POLITECNICO DI MILANO
FACOLTA DI INGENERIA DELL' INFORMAZIONE

MASTER OFSCIENCE INCOMPUTERENGINEERING

CONTROLLING ACCESS TCDATA VIA OWL REASONING

Supervisor:
Prof. Marco COLOMBETTI
Author:
Ebru UZUNDERE
737084

2009-2010

Table of Contents

LISt Of FIQUI S, ..ottt sttt be e e s e e e sare e e nneee s I
S o =1 o = SRR I
ENGISN ADSIFACE ... e v
[talian ADSIFACE ... e %
IO 11 oo [F Tox i o o SRS PRPRRSI 1
2. Background KNOWIEAQE.c.uvieiiiee et 4
2.1, ACCESS CONLIOI ISSUBSueiiiieeeieiiteeteeie et sttt et et e e she s e e e e b e e as e besaeenesbeeneenes 4
2.2. 0VEIVIEW OF XACML ... e bbb e 5
2.3. Overview of Extended XACML Policy Languageccoceiererieenenierienesee e 8
2.4. The Web Ontology Language QWLccceveieeieneninie s seesee s s see e sneenes 9
3. SYSLEM DESIGN .. iiiiiiie ettt ettt bbb e e ar e ne e 13
7 o [Ton Y@ L] (o [o]e VS 18
4.1. Structure Of POliCy ONOIOGYccouereriierieieeierieeee ettt nneens 19
A = 011 o SR PRPR 22
4.3. Logic AXIOMS fOr POlICY ONLOIOGYcccueiueiieiirieriiniese ettt 28
5. Policy Matching Application and User Interfacescccccevvveeeviieecccieeeeee, 30
5.1 EXAIMPI @ttt ettt b et e sttt b e ettt ne s 34
6. Application Usage FieldS........ccuoiiiiiiii i 44
6.1. Social NetWOork EXAMPIEcceiiiiieieseee ettt 44
6.2. Commercial Application EXAMPIE.......coooiiiiieiiieee et e 48
AR 0] T 101 o o ISR 51
=11] 1T Te =T o] o |V 53

List of Figures

Figure 2.2.1: Structure of an XACML POICY ...ccovviiiiiiiiiiiiiiiiiiiieieeeeteeetttetee e e tree e e e 6
Figure 2.2.2: Example Of @an XACML POICYuuuuuuuiiiiiieii i eeieeneseenenenennnnnes 7
Figure 2.3.1: Model of extended XACML ...ttt 8
Figure 2.4.1: Part Of PiZZa ONTOIOQYucummumiiiiiiaie et e 12
Figure 3.1: SYStem MOUEL ... 14
FIgure 4.1.1: ClasSS HIBIAICNYeuiiiceeeeeeiiiiitiititit e e s s s sessssbessessssnensnnnnne 19
Figure 4.1.2: Class Hierarchy in Graphical REpPrEHEIMN.............uuuuuimiiiiseaaeeeveeeeeveeenenenes 20
Figure 4.1.3: ODJECT PrOPEITIES ettt e e e e sessssssssessessessssnsnsnnnnee 21
Figure 4.2.1: POlICY EXAMPIE......cooi i eeeeeeiiie ittt e seesessessessnenensnennnes 22
FIgure 4.2.2: POLCY INSTANCE.......c.ciiiii et 23
Figure 4.2.3: hasAuthorizationSet Object Propemyriains and Rangescccoee e ... 23
Figure 4.2.4: AUthOrZatiONSEISTANCEcoeiiiiiiiiiiiiiiiie i e 24
Figure 4.2.5: Data Property of UsagePurposeAuthtida0 Instanceccooooooeiiiiiiicecccinens 24
Figure 4.2.6: hasObligationSet Object Property Diamand Rangescccccvvvveviiviiiemmeennnennne 25
Figure 4.2.7: ObligatioNSet INSTANCEcummumeiiiieie i e s 25
Figure 4.2.8: Object Properties of ObligatioNL #MEEuuuiiimimiiiiiiiiiirrrre e e e e 26
Figure 4.2.9: ActionDeletePersonalData INSaNCE..cc... ... 26
Figure 4.2.10: Object Properties of TriggerSetIansecccccviviiiiiiiiei e 27
Figure 4.2.11: Data Properties of TriggerAtTime&tamce ... 27
Figure 4.2.12: Data Properties of Validiyl INStance.............cooooi e 28
Figure 5.1: Policy MatChing APPIICALION......couaeuuuiuitiiiiiiiiii s e beesaenenenenennnennees 31
Figure 5.2: Locate POlICY ONtOIOQYicoeeeiiiiiiiiiiieiietieieeieeieeteeeee e e e eeee e e e eeeeeeeeeeeeeeeeeeeeeeeeeeees 31
Figure 5.3: Locate POlICY DOCUMENLocieaaeiiie e 32
Figure 5.4: Present Extracted POliCY INfOrMatiON..uvuiiiiiiiiiiiiiiiiiiiiiiiiieieeeeee e e eee e 33
Figure 5.5: Select POlICIES 10 MALCK ... 33
Figure 5.6: MatChing RESUIL..........cooi oot seeseeseesesseeseesesnensnsnrnes 34
Figure 5.1.1: POlICY EXAMPIESuuuuiiiiiieeeeeeiieiiieitieeeeeeieeeeaeeteeeeeeeeseesssbeenenesaeaesaaeeeeseseeseeeeeeeeeeesseees 37
Figure 6.1.1: Policy Example for Family — Data ROVoveiiiiiiiiiiiiiiiiiiieeeeeee e 45
Figure 6.1.2: Policy Example for Friend-Data CONBUIM............uuuuurmmimiiiiiiiimmmmms e es e eeee e 47
Figure 6.2.1: CardSCan STTUCTUIE e 49
Figure 6.2.2: Data Provider POLICYt 49

List of Tables

Table2.4.1: OWL DL SyntaX and SEMANTICScccveririiiiiiiiesieseeieesiesreeeese e see e seeseessessaessessesssessens

Table 2.4.2: OWL DL Axioms and Facts

ABSTRACT

As the amount of valuable data available on the \@felws, access control becomes extremely
important to data providers and users. Access alnthich means the users must fulfill certain

conditions in order to access certain functionalghays an important role in security based

systems.

With the advent of the Semantic Web, Semantic Véehrtiques, especially ontologies, allow
to describe Web services with more machine undetatale semantics, thus enabling to use
logic and formal reasoning techniques for automamalysis and verification of policies.
Access control should have the ability to work sgmstically across different organizations or
services to provide security. There has been & greaunt of attention to using Semantic Web
techniques in above mentioned issues due to théhaicSemantic Web techniques fit very well
to the nature of access control and policies.

In this work, firstly, we have presented a translatof policy documents, those written in
extended XACML into OWL-DL and then described hdwoge translations can be used for
policy analyzing and matching by exploiting OWL seaer functionalities. We believe that,
this approach can be used to help developing sgduwameworks for dynamic environments
which require an agreement before sharing datao@al networks.

SOMMARIO

Poiché la quantita di dati preziosi a disposizisug web cresce, il controllo degli accessi
diventa estremamente importante per i fornitodati e per gli utenti. Il controllo degli accessi,
ossia condizioni che gli utenti devono soddisfage goter accedere a determinate funzionalita,
svolge un ruolo importante nei sistemi basati ssiltarezza.

Con l'avvento del Semantic Web, delle tecnicheSéshantic Web, e in particolare le ontologie,
€ possibile descrivere i servizi Web con piu matalsemantica comprensibile, permettendo
cosi di usare la logica e le tecniche di ragionaméormale per l'analisi automatica e per la
verifica delle regole. Il controllo degli accessivé avere la capacita di lavorare in sinergia tra
diverse organizzazioni o servizi per fornire siazee C'é stata una grande attenzione riguardo
all'utilizzo di tecniche di Semantic Web nei cascdssi precedentemente per il fatto che le
tecniche di Web semantico si adattano molto bel@eratura del controllo e delle regole di
accesso.

In questo lavoro, prima, abbiamo presentato undumiane dei documenti di politiche di
accesso, quelle scritte in esteso XACML in OWL-Blgunidi abbiamo descritto come quelle
traduzioni possono essere utilizzate per l'analispolitiche e il confronto, sfruttando le
funzionalita di ragionatore di OWL. Crediamo cheesfido approccio pud essere usato per
aiutare lo sviluppo di strutture di sicurezza perbgenti dinamici, che richiedono un accordo
prima di condividere i dati, cioe’ reti sociali.

Chapte

INTRODUCTION

As the amount of valuable data available on the \Yfelws, access control becomes extremely
important to data providers and users. Access alnthich means the users must fulfill certain
conditions in order to access certain functionalghays an important role in security based
systems. There have been several studies to deset@ss control models such that role based
access control, attribute based access controttential based access control models. Here
Is a summary of these models: [1]

» Attribute-based Access Control (ABAC) grants accesd based on the rights of user
authentication, but based on attributes of the .uberABAC, authorizations are
associated with a set of rules expressed on mddsuparameters, attributes, and
permissions are granted to users who can prove lamp with these rules.

» Discretionary Access Control (DAC) is an accesstrmbrmodel in which owner of an
object decides who is allowed to access the olgact what privileges they have.
Limiting access to a file is an example for DAC rabdt is the owner of the file who
controls other users' accesses to the file. Ordgehusers specified by the owner may
have permissions to access to the file. DAC pot@yds to be very flexible and is
widely used in the commercial applications and gowent sectors.

* Mandatory Access Control (MAC) is another accesstrob model in which access
control is determined by the system, not the owRer.instance in military security, a
data owner cannot change the classification of @uehent fromTop Secret to Secret.
MAC is the most popular NDAC (Non- Discretionarydsss Control) policy.

* Role-based Access Control (RBAC) is another NDAGcgan which access control is
determined by the system.In RBAC, individuals assigned to some roles and access
decisions are based on those roles. Access rightgrauped by role name, and the use
of resources is limited to authorized individuafstiee associated role. For instance,
within a high school system, the permissions fafggsor role and for student role are
different; each group can access specified ressutuese associated with their roles.
RBAC can be effective for developing and enforciegterprise-specific security
policies.

* Credential-based Access Control (CBAC) is an aughtion based access control rather
than authentication based. A credential is usegifoving qualification, such as proof
of identity and/or proof of authority. For examplgtional identity cards are proofs of
identity, plane tickets are proofs of authorizatitm have a particular flight in a
particular seat, and driver's licenses are probfdemtity and of authorization to drive
motor vehicles of a certain category.

In general these models use declarative, rule blseglages which allow users to specify
complicated policies. Current access control resesr follow two paths: some studies focus on
developing a powerful and expressive language dticips while others are focus on what can
be done by using existing languages. In this scppécy languages have been compared
according to the functionalities such that:

» Policy Comparison: Check two policies, if both githee same decision result, access
permit or deny, when they have the same input ¢iomdgi.

