristics of the attracting sets. An updated review of these issues can
be found in [27].

One possible solution to these problem was proposed in the 90’s by Eden,
Foias, Nicolaenko and Temam (see [11]), who first introduced the notion of
exponential attractor. Although also this kind of objects suffers some im-
portant drawbacks (notably the lack of uniqueness) and its application was
initially limited to Hilbert settings involving somehow tortuous computa-
tions, it soon became clear (see the works of Efendiev, Miranville and Zelik
as [12]) that the basic ideas could indeed be applied more generally in Ba-
nach space settings by using rather natural estimates on the solutions.

In this chapter we will quickly review the theory of exponential attractors
for nonautonomous dissipative PDEs with particular attention to the case
of quasiperiodic forcing data (see [6, Section V.1] for more details).

4.1 The Hilbert space setting

We start by introducing exponential attractors for semigroups.

Definition 4.1.1. Let E be a Banach space. A compact set M ⊂ E is an
exponential attractor for the semigroup {S(t)} if:

63
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• it has finite fractal dimension;

• it is positively invariant, i.e. S(t)M ⊂ M, ∀t ≥ 0;

• it attracts exponentially the bounded subsets of E in the following
sense:

∀B ⊂ E bounded , distE(S(t)B, M) ≤ Q(|B|E)e−αt, t ≥ 0,

where α is a positive number and Q is a monotonic function both
independent of B.

We start by observing that, if an exponential attractor exists, being a
compact absorbing set, it surely contains the global attractor defined in the
previous chapter. It also immediately follows from the above definition that
exponential attractors are not uniquely defined. Indeed, one can always en-
large a given exponential attractor by simply adding the forward orbit under
S starting from any point u ∈ E: invariance and exponential attraction of
bounded sets is immediately verified, whereas it is straightforward to check
that the fractal dimension of the attractor undergoes no relevant changes.

In the early stages of the development of the theory of exponential at-
tractors (see [11]), the following squeezing property played a central role in
proving the existence of such sets.

Definition 4.1.2. A mapping S : X → X, where X is a compact subset of
an Hilbert space E, enjoys the squeezing property on X if for some δ ∈ (0, 1

4)
there exists an orthogonal projection P = P (δ) with finite rank such that
for every u, v ∈ X either

|(I − P )(Su − Sv)|E ≤ |P (Su − Sv)|E

or
|Su − Sv|E ≤ δ|u − v|E

holds.

From a geometrical point of view, the squeezing property corresponds
to requiring that higher modes of solutions are exponentially decaying, or,
if this is not the case, that lower modes are dominating. Indeed it implies
that only a finite number of degree of freedom are necessary in order to fully
describe the asymptotic behaviour of the system we are studying (see [31,
Part IV] for more details).

One can usually guarantee the existence of exponential attractors under
very mild assumptions. In particular, the following result was proved in [11].

Theorem 4.1.1. Let {S(t)}, S(t) : X → X be a semigroup and let t∗ be
a positive real number. If the mapping S(t∗) enjoys the squeezing property,
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then the discrete time semigroup generated by S(t∗) has an exponential at-
tractor M∗. Moreover, if the mapping S(t)u is Lipschitz (or Hölder) on
[0, t∗] × X, then the set:

M .
=

⋃

t∈[0,t∗]

S(t)M∗

is an exponential attractor for the continuous-time semigroup {S(t)} on X.

Here we will only give a short sketch of the ideas involved in the proof of
this result, referring to the original work of Eden et al. for further details.
We start by considering a closed ball B0 of radius R which contains an
absorbing set for our system. Since, by assumption, the squeezing property
holds, we can find a finite number of closed balls {B1

i }i=1,...,N of radius
R/2 such that S(t∗)B0 ⊂ ∪iB

1
i . Intuitively this is possible since, under

the action of our semigroup, B0 is shrunk in all but a finite number of
dimensions. Moreover, by proceeding in exactly the same way for all the
B1

i , we can find a finite number of closed balls of radius R/4 which cover
S(t∗) ◦ S(t∗)B0. This same reasoning can easily be continued by induction
giving a countable infinity of balls of decreasing radius. By considering the
closure of the forward orbits starting from all the centres of the balls just
constructed, we can build a compact set which is proved to be an exponential
attractor for the discrete time semigroup. The last part of the statement
of the theorem can be obtained by standard continuity estimates. Further
details on this point can be found, e.g., in [13].

4.2 The Banach space setting

The theory briefly reviewed in the last section and, in particular, the squeez-
ing property introduced above, is strongly bind to the Hilbert setting. At a
first glance it seems impossible to extend it to the more general setting of
Banach spaces, although appealing such an extension could be.

The key idea for this passage was given by Efendiev, Miranville and Zelik
and brought at the same time a simplification in the estimates needed to
verify the assumptions of the existence theorems. We now introduce the
smoothing property as in [12].

Definition 4.2.1. Let E, E1 be Banach spaces with E1 compactly embed-
ded in E, let X be a bounded subset of E1 and let S : E → E. Then S
enjoys the smoothing property on X if

|Su − Sv|E1 ≤ C|u − v|E ∀u, v ∈ X.

As it can easily be seen, this time the "squeezing" feature of the semigroup
is guaranteed by the compactness assumption.

Before stating the main result we introduce, as in [13], the following class
of mappings.
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Definition 4.2.2. Let E and E1 be Banach spaces with E1 compactly em-
bedded in E and let X be a bounded subset of E1. Given positive constants
δ and K, a (nonlinear) operator S : E → E belongs to the class of smoothing
operators Sδ,K(X) if:

• SOδ(X) ⊂ X where Oδ(X) is a neighbourhood of X of radius δ in the
topology of E1;

• S enjoys the smoothing property on Oδ(X), that is:

|Su − Sv|E1 ≤ C|u − v|E ∀u, v ∈ Oδ(X).

We observe that any map S in Sδ,K naturally gives rise to a discrete-time
semigroup simply by iteration: S(n)u = S◦nu.

In order to study the continuous dependence of exponential attractors
on the chosen semigroup, we also introduce a metric on Sδ,K(X) by setting:

|S1 − S2|S .
= sup

u∈Oδ(X)
|S1u − S2u|E1

We can now state the following basic result for discrete time semigroups
(see [12] for a proof). The straightforward extension to the continuous time
case can be performed exactly as in the previous section.

Theorem 4.2.1. For every S ∈ Sδ,K(X), there exists an exponential attrac-
tor MS in the topology of E1, that is:

1. dimF (MS) ≤ C;

2. SMS ⊂ MS;

3. distE1(S(n)X, MS) ≤ Ce−αn, n ∈ N.

Moreover, the map S 7→ MS can be chosen such that it is Hölder continuous
in the following sense:

distsymm

E1
(MS1 , MS2) ≤ C|S1 − S2|κS .

Finally, α, κ and all other constants which appear in the preceding estimates
depend only on X, δ and K, but they are otherwise independent of the
particular semigroup S ∈ Sδ,K(X).

We immediately observe that the particular (constructive) choice of the
map S 7→ MS is the key passage required to prove the continuity of the
attracting set under small perturbations of the semigroup. This result has
indeed been one of the major concerns of research during the last decades:
for global attractors, only upper semicontinuity can be proved since this
attracting set can suddenly implode (see [31, Chapter 10] for some results
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concerning this problem). The original idea in the work of Efendiev, Mi-
ranville e Zelik is to fix a canonical way to cover the unit ball in E1 by a
finite number of balls of radius 1/2K in E. This standard covering, chosen
once for all semigroups S ∈ Sδ,K(X), characterizes the map S 7→ MS and
leads to all the estimates stated above.

