

POLITECNICO DI MILANO

FACOLTÀ DI INGENERIA DELL' INFORMAZIONE

MASTER OF SCIENCE IN COMPUTER ENGINEERING

CONTROLLING ACCESS TO DATA VIA OWL REASONING

Supervisor:

Prof. Marco COLOMBETTI

Author:

Ebru UZUNDERE

737084

2009-2010

i

Table of Contents

List of Figures ... ii

List of Tables ...iii

English Abstract ... iv

Italian Abstract .. v

1. Introduction ... 1
2. Background Knowledge .. 4

2.1. Access Control Issues ... 4
2.2. Overview of XACML .. 5
2.3. Overview of Extended XACML Policy Language .. 8

 2.4. The Web Ontology Language OWL .. 9

3. System Design .. 13
4. Policy Ontology ... 18

4.1. Structure of Policy Ontology .. 19
4.2. Example .. 22
4.3. Logic Axioms for Policy Ontology ... 28

5. Policy Matching Application and User Interfaces .. 30
5.1. Example ... 34

6. Application Usage Fields... 44
 6.1. Social Network Example .. 44
 6.2. Commercial Application Example .. 48

7. Conclusion .. 51

Bibliography .. 53

ii

List of Figures

Figure 2.2.1: Structure of an XACML Policy ... 6
Figure 2.2.2: Example of an XACML Policy .. 7
Figure 2.3.1: Model of extended XACML .. 8
Figure 2.4.1: Part of Pizza Ontology .. 12
Figure 3.1: System Model .. 14
Figure 4.1.1: Class Hierarchy .. 19
Figure 4.1.2: Class Hierarchy in Graphical Representation ... 20
Figure 4.1.3: Object Properties .. 21
Figure 4.2.1: Policy Example ... 22
Figure 4.2.2: Policy Instance.. 23
Figure 4.2.3: hasAuthorizationSet Object Property Domains and Ranges ... 23
Figure 4.2.4: AuthorizationSet Instance .. 24
Figure 4.2.5: Data Property of UsagePurposeAuthorization0 Instance ... 24
Figure 4.2.6: hasObligationSet Object Property Domains and Ranges .. 25
Figure 4.2.7: ObligationSet Instance ... 25
Figure 4.2.8: Object Properties of Obligation1 Instance .. 26
Figure 4.2.9: ActionDeletePersonalData Instance ... 26
Figure 4.2.10: Object Properties of TriggerSet1 Instance ... 27
Figure 4.2.11: Data Properties of TriggerAtTime1 Instance ... 27
Figure 4.2.12: Data Properties of Validiy1 Instance .. 28
Figure 5.1: Policy Matching Application ... 31
Figure 5.2: Locate Policy Ontology ... 31
Figure 5.3: Locate Policy Document ... 32
Figure 5.4: Present Extracted Policy Information .. 33
Figure 5.5: Select Policies to Match .. 33
Figure 5.6: Matching Result... 34
Figure 5.1.1: Policy Examples ... 37
Figure 6.1.1: Policy Example for Family – Data Provider .. 45
Figure 6.1.2: Policy Example for Friend-Data Consumer ... 47
Figure 6.2.1: CardScan Structure ... 49
Figure 6.2.2: Data Provider Policy ... 49

iii

List of Tables

Table 2.4.1: OWL DL Syntax and Semantics ... 10
Table 2.4.2: OWL DL Axioms and Facts .. 11

iv

ABSTRACT

As the amount of valuable data available on the Web grows, access control becomes extremely
important to data providers and users. Access control, which means the users must fulfill certain
conditions in order to access certain functionality, plays an important role in security based
systems.

With the advent of the Semantic Web, Semantic Web techniques, especially ontologies, allow
to describe Web services with more machine understandable semantics, thus enabling to use
logic and formal reasoning techniques for automatic analysis and verification of policies.
Access control should have the ability to work synergistically across different organizations or
services to provide security. There has been a great amount of attention to using Semantic Web
techniques in above mentioned issues due to the fact that Semantic Web techniques fit very well
to the nature of access control and policies.

In this work, firstly, we have presented a translation of policy documents, those written in
extended XACML into OWL-DL and then described how those translations can be used for
policy analyzing and matching by exploiting OWL reasoner functionalities. We believe that,
this approach can be used to help developing security frameworks for dynamic environments
which require an agreement before sharing data i.e. social networks.

v

SOMMARIO

Poiché la quantità di dati preziosi a disposizione sul web cresce, il controllo degli accessi
diventa estremamente importante per i fornitori di dati e per gli utenti. Il controllo degli accessi,
ossia condizioni che gli utenti devono soddisfare per poter accedere a determinate funzionalità,
svolge un ruolo importante nei sistemi basati sulla sicurezza.

Con l'avvento del Semantic Web, delle tecniche del Semantic Web, e in particolare le ontologie,
é possibile descrivere i servizi Web con più macchina semantica comprensibile, permettendo
così di usare la logica e le tecniche di ragionamento formale per l'analisi automatica e per la
verifica delle regole. Il controllo degli accessi deve avere la capacità di lavorare in sinergia tra
diverse organizzazioni o servizi per fornire sicurezza. C'è stata una grande attenzione riguardo
all'utilizzo di tecniche di Semantic Web nei casi discussi precedentemente per il fatto che le
tecniche di Web semantico si adattano molto bene alla natura del controllo e delle regole di
accesso.

In questo lavoro, prima, abbiamo presentato una traduzione dei documenti di politiche di
accesso, quelle scritte in esteso XACML in OWL-DL e qunidi abbiamo descritto come quelle
traduzioni possono essere utilizzate per l'analisi di politiche e il confronto, sfruttando le
funzionalità di ragionatore di OWL. Crediamo che questo approccio può essere usato per
aiutare lo sviluppo di strutture di sicurezza per ambienti dinamici, che richiedono un accordo
prima di condividere i dati, cioe` reti sociali.

1

Chapter1
INTRODUCTION

As the amount of valuable data available on the Web grows, access control becomes extremely
important to data providers and users. Access control, which means the users must fulfill certain
conditions in order to access certain functionality, plays an important role in security based
systems. There have been several studies to develop access control models such that role based
access control, attribute based access control and credential based access control models. Here
is a summary of these models: [1]

• Attribute-based Access Control (ABAC) grants access, not based on the rights of user
authentication, but based on attributes of the user. In ABAC, authorizations are
associated with a set of rules expressed on measurable parameters, attributes, and
permissions are granted to users who can prove compliance with these rules.

• Discretionary Access Control (DAC) is an access control model in which owner of an
object decides who is allowed to access the object and what privileges they have.
Limiting access to a file is an example for DAC model; it is the owner of the file who
controls other users' accesses to the file. Only those users specified by the owner may
have permissions to access to the file. DAC policy tends to be very flexible and is
widely used in the commercial applications and government sectors.

• Mandatory Access Control (MAC) is another access control model in which access

control is determined by the system, not the owner. For instance in military security, a
data owner cannot change the classification of a document from Top Secret to Secret.
MAC is the most popular NDAC (Non- Discretionary Access Control) policy.

• Role-based Access Control (RBAC) is another NDAC policy in which access control is

determined by the system.In RBAC, individuals are assigned to some roles and access
decisions are based on those roles. Access rights are grouped by role name, and the use
of resources is limited to authorized individuals of the associated role. For instance,
within a high school system, the permissions for professor role and for student role are
different; each group can access specified resources those associated with their roles.
RBAC can be effective for developing and enforcing enterprise-specific security
policies.

2

• Credential-based Access Control (CBAC) is an authorization based access control rather
than authentication based. A credential is used for proving qualification, such as proof
of identity and/or proof of authority. For example, national identity cards are proofs of
identity, plane tickets are proofs of authorization to have a particular flight in a
particular seat, and driver's licenses are proofs of identity and of authorization to drive
motor vehicles of a certain category.

In general these models use declarative, rule based languages which allow users to specify
complicated policies. Current access control researches follow two paths: some studies focus on
developing a powerful and expressive language for policies while others are focus on what can
be done by using existing languages. In this scope, policy languages have been compared
according to the functionalities such that:

• Policy Comparison: Check two policies, if both give the same decision result, access
permit or deny, when they have the same input conditions.

• Policy Verification: Check if two policies satisfy a particular policy property.

• Policy Analysis: Check if a policy consistent or not.
• Policy Matching: By comparing two policies decide which one is less/more permissive

than the other.

With the advent of the Semantic Web, Semantic Web techniques, especially ontologies, allow
to describe Web services with more machine understandable semantics, thus enabling to use
logic and formal reasoning techniques for automatic analysis and verification of policies.
Access control should have the ability to work synergistically across different organizations or
services to provide security. An access control policy can be taught as a class description which
denotes a set of “acceptable” things by describing them. There has been a great amount of
attention to using Semantic Web techniques in abovementioned issues due to the fact that
Semantic Web techniques fit very well to the nature of access control and policies.

PrimeLife project [2], whose goal is managing privacy and identity in Europe, is an example of
recent studies for access control issue. Within scope of the PrimeLife project, a new policy
language has been developed. In our work, we have created an ontology called “Policy
Ontology” to represent policies described in newly implemented XML alike language of the
PrimeLife. Structure of that ontology will be discussed in chapter 4. Then we designed a
“Policy Matching” application whose aim is matching two policies by using the Policy
Ontology. Main features of the Policy matching application will be discusses in chapter 5.