» Policy Verification: Check if two policies satiséyparticular policy property.

» Policy Analysis: Check if a policy consistent ott.no

* Policy Matching: By comparing two policies decidéigoh one is less/more permissive
than the other.

With the advent of the Semantic Web, Semantic Véehrtiques, especially ontologies, allow
to describe Web services with more machine undedatde semantics, thus enabling to use
logic and formal reasoning techniques for automamalysis and verification of policies.
Access control should have the ability to work sgistically across different organizations or
services to provide security. An access contralcgatan be taught as a class description which
denotes a set of “acceptable” things by descriltiregn. There has been a great amount of
attention to using Semantic Web techniques in aevtioned issues due to the fact that
Semantic Web techniques fit very well to the natfraccess control and policies.

PrimeLife project [2], whose goal is managing pcyand identity in Europe, is an example of
recent studies for access control issue. Withirpscof the PrimeLife project, a new policy
language has been developed. In our work, we haeated an ontology called “Policy
Ontology” to represent policies described in newhplemented XML alike language of the
PrimeLife. Structure of that ontology will be dissed in chapter 4. Then we designed a
“Policy Matching” application whose aim is matchiigio policies by using the Policy
Ontology. Main features of the Policy matching agadion will be discusses in chapter 5.

Policy matching application basically composedvad parts: first component called “Loader”
which allows user to upload a policy file to thessgm. System will parse uploaded policy
document and extract the related information ande sia into Policy Ontology. Second

component called “Matcher” allows user to seleco tpolicies from existing ontology and
match them. System will recursively query policiesmponents and compare them one by one.
Finally result will be presented to the user. Wdl discuss Loader and Matcher components
deeply in chapter 3 and chapter 5.

We use the “match” concept to compare two poliégresorder to see if one is less/more
permissive than the other. To be more clear consallewing situation: suppose a subject, let
us call provider, defines a policy in which he/shates which data can be accessed by whom
and how this data can be used etc. Now supposeexmaibject, let us call consumer, wants to
access the provider’s data. Consumer should defpaicy as well. In order to decide allowing
access or not we have to match these two poligidata consumer has required authentications
and agrees on defined obligations then he/she <hadess data, otherwise not. The
authentications and obligations in consumer’s gadicould be more restrictive, less permissive
than in the provider’s policy.

The remainder of report is organized as followschapter 2 we provide relevant background
information and in chapter 3 we explain system glesin chapter 4 we describe structure of
Policy Ontology and provide an example. In chapteve specify Policy Matching application
features with an example. In chapter 6 we providenes examples to show usage of
implemented system and conclusions in chapter 7.

Chapte

BACKGROUND KNOWLEDGE

2.1 Access Control |ssues

A significant feature of any information systentasprovide an access control mechanism that
means protecting data and resources from unaudlibraccess while at the same time
guaranteeing their availability to the authorizesens. Access control is the process of
determining an access decision, permit or denyeaoh request which is made to access
resources. The access decision is imposed by atygqmoiicy that involves regulations.

The development of an access control system rexjuine definition of the regulations
according to which access is to be controlled. dé&eclopment process is usually carried out
with a multi-phase approach based on the folloveimgcepts [3]:

e Security Policy: The set of rules that define tbaditions under which an access may
take place.

» Security Model: Formalization of the access corgetlurity policy and it's working.

» Security Mechanism: Definition of the low level fseare and hardware) functions that
implement the controls imposed by the policy andhfaly stated in the model.

To develop an access control system, followingassthould be considered: security principles,
policies and policy languages, and models proposéuk literature. For existing access control
models please check chapter 1.

In principle each access control model implemerdsgle specified policy. However a single
policy cannot capture all the security requiremeiis solve this problem, policies can be
implemented as a part of the application code. tBig solution is not optimum because it
makes the verification, modification and enforcetr@rpolicy difficult.

Recent solutions have proposed policy languagesetippovide a single mechanism able to
enforce multiple policies. Logic-based languages, their expressive power and formal
foundations, and also their flexibility and extdnidy features represent a good candidate.
XML based languages are another candidate singehthee ability to interchange data between
different applications, systems or organizations.

2.2 Overview of XACML

Policy matching application takes policy documeagsan input and produces a decision either
access is allowed or denied as an output. Inputypdiocuments are described with a policy

language which has been designed for the Primepifgect. This language extends the

XACML 3.0 [4] with a number of privacy enhancingcaaredential based features.

XACML, extensible access control markup languagdeased by OASIS is a XML-based
language for describing and interchanging accessralopolicies. It defines policy strategies
through attribute matching mechanism and it canubed to define general access control
requirements. XACML allows expressing both positaed negative authorization and the
hierarchical role based access control model (RBAGyreover it enables the use of arbitrary
attributes in policies. XACML defines both an atebture for evaluation of policies and a
communication protocol for message interchange.

The root of all XACML policies is a Policy or Poji§et element. A PolicySet is a container
that can hold other Policy or PolicySet elementdlicy element represents a single access
control policy, expressed through a set of RuladefRare the most basic element of XACML
those actually take an access request as an inpuyiald a decision; Permit, Deny or Not-
Applicable. Target element is used to determing Rule is applicable to an access request or
not. A Target is a set of simplified conditiong the Subject, Resource and Action. Figure
2.2.1 shows general structure of an XACML policy.

Some of the novel functionalities offered by XACMa&n be listed as below:

» Policy Combination: Different entities can defirfeeit policies on the same resource.
When an access request on that source is subnilteedystem takes into consideration
all the applicable policies.

« Combining Algorithms: Policy or PolicySet may cantanultiple policies or rules, each
of which may evaluate to different access contestision. XACML supports different
combining algorithms, Policy Combining AlgorithmsRule Combining Algorithms, to
result multiple decisions into a single decision.

» Attribute-based Restrictions: XACML supports padsibased on attributes associated
with subjects and resources. XACML includes somit-bbu operators for comparing

attribute values.

» Policy Distribution: XACML allows to a policy contaor refer to another policy.

* Obligations: XACML provides obligation actions tleoshall be enforced after the
access decision has been taken.

hasPoIiC/ \rlasPolicvSet

hasTarget

hasEffect

hasSubiect

hasResource

Figure 2.2.1: Structure of an XACML Policy

hasAction

As an example of XACML policy, suppose that a htepiefines a high-level policy stating
that “any user with role head physician can reael platient record for which he/she is
designated as head physician” [2]. Figure 2.2ukitates the XACML policy of this example.
The policy has one rule with a target that requelesead action, a subject with role head

physician and a condition that applies only if fubject is the head physician of the requested
patient.

<Policy Policyld="Pol1" RuleCombiningAlgld="urn:o@snames:tc:xacml:1.0: rule-

combining- algorithm:permit-overrides” . . . >
<Rule Ruleld="ReadRule" Effect="Permit">
<Target>
<AnyOf>
<AllOf>

<Match Matchld="urn:oasis:names:tc:xacml:1.0:fuoctstring-equal">
<AttributeValue DataType="http://www.w3.0rg/2001/ XM8chema#string">
head physician
</AttributeValue>
<AttributeDesignator
Category="urn:oasis:names:tc:xacml:1.0:subjectegmteaccess-subject’
Attributeld= "urn:oasis:names:tc:xacml:2.0:examgtigibute:role"
DataType="http://www.w3.0rg/2001/XMLSchema#strirwg"/
</Match>
</AllOf>
</AnyOf>
<AnyOf>
<AllOf>
<Match Matchld="urn:oasis:names:tc:xacml:1.0:fuoetstring-equal">
<AttributeValue DataType="http://www.w3.0rg/2001/XM8chema#string">
read
</AttributeValue>
<AttributeDesignator
DataType="http://www.w3.0rg/2001/XMLSchema#string"
Category="urn:oasis:names:tc:xacml:3.0:attributegary:action”
Attributeld="urn:oasis:names:tc:xacml:1.0:actioti@ac-id"/>
</Match>
</AllOf>
</AnyOf>
</Target>
<Condition>
<Apply Functionld="urn:oasis:names:tc:xacml:1.0dtion:string-equal">
<AttributeDesignator DataType="http://www.w3.org@IXMLSchema#string"
Category="urn:oasis:names:tc:xacml:1.0:subjectgmateaccess-subject"
Attributeld="urn:oasis:names:tc:xacml:1.0:subjeetti-physicianID"/>
<AttributeSelector RequestContextPath="/ctx:RequaesResource/ctx:
ResourceContent/hospital:record/hospital:patiestgftal:
patient-head-physicianID/text()"
DataType="http://www.w3.0rg/2001/XMLSchema#string"
Category="urn:oasis:names:tc:xacml:3.0:attributiegary:resource"/ >
</Condition>
</Rule>
</Policy>

Figure 2.2.2: Example of an XACML Policy

2.3 Overview of Extended XACML Policy Language

Within scope of the PrimeLife project, XACML is extded. Figure 2.3.1 illustrates extended

XACML model which has several newly added composerixtended XACML policy
language is intended to be used:

* by a subject to specify the access restrictionsigther personal information and how
he/she wants this information to be treated aftedwa

* by a subject to specify the access restrictionthéoresources that he/she requests and
how he/she is going to handle accessed data aftésw

PoilcySet zacml Targst 3 AUMTUssFIPUIPOES - PUrposs
e, = J =
[V |
4
o o 3 —_—
0 2 EuthzDownstreamusage
_ [_DataHandmgPoiicy - y [Tt
£ Foloia M alowed —]
= o j
1
2] ..m &l ObligationsSe: i Diligation_ i ‘Action
T3 1
iy
Palicy StickyPalicy : Vaidity
FusCombiringAigid - —]
[l]
*_ [CradentiaRsquirsments - [cmenEa) . [| = Ml
a b —| Credentiaiin - : Matchic
T :
=\ [ProvisionalActions. o Provizionaldction
- — Actionid
5]
Ruls o xacmi:Condition .
Erect =
g EXiSIng,UnMOaMEd KACML 3.0 element g exiEinGXACML 3.0 slement, modiied schema E newslement, 5chema defnad here

Figure 2.3.1: Model of extended XACML

As we see from Figure 2.3.1, extended XACML poliagguage modified PolicySet, Policy
and Rule elements those already implemented in XAGW. Similarly to XACML, in
extended policy language each rule has an effiéleeréPermit” or “Deny”. Rules are grouped
together in policies and when a policy is evaluathd rule combining algorithm of the policy
determines the effect of the policy by examining #ffects of the applicable rules. Policies are
grouped together in policy sets like XACML 3.0 aheé effect of a policy set is determined by

the effects of the contained policies and the dtptdicy combining algorithm. Lastly, different
policy sets can be further grouped together inmtgelicy sets.

The main components of a rule are: a target, aitondcredential requirements, provisional
actions, data handling policies, and data handbirejerences. Target and Condition elements
are used in extended XACML without any modificatic@redentialRequirements element
describes the credentials that are required inrdodaccess to the resource. ProvisionalActions
element describes the actions that have to be rpegfb in order to access to the requested
resource.