The just developed theory can quite easily be extended to processes.
In particular, two different approaches to the exponential attractors of non-
autonomous evolution equations are possible: one can fix a particular forcing
term (or symbol) and study the evolution of solutions in the particular
chosen case, or it is possible to consider a full class of forcing terms which
share some particular property. In the first case, it is often possible (see [13]
again for the details) to identify a time varying exponential attractor M(t)
which exponentially attracts all the trajectories of the system. Although
this approach is very appealing, we shall not pursue it in this thesis. We
only observe that one usually shows the existence of an N + 1-dimensional
time-varying exponential attractor where N is the dimension of any of its
fixed-time sections. In contrast to the alternative approach we will follow,
however, once this attracting set is projected on the original phase space (as
we did in chapter 3 for the global attractors of skew product semigroups)
its finite-dimensionality is lost.

In the following section we will consider a peculiar family of forcing
terms, namely quasi-periodic functions, in order to apply the results of this
section to the extended semigroup associated to the process of interest as in
the previous chapter. We will therefore show that, if the space of the sym-
bols for the non-autonomous equation is finite-dimensional, all the theory
developed so far carries easily over to the non-autonomous case.

4.3 Quasi-periodic functions and extended phase

spaces

In this section we will introduce quasi-periodic functions and then study how
they can represent a useful class of symbols for non-autonomous evolution
equations.

Definition 4.3.1. Let Ξ be a Banach space, let (α1, . . . , αk) be a k-tuple
of rationally independent real numbers and let φ : Rk → Ξ be a continuous
function which is 2π-periodic in each argument, that is:

φ(ω1, . . . , ωi + 2π, . . . , ωk) = φ(ω1, . . . , ωi, . . . , ωk).

Then σ(s)
.
= φ(α1s, α2s, . . . , αks)

.
= φ(αs) is said to be a quasi-periodic

function with values in Ξ.

Given a quasi-periodic function σ in the sense of definition 4.3.1, its hull
H(σ) (see definition 3.3.1) can easily be characterized as follows (see [6,
Section V.1] for a proof of this result).
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Lemma 4.3.1. The hull H(σ) of the function σ in C(R; Ξ) satisfies:

H(σ) = {φ(αω + θ) | θ ∈ T
k}

where T
k =

⊗k
i=1 S

1 is the k-dimensional real torus and where for any fixed
element in H(σ), θ is said to be its initial phase.

This last lemma implies that if we wish to consider a quasi-periodic
function as symbol for an evolution equation, we can simplify the analysis
by reducing the symbol space just to T

k. We immediately observe that
T

k is finite dimensional, bounded and closed and therefore compact by the
Heine-Borel theorem.

The torus model for quasi-periodic forcing terms can be further en-
hanced, by noting that it is possible to define a natural metric on T

k. Indeed
we will set:

|ω1 − ω2|2
Tk

.
=

k∑

i=1

(
|ωi

1 − ωi
2| mod 2π

)2

We immediately notice that the natural identification introduced above of
elements in the hull of a quasi-periodic function σ and points on the torus
T

k endowed with this metric is indeed continuous, as can be easily seen
using Heine-Cantor theorem. Actually the natural identification with T

k is
a diffeomorfism of T

k onto a subset of Ξ. In the following analysis, when
dealing with quasi-periodic forcing terms, we will therefore always consider
T

k as phase space noting here, once and for all, that we have:

|σ1 − σ2|Ξ ≤ C|ω1 − ω2|Tk , (4.1)

where σi = φ(αωi), i = 1, 2.
If we consider a non-autonomous evolution equation whose symbol is

assumed to be quasi-periodic and whose solution operator generates a pro-
cess on a Banach space E (as in the previous chapter), we can easily reduce
the solution process acting on E to a semigroup acting on the larger phase
space given by E ×T

k. To this particular semigroup we can then apply the
results of the previous section, noting that the smoothing property for the
variables in the extended part of the phase space is automatically verified
thanks to the compactness of the symbol space (and in particular of T

k).
In the following sections we will actually reduce the process associated with
equation (2.1) to a semigroup using the observations of this section and then
apply theorem 4.2.1 to obtain the existence of an exponential attractor for
our system.

4.4 Back to our system: a discrete-time exponen-

tial attractor

This section and the next are devoted to prove the existence of an exponen-
tial attractor for system (2.1). Thanks to theorem 4.2.1, setting E = H×H1
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and E1 = V × H2, we will only need to prove that the extended semigroup
S : H × H1 × T

k → H × H1 × T
k belongs to the class of operators Sδ,K(X)

for suitable δ, K and X.
We start by stating our main result whose proof will occupy the remain-

ing part of this section.

Theorem 4.4.1. Let Ω ⊂ R
2 be a regular bounded domain, let g and h

be quasi-periodic functions with values in L2 and H5/2(∂Ω), respectively,
such that also ∂th is quasi-periodic with values in H1/2(∂Ω). Let {S(t)} be
the extended semigroup associated to the solution operator of problem (2.1)
acting on the extended phase space H × H1 × T

k (here k is equal to the
sum of the different irrationally independent periods of h and g)1. Then
there exists a finite time t∗ such that the discrete-time semigroup generated
by S(t∗) possesses a uniform (w.r.t. the initial phase θ ∈ T

k) exponential
attractor.

Remark. Theorem 4.2.1 gives us also continuous dependence of the exponen-
tial attractor on the semigroup considered. When considering quasi-periodic
symbols, it is easy to see that the extended semigroup continuously depends
on the frequencies of the different periods characterizing the forcing terms.
we therefore have continuity of the exponential attractor with respect to the
frequencies of the symbols.

In order to prove that S ∈ Sδ,K(X) for suitable δ, K and X it is enough
to show that there exists an absorbing bounded set X ⊂ V × H2 × T

k and
that the smoothing property holds (cf. definition 4.2.2).

The first requirement has already been verified thanks to the results
of section 3.4. Namely we proved that (see theorem 3.4.2) the “strong”
regularity assumptions imply the existence of a bounded absorbing set in
V×H2. Since T

k is invariant under the action of the extended semigroup, it
immediately follows that the extended semigroup S(t) possesses the required
absorbing set. Therefore, in what follows we can choose strong absorbing
sets given by theorem 3.4.2 and its corollary as the set X which appears in
definition 4.2.2.

We now need to show that the smoothing property holds. Since the
proof of this result is quite lengthy, we give here a short overview of the
standard main argument that will follow. The main estimate we shall prove
will be made up of three major contribution: the first arising from the dif-
ference equation for the velocity field obtained from (2.8) (without ms!), the
second coming from the difference lifted order parameter equation deduced
again from (2.8) while the third and last derives from the difference time-
dependent lifted problem got from (2.4). In any of the three cases, our aim

1We observe that here we have implicitly substituted the natural extension T
l ⊕ T

m

of the phase space with the algebraically and geometrically equivalent space T
l+m. This

equivalence can immediately be proven by considering the standard coordinate description
of a k-dimensional torus through vectors of Rk with the proper identification.
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will be to obtain inequalities of the form:

d

dt
|δ|2E1

+ |δ|2E2
≤ C|δ|2E + C|δ|2E1

where E2 will be a Banach space (compactly) embedded in E1 and where δ
is any difference of solutions.