Policy matching application basically composed of two parts: first component called “Loader”
which allows user to upload a policy file to the system. System will parse uploaded policy
document and extract the related information and save it into Policy Ontology. Second

3

component called “Matcher” allows user to select two policies from existing ontology and
match them. System will recursively query policies’ components and compare them one by one.
Finally result will be presented to the user. We will discuss Loader and Matcher components
deeply in chapter 3 and chapter 5.

We use the “match” concept to compare two policies in order to see if one is less/more
permissive than the other. To be more clear consider following situation: suppose a subject, let
us call provider, defines a policy in which he/she states which data can be accessed by whom
and how this data can be used etc. Now suppose another subject, let us call consumer, wants to
access the provider’s data. Consumer should define a policy as well. In order to decide allowing
access or not we have to match these two policies. If data consumer has required authentications
and agrees on defined obligations then he/she shall access data, otherwise not. The
authentications and obligations in consumer’s policy should be more restrictive, less permissive
than in the provider’s policy.

The remainder of report is organized as follows: In chapter 2 we provide relevant background
information and in chapter 3 we explain system design. In chapter 4 we describe structure of
Policy Ontology and provide an example. In chapter 5 we specify Policy Matching application
features with an example. In chapter 6 we provide some examples to show usage of
implemented system and conclusions in chapter 7.

4

Chapter2
BACKGROUND KNOWLEDGE

2.1 Access Control Issues

A significant feature of any information system is to provide an access control mechanism that
means protecting data and resources from unauthorized access while at the same time
guaranteeing their availability to the authorized users. Access control is the process of
determining an access decision, permit or deny, to each request which is made to access
resources. The access decision is imposed by a security policy that involves regulations.

The development of an access control system requires the definition of the regulations
according to which access is to be controlled. The development process is usually carried out
with a multi-phase approach based on the following concepts [3]:

• Security Policy: The set of rules that define the conditions under which an access may
take place.

• Security Model: Formalization of the access control security policy and it’s working.
• Security Mechanism: Definition of the low level (software and hardware) functions that

implement the controls imposed by the policy and formally stated in the model.

To develop an access control system, following issues should be considered: security principles,
policies and policy languages, and models proposed in the literature. For existing access control
models please check chapter 1.

In principle each access control model implements a single specified policy. However a single
policy cannot capture all the security requirements. To solve this problem, policies can be
implemented as a part of the application code. But this solution is not optimum because it
makes the verification, modification and enforcement of policy difficult.

Recent solutions have proposed policy languages those provide a single mechanism able to
enforce multiple policies. Logic-based languages, for their expressive power and formal
foundations, and also their flexibility and extensibility features represent a good candidate.
XML based languages are another candidate since they have ability to interchange data between
different applications, systems or organizations.

5

2.2 Overview of XACML

Policy matching application takes policy documents as an input and produces a decision either
access is allowed or denied as an output. Input policy documents are described with a policy
language which has been designed for the PrimeLife project. This language extends the
XACML 3.0 [4] with a number of privacy enhancing and credential based features.

XACML, extensible access control markup language, released by OASIS is a XML-based
language for describing and interchanging access control policies. It defines policy strategies
through attribute matching mechanism and it can be used to define general access control
requirements. XACML allows expressing both positive and negative authorization and the
hierarchical role based access control model (RBAC). Moreover it enables the use of arbitrary
attributes in policies. XACML defines both an architecture for evaluation of policies and a
communication protocol for message interchange.

The root of all XACML policies is a Policy or PolicySet element. A PolicySet is a container
that can hold other Policy or PolicySet elements. A Policy element represents a single access
control policy, expressed through a set of Rules. Rules are the most basic element of XACML
those actually take an access request as an input and yield a decision; Permit, Deny or Not-
Applicable. Target element is used to determine if a Rule is applicable to an access request or
not. A Target is a set of simplified conditions for the Subject, Resource and Action. Figure
2.2.1 shows general structure of an XACML policy.

Some of the novel functionalities offered by XACML can be listed as below:

• Policy Combination: Different entities can define their policies on the same resource.
When an access request on that source is submitted, the system takes into consideration
all the applicable policies.

• Combining Algorithms: Policy or PolicySet may contain multiple policies or rules, each
of which may evaluate to different access control decision. XACML supports different
combining algorithms, Policy Combining Algorithms or Rule Combining Algorithms, to
result multiple decisions into a single decision.

• Attribute-based Restrictions: XACML supports policies based on attributes associated

with subjects and resources. XACML includes some built-in operators for comparing
attribute values.

• Policy Distribution: XACML allows to a policy contain or refer to another policy.

6

• Obligations: XACML provides obligation actions those shall be enforced after the
access decision has been taken.

Figure 2.2.1: Structure of an XACML Policy

As an example of XACML policy, suppose that a hospital defines a high-level policy stating
that “any user with role head physician can read the patient record for which he/she is
designated as head physician” [2]. Figure 2.2.2 illustrates the XACML policy of this example.
The policy has one rule with a target that requires a read action, a subject with role head
physician and a condition that applies only if the subject is the head physician of the requested
patient.

hasTarget

…….

hasEffect

hasSubject
hasAction

hasRule

PolicySet2 ………

hasRule

PolicySet1

Policy1

hasPolicySet hasPolicy

Rule2 Rule1

.

.

.

.

.

.

Deny Target1

Subject1 Action1
Resource1

hasResource

7

Figure 2.2.2: Example of an XACML Policy

<Policy PolicyId="Pol1" RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0: rule-
combining- algorithm:permit-overrides" . . . >
<Rule RuleId="ReadRule" Effect="Permit">

<Target>
<AnyOf>

<AllOf>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
head physician

</AttributeValue>
<AttributeDesignator

Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject"
AttributeId= "urn:oasis:names:tc:xacml:2.0:example:attribute:role"
DataType="http://www.w3.org/2001/XMLSchema#string"/>

</Match>
</AllOf>

</AnyOf>
<AnyOf>

<AllOf>
<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
read

</AttributeValue>
<AttributeDesignator
DataType="http://www.w3.org/2001/XMLSchema#string"

Category="urn:oasis:names:tc:xacml:3.0:attribute-category:action"
AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"/>

</Match>
</AllOf>

</AnyOf>
</Target>
<Condition>

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"

Category="urn:oasis:names:tc:xacml:1.0:subject-category:access-subject"
AttributeId="urn:oasis:names:tc:xacml:1.0:subject:head-physicianID"/>

<AttributeSelector RequestContextPath="/ctx:Request/ctx:Resource/ctx:
ResourceContent/hospital:record/hospital:patient/hospital:
patient-head-physicianID/text()"
DataType="http://www.w3.org/2001/XMLSchema#string"
Category="urn:oasis:names:tc:xacml:3.0:attribute-category:resource"/ >

</Condition>
</Rule>
</Policy>

8

2.3 Overview of Extended XACML Policy Language

Within scope of the PrimeLife project, XACML is extended. Figure 2.3.1 illustrates extended
XACML model which has several newly added components. Extended XACML policy
language is intended to be used:

• by a subject to specify the access restrictions to his/her personal information and how
he/she wants this information to be treated afterwards

• by a subject to specify the access restrictions to the resources that he/she requests and
how he/she is going to handle accessed data afterwards

Figure 2.3.1: Model of extended XACML

As we see from Figure 2.3.1, extended XACML policy language modified PolicySet, Policy
and Rule elements those already implemented in XACML 3.0. Similarly to XACML, in
extended policy language each rule has an effect, either “Permit” or “Deny”. Rules are grouped
together in policies and when a policy is evaluated, the rule combining algorithm of the policy
determines the effect of the policy by examining the effects of the applicable rules. Policies are
grouped together in policy sets like XACML 3.0 and the effect of a policy set is determined by

9

the effects of the contained policies and the stated policy combining algorithm. Lastly, different
policy sets can be further grouped together in parent policy sets.

The main components of a rule are: a target, a condition, credential requirements, provisional
actions, data handling policies, and data handling preferences. Target and Condition elements
are used in extended XACML without any modification. CredentialRequirements element
describes the credentials that are required in order to access to the resource. ProvisionalActions
element describes the actions that have to be performed in order to access to the requested
resource.

If we name the individual whose personal data are collected as Data Provider,
DataHandlingPreference element would involve preferences of data provider about how this
data should be handled. Similarly if we name the individual who asks for an access to a specific
personal data as Data Consumer, DataHandlingPolicy element would define intends of data
consumer about how he/she is going to handle the data. Each rule, policy, or policy set can
contain a number of DataHandlingPolicy or DataHandlingPreference element.

Each DataHandlingPreference and DataHandlingPolicy element may involve a set of
authorizations and a set of obligations. For the time being, authorizations focus on two basic
concepts: usage and downstream sharing. Usage restricts what data consumer can do with
accessed data while downstream sharing defines under which conditions data can be shared
with another data consumer. Obligations state what the data consumer shall do after accessing
specified data. An obligation can be taught as action on an event if a specific condition is
satisfied.

2.4 The Web Ontology Language OWL

The OWL, Web Ontology Language [5] is a family of knowledge representation languages
based on Description Logic (DL) for authoring ontologies with a representation in RDF.

OWL supports the specification and usage of ontologies those provide a domain of interest in
terms of concepts and relations according to which these concepts are related. Ontologies uses a
DL knowledge base composed by individuals relevant to the domain of interest, classes of
individuals, relations, properties and axioms that assert constraints over them.