If we name the individual whose personal data admlected as Data Provider,
DataHandlingPreference element would involve pesfees of data provider about how this
data should be handled. Similarly if we name tlidvidual who asks for an access to a specific
personal data as Data Consumer, DataHandlingPelmyent would define intends of data
consumer about how he/she is going to handle tkee &=ach rule, policy, or policy set can
contain a number of DataHandlingPolicy or DataHagRreference element.

Each DataHandlingPreference and DataHandlingPoktgment may involve a set of
authorizations and a set of obligations. For theetbeing, authorizations focus on two basic
concepts: usage and downstream sharing. Usagé&testhat data consumer can do with
accessed data while downstream sharing definesr wmdieh conditions data can be shared
with another data consumer. Obligations state wheatata consumer shall do after accessing
specified data. An obligation can be taught asgoacbn an event if a specific condition is
satisfied.

2.4 The Web Ontology L anguage OWL

The OWL, Web Ontology Language [5] is a family aiokvledge representation languages
based on Description Logic (DL) for authoring oowies with a representation in RDF.

OWL supports the specification and usage of oniekthose provide a domain of interest in
terms of concepts and relations according to wthelse concepts are related. Ontologies uses a
DL knowledge base composed by individuals relewanthe domain of interest, classes of
individuals, relations, properties and axioms #sgert constraints over them.

OWL has three increasingly expressive sublanguaQ&ét Lite, OWL DL, and OWL Full.
OWL Lite is intended to support users primarily dieg a classification hierarchy and simple
constraints over ontologies. OWL DL was designegravide the maximum expressiveness
possible while retaining computational completenesscidability, and the availability of

practical reasoning algorithms. OWL Full is basedaodifferent semantics from OWL Lite or
OWL DL, and was designed to preserve some compgtibith RDF Schema.

The OWL DL descriptions, data ranges, propertiadjviduals and data values syntax and
semantics are summarized in the first table be@WL DL axioms and facts are summarized

in the second table below [6].

[Abstract Syntax | DL Syntax | Semantics
Descriptions (')

A (URI Reference) A A C AS
owl:Thing T owl : Thing" = A”
owl:Nothing 1 owl : Nothing® =
intersection0f () Ch...) Oy M Ca Cyncy
unicnDf () O L.L) Oy U Oy Oy Uy
complementOf (') - AN CH
cnelf(op ...) log,...} {o7,...]
restriction(fi someValuesFrom((C')) JR.C {x|qy (z,y) s B Uy e (7}
restriction(f allValuesFrom({')) YR.O lz|vy (z,y) e B* —y <= O}
restriction(i hasValue(o)) R:o {x|(x, o) = B*}
restriction(l ninCardinality(n)) % nh lacs A [{b](a,b) e B*} = n}
restriction(li naxCardinality(n)) = nh Ja = A [{bl{a,b) e B*} < n}
restriction(l/ scmeValuesFrom(1)) 3D [rFy (x,y) s U Uye= DV}
restriction(l’ allValuesFrom(D)) Wi.D [xlvy (z,y) e UF — ye DV}
restriction(! hasValue(v)) U:w {r|(x,v) e U*}
restriction(l/ minCardinality(n)) = nll fa e A%| [{b](a,b) e U-}| = n}
restriction(l/ maxCardinality(n)) < nll fa e A% [{b|(a,b) e U=} < n}

Ranges (I

Data

IV (URI reference) n DY C Ad

cnalf(wy ...,) T fog ..

Ohject Properties [H)
R (URI reference) R A5 x A
R- (R
Diatatype Properties (17

L7 (URI reference) [| U* C A" x Af
[ndividuals (o)

o [URI reference) | g | o € A
Data Values ()

» (RDF literal) | v | vt

Table 2.4.1: OWL DL Syntax and Semantics

A concept from DL is referred to as a class in OWfid a role from DL is referred to as a
property in OWL. In OWL “Classes” denote set of eatis while “Individuals” denote single
objects. “Object properties” denote binary relasiops between objects and “Datatype
properties” denote binary relationships betweercisjand data.

10

Abstract Syntax | DL Syntax | Semantics |

Classes
Class(d partial O ... C) ACCOn..nG, |4ACCin..ncs
Class(A conplete O ...) A=Cin..NnC, | A =C{n...nC;
EmmeratedClass(d o ...0,) A=1{oq,..., o} | A ={oy,..., o }
SubClass0£f(Cy Ca) Oy C Oy [
EquivalentClasses((... O Ci=...=0C, Cy = =
DisjointClasses(Cy ... O] CinCy=1i#7 | CinCy =0i#j
Datatype|) D-Axg
Datatype Properties
DatatypeProperty|
UV supar(ly) ... supex(l’,) UCU; uvsCciuy
domainiCy) ... denain(C,) x=10C 0, U+ C O x A
ranga(M) .. .ranga(l)) TCYU.IL, U= C A = I
[Functionall) TC£1U [V, is functional
SubProperty0f (L Ua) Uy Cly Uy C Uy
EquivalentProperties(li ... 17.) Uy=...=0, Uy =...=U3
Ohject Properties
ObjectProperty|
R super(Ry) ... super(H,) RLC R, R C R
demain(Cy) ... demain{) %1 RCCY R C O« Ag
range(('}) ... range(() T CWYR.C, RECAT x (7
[inverself (f;)] H=(H) R =R~
[Symmetric] =1l =Rt -
[Functicnall TLC= 1R R is functional
[InverseFunctional] TLC= 1R~ (1)~ 1s functional
[Transitive]) TriR) R = (R5T
SubProperty0f| H; Ha) Ry C Hs Hy © B3
EquivalentProperties(fy ... H,.) Ri=..=R, Ri=. .=k
Annotation
AnotationProperty(S) | |
Individuals
Individual|
otypeiCh). . type(Ch) ae 5 o e O
valua(fy o). .. value(R, o.) lo,0;} € R, {o",o;1 € By
valua(l’y v1).. . valua(l7, v,)} {o,v;} e U; [o" v} e U7
SameIndividual{og...a,) 0] = ...=0p oy =...=0o,
DifferentIndividual(o;...o,) o 7 05,1 F] o FoidF]

Table 2.4.2: OWL DL Axioms and Facts

Part of Pizza Ontology [7] may be presented in O&¢Lshown in Figure 2.4.1. This example
can be expressed in natural language as followitigza has PizzaBase as its base; Pizza is
disjoint with PizzaBase; NonVegetarianPizza is #yaPizza that is not VegetarianPizza;
isIngredientOf is a transitive property; isingredi@f is inverse of hasingredient”.

11

The example can be expressed in the descriptioo $ygtax as follows:

Pizzall OhasBase. PizzaBase (Pizza has PizzaBase asé&p b

Pizzan PizzaBase& [(Pizza is disjoint with PizzaBase)

NonVegeterianPizza Pizzan -~ VegeterianPizza (NonVegetarianPizza is exactly
Pizza that is not Vieg@nPizza)

Tr (isingredientOf) (isIngredientOf is a transitigeoperty)

isIngredientOE& hasingredient (isIngredientOf is inverse of hasingredient)

Namespace (p = <http://example.com/pizzas.owl#>)
Ontology (<http://example.com/pizzas.owl#>
Class (p: Pizza partial
Restriction (p: hasBase someValuesFrom(paBase)))
DisjointClasses (p: Pizza p: PizzaBase)
Class (p: NonVegetarianPizza complete
intersectionOf (p:Pizza complementOf(p:VegeinPizza)))
ObjectProperty (p: isIngredientOf Transitive
inverseOf (p:hasingredient))

Figure 2.4.1: Part of Pizza Ontology

12

Chapte

SYSTEM DESIGN

“Policy Matching” application aims to match two mis. We use the “match” concept to
compare two policies in order to see if one is/lasse permissive than the other. To be more
clear consider following situation: suppose a sttbjet us call provider, defines a policy in
which he/she states which data can be accessechdmand how this data can be used etc.
Now suppose another subject, let us call consuwesnis to access provider's data. Consumer
should define a policy as well. In order to decdlewing access or not we have to match these
two policies. If data consumer has required autbatibns and agrees on defined obligations
then he/she shall access data, otherwise not. Tthergications and obligations in consumer’s
policy should be more restrictive, less permissnan in provider’s policy.

Policy matching application composed of two modulssader and Matcher. Loader allows
users to upload policy documents, those specifiedextended XACML. Loader parses
uploaded documents and extracts related informdityoexamining DataHandlingPreference or
DataHandlingPolicy element and its children. Thetrazted information will be stored in

Policy Ontology.

Matcher module allows user to select two policiesrf Policy Ontology in order to match
them. Matcher will conclude data consumer may acceguested data if and only dhta
consumer has required authentications and agredsempecified obligationsTo determine these
features, Matcher will send queries to OWL reasaoatinuously. Figure 3.1 indicates system
model.

If data consumer’s policy is equally or less permesginan data provider’s policy then it can be
concluded that data consunteas required authentications and agrees on spkafgations.
Data consumer’s policy is equally or less permesghan data provider’s policy if and only if
the set of authorizations specified in the datasaarer’s policy is equally or less permissive
than the set of authorizations specified in thegabvider's policy and the set of obligations
specified in the data consumer’s policy is equallyess permissive than the set of obligations
specified in the data provider’s policy.

The meaning of less permissive for a set of authtions and obligations is defined as follows:
for each authorization in the data consumer polityere should be a more permissive

13

authorization in the data provider policy. On thiees hand matching function for obligations is
different: for each obligation in the data providmlicy, there should be a less permissive
obligation in the data consumer policy.

As we shall see in following chapters, each obiayatomposed of three parts:

. TriggerSet: List of triggers resulting in the exéon of action
. Action: Performed operation
. Validity: Validity period of the obligation.

Thus obligations are compared as follows: An dila@n in data consumer policy is equally or
less permissive than an obligation in data provilaicy if and only if triggers, action and
validity in data consumer side are equally or [@msnissive.

m—
POLICIES

Continuously | |

(—

</AuthenticationSet>
<ObligationSet>
<Obligation>
</Obligation>
</ ObligationSet >
<Policy>

Query <Policy ID:Provider> <Policy ID:Consumer>
<AuthenticationSet> <AuthenticationSet>

<Authentication> <Authentication>

MATCHER </Authentication> </Authentication>

</AuthenticationSet>
<ObligationSet>
<Obligation>
</Obligation>
</ ObligationSet >
<Policy>

Figure 3.1: System Model

14

Validities are basically compared based on theairt $thd end date. Start date of validity in data
consumer side should be less or equal than valilitiata provider side while end date should
be great or equal.

Actions are compared based on their parameters.ekdawhierarchical actions, such as
ActionNotifyByEmail [J ActionNotifyUser, are compared based on followiales: (Assume C

is data consumer policy while P is data providefgnences ang symbol stands for equally or
less permissive)

e If data provider and consumeyoth have “ActionNotifyUser” then we will compare
usernames.