From an inequality of this kind we can easily use the uniform Gronwall
inequality to get a time dependent bound on |δ(t)|E1 of the form:

|δ(t)|2E1
≤ C(t)

∫ t

0
|δ(s)|2E1

ds.

The smoothing property can then be obtained by recalling once more the
results of section 3.4.

We now start the proof by considering the equation for the velocity field
in (2.8). Let (u1, d1) and (u2, d2) be two solutions to (2.8). Taking the
difference of the equations for the velocity field, we obtain:

∂tw + (w · ∇)u1 + (u2 · ∇)w − ν∆w + ∇(p1 − p2)

= −(∇e)t∆d1 − (∇d2)t∆e + g1 − g2

for a.e. t ∈ R, where we have set w = u1 − u2 and e = d1 − d2. We observe
that, since ui|∂Ω = 0, i = 1, 2, we also have w|∂Ω = 0. Multiplying this last
equation by −∆w and integrating by parts, we deduce:

1

2

d

dt
|∇w|22 − ((w · ∇)u1, ∆w) − ((u2 · ∇)w, ∆w) + ν|∆w|22

=
(
(∇e)t∆d1, ∆w

)
+
(
(∇d2)t∆e, ∆w

)
+ (g1 − g2, ∆w) .

Arguing as in the previous chapters, we now try to bound all the non-
linear terms appearing in this last relation. We start by considering the
usual trilinear term coming from the Navier-Stokes equation. We have:

|((w · ∇)u1, ∆w)| ≤ |w|∞|∇u1|2|∆w|2
≤ C|w|1/2

2 |∇u1|2|∆w|3/2
2

≤ ν

14
|∆w|22 +

C

ν
|w|22|∇u1|42

≤ ν

14
|∆w|22 +

C

ν
ρ2

2|w|22

where the last estimate follows from the results of section 3.4 (and in par-
ticular it is a consequence of theorem 3.4.2). For the second term arising
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from the convective contribution in Navier-Stokes equations, we can write:

|((u2 · ∇)w, ∆w)| ≤ |u2|4|∇w|4|∆w|2
≤ C|u2|1/2

2 |∇u2|1/2
2 |∇w|1/2

2 |∆w|3/2
2

≤ ν

14
|∆w|22 +

C

ν
|u2|22|∇u2|22|∇w|22

≤ ν

14
|∆w|22 +

C

ν
ρ0ρ2|∇w|22.

We now consider the two contributions coming from the nonlinear cou-
pling with the order parameter equation. We have:

∣∣∣
(
(∇e)t∆d1, ∆w

)∣∣∣ ≤ |∇e|∞|∆d1|2|∆w|2
≤ C|∇e|1/2

2 |e|1/2
H3 |∆d1|2|∆w|2

≤ ν

14
|∆w|22 + β|e|2H3 +

C

ν2β
|∇e|22|∆d1|42

≤ ν

14
|∆w|22 + β|e|2H3 + C

ρ2
2

ν2β
|∇e|22

where β is a positive real number that will be determined later. Similarly
we get:

∣∣∣
(
(∇d2)t∆e, ∆w

)∣∣∣ ≤ |∇d2|4|∆e|4|∆w|2
≤ C|∇d2|1/2

2 |d2|1/2
H2 |∆e|1/2

2 |e|1/2
H3 |∆w|2

≤ ν

14
|∆w|22 + β|e|2H3 +

C

ν2β
|∇d2|22|d2|2H2 |∆e|22

≤ ν

14
|∆w|22 + β|e|2H3 + C

ρ0ρ2

ν2β
|∆e|22.

In order to obtain the first contribution to the main estimate of this
section, we still need an estimate for the non-autonomous forcing term,
namely:

|(g1 − g2, ∆w)| ≤ |g1 − g2|2|∆w|2 ≤ ν

14
|∆w|22 +

7

2ν
|g1 − g2|22.

By putting all these estimates together, we deduce the following inequal-
ity:

1

2

d

dt
|∇w|22 + ν

(
1 − 5

14

)
|∆w|22

≤ 2β|e|2H3 + C
ρ2

2

ν
|w|22 + C

ρ0ρ2

ν
|∇w|22

+ C
ρ2

2

ν2β
|∇e|22 + C

ρ0ρ2

ν2β
|∆e|22 +

7

2ν
|g1 − g2|22. (4.2)
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We now consider the lifted equation for the order parameter field (see
system (2.8)). By taking the difference of the equations satisfied by the same
two solutions (u1, d1) and (u2, d2) as above, we easily obtain the following
identity:

∂tê − (∆ê − f(d1) + f(d2)) + (u1 · ∇)e + (w · ∇)d2 = 0. (4.3)

If we multiply this last equation by ∆(∆ê−f(d1)+f(d2)) and if we integrate
by parts noting that ê|∂Ω = 0 and that ∆ê − f(d1) + f(d2)|∂Ω = 0, we have:

〈∂t∆ê, ∆ê − f(d1) + f(d2)〉 + |∇(∆ê − f(d1)) + f(d2)|22
=
〈

(∇u1)t∇e + ∇∇e · u1, ∇ (∆ê − f(d1) + f(d2))
〉

+
〈

(∇w)t∇d2 + ∇∇d2 · w, ∇ (∆ê − f(d1) + f(d2))
〉

.

We now complete the first term on the left hand side of this relation and
obtain:

1

2

d

dt
|∆ê − f(d1) + f(d2)|22 + |∇(∆ê − f(d1)) + f(d2)|22

=
〈

(∇u1)t∇e + ∇∇e · u1, ∇ (∆ê − f(d1) + f(d2))
〉

+
〈

(∇w)t∇d2 + ∇∇d2 · w, ∇ (∆ê − f(d1) + f(d2))
〉

+
〈
∂t(f(d1) − f(d2)), ∆ê − f(d1) + f(d2)

〉
. (4.4)

As usual, we have to estimate all the nonlinear terms appearing on the
right hand side of this last equation. We start by dealing with the four terms
arising from the transport term. We have:

∣∣∣
〈

(∇u1)t∇e, ∇ (∆ê − f(d1) + f(d2))
〉∣∣∣

≤ |∇u1|2|∇e|∞|∇(∆ê − f(d1) + f(d2))|2
≤ C|∇u1|2|∇e|1/2

2 |e|1/2
H3 |∇(∆ê − f(d1) + f(d2))|2

≤ 1

16
|∇(∆ê − f(d1) + f(d2))|22 + β|e|2H3 +

C

β
|∇u1|42|∇e|22

≤ 1

16
|∇(∆ê − f(d1) + f(d2))|22 + β|e|2H3 + C

ρ2
2

β
|∇e|22

and, analogously, we get:

|〈∇∇e · u1, ∇ (∆ê − f(d1) + f(d2))〉|
≤ |e|W2,4 |u1|4|∇(∆ê − f(d1) + f(d2))|2
≤ C|e|1/2

H2 |e|1/2
H3 |u1|1/2

2 |∇u1|1/2
2 |∇(∆ê − f(d1) + f(d2))|2

≤ 1

16
|∇(∆ê − f(d1) + f(d2))|22 + β|e|2H3 +

C

β
|u|22|∇u|22|e|2H2

≤ 1

16
|∇(∆ê − f(d1) + f(d2))|22 + β|e|2H3 + C

ρ0ρ2

β
|e|2H2 .
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We can also proceed in a similar way for the following two terms, obtaining:

∣∣∣
〈
(∇w)t∇d2, ∇ (∆ê − f(d1) + f(d2))

〉∣∣∣

≤ |∇w|4|∇d2|4|∇(∆ê − f(d1) + f(d2))|2
≤ C|∇w|1/2

2 |∆w|1/2
2 |∇d2|1/2

2 |d2|1/2
H2 |∇(∆ê − f(d1) + f(d2))|2

≤ 1

16
|∇(∆ê − f(d1) + f(d2))|22

+
ν

14
|∆w|22 +

C

ν
|∇d2|22|d2|2H2 |∇w|22

≤ 1

16
|∇(∆ê − f(d1) + f(d2))|22 +

ν

14
|∆w|22 + C

ρ0ρ2

ν
|∇w|22

and deducing:

|〈∇∇d2 · w, ∇ (∆ê − f(d1) + f(d2))〉|
≤ |d2|H2 |w|∞|∇(∆ê − f(d1) + f(d2))|2
≤ C|d2|H2 |w|1/2

2 |∆w|1/2
2 |∇(∆ê − f(d1) + f(d2))|2

≤ 1

16
|∇(∆ê − f(d1) + f(d2))|22 +

ν

14
|∆w|22 +

C

ν
|d2|2H2 |w|2

≤ 1

16
|∇(∆ê − f(d1) + f(d2))|22 +

ν

14
|∆w|22 + C

ρ2
2

ν
|w|2.

We now have to consider the last term in (4.4). We start by observing
that the following identity holds:

∂t(f(d1) − f(d2)) = ∇df(d1) · ∂td1 − ∇df(d2) · ∂td2

= (∇df(d1) − ∇df(d2)) · ∂td1 + ∇df(d2) · ∂te

where with ∇d we denote the gradient with respect to d. Before going on,
we recall that the tensor norm we use throughout this work (also known as
Frobenius norm) is compatible with the standard euclidean norm of vectors.
Therefore we have:

|∇df(d2) · ∂te|22 =

∫

Ω
|∇df(d2) · ∂te|2

≤
∫

Ω
|∇df(d2)|2 |∂te|2 ≤ |∇df(d2)|2∞|∂te|22.

By using these results we obtain:

∣∣∣
〈

∂t(f(d1) − f(d2)), ∆ê − f(d1) + f(d2)
〉∣∣∣

≤ |∇df(d1) − ∇df(d2)|∞|∂td1|2|∆ê − f(d1) + f(d2)|2
+ |∇df(d2)|∞|∂te|2|∆ê − f(d1) + f(d2)|2.
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We now observe that, thanks to lemma 2.1.3, we have:

|∇df(d1) − ∇df(d2)|∞ ≤ 2
√

10

ǫ2
|e|∞

and

|∇df(d2)|∞ ≤
√

7

ǫ2
.

In order to finish this part of our argument, we still have to find an appro-
priate estimate for |∂te|2. By considering equation (4.3) again, we obtain:

|∂te|2 ≤ |(u1 · ∇)e|2 + |(w · ∇)d2|2 + |∆e|2 + |f(d1) − f(d2)|2
≤ |u1|4|∇e|4 + |w|4|∇d2|4 + |∆e|2 + |f(d1) − f(d2)|2
≤ C|u1|1/2

2 |∇u1|1/2
2 |∇e|1/2

2 |e|1/2
H2 + C|w|1/2

2 |∇w|1/2
2 |∇d2|1/2

2 |d2|1/2
H2

+ |∆e|2 + |f(d1) − f(d2)|2
≤ Cρ

1/4
0 ρ

1/4
2 |e|H2 + Cρ

1/4
0 ρ

1/4
2 |∇w|2 + |e|H2 +

2

ǫ2
|e|2.

We can now obtain the desired estimate for the last term in (4.4). By
using all the results of the previous paragraphs and remembering corol-
lary 3.4.3, we get:
∣∣∣
〈
∂t(f(d1) − f(d2)), ∆ê − f(d1) + f(d2)

〉∣∣∣

≤ C

ǫ2

(
ρ

1/2
4 |e|∞ +

(
ρ

1/4
0 ρ

1/4
2 + 1

)
|e|H2 + ρ

1/4
0 ρ

1/4
2 |∇w|2 +

2

ǫ2
|e|2

)

|∆ê − f(d1) + f(d2)|2.

On account of |e|∞ ≤ C|e|1/2
2 |e|1/2

H2 ≤ C|e|H2 , we therefore obtain:

∣∣∣
〈
∂t(f(d1) − f(d2)), ∆ê − f(d1) + f(d2)

〉∣∣∣ ≤ 1

2
|∆ê − f(d1) + f(d2)|22

+
C

ǫ4

(
ρ4 + ρ

1/2
0 ρ

1/2
2 + 1 +

1

ǫ4

)
|e|2H2 + C

ρ
1/2
0 ρ

1/2
2

ǫ4
|∇w|22.

We can now substitute these estimates in (4.4) obtaining:

1

2

d

dt
|∆ê − f(d1) + f(d2)|22 +

(
1 − 1

4

)
|∇(∆ê − f(d1) + f(d2))|22

≤ 2β|e|H3 +
ν

7
|∆w|22 +

1

2
|∆ê − f(d1) + f(d2)|22

+ C

(
ρ2

2

β
+

ρ0

β
ρ2 +

1

ǫ4
ρ4 +

1

ǫ4
ρ

1/2
0 ρ

1/2
2 +

1

ǫ8

)
|e|2H2

+ C

(
ρ0ρ2

ν
+

ρ2
2

ν
+

1

ǫ4
ρ

1/2
0 ρ

1/2
2

)
|∇w|22. (4.5)
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However, we still have to deal with the term |e|H3 which appears on the
right hand side of this last inequality. Since ê|∂Ω = 0, we have:

|e|2H3 ≤ 2|ê|2H3 + 2|ẽ|2H3 ≤ C|∇∆e|22 + C|∆e|22 + 2|ẽ|H3

≤ C|∇(∆ê − f(d1) + f(d2))|22 + C|∇(f(d1) − f(d2))|22 + C|e|2H2 + 2|ẽ|2H3

and we observe that |∇(∆ê − f(d1) + f(d2))|22 can easily be estimated as
above by writing:

∇(∆ê − f(d1) + f(d2)) = ∇dd(d1) · ∇d1 − ∇df(d2) · ∇d2

= (∇df(d1) − ∇df(d1)) · ∇d1 + ∇df(d2) · ∇e.

Therefore we have:

|∇(∆ê − f(d1) + f(d2))|22
≤ 2|∇df(d1) − ∇df(d1)|2∞|∇d1|22 + 2|∇df(d2)|2∞|∇e|22
≤ C

ρ0

ǫ4
|e|2∞ + C

1

ǫ4
|∇e|22 ≤ C

ǫ4
(ρ0 + 1)|e|2H2

from which we deduce:

|e|2H3 ≤ C|∇(∆ê− f(d1)+ f(d2))|22 +C

(
1 +

1

ǫ4
+

ρ0

ǫ4

)
|e|2H2 +2|ẽ|2H3 . (4.6)

We have now to deal with the H3 norm of ẽ. This leads to the third and
last preparatory step in the proof of theorem 4.4.1. We start by considering
the difference of the equation satisfied by two solutions d̃1 and d̃2 of the
lifting problem (2.4). Multiplying by −∆ẽ the resulting equation and writing
ẽ

.
= d̃1 − d̃2 for the difference of the two solutions, we get:

− 〈∂tẽ, ∆ẽ〉 + |∆ẽ|22 = 0.