OWL has three increasingly expressive sublanguages: OWL Lite, OWL DL, and OWL Full.
OWL Lite is intended to support users primarily needing a classification hierarchy and simple
constraints over ontologies. OWL DL was designed to provide the maximum expressiveness
possible while retaining computational completeness, decidability, and the availability of

10

practical reasoning algorithms. OWL Full is based on a different semantics from OWL Lite or
OWL DL, and was designed to preserve some compatibility with RDF Schema.

The OWL DL descriptions, data ranges, properties, individuals and data values syntax and
semantics are summarized in the first table below, OWL DL axioms and facts are summarized
in the second table below [6].

Table 2.4.1: OWL DL Syntax and Semantics

A concept from DL is referred to as a class in OWL and a role from DL is referred to as a
property in OWL. In OWL “Classes” denote set of objects while “Individuals” denote single
objects. “Object properties” denote binary relationships between objects and “Datatype
properties” denote binary relationships between objects and data.

11

Table 2.4.2: OWL DL Axioms and Facts

Part of Pizza Ontology [7] may be presented in OWL as shown in Figure 2.4.1. This example
can be expressed in natural language as following: “Pizza has PizzaBase as its base; Pizza is
disjoint with PizzaBase; NonVegetarianPizza is exactly Pizza that is not VegetarianPizza;
isIngredientOf is a transitive property; isIngredientOf is inverse of hasIngredient”.

12

The example can be expressed in the description logic syntax as follows:

Pizza ⊆ ∃ hasBase. PizzaBase (Pizza has PizzaBase as its base)

Pizza ∩ PizzaBase ≡ ⊥ (Pizza is disjoint with PizzaBase)

NonVegeterianPizza ≡ Pizza ∩ ¬ VegeterianPizza (NonVegetarianPizza is exactly
 Pizza that is not VegetarianPizza)
Tr (isIngredientOf) (isIngredientOf is a transitive property)
isIngredientOf ≡ hasIngredient – (isIngredientOf is inverse of hasIngredient)

Namespace (p = <http://example.com/pizzas.owl#>)
Ontology (<http://example.com/pizzas.owl#>
 Class (p: Pizza partial
 Restriction (p: hasBase someValuesFrom(p:PizzaBase)))
 DisjointClasses (p: Pizza p: PizzaBase)
 Class (p: NonVegetarianPizza complete
 intersectionOf (p:Pizza complementOf(p:VegetarianPizza)))
 ObjectProperty (p: isIngredientOf Transitive
 inverseOf (p:hasIngredient))
)

Figure 2.4.1: Part of Pizza Ontology

13

Chapter3
SYSTEM DESIGN

“Policy Matching” application aims to match two policies. We use the “match” concept to
compare two policies in order to see if one is less/more permissive than the other. To be more
clear consider following situation: suppose a subject, let us call provider, defines a policy in
which he/she states which data can be accessed by whom and how this data can be used etc.
Now suppose another subject, let us call consumer, wants to access provider’s data. Consumer
should define a policy as well. In order to decide allowing access or not we have to match these
two policies. If data consumer has required authentications and agrees on defined obligations
then he/she shall access data, otherwise not. The authentications and obligations in consumer’s
policy should be more restrictive, less permissive than in provider’s policy.

Policy matching application composed of two modules: Loader and Matcher. Loader allows
users to upload policy documents, those specified in extended XACML. Loader parses
uploaded documents and extracts related information by examining DataHandlingPreference or
DataHandlingPolicy element and its children. Then extracted information will be stored in
Policy Ontology.

Matcher module allows user to select two policies from Policy Ontology in order to match
them. Matcher will conclude data consumer may access requested data if and only if data
consumer has required authentications and agrees on the specified obligations. To determine these
features, Matcher will send queries to OWL reasoner continuously. Figure 3.1 indicates system
model.

If data consumer’s policy is equally or less permissive than data provider’s policy then it can be
concluded that data consumer has required authentications and agrees on specified obligations.
Data consumer’s policy is equally or less permissive than data provider’s policy if and only if
the set of authorizations specified in the data consumer’s policy is equally or less permissive
than the set of authorizations specified in the data provider’s policy and the set of obligations
specified in the data consumer’s policy is equally or less permissive than the set of obligations
specified in the data provider’s policy.

The meaning of less permissive for a set of authorizations and obligations is defined as follows:
for each authorization in the data consumer policy, there should be a more permissive

14

authorization in the data provider policy. On the other hand matching function for obligations is
different: for each obligation in the data provider policy, there should be a less permissive
obligation in the data consumer policy.

As we shall see in following chapters, each obligation composed of three parts:

• TriggerSet: List of triggers resulting in the execution of action
• Action: Performed operation

• Validity: Validity period of the obligation.

Thus obligations are compared as follows: An obligation in data consumer policy is equally or
less permissive than an obligation in data provider policy if and only if triggers, action and
validity in data consumer side are equally or less permissive.

Figure 3.1: System Model

Continuously

Query

LOADER

POLICY ONTOLOGY

POLICIES

POLICIES

POLICIES

<Policy ID:Provider>

 <AuthenticationSet>

 <Authentication>

 …..

 </Authentication>

 </AuthenticationSet>

 <ObligationSet>

 <Obligation>

 …..

 </Obligation>

 </ ObligationSet >

<Policy>

<Policy ID:Consumer>

 <AuthenticationSet>

 <Authentication>

 …..

 </Authentication>

 </AuthenticationSet>

 <ObligationSet>

 <Obligation>

 …..

 </Obligation>

 </ ObligationSet >

<Policy>

MATCHER

REASONER

<Policy ID:Provider>

 <AuthenticationSet>

 <Authentication>

 …..

 </Authentication>

 </AuthenticationSet>

 <ObligationSet>

 <Obligation>

 …..

 </Obligation>

 </ ObligationSet >

<Policy>

<Policy ID:Consumer>

 <AuthenticationSet>

 <Authentication>

 …..

 </Authentication>

 </AuthenticationSet>

 <ObligationSet>

 <Obligation>

 …..

 </Obligation>

 </ ObligationSet >

<Policy>

<Policy ID:Provider>

 <AuthenticationSet>

 <Authentication>

 …..

 </Authentication>

 </AuthenticationSet>

 <ObligationSet>

 <Obligation>

 …..

 </Obligation>

 </ ObligationSet >

<Policy>

<Policy ID:Consumer>

 <AuthenticationSet>

 <Authentication>

 …..

 </Authentication>

 </AuthenticationSet>

 <ObligationSet>

 <Obligation>

 …..

 </Obligation>

 </ ObligationSet >

<Policy>

15

Validities are basically compared based on their start and end date. Start date of validity in data
consumer side should be less or equal than validity in data provider side while end date should
be great or equal.

Actions are compared based on their parameters. However hierarchical actions, such as

ActionNotifyByEmail ⊆ ActionNotifyUser, are compared based on following rules: (Assume C
is data consumer policy while P is data provider preferences and ⊴ symbol stands for equally or
less permissive)

• If data provider and consumer both have “ActionNotifyUser” then we will compare
usernames.

 C: ActionNotifyUser ⊴ P: ActionNotifyUser ⇔ (C.userName ==P.userName)

• If data provider and consumer both have “ActionNotifyByEmail” then we will compare
usernames and addresses.

C: ActionNotifyByEmail ⊴ P: ActionNotifyByEmail ⇔
((C.userName == P.userName) ∧ (C.address == P.address))

• If data consumer has “ActionNotifyUser” and data provider has “ActionNotifyByEmail”

then we will compare usernames.
C: ActionNotifyByEmail⊴R: ActionNotifyUser ⇔ (C.userName == P.userName)

Triggers are compared based on their parameters as well. However hierarchical triggers, such as
TriggerPersonalDataAccessedForPurpose ⊆ TriggerPersonalDataAccessed, are compared based
on following rules:

• If data provider and consumer both have “TriggerPersonalDataAccessed” then compare
data.

 C: TriggerPersonalDataAccessed ⊴ P: TriggerPersonalDataAccessed ⇔
 (C.dataRef ==P.dataRef)

• If data provider and consumer both have “TriggerPersonalDataAccessedForPurpose”
then compare data and purposes.

 C: TriggerPersonalDataAccessedForPurpose ⊴

 P: TriggerPersonalDataAccessedForPurpose ⇔
 ((C.dataRef == P.dataRef) ∧ (C.purpose == P.purpose))

• If data consumer has “TriggerPersonalDataAccessed” and data provider has
“TriggerPersonalDataAccessedForPurpose” then compare data.

16

 C: TriggerPersonalDataAccessed ⊴ P: TriggerPersonalDataAccessedForPurpose ⇔
 (C.dataRef == P.dataRef)

The reasoning process is going on similarly until every single part matched. Assuming C is
data consumer policy while P is data provider policy and ⊴ symbol stand for equally or less
permissive, logical formulas about reasoning process can be formalized as follows:

• C:Policy ⊴ P:Policy ⇔ ((C.authorizations ⊴ P.authorizations) ∧

(C.obligations ⊴ P.obligations))

Data consumer’s policy is equally or less permissive than data provider’s policy if and
only if the set of authorizations specified in the data consumer’s policy is equally or less
permissive than the set of authorizations specified in the data provider’s policy and the
set of obligations specified in the data consumer’s policy is equally or less permissive
than the set of obligations specified in the data provider’s policy.