C: ActionNotifyUser P: ActionNotifyUsers (C.userName ==P.userName)

« |If data provider and consumer both have “ActionN@&yEmail’ then we will compare
usernames and addresses.

C: ActionNotifyByEmail= P: ActionNotifyByEmail<
((C.userName == P.userName]C.address == P.address))

» If data consumer has “ActionNotifyUser” and datapder has “ActionNotifyByEmail”
then we will compare usernames.
C: ActionNotifyByEmaikR: ActionNotifyUsers (C.userName == P.userName)

Triggers are compared based on their parameteveladHowever hierarchical triggers, such as

TriggerPersonalDataAccessedForPurpaskiggerPersonalDataAccessed, are compared based
on following rules:

» |If data provider and consumer both have “TriggesBealDataAccessed” then compare
data.

C: TriggerPersonalDataAccessd® TriggerPersonalDataAccessed
(C.dataRef ==P.dataRef)

» |If data provider and consumer both have “TriggesBealDataAccessedForPurpose”
then compare data and purposes.
C: TriggerPersonalDataAccessedbpose
P: TriggerPersonalDataAccessedForPurpsse
((C.dataRef == P.dataRaf(C.purpose == P.purpose))

o If data consumer has “TriggerPersonalDataAccessadd data provider has
“TriggerPersonalDataAccessedForPurpose” then coaneta.

15

C: TriggerPersonalDataAccessdd TriggerPersonalDataAccessedForPurpese
(C.dataRef == P.dataRef)

The reasoning process is going on similarly untgrg single part matched. Assuming C is
data consumer policy while P is data provider goaad < symbol stand for equally or less
permissive, logical formulas about reasoning precas be formalized as follows:

C:Policy= P:Policy< ((C.authorizations P.authorizations)
(C.obligations= P.obligations))

Data consumer’s policy is equally or less permesghan data provider's policy if and

only if the set of authorizations specified in thata consumer’s policy is equally or less
permissive than the set of authorizations specifiethe data provider’s policy and the
set of obligations specified in the data consumpgbcy is equally or less permissive

than the set of obligations specified in the datavigler’s policy.

C:ListAuthorizations2 P:ListAuthorizations=V (i ¢ C):3 (j « P) where (&2])

Data consumer’s authorization set is equally os lesrmissive than data provider’s if
and only if for each authorization in the data eoner’'s authorization set, there is a
more permissive authorization in the data provi&latithorization set.

C:ListObligations= P:ListObligations= V (j ¢ P) :3 (i « C) where (i2])

Data consumer’s obligation set is equally or lessnissive than data provider’s if and
only if for each obligation in the data provideokligation set, there is a less permissive
obligation in the data consumer’s obligation set.

C:Obligation= P:Obligations (((C.action= P.action) (C.triggers= P.triggers) 1
(C.validity 2 P.validity))

An obligation in data consumer’s policy is equallyless permissive than an obligation
in data provider’s policy if and only if triggeraction and validity in data consumer side
are equally or less permissive.

C:ListTriggers= P:ListTriggers= V (b ¢ P):3 (a ¢ C) where (a2 b)
A trigger set in data consumer’s policy is equalhjess permissive than a trigger set in

data provider’'s policy if and only if for each tger in the data provider’s trigger set,
there is a less permissive trigger in the datawmes’s trigger set.

16

* C:Validity =2 P:Validity & ((C.star< P.starty\ (C.end> P.end))

A validity in data consumer’s policy is equally less permissive than a validity in data
provider’s policy if and only if start date of vdiiy in data consumer side is less or
equal than validity in data provider side while efade is great or equal.

17

chaprefl
Chapte

POLICY ONTOLOGY

Semantic Web [8] vision was first articulated by MdowWide Web Consortium (W3C) director
Tim Berners Lee as an extension of existing weldledcribes methods and technologies to
understand and reason about knowledge and dateherworld Wide Web. Under the
supervisory of the W3C, a set of languages, prdsoaod technologies have been developed to
realize this vision and to support the evolutiorthed concepts and technology those enable to
carry out this vision.

The current set of W3C standards are based on RPRB Janguage that originally designed as
a metadata data model and has become used to pravadsic capability of specifying graphs
with a simple interpretation as a semantic netveordt serializing them in XML and some other
Web systems. The OWL, Web Ontology Language iamaily of knowledge representation

languages based on Description Logic (DL) for arittgpontologies with a representation in

RDF.

OWL has three increasingly expressive sublangua@¥ét Lite, OWL DL, and OWL Full.
OWL Lite is intended to support users primarily dieg a classification hierarchy and simple
constraints over ontologies. OWL DL was designegravide the maximum expressiveness
possible while retaining computational completenesscidability, and the availability of
practical reasoning algorithms. OWL Full is basedacdifferent semantics from OWL Lite or
OWL DL, and was designed to preserve some compgtibith RDF Schema.

OWL supports the specification and usage of oniekthose provide a domain of interest in
terms of concepts and relations according to wthelse concepts are related. Ontologies uses a
DL knowledge base composed by individuals relewanthe domain of interest, classes of
individuals, relations, properties and axioms tegert constraints over them.

Expressing policies by using OWL has several ingurtadvantages. Firstly most policy
languages define constraints over classes of w®rgéjects, actions, time etc. which can be
defined easily with OWL. Secondly OWL'’s logic fatiés enable to translate of policies
expressed in OWL to other formalisms either forlygsia or for execution. Moreover OWL
reasoning capacity allows users manage and soley mmnflicts in an automated, error free
way particularly in hierarchical issues and in matganizational environments.

18

For reasoning process Hermit [10] has been usetenGn OWL file, Hermit can determine
whether or not the ontology is consistent, idensijosumption relationships between classes,
and much more. Hermit implements a novel hyperetablreasoning algorithm which provides
more efficient reasoning than any previously-knaigorithm.

4.1 Structure of Policy Ontology

Policy Ontology is created to represent data prevahd consumers’ access control policies in
OWL. Policy matching application uses Policy Ongyloand exploits OWL reasoner
capabilities to recursively query each single congu in policies.

The main class of Policy Ontology is “Policy”. Eagbolicy must have exactly one
“ObligationSet” and also one “AuthorizationSet”. thorizationSet involves Authorizations and
likewise ObligationSet involves Obligations. It mssible to associate an obligation or an
authorization directly to the policy element. Howewrocesses over these classes are different
thus it is easy to manage and differentiate therdddining a set concept. Once we get access a
set then we will behave same to the all elementisinvthat set. Figure 4.1.1 and Figure 4.1.2
shows class hierarchy in Policy Ontology.

Authorizations specify actions those are alloweghédorm over accessed data. Authorization
class can be divided into two. “DownStreamUsage@uitation” class states if the specified
data can be forwarded to the third parties or ma&rmission decision is determined by
“hasPermission” data property. “UsagePuposeAuthtidn” class states what the purpose of
using the data is and the purpose is specifiechagPurpose” data property.

> ----- ActionAnonymizePersonalData
o ActionDeletePersonalData
v £ ActionMNotifyDataSubject
o ActionMotifyDataSubjectByEmail
(- ActionMotifyDataSubjectBy5MS
v & Authorization
> ----- DownStreamUsageAvuthorization
Lo UsagePuposeAvuthorization
----- AuthorizationSet
----- Obligation
----- ObligationsS5et
..... Policy
v @ Trigger
- TriggerAtTime
e TriggerPeriodic
Lo TriggerPersonalDataAccessed
----- TriggersSet
----- Validity

Figure 4.1.1: Class Hierarchy

19

Obligations specify actions to be performed by da¢a consumer after accessing requested
data. An obligation is an action on an event ipacsfic condition is satisfied. Each obligation
consists of three parts: TriggerSet, Action, antlditgt. In our structure triggers can be seen as
the set of events that result in actions and wglicikn be seen as obligation’s validity period.

TriggerSet contains “Triggers” whose action anddigl are same. Trigger class can be divided
into subclasses. “TriggerAtTime” is a time-basetyger that occurs only once between
specified time slots. This class has two data ptegse “hasStart” specifies start date of trigger
while “hasMaxDelay” specifies maximum delay befesecution.

“TriggerPeriodic” is a time-based trigger that occmultiple times on a periodic basis between
start and end. Data properties of this class drasStart” and “hasEnd” state start and end
dates. “hasMaxDelay” specifies maximum delay wtib@sPeriod” specifies periodicity of
trigger.

“TriggerPersonalDataAccessed” is an event-basegeri This trigger occurs each time the
personal data associated with the obligation iess®d for one of the specified purposes. Data
properties of this class are: “hasData” which femence to the personal data concerned by the
obligation. “hasPurpose” states purpose that érgthe obligation and “hasMaxDelay”
specifies maximum delay before execution.

 Actionsn onymizePersonalD ata-_

C: ActionMaotifyDataSubjectByEm a.i I'_ |

= e — __iza
 AstionMatifyDataSubjest .
e T i A—— s = e S——lE @ e ——
| Action e _ ActionNotifyDataSubjectBySMS
A s o — — —) =
| ~_ActionDeletePersonalData
Fd —————
¢ TriggerAtTime)
isa A ———
o [} ieli] B -
. A .Valldlty' s g - o
rd ad .y e -_ " TriggerPersonalDatafccessed
;oisa 23 £ 53— - — =L - c
= i 3 — LE
Fi / i Trigger =) . — -
l,."'. — B = TriggerPeriodic

ST ——
'_Authonzatlun e isa)

- — :) S iza '_:_E_)-ownStreamUsageAuthorizafioi‘._]
=3 TriggesSet | .__""—-____) B
-iz-a pae, - S

_ . _UsagePuposeAuthorization

il e T Poliey) =
153 e
[Dbligation)
. ObligationsSet)
{ AuthorizationSet

Figure 4.1.2: Class Hierarchy in Graphical Repretaion

20

Action class is divided into subclasses as wellctidnDeletePersonalData” deletes a specific
piece of information. It has data property “hasDathich is reference to the personal data to
delete. “ActionAnonymizePersonalData” anonymizespacific piece of information and owns
“hasData” data property which is reference to teespnal data to anonymize.
“ActionNotifyDataSubject” notifies data providerlgect when triggered. It has “hasMedia” the
media used to notify the user (e-mail, SMS, etnd dasAddress” the corresponding address
(e-mail address, phone number, etc.) as data pgregefActionNotifyDataSubjectByEmail”
and “ActionNotifyDataSubjectBySMS” are special ca$¢his class.

Validity class represents obligation’s validity #mlt owns “hasStart” and “hasEnd” data
properties which state start and end date of wglidilass relationships, object properties, can

be seen from bellowed figure.
\iasAuthorizationSet

hasAuthorization hasAuthorization
hasObligation
hasObligation

hasTriggerSet

hasObligationSet

\

/

hasAction hasValiditv
v

o \fgger
v

Figure 4.1.3: Object Properties

21

4.2 Example

Let us consider a policy example shown in Figu&land formalize it with abovementioned
ontology.