Integrating by parts, we obtain:

1

2

d

dt
|∇ẽ|22 + |∆ẽ|22 = H−1/2(∂Ω)〈∂t(h1 − h2), ∂ν ẽ〉H1/2(∂Ω)

≤ C|∂t(h1 − h2)|H−1/2(∂Ω)|ẽ|H2

≤ 1

2
|∆ẽ|22 + |h1 − h2|2

H3/2(∂Ω) + C|∂t(h1 − h2)|2
H−1/2(∂Ω).

We can now easily deduce:

|∇ẽ(t)|22 +

∫ t

0
|∆ẽ(s)|22 ds

≤ |∇e0|22 +

∫ t

0
|δh(s)|2

H3/2(∂Ω) ds + C

∫ t

0
|∂tδh(s)|2

H−1/2(∂Ω) ds
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where we have used the self explanatory notation δh
.
= h1 − h2 to simplify

the expression.
In order to obtain the desired estimate for |ẽ|H3 , we need also a higher

regularity result. We start again from the equation satisfied by the difference
of two solutions of the lifted problem, but this time we take its laplacian
(in the sense of distributions) and then multiply it by ∆ẽ. After a simple
integration by parts we get:

1

2

d

dt
|∆ẽ|22 + |∇∆ẽ|22 = H−1/2(∂Ω)〈∂ν∆ẽ, ∆ẽ〉H1/2(∂Ω) .

Using directly equation (2.4) we then deduce:

1

2

d

dt
|∆ẽ|22 + |∇∆ẽ|22 = H−1/2(∂Ω)〈∂ν∆ẽ, ∂tẽ〉H1/2(∂Ω)

≤ C|ẽ|H3 |∂tδh|H1/2(∂Ω)

≤ 1

4
|∇∆ẽ|22 + |δh|2

H5/2(∂Ω) + C|∂tδh|2
H1/2(∂Ω)

whence we finally obtain:

1

2

d

dt
|∆ẽ|22 +

(
1 − 1

4

)
|ẽ|2H3 ≤ C|δh|2

H5/2(∂Ω) + C|∂tδh|2
H1/2(∂Ω). (4.7)

We can now use the three main estimates we have obtained in the pre-
ceding pages. Summing together estimates (4.2), (4.5) and (4.7) we have:

1

2

d

dt
|∇w|22 +

1

2

d

dt
|∆ê − f(d1) + f(d2)|22 +

1

2

d

dt
|∆ẽ|22

+
ν

2
|∆w|22 +

3

4
|∇(∆ê − f(d1) + f(d2))|22 +

3

4
|ẽ|2H3

≤ 4β|e|2H3 + C

(
ρ2

2

νβ
+

ρ0ρ2

νβ
+

ρ
1/2
0 ρ

1/2
2

ǫ4

)
|∇w|22 +

1

2
|∆ê − f(d1) + f(d2)|22

+ C

(
ρ2

2

ν2
+

ρ0ρ2

ν2
+

ρ2
2

β
+

ρ
ρ2
0

β
+

ρ4

ǫ4
+

ρ
1/2
0 ρ

1/2
2

ǫ4
+

1

ǫ8

)
|e|2H2

+
C

ν
|δg|22 + C|δh|2

H5/2(∂Ω) + C|∂tδh|2
H1/2(∂Ω).

Recalling now estimate (4.6) and choosing β sufficiently small (and, in par-
ticular, smaller than a constant which depends only on the domain Ω) we
obtain:

d

dt
|∇w|22 +

d

dt
|∆ê − f(d1) + f(d2)|22 +

d

dt
|∆ẽ|22

≤ C|∇w|22 + |∆e − f(d1) + f(d2)|22 + C|e|2H2

+ C|δg|22 + C|δh|2
H5/2(∂Ω) + C|∂tδh|2

H1/2(∂Ω)
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where all the constants appearing on the right hand side of this expression
depend only on ρ0, ρ2, ρ4, Ω, ν and ǫ. We now recall inequality (4.1)
introduced above. In particular we observe that:

|δg|22 ≤ C|δθ|2,

|δh|2
H5/2(∂Ω) ≤ C|δφ|2,

|∂tδh|2
H1/2(∂Ω) ≤ C|δφ|2

where (θi, φi) ∈ T
k, i = 1, 2 and where we have set δθ = θ1 − θ2 and

δφ = φ1−φ2. We also note that, under the action of the extended semigroup,
the quantities |δθ| and |δφ| are conserved and therefore we can write:

d

dt
|∇w|22 +

d

dt
|∆ê − f(d1) + f(d2)|22 +

d

dt
|∆ẽ|22 +

d

dt
|δθ|2 +

d

dt
|δφ|2

≤ C|∇w|22 + |∆e − f(d1) + f(d2)|22 + C|e|2H2 + C|δθ|2 + C|δφ|2. (4.8)

On the other hand, we have:

|e|2H2 ≤ 2|ê|2H2 + 2|ẽ|2H2

≤ C|∆ê|22 + C|∆ẽ|2 + |δh|2
H3/2(∂Ω)

≤ C|∆ê − f(d1) + f(d2)|22 + C|f(d1) − f(d2)|22 + C|∆ẽ|22 + C|δφ|2

≤ C|∆ê − f(d1) + f(d2)|22 + C
C

ǫ4
|e|22 + C|∆ẽ|22 + C|δφ|2. (4.9)

Before applying the uniform Gronwall inequality, we still have to verify
the integrability on the interval [0, T ] of all the arguments of the time deriva-
tives on the left hand side of estimate (4.8). This can be partly deduced
from theorem 2.2.1 and partly by considering the following estimate:

|∆ê − f(d1) + f(d2)|22 ≤ 2|∆ê|22 + 2|f(d1) − f(d2)|22
≤ 2|ê|2H2 + 2|f(d1) − f(d2)|22
≤ 4|e|2H2 + 4|ẽ|2H2 +

C

ǫ4
|e|22.

Applying now Gronwall’s inequality we get:

|∇w(t)|22 + |∆ê(t) − f(d1(t)) + f(d2(t))|22 + |∆ẽ(t)|22 + |δθ|2 + |δφ|2

≤
(

1

t

∫ t

0
|∇w(s)|22 + |∆ê(s) − f(d1(s)) + f(d2(s))|22 + |∆ẽ(s)|22 ds

+ |δθ|2 + |δφ|2 + C

∫ t

0
|e(s)|22 ds

)
eCt.
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Recalling estimate (2.21) and using again estimate (4.9), we eventually ob-
tain:

|∇w|22 + |e|2H2 + |δθ|2 + |δφ|2 ≤ C(t)
(
|w0|22 + |e0|2H1 + |δθ|2 + |δφ|2

)

where we observe that we have also used the following estimate:

|∆ê − f(d1) + f(d2)|22 ≤ 4|∆e|22 + 4|∆ẽ|22 + C|e|22.