• C:ListAuthorizations ⊴ P:ListAuthorizations ⇔ ∀ (i ε C) : ∃ (j εP) where (i ⊴ j)

Data consumer’s authorization set is equally or less permissive than data provider’s if
and only if for each authorization in the data consumer’s authorization set, there is a
more permissive authorization in the data provider’s authorization set.

• C:ListObligations ⊴ P:ListObligations ⇔ ∀ (j ε P) : ∃ (i εC) where (i ⊴ j)

Data consumer’s obligation set is equally or less permissive than data provider’s if and
only if for each obligation in the data provider’s obligation set, there is a less permissive
obligation in the data consumer’s obligation set.

• C:Obligation ⊴ P:Obligation ⇔ (((C.action ⊴ P.action) ∧ (C.triggers ⊴ P.triggers)) ∧
(C.validity ⊴ P.validity))

An obligation in data consumer’s policy is equally or less permissive than an obligation
in data provider’s policy if and only if triggers, action and validity in data consumer side
are equally or less permissive.

• C:ListTriggers ⊴ P:ListTriggers ⇔ ∀ (b ε P) : ∃ (a ε C) where (a ⊴ b)

A trigger set in data consumer’s policy is equally or less permissive than a trigger set in
data provider’s policy if and only if for each trigger in the data provider’s trigger set,
there is a less permissive trigger in the data consumer’s trigger set.

17

• C:Validity ⊴ P:Validity ⇔ ((C.start ≤ P.start) ∧ (C.end ≥ P.end))

A validity in data consumer’s policy is equally or less permissive than a validity in data
provider’s policy if and only if start date of validity in data consumer side is less or
equal than validity in data provider side while end date is great or equal.

18

Chapter4
POLICY ONTOLOGY

Semantic Web [8] vision was first articulated by World Wide Web Consortium (W3C) director
Tim Berners Lee as an extension of existing web. It describes methods and technologies to
understand and reason about knowledge and data on the World Wide Web. Under the
supervisory of the W3C, a set of languages, protocols and technologies have been developed to
realize this vision and to support the evolution of the concepts and technology those enable to
carry out this vision.

The current set of W3C standards are based on RDF [9], a language that originally designed as
a metadata data model and has become used to provide a basic capability of specifying graphs
with a simple interpretation as a semantic network and serializing them in XML and some other
Web systems. The OWL, Web Ontology Language is a family of knowledge representation
languages based on Description Logic (DL) for authoring ontologies with a representation in
RDF.

OWL has three increasingly expressive sublanguages: OWL Lite, OWL DL, and OWL Full.
OWL Lite is intended to support users primarily needing a classification hierarchy and simple
constraints over ontologies. OWL DL was designed to provide the maximum expressiveness
possible while retaining computational completeness, decidability, and the availability of
practical reasoning algorithms. OWL Full is based on a different semantics from OWL Lite or
OWL DL, and was designed to preserve some compatibility with RDF Schema.

OWL supports the specification and usage of ontologies those provide a domain of interest in
terms of concepts and relations according to which these concepts are related. Ontologies uses a
DL knowledge base composed by individuals relevant to the domain of interest, classes of
individuals, relations, properties and axioms that assert constraints over them.

Expressing policies by using OWL has several important advantages. Firstly most policy
languages define constraints over classes of targets, objects, actions, time etc. which can be
defined easily with OWL. Secondly OWL’s logic facilities enable to translate of policies
expressed in OWL to other formalisms either for analysis or for execution. Moreover OWL
reasoning capacity allows users manage and solve policy conflicts in an automated, error free
way particularly in hierarchical issues and in multi-organizational environments.

19

For reasoning process Hermit [10] has been used. Given an OWL file, Hermit can determine
whether or not the ontology is consistent, identify subsumption relationships between classes,
and much more. Hermit implements a novel hyper tableau reasoning algorithm which provides
more efficient reasoning than any previously-known algorithm.

4.1 Structure of Policy Ontology

Policy Ontology is created to represent data provider and consumers’ access control policies in
OWL. Policy matching application uses Policy Ontology and exploits OWL reasoner
capabilities to recursively query each single component in policies.

The main class of Policy Ontology is “Policy”. Each policy must have exactly one
“ObligationSet” and also one “AuthorizationSet”. AuthorizationSet involves Authorizations and
likewise ObligationSet involves Obligations. It is possible to associate an obligation or an
authorization directly to the policy element. However processes over these classes are different
thus it is easy to manage and differentiate them by defining a set concept. Once we get access a
set then we will behave same to the all elements within that set. Figure 4.1.1 and Figure 4.1.2
shows class hierarchy in Policy Ontology.

Authorizations specify actions those are allowed to perform over accessed data. Authorization
class can be divided into two. “DownStreamUsageAuthorization” class states if the specified
data can be forwarded to the third parties or not. Permission decision is determined by
“hasPermission” data property. “UsagePuposeAuthorization” class states what the purpose of
using the data is and the purpose is specified by “hasPurpose” data property.

Figure 4.1.1: Class Hierarchy

20

Obligations specify actions to be performed by the data consumer after accessing requested
data. An obligation is an action on an event if a specific condition is satisfied. Each obligation
consists of three parts: TriggerSet, Action, and Validity. In our structure triggers can be seen as
the set of events that result in actions and validity can be seen as obligation’s validity period.

TriggerSet contains “Triggers” whose action and validity are same. Trigger class can be divided
into subclasses. “TriggerAtTime” is a time-based trigger that occurs only once between
specified time slots. This class has two data properties: “hasStart” specifies start date of trigger
while “hasMaxDelay” specifies maximum delay before execution.

“TriggerPeriodic” is a time-based trigger that occurs multiple times on a periodic basis between
start and end. Data properties of this class are: “hasStart” and “hasEnd” state start and end
dates. “hasMaxDelay” specifies maximum delay while “hasPeriod” specifies periodicity of
trigger.

“TriggerPersonalDataAccessed” is an event-based trigger. This trigger occurs each time the
personal data associated with the obligation is accessed for one of the specified purposes. Data
properties of this class are: “hasData” which is reference to the personal data concerned by the
obligation. “hasPurpose” states purpose that trigger the obligation and “hasMaxDelay”
specifies maximum delay before execution.

Figure 4.1.2: Class Hierarchy in Graphical Representation

21

Action class is divided into subclasses as well. “ActionDeletePersonalData” deletes a specific
piece of information. It has data property “hasData” which is reference to the personal data to
delete. “ActionAnonymizePersonalData” anonymizes a specific piece of information and owns
“hasData” data property which is reference to the personal data to anonymize.

“ActionNotifyDataSubject” notifies data provider subject when triggered. It has “hasMedia” the
media used to notify the user (e-mail, SMS, etc.) and “hasAddress” the corresponding address
(e-mail address, phone number, etc.) as data properties. “ActionNotifyDataSubjectByEmail”
and “ActionNotifyDataSubjectBySMS” are special case of this class.

Validity class represents obligation’s validity time. It owns “hasStart” and “hasEnd” data
properties which state start and end date of validity. Class relationships, object properties, can
be seen from bellowed figure.

Figure 4.1.3: Object Properties

hasObligationSet

hasAuthorization

AuthorizationSet

…

hasAuthorization

hasObligation

Authorization1 Authorization2

Policy

ObligationSet

hasAuthorizationSet

hasTriggerSet

…….

hasObligation

Obligation2 Obligation1

hasAction hasValidity

hasTrigger hasTrigger

Validity Action TriggerSet

Trigger1 Trigger2

22

4.2 Example

Let us consider a policy example shown in Figure 4.2.1 and formalize it with abovementioned
ontology.

<? xml version="1.0" encoding="utf-8"?>

<Policy>

 <AuthorizationsSet>

 <UsagePuposeAuthorization>

 <purpose> admin</purpose>

 </UsagePuposeAuthorization>

 </AuthorizationsSet>

 <ObligationsSet>

 <Obligation Id="1">

 <TriggersSet>

 <TriggerAtTime>

 <start> 2010-01-01T00:00:00 </start>

 <maxDelay> P365D </maxDelay>

 </TriggerAtTime>

 </TriggersSet>

 <Action>

 <ActionDeletePersonalData>

 <personalData> ref to personal data </personalData>

 </ActionDeletePersonalData>

 </Action>

 <Validity>

 <start> 2009-10-14T00:00:00 </start>

 <end> 2010-10-14T00:00:00 </end>

 </Validity>

 </Obligation>

 </ObligationsSet>

</Policy>

Figure 4.2.1: Policy Example

To represent policy example in our ontology firstly we have to create an instance of Policy
class, Policy0. Policy0 has two object properties called “hasAuthorizationSet” which states that

23

Policy0 has an authorization set called AuthorizationsSet0 and hasObligationSet” which states
that Policy0 has an obligation set called ObligationsSet0.

Policy (Policy0)
 AuthorizationSet (AuthorizationSet0)

hasAuthorizationSet (Policy0, AuthorizationsSet0)
ObligationSet (ObligationSet0)
hasObligationSet (Policy0,ObligationsSet0)

F
i
g
u
r
e

4.2.2: Policy Instance

AuthorizationSet0 is an instance of AuthorizationSet class. This is consistent with the fact that
“hasAuthorizationSet” property’s domain is Policy class and range is AuthorizationsSet class.