<? xml version="1.0" encoding="utf-8"?>
<Policy>
<AuthorizationsSet>
<UsagePuposeAuthorization>
<purpose> admin</purpose>
</UsagePuposeAuthorization>
</AuthorizationsSet>
<ObligationsSet>
<Obligation Id="1">
<TriggersSet>
<TriggerAtTime>
<start> 2010-01-01T00:00:00 </start>
<maxDelay> P365D </maxDelay>
</TriggerAtTime>
</TriggersSet>
<Action>
<ActionDeletePersonalData>
<personalData> ref to personal data </per&matab
</ActionDeletePersonalData>
</Action>
<Validity>
<start> 2009-10-14T00:00:00 </start>
<end> 2010-10-14T00:00:00 </end>
</Validity>
</Obligation>
</ObligationsSet>
</Policy>

Figure 4.2.1: Policy Example

To represent policy example in our ontology firstlg have to create an instance of Policy
class, Policy0. Policy0 has two object properti@éed “hasAuthorizationSet” which states that

22

Policy0 has an authorization set called Author@aBetO and hasObligationSet” which states
that Policy0 has an obligation set called Obligai®etO.

Policy (Policy0)

AuthorizationSet (AuthorizationSet0)
hasAuthorizationSet (Policy0, AuthorizationsSet0)
ObligationSet (ObligationSet0)

hasObligationSet (Policy0,ObligationsSet0)

lass hierarchy | Class hiesarchy (inferred) | [Members list | Membess list(infemea) | [Annctations | Usage

Members list: Policy0 Annotations: Policy0

i2] [x] o|[x] A

0 Thing # Policyo

¥ & Action

»- & Authorization

i (0 AuthorizationsSet
i~ B Obligation

ObligationsSet,
0 Pelicy
p- S Trigger

.. TriggersSet
- O Validity

Types Object propery

Policy mhasObligationSet ObligationsSeto
— T

mhasAuth <

Data property assertions

4.2.2: Policy Instance

AuthorizationSetO is an instance of Authorization8ass. This is consistent with the fact that
“hasAuthorizationSet” property’s domain is Polidgss and range is AuthorizationsSet class.

Jezcription: hasAuthorizationSet

Domains {intersection)

Policy

Ranges {intersection)

AvuthorizationsSet

Equivalent object properties

Figure 4.2.3: hasAuthorizationSet Object Propergnains and Ranges

AuthorizationSet0 has an object property called sfkahorization” whose domain is
AuthorizationSet and range is Authorization. Frongufe 4.2.4 it can be observed that
AuthorizationSetO has one authorization called @RagposeAuthorizationO.

23

UsagePurposeAuthorization0 (UsagePurposeAuthaoiz@yi
hasAuthorization (AuthorizationSet0, UsagePurposkduzation0)

Class hisrercny || Class hierarchy (inferr=d) | [Members list || Membess list (inferr=d) | [Annctations | Usage |
Members list: AuthorizationsSet ME=E Annotations: AuthorizationsSetd

]3]] Lo][x]

¥ O Thing & AuthorizationsSeto
b5 Action
b & Authorization
- AuthorizationsSet
- Obligation

- ObligationsSet

. B Palicy
b S Trigger
- () TriggersSet
Velidity
Description: AuthorizationsSet) Property assertions: AuthorizationsSetD
Types Object propety assertions
AuthorizationsSet mhasAuthorization
U P ey

g P
Same individuals

Data property asserions

Different individuals

Negative object property assertions

Figure 4.2.4: AuthorizationSet Instance

When we look UsagePurposeAuthorizationO instanceam be observed that it has a data
property called hasPurpose whose value is admin.

Property as=ertions: UsagePuposebfuthorization(

Ohbject property assertions

Crata property assertions

mhasPurpose " admin "
Negative object property assertions

Negative data property assertions

Figure 4.2.5: Data Property of UsagePurposeAuthatiznO Instance

ObligationSet0 is an instance of ObligationSet <laBhis is consistent with the fact that
“hasObligationSet” property domain is Policy classl range is ObligationSet class.

24

De=scription: hasObligationSet

Domains (intersection)

Policy

Ranges (intersection)

ObligationsSet
Equivalent object properies

Super praperies

mtopObjectProperty
Figure 4.2.6: hasObligationSet Object Property Damseand Ranges

ObligationSet0 has an object property calledsObligatiori whose domain is ObligationsSet

and range is Obligation. From Figure 4.2.7 it candbserved that ObligationSet0 has two
obligations: Obligation0 and Obligationl.

Obligation (Obligation0)
Obligation (Obligationl)
hasObligation (ObligationSet0,0Obligation0)
hasObligation (ObligationSet0,0Obligation1)

Class hierarchy || Class hierarchy (infered) | | Members list | Members list infenied) | [Annotations | Usage
Members list: ObligationsSet0 Annotations:
A BT G
7O Thing # ObligationsSeto
- 2 Action

ObligationsSet
¥ & Authorization ¢ ‘gationssett

AuthorizationSet
DataHandlingPolicies
Obligation
ObligationsSet

- @ Palicy

b O Trigger

.. @ TriggersSet
Validity

Description: ObligationsSetl Property assertions: ObligationsSet0
Types Object property assertions
ObkligationsSet mhasObligation Okligatione
mhasObligation Obligation:
dividual
Data prop
Different individuals

Figure 4.2.7: ObligationSet Instance

Let have a look at Obligationl instance. It belotm®©Obligation class and it has three object
properties: “hasTriggerSet”, “hasAction” and “hadiddy”.

ActionDeletePersonalData (ActionDeletePersonalDatal
TriggerSet (TriggerSetl)

25

Validity (Validityl1)

hasAction (Obligationl, ActionDeletePersonalDatal)
hasTriggerSet (Obligation1,TriggerSetl)

hasValidity (Obligation1,Validityl)

Property assertions: Obligation1

Object property assertions

mhasAction ActionDeletePersonalData
mhasTriggerSet TriggerSet
mhasValidity Validity

Crata property assertions

Negative object property assertions

Figure 4.2.8: Object Properties of Obligationl laste

“hasAction” object property’s domain is Obligatiatass and range is Action class. When we

check ActionDeletePersonalDatal instance it caodserved that it has a data property called
“hasData” whose value is “ref to personal data”.

ActionDeletePersonalDatal: hasData: “ref to persdat™ " string

Annotations Usage

Annotations: ActionDeletePersonalDatat

Members list: ActionDeletePersonalDat DEE

E @ Annotations

ActionDeletePersonalDate

Description: ActionDeletePersonalDatal

Property assertions: ActionDeletePersonalDatal

Types Ohbject property assertions

Action
’ ActionDeletePersonalData Data property assettions
» mhasData “ref to personal data”
Same individuals

Negative object property assertions
Different individuals

Megative data property asserions

Figure 4.2.9: ActionDeletePersonalData Instance

26

“hasTriggerSet” object property’s domain is Obligat class and range is TriggerSet class.
When we check TriggerSetl instance we see thasigh object property called “hasTrigger”.

TriggerAtTime (TriggerAtTimel)
hasTrigger (TriggerSetl, TriggerAtTimel)

Property assertions: TriggerSet

Cbject property assertions

mhasTrigger TriggerAtTime
Crata property assertions
Negative object propery assertions

Negative data property assertions

Figure 4.2.10: Object Properties of TriggerSetltamce

“hasTrigger” object property’s domain is Trigger®&iss and range is Trigger class. When we

check TriggerAtTimel instance it can be observedt tit has two data properties:
“hasMaxDelay and “hasStart.

TriggerAtTimel: hasMaxDelay: “P365D"duration
TriggerAtTimel: hasStart: “2010-01-01T00:00:00" felBime

‘roperty assertions: TriggerAfTime1

Object property assertions

Data property assertions
mhasMaxDelay "PassD"“duration

mhasStart "2010-01-01Too:00: 00" cateTime
Negative object property assertions

Negative data property assertions

Figure 4.2.11: Data Properties of TriggerAtTime ktance

And finally “hasValidiy” object property domain i®bligation and range is Validity class.

When we check Validityl instance we see that itthasdata properties calledhdsStart and
“hasgEnd”.

27

Validiyl: hasStart: “2009-09-14T00:00:00"*dateTime
Validiyl: hasEnd: “2010-09-14T00:00:00"dateTime

Property assertions: Validity1

Ohbject property asserttions

Data property assertions

W hasStart "2009-09-1aToo:oo:00™deateTime
hasEnd "2010-09-12Too: 00: 00" dateTime

Negative object property assertions

Negative data property asserions

Figure 4.2.12: Data Properties of Validiyl Instance

4.3 Logic Axiomsfor Policy Ontology

Now let us formalize Policy ontology with logic axns by starting with Policy class: Policy
class objects can be defined as ones those havetlyexane obligationSet and one
AuthorizationSet.

Policy= 01 hasAuthorizationSet [11 hasObligationSet

AuthorizationSet class has a restriction statesghah AuthorizationSet should contain at least
one Authorization. And ObligationSet should contaileast one Obligation.

AuthorizationSet [0 hasAuthorization
ObligationSet [DhasObligation

Authorization class is union of its two subclassasmed DownStreamUsageAuthorization and
UsagePuposeAuthorization. These two subclasselisiomt (J Symbol refers to empty).

Authorization= DownStreamUsageAuthorizatiah UsagePuposeAuthorization
Authorization[J DownStreamUsageAuthorization

Authorization[] UsagePuposeAuthorization
DownStreamUsageAuthorization UsagePuposeAuthorizatiah(]

28

Obligation class objects should have exactly onggerSet, one Action and one Validity.
Obligation= 01 hasTriggerSet [11 hasActionn 01 hasValidity

TriggerSet class objects should have at least oiggér.
TriggerSet [hasTrigger

Trigger class has three subclasses: TriggerAtTimelriggerPeriodic and
TriggerPersonalDataAccessed. These subclassesmiatdrom each other.

Trigger= TriggerAtTimel TriggerPeriodid] TriggerPersonalDataAccessed
Triggerd TriggerAtTime

Trigger [TriggerPeriodic

Trigger [TriggerPersonalDataAccessed

TriggerAtTimen TriggerPeriodion TriggerPersonalDataAccessed]

Action class consists of three subclasses: ActiamymizePersonalData,
ActionDeletePersonalData and ActionNotifyDataSubjddese subclasses are disjoint from
each other. Moreover ActionNotifyDataSubject has o twsubclasses as well:
ActionNotifyDataSubjectByEmail and ActionNotifyD&abjectBySMS.