These estimates conclude our proof of the smoothing property for sys-
tem (2.1). We have therefore also completed the proof of theorem 4.4.1. In
the next section we will show how it is possible to extend the exponential
attractor constructed in this section for a discrete-time semigroup to the
continuous-time case.

4.5 The continuous-time attractor

In the last section we established the existence of an exponential attractor for
the discrete-time semigroup generated by S(t∗). We now want to prove that
also a continuous-time exponential attractor exists. To do this, we simply
have to apply theorem 4.1.1 to system (2.1) (see [13] or [11, Chapter 3] for
more details). Actually, the following result holds.

Theorem 4.5.1. Let the same assumptions of theorem 4.4.1 be verified.
Then there exists an exponential attractor M for the extended semigroup
{S(t)} on H × H1 × T

k. Moreover, if Π1 and Π2 are the projections of
the extended phase space on H × H1 and T

k respectively, then Π1M is the
uniform (w.r.t. θ ∈ T

k) exponential attractor for the family of processes and
Π2M = T

k.

Thanks to the study of global attractors in chapter 3, as an immediate
consequence of this result, we have the following corollary.

Corollary 4.5.2. Let the same assumptions of theorem 4.4.1 be verified.
Then the global attractor of system (2.1) has finite fractal dimension.

In order to prove theorem 4.1.1 we only need to prove that the extended
semigroup S(t) is Lipschitz continuous on the phase space and Hölder contin-
uous in time. Indeed, the first statement follows easily from theorem 2.2.1,
whereas for the second statement the following estimates hold:

|u(t) − u(τ)|2 + |d(t) − d(τ)|H1

≤
∣∣∣∣
∫ t

τ

d

ds
u(s) ds

∣∣∣∣
2

+

∣∣∣∣
∫ t

τ

d

ds
d(s) ds

∣∣∣∣
H1

≤
∫ t

τ
|∂su(s)|2 ds +

∫ t

τ
|∂sd(s)|H1 ds

≤ (t − τ)1/2
(
|∂tu|2L2(τ,t;H) + |∂td|2L2(τ,t;H1)

)
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where (u(s), d(s)) is any solution of (2.1).
We start by considering ∂tu. From the equation for the velocity field

in (2.1) we obtain:

|∂tu|2 ≤ |(u · ∇)u|2 + ν|∆u|2 + |(∇d)t∆d|2
≤ |u|4|∇u|4 + ν|∆u|2 + |∇d|4|∆d|4
≤ C|u|1/2

2 |∇u|2|∆u|1/2
2 + ν|∆u|2 + C|∇d|1/2

2 |d|H2 |d|1/2
H3

≤ Cρ
1/4
0 ρ

1/2
2 |∆u|1/2

2 + ν|∆u|2 + Cρ
1/4
0 ρ

1/2
2 |d|1/2

H3 .

By squaring and integrating between τ and t, remembering the results of
section 3.4, we easily find that on the absorbing set (that is on a neighbour-
hood of the exponential attractor) |∂tu|L2(τ,t;H) is bounded.

An analogous estimate can be obtained by taking the gradient of the
equation for the order parameter. In particular we have:

|∂t∇d|2 ≤ |∇u|4|∇d|4 + |u|4|d|W2,4 + |d|H3 + |∇f(d)|2
≤ C|∇u|1/2

2 |∆u|1/2
2 |∇d|1/2

2 |d|1/2
H2

+ C|u|1/2
2 |∇u|1/2

2 |d|1/2
H2 |d|1/2

H3 + |d|H3 + C|∇d|2
≤ Cρ

1/2
0 ρ

1/2
2 |∆u|1/2

2 + Cρ
1/4
0 ρ

1/2
2 |d|1/2

H3 + |d|H3 + C|∇d|2.

Again simple calculations give a uniform bound on |∂td|L2(τ,t;H1) on a neigh-
bourhood of the exponential attractor. With these estimates we have ob-
tained the results needed to prove theorem 4.5.1.

We end here the mathematical treatment of system (2.1). In the last
three chapter we have proved that the system is well posed and that it
possesses many different kinds of attractors depending on the nature of the
forcing terms. In the last chapter of this work we will try to design some
numerical methods for the simulation of a nematic liquid crystal flow under
a (quasi-)periodic forcing term in a simple though interesting test case.



Chapter 5
Some numerical experiments

I
n this chapter we intend to apply some of the results obtained in the
previous chapters to the numerical simulation of system (2.1). Our
main goal will be to show how those results can be used to design and

improve some simple numerical methods for the full evolution system (2.1).
The consistency and convergence analysis of standard finite elements

schemes for system (2.1) has already been studied in detail in the available
literature (see, for instance, [23] and [24]). The main results are consistent
with the intuition arising from the regularity results of chapter 2: a couple of
spaces satisfying the Ladyzhenskaya-Babuška-Brezzi condition (see [30]) is
necessary to approximate correctly the velocity and pressure fields, while a
finite elements space with one order of approximation more is needed for the
order parameter field to obtain optimal convergence. In particular, unless
otherwise stated, we will choose the couple P1-bubble × P1 for the velocity
and pressure fields and the space P2 for the order parameter field (here we
use the standard notation meaning with Pi the space of continuous functions
which are piecewise polynomial of degree i on a fixed simplicial grid).

For all the simulations of this chapter we used FreeFem++ free software
running on a Windows Vista PC (Intel® Dual Core™ 4400, 2.2 GHz, 4Gb
RAM). We refer to its extensive guide [18] for the details.

5.1 The test case

We start by introducing the test case we will mainly study in this chapter.
We will consider the flow of a nematic liquid crystal in a rectangular domain
Ω = [0, 3] × [0, 0.5] with homogeneous Dirichlet boundary conditions for the
velocity field and the following constant Dirichlet boundary conditions for

80
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Figure 5.1: A sketch of the test case. We note that the driving force is represented
as it is exerted during its first half period: during the second half these arrows
should be reversed.

the order parameter field:

d(0, y) = (1, 0)T for y ∈ [0, 0.5]

d(x, 0.5) =




cos
(

2πx
2.4

)√
1 + sin2

(
2πx
2.4

)

− sin
(

2πx
2.4

) ∣∣∣sin
(

2πx
2.4

)∣∣∣


 for x ∈ [0, 2.4]

d(x, 0.5) = (1, 0)T for x ∈ [2.4, 3]

d(3, y) = (1, 0)T for y ∈ [0, 0.5]

d(x, 0) =




cos
(

2π(3−x)
2.4

)√
1 + sin2

(
2π(3−x)

2.4

)

sin
(

2π(3−x)
2.4

) ∣∣∣sin
(

2π(3−x)
2.4

)∣∣∣


 for x ∈ [0.6, 3]

d(x, 0) = (1, 0)T for x ∈ [0, 0.6]

We notice that this boundary condition belongs to H5/2(∂Ω). Moreover, we
will consider ν = 1 for most of our tests and ν = 0.1 in the next to last
section of this chapter when we will study a Taylor-like instability which
arises in the flow.

When dealing with the evolution equation we will consider the following
periodic forcing term g ∈ L2

n(0, ∞; L2):

g(x, y; t) =

(
2000νx(3 − x) sin

(
2πy
.5

)
sin(t)

0

)
.

As initial data for our problem we will take the equilibrium solution of the
equation for the order parameter field and u0 = 0 for the velocity field.
A schematic representation of the configuration we will study is given in
figure 5.1.