Figure 4.2.3: hasAuthorizationSet Object Property Domains and Ranges

AuthorizationSet0 has an object property called “hasAuthorization” whose domain is
AuthorizationSet and range is Authorization. From Figure 4.2.4 it can be observed that
AuthorizationSet0 has one authorization called UsagePurposeAuthorization0.

24

UsagePurposeAuthorization0 (UsagePurposeAuthorization0)
hasAuthorization (AuthorizationSet0, UsagePurposeAuthorization0)

Figure 4.2.4: AuthorizationSet Instance

When we look UsagePurposeAuthorization0 instance, it can be observed that it has a data
property called hasPurpose whose value is admin.

Figure 4.2.5: Data Property of UsagePurposeAuthorization0 Instance

ObligationSet0 is an instance of ObligationSet class. This is consistent with the fact that
“hasObligationSet” property domain is Policy class and range is ObligationSet class.

25

Figure 4.2.6: hasObligationSet Object Property Domains and Ranges

ObligationSet0 has an object property called “hasObligation” whose domain is ObligationsSet
and range is Obligation. From Figure 4.2.7 it can be observed that ObligationSet0 has two
obligations: Obligation0 and Obligation1.

Obligation (Obligation0)
Obligation (Obligation1)
hasObligation (ObligationSet0,Obligation0)
hasObligation (ObligationSet0,Obligation1)

Figure 4.2.7: ObligationSet Instance

Let have a look at Obligation1 instance. It belongs to Obligation class and it has three object
properties: “hasTriggerSet”, “hasAction” and “hasValidity”.

ActionDeletePersonalData (ActionDeletePersonalData1)
TriggerSet (TriggerSet1)

26

Validity (Validity1)
hasAction (Obligation1, ActionDeletePersonalData1)
hasTriggerSet (Obligation1,TriggerSet1)
hasValidity (Obligation1,Validity1)

Figure 4.2.8: Object Properties of Obligation1 Instance

“hasAction” object property’s domain is Obligation class and range is Action class. When we
check ActionDeletePersonalData1 instance it can be observed that it has a data property called
“hasData” whose value is “ref to personal data”.

ActionDeletePersonalData1: hasData: “ref to personal data”^^string

Figure 4.2.9: ActionDeletePersonalData Instance

27

“hasTriggerSet” object property’s domain is Obligation class and range is TriggerSet class.
When we check TriggerSet1 instance we see that it has an object property called “hasTrigger”.

TriggerAtTime (TriggerAtTime1)
hasTrigger (TriggerSet1, TriggerAtTime1)

Figure 4.2.10: Object Properties of TriggerSet1 Instance

“hasTrigger” object property’s domain is TriggerSet class and range is Trigger class. When we
check TriggerAtTime1 instance it can be observed that it has two data properties:
“hasMaxDelay” and “hasStart”.

TriggerAtTime1: hasMaxDelay: “P365D”^^duration
TriggerAtTime1: hasStart: “2010-01-01T00:00:00”^^dateTime

Figure 4.2.11: Data Properties of TriggerAtTime1 Instance

And finally “hasValidiy” object property domain is Obligation and range is Validity class.
When we check Validity1 instance we see that it has two data properties called “hasStart” and
“hasEnd”.

28

Validiy1: hasStart: “2009-09-14T00:00:00”^^dateTime
Validiy1: hasEnd: “2010-09-14T00:00:00”^^dateTime

Figure 4.2.12: Data Properties of Validiy1 Instance

4.3 Logic Axioms for Policy Ontology

Now let us formalize Policy ontology with logic axioms by starting with Policy class: Policy
class objects can be defined as ones those have exactly one obligationSet and one
AuthorizationSet.

Policy ≡ ∀1 hasAuthorizationSet ∩ ∀1 hasObligationSet

AuthorizationSet class has a restriction states that each AuthorizationSet should contain at least
one Authorization. And ObligationSet should contain at least one Obligation.

 AuthorizationSet ≡ ∃ hasAuthorization

 ObligationSet ≡ ∃ hasObligation

Authorization class is union of its two subclasses named DownStreamUsageAuthorization and

UsagePuposeAuthorization. These two subclasses are disjoint (⊥ Symbol refers to empty).

Authorization ≡ DownStreamUsageAuthorization ∪ UsagePuposeAuthorization

Authorization ⊆ DownStreamUsageAuthorization

Authorization ⊆ UsagePuposeAuthorization

DownStreamUsageAuthorization ∩ UsagePuposeAuthorization ⊆ ⊥

29

Obligation class objects should have exactly one TriggerSet, one Action and one Validity.

Obligation ≡ ∀1 hasTriggerSet ∩ ∀1 hasAction ∩ ∀1 hasValidity

TriggerSet class objects should have at least one Trigger.

TriggerSet ≡ ∃ hasTrigger

Trigger class has three subclasses: TriggerAtTime, TriggerPeriodic and
TriggerPersonalDataAccessed. These subclasses are disjoint from each other.

 Trigger ≡ TriggerAtTime ∪ TriggerPeriodic ∪ TriggerPersonalDataAccessed

Trigger ⊆ TriggerAtTime

Trigger ⊆ TriggerPeriodic

Trigger ⊆ TriggerPersonalDataAccessed

TriggerAtTime ∩ TriggerPeriodic ∩ TriggerPersonalDataAccessed ⊆ ⊥

Action class consists of three subclasses: ActionAnonymizePersonalData,
ActionDeletePersonalData and ActionNotifyDataSubject. These subclasses are disjoint from
each other. Moreover ActionNotifyDataSubject has two subclasses as well:
ActionNotifyDataSubjectByEmail and ActionNotifyDataSubjectBySMS.

 Action ≡ ActionAnonymizePersonalData ∪ ActionDeletePersonalData

 ∪ ActionNotifyDataSubject

 Action ⊆ ActionAnonymizePersonalData

Action ⊆ ActionDeletePersonalData

Action ⊆ ActionNotifyDataSubject

ActionNotifyDataSubject ≡ ActionNotifyDataSubjectByEmail

 ∪ ActionNotifyDataSubjectBySMS

ActionNotifyDataSubject ⊆ ActionNotifyDataSubjectByEmail

ActionNotifyDataSubject ⊆ ActionNotifyDataSubjectBySMS

30

Chapter5
POLICY MATCHING APPLICATION AND USER INTERFACES

“Policy Matching” application aims to match two policies. We use the “match” concept to
compare two policies in order to see if one is less/more permissive than the other. Policy
matching application takes policy documents as an input and produces a decision either access
is allowed or denied as an output.

Policy matching application composed of two modules: Loader and Matcher. Loader allows
users to upload policy documents, those specified in extended XACML. Loader parses
uploaded documents and extracts related information by examining DataHandlingPreference or
DataHandlingPolicy element and its children. Then extracted information will be stored in
Policy Ontology.

Matcher module allows user to select two policies from Policy Ontology in order to match
them. Matcher will conclude data consumer may access requested data if and only if data
consumer has required authentications and agrees on specified obligations. To determine these
features Matcher will send queries to OWL reasoner continuously.

Whenever Policy Matching application starts to run, application will request location of the
Policy Ontology from the user. After locating Policy Ontology, the application will allow the
user either upload a new policy to the system or match two policies those already exist.

31

Figure 5.1: Policy Matching Application

Figure 5.2: Locate Policy Ontology

32

After locating the Policy Ontology, let us assume user selects uploading a new policy. To do so,
he or she should specify the directory for the policy to be uploaded. Once policy document is
specified the system will parse the document, extract related information and store it in Policy
Ontology. If an error occurs user will be notified by the system otherwise extracted policy
information will be presented to the user.

On the other hand, if user selects matching two policies, system will provide a list of existing
policies to the user. After selecting two policies, one for data provider and one for data
consumer, the system will send queries for each element in the policies to the reasoner to
determine the access decision. If there is a mismatch, process will halt and system will notify
user where is the mismatch located. Otherwise “Access permitted” result will return to the user.

Figure 5.3: Locate Policy Document

33

Figure 5.4: Present Extracted Policy Information

Figure 5.5: Select Policies to Match

34

Figure 5.6: Matching Result

5.1 Example

Let us consider two policy document examples shown in Figure 5.1.1 and observe the execution
path. First step is representing these policies with OWL. Logical axioms for the first policy are
the following:

Policy (Policy1)
AuthorizationSet (AuthorizationSet1)
hasAuthorizationSet (Policy1, AuthorizationSet1)
DownStreamUsageAuthorization (DownStreamUsageAuthorization1)
hasAuthorization (AuthorizationSet1,DownStreamUsageAuthorization1)
hasPermission(DownStreamUsageAuthorization1,false)
ObligationSet (ObligationSet1)
hasObligationSet (Policy1, ObligationSet1)
Obligation (Obligation1)
Obligation (Obligation2)
hasObligation (ObligationSet1, Obligation1)
hasObligation (ObligationSet1, Obligation2)
TriggerSet (TriggerSet1)