Action = ActionAnonymizePersonalData ActionDeletePersonalData
[0 ActionNotifyDataSubject
Action [ActionAnonymizePersonalData
Action [J ActionDeletePersonalData
Action [ActionNotifyDataSubject
ActionNotifyDataSubjecg ActionNotifyDataSubjectByEmail
O ActionNotifyDataSubjectBySMS
ActionNotifyDataSubject] ActionNotifyDataSubjectByEmail
ActionNotifyDataSubject] ActionNotifyDataSubjectBySMS

29

Chapten
Chapte

POLICY MATCHING APPLICATION AND USER INTERFACES

“Policy Matching” application aims to match two mis. We use the “match” concept to
compare two policies in order to see if one is/lesse permissive than the other. Policy
matching application takes policy documents asnpgatiand produces a decision either access
is allowed or denied as an output.

Policy matching application composed of two modulssader and Matcher. Loader allows
users to upload policy documents, those specifiedextended XACML. Loader parses
uploaded documents and extracts related informdiyoexamining DataHandlingPreference or
DataHandlingPolicy element and its children. Thetraeted information will be stored in

Policy Ontology.

Matcher module allows user to select two policiesrf Policy Ontology in order to match
them. Matcher will conclude data consumer may acceguested data if and only if data
consumer has required authentications and agrespemified obligations. To determine these
features Matcher will send queries to OWL reas@oatinuously.

Whenever Policy Matching application starts to rapplication will request location of the

Policy Ontology from the user. After locating Pgli©ntology, the application will allow the
user either upload a new policy to the system dcimivo policies those already exist.

30

Please Locate Ontology Directory:

|| | | Browse File

Please click "Upload Policy” to upload a new policy or click " Match Policy” te match policies: l

Uplcad Policy | | Match Policy

Figure5.1: Policy Matching Application

: | PolicyMatching Application

=7 build

(L1 nbproject
] src

] test

File Hame: |Policies.owl

Files of Type: IOWL Files

Figure 5.2: Locate Policy Ontology

31

After locating the Policy Ontology, let us assunseruselects uploading a new policy. To do so,
he or she should specify the directory for the goto be uploaded. Once policy document is
specified the system will parse the document, ekielated information and store it in Policy

Ontology. If an error occurs user will be notifibg the system otherwise extracted policy
information will be presented to the user.

On the other hand, if user selects matching twaiciesl, system will provide a list of existing
policies to the user. After selecting two policies)e for data provider and one for data
consumer, the system will send queries for eachmeaié in the policies to the reasoner to
determine the access decision. If there is a midmatrocess will halt and system will notify
user where is the mismatch located. Otherwise “s&germitted” result will return to the user.

{£| Policy Matching = | |-

Choose a File to Upload:

ile'\DDcuments".NetEIeansF'rujects'\F'rJIicyl‘ﬂatching.ﬁxpplicatian'\pulicﬂ .xmli Browse File

Back | | Upload | | Cancel

Figure 5.3: Locate Policy Document

32

(£ Policy Matching

T [

Extracted Policy:

AltributeMName: |d, altributealue: 1

ModeMame; DataHandlingPreferences, ModeValue: -
ModeMame: ObligationsSet, ModeValue: -
ModeMame: Obligation, ModeValue: -

ModeMName: Trig
MNodeMName: Tri

R ey

NodeName: sta

ModeMame: er
MNodeName: Actia
MNodeMName; A

ModeMame: p
ModeMame: Valigil__
ModeName: startm

1 ® Policy File Uploaded Successfully!

NodeName: end, NodeValue 2010-10-14T00:00:00

Figure 5.4: Present Extracted Policy Information

E,j Policy Matching

Please select "Data Provider” policy:

Please select "Data Consumer” policy:

Policy1

Policy2
Policy3
Policy4
Policy5
Policy6

| Back ‘ | Match ‘ IC&HD&I‘

Figure5.5: Select Policies to Match

33

z |
| & Policy Matching =H| 8

Result:

For each obligation in data provider paolicy,

there iz not a less permissive correspondence in data consumer policy!
In data provider policy:

For obligationSet:
=hitp:iiwww. semanti
For obligation:
=hitp:iiwww.semanticy
there iz not a less pe
Because for triggerSet
=hitpifwww.semanti

2 =)
Warning [ﬁ
A Access is denied!

fortigger
=hitp:ifwww. semanticd
there is not a less permiSeNe COMESPOTTENEE
Back | | Exit
Figure 5.6: Matching Result
5.1 Example

Let us consider two policy document examples shiovFigure 5.1.1 and observe the execution
path. First step is representing these policieR @¥VL. Logical axioms for the first policy are
the following:

Policy (Policyl)

AuthorizationSet (AuthorizationSet1)

hasAuthorizationSet (Policyl, AuthorizationSet1)
DownStreamUsageAuthorization (DownStreamUsageAizhtonl)
hasAuthorization (AuthorizationSetl,DownStreamUgadhorization1)
hasPermission(DownStreamUsageAuthorizationl,false)
ObligationSet (ObligationSet1)

hasObligationSet (Policyl, ObligationSet1)

Obligation (Obligationl)

Obligation (Obligation2)

hasObligation (ObligationSet1, Obligation1)

hasObligation (ObligationSet1, Obligation2)

TriggerSet (TriggerSetl)

34

hasTriggerSet (Obligation1, TriggerSetl)
TriggerAtTime(TriggerAtTimel)

hasTrigger (TriggerSetl, TriggerAtTimel)

hasStart (TriggerAtTimel, 2010-01-01)

hasMaxDelay (TriggerAtTimel, P30D)

Action (Actionl)

hasAction (Obligation1, Actionl)
ActionDeletePersonalData (ActionDeletePersonalDatal
hasSubAction (Actionl, ActionDeletePersonalDatal)
hasData (ActionDeletePersonalDatal, ref to perswauzl)
Validity (Validityl)

hasValidity (Obligationl, Validityl1)

hasStart (Validityl, 2009-09-14)

hasEnd (Validityl, 2009-09-14)

TriggerSet (TriggerSet2)

hasTriggerSet (Obligation2, TriggerSet2)
TriggerReadData(TriggerReadDatal)

hasTrigger (TriggerSet2, TriggerReadDatal)

hasData (TriggerReadData2, ref to personal data)
Action (Action2)

hasAction (Obligation2, Action2)

ActionNotifyByEmail (ActionNotifyByEmaill)
hasSubAction (Action2, ActionNotifyByEmaill)
hasUsername (ActionNotifyByEmaill, Bob)
hasAddress(ActionNotifyByEmail, bob@contoso.com)
Validity (Validity2)

hasValidity (Obligation2, Validity2)

hasStart (Validity2, 2009-09-14)

hasEnd (Validity2, 2009-09-14)

Logical axioms for the second policy are likewise:

Policy (Policy2)

AuthorizationSet (AuthorizationSet2)

hasAuthorizationSet (Policy2, AuthorizationSet2)
DownStreamUsageAuthorization (DownStreamUsageAuthton?2)
hasAuthorization (AuthorizationSet2,DownStreamUgadhorization2)
hasPermission(DownStreamUsageAuthorization2,true)
ObligationSet (ObligationSet?2)

hasObligationSet (Policy2, ObligationSet2)

Obligation (Obligation3)

35

Obligation (Obligation4)

hasObligation (ObligationSet2, Obligation3)
hasObligation (ObligationSet2, Obligation4)

TriggerSet (TriggerSet3)

hasTriggerSet (Obligation3, TriggerSet3)
TriggerAtTime(TriggerAtTime2)

hasTrigger (TriggerSet3, TriggerAtTime2)

hasStart (TriggerAtTime2, 2009-10-14)

hasMaxDelay (TriggerAtTime2, P365D)

Action (Action3)

hasAction (Obligation, Action3)
ActionDeletePersonalData (ActionDeletePersonalData2
hasSubAction (Action3, ActionDeletePersonalData?2)
hasData (ActionDeletePersonalData2, ref to persiaital)
Validity (Validity3)

hasValidity (Obligation3, Validity3)

hasStart (Validity3, 2009-09-14)

hasEnd (Validity3, 2010-09-14)

TriggerSet (TriggerSet4)

hasTriggerSet (Obligation4, TriggerSet4)
TriggerReadDataForPurpose(TriggerReadDataForPutpose
hasTrigger (TriggerSet4, TriggerReadDataForPurposel
hasData (TriggerReadDataForPurposel, ref to perdate)
hasPurpose (statistics)

Action (Action4)

hasAction (Obligation4, Action4)

ActionNotifyUser (ActionNotifyUserl)

hasSubAction (Action4, ActionNotifyUserl)
hasUsername (ActionNotifyUserl, Bob)

Validity (Validity4)

hasValidity (Obligation4, Validity4)

hasStart (Validity4, 2009-09-14)

hasEnd (Validity4, 2010-09-14)

36

DataHandlingPolicy {
authorizations: ListAuthorizations {
authorization:
DownStreamUsageAuthorization {
allow: “false” }
}
obligations: ListObligations {
n0: Obligation {
triggers: ListTriggers {
t1: TriggerAtTime {
start: 01/01/2010,
maxDelay: 30 days } },
action:ActionDeletePersonalDataf{
personalData: "ref to
personal data"},
validity: Validity {
start: 9/14/2009,
end: 9/14/2009 } },
nl: Obligation {
triggers: ListTriggers {
t1: TriggerReadData {
dataRef: "ref to personal
data" }},
action: ActionNotifyByEmail {
userName : "Bob",
address:
"bob@contoso.com" },
validity: Validity {
start: 9/14/20009,
end: 9/14/2009 } }}}

DataHandlingPreference {
authorizations: ListAuthorizations {
authorization:
DownStreamUsageAuthorization {
allow: “true” }
h
obligations: ListObligations {
n0: Obligation {
triggers: ListTriggers {
t1: TriggerAtTime {
start: 10/14/2009,
maxDelay : 365 days } },
action:ActionDeletePersonalData{
personalData: "ref to
personal data'},
validity: Validity {
start: 9/14/2009,
end: 9/14/2010} },
nl: Obligation {
triggers: ListTriggers {
t1: TriggerReadForPurpose {
personalData: “ref to
personal data"
purpose: "statistics'} }
action: ActionNotifyUser {
userName: "Bob" },
validity: Validity {
start: 9/14/20009,
end: 9/14/2010 }}

1}

Figure5.1.1: Policy Examples

After representing the data provider and consunpicies in OWL, system will try to find an
equally or more permissive authorizationSet in tHata provider's policy for each
authorizationSet in the data consumer’'s policy. olr example, data consumer policy’s
authorizationSet involves just one authorizatiorowDStreamUsageAuthorization. For this
kind of authorizations, the system concludes daiasgemer’s policy is equally or less
permissive than data provider’s policy if and oifilgne of the following conditions exists:

37

« If allowed is false in the data controller's poliayata controller specifies that he/she
will not forward data to the third parties.

« If allowed is true in both data controller and dptaviders’ policy: both agree on that
data consumer may forward data to the third parties

In our example data consumer policy’'s DownStreanggéathorization’s allow element’s
value is false. Thus system will decide Authoriaa8etl is equally or less permissive and will
continue with ObligationSet.