Thanks to the results of chapter 2, we conclude that under the above
assumptions our system has a global strong solution.
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Figure 5.2: The equilibrium solution of the test case computed on a mesh with
12470 elements and ǫ = 0.05.

5.2 The equilibrium solution

In order to approximate the solution to system (2.1) with the above forc-
ing and boundary terms, we first need to compute the equilibrium initial
configuration for the initial order parameter field. We remember that the
equation we have to solve in this case reduces to:

∆d = f(d) in Ω (5.1)

subject to the Dirichlet boundary condition specified above. This is in-
deed the Euler-Lagrange equation arising from Frank’s free energy with a
Ginzburg-Landau correction to approximate the constraint |d| = 1 (see sec-
tion 1.5).

We start by noting that, in the general case, the usual representations
of the order parameter as a field of (nearly-)unitary vectors may lead to
some numerical difficulties. Actually, from a physical point of view, vectors
as (0, 1) and (0, −1) are undistinguishable while from a mathematical and
numerical viewpoint a jump in the field from (0, 1) to (0, −1) cannot be
accepted. One possibility to cope with this problem is to consider a suit-
able polar parametrization of the order vectors writing the corresponding
evolution equations for these new variables (in terms of an angle θ and an
intensity ρ). However, the resulting system would be fully nonlinear leading
to much more difficult numerical problems.

An alternative, although less trivial, approach, could be to cut the do-
main in subdomains on which the usual description of the order parameter
field could be locally acceptable and then glue together different portions
of the domain by simply reversing the order parameter at their interfaces.
This is indeed the strategy we are pursuing in this short introduction to the
numerical simulation of system (2.1). In our case, however, the order param-
eter field is quite regular and does not exhibit topological defects or similar
features. We can therefore consider a unique parametrization of the order
parameter through vectors as if we were forgetting of the above mentioned
identification.

The easiest approach to the numerical approximation of equation (5.1) is
given by a fixed point argument similar to the one arising in the proof of the
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ǫ min |d| max |d| energy
iterations iterations

∆d(0) = 0 d(0) = dǫ=0.1

0.1 0.881446 1 17.9143 10 NA

0.05 0.969184 1 19.457 12 6

0.01 0.998557 1 20.1593 54 8

0.005 0.999623 1 20.186 62 14

0.001 0.99998 1 20.1949 NA 11

Table 5.1: Summary of the calculation of the equilibrium solution for different
values of the parameter ǫ. All the results are the same for the algorithm starting
both from the Laplace solution and from the equilibrium solution computed
for ǫ = 0.1. For ǫ = 0.001 the algorithm did not converge to the equilibrium
solution, but numerically got stuck in a non-optimal configuration.

well posedness (see section 2.1). However, the success of the linearization
d(n+1) = f(d(n)) heavily depends on the magnitude ǫ of Ginzburg-Landau’s
potential.

In order to design a method sufficiently robust w.r.t. the choice of ǫ, we
propose a Newton fixed point algorithm (see [30, Section 10.3] for details for
the general case). We remember that for a general operator F between two
Banach spaces, the Newton method is given by:

DF(d(n+1) − d(n)) = −Fd(n)

where DF is the Gâteaux differential of F . In this case, the iteration step
of Newton method involves the solution of the following linearized problem:

∆d(n+1) − 1

ǫ2

(∣∣d(n)
∣∣2 − 1

)
d(n+1) − 2

ǫ2

(
d(n) · d(n+1)

)
d(n) = − 2

ǫ2

∣∣d(n)
∣∣2d(n).

As stopping criterion we have used the H1 norm of the difference d(n+1) −
d(n). As it is well known from the general theory, this criterion is optimal
for Newton method. Moreover, in this case, it corresponds to evaluating
the change in the free energy after a step of the fixed-point algorithm. We
also observe that the maximum principle stated in chapter 2 for the order
parameter vector no longer holds for this linearized problem: therefore in our
simulations it will be possible for the absolute value of the order parameter
filed to be slightly larger than 1 in magnitude.

In figure 5.2 we represent the approximated equilibrium solution for the
case we are studying obtained by setting ǫ = 0.01 and calculated on a
grid of 12470 elements. In figure 5.3 we report the decay in the energy of
the approximation calculated in the successive iterations of the proposed
method. We note that, as initial guess, we used the solution of the Laplace
problem with the prescribed boundary conditions. Finally in table 5.1 we
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Figure 5.3: The estimated error on the equilibrium solution after each iteration of
the algorithm of section 5.2, for ǫ = 0.05, on a mesh of 12470 elements starting
from the solution of Laplace problem. We observe that the algorithm gets
initially stuck since at the first iteration some defects in the order parameter
field appear due to the coarse initial guess. Once these singularities annihilate
(at iteration 6) the convergence to the equilibrium solution is very quick.

summarize the behaviour of this algorithm with different choices of ǫ. As it
can be seen, the solution seems satisfactory under a wide range of physically
meaningful values. We also observe that for very small ǫ it is more convenient
to use the approximate solution easily obtained with a greater ǫ (for example
ǫ = 0.1) as initial guess for the iterative algorithm. This choice makes the
convergence much faster.

5.3 The Newton method for the complete system

Since we have obtained an accurate approximation of the initial condition
for system (2.1), we now turn our attention to the simulation of the full
evolution problem. We will denote with (uj , dj) the solution at the jth

timestep and we will write (u
(n)
j , d

(n)
j ) for the nth iterative solution of the

linearized problem approximating (uj , dj).
We start by considering an explicit Euler approximation for the time

derivative. By applying the Newton method to the resulting system, we
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Elements Newton fixed point

638 18.571 5.935

1556 43.538 15.209

2880 76.898 27.578

5794 153.824 55.894

7912 NA 100.625

12470 NA 118.472

Table 5.2: Average execution time in seconds per time-step for the two methods
proposed for the simulation of the full system of evolution equations (2.1) on
meshes of varying coarseness. The data were obtained by solving the test
problem proposed in section 5.1 on grids of different coarseness with timestep
equal to 0.1 from t = 0 to t = 12.6 ≈ 4π. The missing values in the table
are due to the excessively long computation times required to complete these
simulations. As can easily be seen, the proposed splitting method is far quicker
than the full Newton iterative approximation.

obtain the following iterative numerical scheme:

u
(n+1)
j + dt

(
u

(n)
j · ∇

)
u

(n+1)
j + dt

(
u

(n+1)
j · ∇

)
u

(n)
j − dt∆u

(n+1)
j

− dt
(
d

(n)
j

)T
∆d

(n+1)
j − dt

(
d

(n+1)
j

)T
∆d

(n)
j

= dt
(
u

(n)
j · ∇

)
u

(n)
j − dt

(
d

(n)
j

)T
∆d

(n)
j + dt gj + uj−1

d
(n+1)
j + dt

(
u

(n)
j · ∇

)
d

(n+1)
j + dt

(
u

(n+1)
j · ∇

)
d

(n)
j − dt∆d

(n+1)
j

+
dt

ǫ2

(∣∣d(n)
j

∣∣2 − 1
)

d
(n+1)
j +

2dt

ǫ2

(
d

(n)
j · d

(n+1)
j

)
d

(n)
j

= dt
(
u

(n)
j · ∇

)
d

(n)
j +

2dt

ǫ2

∣∣d(n)
j

∣∣2d
(n)
j + dj−1.