35

hasTriggerSet (Obligation1, TriggerSet1)
TriggerAtTime(TriggerAtTime1)
hasTrigger (TriggerSet1, TriggerAtTime1)
hasStart (TriggerAtTime1, 2010-01-01)
hasMaxDelay (TriggerAtTime1, P30D)
Action (Action1)
hasAction (Obligation1, Action1)
ActionDeletePersonalData (ActionDeletePersonalData1)
hasSubAction (Action1, ActionDeletePersonalData1)
hasData (ActionDeletePersonalData1, ref to personal data)
Validity (Validity1)
hasValidity (Obligation1, Validity1)
hasStart (Validity1, 2009-09-14)
hasEnd (Validity1, 2009-09-14)
TriggerSet (TriggerSet2)
hasTriggerSet (Obligation2, TriggerSet2)
TriggerReadData(TriggerReadData1)
hasTrigger (TriggerSet2, TriggerReadData1)
hasData (TriggerReadData2, ref to personal data)
Action (Action2)
hasAction (Obligation2, Action2)
ActionNotifyByEmail (ActionNotifyByEmail1)
hasSubAction (Action2, ActionNotifyByEmail1)
hasUsername (ActionNotifyByEmail1, Bob)
hasAddress(ActionNotifyByEmail, bob@contoso.com)
Validity (Validity2)
hasValidity (Obligation2, Validity2)
hasStart (Validity2, 2009-09-14)
hasEnd (Validity2, 2009-09-14)

Logical axioms for the second policy are likewise:

Policy (Policy2)
AuthorizationSet (AuthorizationSet2)
hasAuthorizationSet (Policy2, AuthorizationSet2)
DownStreamUsageAuthorization (DownStreamUsageAuthorization2)
hasAuthorization (AuthorizationSet2,DownStreamUsageAuthorization2)
hasPermission(DownStreamUsageAuthorization2,true)
ObligationSet (ObligationSet2)
hasObligationSet (Policy2, ObligationSet2)
Obligation (Obligation3)

36

Obligation (Obligation4)
hasObligation (ObligationSet2, Obligation3)
hasObligation (ObligationSet2, Obligation4)
TriggerSet (TriggerSet3)
hasTriggerSet (Obligation3, TriggerSet3)
TriggerAtTime(TriggerAtTime2)
hasTrigger (TriggerSet3, TriggerAtTime2)
hasStart (TriggerAtTime2, 2009-10-14)
hasMaxDelay (TriggerAtTime2, P365D)
Action (Action3)
hasAction (Obligation, Action3)
ActionDeletePersonalData (ActionDeletePersonalData2)
hasSubAction (Action3, ActionDeletePersonalData2)
hasData (ActionDeletePersonalData2, ref to personal data)
Validity (Validity3)
hasValidity (Obligation3, Validity3)
hasStart (Validity3, 2009-09-14)
hasEnd (Validity3, 2010-09-14)
TriggerSet (TriggerSet4)
hasTriggerSet (Obligation4, TriggerSet4)
TriggerReadDataForPurpose(TriggerReadDataForPurpose1)
hasTrigger (TriggerSet4, TriggerReadDataForPurpose1)
hasData (TriggerReadDataForPurpose1, ref to personal data)
hasPurpose (statistics)
Action (Action4)
hasAction (Obligation4, Action4)
ActionNotifyUser (ActionNotifyUser1)
hasSubAction (Action4, ActionNotifyUser1)
hasUsername (ActionNotifyUser1, Bob)
Validity (Validity4)
hasValidity (Obligation4, Validity4)
hasStart (Validity4, 2009-09-14)
hasEnd (Validity4, 2010-09-14)

37

DataHandlingPolicy {
authorizations: ListAuthorizations {
 authorization:
 DownStreamUsageAuthorization {
 allow: “false” }
},
obligations: ListObligations {
 n0: Obligation {
 triggers: ListTriggers {
 t1: TriggerAtTime {
 start: 01/01/2010,
 maxDelay: 30 days } },
 action:ActionDeletePersonalData{
 personalData: "ref to
personal data"},
 validity: Validity {
 start: 9/14/2009,
 end: 9/14/2009 } },
 n1: Obligation {
 triggers: ListTriggers {
 t1: TriggerReadData {
 dataRef: "ref to personal
data" }},
 action: ActionNotifyByEmail {
 userName : "Bob",
 address:
"bob@contoso.com" },
 validity: Validity {
 start: 9/14/2009,
 end: 9/14/2009 } } } }

DataHandlingPreference {
authorizations: ListAuthorizations {
 authorization:
 DownStreamUsageAuthorization {
 allow: “true” }
},
obligations: ListObligations {
 n0: Obligation {
 triggers: ListTriggers {
 t1: TriggerAtTime {
 start: 10/14/2009,
 maxDelay : 365 days } },
 action:ActionDeletePersonalData{
 personalData: "ref to
personal data"},
 validity: Validity {
 start: 9/14/2009,
 end: 9/14/2010} },
 n1: Obligation {
 triggers: ListTriggers {
 t1: TriggerReadForPurpose {
 personalData: "ref to
personal data"
 purpose: "statistics"} },
 action: ActionNotifyUser {
 userName: "Bob" },
 validity: Validity {
 start: 9/14/2009,
 end: 9/14/2010 }}
}}

Figure 5.1.1: Policy Examples

After representing the data provider and consumers’ policies in OWL, system will try to find an
equally or more permissive authorizationSet in the data provider’s policy for each
authorizationSet in the data consumer’s policy. In our example, data consumer policy’s
authorizationSet involves just one authorization: DownStreamUsageAuthorization. For this
kind of authorizations, the system concludes data consumer’s policy is equally or less
permissive than data provider’s policy if and only if one of the following conditions exists:

38

• If allowed is false in the data controller’s policy: data controller specifies that he/she
will not forward data to the third parties.

• If allowed is true in both data controller and data providers’ policy: both agree on that
data consumer may forward data to the third parties.

In our example data consumer policy’s DownStreamUsageAuthorization’s allow element’s
value is false. Thus system will decide AuthorizationSet1 is equally or less permissive and will
continue with ObligationSet.

After examining authorizationSet, system will try to find for each obligationSet in the data
provider’s policy, an equally or less permissive obligationSet in the data consumer’s policy. Let
us start to analyze first and only obligationSet, instance ObligationSet2, in the data provider
policy.

ObligationSet2 involves two obligations, Obligation3 and Obligation4. For each obligation in
the data provider policy, system has to find an equally or less permissive obligation in the data
consumer policy. Each obligation composed of three parts: TriggerSet, Action and Validity.

///data consumer
 n0 : Obligation {
 triggers : ListTriggers {
 t1 : TriggerAtTime {
 start : 01/01/2010,
 maxDelay : 30 days } },
………………….

 /// data provider
 n0 : Obligation {
 triggers : ListTriggers {
 t1 : TriggerAtTime {
 start : 10/14/2009,
 maxDelay : 365 days } },
…………………………

Take the triggerSet, TriggerSet3, of first obligation, Obligation3, in data provider side and
consider first trigger, TriggerAtTime2. We can say a trigger is equally or less permissive if and
only if trigger in data consumer’s policy has a small time window:

Policy.TriggerAtTime.startdate ≥ Preference.TriggerAtTime.startdate and
Policy.TriggerAtTime.startdate + Policy. TriggerAtTime.maxDelay ≤
Preference.TriggerAtTime.startdate + Preference. TriggerAtTime.maxDelay

Therefore system will send a query to reasoner to check “is there a TriggerAtTime whose
startDate is bigger than “10/14/2009”

TriggerAtTime and (hasStart some dateTime [>= "2009-10-14T00:00:00"^^dateTime])

Answer is instance TriggerAtTime1. To calculate second part consider following modification:
whenever we have a trigger which is TriggerAtTime type we can calculate an endDate by
adding maxDelay to startDate. Therefore instance TriggerAtTime2 will have endDate:

39

10/14/2010 and instance TriggerAtTime1 will have 01/02/2010. Now new query will be: “is
there a TriggerAtTime whose startDate is bigger than “10/14/2009”and endDate is smaller than
10/14/2010. Answer is instance TriggerAtTime1.

TriggerAtTime and (hasStart some dateTime [>= "2009-10-14T00:00:00"^^dateTime])
and (hasEnd some dateTime [<= "2010-10-14T00:00:00"^^dateTime])

In our simple example TriggerSet3 contains just one trigger but in principle a triggerSet may
contain several triggers. Thus abovementioned process should be done for each trigger in the
triggerSet.

Before matching actions consider following query which will return an obligation instance that
TriggerAtTime1 belongs, Obligation1:

Obligation and (hasTriggerSet some (TriggerSet and (hasTrigger some (TriggerAtTime
and (hasStart some dateTime [= "2010-01-01T00:00:00"^^dateTime]) and (hasEnd
some dateTime [= "2010-02-01T00:00:00"^^dateTime])))))

Answer is Obligation1. Then system will go on by comparing actions:

///data consumer
………..
 action :ActionDeletePersonalData {
 personalData: "ref to
personal data"},
……

///data provider
………..
 action :ActionDeletePersonalData {
 personalData: "ref to
personal data"},
……

System will query to find an obligation which has an action “ActionDeletePersonalData” and
for this action data property hasData’s value is “ref to personal data”

Obligation and (hasAction some (ActionDeletePersonalData and hasData value "ref to
personal data"))

Result is instance Obligation1, same with result of triggerSet so system will go on with validity.

///data consumer
…….
validity: Validity {
 start : 9/14/2009,
 end : 9/14/2009 } },

///data provider
…….
 validity: Validity {
 start : 9/14/2009,
 end : 9/14/2010} },

40

A validity is equally or less permissive than the other one if and only if first one’s start date is
bigger than the second one’s while end date of first one is smaller than the second one. The
following query will search for an obligation whose validity time frame is inside time frame of
validity that specified in data provider side.