After examining authorizationSet, system will try tind for each obligationSet in the data
provider’s policy, an equally or less permissivdéigdiionSet in the data consumer’s policy. Let
us start to analyze first and only obligationSestance ObligationSet2, in the data provider

policy.

ObligationSet2 involves two obligations, Obligattoand Obligation4. For each obligation in
the data provider policy, system has to find anadlgor less permissive obligation in the data
consumer policy. Each obligation composed of tipaeds: TriggerSet, Action and Validity.

///data consumer /I data provider
nO : Obligation { nO : Obligation {
triggers : ListTriggers { triggers : ListTriggers {
t1 : TriggerAtTime { t1 : TriggerAtTime {
start : 01/01/2010, start : 10/14/20009,
maxDelay : 30 days } }, maxDelay : 365 days } },

Take the triggerSet, TriggerSet3, of first obligati Obligation3, in data provider side and

consider first trigger, TriggerAtTime2We can say a trigger is equally or less permisisad

only if trigger in data consumer’s policy has a 8riae window:
Policy.TriggerAtTime.startdate: Preference.TriggerAtTime.startdate and
Policy.TriggerAtTime.startdate + Policy. TriggerAtie.maxDelay<
Preference.TriggerAtTime.startdate + PreferencggérAtTime.maxDelay

Therefore system will send a query to reasonerhick “is there a TriggerAtTime whose
startDate is bigger than “10/14/2009”

TriggerAtTime and (hasStart some dateTime [>= "2002014T00:00:00"dateTime])

Answer is instance TriggerAtTimel. To calculatecsetpart consider following modification:
whenever we have a trigger which is TriggerAtTinypet we can calculate an endDate by
adding maxDelay to startDate. Therefore instancggérAtTime2 will have endDate:

38

10/14/2010 and instance TriggerAtTimel will have0212010. Now new query will be: “is
there a TriggerAtTime whose startDate is biggentti®/14/2009”and endDate is smaller than
10/14/2010. Answer is instance TriggerAtTimel.

TriggerAtTime and (hasStart some dateTime [>= "200914T00:00:00"dateTime])
and (hasEnd some dateTime [<= "2010-10-14T00:00/@ite Time])

In our simple example TriggerSet3 contains just wigger but in principle a triggerSet may
contain several triggers. Thus abovementioned gsosbould be done for each trigger in the
triggerSet.

Before matching actions consider following queryichhwill return an obligation instance that
TriggerAtTimel belongs, Obligation1:

Obligation and (hasTriggerSet some (TriggerSet(aadTrigger some (TriggerAtTime
and (hasStart some dateTime [= "2010-01-01T00:00"d@teTime]) and (hasEnd
some dateTime [= "2010-02-01T00:00:00""dateTimg)))

Answer is Obligation1. Then system will go on byngaring actions:

///data consumer /l/data provider
action :ActionDeletePersonalData { action :ActionDeletePersonalData {
personalData: “"ref to personalData: “"ref to
personal data'"}, personal data"},

System will query to find an obligation which has action “ActionDeletePersonalData” and
for this action data property hasData’s value & to personal data”

Obligation and (hasAction some (ActionDeletePertidata and hasData value "ref to
personal data"))

Result is instance Obligation1, same with resuttigherSet so system will go on with validity.

/[/data consumer /lldata provider

validity: Validity { validity: Validity {
start : 9/14/2009, start : 9/14/20089,
end : 9/14/2009 } }, end : 9/14/2010} },

39

A validity is equally or less permissive than thteey one if and only if first one’s start date is
bigger than the second one’s while end date of fire is smaller than the second one. The
following query will search for an obligation whosalidity time frame is inside time frame of
validity that specified in data provider side.

Obligation and (hasValidity some (Validity and (B#art some dateTime [>= "2009-09-
14T00:00:00""dateTime]) and (hasEnd some dateT#me'2010-09-14T00:00:00"
MdateTime])))

Instances Obligation1 and Obligation2 will be ansWee the query. Since Obligationl was
result of triggerSet and action, system concludesdbligation3 there is a less permissive
obligation, Obligationl in data consumer policy.

Now system will consider next obligation, Obligatéy in ObligationSet2. Again it will start
from triggerSet. Obligation4 has TriggerSet4 whinvolves TriggerReadForPurposel instance.

/[/data consumer /l/data provider
nl : Obligation { nl : Obligation {
triggers : ListTriggers { triggers : ListTriggers {
tl : TriggerReadData { tl : TriggerReadForPurpose {
dataRef : "ref to personal personalData : "ref to
data" } personal data"
h purpose : "statistics",} }

To compare hierarchical triggers system uses fotligwules: (Assume C is data consumer
policy while P is data provider preferences)

» If data provider and consumer both have “Trigged®eda” then compare data.
C:TriggerReadDataP: TriggerReadDate> (C.dataRef ==P.dataRef)

e If data provider and consumer both have “Triggedf@aPurpose” then compare data
and purposes.
C: TriggerReadForPurpase: TriggerReadForPurpose
((C.dataRef == P.dataRaf(C.purpose == P.purpose))

e If data consumer has “TriggerReadData” and data vigeo has

“TriggerReadForPurpose” then compare only data.
C: TriggerReadDateP: TriggerReadForPurpose (C.dataRef == P.dataRef)

40

In our example we have TriggerReadData for data swoer policy while
TriggerReadForPurpose for data provider preferedeace query will be:

TriggerPersonalDataAccessed had@ata value "ref to personal data”)
Result of query will be instance TriggerPersonadPatcessedl which belongs to Obligation2:

Obligation and hasTriggerSet sqmregggerSet and (hasTrigger some
(TriggerPersonalDataAccessed(aadData value "ref to personal data™))))

Now system will reason about actions.

/[/data consumer /l/data provider
action : ActionNotifyByEmail { action: ActionNotifyUser {
userName : "Bob", username : "Bob" },

address: "bob@contoso.com”

S e

To compare hierarchical actions system uses foligwiules: (Assume C is data consumer
policy while P is data provider preferences)

e If data provider and consumeryoth have “ActionNotifyUser” then we will compare

usernames.
C:ActionNotifyUser P:ActionNotifyUsers (C.userName ==P.userName)

« |If data provider and consumer both have “ActionN@&yEmail’ then we will compare
usernames and addresses.

C:ActionNotifyByEmail=2 P:ActionNotifyByEmail<
((C.userName == P.userNamejC.address == P.address))

« If data consumer has “ActionNotifyUser” and datayder has “ActionNotifyByEmail”
then we will compare usernames.

C:ActionNotifyByEmaikR:ActionNotifyUser< (C.userName == P.userName)

In our example data consumer’s policy has ActionfMByEmail and data provider's
preference has ActionNotifyUser. Thus query will be

ActionNotifyByEmail and (hasUsername value "Bob")

41

Result is instance ActionNotifyByEmaill which begggnto Obligation2:

Obligation and (hasAction some (ActionNotifyByEiaand (hasUsername value

"Bob")))
Same obligation instance with triggerSet therefystem will continue with validity.
/[/data consumer /l/data provider
validity : Validity { validity : Validity {
start : 9/14/2009, start : 9/14/2009,
end : 9/14/2009 } } end : 9/14/2010 }
1})

System is searching for an obligation which hasditgl such that its start date is bigger than
defined in the data provider policy and end datsnmller than defined in the data provider
policy. The following query will search for an ofpdition whose validity time frame is inside
time frame of validity that specified in data proer side.

Obligation and (hasValidity some (Validity and (B#art some dateTime [>= "2009-09-
14T00:00:00""dateTime]) and (hasEnd some dateT#we'2010-09-14T00:00:00"
MdateTime])))

Instances Obligationl and Obligation2 will be ansafthe query. Since Obligation2 is in the
result set, system concludes that for Obligationdreé exists a less permissive obligation,
Obligation2 in data consumer policy.

Finally system has finished comparing all obligaiaon ObligationSet2 in data provider policy.
Now system checks if Obligation1 and Obligation2 iarthe same obligationSet or not:

ObligationSet and (hasObligation value Obligationdhd (hasObligation value
Obligation2)

Result is ObligationSetl. Since both obligations ar the same obligationSet system will
conclude that for ObligationSet2 in data providesliqy there exists a less permissive
obligationSet in data consumer policy. Hence datasamer’s policy is less permissive than
data provider’s policy and access may be permitted.

42

In principle instead of sending queries step bp,gp@licy matching application could combine
all queries into one and get the answer eitheroye®. However when there is a mismatch in
order to locate it, queries should be send paytiall

We have to state the fact that system will have p@rformance when queries are being sent
partially. Because reasoner will go through whatotogy for each partial query and this will
cause system overload thus low performance.

Semantic Web technologies open new opportunitiedetd with a great number of problems.
However they do not concern about providing highfggenance for the time being. Also, to
combine them with the existing technologies can abdittle difficult, because of poor

documentation and incompatibility issues. For eplanmn our work, we have faced difficulties
to retrieve relevant data types from ontology ase it properly within java code. Similarly, we
have faced to send proper data types to the ontdtom a java code.

43

Chapte

APPLICATION USAGE FIELDS

As the amount of valuable data available on the \Yfelws, access control becomes extremely
important to data providers and users. Access alnthich means the users must fulfill certain

conditions in order to access certain functionalghays an important role in security based
systems. Policy matching application aims to prevadcess control by using OWL.

Expressing policies by using OWL has several ingurtadvantages. Firstly most policy
languages define constraints over classes of grgéjects, actions, time etc. which can be
defined easily with OWL. Secondly OWL'’s logic fatiés enable to translate of policies
expressed in OWL to other formalisms either forlgsia or for execution. Moreover OWL
reasoning capacity allows users manage and soleymmnflicts in an automated, error free
way particularly in hierarchical issues and in matganizational environments.

We believe that the Policy Matching application ‘abbe useful in several fields such that
social network and commercial applications etahia chapter we will provide some examples
to indicate Policy Matching application usage.

6.1 Social Network Example

Let us look a famous social network, Facebook [1F#gistered users can define privacy
settings for their personal information, contadbimation and other related information such
that photos, videos etc. about their profiles. Asswa data provider defines a policy in which
he/she states that: Personal information can belsgeveryone while contact and other related
information can be seen only by his/her family dndnds. These restrictions easily can be
granted by defining proper authorizations.

Moreover the data provider may put more restrigiench that only the family members may

tag his/her photos and videos. Data subject alsdssa be notified whenever his/her data are
accessed. Let us now formalize these restrictiatisthe extended XACML policy language.