We observe that, for the case studied where we have chosen a fixed
timestep equal to 0.1 for grids of varying coarseness, each successive time
iteration usually requires the solution of four or five Newton linearized prob-
lems. Since this problem involves the simultaneous solution of five different
scalar equations (two for the velocity field, two for the order parameter field
and one for the pressure), this method results in quite lengthy simulations
(see table 5.2).

In figures 5.4 and 5.5 we show a comparison between the solution for the
full system and the one obtained considering only the Navier-Stokes equa-
tions with the same external force. As it can be easily seen, the qualitative
evolution of the velocity and pressure fields are quite similar: the main dif-
ference is to be found in the variations of the pressure field, greater in the
Navier-Stokes system than in our full model. This is due to the additional
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Figure 5.4: The solution of the Navier-Stokes equations at t = 1.6 (ν = 1) just
after the first peak in the intensity of the forcing field. We observe that the
field is completely laminar.

viscous effect given by the nonlinear coupling with the order parameter field,
whose contribute is indeed responsible for part of the expected pressure gra-
dient.

5.4 An alternative splitting method

As it was pointed out in the previous section, the performance of Newton’s
method for the iterative solution of the full system (2.1) is rather time
consuming. Inspired by the proof of section 2.1, we also discuss a different
iterative scheme based on the linearization of the splitting (2.9). Numerically
this corresponds to solving iteratively the finite element formulation of the
following partial differential equations.

• The first step is to solve the following problem for the velocity field:

u
(n+1)
j + dt

(
u

(n)
j · ∇

)
u

(n+1)
j + dt

(
u

(n+1)
j · ∇

)
u

(n)
j − dt∆u

(n+1)
j

= dt
(
u

(n)
j · ∇

)
u

(n)
j + dt

(
d

(n)
j

)T
∆d

(n)
j + dt gj + uj−1.

• The second step consists in solving the following linearized equation
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(a) The order parameter field.
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(b) The pressure field.
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(c) The velocity field.

Figure 5.5: The solution of the full system at t = 1.6 (ν = 1) just after the first
peak in the intensity of the forcing field. We note that the velocity and pressure
fields are quite similar to the Navier-Stokes case, whereas some differences
can be seen between the order parameter field represented here and the one
depicted above (see figure 5.2). Also notice the difference in the pressure
gradients.
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0 10 20 30 40

(b) The velocity field.

Figure 5.6: The solution of the Navier-Stokes equations at t = 1.6 (ν = 0.1)
just after the first peak in the intensity of the forcing field. Three vortices are
clearly visible.

for the order parameter field:

d
(n+1)
j + dt

(
u

(n+1)
j · ∇

)
d

(n+1)
j − dt∆d

(n+1)
j

+
dt

ǫ2

(∣∣d(n)
j

∣∣2 − 1
)

d
(n+1)
j +

2dt

ǫ2

(
d

(n)
j · d

(n+1)
j

)
d

(n)
j

=
2dt

ǫ2

∣∣d(n)
j

∣∣2d
(n)
j + dj−1.

The numerical results are exactly the same as in the previous section.
However, as can be seen in table 5.2, the overall computation time is much
shorter despite the increased number of iterations per time step (now usually
seven or eight).

5.5 Increasing the Reynolds number

We now want to study the evolution of our system under slightly greater
Reynolds numbers. In this section we choose ν = 0.1, a viscosity for which
a Taylor-like instability is clearly visible in the solution of Navier-Stokes
equations (see figure 5.6). By using the same numerical scheme presented in
the previous section, we can solve the full system also in this case without
any additional problem. We only observe that the convergence of the scheme
is slightly slower, requiring, in the average, a tenfold of iterations per time
step.
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(a) The order parameter field.
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(b) The pressure field.
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(c) The velocity field.

Figure 5.7: The solution of the full system at t = 1.6 (ν = 0.1) just after the
first peak in the intensity of the forcing field. We note that in this case some
qualitative relevant differences appear when comparing this solution to the
simpler Navier-Stokes equations (see figure 5.6 above). In particular, only two
vortices can be observed in the velocity field. Moreover there seems to be an
additional time instability connected with their motion which does not appear
in the simpler case: during the first cycle these two vortices move from right
to left leaving space at the end to a smaller vortex on the right which has not
enough time to fully develop, whereas, at the beginning of the second period
through which the simulation was run, a reversed motion (from left to right)
appears.
We also note, comparing these pictures with figure 5.5, that the vortices have
a homogenizing effect on the order parameter field.
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0 0.04 0.08 0.12 0.16

Figure 5.8: The velocity field at time t = 0.15 around the two moving singularities.
See text for description.

As it can be seen by a sample step of the computed solution, in this
case the velocity and pressure field are quite different from the basic Navier-
Stokes solution: indeed we notice some major asymmetries in the field which
were not to be seen either in the Navier-Stokes case or in the lower Reynold’s
number case. We conclude that in this case the use of the full system is
necessary to obtain correct information on the evolution.

5.6 Coalescence of singularities

We end this chapter by showing some numerical results obtained by con-
sidering the evolution and annihilation of two singularities of opposed sign
(respectively +1 and −1) in the order parameter field originally at rest. In
this case the domain of computation is [0, 2] × [0, 0.8] and the viscosity is
assumed to be 0.33.

After a short time, the two singularities begin to attract each other and
eventually collapse (see figure 5.9). The induced velocity field shows a pair
of vortices around the moving singularities (see figure 5.8). This numerically
confirms the analytical results in [2].

We conclude this chapter by observing that the analytical study of sys-
tem (2.1) was crucial in designing a simple and efficient numerical method
for its approximate solution. The solution of the full system consisting of
five different unknowns is still today a computational expensive task, which
can be made more feasible by a suitable abstract study.
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(a) The order parameter at t = 0.
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(b) The order parameter at t ≈ 0.5.
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(c) The order parameter at t = 0.65.

Figure 5.9: The annihilation of two singularities of opposed signs. See text for
description.



Conclusions

A
t the end of the redaction of any important document there is al-
ways an unavoidable moment in which one looks back at what he
has written. Immediately many question arise: Was the initially

prefigured goal reached? Were there any sudden development departing far
from the original plan? Was any unexpected difficulty encountered? Re-
membering how a work was initially conceived always brings some surprise
with: initially important targets may have fallen apart while unexpected
and interesting arguments, once never imagined, may form, at the end, a
consistent part of the final work.

These considerations apply also in the present case: although many could
argue on its importance, this thesis more or less underwent the same tortuous
path from its initial concept to the present final result. Some results on
a finer description of the long terms dynamics of our systems did not find
ultimately a place in the present work (for example an estimate of the fractal
dimension of the global and exponential attractors) and still await to be
written, although the silent work they absorbed. On the other hand, entire
chapters were introduced in the overall plan only along the way as was the
case for the numerical examples presented in chapter 5. In particular, it
has been quite a surprise when the hints given by the analytical study of
system (2.1) brought such interesting numerical results.

However difficult the story of this document could have been, I can-
not finish it without remembering the most important rails which guided
me all along this trip. Although complex the analysis of a mathematical
model could be, the secrets we are able to worm out of it are of incredible
importance: not only they give us a deeper understanding of the nature
surrounding us, but they also bring an immediate and priceless wealth of
information for possible applications.
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