Obligation and (hasValidity some (Validity and (hasStart some dateTime [>= "2009-09-
14T00:00:00"^^dateTime]) and (hasEnd some dateTime [<= "2010-09-14T00:00:00"
^^dateTime])))

Instances Obligation1 and Obligation2 will be answer for the query. Since Obligation1 was
result of triggerSet and action, system concludes for Obligation3 there is a less permissive
obligation, Obligation1 in data consumer policy.

Now system will consider next obligation, Obligation4, in ObligationSet2. Again it will start
from triggerSet. Obligation4 has TriggerSet4 which involves TriggerReadForPurpose1 instance.

///data consumer
 n1 : Obligation {
 triggers : ListTriggers {
 t1 : TriggerReadData {
 dataRef : "ref to personal
data" }

},
……….…..

 ///data provider
 n1 : Obligation {
 triggers : ListTriggers {
 t1 : TriggerReadForPurpose {
 personalData : "ref to
personal data"
 purpose : "statistics" } },
………

To compare hierarchical triggers system uses following rules: (Assume C is data consumer
policy while P is data provider preferences)

• If data provider and consumer both have “TriggerReadData” then compare data.
 C:TriggerReadData ⊴ P:TriggerReadData ⇔ (C.dataRef ==P.dataRef)

• If data provider and consumer both have “TriggerReadForPurpose” then compare data
and purposes.

 C: TriggerReadForPurpose ⊴ P: TriggerReadForPurpose ⇔

 ((C.dataRef == P.dataRef) ∧ (C.purpose == P.purpose))

• If data consumer has “TriggerReadData” and data provider has
“TriggerReadForPurpose” then compare only data.

 C: TriggerReadData ⊴ P: TriggerReadForPurpose ⇔ (C.dataRef == P.dataRef)

41

In our example we have TriggerReadData for data consumer policy while
TriggerReadForPurpose for data provider preference. Hence query will be:

 TriggerPersonalDataAccessed and (hasData value "ref to personal data")

Result of query will be instance TriggerPersonalDataAccessed1 which belongs to Obligation2:

 Obligation and hasTriggerSet some (TriggerSet and (hasTrigger some
 (TriggerPersonalDataAccessed and (hasData value "ref to personal data"))))

Now system will reason about actions.

///data consumer
……
 action : ActionNotifyByEmail {
 userName : "Bob",
 address: "bob@contoso.com"
},

 ///data provider
……..
 action: ActionNotifyUser {
 username : "Bob" },

…….

To compare hierarchical actions system uses following rules: (Assume C is data consumer
policy while P is data provider preferences)

• If data provider and consumer both have “ActionNotifyUser” then we will compare
usernames.

 C:ActionNotifyUser ⊴ P:ActionNotifyUser ⇔ (C.userName ==P.userName)

• If data provider and consumer both have “ActionNotifyByEmail” then we will compare
usernames and addresses.

C:ActionNotifyByEmail ⊴ P:ActionNotifyByEmail ⇔
((C.userName == P.userName) ∧ (C.address == P.address))

• If data consumer has “ActionNotifyUser” and data provider has “ActionNotifyByEmail”
then we will compare usernames.
 C:ActionNotifyByEmail⊴R:ActionNotifyUser ⇔ (C.userName == P.userName)

In our example data consumer’s policy has ActionNotifyByEmail and data provider’s
preference has ActionNotifyUser. Thus query will be:

ActionNotifyByEmail and (hasUsername value "Bob")

42

Result is instance ActionNotifyByEmail1 which belongs to Obligation2:

 Obligation and (hasAction some (ActionNotifyByEmail1 and (hasUsername value
 "Bob")))

Same obligation instance with triggerSet therefore system will continue with validity.

///data consumer
…………..
 validity : Validity {
 start : 9/14/2009,
 end : 9/14/2009 } }
 } }

 ///data provider
 …………..
 validity : Validity {
 start : 9/14/2009,
 end : 9/14/2010 } }
} }

System is searching for an obligation which has validity such that its start date is bigger than
defined in the data provider policy and end date is smaller than defined in the data provider
policy. The following query will search for an obligation whose validity time frame is inside
time frame of validity that specified in data provider side.

Obligation and (hasValidity some (Validity and (hasStart some dateTime [>= "2009-09-
14T00:00:00"^^dateTime]) and (hasEnd some dateTime [<= "2010-09-14T00:00:00"
^^dateTime])))

Instances Obligation1 and Obligation2 will be answer of the query. Since Obligation2 is in the
result set, system concludes that for Obligation4 there exists a less permissive obligation,
Obligation2 in data consumer policy.

Finally system has finished comparing all obligations in ObligationSet2 in data provider policy.
Now system checks if Obligation1 and Obligation2 are in the same obligationSet or not:

ObligationSet and (hasObligation value Obligation1) and (hasObligation value
Obligation2)

Result is ObligationSet1. Since both obligations are in the same obligationSet system will
conclude that for ObligationSet2 in data provider policy there exists a less permissive
obligationSet in data consumer policy. Hence data consumer’s policy is less permissive than
data provider’s policy and access may be permitted.

43

In principle instead of sending queries step by step, policy matching application could combine
all queries into one and get the answer either yes or no. However when there is a mismatch in
order to locate it, queries should be send partially.

We have to state the fact that system will have low performance when queries are being sent
partially. Because reasoner will go through whole ontology for each partial query and this will
cause system overload thus low performance.

Semantic Web technologies open new opportunities to deal with a great number of problems.
However they do not concern about providing high performance for the time being. Also, to
combine them with the existing technologies can be a little difficult, because of poor
documentation and incompatibility issues. For example in our work, we have faced difficulties
to retrieve relevant data types from ontology and use it properly within java code. Similarly, we
have faced to send proper data types to the ontology from a java code.

44

Chapter6
APPLICATION USAGE FIELDS

As the amount of valuable data available on the Web grows, access control becomes extremely
important to data providers and users. Access control, which means the users must fulfill certain
conditions in order to access certain functionality, plays an important role in security based
systems. Policy matching application aims to provide access control by using OWL.

Expressing policies by using OWL has several important advantages. Firstly most policy
languages define constraints over classes of targets, objects, actions, time etc. which can be
defined easily with OWL. Secondly OWL’s logic facilities enable to translate of policies
expressed in OWL to other formalisms either for analysis or for execution. Moreover OWL
reasoning capacity allows users manage and solve policy conflicts in an automated, error free
way particularly in hierarchical issues and in multi-organizational environments.

We believe that the Policy Matching application would be useful in several fields such that
social network and commercial applications etc. In this chapter we will provide some examples
to indicate Policy Matching application usage.

6.1 Social Network Example

Let us look a famous social network, Facebook [115]. Registered users can define privacy
settings for their personal information, contact information and other related information such
that photos, videos etc. about their profiles. Assume a data provider defines a policy in which
he/she states that: Personal information can be seen by everyone while contact and other related
information can be seen only by his/her family and friends. These restrictions easily can be
granted by defining proper authorizations.

Moreover the data provider may put more restrictions such that only the family members may
tag his/her photos and videos. Data subject also wants to be notified whenever his/her data are
accessed. Let us now formalize these restrictions with the extended XACML policy language.

45

<Policy>

 <AuthorizationSet>

 <Authorization>

 <RoleAuthorization>

 <role> Family </role>

 </RoleAuthorization>

 </Authorization>

 </AuthorizationSet>

 <ObligationsSet>

 <Obligation >

 <TriggersSet>

 <TriggerPersonalDataAccessed>

 <data> Personal Information </data>

 <data> Contact Information </data>

 </ TriggerPersonalDataAccessed >

 <TriggerPersonalDataAccessedForPurpose>

 <data> Other Information </data>

 <purpose> Tag </purpose>

 </ TriggerPersonalDataAccessedForPurpose >

 </TriggersSet>

 <Action>

 < ActionNotifyUser >

 <username> Emine </ username >

 </ActionNotifyUser >

 </Action>

 <Validity>

 <start> 2009-10-14T00:00:00 </start>

 <end> 2010-10-14T00:00:00 </end>

 </Validity>

 </Obligation>

 </ObligationsSet>

</Policy>

Figure 6.1.1: Policy Example for Family – Data Provider

Expressing policies by using OWL has one more important advantage: It is very flexible thus
new features can be added easily. In our example we have to add a new authorization subclass
“RoleAuthorization” to Policy Ontology and this subclass should have a data property called
hasRole which specifies authorization role.