44

<Policy>
<AuthorizationSet>
<Authorization>
<RoleAuthorization>
<role> Family </role>
</RoleAuthorization>
</Authorization>
</AuthorizationSet>
<ObligationsSet>
<Obligation >
<TriggersSet>
<TriggerPersonalDataAccessed>
<data> Personal Information </data>
<data> Contact Information </data>
</ TriggerPersonalDataAccessed >
<TriggerPersonalDataAccessedForPurpose>
<data> Other Information </data>
<purpose> Tag </purpose>
</ TriggerPersonalDataAccessedForPurpose >
</TriggersSet>
<Action>
< ActionNotifyUser >
<username> Emine </ username >
</ActionNotifyUser >
</Action>
<Validity>
<start> 2009-10-14T00:00:00 </start>
<end> 2010-10-14T00:00:00 </end>
</Validity>
</Obligation>
</ObligationsSet>
</Policy>

Figure 6.1.1: Policy Example for Family — Data Prder
Expressing policies by using OWL has one more itgmradvantage: It is very flexible thus
new features can be added easily. In our examplbave to add a new authorization subclass
“RoleAuthorization” to Policy Ontology and this suléss should have a data property called

hasRole which specifies authorization role.

45

OWL axioms for abovementioned example are the fofgs:

Policy (Policyl)

AuthorizationSet (AuthorizationSetl1)

hasAuthorizationSet (Policyl, AuthorizationSet1)
RoleAuthorization (RoleAuthorizationl)

hasAuthorization (AuthorizationSetl, RoleAuthoriaatfl)
ObligationSet (ObligationSet1)

hasObligationSet (Policyl, ObligationSet1)

Obligation (Obligationl)

hasObligation (ObligationSet1, Obligation1)

TriggerSet (TriggerSetl)

hasTriggerSet (Obligation1, TriggerSet1)
TriggerPersonalDataAccess€lriggerPersonalDataAccessgdl
hasTrigger (TriggerSetIriggerPersonalDataAccessgdl
hasDataTriggerPersonalDataAccessedPersonal Informatiol
hasDataTriggerPersonalDataAccessedontact Informatior)
hasDataTriggerPersonalDataAccessedtherinformation)
TriggerPersonalDataAccessedForPurp@segerPersonalDataAccessedForPurpdsel
hasTrigger (TriggerSetTriggerPersonalDataAccessedForPurpdsel
hasDataTriggerPersonalDataAccessedForPurposatherinformation)
hasPurposeTtiggerPersonalDataAccessedForPurpokad)

Action (Actionl)

hasAction (Obligation1, Actionl)

ActionNotifyUser (ActionNotifyUserl)

hasSubAction (Actionl, ActionNotifyUserl)

hasUsername (ActionNotifyUserl, Emine)

Validity (Validityl)

hasValidity (Obligationl, Validityl1)

hasStart (Validityl, 2009-10-14)

hasEnd (Validityl, 2010-10-14)

Assume that the data subject specifies similarcpsifor the friends and others: Friends may
access personal, contact and other informationwhilout tagging right. Others may access
only the personal information. Now let us considedlata consumer whose relation with data
provider is friendship. Data consumer wishes toceasdhe data provider’s other information.
Hence he/she define a policy:

46

<Policy>
<AuthorizationSet>
<Authorization>
<RoleAuthorization>
<role> Friend </role>
</RoleAuthorization>
</Authorization>
</AuthorizationSet>
<ObligationsSet>
<Obligation >
<TriggersSet>
<TriggerPersonalDataAccessedForPurpose>
<data> Other Information </data>
<purpose> Tag </purpose>
</ TriggerPersonalDataAccessedForPurpose >
</TriggersSet>
<Action>
< ActionNotifyUser >
<username> Emine </ username >
</ActionNotifyUser >
</Action>
<Validity>
<start> 2009-10-14T00:00:00 </start>
<end> 2010-10-14T00:00:00 </end>
</Validity>
</Obligation>
</ObligationsSet>
</Policy>

Figure 6.1.2: Policy Example for Friend-Data Consm

To compare hierarchical triggers as we mentionegrevious chapters, the system uses
following rules: (Assume C is data consumer poligyle P is data provider preferences)

« If data provider and consumer both have “TriggesBealDataAccessed” then compare
data.
C: TriggerPersonalDataAccessd® TriggerPersonalDataAccessed
(C.dataRef ==P.dataRef)

47

e If data provider and consumer both haveidgerPersonalDataAccessedForPurpdéeen
compare data and purposes.

C: TriggerPersonalatcessedForPurpose
P: TriggerPersonalDataAccessedForPurpsse
((C.dataRef == P.dataRef (C.purpose == P.purpose))

 |If data consumer has “TriggerPersonalDataAccessadd data provider has
“TriggerPersonalDataAccessedForPurpose” then coaneta.
C: TriggerPersonalDataAccessdd TriggerPersonalDataAccessedForPurpese
(C.dataRef == P.dataRef)

However in our example data provider has “TriggesBealDataAccessed” while data
consumer has “TriggerPersonalDataAccessedForPyriises access will be denied. It is also
possible to compare data consumer policy with gateider’s family policy but in this case
data provider’s family authorization mismatcheshwdiata consumer’s friend authorization and
access will be denied again.

Data consumer may access data if and only if hedgfimes an equally or less permissive
policy in which he/she states other information W& accessed without tagging purpose.

As we see from this basic example, Policy Matctapglication is fit very well to the nature of
social network access control issues. Users’ pyivaalicies can be represented by Policy
Ontology easily and OWL reasoner can be used tbrfismatches if they exist.

6.2 Commercial Application Example

Let us have a look website of CardScan [12] in Whisers can create an online address book to
access their contacts’ information. In CardScamsusan upload their personal information and
contact information to the system and define whoazcess these data.

To be more clear consider following example: Suppmsiata provider use CardScan to upload
his/her personal information and contact informatiMoreover he/she states that the userl
cannot access data while user2 may access to eh&led data. So, user2 can access the data
provider’s information and update his/her addresskb In this scenario we can assume that
actual data consumer is the CardScan system amtdaug to the policy between the data
provider and the system, system may forward datthéothird parties or not. Figure 6.2.1
illustrates this situation.

48

Data Provider

Upload

CARDSCAN
Cannot Forward

Data Consumer

Figure 6.2.1: CardScan Structure

Moreover the data provider may define some oblgetiover his/her data to limit the data
consumer. Part of the data provider’s policy isvelman Figure 6.2.2.

<Policy>
<AuthorizationSet>
<Authorization>
< DownStreamUsageAuthorization
<allow> false </allow>
<subject> userl </subject>
</ DownStreamUsageAuthorization
< DownStreamUsageAuthorization
<allow> true </allow>
<subject> user2 </subject>
</ DownStreamUsageAuthorization
</Authorization>
</AuthorizationSet>
<ObligationsSet/>
</Policy>

Figure 6.2.2: Data Provider Policy

49

From these two application examples we can obstatePolicy Matching application would
be useful in several fields in which access congrohain issue. Its flexible structure enables to
adapt to the application domain easily and coVareadessary access control problems.

Specifying and using access control with Semantab\Wervices are getting popular day by
day. Functionalities of OWL reasoner give us gradtvantages on analyzing effect and
consequences of set of access decisions. Flexibfliadding/removing classes and relations in
OWL allow us to improve defined ontology structure.

50

chapterl
Chapter

CONCLUSION

In this work we have presented firstly a transhatiof policy documents those written in
extended XACML into OWL-DL and then described hdvege translations can be used for
policy analyzing and matching by exploiting OWL seaer functionalities. As a reasoner we
have exploit Hermit reasoner capabilities. We havevided some background knowledge
about XACML, extended XACML and OWL to make cledretproblem and suggested
solution.

We believe that, this approach can be used todwlploping security frameworks for dynamic
environments which require an agreement beforarghaata. As we have shown in chapter 6
Policy Matching application would be useful in saldields in which access control is main
issue. Its flexible structure enables to adaptht application domain easily and cover all
necessary access control problems.

We have demonstrated that representing policiee ®X¥VL has several advantages: Firstly
most policy languages define constraints over elass targets, objects, actions, time etc.
which can be defined easily with OWL. Secondly OW/Idgic facilities enable to translate of
policies expressed in OWL to other formalisms eittoe analysis or for execution. Moreover
OWL reasoning capacity allows users manage anc gmlicy conflicts in an automated, error
free way particularly in hierarchical issues andnalti-organizational environments.

Specifying and using access control with Semanteb\Wervices are getting popular day by
day. Functionalities of OWL reasoner give us gredvantages on analyzing effect and
consequences of set of access decisions. Flexibfliadding/removing classes and relations in
OWL allow us to improve defined ontology structure.

Semantic Web technologies open new opportunitiedetd with a great number of problems.
However they do not concern about providing highfggenance for the time being. Also, to
combine them with existing technologies can bétle ldifficult, because of poor documentation
and incompatibility issues. We believe that thpsgblems will be solved in near future since
usage of Semantic Web technologies is increasing.

51

Although our work is complete enough to be usesinmple policy specifications, there are still
some issues need to be considered in more detaiable cover complex policies. As a part of
future work, firstly we are considering to extenali®y Ontology structure. Since it is domain
dependent, a specific domain of interest has teHmsen. Thus new kind of triggers and/or
actions shall be added. Furthermore a subject anedource hierarchy can be defined in order
to exploit OWL reasoner capacity more.

On the other hand, our long term goal is contirmevestigate the Semantic Web services in
relation with access control models and declarginley languages.

52

BIBLIOGRAPHY

[1]
[2]
[3]

[4]
(5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]

[14]

Access Control Models: http://en.wikipedia.org/wiki/Access_control

Primeife Project: http://www.primelife.eu/images/stories/h5.3.2-seconddesign/h5.3.2.html
Pierangela Samarati and Sabrina De Capitani di Vimercati, Access Control: Policies,
Models, and Mechanisms, Lecture Notes in Computer Science; Vol. 2171, pages 137-196,
2000

XACML.: http://www.0asi s-open.org/committees/tc_home.php2wg_abbrev=xacml

OWL: www.w3.org/TR/owl-features/

http://www.obitko.com/tutorial s/ontol ogi es-semanti c-web/owl -dl-semanti cs.html

Pizza Ontology: http://owl.cs.manchester.ac.uk/tutorial s/protegeowltutorial/

Semantic Web: http://semanticweb.org/wiki/Main_Page

RDF. www.w3.0rg/RDF/

Hermit: http://www.hermit-reasoner.com/

Facebook: www.facebook.com

CardScan: www.cardscan.net

Feng Huang, Zhigiu Huang and Linyuan Liu, A DL-based Method for Access Control
Policy Conflict Detecting, Asia-Pacific Symposium on Internetware, Beijing, China, 2009
T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu, W. Winsborough and B. Thuraisingham,
ROWLBAC: Representing Role Based Access Control in OWL, SACMAT: Symposium
on Access Control Models and Technologies, Colorado, USA, 2008

[15] Vladimir Kolovski, James Hendler and Bijan Parsia, Formalizing XACML Using

[16]

Defeasible Description Logics: www.mindswap.org/~kolovski/xacml _tr.pdf
Logic-Based Access Control Policy Specification and Management, Vladimir Kolovski:
www.cs.umd.edu/Grad/schol arl ypapers/papers/V K ol ovski. pdf