46

OWL axioms for abovementioned example are the followings:

Policy (Policy1)
AuthorizationSet (AuthorizationSet1)
hasAuthorizationSet (Policy1, AuthorizationSet1)
RoleAuthorization (RoleAuthorization1)
hasAuthorization (AuthorizationSet1, RoleAuthorization1)
ObligationSet (ObligationSet1)
hasObligationSet (Policy1, ObligationSet1)
Obligation (Obligation1)
hasObligation (ObligationSet1, Obligation1)
TriggerSet (TriggerSet1)
hasTriggerSet (Obligation1, TriggerSet1)
TriggerPersonalDataAccessed (TriggerPersonalDataAccessed1)
hasTrigger (TriggerSet1, TriggerPersonalDataAccessed1)
hasData (TriggerPersonalDataAccessed1, Personal Information)
hasData (TriggerPersonalDataAccessed1, Contact Information)
hasData (TriggerPersonalDataAccessed1, Other Information)
TriggerPersonalDataAccessedForPurpose (TriggerPersonalDataAccessedForPurpose1)
hasTrigger (TriggerSet1, TriggerPersonalDataAccessedForPurpose1)
hasData (TriggerPersonalDataAccessedForPurpose1, Other Information)
hasPurpose (TriggerPersonalDataAccessedForPurpose1,Tag)
Action (Action1)
hasAction (Obligation1, Action1)
ActionNotifyUser (ActionNotifyUser1)
hasSubAction (Action1, ActionNotifyUser1)
hasUsername (ActionNotifyUser1, Emine)
Validity (Validity1)
hasValidity (Obligation1, Validity1)
hasStart (Validity1, 2009-10-14)
hasEnd (Validity1, 2010-10-14)

Assume that the data subject specifies similar policies for the friends and others: Friends may
access personal, contact and other information but without tagging right. Others may access
only the personal information. Now let us consider a data consumer whose relation with data
provider is friendship. Data consumer wishes to access the data provider’s other information.
Hence he/she define a policy:

47

<Policy>

 <AuthorizationSet>

 <Authorization>

 <RoleAuthorization>

 <role> Friend </role>

 </RoleAuthorization>

 </Authorization>

 </AuthorizationSet>

 <ObligationsSet>

 <Obligation >

 <TriggersSet>

 <TriggerPersonalDataAccessedForPurpose>

 <data> Other Information </data>

 <purpose> Tag </purpose>

 </ TriggerPersonalDataAccessedForPurpose >

 </TriggersSet>

 <Action>

 < ActionNotifyUser >

 <username> Emine </ username >

 </ActionNotifyUser >

 </Action>

 <Validity>

 <start> 2009-10-14T00:00:00 </start>

 <end> 2010-10-14T00:00:00 </end>

 </Validity>

 </Obligation>

 </ObligationsSet>

</Policy>

Figure 6.1.2: Policy Example for Friend-Data Consumer

To compare hierarchical triggers as we mentioned in previous chapters, the system uses
following rules: (Assume C is data consumer policy while P is data provider preferences)

• If data provider and consumer both have “TriggerPersonalDataAccessed” then compare
data.

 C: TriggerPersonalDataAccessed ⊴ P: TriggerPersonalDataAccessed ⇔
 (C.dataRef ==P.dataRef)

48

• If data provider and consumer both have “TriggerPersonalDataAccessedForPurpose” then
compare data and purposes.

 C: TriggerPersonalDataAccessedForPurpose ⊴

 P: TriggerPersonalDataAccessedForPurpose ⇔

 ((C.dataRef == P.dataRef) ∧ (C.purpose == P.purpose))

• If data consumer has “TriggerPersonalDataAccessed” and data provider has
“TriggerPersonalDataAccessedForPurpose” then compare data.

 C: TriggerPersonalDataAccessed ⊴ P: TriggerPersonalDataAccessedForPurpose ⇔
 (C.dataRef == P.dataRef)

However in our example data provider has “TriggerPersonalDataAccessed” while data
consumer has “TriggerPersonalDataAccessedForPurpse”, thus access will be denied. It is also
possible to compare data consumer policy with data provider’s family policy but in this case
data provider’s family authorization mismatches with data consumer’s friend authorization and
access will be denied again.

Data consumer may access data if and only if he/she defines an equally or less permissive
policy in which he/she states other information will be accessed without tagging purpose.

As we see from this basic example, Policy Matching application is fit very well to the nature of
social network access control issues. Users’ privacy policies can be represented by Policy
Ontology easily and OWL reasoner can be used to find mismatches if they exist.

6.2 Commercial Application Example

Let us have a look website of CardScan [12] in which users can create an online address book to
access their contacts’ information. In CardScan users can upload their personal information and
contact information to the system and define who can access these data.

To be more clear consider following example: Suppose a data provider use CardScan to upload
his/her personal information and contact information. Moreover he/she states that the user1
cannot access data while user2 may access to the provided data. So, user2 can access the data
provider’s information and update his/her address book. In this scenario we can assume that
actual data consumer is the CardScan system and according to the policy between the data
provider and the system, system may forward data to the third parties or not. Figure 6.2.1
illustrates this situation.

49

Figure 6.2.1: CardScan Structure

Moreover the data provider may define some obligations over his/her data to limit the data
consumer. Part of the data provider’s policy is shown in Figure 6.2.2.

<Policy>

 <AuthorizationSet>

 <Authorization>

 < DownStreamUsageAuthorization >

 <allow> false </allow>

 <subject> user1 </subject>

 </ DownStreamUsageAuthorization >

 < DownStreamUsageAuthorization >

 <allow> true </allow>

 <subject> user2 </subject>

 </ DownStreamUsageAuthorization >

 </Authorization>

 </AuthorizationSet>

 <ObligationsSet/>

</Policy>

Figure 6.2.2: Data Provider Policy

Forward

Cannot Forward

Upload

Data Provider CARDSCAN

Data

Data

Data

Data

User 1

User 2

Data Consumer

50

From these two application examples we can observe that Policy Matching application would
be useful in several fields in which access control is main issue. Its flexible structure enables to
adapt to the application domain easily and cover all necessary access control problems.

Specifying and using access control with Semantic Web services are getting popular day by
day. Functionalities of OWL reasoner give us great advantages on analyzing effect and
consequences of set of access decisions. Flexibility of adding/removing classes and relations in
OWL allow us to improve defined ontology structure.

51

Chapter7
CONCLUSION

In this work we have presented firstly a translation of policy documents those written in
extended XACML into OWL-DL and then described how those translations can be used for
policy analyzing and matching by exploiting OWL reasoner functionalities. As a reasoner we
have exploit Hermit reasoner capabilities. We have provided some background knowledge
about XACML, extended XACML and OWL to make clear the problem and suggested
solution.

We believe that, this approach can be used to help developing security frameworks for dynamic
environments which require an agreement before sharing data. As we have shown in chapter 6
Policy Matching application would be useful in several fields in which access control is main
issue. Its flexible structure enables to adapt to the application domain easily and cover all
necessary access control problems.

We have demonstrated that representing policies with OWL has several advantages: Firstly
most policy languages define constraints over classes of targets, objects, actions, time etc.
which can be defined easily with OWL. Secondly OWL’s logic facilities enable to translate of
policies expressed in OWL to other formalisms either for analysis or for execution. Moreover
OWL reasoning capacity allows users manage and solve policy conflicts in an automated, error
free way particularly in hierarchical issues and in multi-organizational environments.

Specifying and using access control with Semantic Web services are getting popular day by
day. Functionalities of OWL reasoner give us great advantages on analyzing effect and
consequences of set of access decisions. Flexibility of adding/removing classes and relations in
OWL allow us to improve defined ontology structure.

Semantic Web technologies open new opportunities to deal with a great number of problems.
However they do not concern about providing high performance for the time being. Also, to
combine them with existing technologies can be a little difficult, because of poor documentation
and incompatibility issues. We believe that these problems will be solved in near future since
usage of Semantic Web technologies is increasing.

52

Although our work is complete enough to be used in simple policy specifications, there are still
some issues need to be considered in more detail to enable cover complex policies. As a part of
future work, firstly we are considering to extend Policy Ontology structure. Since it is domain
dependent, a specific domain of interest has to be chosen. Thus new kind of triggers and/or
actions shall be added. Furthermore a subject and/or resource hierarchy can be defined in order
to exploit OWL reasoner capacity more.

On the other hand, our long term goal is continue to investigate the Semantic Web services in
relation with access control models and declarative policy languages.

BIBLIOGRAPHY

[1] Access Control Models: http://en.wikipedia.org/wiki/Access_control
[2] Primeife Project: http://www.primelife.eu/images/stories/h5.3.2-seconddesign/h5.3.2.html
[3] Pierangela Samarati and Sabrina De Capitani di Vimercati, Access Control: Policies,
 Models, and Mechanisms, Lecture Notes in Computer Science; Vol. 2171, pages 137-196,
 2000
[4] XACML: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
[5] OWL: www.w3.org/TR/owl-features/
[6] http://www.obitko.com/tutorials/ontologies-semantic-web/owl-dl-semantics.html
[7] Pizza Ontology: http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/
[8] Semantic Web: http://semanticweb.org/wiki/Main_Page
[9] RDF: www.w3.org/RDF/
[10] Hermit: http://www.hermit-reasoner.com/
[11] Facebook: www.facebook.com
[12] CardScan: www.cardscan.net
[13] Feng Huang, Zhiqiu Huang and Linyuan Liu, A DL-based Method for Access Control
 Policy Conflict Detecting, Asia-Pacific Symposium on Internetware, Beijing, China, 2009
[14] T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu, W. Winsborough and B. Thuraisingham,
 ROWLBAC: Representing Role Based Access Control in OWL, SACMAT: Symposium
 on Access Control Models and Technologies, Colorado, USA, 2008
[15] Vladimir Kolovski, James Hendler and Bijan Parsia, Formalizing XACML Using
 Defeasible Description Logics: www.mindswap.org/~kolovski/xacml_tr.pdf
[16] Logic-Based Access Control Policy Specification and Management, Vladimir Kolovski:
 www.cs.umd.edu/Grad/scholarlypapers/papers/VKolovski.pdf

